WO2019172394A1 - β修飾リン酸化合物前駆体、β修飾リン酸化合物、反応阻害剤及びこれを含む医薬並びに反応阻害方法 - Google Patents

β修飾リン酸化合物前駆体、β修飾リン酸化合物、反応阻害剤及びこれを含む医薬並びに反応阻害方法 Download PDF

Info

Publication number
WO2019172394A1
WO2019172394A1 PCT/JP2019/009213 JP2019009213W WO2019172394A1 WO 2019172394 A1 WO2019172394 A1 WO 2019172394A1 JP 2019009213 W JP2019009213 W JP 2019009213W WO 2019172394 A1 WO2019172394 A1 WO 2019172394A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
reaction
hydrogen
alkyl group
Prior art date
Application number
PCT/JP2019/009213
Other languages
English (en)
French (fr)
Inventor
阿部 洋
康明 木村
Original Assignee
国立研究開発法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人科学技術振興機構 filed Critical 国立研究開発法人科学技術振興機構
Priority to EP19763431.4A priority Critical patent/EP3763724A4/en
Priority to CN201980017573.6A priority patent/CN111836823B/zh
Priority to JP2020505121A priority patent/JP7266896B2/ja
Priority to US16/977,525 priority patent/US11597745B2/en
Publication of WO2019172394A1 publication Critical patent/WO2019172394A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H23/00Compounds containing boron, silicon, or a metal, e.g. chelates, vitamin B12
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • C07H1/02Phosphorylation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H11/00Compounds containing saccharide radicals esterified by inorganic acids; Metal salts thereof
    • C07H11/04Phosphates; Phosphites; Polyphosphates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/19Purine radicals with arabinosyl as the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • C07H19/207Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids the phosphoric or polyphosphoric acids being esterified by a further hydroxylic compound, e.g. flavine adenine dinucleotide or nicotinamide-adenine dinucleotide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a ⁇ -modified phosphate compound precursor, a ⁇ -modified phosphate compound, a reaction inhibitor, a medicine containing the same, and a reaction inhibition method, and in particular, inhibits the progress of the reaction after phosphorylation in a reaction involving phosphorylation.
  • the present invention relates to a ⁇ -modified phosphate compound precursor, a ⁇ -modified phosphate compound, a reaction inhibitor, a medicine containing the same, and a reaction inhibition method.
  • Phosphorylation is an important process of biological reaction, and various reactions involving phosphorylation are performed in vivo.
  • a DNA polymerase performs a reaction involving phosphorylation of DNA.
  • DNA polymerase complements in the 3 ′ ⁇ 5 ′ direction by sequentially binding a complementary deoxynucleotide triphosphate (dNTP) to the 3 ′ end side using a single-stranded DNA as a template starting from the primer sequence. Elongate strand DNA.
  • dNTP complementary deoxynucleotide triphosphate
  • Mevalonic acid is a compound involved in the synthesis of terpenoids and steroids. Mevalonic acid is phosphorylated by mevalonate kinase using ATP as a substrate to form 5-phosphomevalonic acid, which is converted to cholesterol and the like by subsequent processes. Mevalonic acid is also known as an important target substance in therapeutic drugs such as hyperlipidemia.
  • phosphorylation is an important process in biological reactions, and if the subsequent reaction can be specifically and efficiently inhibited, it has the potential to provide treatment methods for various diseases.
  • the conventional techniques are insufficient to selectively and efficiently inhibit the biological reaction resulting from the phosphorylation reaction.
  • Patent Document 1 discloses acyclovir as an inhibitor of DNA polymerase.
  • Acyclovir undergoes monophosphorylation in the virus and triphosphorylation in the host (human) and binds to the 3 'end side of the extended strand in the DNA polymerase reaction to competitively inhibit the viral DNA polymerase.
  • JP 09-136842 A (Claim 1 etc.)
  • a compound such as acyclovir only inhibits the elongation of DNA, and an inhibitor that inhibits the reaction more efficiently and strongly has been demanded.
  • the present invention relates to a ⁇ -modified phosphate compound precursor, a ⁇ -modified phosphate compound, a reaction inhibitor, a drug containing the same, and a medicine capable of specifically inhibiting the progress of the reaction after phosphorylation in a reaction involving phosphorylation, and It aims at providing the reaction inhibition method.
  • the present inventors have intensively studied to solve the above problems. As a result, for a compound having a partial structure in which a hydroxyl group is bonded to one carbon ( ⁇ position) of the carbon-carbon bond and a specific modifying group is bonded to the other carbon ( ⁇ position), the hydroxyl group is phosphorylated. It was found that an active species having high reactivity is generated. Furthermore, the present inventors have found that the reaction by the biomolecule after phosphorylation is specifically inhibited by the active species, and completed the present invention.
  • the present invention is a ⁇ -modified phosphate compound precursor that is phosphorylated by a phosphorylation reaction and has a partial structure represented by the following formula 1A in the molecule. It is.
  • a 1 is —SR 1 , —S—S—R 1 , —SeR 1 , or —X (where X means a halogen selected from fluorine, chlorine, bromine, and iodine).
  • R 1 is hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, or an alkenyl group having 1 to 20 carbon atoms
  • L 1 is hydrogen, an alkyl group having 1 to 20 carbon atoms Represents an aryl group having 1 to 20 carbon atoms or an alkenyl group having 1 to 20 carbon atoms
  • L 2 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms.
  • L 1 and L 2 may be connected to each other to form a 4- to 6-membered ring structure, and the ring structure is one or more elements selected from carbon, nitrogen, oxygen, and sulfur.
  • L 1 and L 2 are each a hydroxyl group, a carboxyl An amino group, an alkyl group, an aryl group, a phospholipid, a monophosphate group, a diphosphate group, or a triphosphate group containing at least one saturated fatty acid and / or unsaturated fatty acid having 15 to 30 carbon atoms, and a base (wherein Bases are adenine, guanine, cytosine, thymine, uracil, N-methyladenine, N-benzoyladenine, 2-methylthioadenine, 2-aminoadenine, 7-methylguanine, N-isobutyrylguanine, 5-fluorocytosine, 5 -Means bromocytosine, 5-methylcytosine, 4-N-methylcytosine, 4-N, N-dimethylcytosine, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, or 5,6-dihydrouracil
  • a nucleoside derivative represented by the following formula 2A or a nucleic acid having the nucleoside derivative at the 3 ′ end is preferable.
  • a 1 represents —SR 1 , —S—S—R 1 , —SeR 1 , or —X (where X represents a halogen selected from fluorine, chlorine, bromine and iodine).
  • R 1 is hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, or an alkenyl group having 1 to 20 carbon atoms
  • L 3 is hydrogen, or a monophosphate represented by the following formula 2D Group, diphosphate group, or triphosphate group.
  • n represents an integer of 1 to 3.
  • Z 1 is a hydroxyl group or methyl ester, ethyl ester, isopropyl ester, n-butyl of glycine, alanine, valine, leucine, phenylalanine, tryptophan, methionine or proline
  • Z 2 is hydrogen, an alkyl group having 1 to 4 carbon atoms, a halogen, or a phenyl group, and when n is 2 or more, each Z 1 is the same or different.
  • B represents adenine, guanine, cytosine, thymine, uracil, N-methyladenine, N-benzoyladenine, 2-methylthioadenine, 2-aminoadenine, 7-methylguanine, N-isobutyrylguanine, 5-fluorocytosine, 5 Selected from bromocytosine, 5-methylcytosine, 4-N-methylcytosine, 4-N, N-dimethylcytosine, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, or 5,6-dihydrouracil It is a base.
  • * Is a bond to which a phosphate group is bonded by phosphorylation, and means that a substituent other than hydrogen or a phosphate group is bonded before phosphorylation.
  • a mevalonic acid derivative represented by the following formula 3A is preferable.
  • a 1 represents —SR 1 , —S—S—R 1 , —SeR 1 , or —X (where X represents a halogen selected from fluorine, chlorine, bromine and iodine).
  • R 1 is hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, or an alkenyl group having 1 to 20 carbon atoms.
  • the ⁇ -modified phosphate compound precursor according to claim 1 which is a phosphatidylinositol derivative represented by the following formula 4A.
  • a 1 represents —SR 1 , —S—S—R 1 , —SeR 1 , or —X (where X represents a halogen selected from fluorine, chlorine, bromine and iodine).
  • R 1 is hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, or an alkenyl group having 1 to 20 carbon atoms
  • R 3 is selected from arachidonic acid, linoleic acid, and linolenic acid
  • R 4 is a saturated fatty acid selected from stearic acid and palmitic acid.
  • the present invention is a ⁇ -modified phosphate compound having a partial structure represented by the following formula 1B in the molecule.
  • a 1 is —SR 1 , —S—S—R 1 , —SeR 1 , or —X (where X means a halogen selected from fluorine, chlorine, bromine, and iodine).
  • R 1 is selected from hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, and an alkenyl group having 1 to 20 carbon atoms
  • L 1 is hydrogen and an alkyl having 1 to 20 carbon atoms Group, an aryl group having 1 to 20 carbon atoms, or an alkenyl group having 1 to 20 carbon atoms
  • L 2 is an alkyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms
  • L 1 and L 2 may be connected to each other to form a 4- to 6-membered ring structure, and the ring structure is one or more elements selected from carbon, nitrogen, oxygen, and sulfur in configured .
  • L 1 and L 2 are each a hydroxyl group, a carboxyl Group, amino group, alkyl group, aryl group, phospholipid, monophosphate group, diphosphate group, or triphosphate group containing at least one saturated
  • a nucleoside derivative represented by the following formula 2B or a nucleic acid having the nucleoside derivative at the 3 ′ end is preferable.
  • a 1 represents —SR 1 , —S—S—R 1 , —SeR 1 , or —X (where X represents a halogen selected from fluorine, chlorine, bromine and iodine).
  • R 1 is hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, or an alkenyl group having 1 to 20 carbon atoms
  • L 3 is hydrogen, or a monophosphate represented by the following formula 2D Group, diphosphate group, or triphosphate group.
  • n represents an integer of 1 to 3.
  • Z 1 is a hydroxyl group or methyl ester, ethyl ester, isopropyl ester, n-butyl of glycine, alanine, valine, leucine, phenylalanine, tryptophan, methionine or proline
  • Z 2 is hydrogen, an alkyl group having 1 to 4 carbon atoms, a halogen, or a phenyl group, and when n is 2 or more, each Z 1 is the same or different.
  • B represents adenine, guanine, cytosine, thymine, uracil, N-methyladenine, N-benzoyladenine, 2-methylthioadenine, 2-aminoadenine, 7-methylguanine, N-isobutyrylguanine, 5-fluorocytosine, 5 Selected from bromocytosine, 5-methylcytosine, 4-N-methylcytosine, 4-N, N-dimethylcytosine, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, or 5,6-dihydrouracil It is a base.
  • the present invention provides a reaction inhibitor that inhibits the progress of a reaction after phosphorylation in a reaction involving phosphorylation, the reaction comprising the ⁇ -modified phosphate compound precursor according to any one of the above An inhibitor.
  • the ⁇ -modified phosphate compound precursor is a nucleoside derivative represented by the above formula 2A or a nucleic acid having the nucleoside derivative at the 3 ′ end and inhibits the reaction of DNA polymerase.
  • the present invention is a medicine characterized by containing the above reaction inhibitor.
  • the present invention provides a reaction inhibition method for inhibiting the progress of a reaction after phosphorylation in a reaction involving phosphorylation by the reaction inhibitor according to any one of the above, wherein the ⁇ -modified phosphate compound precursor represented by the formula 1A is used.
  • a ⁇ -modified phosphate compound precursor according to Formula 1B to form a ⁇ -modified phosphate compound according to Formula 1B, and the ⁇ -modified phosphate compound is partially cleaved to form the following Formula 1C: And a step of generating an active species represented by the formula: (Where A 2 is -S-, -S + (R 1 )-, -S + (SR 1 )-, -Se + (R 1 )-, or -X + -(where X Represents a halogen selected from fluorine, chlorine, bromine and iodine, and R 1 represents hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms.
  • L 1 represents hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, or an alkenyl group having 1 to 20 carbon atoms
  • L 2 represents an alkenyl group having 1 to 20 carbon atoms.
  • L 1 and L 2 may be linked to each other to form a 4- to 6-membered ring structure; Is composed of one or more elements selected from carbon, nitrogen, oxygen, and sulfur, L 1 and L 2 are Phospholipid, monophosphate group, diphosphate group, or triphosphate group each containing one or more of a hydroxyl group, carboxyl group, amino group, alkyl group, aryl group, saturated fatty acid having 15 to 30 carbon atoms and / or unsaturated fatty acid And a base (wherein the base is adenine, guanine, cytosine, thymine, uracil, N-methyladenine, N-benzoyladenine, 2-methylthioadenine, 2-aminoadenine, 7-methylguanine, N-isobutyrylguanine) , 5-fluorocytos
  • the ⁇ -modified phosphate compound precursor is a compound represented by the formula 2A
  • the ⁇ -modified phosphate compound is a compound represented by the formula 2B
  • the active species is represented by the following formula 2C.
  • a compound is preferred. (Where A 2 is -S-, -S + (R 1 )-, -S + (SR 1 )-, -Se + (R 1 )-, or -X + -(where X Represents a halogen selected from fluorine, chlorine, bromine and iodine, and R 1 represents hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms.
  • L 3 is hydrogen or a monophosphate group, a diphosphate group, or a triphosphate group represented by the following formula 2D.
  • n represents an integer of 1 to 3.
  • Z 1 is a hydroxyl group or methyl ester, ethyl ester, isopropyl ester, n-butyl of glycine, alanine, valine, leucine, phenylalanine, tryptophan, methionine or proline
  • Z 2 is hydrogen, an alkyl group having 1 to 4 carbon atoms, a halogen, or a phenyl group, and when n is 2 or more, each Z 1 is the same or different.
  • B represents adenine, guanine, cytosine, thymine, uracil, N-methyladenine, N-benzoyladenine, 2-methylthioadenine, 2-aminoadenine, 7-methylguanine, N-isobutyrylguanine, 5-fluorocytosine, 5 Selected from bromocytosine, 5-methylcytosine, 4-N-methylcytosine, 4-N, N-dimethylcytosine, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, or 5,6-dihydrouracil It is a base.
  • a ⁇ -modified phosphate compound precursor a ⁇ -modified phosphate compound capable of specifically inhibiting the progress of a reaction after phosphorylation in a reaction involving phosphorylation by a highly reactive active species, It becomes possible to provide a reaction inhibitor, a medicament containing the same, and a reaction inhibition method.
  • the ⁇ -modified phosphate compound precursor of the present invention is a ⁇ -modified phosphate compound precursor that is phosphorylated by a phosphorylation reaction, and has a partial structure of the following formula 1A in the molecule.
  • a 1 is —SR 1 , —S—S—R 1 , —SeR 1 , or —X (where X means a halogen selected from fluorine, chlorine, bromine, and iodine).
  • R 1 is hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, or an alkenyl group having 1 to 20 carbon atoms
  • L 1 is hydrogen, an alkyl group having 1 to 20 carbon atoms Represents an aryl group having 1 to 20 carbon atoms or an alkenyl group having 1 to 20 carbon atoms
  • L 2 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms.
  • L 1 and L 2 may be connected to each other to form a 4- to 6-membered ring structure, and the ring structure is one or more elements selected from carbon, nitrogen, oxygen, and sulfur.
  • L 1 and L 2 are each a hydroxyl group, a carboxyl An amino group, an alkyl group, an aryl group, a phospholipid, a monophosphate group, a diphosphate group, or a triphosphate group containing at least one saturated fatty acid and / or unsaturated fatty acid having 15 to 30 carbon atoms, and a base (wherein Bases are adenine, guanine, cytosine, thymine, uracil, N-methyladenine, N-benzoyladenine, 2-methylthioadenine, 2-aminoadenine, 7-methylguanine, N-isobutyrylguanine, 5-fluorocytosine, 5 -Means bromocytosine, 5-methylcytosine, 4-N-methylcytosine, 4-N, N-dimethylcytosine, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, or 5,6-dihydrouracil
  • R 1 is preferably selected from hydrogen, an alkyl group having 1 to 10 carbon atoms, an aryl group having 1 to 10 carbon atoms, and an alkenyl group having 1 to 10 carbon atoms.
  • R 1 is particularly preferably selected from an alkyl group having 1 to 6 carbon atoms, an aryl group having 1 to 6 carbon atoms, and an alkenyl group having 1 to 6 carbon atoms.
  • alkyl group having 1 to 10 carbon atoms examples include methyl group, ethyl group, propyl group, isopropyl group, 2-propenyl group, butyl group, pentyl group, hexyl group, 2-ethylhexyl group, heptyl group, octyl group, and nonyl group. And decyl group.
  • Examples of the aryl group having 1 to 10 carbon atoms include phenyl group, o-tolyl group, p-tolyl group, 2,3-dimethylphenyl group, 2,4-dimethylphenyl group, 2,5-dimethylphenyl group, 2, Examples thereof include 6-dimethylphenyl group, mesityl group, o-cumenyl group and the like.
  • Examples of the alkenyl group having 1 to 6 carbon atoms include a vinyl group, a 1-propenyl group, a 2-propenyl group, and a 1-hexenyl group. The same applies to the following description.
  • L 1 and L 2 may be the same or different and are each hydrogen, an alkyl group having 1 to 10 carbon atoms, an aryl group having 1 to 10 carbon atoms, or an alkyl group having 1 to 10 carbon atoms. It is preferably selected from alkenyl groups, and particularly preferably selected from hydrogen, alkyl groups having 1 to 6 carbon atoms, aryl groups having 1 to 6 carbon atoms, and alkenyl groups having 1 to 6 carbon atoms.
  • L 1 and L 2 When L 1 and L 2 are connected to each other to form a ring structure, cyclohexane, benzene, pentose, hexose and the like can be mentioned.
  • L 1 and L 2 may each have a substituent, and examples of the substituent include a hydroxyl group, a carboxyl group, an amino group, an alkyl group, an aryl group, a saturated fatty acid having 15 to 30 carbon atoms, and / or an unsaturated group. It is selected from phospholipids containing one or more saturated fatty acids and bases.
  • L 1 and L 2 are ribose or deoxyribose, a nucleoside derivative is formed when a base is bonded to the 1 ′ position as a substituent.
  • the base may be a natural nucleobase or a non-natural (synthesized) nucleobase.
  • natural nucleobases include adenine, guanine, cytosine, thymine, and uracil.
  • Non-natural nucleobases include N-methyladenine, N-benzoyladenine, 2-methylthioadenine, 2-aminoadenine, 7-methylguanine, N-isobutyrylguanine, 5-fluorocytosine, 5-bromocytosine, Examples thereof include 5-methylcytosine, 4-N-methylcytosine, 4-N, N-dimethylcytosine, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5,6-dihydrouracil and the like.
  • * Is a bond which means that a substituent other than hydrogen or a phosphate group is bonded before phosphorylation. Before phosphorylation, it is particularly preferable that it is bonded to hydrogen (that is, * —O is a hydroxyl group).
  • the ⁇ -modified phosphate compound precursor represented by the above formula 1A is a phosphorylated compound in which the ⁇ -position carbon bonded to the oxygen undergoing phosphorylation is modified with the A 1 adjacent to the ⁇ -position carbon. It can be said that Phosphorylation may be carried out in vivo or in vitro, but the ⁇ -modified phosphate compound precursor for pharmaceutical use is preferably an analog of a biological compound that is phosphorylated in vivo. Examples of biological compounds that are phosphorylated in vivo include gene-related substances such as nucleosides, nucleotides, and nucleic acids described later, and metabolism-related substances such as mevalonic acid and inositol phosphate described later.
  • the ⁇ -modified phosphate compound of the present invention is a compound obtained by phosphorylating oxygen bonded to the ⁇ -position carbon in the ⁇ -modified phosphate compound precursor of formula 1A. Specifically, it is a ⁇ -modified phosphate compound having a partial structure represented by the following formula 1B.
  • a 1 is —SR 1 , —S—S—R 1 , —SeR 1 , or —X (where X means a halogen selected from fluorine, chlorine, bromine, and iodine).
  • R 1 is selected from hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, and an alkenyl group having 1 to 20 carbon atoms
  • L 1 is hydrogen and an alkyl having 1 to 20 carbon atoms Group, an aryl group having 1 to 20 carbon atoms, or an alkenyl group having 1 to 20 carbon atoms
  • L 2 is an alkyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms
  • L 1 and L 2 may be connected to each other to form a 4- to 6-membered ring structure, and the ring structure is one or more elements selected from carbon, nitrogen, oxygen, and sulfur in configured .
  • L 1 and L 2 are each a hydroxyl group, a carboxyl Group, amino group, alkyl group, aryl group, phospholipid, monophosphate group, diphosphate group, or triphosphate group containing at least one saturated
  • the reaction inhibitor of the present invention is a reaction inhibitor that inhibits the progress of the reaction after phosphorylation in a reaction involving phosphorylation, and is a ⁇ -modified phosphate compound precursor having a partial structure represented by the above formula 1A in the molecule Contains the body. Then, the ⁇ -modified phosphorylated compound precursor of formula 1A is phosphorylated to produce the ⁇ -modified phosphorylated compound of formula 1B. This ⁇ -modified phosphorylated compound inhibits the reaction after phosphorylation by the following reaction mechanism.
  • reaction inhibition method reaction mechanism of the present invention
  • a ⁇ -modified phosphate compound precursor having a partial structure represented by the above formula 1A in the molecule is prepared (step 1).
  • this ⁇ -modified phosphate compound precursor is phosphorylated to produce a ⁇ -modified phosphate compound having a partial structure represented by Formula 1B in the molecule (step 2).
  • the compound of formula 1B produced at this time is unstable in structure, and is partially cleaved to produce an active species represented by the following formula 1C.
  • a 2 is -S-, -S + R 1- , -S + -SR 1- , -Se + R 1- , or -X + -(where X is fluorine, chlorine, R 1 represents hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, or an alkenyl group having 1 to 20 carbon atoms)
  • L 1 represents hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, or an alkenyl group having 1 to 20 carbon atoms, and
  • L 2 represents an alkyl group having 1 to 20 carbon atoms, Represents an aryl group having 1 to 20 or an alkenyl group having 1 to 20 carbon atoms, L 1 and L 2 may be bonded to each other to form a 4- to 6-membered ring structure, and the ring structure may be formed of carbon, nitrogen, It is composed of one or more elements selected from oxygen and sulfur,
  • This active species is highly reactive and has the property of easily forming a covalent bond by nucleophilic attack on other compounds.
  • a 2 is —S—
  • ⁇ , ⁇ carbon and sulfur atom form a thiirane ring in the molecule.
  • This thiirane ring easily reacts with functional groups such as amino group, thiol group, hydroxyl group, and imidazolyl group to form a covalent bond. For this reason, lysine, cysteine, tyrosine, histidine, tryptophan etc. It is easy to covalently bond to the side chain part of the amino acid. It is presumed that the active species irreversibly covalently binds to the protein, so that the subsequent reaction stops and exhibits a reaction inhibitory action.
  • Examples of the reaction that the ⁇ -modified phosphate compound precursor inhibits include various reactions involving phosphorylation. In particular, it can efficiently inhibit the reaction in vivo.
  • Molecules to which the active species bind are not limited to proteins, but bind to various molecules to inhibit the reaction.
  • an active species can be generated by phosphorylation and the reaction can be irreversibly inhibited by a covalent bond. Further, since the reaction can be inhibited by specializing in the reaction that undergoes phosphorylation, side effects are unlikely to occur. Furthermore, there is an advantage that a reaction inhibitor compound targeting a specific reaction can be designed based on the partial structure of Formula 1A.
  • the reaction inhibitor of the present invention inhibits the reaction after phosphorylation as described above, it is useful as an active ingredient in drugs such as medicines and agricultural chemicals, and is particularly preferably used for medicine.
  • examples of the type of medicine include tablets, capsules, pills, powders, granules, fine granules, jellies, and liquids.
  • the above-mentioned drugs are solvents, excipients, binders, disintegrants, lubricants, stabilizers, suspensions, as long as the reaction inhibitory effect of the present invention is not impaired.
  • An additive such as an agent may be included.
  • the formulation solvent include water, ethanol, glycerin and the like.
  • excipient examples include lactose, sucrose, glucose, mannitol, sorbit, corn starch, potato starch, ⁇ -starch, dextrin, carboxymethyl starch, crystalline cellulose, hydroxypropylmethylcellulose, carboxymethylcellulose, carboxymethylcellulose calcium, Arabic Silicates such as rubber, dextran, pullulan, light anhydrous silicic acid, synthetic aluminum silicate, magnesium magnesium aluminometasilicate; calcium phosphate, calcium carbonate, calcium sulfate, and the like.
  • binder examples include gelatin, polyvinyl pyrrolidone, and macrogol.
  • disintegrant examples include croscarmellose sodium, carboxymethyl starch sodium, and cross-linked polyvinyl pyrrolidone.
  • Lubricants include, for example, talc, stearic acid, calcium stearate, magnesium stearate, colloidal silica, bee gum, beeswax, gallow, boric acid, glycol, fumaric acid, adipic acid, sodium benzoate, sodium sulfate, leucine, lauryl. Examples thereof include sodium sulfate, magnesium lauryl sulfate, anhydrous silicic acid, and silicic acid hydrate.
  • Examples of the stabilizer include methyl paraben, propyl paraben, chlorobutanol, benzyl alcohol, phenyl ethyl alcohol, benzalkonium chloride, phenol, cresol, thimerosal, acetic anhydride, sorbic acid and the like.
  • Examples of the suspending agent include polysorbate 80, sodium carboxymethyl cellulose, and the like.
  • the ⁇ -modified phosphate compound precursor of formula 1A can be synthesized by the scheme of the following formula. Specifically, a compound in which a hydroxyl group or the like is bonded to the ⁇ -position carbon is used as a starting material, and a protective group is bonded to a hydroxyl group other than the hydroxyl group for protection. Next, the compound of formula 1A can be synthesized by substituting the hydroxyl group bonded to the ⁇ carbon with A 1 and finally removing the protecting group.
  • the types of starting materials and protecting groups, reaction conditions (concentration, temperature, etc.) and the like vary depending on the ⁇ -modified phosphate compound precursor to be synthesized.
  • Examples of the ⁇ -modified phosphate compound precursor include various specific compounds.
  • each of the nucleoside derivative, mevalonic acid derivative, and phosphatidylinositol derivative will be described in detail.
  • Nucleoside derivative (1) ⁇ -modified phosphate compound precursor examples include nucleoside derivatives represented by the following formula 2A.
  • a 1 represents —SR 1 , —S—S—R 1 , —SeR 1 , or —X (where X represents a halogen selected from fluorine, chlorine, bromine and iodine).
  • R 1 is hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, or an alkenyl group having 1 to 20 carbon atoms
  • L 3 is hydrogen, or a monophosphate represented by the following formula 2D Group, diphosphate group, or triphosphate group.
  • n represents an integer of 1 to 3.
  • Z 1 is a hydroxyl group or methyl ester, ethyl ester, isopropyl ester, n-butyl of glycine, alanine, valine, leucine, phenylalanine, tryptophan, methionine or proline
  • Z 2 is hydrogen, an alkyl group having 1 to 4 carbon atoms, a halogen, or a phenyl group, and when n is 2 or more, each Z 1 is the same or different.
  • B represents adenine, guanine, cytosine, thymine, uracil, N-methyladenine, N-benzoyladenine, 2-methylthioadenine, 2-aminoadenine, 7-methylguanine, N-isobutyrylguanine, 5-fluorocytosine, 5 Selected from bromocytosine, 5-methylcytosine, 4-N-methylcytosine, 4-N, N-dimethylcytosine, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, or 5,6-dihydrouracil It is a base.
  • * Is a bond to which a phosphate group is bonded by phosphorylation, and means that a substituent other than hydrogen or a phosphate group is bonded before phosphorylation.
  • nucleoside derivative examples include the compounds shown below, but are not limited thereto.
  • Examples of adenosine derivatives whose base is adenine include compounds of the following formulas (2A-1A) to (2A-12A).
  • Examples of the guanosine derivative whose base is guanine include compounds of the following formulas (2A-1G) to (2A-12G).
  • Examples of the cytidine derivative whose base is cytosine include compounds of the following formulas (2A-1C) to (2A-12C).
  • Examples of the thymidine derivative whose base is thymine include compounds of the following formulas (2A-1T) to (2A-12T).
  • Examples of uridine derivatives whose base is uracil include compounds of the following formulas (2A-1U) to (2A-12U).
  • Nucleoside derivatives in the present invention also include nucleotides or derivatives thereof (when L 3 is a monophosphate group, diphosphate group, or triphosphate group, or a derivative thereof).
  • Examples of nucleotides or derivatives thereof include compounds in which L 3 is the above formula 2D.
  • the nucleoside derivative is a nucleotide, in Formula 2D, this corresponds to the case where Z 1 is a hydroxyl group and Z 2 is hydrogen.
  • Z 1 is glycine, alanine, valine, leucine, phenylalanine, tryptophan, methionine or proline methyl ester, ethyl ester, isopropyl ester, n-butyl ester, benzyl ester Alternatively, it corresponds to a phenyl ester, and Z 2 is an alkyl group having 1 to 4 carbon atoms, a halogen, or a phenyl group.
  • Z 1 is preferably alanine isopropyl ester, alanine cyclohexyl ester, alanine neopentyl ester, valine isopropyl ester, or leucine isopropyl ester. These esters bind to phosphorus via nitrogen derived from amino acids such as glycine.
  • Z 2 is preferably a phenyl group.
  • examples of the ⁇ -modified phosphate compound precursor include a nucleic acid having a nucleoside derivative of the above formula 2A at the 3 ′ end.
  • the nucleic acid may be either deoxyribonucleic acid (DNA) or ribonucleic acid (RNA).
  • DNA deoxyribonucleic acid
  • RNA ribonucleic acid
  • the number of nucleic acid constituent units is not particularly limited, but is usually in the range of 1 to 100 bases (base pairs in the case of double-stranded DNA), preferably in the range of 1 to 50 bases (base pairs). A range of 1 to 10 bases (base pairs) is more preferable.
  • ⁇ -modified phosphate compound As the ⁇ -modified phosphate compound after the nucleoside derivative represented by the above formula 2A is phosphorylated, a ⁇ -modified phosphate compound having a partial structure represented by the following formula 2B can be mentioned. Can do. (Wherein A 1 represents —SR 1 , —S—S—R 1 , —SeR 1 , or —X (where X represents a halogen selected from fluorine, chlorine, bromine and iodine).
  • R 1 is hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, or an alkenyl group having 1 to 20 carbon atoms
  • L 3 is hydrogen, or monophosphoric acid represented by the above formula 2D
  • B is an adenine, guanine, cytosine, thymine, uracil, N-methyladenine, N-benzoyladenine, 2-methylthioadenine, 2-aminoadenine, 7-methylguanine, N-isobutyrylguanine, 5-fluorocytosine, 5-bromocytosine, 5-methylcytosine, 4-N-methylcytosine, 4-N, N-dimethylcytosine, 5-fluorouracil 5-bromouracil, a base selected from 5-chloro-uracil, or 5,6-dihydro-uracil.)
  • examples of the ⁇ -modified phosphate compound include nucleic acids having the nucleoside derivative of the above formula 2B at the 3 ′ end.
  • the nucleic acid may be either deoxyribonucleic acid (DNA) or ribonucleic acid (RNA).
  • DNA deoxyribonucleic acid
  • RNA ribonucleic acid
  • the number of nucleic acid constituent units is not particularly limited, but is usually in the range of 1 to 100 bases (base pairs in the case of double-stranded DNA), preferably in the range of 1 to 50 bases (base pairs). A range of 1 to 10 bases (base pairs) is more preferable.
  • a 2 is -S-, -S + (R 1 )-, -S + (SR 1 )-, -Se + (R 1 )-, or -X + -(where X Represents a halogen selected from fluorine, chlorine, bromine and iodine, and R 1 represents hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms.
  • L 3 is hydrogen, a monophosphate group, a diphosphate group, or a triphosphate group
  • B is adenine, guanine, cytosine, thymine, uracil, N-methyladenine, N-benzoyladenine, 2- Methylthioadenine, 2-aminoadenine, 7-methylguanine, N-isobutyrylguanine, 5-fluorocytosine, 5-bromocytosine, 5-methylcytosine, 4-N-methylcytosine, 4-N, N-dimethylcytosine , - fluorouracil, 5-bromouracil, a base selected from 5-chloro-uracil, or 5,6-dihydro-uracil).
  • the polymerase reaction includes both DNA polymerase and RNA polymerase, but the nucleoside derivative of Formula 2A can particularly suitably inhibit DNA polymerase.
  • the DNA polymerase inhibitory action will be described with reference to the drawings.
  • FIG. 1 is a schematic diagram showing a DNA polymerase inhibitory action when A 1 is —SR 1 (thioalkyl group) as an example of a nucleoside derivative of formula 2A.
  • a 1 is —SR 1 (thioalkyl group)
  • FIG. 1 is a schematic diagram showing a DNA polymerase inhibitory action when A 1 is —SR 1 (thioalkyl group) as an example of a nucleoside derivative of formula 2A.
  • the 3 ′ phosphate group is dissociated by the nucleophilic attack of the 2 ′ thioalkyl group, and thiirane is composed of 3 ′ carbon, 2 ′ carbon, and thioalkyl group sulfur.
  • a ring is formed (lower center in the figure).
  • This thiirane ring is highly reactive, and is presumed to react with a side chain of a specific amino acid constituting a DNA polymerase and be covalently bound (lower right side of the figure). This reaction is irreversible, and the polymerase reaction does not proceed thereafter.
  • the reaction can be efficiently inhibited by a novel mechanism of covalently binding to a polymerase and inhibiting the reaction, unlike the conventional elongation inhibition reaction using acyclovir or the like. .
  • a nucleoside derivative of formula 2A is added to a biological sample (cell, virus, etc.) targeted.
  • the nucleoside derivative is added after dissolving in an appropriate solvent such as a buffer solution.
  • concentration of the nucleoside derivative at the time of addition can be appropriately set according to the characteristics of the target reaction.
  • the concentration of the nucleoside derivative is usually in the range of 1 ⁇ M to 1 mM, preferably in the range of 10 ⁇ M to 500 ⁇ M, and particularly preferably in the range of 50 to 200 ⁇ M.
  • the reaction time can also be appropriately set.
  • it is usually within the range of 1 to 30 days, and more preferably within the range of 5 to 10 days.
  • the reaction after phosphorylation is inhibited in the reaction accompanied by phosphorylation by the ⁇ -modified phosphate compound precursor.
  • the reaction inhibitory activity of the ⁇ -modified phosphate compound precursor can be evaluated by quantifying the compound produced by phosphorylation (DNA or RNA in the case of polymerase reaction), and further biological samples such as cells and viruses. .
  • Nucleoside derivatives are polymerase inhibitors, which inhibit DNA replication and RNA transcription reactions, thereby suppressing cell and virus growth. For this reason, the nucleoside derivative represented by Formula 2A is a growth inhibitor and is useful as a therapeutic agent for viral diseases and cancer.
  • N-phenyltrifluoromethanesulfonimide is added and a nucleophile such as N, N-dimethyl-4-aminopyridine (DMAP) is reacted in a solvent such as dichloromethane (DCM) to give 2% of ribose.
  • DMAP N, N-dimethyl-4-aminopyridine
  • DCM dichloromethane
  • the position is a trifluorosulfonic acid group (Compound 2).
  • a compound having a thiol group such as potassium thioacetate is reacted in the presence of N, N-dimethylformamide (DMF) to form a thioester at the 2 ′ position of ribose (compound 3).
  • a synthesis scheme of a halogen compound will be described.
  • the synthesis scheme up to compound 2 is the same as that for the synthesis of the compound of formula (2A-1A).
  • lithium halide is added and heated to introduce halogen.
  • the lithium halide include lithium fluoride, lithium chloride, lithium bromide, and lithium iodide.
  • triethylamine trihydrofluoride (3HF-Et 3 N) and THF are added to remove the 3 ′ and 5 ′ protecting groups of ribose to form hydroxyl groups.
  • Mevalonic acid derivative (1) ⁇ -modified phosphate compound precursor
  • Examples of the ⁇ -modified phosphate compound precursor include mevalonic acid derivatives represented by the following formula 3A.
  • a 1 represents —SR 1 , —S—S—R 1 , —SeR 1 , or —X (where X represents a halogen selected from fluorine, chlorine, bromine and iodine).
  • R 1 is hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, or an alkenyl group having 1 to 20 carbon atoms.
  • a 1 is —SH, —SCH 3 , —S—C 2 H 5 , —S—C 3 H 7 , —S—SH, —S—S—CH 3 , —S—S—C 2 H 5 , —S—S—C 3 H 7 and the like are preferable.
  • ⁇ -modified phosphate compound having a partial structure represented by the following formula 3B
  • a 1 represents —SR 1 , —S—S—R 1 , —SeR 1 , or —X (where X represents a halogen selected from fluorine, chlorine, bromine and iodine).
  • R 1 is hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, or an alkenyl group having 1 to 20 carbon atoms.
  • a 2 is -S-, -S + (R 1 )-, -S + (SR 1 )-, -Se + (R 1 )-, or -X + -(where X Represents a halogen selected from fluorine, chlorine, bromine and iodine, and R 1 represents hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms.
  • a 1 is a compound of -SH
  • sulfur of A 1 forms a skeleton carbon-carbon bond and a thiirane ring by phosphorylation. This ring structure is very unstable and has the property of being easily covalently bonded to other compounds.
  • the ⁇ -modified phosphate compound is a mevalonate derivative represented by the formula 3A, particularly, it effectively inhibits mevalonate kinase and 5-phosphomevalonate kinase.
  • Mevalonate is a substance involved in the mevalonate pathway for synthesizing terpenes, and 5-phosphomevalonate is produced from mevalonate and ATP by mevalonate kinase, and further, 5-phosphomevalonate and ATP are produced by 5-phosphomevalonate kinase.
  • -Diphosphomevalonic acid is produced.
  • the mevalonic acid derivative represented by the formula 3A is an efficient reaction inhibitor of the mevalonic acid pathway as an analog of this mevalonic acid.
  • the mevalonate derivative represented by the formula 3A is phosphorylated to produce an active species of the formula 3C via the compound of the formula 3B, which is covalently bonded to mevalonate kinase, 5-phosphomevalonate kinase, etc. It is presumed to inhibit later reactions.
  • the mevalonic acid derivative represented by the formula 3A inhibits the mevalonic acid pathway, and thus suppresses the production of cholesterol. Therefore, the mevalonic acid derivative represented by Formula 3A is a cholesterol production inhibitor and is useful as a therapeutic agent for hyperlipidemia, hypercholesterolemia and the like.
  • Phosphatidylinositol derivative (1) ⁇ -modified phosphate compound precursor
  • ⁇ -modified phosphate compound precursor examples include phosphatidylinositol derivatives represented by the following formula 4A. (Wherein A 1 represents —SR 1 , —S—S—R 1 , —SeR 1 , or —X (where X represents a halogen selected from fluorine, chlorine, bromine and iodine).
  • R 1 is hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, or an alkenyl group having 1 to 20 carbon atoms
  • R 3 is selected from arachidonic acid, linoleic acid, and linolenic acid
  • R 4 is a saturated fatty acid selected from stearic acid and palmitic acid.
  • a 1 is —SH, —SCH 3 , —S—C 2 H 5 , —S—C 3 H 7 , —S—SH, —S—S—CH 3 , —S—S—C 2 H 5 , —S—S—C 3 H 7 and the like are preferable.
  • a 2 is -S-, -S + (R 1 )-, -S + (SR 1 )-, -Se + (R 1 )-, or -X + -(where X Represents a halogen selected from fluorine, chlorine, bromine and iodine, and R 1 represents hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms.
  • R 3 is an unsaturated fatty acid selected from arachidonic acid, linoleic acid, and linolenic acid
  • R 4 is a saturated fatty acid selected from stearic acid and palmitic acid.
  • the active species generation reaction of phosphatidylinositol represented by 4A will be described with reference to a specific example (a compound in which A 1 is —SCH 3 ).
  • the sulfur of A 1 forms a ring structure with the carbon-carbon bond of the inositol skeleton by phosphorylation.
  • This ring structure sulfur has a positive charge.
  • This ring structure is also very unstable and has the property of being easily covalently bonded to other compounds.
  • phosphatidylinositol represented by the formula 4A particularly the reaction of phosphoinositide-3-kinase (PI3K) is efficiently inhibited.
  • PI3K generates phosphatidylinositol 3,4,5-triphosphate by phosphorylating inositol phospholipids.
  • These compounds are substances involved in the PI3K / Akt pathway, and Akt is also an oncogene product.
  • the phosphatidylinositol represented by formula 4A is phosphorylated to produce an active species of formula 4C via a compound of formula 4B, which is presumed to inhibit the reaction by covalently binding to PI3K.
  • the phosphatidylinositol represented by the formula 4A is a PI3K activity inhibitor and is useful as a therapeutic agent for cancer, malignant lymphoma, leukemia, rheumatism and the like.
  • phosphatidylinositol shown by Formula 4A can be manufactured by the method similar to the nucleoside derivative shown by Formula 2A. That is, phosphatidylinositol of formula 4A can be synthesized by the following procedure. First, hydroxyl groups other than 2 ′ of inositol are protected using siloxanes as protecting groups. Next, after introducing a trifluorosulfonic acid group at the 2 ′ position, the thioester is converted to a thiol group. Finally, the protecting group is removed from inositol.
  • the 1 H-NMR information of the obtained compound is as follows.
  • the solution was further treated with and stirred at 0 ° C. for 16 hours.
  • the reaction mixture was treated with H 2 O (7.0 ml) and extracted with DCM.
  • the NMR information of the obtained compound is as follows.
  • a triethylammonium salt of triphosphate was obtained.
  • a 0.1 M sodium perchlorate solution in acetone was added, and the sodium salt of triphosphate (93.9 mg, 43%) was obtained by suction filtration.
  • the NMR information of the obtained compound is as follows.
  • HBV hepatitis B virus
  • CDNA was synthesized by SuperScript VILO cDNA synthesis kit (Invitrogen), and HBV replication intermediate viral RNA (pgRNA) was quantified by quantitative PCR using SYBR qPCR Mix Kit (Toyobo).
  • the result is shown in FIG.
  • the results are shown in the order from the left graph, in which control, 10 ⁇ M of compound A-1, 100 ⁇ M of compound A-1, 10 ⁇ M of compound A-2, and 100 ⁇ M of compound A-2 were added.
  • the rightmost graph shows the result of adding 10 ⁇ M of ETV (entecavir), which is a therapeutic agent for hepatitis.
  • Anti-HBV activity A cell line EB-HBCe derived from human hepatoma cell HuH-7 and constantly replicating the HBV genome (genotype C) is seeded in a 24-well plate, and each compound is added at various final concentrations. Cultured for days. Meanwhile, the medium was changed every 3 days and the same concentration of compound was added. The culture supernatant was recovered and virus particles were precipitated by adding PNE solution (8.45% PEG6000, 0.445M NaCl, 13 mM EDTA), and then 37% with DNase I (Takara Bio) and RNase A (Takara Bio). Nucleic acids outside the particles were removed by treatment at 1 ° C. for 1 hour.
  • Anti-HIV activity (1) Measurement of anti-HIV activity Medium supplemented with 10% final bovine serum (Japan Bio Serum) to Dulbecco's modified Eagle's Medium (DMEM) (SIGMA / Cat. No. D5796)
  • DMEM Dulbecco's modified Eagle's Medium
  • the TZM-bl cells were cultured under the conditions of 37 ° C. and 5% CO 2 .
  • TZM-bl cells were seeded in 96-well microplate (1.3 ⁇ 10 4 cells / 100 ⁇ L DMEM + 10% FBS). The next day, the drug solution and HIV-1 (NL4-3, 10 ng) were added to the culture in this order.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)

Abstract

式1Aで示される部分構造を分子内に有するβ修飾リン酸化合物前駆体である。また、このβ修飾リン酸化合物前駆体を含有する反応阻害剤及び医薬である。(ここで、Aは-SR、-S-S-R、-SeR、又は-X(ここで、Xはフッ素、塩素、臭素、及びヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基などである。Lは水素、炭素数1~20のアルキル基などを示し、Lは炭素数1~20のアルキル基などを示す。LとLは互いに連結して4~6員の環構造を形成してもよい。L及びLは、それぞれ置換基を有していてもよい。*はリン酸化を受けてリン酸基が結合する結合手である。)

Description

β修飾リン酸化合物前駆体、β修飾リン酸化合物、反応阻害剤及びこれを含む医薬並びに反応阻害方法
 本発明は、β修飾リン酸化合物前駆体、β修飾リン酸化合物、反応阻害剤及びこれを含む医薬並びに反応阻害方法に関し、特に、リン酸化を伴う反応におけるリン酸化後の反応の進行を阻害するβ修飾リン酸化合物前駆体、β修飾リン酸化合物、反応阻害剤及びこれを含む医薬並びに反応阻害方法に関する。
 リン酸化は、生体反応の重要なプロセスであり、生体内ではリン酸化を伴う様々な反応が行われている。例えば、DNAの複製では、DNAポリメラーゼがDNAのリン酸化を伴う反応を行っている。DNAポリメラーゼは、プライマー配列を起点とし、一本鎖DNAを鋳型としてこれに相補的なデオキシヌクレオチド三リン酸(dNTP)を3’末端側に順次結合することで、3’→5’方向に相補鎖DNAを伸長する。この反応では、DNAポリメラーゼによって、dNTPの三リン酸の2つのリン酸基が脱リン酸化されて残る1つのリン酸基が3’末端側の糖(デオキリシボース)の3位の水酸基(ヒドロキシル基)に結合する。その結果、3’末端側の糖はリン酸化され、相補鎖DNAが伸長する。ポリメラーゼは、DNAの複製や転写に関与し、癌やウイルスなどに起因する疾患の治療薬における重要な標的タンパク質でもある。
 また、メバロン酸は、テルペノイドやステロイドの合成に関与する化合物である。メバロン酸は、ATPを基質としてメバロン酸キナーゼによりリン酸化されて5-ホスホメバロン酸となり、その後のプロセスによってコレステロールなどに転化される。メバロン酸は、高脂血症などの治療薬における重要な標的物質としても知られている。
 このように、生体反応においてリン酸化は重要なプロセスであり、その後の反応を特異的かつ効率的に阻害できれば、種々の疾患の治療方法を提供できる可能性を秘めている。しかしながら、従来の技術では、リン酸化反応に起因する生体反応を選択的かつ効率的に阻害するには不十分であった。
 例えば、特許文献1には、DNAポリメラーゼの阻害剤としてアシクロビルが開示されている。アシクロビルは、ウイルスにおける一リン酸化と宿主(ヒト)における三リン酸化を受け、DNAポリメラーゼ反応において、伸長鎖の3’末端側に結合することで、ウイルスDNAポリメラーゼを拮抗阻害する。
特開平09-136842号公報(請求項1など)
 しかしながら、アシクロビルのような化合物は、DNAの伸長を阻害するにすぎず、より効率的かつ強力に反応を阻害する阻害剤が求められていた。
 本発明は、リン酸化を伴う反応におけるリン酸化後の反応の進行を特異的に阻害することが可能なβ修飾リン酸化合物前駆体、β修飾リン酸化合物、反応阻害剤及びこれを含む医薬並びに反応阻害方法を提供することを目的とする。
 本発明者らは、上記問題を解決すべく鋭意研究を重ねた。その結果、炭素―炭素結合の一方の炭素(α位)にヒドロキシル基が結合し、他方の炭素(β位)に特定の修飾基が結合した部分構造を有する化合物について、ヒドロキシル基がリン酸化されることに起因して高い反応性を有する活性種が生成することを見出した。さらには、この活性種によって、リン酸化後の生体分子による反応が特異的に阻害されることを見出し、本発明を完成させた。
 すなわち、本発明は、リン酸化反応によりリン酸化されるβ修飾リン酸化合物前駆体であって、下記式1Aで示される部分構造を分子内に有することを特徴とするβ修飾リン酸化合物前駆体である。
Figure JPOXMLDOC01-appb-C000012

(ここで、Aは-SR、-S-S-R、-SeR、又は-X(ここで、Xはフッ素、塩素、臭素、及びヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基である。Lは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基を示し、Lは炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基を示す。LとLは互いに連結して4~6員の環構造を形成してもよく、環構造は炭素、窒素、酸素、及び硫黄から選択される1種類以上の元素で構成される。L及びLは、それぞれヒドロキシル基、カルボキシル基、アミノ基、アルキル基、アリール基、炭素数15~30の飽和脂肪酸及び/又は不飽和脂肪酸を1以上含むリン脂質、モノリン酸基、ジリン酸基、又はトリリン酸基、及び塩基(ここで、塩基はアデニン、グアニン、シトシン、チミン、ウラシル、N-メチルアデニン、N-ベンゾイルアデニン、2-メチルチオアデニン、2-アミノアデニン、7-メチルグアニン、N-イソブチリルグアニン、5-フルオロシトシン、5-ブロモシトシン、5-メチルシトシン、4-N-メチルシトシン、4-N,N-ジメチルシトシン、5-フルオロウラシル、5-ブロモウラシル、5-クロロウラシル、又は5,6-ジヒドロウラシルを意味する)から選択される1又は2以上の置換基を有していてもよい。*はリン酸化を受けてリン酸基が結合する結合手であり、リン酸化前においては水素又はリン酸基以外の置換基が結合していることを意味する。)
 この場合において、下記式2Aで示されるヌクレオシド誘導体又は該ヌクレオシド誘導体を3’末端に有する核酸であることが好ましい。
Figure JPOXMLDOC01-appb-C000013

(ここで、Aは-SR、-S-S-R、-SeR、又は-X(ここで、Xはフッ素、塩素、臭素、ヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基である。Lは水素、又は下記式2Dで示されるモノリン酸基、ジリン酸基、又はトリリン酸基である。
Figure JPOXMLDOC01-appb-C000014

(ここで、nは1~3の整数を示す。Zは、ヒドロキシル基、又はグリシン、アラニン、バリン、ロイシン、フェニルアラニン、トリプトファン、メチオニン若しくはプロリンのメチルエステル、エチルエステル、イソプロピルエステル、n-ブチルエステル、ベンジルエステル若しくはフェニルエステルである。Zは、水素、炭素数1~4のアルキル基、ハロゲン、又はフェニル基である。nが2以上の場合においてそれぞれのZは同一又は異なっていてもよい。)
 Bはアデニン、グアニン、シトシン、チミン、ウラシル、N-メチルアデニン、N-ベンゾイルアデニン、2-メチルチオアデニン、2-アミノアデニン、7-メチルグアニン、N-イソブチリルグアニン、5-フルオロシトシン、5-ブロモシトシン、5-メチルシトシン、4-N-メチルシトシン、4-N,N-ジメチルシトシン、5-フルオロウラシル、5-ブロモウラシル、5-クロロウラシル、又は5,6-ジヒドロウラシルから選択される塩基である。*はリン酸化を受けてリン酸基が結合する結合手であり、リン酸化前においては水素又はリン酸基以外の置換基が結合していることを意味する。)
 あるいは、上記の場合において、下記式3Aで示されるメバロン酸誘導体であることが好ましい。
Figure JPOXMLDOC01-appb-C000015

(ここで、Aは-SR、-S-S-R、-SeR、又は-X(ここで、Xはフッ素、塩素、臭素、ヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基である。)
 あるいはまた、上記の場合において、下記式4Aで示されるホスファチジルイノシトール誘導体であることを特徴とする請求項1に記載のβ修飾リン酸化合物前駆体。
Figure JPOXMLDOC01-appb-C000016

(ここで、Aは-SR、-S-S-R、-SeR、又は-X(ここで、Xはフッ素、塩素、臭素、ヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基である。Rはアラキドン酸、リノール酸、及びリノレン酸から選択される不飽和脂肪酸であり、Rはステアリン酸、パルミチン酸から選択される飽和脂肪酸である。)
 本発明は、下記式1Bで示される部分構造を分子内に有することを特徴とするβ修飾リン酸化合物である。
Figure JPOXMLDOC01-appb-C000017

(ここで、Aは-SR、-S-S-R、-SeR、又は-X(ここで、Xはフッ素、塩素、臭素、及びヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、炭素数1~20のアルケニル基から選択される。Lは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基を示し、Lは炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基を示す。LとLは互いに連結して4~6員の環構造を形成してもよく、環構造は炭素、窒素、酸素、及び硫黄から選択される1種類以上の元素で構成される。L及びLは、それぞれヒドロキシル基、カルボキシル基、アミノ基、アルキル基、アリール基、炭素数15~30の飽和脂肪酸及び/又は不飽和脂肪酸を1以上含むリン脂質、モノリン酸基、ジリン酸基、又はトリリン酸基、及び塩基(ここで、塩基はアデニン、グアニン、シトシン、チミン、ウラシル、N-メチルアデニン、N-ベンゾイルアデニン、2-メチルチオアデニン、2-アミノアデニン、7-メチルグアニン、N-イソブチリルグアニン、5-フルオロシトシン、5-ブロモシトシン、5-メチルシトシン、4-N-メチルシトシン、4-N,N-ジメチルシトシン、5-フルオロウラシル、5-ブロモウラシル、5-クロロウラシル、又は5,6-ジヒドロウラシルを意味する)から選択される1又は2以上の置換基を有していてもよい。)
 この場合において、下記式2Bで示されるヌクレオシド誘導体又は該ヌクレオシド誘導体を3’末端に有する核酸であることが好ましい。
Figure JPOXMLDOC01-appb-C000018

(ここで、Aは-SR、-S-S-R、-SeR、又は-X(ここで、Xはフッ素、塩素、臭素、ヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基である。Lは水素、又は下記式2Dで示されるモノリン酸基、ジリン酸基、又はトリリン酸基である。
Figure JPOXMLDOC01-appb-C000019

(ここで、nは1~3の整数を示す。Zは、ヒドロキシル基、又はグリシン、アラニン、バリン、ロイシン、フェニルアラニン、トリプトファン、メチオニン若しくはプロリンのメチルエステル、エチルエステル、イソプロピルエステル、n-ブチルエステル、ベンジルエステル若しくはフェニルエステルである。Zは、水素、炭素数1~4のアルキル基、ハロゲン、又はフェニル基である。nが2以上の場合においてそれぞれのZは同一又は異なっていてもよい。)
 Bはアデニン、グアニン、シトシン、チミン、ウラシル、N-メチルアデニン、N-ベンゾイルアデニン、2-メチルチオアデニン、2-アミノアデニン、7-メチルグアニン、N-イソブチリルグアニン、5-フルオロシトシン、5-ブロモシトシン、5-メチルシトシン、4-N-メチルシトシン、4-N,N-ジメチルシトシン、5-フルオロウラシル、5-ブロモウラシル、5-クロロウラシル、又は5,6-ジヒドロウラシルから選択される塩基である。)
 本発明は、リン酸化を伴う反応におけるリン酸化後の反応の進行を阻害する反応阻害剤であって、上記のいずれかに記載のβ修飾リン酸化合物前駆体を含有することを特徴とする反応阻害剤である。
 この場合において、β修飾リン酸化合物前駆体が前記式2Aで示されるヌクレオシド誘導体又は該ヌクレオシド誘導体を3’末端に有する核酸であり、DNAポリメラーゼの反応を阻害することが好ましい。
 また、本発明は、上記の反応阻害剤を含有することを特徴とする医薬である。
 本発明は、上記のいずれかに記載の反応阻害剤によってリン酸化を伴う反応におけるリン酸化後の反応の進行を阻害する反応阻害方法であって、前記式1Aに記載のβ修飾リン酸化合物前駆体を用意する工程と、前記β修飾リン酸化合物前駆体をリン酸化して前記式1Bに記載のβ修飾リン酸化合物を生成させるとともに、前記β修飾リン酸化合物を部分開裂させて下記式1Cで示される活性種を生成させる工程と、を備えることを特徴とする反応阻害方法である。
Figure JPOXMLDOC01-appb-C000020

(ここで、Aは-S-、-S(R)-、-S(S-R)-、-Se(R)-、又は-X-(ここで、Xはフッ素、塩素、臭素、及びヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基である。Lは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基を示し、Lは炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基を示す。LとLは互いに連結して4~6員の環構造を形成してもよく、環構造は炭素、窒素、酸素、及び硫黄から選択される1種類以上の元素で構成される。L及びLは、それぞれヒドロキシル基、カルボキシル基、アミノ基、アルキル基、アリール基、炭素数15~30の飽和脂肪酸及び/又は不飽和脂肪酸を1以上含むリン脂質、モノリン酸基、ジリン酸基、又はトリリン酸基、及び塩基(ここで、塩基はアデニン、グアニン、シトシン、チミン、ウラシル、N-メチルアデニン、N-ベンゾイルアデニン、2-メチルチオアデニン、2-アミノアデニン、7-メチルグアニン、N-イソブチリルグアニン、5-フルオロシトシン、5-ブロモシトシン、5-メチルシトシン、4-N-メチルシトシン、4-N,N-ジメチルシトシン、5-フルオロウラシル、5-ブロモウラシル、5-クロロウラシル、又は5,6-ジヒドロウラシルを意味する)から選択される1又は2以上の置換基を有していてもよい。)
 この場合において、前記β修飾リン酸化合物前駆体は前記式2Aで示される化合物であり、前記β修飾リン酸化合物は前記式2Bで示される化合物であり、前記活性種は下記式2Cで示される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000021

(ここで、Aは-S-、-S(R)-、-S(S-R)-、-Se(R)-、又は-X-(ここで、Xはフッ素、塩素、臭素、及びヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基である。Lは水素、又は下記式2Dで示されるモノリン酸基、ジリン酸基、又はトリリン酸基である。
Figure JPOXMLDOC01-appb-C000022

(ここで、nは1~3の整数を示す。Zは、ヒドロキシル基、又はグリシン、アラニン、バリン、ロイシン、フェニルアラニン、トリプトファン、メチオニン若しくはプロリンのメチルエステル、エチルエステル、イソプロピルエステル、n-ブチルエステル、ベンジルエステル若しくはフェニルエステルである。Zは、水素、炭素数1~4のアルキル基、ハロゲン、又はフェニル基である。nが2以上の場合においてそれぞれのZは同一又は異なっていてもよい。)
 Bはアデニン、グアニン、シトシン、チミン、ウラシル、N-メチルアデニン、N-ベンゾイルアデニン、2-メチルチオアデニン、2-アミノアデニン、7-メチルグアニン、N-イソブチリルグアニン、5-フルオロシトシン、5-ブロモシトシン、5-メチルシトシン、4-N-メチルシトシン、4-N,N-ジメチルシトシン、5-フルオロウラシル、5-ブロモウラシル、5-クロロウラシル、又は5,6-ジヒドロウラシルから選択される塩基である。)
 本発明によれば、リン酸化を伴う反応におけるリン酸化後の反応の進行を反応性の高い活性種によって特異的に阻害することが可能なβ修飾リン酸化合物前駆体、β修飾リン酸化合物、反応阻害剤及びこれを含む医薬並びに反応阻害方法を提供することが可能となる。
β修飾リン酸化合物前駆体による反応阻害機構を示す説明図である。 実施例におけるリン酸部分の切断実験の結果を示すNMRスペクトル図である。 実施例におけるB型肝炎ウイルスの増殖抑制効果を示すグラフである。 実施例における不可逆阻害実験の結果を示すグラフである。 実施例における抗HBV活性評価の結果を示すグラフである。
1.部分構造
(1)β修飾リン酸化合物前駆体
 以下、本発明のβ修飾リン酸化合物前駆体について説明する。本発明のβ修飾リン酸化合物前駆体は、リン酸化反応によりリン酸化されるβ修飾リン酸化合物前駆体であって、下記式1Aの部分構造を分子内に有する。
Figure JPOXMLDOC01-appb-C000023

(ここで、Aは-SR、-S-S-R、-SeR、又は-X(ここで、Xはフッ素、塩素、臭素、及びヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基である。Lは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基を示し、Lは炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基を示す。LとLは互いに連結して4~6員の環構造を形成してもよく、環構造は炭素、窒素、酸素、及び硫黄から選択される1種類以上の元素で構成される。L及びLは、それぞれヒドロキシル基、カルボキシル基、アミノ基、アルキル基、アリール基、炭素数15~30の飽和脂肪酸及び/又は不飽和脂肪酸を1以上含むリン脂質、モノリン酸基、ジリン酸基、又はトリリン酸基、及び塩基(ここで、塩基はアデニン、グアニン、シトシン、チミン、ウラシル、N-メチルアデニン、N-ベンゾイルアデニン、2-メチルチオアデニン、2-アミノアデニン、7-メチルグアニン、N-イソブチリルグアニン、5-フルオロシトシン、5-ブロモシトシン、5-メチルシトシン、4-N-メチルシトシン、4-N,N-ジメチルシトシン、5-フルオロウラシル、5-ブロモウラシル、5-クロロウラシル、又は5,6-ジヒドロウラシルを意味する)から選択される1又は2以上の置換基を有していてもよい。*はリン酸化を受けてリン酸基が結合する結合手であり、リン酸化前においては水素又はリン酸基以外の置換基が結合していることを意味する。)
 ここで、Rは、水素、炭素数1~10のアルキル基、炭素数1~10のアリール基、炭素数1~10のアルケニル基から選択されることが好ましく、水素、炭素数1~6のアルキル基、炭素数1~6のアリール基、炭素数1~6のアルケニル基から選択されることが特に好ましい。
 炭素数1~10のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、2-プロペニル基、ブチル基、ペンチル基、ヘキシル基、2-エチルヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基などを挙げることができる。炭素数1~10のアリール基としては、フェニル基、o-トリル基、p-トリル基、2,3-ジメチルフェニル基、2,4-ジメチルフェニル基、2,5-ジメチルフェニル基、2,6-ジメチルフェニル基、メシチル基、o-クメニル基などを挙げることができる。炭素数1~6のアルケニル基としては、ビニル基、1-プロペニル基、2-プロペニル基、1-ヘキセニル基などを挙げることができる。以下の説明においても同様である。
 また、L,Lは、互いに同じであっても異なっていてもよく、それぞれ、水素、炭素数1~10のアルキル基、炭素数1~10のアリール基、又は炭素数1~10のアルケニル基から選択されることが好ましく、水素、炭素数1~6のアルキル基、炭素数1~6のアリール基、炭素数1~6のアルケニル基から選択されることが特に好ましい。
 LとLが互いに連結して環構造を形成する場合、シクロヘキサン、ベンゼン、五単糖、六単糖などを挙げることができる。L及びLは、それぞれ置換基を有していてもよく、置換基としては、ヒドロキシル基、カルボキシル基、アミノ基、アルキル基、アリール基、炭素数15~30の飽和脂肪酸及び/又は不飽和脂肪酸を1以上含むリン脂質、及び塩基から選択される。例えば、L及びLがリボース又はデオキシリボースの場合、置換基として1’位に塩基が結合するとヌクレオシド誘導体となる。
 塩基としては、天然の核酸塩基でもよく、非天然の(合成した)核酸塩基でもよい。天然の核酸塩基としては、アデニン、グアニン、シトシン、チミン、ウラシルを挙げることができる。非天然の核酸塩基としては、N-メチルアデニン、N-ベンゾイルアデニン、2-メチルチオアデニン、2-アミノアデニン、7-メチルグアニン、N-イソブチリルグアニン、5-フルオロシトシン、5-ブロモシトシン、5-メチルシトシン、4-N-メチルシトシン、4-N,N-ジメチルシトシン、5-フルオロウラシル、5-ブロモウラシル、5-クロロウラシル、5,6-ジヒドロウラシルなどを挙げることができる。
 *は結合手であり、リン酸化前においては水素又はリン酸基以外の置換基が結合していることを意味している。リン酸化前において、特に、水素と結合していること(すなわち、*-Oがヒドロキシル基であること)が好ましい。
 上記式1Aで示されるβ修飾リン酸化合物前駆体は、リン酸化される化合物において、リン酸化を受ける酸素に結合したα位の炭素に対して、隣接するβ位の炭素を上記Aで修飾した化合物ということができる。リン酸化は、生体内及び生体外のいずれの反応でもよいが、医薬用途としてのβ修飾リン酸化合物前駆体としては、生体内でリン酸化される生体化合物の類似体が好ましい。生体内でリン酸化される生体化合物としては、後述するヌクレオシド、ヌクレオチド、核酸などの遺伝子関連物質、後述するメバロン酸やイノシトールリン酸などの代謝関連物質などを挙げることができる。
(2)β修飾リン酸化合物
 次に、β修飾リン酸化合物について説明する。本発明のβ修飾リン酸化合物は、式1Aのβ修飾リン酸化合物前駆体において、α位の炭素に結合する酸素がリン酸化された化合物である。具体的には、下記式1Bで示される部分構造を有するβ修飾リン酸化合物である。
Figure JPOXMLDOC01-appb-C000024

(ここで、Aは-SR、-S-S-R、-SeR、又は-X(ここで、Xはフッ素、塩素、臭素、及びヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、炭素数1~20のアルケニル基から選択される。Lは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基を示し、Lは炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基を示す。LとLは互いに連結して4~6員の環構造を形成してもよく、環構造は炭素、窒素、酸素、及び硫黄から選択される1種類以上の元素で構成される。L及びLは、それぞれヒドロキシル基、カルボキシル基、アミノ基、アルキル基、アリール基、炭素数15~30の飽和脂肪酸及び/又は不飽和脂肪酸を1以上含むリン脂質、モノリン酸基、ジリン酸基、又はトリリン酸基、及び塩基(ここで、塩基はアデニン、グアニン、シトシン、チミン、ウラシル、N-メチルアデニン、N-ベンゾイルアデニン、2-メチルチオアデニン、2-アミノアデニン、7-メチルグアニン、N-イソブチリルグアニン、5-フルオロシトシン、5-ブロモシトシン、5-メチルシトシン、4-N-メチルシトシン、4-N,N-ジメチルシトシン、5-フルオロウラシル、5-ブロモウラシル、5-クロロウラシル、又は5,6-ジヒドロウラシルを意味する)から選択される1又は2以上の置換基を有していてもよい。)
(3)反応阻害剤及び反応阻害方法
 次に、反応阻害剤及び反応阻害方法について説明する。本発明の反応阻害剤は、リン酸化を伴う反応におけるリン酸化後の反応の進行を阻害する反応阻害剤であって、上記式1Aで示される部分構造を分子内に有するβ修飾リン酸化合物前駆体を含有する。そして、上記式1Aのβ修飾リン酸化化合物前駆体がリン酸化されて上記式1Bのβ修飾リン酸化化合物が生成する。このβ修飾リン酸化化合物は、以下の反応メカニズムにより、リン酸化後の反応を阻害する。
 以下、本発明の反応阻害方法(反応メカニズム)について説明する。上記の反応阻害剤を用いた反応阻害方法では、まず、上記式1Aで示される部分構造を分子内に有するβ修飾リン酸化合物前駆体を用意する(工程1)。
 次に、このβ修飾リン酸化合物前駆体をリン酸化して、式1Bで示される部分構造を分子内に有するβ修飾リン酸化合物を生成させる(工程2)。このとき生成する式1Bの化合物は、構造が不安定であり、部分開裂して下記式1Cで示される活性種が生成する。
Figure JPOXMLDOC01-appb-C000025

(ここで、Aは-S-、-S-、-S-S-R-、-Se-、又は-X-(ここで、Xはフッ素、塩素、臭素、及びヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基である。Lは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基を示し、Lは炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基を示す。LとLは互いに連結して4~6員の環構造を形成してもよく、環構造は炭素、窒素、酸素、及び硫黄から選択される1種類以上の元素で構成される。L及びLは、それぞれヒドロキシル基、カルボキシル基、アミノ基、アルキル基、アリール基、炭素数15~30の飽和脂肪酸及び/又は不飽和脂肪酸を1以上含むリン脂質、モノリン酸基、ジリン酸基、又はトリリン酸基、及び塩基(ここで、塩基はアデニン、グアニン、シトシン、チミン、ウラシル、N-メチルアデニン、N-ベンゾイルアデニン、2-メチルチオアデニン、2-アミノアデニン、7-メチルグアニン、N-イソブチリルグアニン、5-フルオロシトシン、5-ブロモシトシン、5-メチルシトシン、4-N-メチルシトシン、4-N,N-ジメチルシトシン、5-フルオロウラシル、5-ブロモウラシル、5-クロロウラシル、又は5,6-ジヒドロウラシルを意味する)から選択される1又は2以上の置換基を有していてもよい。)
 この活性種は、反応性が高く、他の化合物を求核攻撃して共有結合を形成しやすい性質を有している。例えばAが-S-の場合、α、β炭素と硫黄原子とがチイラン環を分子内に形成する。このチイラン環は、アミノ基、チオール基、ヒドロキシル基、イミダゾイル基などの官能基と反応して共有結合を形成しやすく、このため、タンパク質中の分子内にリシン、システイン、チロシン、ヒスチジン、トリプトファンなどのアミノ酸の側鎖の部分と共有結合しやすい。活性種がタンパク質と不可逆的に共有結合することで、その後の反応の進行が停止し、反応阻害作用を発揮すると推測される。
 β修飾リン酸化合物前駆体が阻害する反応としては、リン酸化を伴う種々の反応を挙げることができる。特に、生体内での反応に対して効率的に阻害することができる。活性種が結合する分子は、タンパク質に限定されず、種々の分子に結合して反応を阻害する。
 このように、本発明では、β修飾リン酸化合物前駆体を用いることで、リン酸化により活性種を生成させて共有結合により不可逆的に反応を阻害することが可能となる。また、リン酸化を受ける反応に特化して反応を阻害することができるため、副作用などが生じにくい。さらに、式1Aの部分構造に基づいて、特定の反応をターゲットにした反応阻害剤の化合物を設計できるという利点もある。
(4)医薬
 本発明の反応阻害剤は、上記のようにリン酸化後の反応を阻害することから、医薬、農薬などの薬剤における有効成分として有用であり、特に、医薬用途が好ましい。医薬の種類としては、錠剤、カプセル、丸剤、散剤、顆粒剤、細粒剤、ゼリー剤、液剤などを挙げることができる。
 上記の薬剤は、本発明の反応阻害剤のほかに、本発明の反応阻害効果を損なわない範囲内で、溶剤、賦形剤、結合剤、崩壊剤、滑沢剤、安定剤、懸濁化剤などの添加物を含んでいてもよい。製剤用溶剤としては、例えば、水、エタノール、グリセリンなどを挙げることができる。賦形剤としては、例えば、乳糖、白糖、ブドウ糖、マンニット、ソルビット、トウモロコシデンプン、馬鈴薯デンプン、α-デンプン、デキストリン、カルボキシメチルデンプン、結晶セルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースカルシウム、アラビアゴム、デキストラン、プルラン、軽質無水珪酸、合成珪酸アルミニウム、メタ珪酸アルミン酸マグネシウムのような珪酸塩類;リン酸カルシウム、炭酸カルシウム、硫酸カルシウムなどを挙げることができる。結合剤としては、例えば、ゼラチン、ポリビニルピロリドン、マクロゴールなどを挙げることができる。崩壊剤としては、例えば、クロスカルメロースナトリウム、カルボキシメチルスターチナトリウム、架橋ポリビニルピロリドンなどを挙げることができる。滑沢剤としては、例えば、タルク、ステアリン酸、ステアリン酸カルシウム、ステアリン酸マグネシウム、コロイドシリカ、ビーガム、ビーズワックス、ゲイロウ、硼酸、グリコール、フマル酸、アジピン酸、安息香酸ナトリウム、硫酸ナトリウム、ロイシン、ラウリル硫酸ナトリウム、ラウリル硫酸マグネシウム、無水珪酸、珪酸水和物などを挙げることができる。安定剤としては、例えば、メチルパラベン、プロピルパラベン、クロロブタノール、ベンジルアルコール、フェニルエチルアルコール、塩化ベンザルコニウム、フェノール、クレゾール、チメロサール、無水酢酸、ソルビン酸などを挙げることができる。懸濁化剤としては、例えば、ポリソルベート80、カルボキシメチルセルロースナトリウムなどを挙げることができる。
(5)β修飾リン酸化合物前駆体の製造方法
 次に、β修飾リン酸化合物前駆体の製造方法について説明する。式1Aのβ修飾リン酸化合物前駆体は、下記式のスキームで合成することができる。具体的には、β位の炭素にヒドロキシル基などが結合した化合物を出発物質とし、このヒドロキシル基以外のヒドロキシル基に保護基を結合して保護する。次に、β炭素に結合したヒドロキシル基をAで置換し、最後に保護基を脱離させることで式1Aの化合物を合成することができる。出発物質や保護基の種類、反応条件(濃度、温度等)などは、合成するβ修飾リン酸化合物前駆体によって異なる。
Figure JPOXMLDOC01-appb-C000026
 β修飾リン酸化合物前駆体としては、種々の具体的な化合物を挙げることができる。以下、ヌクレオシド誘導体、メバロン酸誘導体、ホスファチジルイノシトール誘導体についてそれぞれ詳細に説明する。
2.ヌクレオシド誘導体
(1)β修飾リン酸化合物前駆体
 β修飾リン酸化合物前駆体としては、下記式2Aで示されるヌクレオシド誘導体を挙げることができる。
Figure JPOXMLDOC01-appb-C000027

(ここで、Aは-SR、-S-S-R、-SeR、又は-X(ここで、Xはフッ素、塩素、臭素、ヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基である。Lは水素、又は下記式2Dで示されるモノリン酸基、ジリン酸基、又はトリリン酸基である。
Figure JPOXMLDOC01-appb-C000028

(ここで、nは1~3の整数を示す。Zは、ヒドロキシル基、又はグリシン、アラニン、バリン、ロイシン、フェニルアラニン、トリプトファン、メチオニン若しくはプロリンのメチルエステル、エチルエステル、イソプロピルエステル、n-ブチルエステル、ベンジルエステル若しくはフェニルエステルである。Zは、水素、炭素数1~4のアルキル基、ハロゲン、又はフェニル基である。nが2以上の場合においてそれぞれのZは同一又は異なっていてもよい。)
 Bはアデニン、グアニン、シトシン、チミン、ウラシル、N-メチルアデニン、N-ベンゾイルアデニン、2-メチルチオアデニン、2-アミノアデニン、7-メチルグアニン、N-イソブチリルグアニン、5-フルオロシトシン、5-ブロモシトシン、5-メチルシトシン、4-N-メチルシトシン、4-N,N-ジメチルシトシン、5-フルオロウラシル、5-ブロモウラシル、5-クロロウラシル、又は5,6-ジヒドロウラシルから選択される塩基である。*はリン酸化を受けてリン酸基が結合する結合手であり、リン酸化前においては水素又はリン酸基以外の置換基が結合していることを意味する。)
 ここで、ヌクレオシド誘導体としては、具体的には、以下に示される化合物を挙げることができるが、これらに限定されるものではない。
 塩基がアデニンであるアデノシン誘導体としては、下記式(2A-1A)~(2A-12A)の化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000029
 塩基がグアニンであるグアノシン誘導体としては、下記式(2A-1G)~(2A-12G)の化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000030
 塩基がシトシンであるシチジン誘導体としては、下記式(2A-1C)~(2A-12C)の化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000031
 塩基がチミンであるチミジン誘導体としては、下記式(2A-1T)~(2A-12T)の化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000032
 塩基がウラシルであるウリジン誘導体としては、下記式(2A-1U)~(2A-12U)の化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000033
 本発明におけるヌクレオシド誘導体には、ヌクレオチド又はその誘導体(Lがモノリン酸基、ジリン酸基、又はトリリン酸基、若しくはこれらの誘導体の場合)も含まれる。ヌクレオチド又はその誘導体としては、Lが上記の式2Dの化合物を挙げることができる。ここで、ヌクレオシド誘導体がヌクレオチドである場合、式2Dにおいて、Zがヒドロキシル基、Zが水素の場合に該当する。また、ヌクレオシド誘導体がヌクレオチド誘導体である場合、式2Dにおいて、Zがグリシン、アラニン、バリン、ロイシン、フェニルアラニン、トリプトファン、メチオニン若しくはプロリンのメチルエステル、エチルエステル、イソプロピルエステル、n-ブチルエステル、ベンジルエステル若しくはフェニルエステル、Zが炭素数1~4のアルキル基、ハロゲン、又はフェニル基の場合に該当する。この場合において、Zとしては、アラニンイソプロピルエステル、アラニンシクロヘキシルエステル、アラニンネオペンチルエステル、バリンイソプロピルエステル、又はロイシンイソプロピルエステルであることが好ましい。これらのエステル類は、グリシン等のアミノ酸由来の窒素を介してリンに結合する。また、Zとしては、フェニル基であることが好ましい。
 さらに、β修飾リン酸化合物前駆体としては、上記式2Aのヌクレオシド誘導体を3’末端に有する核酸を挙げることができる。ここで、核酸としては、デオキシリボ核酸(DNA)、リボ核酸(RNA)のいずれでもよく、また、DNAの場合は二本鎖DNA、一本鎖DNAのいずれでもよい。核酸の構成単位数としては、特に制限はないが、通常は1~100塩基(二本鎖DNAの場合は塩基対)の範囲内であり、1~50塩基(塩基対)の範囲内が好ましく、1~10塩基(塩基対)の範囲内がより好ましい。
(2)β修飾リン酸化合物
 上記式2Aで示されるヌクレオシド誘導体がリン酸化を受けたあとのβ修飾リン酸化合物としては、下記式2Bで示される部分構造を有するβ修飾リン酸化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000034

(ここで、Aは-SR、-S-S-R、-SeR、又は-X(ここで、Xはフッ素、塩素、臭素、ヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基である。Lは水素、又は上記式2Dで示されるモノリン酸基、ジリン酸基、又はトリリン酸基である。Bはアデニン、グアニン、シトシン、チミン、ウラシル、N-メチルアデニン、N-ベンゾイルアデニン、2-メチルチオアデニン、2-アミノアデニン、7-メチルグアニン、N-イソブチリルグアニン、5-フルオロシトシン、5-ブロモシトシン、5-メチルシトシン、4-N-メチルシトシン、4-N,N-ジメチルシトシン、5-フルオロウラシル、5-ブロモウラシル、5-クロロウラシル、又は5,6-ジヒドロウラシルから選択される塩基である。)
 さらに、β修飾リン酸化合物としては、上記式2Bのヌクレオシド誘導体を3’末端に有する核酸を挙げることができる。ここで、核酸としては、デオキシリボ核酸(DNA)、リボ核酸(RNA)のいずれでもよく、また、DNAの場合は二本鎖DNA、一本鎖DNAのいずれでもよい。核酸の構成単位数としては、特に制限はないが、通常は1~100塩基(二本鎖DNAの場合は塩基対)の範囲内であり、1~50塩基(塩基対)の範囲内が好ましく、1~10塩基(塩基対)の範囲内がより好ましい。
(3)反応阻害剤及び反応阻害方法
 β修飾リン酸化合物前駆体が式2Aで示されるヌクレオシド誘導体であり、β修飾リン酸化合物が上記式2Bで示されるヌクレオシド誘導体である場合、中間体である活性種として下記式2Cで示される化合物が生成する。
Figure JPOXMLDOC01-appb-C000035

(ここで、Aは-S-、-S(R)-、-S(S-R)-、-Se(R)-、又は-X-(ここで、Xはフッ素、塩素、臭素、及びヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基である。Lは水素、モノリン酸基、ジリン酸基、又はトリリン酸基である。Bはアデニン、グアニン、シトシン、チミン、ウラシル、N-メチルアデニン、N-ベンゾイルアデニン、2-メチルチオアデニン、2-アミノアデニン、7-メチルグアニン、N-イソブチリルグアニン、5-フルオロシトシン、5-ブロモシトシン、5-メチルシトシン、4-N-メチルシトシン、4-N,N-ジメチルシトシン、5-フルオロウラシル、5-ブロモウラシル、5-クロロウラシル、又は5,6-ジヒドロウラシルから選択される塩基である。)
 β修飾リン酸化合物が式2Aで示されるヌクレオシド誘導体の場合、特にポリメラーゼ反応を効率的に阻害する。ポリメラーゼ反応は、DNAポリメラーゼとRNAポリメラーゼの両方が含まれるが、式2Aのヌクレオシド誘導体は、特にDNAポリメラーゼを好適に阻害することができる。以下、図面を参照して、DNAポリメラーゼ阻害作用について説明する。
 図1は、式2Aのヌクレオシド誘導体の一例として、Aが-SR(チオアルキル基)の場合におけるDNAポリメラーゼ阻害作用を示す模式図である。生体内(細胞内)にヌクレオシド誘導体を投与すると、キナーゼによってヌクレオシド誘導体の5’ヒドロキシル基がリン酸化され、ヌクレオシド三リン酸誘導体となる。これは、DNAポリメラーゼ反応の基質となり、DNAポリメラーゼによって伸長する一本鎖DNAの3’末端側に結合する。次に、このヌクレオシド誘導体の3’ヒドロキシル基に次のヌクレオシドの5’リン酸基が結合する(図の下段左側)。この状態の反応中間体では、2’のチオアルキル基の求核攻撃によって3’のリン酸基が解離するとともに、2’位の炭素、3’位の炭素、チオアルキル基の硫黄の3つでチイラン環が形成される(図の下段中央)。このチイラン環は反応性が高く、DNAポリメラーゼを構成する特定のアミノ酸の側鎖と反応して共有結合する(図の下段右側)と推測される。この反応は不可逆的であり、これ以降にポリメラーゼ反応が進行することがない。このように、ヌクレオシド誘導体を用いることで、従来のアシクロビルなどを用いた伸長阻害反応とは異なり、ポリメラーゼに共有結合して反応を阻害するという新規なメカニズムで効率的に反応を阻害することができる。
 ポリメラーゼ反応の阻害を行うには、まず、式2Aのヌクレオシド誘導体を標的とする生体試料(細胞、ウイルスなど)に添加する。ヌクレオシド誘導体は、緩衝液など適当な溶媒に溶解して添加する。添加時のヌクレオシド誘導体の濃度は、標的とする反応の特性等に応じて適宜設定することができる。例えば、後述するB型肝炎ウイルスの場合、ヌクレオシド誘導体の濃度は、通常は1μM~1mMの範囲内であり、10μM~500μMの範囲内が好ましく、50~200μMの範囲内が特に好ましい。反応時間も適宜設定することができるが、例えばB型肝炎ウイルスの場合、通常は1~30日の範囲内であり、5~10日の範囲内がより好ましい。
 β修飾リン酸化合物前駆体により、リン酸化を伴う反応において、リン酸化より後の反応が阻害される。β修飾リン酸化合物前駆体による反応阻害活性は、リン酸化により生成する化合物(ポリメラーゼ反応の場合はDNAやRNA)や、さらには細胞、ウイルスなど生体試料そのものを定量することで評価することができる。
(4)医薬
 ヌクレオシド誘導体は、ポリメラーゼ阻害剤であり、DNAの複製やRNAの転写反応を阻害するため、細胞やウイルスの増殖などを抑制する。このため、式2Aで示されるヌクレオシド誘導体は、増殖阻害剤であり、ウイルス性疾患や癌などの治療薬として有用である。
(5)ヌクレオシド誘導体前駆体の製造方法
 以下、ヌクレオシド誘導体の製造方法について説明する。具体的な反応条件などは、後述する実施例において詳細に説明するため、ここでは、いくつかのヌクレオシド誘導体について、合成方法(製造方法)の概略を説明する。
(a)式(2A-1A)の化合物の合成(※Aが-SHの化合物)
 下記の合成スキームに沿って説明する。以下で説明する合成スキームにおいて、数字は化合物の番号を表す。まず、ヌクレオシド(下記スキームではアデノシン)を出発物質とし、1,3-ジクロロ-1,1,3,3-テトライソプロピルジシロキサン(TPDSCl)をピリジンなどの溶媒中で反応させる。これにより、リボースの3’ヒドロキシル基と5’ヒドロキシル基との間でシロキサン結合の環状構造を形成させ、3’位と5’位のヒドロキシル基を保護する(化合物1)。次に、N-フェニルトリフルオロメタンスルホンイミドを添加して、N,N-ジメチル-4-アミノピリジン(DMAP)などの求核剤をジクロロメタン(DCM)などの溶媒中で反応させて、リボースの2’位をトリフルオロスルホン酸基とする(化合物2)。次に、N,N-ジメチルホルムアミド(DMF)などの存在下でチオ酢酸カリウムなどのチオール基を有する化合物を反応させて、リボースの2’位にチオエステルを形成させる(化合物3)。さらにアンモニア/メタノール溶液中で反応させることでチオエステル基をチオール基に変換する(化合物4)。続いて、トリエチルアミン三フッ化水素酸塩(3HF-EtN)とテトラヒドロフラン(THF)とを添加してリボースの3’位と5’位の保護基を脱離させてヒドロキシル基にする。
Figure JPOXMLDOC01-appb-C000036
(b)式(2A-6A)の化合物の合成(※Aが-S-S-Cの化合物)
 化合物4までの合成スキームは上記の式(2A-1A)の化合物の合成の場合と同じである。続いて、テトラヒドロフラン(THF)とアゾジカルボン酸ジイソプロピル(DIAD)の混合溶媒などの溶媒中で1-プロパンチオールなどのチオアルキル化合物と反応させてリボースの2’位をジスルフィドアルキル基に変換する(化合物5)。次に、溶媒中で塩化ベンゾイル(BzCl)と反応させて、塩基のアミノ基をベンゾイル基で保護する。続いて、トリエチルアミン三フッ化水素酸塩(3HF-EtN)とTHFとを添加してリボースの3’位と5’位の保護基を脱離させてヒドロキシル基にする(化合物11)。
Figure JPOXMLDOC01-appb-C000037
(c)式(2A-8A)の化合物の合成(※Aが-Se-CHの化合物)
 化合物2までの合成スキームは上記の式(2A-1A)の化合物の合成の場合と同じである。次に、ジメチルジセレニド、水素化ホウ素ナトリウム、さらにはTHF等の溶媒中で反応させる(化合物12)。さらに、フッ化テトラ-n-ブチルアンモニウム(TBAF)、THFなどを添加してリボースの3’位と5’位の保護基を脱離させてヒドロキシル基にする(化合物13)。
Figure JPOXMLDOC01-appb-C000038
(d)式(2A-10A)~(2A-12A)の化合物の合成(※Aがハロゲンの化合物)
 次に、ハロゲン化合物の合成スキームについて説明する。化合物2までの合成スキームは上記の式(2A-1A)の化合物の合成の場合と同じである。次に、ハロゲン化リチウムを添加して加熱してハロゲンを導入する。ハロゲン化リチウムとしては、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウムを挙げることができる。続いて、トリエチルアミン三フッ化水素酸塩(3HF-EtN)とTHFとを添加してリボースの3’位と5’位の保護基を脱離させてヒドロキシル基にする。
Figure JPOXMLDOC01-appb-C000039
3.メバロン酸誘導体
(1)β修飾リン酸化合物前駆体
 β修飾リン酸化合物前駆体としては、下記式3Aで示されるメバロン酸誘導体を挙げることができる。
Figure JPOXMLDOC01-appb-C000040

(ここで、Aは-SR、-S-S-R、-SeR、又は-X(ここで、Xはフッ素、塩素、臭素、ヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基である。)
 特に、Aが-SH、-SCH、-S-C、-S-C、-S-SH、-S-S-CH、-S-S-C、-S-S-Cなどの化合物が好ましい。
(2)β修飾リン酸化合物
 また、上記式3Aで示されるメバロン酸誘導体がリン酸化を受けたあとのβ修飾リン酸化合物としては、下記式3Bで示される部分構造を有するβ修飾リン酸化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000041

(ここで、Aは-SR、-S-S-R、-SeR、又は-X(ここで、Xはフッ素、塩素、臭素、ヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基である。)
(3)反応阻害剤及び反応阻害方法
 特に、β修飾リン酸化合物前駆体が式3Aで示されるメバロン酸誘導体であり、β修飾リン酸化合物が上記式3Bで示されるメバロン酸誘導体である場合、中間体である活性種として下記式3Cで示される化合物が生成する。
Figure JPOXMLDOC01-appb-C000042

(ここで、Aは-S-、-S(R)-、-S(S-R)-、-Se(R)-、又は-X-(ここで、Xはフッ素、塩素、臭素、及びヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基である。)
 以下、3Aで示されるメバロン酸誘導体の活性種生成反応について具体例(Aが-SHの化合物)を示して説明する。下記式に示されるメバロン酸誘導体は、リン酸化によりAの硫黄が骨格の炭素―炭素結合とチイラン環を形成する。この環構造は非常に不安定であり、他の化合物と容易に共有結合する性質を有している
Figure JPOXMLDOC01-appb-C000043
 β修飾リン酸化合物が式3Aで示されるメバロン酸誘導体の場合、特にメバロン酸キナーゼや5-ホスホメバロン酸キナーゼを効率的に阻害する。メバロン酸は、テルペンを合成するメバロン酸経路に関与する物質であり、メバロン酸キナーゼによってメバロン酸とATPから5-ホスホメバロン酸が生成し、さらに5-ホスホメバロン酸キナーゼによって5-ホスホメバロン酸とATPから5-ジホスホメバロン酸が生成する。式3Aで示されるメバロン酸誘導体は、このメバロン酸のアナログとしてメバロン酸経路の効率的は反応阻害剤となる。すなわち、式3Aで示されるメバロン酸誘導体がリン酸化されて式3Bの化合物を経て式3Cの活性種が生成し、これがメバロン酸キナーゼや5-ホスホメバロン酸キナーゼなどに共有結合することで、リン酸化後の反応を阻害すると推測される。
(4)医薬
 式3Aで示されるメバロン酸誘導体は、メバロン酸経路を阻害するため、コレステロールの生成を抑制する。このため、式3Aで示されるメバロン酸誘導体は、コレステロール生成阻害剤であり、高脂血症や高コレステロール血症などの治療薬として有用である。
4.ホスファチジルイノシトール誘導体
(1)β修飾リン酸化合物前駆体
 β修飾リン酸化合物前駆体としては、下記式4Aで示されるホスファチジルイノシトール誘導体を挙げることができる。
Figure JPOXMLDOC01-appb-C000044

(ここで、Aは-SR、-S-S-R、-SeR、又は-X(ここで、Xはフッ素、塩素、臭素、ヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基である。Rはアラキドン酸、リノール酸、及びリノレン酸から選択される不飽和脂肪酸であり、Rはステアリン酸、パルミチン酸から選択される飽和脂肪酸である。)
 特に、Aが-SH、-SCH、-S-C、-S-C、-S-SH、-S-S-CH、-S-S-C、-S-S-Cなどの化合物が好ましい。
(3)反応阻害剤及び反応阻害方法
 特に、β修飾リン酸化合物前駆体が式4Aで示されるホスファチジルイノシトール誘導体であり、β修飾リン酸化合物が上記式4Bで示されるホスファチジルイノシトール誘導体である場合、中間体である活性種として下記式4Cで示される化合物が生成する。
Figure JPOXMLDOC01-appb-C000045

(ここで、Aは-S-、-S(R)-、-S(S-R)-、-Se(R)-、又は-X-(ここで、Xはフッ素、塩素、臭素、及びヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基である。Rはアラキドン酸、リノール酸、及びリノレン酸から選択される不飽和脂肪酸であり、Rはステアリン酸、パルミチン酸から選択される飽和脂肪酸である。)
 以下、4Aで示されるホスファチジルイノシトールの活性種生成反応について具体例(Aが-SCHの化合物)を示して説明する。下記式に示されるホスファチジルイノシトールは、リン酸化によりAの硫黄がイノシトール骨格の炭素―炭素結合と環構造を形成する。この環構造の硫黄はプラスの電荷を有している。この環構造も非常に不安定であり、他の化合物と容易に共有結合する性質を有している
Figure JPOXMLDOC01-appb-C000046
 β修飾リン酸化合物が式4Aで示されるホスファチジルイノシトールの場合、特にホスホイノシチド-3-キナーゼ(PI3K)の反応を効率的に阻害する。PI3Kは、イノシトールリン脂質をリン酸化することにより、ホスファチジルイノシトール3,4,5-三リン酸を生成する。これらの化合物は、PI3K/Akt経路に関与する物質であり、Aktはがん遺伝子産物でもある。式4Aで示されるホスファチジルイノシトールがリン酸化されて式4Bの化合物を経て式4Cの活性種が生成し、これがPI3Kに共有結合することで反応を阻害すると推測される。
(4)医薬
 式4Aで示されるホスファチジルイノシトールは、PI3K活性阻害剤であり、癌、悪性リンパ腫、白血病、リウマチなどの治療薬として有用である。
(5)ホスファチジルイノシトールの製造方法
 式4Aで示されるホスファチジルイノシトールの製造方法は、式2Aで示されるヌクレオシド誘導体と同様の方法で製造することができる。すなわち、式4Aのホスファチジルイノシトールは、以下の手順で合成することができる。まず、シロキサン類を保護基としてイノシトールの2’以外のヒドロキシル基を保護する。次に、2’位にトリフルオロスルホン酸基を導入したのち、チオエステルからチオール基に変換する。最後に保護基をイノシトールから脱離させる。
 以下、本発明を実施例に基づいて具体的に説明するが、これらは本発明の目的を限定するものではない。また、以下の実施例において「%」表示は特に規定しない限り質量基準(質量パーセント)である。
 以下の実施例におけるヌクレオシド誘導体の合成スキームの全体を下記に示す。以下、この合成スキームに沿ってヌクレオシド誘導体の合成方法を説明する(なお、合成スキーム中の番号は化合物の番号と一致している)。また、「%」の数字は収率を意味する。
Figure JPOXMLDOC01-appb-C000047

Figure JPOXMLDOC01-appb-C000048
1.ヌクレオシド誘導体の合成
(1)化合物1の合成
 アルゴン(Ar)雰囲気下で、pyridine(65mL)にadenosine(3.01g,10.1mmol,1.0eq.)を溶かし、TPDSCl(3.2mL,10.1mmol,1.0eq.)を加え、室温で46時間撹拌した。減圧下で溶媒を留去し、酢酸エチルと水(0.1M HCl aq.,HO,sat.NaHCO3 aq.,brine)で分液した。無水硫酸ナトリウムを加えて乾燥した後、綿栓ろ過し、減圧下で溶媒を留去した。中性フラッシュカラムクロマトグラフィー(CHCl(MeOH 0-4%))にて精製し、化合物1(4.14g,80%)を得た。得られた化合物のH-NMR情報は以下のとおりである。
H-NMR(400MHz,CDCl):δ1.06-1.13(m,28H),3.31(s,1H),4.01-4.16(m,3H),4.56(d,J=5.6Hz,1H),5.07-5.11(m,1H),5.79(s,2H),5.97(d,J=1.2Hz,1H),7.97(s,1H),8.28(s,1H).
(2)化合物2の合成
 Ar雰囲気下、氷冷下で化合物1(1.00g,1.83mmol,1.0eq.)とDMAP(650mg,5.5mmol,3eq.)を脱水DCM(17mL)に溶かし、N-Phenyltrifluoromethanesulfonimide(803mg,2.2mmol,1.2eq.)を加えて2時間撹拌した。氷冷したジクロロメタンと水(0.1M AcOH aq.,sat. NaHCO3 aq.,brine)で分液した。無水硫酸ナトリウムを加えて乾燥した後、綿栓ろ過し、減圧下で溶媒を留去した。中性フラッシュカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/1)で精製し、化合物2(946mg,81%)を得た。得られた化合物のH-NMR情報は以下のとおりである。
H-NMR(400MHz,CDCl):δ1.06-1.11(m,28H,),4.02-4.20(m,3H),5.26-5.29(m,1H),5.72(s,2H),5.78(d,J=4.8 Hz,1H),6.10(s,1H),7.96(s,1H),8.26(s,1H). 
(3)化合物3の合成
 Ar雰囲気下で化合物2(2.80g,4.36mmol,1.0eq.)及び、脱水アセトニトリルで共沸したチオ酢酸カリウム(1.06g,9.28mmol,2.1eq.)を脱水DMF(9mL)に溶かし、14.5時間撹拌した。減圧下で溶媒を留去し、ヘキサン/酢酸エチル=1/5混合溶媒と水(sat. NaHCO3 aq.,brine)で分液した。無水硫酸ナトリウムを加えて乾燥した後、綿栓ろ過し、減圧下で溶媒を留去した。中性フラッシュカラムクロマトグラフィー(ヘキサン/酢酸エチル=2/3)で精製し、化合物3(1.72g,67%)を得た。得られた化合物のH-NMR情報は以下のとおりである。
H-NMR(400MHz,CDCl):δ1.01-1.18(m,28H),2.15(s,3H),3.97-4.03(m,2H),4.23-4.27(m,1H),4.54-4.58(m,1H),5.01-5.06(m,1H),6.12(s,1H),6.40(d,J=7.6Hz,1H),7.90(s,1H),8.23(s,1H).
(4)化合物4の合成
 Ar雰囲気下、氷冷下で化合物3(1.42g,2.50mmol)を7M NH-MeOH(25mL)に溶かし1時間撹拌した。減圧下で溶媒を留去し、酢酸エチルと水(sat. NaHCO3 aq.,brine)で分液した。無水硫酸ナトリウムを加えて乾燥した後、綿栓ろ過し、減圧下で溶媒を留去し、化合物4(1.75g,quant.)を得た。得られた化合物のH-NMR情報は以下のとおりである。
H-NMR(400MHz,CDCl):δ1.00-1.18(m,28H),1.44(d,J=8.4Hz,1H),3.81-3.91(m,2H),4.03-4.07(m,1H),4.20-4.24(m,1H),4.58-4.63(m,1H),5.76(s,1H),6.40(d,J=7.6Hz,1H),8.11(s,1H),8.33(s,1H).
(5)化合物5の合成
 化合物4(304mg,0.571mmol,1.0eq.)をTHF(1.9mL,0.3M to 化合物4)に溶かし、DIAD(124μL,0.628mmol,1.1eq.)を加えて18時間撹拌した。1-propanethiol(3.1mL,33.7mmol,59eq.)を加え、80℃に加熱して29時間撹拌し、室温まで放冷した。減圧下で溶媒を留去し、中性フラッシュカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/1)で精製し、化合物5(230mg,67%)を得た。得られた化合物のH-NMR情報は以下のとおりである。
H-NMR(400MHz,CDCl):δ0.88-0.92(m,3H),1.06-1.17(m,28H),1.53-1.58(m,2H),2.53(t,J=14.4Hz,2H),3.88-3.94(m,2H),4.01-4.05(m,1H),4.15-4.20(m,1H),4.74(t,J=9.2Hz,1H),5.68(s,1H),6.49(d,J=7.2Hz,1H),7.97(s,1H),8.32(s,1H).
(6)化合物6の合成
 Ar雰囲気下、氷冷下で化合物5(314mg,0.523mmol,1.0eq.)をpyridine(2.1mL,0.25M to 化合物5)に溶かし、そこにBzCl(91μL,0.785mmol,1.5eq.)を加えて3時間30分撹拌した。BzCl(60μL,0.523mmol 1.0eq.)を加え、さらに1時間撹拌した。BzCl(30μL,0.262mmol 0.5eq.)を加え、さらに40分撹拌した。BzCl(60μL,0.523mmol 1.0eq.)を加え、さらに40分撹拌した。4mLの水を加え、5分撹拌した後、28%アンモニア水溶液を8mL加えて15分撹拌した。酢酸エチルと水(sat. NaHCO3 aq.,brine)で分液した。無水硫酸ナトリウムを加えて乾燥した後、綿栓ろ過し、減圧下で溶媒を留去した。中性フラッシュカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/1)で精製し、化合物6(183mg,50%) を得た。得られた化合物のH-NMR情報は以下のとおりである。
H-NMR(400MHz,CDCl):δ0.88-0.92(m,3H),1.01-1.18(m,28H),1.55-1.61(m,2H),2.57(t,J=15.2Hz,2H),3.91-3.97(m,2H),4.03-4.07(m,1H),4.18-4.22(m,1H),4.74(t,J=9.2Hz,1H),6.57(d,J=7.2Hz,1H),7.52(t,J=8.0Hz,2H),7.61(t,J=7.2Hz,2H),8.02(d,J=7.2Hz,1H),8.16(s,1H),8.80(s,1H),9.08(s,1H);13C-NMR(100MHz,CDCl):δ12.5,12.9,13.0,13.1,13.6,17.1,17.4,17.5,22.1,41.3,61.7,63.3,73.9,83.9,84.8,123.0,127.9,128.9,132.8,133.9,142.0,149.6,151.6,152.6,164.7;HRMS(ESI+)calc.m/z704.28(M+H+),726.26(M+Na+),found m/z 704.2821(M+H+),726.2623(M+Na+).
(7)化合物7の合成
 Ar雰囲気下で、化合物6(241mg,0.342mmol,1.0eq.)をTHF(3.4mL)に溶かし、3HF-EtN(139μL,0.855mmol,2.5eq.)を加えて2時間20分撹拌した。減圧下で溶媒を留去し、中性フラッシュカラムクロマトグラフィー(CHCl(MeOH 0-5%))で分離し、化合物7(154mg,98%)を得た。得られた化合物のH-NMR情報は以下のとおりである。
H-NMR(400MHz,CDSOCD):δ0.78-0.81(m,3H),1.40-1.45(m,2H),2.49-2.55(m,2H),3.66-3.77(m,2H),3.82-3.84(m,1H),3.96-3.99(m,1H),4.41-4.45(m,1H),5.14(t,J=3.6Hz,1H),5.92(d,J=4.4Hz,1H),6.66(d,J=4.8Hz,1H),7.55(t,J=8.0Hz,1H),7.64(t,J=7.6Hz,1H),8.03(d,J=7.2Hz,1H),8.64(s,1H),8.74(s,1H),11.21(br,1H);13C-NMR(100MHz,CDOD):δ13.1,22.9,41.9,61.2,63.2,72.8,86.0,86.4,124.6,129.4,129.7,133.8,134.9,144.8,151.0,153.1,153.3,168.0;HRMS(ESI+)calc.m/z462.13(M+H+),484.11(M+Na+),found m/z 462.1288(M+H+),484.1121(M+Na+).
(8)化合物8の合成
 アルゴン雰囲気下、0℃にてSM(154mg,0.344mmol,1.0eq.)をpyridine(3.4ml,0.1M to 化合物7)に溶かし、撹拌しながら、BzCl(46μl,0.401 mmol,1.2eq.)を加えた。TLCにて反応を追跡しながら、撹拌開始から2h,4h,7h,10h後にそれぞれBzClを0.6eq.,0.6eq.,1.2eq.,1.2eq.ずつ加えて、反応開始から11h後にMeOH(5ml)を加えて10min撹拌した。溶媒を減圧留去した後、EtOAc-水(sat.NaHCO aq.,brine)にて分液を行った。芒硝乾燥したのち溶媒留去を行い、中性フラッシュカラム(H/A=1/1)にて精製して化合物8(133mg,68%)を得た。得られた化合物のH-NMR情報は以下のとおりである。
H-NMR(400MHz,CDCl):δ0.738(t,J=7.2Hz,3H),1.38(m,2H),2.42(m,2H),3.96(t,J=7.6Hz,1H),4.30(m,1H),4.70-4.72(m,2H),4.82(t,J=7.6Hz,1H),5.44(brs,1H),6.59(d,J=7.2Hz,1H),7.37-7.50(m,6H),7.97-8.00(m,4H),8.15(s,1H),8.71(s,1H),9.51(brs,1H);13C-NMR(100MHz,CDCl):δ12.8,14.2,21.1,21.9,41.1,60.5,61.3,63.8,74.4,82.3,85.5,122.7,128.0,128.5,128.8,129.4,129.7,129.8,132.8,133.4,133.6,142.2,149.5,151.3,152.6,165.0,166.5,171.3;HRMS(ESI+)calc.m/z566.15(M+H+),588.14(M+Na+),604.11(M+K+),found m/z 544.1461(M+H+),588.1327(M+Na+),604.1017(M+K+).
(9)化合物9(β修飾リン酸化合物)の合成
 Ar雰囲気下、0℃にてphenylphosphorodichloride(9μl,0.06mmol,1.5eq. in 150μl THF)、脱水TEA(28μl,0.2mmol,5.0eq. in 150μl THF)、化合物8(23mg,0.04mmol,1.0eq. in 200μl THF and 28μl TEA)を加え、1.5h撹拌した後、反応系を室温に戻し、2.5h撹拌した。その後MQを150μl加え、overnight撹拌した後、HPLCにて精製した。反応収率はHPLCで計算し62%であった。HRMS(ESI) calc. m/z 720.14(M), found m/z 719.7807(M), HRMS(ESI+) calc. m/z 722.15(M+H+),found m/z 722.1443(M + H+).
(10)化合物10(β修飾リン酸化合物前駆体A-1)の合成
 Ar雰囲気下で、化合物4(549mg,1.04mmol,1.0eq.)をTHF(10mL)に溶かし、3HF-EtN(424μL,2.6mmol,2.5eq.)を加えて2時間40分撹拌した。減圧下で溶媒を留去し、DCMで吸引ろ過、洗浄し、化合物10(266mg,89%)を得た。得られた化合物のH-NMR情報は以下のとおりである。
H-NMR(400MHz,CDSOCD):δ3.31-3.39(m,2H),3.73-3.76(m,4H),4.24-4.29(m,1H),5.78(d,J=6.0Hz,1H),6.36(d,J=7.6Hz,1H),7.29(s,2H),8.12(s,1H),8.30(s,1H).
(11)化合物11(β修飾リン酸化合物前駆体A-2)の合成
 Ar雰囲気下で、化合物5(553mg,0.920mmol,1.0eq.)をTHF(9.2mL)に溶かし、3HF-EtN(375μL,2.30mmol,2.5eq.)を加えて2時間撹拌した。減圧下で溶媒を留去し、中性フラッシュカラムクロマトグラフィー(CHCl3 (MeOH 0-5%))で分離し、化合物11(337mg,quant.)を得た。得られた化合物のH-NMR情報は以下のとおりである。
H-NMR(400MHz,CDOD):δ0.74-0.78(m,3H),1.36-1.43(m,2H),2.44-2.47(m,2H),3.84-3.91(m,4H),4.51(t,J=8.8Hz,1H),6.54(d,J=7.2Hz,1H),8.16(s,1H),8.32(s,1H).
(12)Pro Aの合成
 ?78℃で、無水DCM(4.2ml)中の塩化ホスホリル(130μl、1.4mmol、1.0eq.)の溶液に、フェノール(132mg、1.4mmol、1.0eq.)及びトリエチルアミン(132mg)の溶液を加えた。無水DCM(1.4ml)中の195μl、1.4mmol、1.0eq.)を滴下した。同じ温度で3時間撹拌した後、反応混合物をL-アラニンイソプロピルエステル塩酸塩(235mg、1.4mmol、1.0eq.)で一度に処理し、続いてトリエチルアミン(390μl、2.8mmol, 2.0eq.)を滴下した。それを?78℃でさらに1時間撹拌し、次いで1時間かけて室温まで温めた。0℃に冷却した後、上記混合物を、無水DCM(1.4ml)中の化合物11(94.2mg、0.280mmol、0.2当量)及びNMI(111μl、1.4mmol、1.0当量)の溶液でさらに処理し、0℃で16時間撹拌した。反応混合物をHO(7.0ml)で処理し、DCMで抽出した。有機層を0.5Mの希HCl及び食塩水で順次洗浄した。無水NaSOで乾燥した後、それを濃縮し、次いでシリカゲルカラムクロマトグラフィー(DCM/MeOH=-10/1)及びHPLCで精製して所望の生成物Pro Aを得た(48mg,38%)。得られた化合物のNMR情報は以下のとおりである。
H-NMR(400MHz,DMSO):δ-0.06 (t,J=7.6Hz,3H),0.18(d,J=6.4Hz,2H),0.23-0.27(m,4H),0.30(d,J=6.8Hz,3H),0.49-0.59(m,2H),1.64-1.66(m,2H),2.78-2.91(m,1H),3.06-3.13(m,2H),3.36-3.50(m,2H),3.64-3.70(m,1H),3.83-3.89(m,1H),5.08-5.21(m,2H),5.68(d,J=8.0Hz,1H),6.29-6.33(m,3H),6.45-6.49(m,4H),7.28(s,1H),7.35(s,1H);13C-NMR(100MHz,DMSO):δ12.5,19.6,21.2,21.3,49.7,62.4,67.8,72.6,83.6,118.8,120.0,120.1,124.4,129.5,140.0,149.0,150.7,152.5,156.0,172.5;31P-NMR(162MHz,CDCl):δ4.27(P(R)),4.67(P(S));HRMS(ESI+)calc.m/z 627.18(M+H),649.16(M+Na+),665.14(M+K+),found m/z 627.1786(M+H+),649.1611(M+Na+),665.1328(M+K+).
(13)化合物12(β修飾リン酸化合物前駆体(セレン))の合成
 氷冷下でジメチルジセレニド(300μL,3.17mmol)を溶解したエタノール(5mL)に水素化ホウ素ナトリウム(289mg,7.64mmol)を加えた。化合物2(3.36g,5.30mmol)をTHF(20mL)に溶解し、反応溶液に加え、70℃で3.5時間撹拌した。ジメチルジセレニド(100μL,1.06mmol)と水素化ホウ素ナトリウム(62.3mg,1.64mmol)を加え、60℃で2.5時間撹拌した。1M塩酸で中和した後、溶媒を留去した。残渣を酢酸エチル(50mL)に溶解し水で3回、飽和食塩水1回で洗浄し、有機層を芒硝乾燥した。溶媒を留去した後、中性フラッシュカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/1→9/1→酢酸エチル/メタノール=9/1)により精製し、化合物12(1.90g,61%)を得た。本反応には耐圧容器を用いた。得られた化合物のH-NMR情報は以下のとおりである。
H-NMR(400MHz,CDCl):δ0.89-1.22(m,28H),1.95(s,3H),3.72-3.90(m,2H),4.04-4.23(m,2H),4.73(dd,J=8.4Hz,10.4Hz,1H),5.64(br,s,2H),6.49(d,J=7.6Hz,1H),8.26(s,1H);13C-NMR(100MHz,DMSO):δ5.801,12.70,13.15,13.16,13.86,17.13,17.21,17.25,17.27,17.48,17.51,17.57,17.64,49.87,61.23,74.94,84.23,84.58,119.56,139.32,149.93,152.754;HRMS(ESI)calc.m/z588.19(M+H),610.18(M+Na),found m/z 588.1945(M+H),610.1768(M+Na).
(14)化合物13(SelenoA:β修飾リン酸化合物前駆体(セレン))の合成
 氷冷下で化合物12(1.83g,3.12mmol)をTHF(18mL)に溶解し、TBAF(1M in THF,7.8mL,7.80mmol)を加え、17.5時間撹拌した。溶媒を留去し、中性フラッシュカラムクロマトグラフィー(ジクロロメタン/メタノール=95/5→85/15)で精製し、化合物13(1.04g,97%)を得た。得られた化合物のH-NMR情報は以下のとおりである。
H-NMR(400MHz,DMSO-d6):δ1.85(s,3H),3.64-3.83(m,4H),4.43(m,1H),5.73(dd,J=4.0Hz,6.0Hz,1H),6.45(dd,J=3.6Hz,7.6Hz,1H),7.28(s,2H),8.28(s,1H);13C-NMR(100MHz,DMSO):δ4.17,49.1,59.8,73.3,84.1,85.0,118.3,139.3,149.2,152.5,156.0;HRMS(ESI)calc.m/z346.04(M+H),368.02(M+Na),found m/z 346.0402(M+H),368.0214(M+Na).
(15)Pro SelenoAの合成
 POCl(134μL,1.50mmol)をジクロロメタン(4.5mL)に溶解し、-78℃で撹拌した。フェノール(132.6mg,1.46mmol)とトリエチルアミン(201uL,1.50mmol)をジクロロメタン(1.5mL)に溶解し、滴下し、3時間撹拌した。L-イソプロピルアラニン塩酸塩(248.4mg,1.54mmol)とトリエチルアミン(201uL,3.00mmol)を加え、更に1時間撹拌し、室温まで上昇させた。化合物13(94.2mg,0.27mmol)とNMI(114uL,1.50mmol)をジクロロメタン(1.5mL)に溶解し滴下した。0℃で20.5時間撹拌した後、水でクエンチした。RP-HPLC(MiliQ/ACN=20/80→50/50)により精製を行い、Pro SelenoA(33.5mg,19%)を得た。得られた化合物のNMR情報は以下のとおりである。
H-NMR(400MHz,CDCl):δ1.01-1.25(m,9H),1.88(s,3H),3.64-3.89(m,3H),4.20-4.83(4m,H),5.82-6.04(m,2H),6.45(d,1H),7.05-7.43(m,7H),8.13(d,2H);13C-NMR(100MHz,CDCl):δ4.95,20.24,21.84,48.93,50.26,66.50,79.71,83.39,84.81,119.2,120.7,125.0,130.1,140.1,149.5,151.2,153.0,156.6,173.1;HRMS(ESI+)calc.m/z615.11(M+H+),found m/z 615.1244(M+H+);
(16)dASeTPの合成
 リン酸トリメチル(84.1mg)にセレノアデノシン(化合物13:101mg,0.30mmol)とトリブチルアミン(643μL,2.70mmol)を加え、-30℃で撹拌しながら、塩化ホスホリル(84μL,0.90mmol)を滴下し、16時間撹拌した。アセトニトリル(1.6mL)にビス(トリブチルアンモニウム)ピロリン酸(993.5mg,1.51mmol)とトリブチルアミン(600μL)を加え、24時間撹拌した。1M TEAB(5mL)を加え、凍結乾燥をした。HPLC(DEAE-2SW,1Mギ酸アンモニウム/MQ=0/100→50/50)で反応の進行を分析し、HPLC(C18 Hydrosphere,50mM TEAB/ACN=100/0→70/30)で精製をし、三リン酸体のトリエチルアンモニウム塩を得た。0.1M過塩素酸ナトリウムのアセトン溶液を加え、吸引ろ過により三リン酸体のナトリウム塩(93.9mg,43%)を得た。得られた化合物のNMR情報は以下のとおりである。
H-NMR(400MHz,DO):δ8.28(s,1H),8.03(s,1H),6.40(d,J=8MHz,1H),4.42(t,J=10MHz,1H),4.23(d,J=1.6MHz,2H),3.98(m,1H),3,74(q,J=7.2MHz,1H),1.64(s,3H);13C-NMR(100MHz,DO):δ4.26,48.19,63.43,71.78,82.69,85.85,118.1,140.6,148.6,152.7,155.6;31P-NMR(160MHz,DO):δ?5.39(br,1P),?10.28(d,J=17MHz,1P),?20.81(br,1P);HRMS(ESI)calc.m/z583.92(M?H)?,found m/z 583.9202(M?H)?
2.鎖切断反応(Chain cleavage reaction)
 化合物9の溶液(MeCN:HO=2:1,35mM,100uL)、HEPES Buffer(50uL,pH=9.0,500mM)、HO(332.5uL)、DTT水溶液(1M,17.5uL)を加え、混合した後、25℃で20時間インキュベートした。HPLC(条件は下記に記載)で分析し、ピークの同定はHRMS(ESI)で行った。その結果のグラフを図2に示す。
<HPLC condition>
 Column: Hydrosphere C18 250×4.6mm S-5μm 12nm
 Eluent: A) 50mM TEAA buffer, 5% ACN
         B) ACN
Gradient: B conc. 0-10%(0-10min),10-100%(10-22.5min),100%(22.5-30min)
 Flow rate: 1mL/min Detection:260nm
 図2のHPLCの結果から、ヌクレオシド誘導体のピーク(compound A)と、リン酸フェニルのピーク(compound B)が確認された。このことから、リボースの3’位がリン酸化された状態で、DTTにより2’位のジスルフィド基を脱保護すると、以下の反応によって3’位のリン酸部が切断され、チイラン構造を有する活性化されたヌクレオシド誘導体とリン酸フェニルとに分解されることが確認できた。
Figure JPOXMLDOC01-appb-C000049
3.B型肝炎ウイルス(HBV)の増殖抑制効果
 ヒト肝がん細胞HuH-7由来でHBVゲノム(遺伝子型C)が恒常的に複製する細胞株EB-HBCeを24ウェルプレートに播種し、化合物A-1(化合物10)及びA-2(化合物11)を終濃度10又は100μMで添加し9日間培養した。その間、3日毎に培地を交換するとともに同濃度の化合物を添加した。培養した細胞からTRI Reagent(Molecular Research Center社)によってtotal RNAを抽出し、DNaseI及びRNase阻害剤の処理を行った。SuperScript VILO cDNA synthesis kit(Invitrogen社)によりcDNAを合成し、SYBR qPCR Mix Kit(東洋紡社)を用いた定量PCRによってHBV複製中間体であるウイルスRNA(pgRNA)を定量した。その結果を図3に示す。左側のグラフから順に、コントロール、化合物A-1を10μM、化合物A-1を100μM、化合物A-2を10μM、化合物A-2を100μM添加した結果である。また、最も右側のグラフは、肝炎の治療薬であるETV(エンテカビル)を10μM添加した結果である。
 この図から、化合物A-1と化合物A-2のいずれも100μM添加した場合に、ウイルスRNAの低下がみられた。このことから、いずれの化合物もB型肝炎ウイルスの増殖を抑制できることがわかった。特に濃度100μMにおける化合物A-1と化合物A-2の結果を比較すると、化合物A-2のほうが化合物A-1よりも若干、ウイルスRNAの量が少なかった。このことから、同じ濃度であれば化合物A-2のほうが化合物A-1よりもウイルス増殖抑制効果が高いことがわかった。
4.不可逆阻害実験
 下記の鋳型RNA(0.2μM,最終濃度,以下同様),下記のプライマーDNA(0.2μM),dCTP,dGTP,dTTP(各100μM),Tris-HCl(pH8.3,5mM),KCl(5mM),DTT(0.2mM),MgCl(0.5mM)を含む溶液に、AMV逆転写酵素(20U/μL)を0.25μLと、dATPあるいはddATPあるいはdASeTP(100μM)を加え、42℃で3時間インキュベートした。Microcon 100Kを用いて、限外ろ過を3回行った後、Amicon 3Kを用いてタンパク溶液を濃縮した。タンパク溶液を用いて、再度鎖伸長反応を行った(鋳型RNA 0.2μM,プライマーDNA 0.2μM,100μM each dNTP,Tris-HCl(pH8.3) 2.5mM,KCl 5mM,DTT 0.2mM,0.5mM MgCl,AMV逆転写酵素 0.1U/μL)。
 反応時間5分、30分、60分において10μLのサンプルを取り、2×変性バッファーに加えて、反応を停止した。各サンプルを20% dPAGE(7.5M Urea, 1×TBE,7.5% formamide,20mA const.)で電気泳動を行い、蛍光発光で伸長核酸を定量検出した。その結果を図4に示す。
 プライマーDNA:5’-(FAM)-GGTGGACTTTCGC-3’
 鋳型RNA:5’-ACGACGUGCGAAAGUCCACC-3’
 この図から、dASeTPは、逆転写酵素による核酸伸長反応を阻害することがわかった。
5.抗HBV活性
 ヒト肝がん細胞HuH-7由来でHBVゲノム(遺伝子型C)が恒常的に複製する細胞株EB-HBCeを24ウェルプレートに播種し、各化合物を種々の終濃度で添加し9日間培養した。その間、3日毎に培地を交換するとともに同濃度の化合物を添加した。
 培養上清を回収しPNE溶液(8.45% PEG6000, 0.445M NaCl,13mM EDTA)添加によってウイルス粒子を沈殿させた後、DNase I(タカラバイオ社)及びRNase A(タカラバイオ社)で37℃、1時間処理することによって粒子外の核酸を除いた。さらに、Proteinase Kで一晩処理した後、DNAをフェノール/クロロホルム抽出しエタノール沈殿を行った。沈殿を可溶化した後、SYBR qPCR Mix Kit(東洋紡社)を用いてHBV DNAの定量測定を行った。その結果を図5に示す。図中の「SelenoA」は化合物13を、「entecavir」はエンテカビルを、それぞれ添加した結果を表す。
 この図から、SelenoA(化合物13)、Pro SelenoA、Pro Aのいずれも抗HBV活性を示し、添加濃度が増えるほど活性が高くなることがわかった。特に、Pro SelenoAは、添加濃度が10μMでは、これらの3種類の中で最も高い抗HBV活性を示すことがわかった。
7.抗HIV活性
(1)抗HIV活性測定
 Dulbecco’s modified Eagle’s Medium(DMEM)(SIGMA/Cat.No.D5796)に、最終濃度10%のfetal bovine serum(Japan Bio Serum社)を添加した培地で、37℃、5% COの条件でTZM-bl細胞を培養した。TZM-bl細胞を96well microplateに播種した(1.3×10cells/100μL DMEM+10%FBS)。翌日、薬剤溶液とHIV-1(NL4-3, 10ng)をこの順に培養液に添加した。2日後、培養上清200μLを除去し、1×Steady Glo(Promega/Cat.No.E2510)を100μL加え、かきとった80μLの細胞破砕液を専用のプレート(Coster/Cat.No3912) IESEL, VERITAS Microplate Luminometer(Promega)でLuciferaseを定量し、薬剤の抗HIV-1活性(EC50)を算出した。異なるタイプのウイルスを用い、複数の化合物について実験を行った。その結果を下記表(A)に示す。表中、「AZT」はアジドチミジン、「Lamivudine」はラミブジン、「Didanosine」はジダノシンを意味する。
(2)細胞毒性評価
 MTT assayは、Celltiter 96 Non-radioactive Cell Proliferation Assay(Promega)を使用した。 MT-4細胞にHIV-1 NL4-3をMOI=0.001で感染させた。(37℃, 1-1.5時間)HIV-1感染又は非感染MT-4細胞(2.5×10/ml,100μL)を96ウェルマイクロプレートに分注し(最終DMSO濃度;0.5%)、37℃,5%COで培養を開始した。培養5日目に培養上清(100μL)を除去し、dye solution(MTT試薬)15μLを各ウェルに添加し、COインキュベーター内で1時間培養した。続いてsolubilization solution/stop mixを100μL 各ウェルに添加し、よく混和し4℃で一晩静置した。プレートを室温に戻してからDD570/690を分光光度計(BIO-TEK ELx808)で測定した(CC50)。その結果を下記表(B)に示す。
Figure JPOXMLDOC01-appb-T000050
 表において、(A)の結果から、Pro SelenoAはLamivudine、Didanosineと比べると高い抗HIV活性を示した。また、HIVタイプM41L/T69SSG/T215Yに対しては、AZTよりも優れた抗HIV活性を示した。また、(B)の結果から、Pro SelenoAはAZTよりも毒性が低いことが分かった。

Claims (11)

  1.  リン酸化反応によりリン酸化されるβ修飾リン酸化合物前駆体であって、下記式1Aで示される部分構造を分子内に有することを特徴とするβ修飾リン酸化合物前駆体。
    Figure JPOXMLDOC01-appb-C000001

    (ここで、Aは-SR、-S-S-R、-SeR、又は-X(ここで、Xはフッ素、塩素、臭素、及びヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基である。Lは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基を示し、Lは炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基を示す。LとLは互いに連結して4~6員の環構造を形成してもよく、環構造は炭素、窒素、酸素、及び硫黄から選択される1種類以上の元素で構成される。L及びLは、それぞれヒドロキシル基、カルボキシル基、アミノ基、アルキル基、アリール基、炭素数15~30の飽和脂肪酸及び/又は不飽和脂肪酸を1以上含むリン脂質、モノリン酸基、ジリン酸基、又はトリリン酸基、及び塩基(ここで、塩基はアデニン、グアニン、シトシン、チミン、ウラシル、N-メチルアデニン、N-ベンゾイルアデニン、2-メチルチオアデニン、2-アミノアデニン、7-メチルグアニン、N-イソブチリルグアニン、5-フルオロシトシン、5-ブロモシトシン、5-メチルシトシン、4-N-メチルシトシン、4-N,N-ジメチルシトシン、5-フルオロウラシル、5-ブロモウラシル、5-クロロウラシル、又は5,6-ジヒドロウラシルを意味する)から選択される1又は2以上の置換基を有していてもよい。*はリン酸化を受けてリン酸基が結合する結合手であり、リン酸化前においては水素又はリン酸基以外の置換基が結合していることを意味する。)
  2.  下記式2Aで示されるヌクレオシド誘導体又は該ヌクレオシド誘導体を3’末端に有する核酸であることを特徴とする請求項1に記載のβ修飾リン酸化合物前駆体。
    Figure JPOXMLDOC01-appb-C000002

    (ここで、Aは-SR、-S-S-R、-SeR、又は-X(ここで、Xはフッ素、塩素、臭素、ヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基である。Lは水素、又は下記式2Dで示されるモノリン酸基、ジリン酸基、又はトリリン酸基である。
    Figure JPOXMLDOC01-appb-C000003

    (ここで、nは1~3の整数を示す。Zは、ヒドロキシル基、又はグリシン、アラニン、バリン、ロイシン、フェニルアラニン、トリプトファン、メチオニン若しくはプロリンのメチルエステル、エチルエステル、イソプロピルエステル、n-ブチルエステル、ベンジルエステル若しくはフェニルエステルである。Zは、水素、炭素数1~4のアルキル基、ハロゲン、又はフェニル基である。nが2以上の場合においてそれぞれのZは同一又は異なっていてもよい。)
     Bはアデニン、グアニン、シトシン、チミン、ウラシル、N-メチルアデニン、N-ベンゾイルアデニン、2-メチルチオアデニン、2-アミノアデニン、7-メチルグアニン、N-イソブチリルグアニン、5-フルオロシトシン、5-ブロモシトシン、5-メチルシトシン、4-N-メチルシトシン、4-N,N-ジメチルシトシン、5-フルオロウラシル、5-ブロモウラシル、5-クロロウラシル、又は5,6-ジヒドロウラシルから選択される塩基である。*はリン酸化を受けてリン酸基が結合する結合手であり、リン酸化前においては水素又はリン酸基以外の置換基が結合していることを意味する。)
  3.  下記式3Aで示されるメバロン酸誘導体であることを特徴とする請求項1に記載のβ修飾リン酸化合物前駆体。
    Figure JPOXMLDOC01-appb-C000004

    (ここで、Aは-SR、-S-S-R、-SeR、又は-X(ここで、Xはフッ素、塩素、臭素、ヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基である。)
  4.  下記式4Aで示されるホスファチジルイノシトール誘導体であることを特徴とする請求項1に記載のβ修飾リン酸化合物前駆体。
    Figure JPOXMLDOC01-appb-C000005

    (ここで、Aは-SR、-S-S-R、-SeR、又は-X(ここで、Xはフッ素、塩素、臭素、ヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基である。Rはアラキドン酸、リノール酸、及びリノレン酸から選択される不飽和脂肪酸であり、Rはステアリン酸、パルミチン酸から選択される飽和脂肪酸である。)
  5.  下記式1Bで示される部分構造を分子内に有することを特徴とするβ修飾リン酸化合物。
    Figure JPOXMLDOC01-appb-C000006

    (ここで、Aは-SR、-S-S-R、-SeR、又は-X(ここで、Xはフッ素、塩素、臭素、及びヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、炭素数1~20のアルケニル基から選択される。Lは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基を示し、Lは炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基を示す。LとLは互いに連結して4~6員の環構造を形成してもよく、環構造は炭素、窒素、酸素、及び硫黄から選択される1種類以上の元素で構成される。L及びLは、それぞれヒドロキシル基、カルボキシル基、アミノ基、アルキル基、アリール基、炭素数15~30の飽和脂肪酸及び/又は不飽和脂肪酸を1以上含むリン脂質、モノリン酸基、ジリン酸基、又はトリリン酸基、及び塩基(ここで、塩基はアデニン、グアニン、シトシン、チミン、ウラシル、N-メチルアデニン、N-ベンゾイルアデニン、2-メチルチオアデニン、2-アミノアデニン、7-メチルグアニン、N-イソブチリルグアニン、5-フルオロシトシン、5-ブロモシトシン、5-メチルシトシン、4-N-メチルシトシン、4-N,N-ジメチルシトシン、5-フルオロウラシル、5-ブロモウラシル、5-クロロウラシル、又は5,6-ジヒドロウラシルを意味する)から選択される1又は2以上の置換基を有していてもよい。)
  6.  下記式2Bで示されるヌクレオシド誘導体又は該ヌクレオシド誘導体を3’末端に有する核酸であることを特徴とする請求項5に記載のβ修飾リン酸化合物。
    Figure JPOXMLDOC01-appb-C000007

    (ここで、Aは-SR、-S-S-R、-SeR、又は-X(ここで、Xはフッ素、塩素、臭素、ヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基である。Lは水素、又は下記式2Dで示されるモノリン酸基、ジリン酸基、又はトリリン酸基である。
    Figure JPOXMLDOC01-appb-C000008

    (ここで、nは1~3の整数を示す。Zは、ヒドロキシル基、又はグリシン、アラニン、バリン、ロイシン、フェニルアラニン、トリプトファン、メチオニン若しくはプロリンのメチルエステル、エチルエステル、イソプロピルエステル、n-ブチルエステル、ベンジルエステル若しくはフェニルエステルである。Zは、水素、炭素数1~4のアルキル基、ハロゲン、又はフェニル基である。nが2以上の場合においてそれぞれのZは同一又は異なっていてもよい。)
     Bはアデニン、グアニン、シトシン、チミン、ウラシル、N-メチルアデニン、N-ベンゾイルアデニン、2-メチルチオアデニン、2-アミノアデニン、7-メチルグアニン、N-イソブチリルグアニン、5-フルオロシトシン、5-ブロモシトシン、5-メチルシトシン、4-N-メチルシトシン、4-N,N-ジメチルシトシン、5-フルオロウラシル、5-ブロモウラシル、5-クロロウラシル、又は5,6-ジヒドロウラシルから選択される塩基である。)
  7.  リン酸化を伴う反応におけるリン酸化後の反応の進行を阻害する反応阻害剤であって、請求項1~4のいずれか1項に記載のβ修飾リン酸化合物前駆体を含有することを特徴とする反応阻害剤。
  8.  前記β修飾リン酸化合物前駆体が前記式2Aで示されるヌクレオシド誘導体又は該ヌクレオシド誘導体を3’末端に有する核酸であり、DNAポリメラーゼの反応を阻害することを特徴とする請求項7に記載の反応阻害剤。
  9.  請求項7に記載の反応阻害剤を含有することを特徴とする医薬。
  10.  請求項7に記載の反応阻害剤によってリン酸化を伴う反応におけるリン酸化後の反応の進行を阻害する反応阻害方法であって、
     前記式1Aで示されるβ修飾リン酸化合物前駆体を用意する工程と、
     前記β修飾リン酸化合物前駆体をリン酸化して前記式1Bで示されるβ修飾リン酸化合物を生成させるとともに、前記β修飾リン酸化合物を部分開裂させて下記式1Cで示される活性種を生成させる工程と、
    Figure JPOXMLDOC01-appb-C000009

    (ここで、Aは-S-、-S(R)-、-S(S-R)-、-Se(R)-、又は-X-(ここで、Xはフッ素、塩素、臭素、及びヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基である。Lは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基を示し、Lは炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基を示す。LとLは互いに連結して4~6員の環構造を形成してもよく、環構造は炭素、窒素、酸素、及び硫黄から選択される1種類以上の元素で構成される。L及びLは、それぞれヒドロキシル基、カルボキシル基、アミノ基、アルキル基、アリール基、炭素数15~30の飽和脂肪酸及び/又は不飽和脂肪酸を1以上含むリン脂質、モノリン酸基、ジリン酸基、又はトリリン酸基、及び塩基(ここで、塩基はアデニン、グアニン、シトシン、チミン、ウラシル、N-メチルアデニン、N-ベンゾイルアデニン、2-メチルチオアデニン、2-アミノアデニン、7-メチルグアニン、N-イソブチリルグアニン、5-フルオロシトシン、5-ブロモシトシン、5-メチルシトシン、4-N-メチルシトシン、4-N,N-ジメチルシトシン、5-フルオロウラシル、5-ブロモウラシル、5-クロロウラシル、又は5,6-ジヒドロウラシルを意味する)から選択される1又は2以上の置換基を有していてもよい。)
    を備えることを特徴とする反応阻害方法。
  11.  前記β修飾リン酸化合物前駆体は前記式2Aで示される化合物であり、
     前記β修飾リン酸化合物は前記式2Bで示される化合物であり、
     前記活性種は下記式2Cで示される化合物であることを特徴とする請求項9に記載の反応阻害方法。
    Figure JPOXMLDOC01-appb-C000010

    (ここで、Aは-S-、-S(R)-、-S(S-R)-、-Se(R)-、又は-X-(ここで、Xはフッ素、塩素、臭素、及びヨウ素から選択されるハロゲンを意味する)を示し、Rは水素、炭素数1~20のアルキル基、炭素数1~20のアリール基、又は炭素数1~20のアルケニル基である。Lは水素、又は下記式2Dで示されるモノリン酸基、ジリン酸基、又はトリリン酸基である。
    Figure JPOXMLDOC01-appb-C000011

    (ここで、nは1~3の整数を示す。Zは、ヒドロキシル基、又はグリシン、アラニン、バリン、ロイシン、フェニルアラニン、トリプトファン、メチオニン若しくはプロリンのメチルエステル、エチルエステル、イソプロピルエステル、n-ブチルエステル、ベンジルエステル若しくはフェニルエステルである。Zは、水素、炭素数1~4のアルキル基、ハロゲン、又はフェニル基である。nが2以上の場合においてそれぞれのZは同一又は異なっていてもよい。)
     Bはアデニン、グアニン、シトシン、チミン、ウラシル、N-メチルアデニン、N-ベンゾイルアデニン、2-メチルチオアデニン、2-アミノアデニン、7-メチルグアニン、N-イソブチリルグアニン、5-フルオロシトシン、5-ブロモシトシン、5-メチルシトシン、4-N-メチルシトシン、4-N,N-ジメチルシトシン、5-フルオロウラシル、5-ブロモウラシル、5-クロロウラシル、又は5,6-ジヒドロウラシルから選択される塩基である。)
PCT/JP2019/009213 2018-03-09 2019-03-08 β修飾リン酸化合物前駆体、β修飾リン酸化合物、反応阻害剤及びこれを含む医薬並びに反応阻害方法 WO2019172394A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19763431.4A EP3763724A4 (en) 2018-03-09 2019-03-08 β-MODIFIED PHOSPHORIC ACID PRECURSOR COMPOUND, β-MODIFIED PHOSPHORIC ACID COMPOUND, REACTION INHIBITOR, MEDICINE COMPRISING THEM, AND REACTION INHIBITION METHOD
CN201980017573.6A CN111836823B (zh) 2018-03-09 2019-03-08 β修饰磷酸化合物前体、β修饰磷酸化合物、反应阻碍剂和包含这些化合物的医药品以及反应阻碍方法
JP2020505121A JP7266896B2 (ja) 2018-03-09 2019-03-08 β修飾リン酸化合物前駆体、β修飾リン酸化合物、反応阻害剤及びこれを含む医薬並びに反応阻害方法
US16/977,525 US11597745B2 (en) 2018-03-09 2019-03-08 β-modified phosphoric acid compound precursor, β-modified phosphoric acid compound, reaction inhibitor and medicine containing the same, and method for inhibiting reaction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018043329 2018-03-09
JP2018-043329 2018-03-09

Publications (1)

Publication Number Publication Date
WO2019172394A1 true WO2019172394A1 (ja) 2019-09-12

Family

ID=67846033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009213 WO2019172394A1 (ja) 2018-03-09 2019-03-08 β修飾リン酸化合物前駆体、β修飾リン酸化合物、反応阻害剤及びこれを含む医薬並びに反応阻害方法

Country Status (5)

Country Link
US (1) US11597745B2 (ja)
EP (1) EP3763724A4 (ja)
JP (1) JP7266896B2 (ja)
CN (1) CN111836823B (ja)
WO (1) WO2019172394A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020561A1 (ja) * 2019-07-31 2021-02-04 国立研究開発法人科学技術振興機構 プライマー及びこれを用いた二本鎖dnaの製造装置並びに二本鎖dnaの製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136842A (ja) 1995-11-14 1997-05-27 Shigemasa Sawada 抗慢性関節リウマチ剤
WO2012117246A1 (en) * 2011-03-01 2012-09-07 Nucana Biomed Limited Phosphoramidate derivatives of 5 - fluoro - 2 ' - deoxyuridine for use in the treatment of cancer
WO2014003950A2 (en) * 2012-06-29 2014-01-03 Sena Research, Inc. Selenium containing nucleosides as nutritional supplements
WO2014160484A1 (en) * 2013-03-13 2014-10-02 Idenix Pharmaceuticals, Inc. Amino acid phosphoramidate pronucleotides of 2'-cyano, azido and amino nucleosides for the treatment of hcv
WO2015038596A1 (en) * 2013-09-11 2015-03-19 Emory University Nucleotide and nucleoside compositions and uses related thereto
CN105646629A (zh) * 2014-11-25 2016-06-08 广州市恒诺康医药科技有限公司 L-核苷类化合物及其应用
WO2016145102A1 (en) * 2015-03-10 2016-09-15 Aduro Biotech, Inc. Compositions and methods for activating "stimulator of interferon gene" -dependent signalling

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE124950T1 (de) 1987-06-05 1995-07-15 Genentech Inc Nucleosid-analoge.
WO2002077002A2 (en) * 2001-03-22 2002-10-03 Research Foundation Of The City University Of New York Synthesis of selenium-derivatized nucleosides, nucleotides, phosphoramidites, triphosphates and nucleic acids
WO2013177188A1 (en) * 2012-05-22 2013-11-28 Idenix Pharmaceuticals, Inc. 3',5'-cyclic phosphoramidate prodrugs for hcv infection
EA031301B1 (ru) 2012-05-22 2018-12-28 Иденикс Фармасьютикалз Ллс D-аминокислотные химические соединения для лечения заболеваний печени
CN105960410B (zh) * 2013-11-21 2020-12-04 硒瑞恩生物科技有限公司 硒衍生的核酸复合物的结构测定方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136842A (ja) 1995-11-14 1997-05-27 Shigemasa Sawada 抗慢性関節リウマチ剤
WO2012117246A1 (en) * 2011-03-01 2012-09-07 Nucana Biomed Limited Phosphoramidate derivatives of 5 - fluoro - 2 ' - deoxyuridine for use in the treatment of cancer
WO2014003950A2 (en) * 2012-06-29 2014-01-03 Sena Research, Inc. Selenium containing nucleosides as nutritional supplements
WO2014160484A1 (en) * 2013-03-13 2014-10-02 Idenix Pharmaceuticals, Inc. Amino acid phosphoramidate pronucleotides of 2'-cyano, azido and amino nucleosides for the treatment of hcv
WO2015038596A1 (en) * 2013-09-11 2015-03-19 Emory University Nucleotide and nucleoside compositions and uses related thereto
CN105646629A (zh) * 2014-11-25 2016-06-08 广州市恒诺康医药科技有限公司 L-核苷类化合物及其应用
WO2016145102A1 (en) * 2015-03-10 2016-09-15 Aduro Biotech, Inc. Compositions and methods for activating "stimulator of interferon gene" -dependent signalling

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
AJIT SHOKAR; AARON AU; SEUNG HWAN AN; ELSIE TONG; GABRIEL GARZA; JESSICA ZAYAS; STANISLAW F WNUK; KIRKWOOD M LAND: "S-Adenosylhomocysteine hydrolase of the protozoan parasite Trichomonas vaginalis: Potent inhibitory activity of 9-(2- deoxy-2-fluoro-beta, D-arabinofuranosyl)adenine", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 22, no. 12, 21 April 2012 (2012-04-21), pages 4203 - 4205, XP028509366, ISSN: 0960-894X, DOI: 10.1016/j.bmcl.2012.03.087 *
ARVIND D PATEL , WAYNE H SCHRIER , JOSEPH NAGYVARY: "Synthesis and properties of 2'-deoxy-2'-thiocytidine", JOURNAL OF ORGANIC CHEMISTRY, vol. 45, no. 24, 1 January 1980 (1980-01-01), pages 4830 - 4834, XP055637658, ISSN: 0022-3263, DOI: 10.1021/jo01312a005 *
BARBARA PUFFER , HOLGER MORODER , MICHAELA AIGNER , RONALD MICURA : "2'-Methylseleno-modified oligoribonucleotides for X-ray crystallography synthesized by the ACE RNA solid-phase approach", NUCLEIC ACIDS RESEARCH, vol. 36, no. 3, 20 December 2007 (2007-12-20), pages 970 - 983, XP002595447, ISSN: 0305-1048, DOI: 10.1093/NAR/GKM880 *
BERGMANN, E. D. ET AL.: "Organic fluorine compounds. Fluorine derivatives of mevalolactone", TETRAHEDRON LETTERS, vol. 1, no. 29, 1960, pages 20 - 22, XP055637652 *
CATHY L DANTZMAN , LAURA L KIESSELING : "Reactivity of a 2'-Thio Nucleotide Analog", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 118, no. 47, 27 November 1996 (1996-11-27), pages 11715 - 11719, XP055637666, ISSN: 0002-7863, DOI: 10.1021/ja962265c *
CHRISTIE CHOU LEE , WAYNE H SCHRIER , JOSEPH NAGYVARY: "The enzymatic hydrolysis of the phosphate ester bond in some thionucleotides", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 561, no. 1, 1979, pages 223 - 231, XP025931423, ISSN: 0005-2787, DOI: 10.1016/0005-2787(79)90505-7 *
ILJA V ANTONOV , ALEKSANDAR Z GUREVICH , SERGEY M DUDKIN , MARAT YA KARPEISKY , VALENTIN G SAKHAROVSKY , GENNADY I YAKOLEV : "Complexes of ribonuclease A with 2'-deoxy-2'-fluororibose substrate analogues studied by nuclear magnetic resonance", EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 87, no. 1, 30 June 1978 (1978-06-30), pages 45 - 54, XP055637664, ISSN: 0014-2956, DOI: 10.1111/j.1432-1033.1978.tb12350.x *
JOZEF SALON , JIA SHENG GAN , ZHEN HUANG : "Synthesis and Crystal Structure of 2'-Se-Modified Guanosine Containing DNA", JOURNAL OF ORGANIC CHEMISTRY, vol. 75, no. 3, 5 February 2010 (2010-02-05), pages 637 - 641, XP055637657, ISSN: 0022-3263, DOI: 10.1021/jo902190c *
MORIO IKEHARA , JUNKO IMURA : "Studies on nucleosides and nucleotides. LXXXVIII. Synthesis of a non- hydrolyzable substrate analog of ribonuclease T1, 2'-deoxy-2'-fluoroguanylyl-(3'-5')-uridine", CHEMICAL & PHARMACEUTICAL BULLETIN, vol. 29, no. 9, 1 January 1981 (1981-01-01), pages 2408 - 2412, XP055741662, ISSN: 0009-2363, DOI: 10.1248/cpb.29.2408 *
See also references of EP3763724A4
SEIICHI UESUGI , TOSHINORI KANEYASU , MORIO IKEHARA : "Synthesis and properties of ApU analogues containing 2'-halo-2'-deoxyadenosines. Effects of 2' substituents on oligonucleotide conformation", BIOCHEMISTRY, vol. 21, no. 23, 1982, pages 5870 - 5877, XP055741661, ISSN: 0006-2960 *
SEIICHI UESUGI , YOKO TAKATSUKA , MORIO IKEHARA , DORIS M CHENG , LOU S KAN , PAUL O P TS'O: "Synthesis and characterization of the dinucleoside monophosphates containing 2'- fluoro-2'-deoxyadenosine", BIOCHEMISTRY, vol. 20, no. 11, 1 January 1981 (1981-01-01), pages 3056 - 3062, XP055637660, ISSN: 0006-2960, DOI: 10.1021/bi00514a011 *
STANISLAW F. WNUK, ELZBIETA LEWANDOWSKA,DANIA R. COMPANIONI,PEDRO I. GARCIA JR , JOHN A. SECRIST III: "Synthesis and cytotoxicity of 9-(2-deoxy-2-alkyldithio-B-D-arabinofuranosyl) purinenucleosides which are stable precursors to potential mechanistic probes of ribonucleotide reductases", ORGANIC & BIOMOLECULAR CHEMISTRY, vol. 2, 20 November 2003 (2003-11-20), pages 120 - 126, XP055637655, ISSN: 1477-0520, DOI: 10.1039/B311504F *
TOBIAS SANTNER , VANESSA SIEGMUND , ANDREAS MARX , RONALD MICURA : "The synthesis of 2'- methylseleno adenosine and guanosine 5'- triphosphates", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 20, no. 7, 4 February 2012 (2012-02-04), pages 2416 - 2418, XP055637669, ISSN: 0968-0896, DOI: 10.1016/j.bmc.2012.01.044 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020561A1 (ja) * 2019-07-31 2021-02-04 国立研究開発法人科学技術振興機構 プライマー及びこれを用いた二本鎖dnaの製造装置並びに二本鎖dnaの製造方法

Also Published As

Publication number Publication date
US11597745B2 (en) 2023-03-07
CN111836823A (zh) 2020-10-27
EP3763724A4 (en) 2022-01-12
CN111836823B (zh) 2023-06-30
US20210284679A1 (en) 2021-09-16
JPWO2019172394A1 (ja) 2021-02-18
EP3763724A1 (en) 2021-01-13
JP7266896B2 (ja) 2023-05-01

Similar Documents

Publication Publication Date Title
AU2012223012B2 (en) Phosphoramidate derivatives of 5 - fluoro - 2 ' - deoxyuridine for use in the treatment of cancer
Mahmoud et al. Antiviral nucleoside and nucleotide analogs: a review
CA1336820C (en) Fluorinated nucleosides and process for treating retrovirus infections therewith
AU2020220216B2 (en) 2'-substituted-N6-substituted purine nucleotides for RNA virus treatment
KR102363946B1 (ko) HCV 치료를 위한 β-D-2'-데옥시-2'-α-플루오로-2'-β-C-치환된-2-변형된-N6-치환된 퓨린 뉴클레오티드
WO2003062255A2 (en) Sugar modified nucleosides as viral replication inhibitors
WO2008143846A1 (en) Azido purine nucleosides for treatment of viral infections
KR20060008297A (ko) 2'-데옥시-β-L-뉴클레오시드의 제조방법
NZ523632A (en) 3'-prodrugs of 2'-deoxy-beta-L-nucleosides for use in treating hepatitis B viral infections
JP2005503358A5 (ja)
WO2006121820A1 (en) Phosphoramidate prodrugs for treatment of viral infection
JPH05507279A (ja) グリセロールジ―およびトリホスフェート誘導体の合成
WO2010068708A2 (en) 3'-azido purine nucleotide prodrugs for treatment of viral infections
US6372725B1 (en) Specific lipid conjugates to nucleoside diphosphates and their use as drugs
JP7266896B2 (ja) β修飾リン酸化合物前駆体、β修飾リン酸化合物、反応阻害剤及びこれを含む医薬並びに反応阻害方法
Slusarczyk et al. Synthesis and biological evaluation of 6-substituted-5-fluorouridine ProTides
US5153180A (en) Fluorinated nucleosides and process for treating retrovirus infections therewith
US20210332070A1 (en) Compositions and Methods for Synthesis of Phosphorylated Molecules
WO2018049535A1 (en) Nucleoside analogues and methods of use thereof
CN114901657A (zh) 抗病毒和肝靶向药物
Congiatu Design, synthesis and biological evaluation of some novel nucleotide prodrugs as potential anticancer agents
US20040158054A1 (en) Di-ribonucleotides as specific viral RNA-polymerase inhibitors for the treatment or prevention of viral infections
Pileggi Novel synthetic pathways for the preparation of ProTides as potential therapeutic agents
Borland Modified Nucleosides Part A: A Platform for the Chemical Tagging of Ribonucleic Acids for Analysis by Mass Spectrometry Part B: Base-Modified Thymidines Exhibiting Cytotoxicity towards Cancer Cells
WO2023041786A1 (en) 5-fluorouracil derivatives as prodrugs for cancer treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19763431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020505121

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019763431

Country of ref document: EP

Effective date: 20201009