WO2019171587A1 - Optical receiver and optical transmission/reception system - Google Patents

Optical receiver and optical transmission/reception system Download PDF

Info

Publication number
WO2019171587A1
WO2019171587A1 PCT/JP2018/009267 JP2018009267W WO2019171587A1 WO 2019171587 A1 WO2019171587 A1 WO 2019171587A1 JP 2018009267 W JP2018009267 W JP 2018009267W WO 2019171587 A1 WO2019171587 A1 WO 2019171587A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
single carrier
distortion
carrier signal
phase
Prior art date
Application number
PCT/JP2018/009267
Other languages
French (fr)
Japanese (ja)
Inventor
怜典 松本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018538898A priority Critical patent/JP6479278B1/en
Priority to PCT/JP2018/009267 priority patent/WO2019171587A1/en
Publication of WO2019171587A1 publication Critical patent/WO2019171587A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers

Definitions

  • the present invention relates to an optical receiver that demodulates a single carrier signal having signal points on a complex plane having the same phase axis (In-Phase axis: I axis) and a quadrature phase axis (Quadrature-Phase axis: Q axis). And an optical transmission / reception system including an optical receiver that demodulates a single carrier signal.
  • IEEE 802.3 standardizes a 100G Ethernet passive optical network (hereinafter referred to as “100G-EPON”). IEEE 802.3 is a standard related to Ethernet published by the American Institute of Electrical and Electronics Engineers (IEEE). (Ethernet is a registered trademark) In 100G-EPON, a coherent passive optical network (hereinafter referred to as “Coherent PON”) is listed as a candidate for achieving a transmission rate of 100 Gbps (Giga Bits Per Second) class. Coherent PON is a technique for performing digital coherent reception by combining synchronous detection and digital signal processing. An optical receiver that implements Coherent PON can demodulate a multilevel signal with high sensitivity.
  • IQ distortion is an imbalance between the I axis and the Q axis.
  • IQ distortion results from imperfections in the transmitting / receiving device.
  • low-cost devices used in optical access networks introduce large IQ distortion, so the performance of digital coherent reception results in severe degradation.
  • Patent Document 1 discloses a compensation method for compensating IQ imbalance by using known signals modulated respectively to a first carrier frequency and a second carrier frequency in an orthogonal frequency division multiplexed signal.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the present invention has been made to solve the above-described problems, and is an optical receiver capable of compensating for IQ distortion in a single carrier signal in which signal points exist on a complex plane having an I axis and a Q axis.
  • the purpose is to obtain.
  • Another object of the present invention is to provide an optical transmission / reception system including an optical receiver capable of compensating for IQ distortion in a single carrier signal having signal points on a complex plane having an I axis and a Q axis. .
  • An optical receiver includes a pilot signal detector that detects a pilot signal included in a single carrier signal in which signal points exist on a complex plane having the same phase axis and a quadrature phase axis, and a pilot signal detection
  • a distortion amount estimation unit for estimating the amplitude distortion amount of the pilot signal and the phase distortion amount of the pilot signal from the pilot signal detected by the monitoring unit and the single carrier signal, and the amplitude distortion amount estimated by the distortion amount estimation unit.
  • a distortion correction unit that corrects the amplitude distortion of the single carrier signal and corrects the phase distortion of the single carrier signal using the phase distortion amount estimated by the distortion amount estimation unit.
  • the distortion amount estimation unit and the distortion amount estimation unit for estimating the amplitude distortion amount of the pilot signal and the phase distortion amount of the pilot signal from the pilot signal and the single carrier signal detected by the pilot signal detection unit, respectively.
  • a distortion correction unit that corrects the amplitude distortion of the single carrier signal using the amplitude distortion amount estimated by the step, and corrects the phase distortion of the single carrier signal using the phase distortion amount estimated by the distortion amount estimation unit.
  • An optical receiver was configured to provide. Therefore, the optical receiver according to the present invention can compensate for IQ distortion in a single carrier signal in which signal points exist on a complex plane having an I axis and a Q axis.
  • FIG. 1 is a configuration diagram illustrating an optical transmission / reception system according to Embodiment 1.
  • FIG. 2 is a configuration diagram showing the inside of an IQ distortion compensation unit 24.
  • FIG. 2 is a hardware configuration diagram showing hardware of a digital signal processing unit 13.
  • FIG. It is a hardware block diagram of a computer in case the digital signal processing part 13 is implement
  • FIG. 9A is an explanatory view showing the arrangement of signal points in the case where compensation processing of the IQ skew in the single-carrier signal r n is not performed
  • FIG. 9B as the optical receiver 4 shown in FIG. 1, the single carrier signal is an explanatory view showing the arrangement of signal points when doing the compensation of the IQ skew in r n.
  • FIG. 6 is a configuration diagram illustrating an optical transmission / reception system according to a second embodiment.
  • FIG. 2 is a configuration diagram showing the inside of an IQ distortion compensation unit 105.
  • FIG. 2 is a hardware configuration diagram showing hardware of a digital signal processing unit 93.
  • FIG. It is explanatory drawing which shows the frame structure of the polarization multiplexing signal with which the 1st single carrier signal and the 2nd single carrier signal are multiplexed.
  • FIG. 1 is a configuration diagram illustrating an optical transmission / reception system according to the first embodiment.
  • FIG. 2 is a configuration diagram showing the inside of the IQ distortion compensation unit 24.
  • FIG. 3 is a hardware configuration diagram showing hardware of the digital signal processing unit 13. 1 to 3, the optical transmitter 1 includes a light source 1 a and is connected to an optical receiver 4 through an optical fiber 2. The optical transmitter 1 transmits a pilot signal to a single carrier signal having signal points on a complex plane having the same phase axis (In-Phase axis: I axis) and a quadrature phase axis (Quadrature-Phase axis: Q axis). include.
  • the pilot signal included in the single carrier signal by the optical transmitter 1 is a signal equal to a signal obtained by multiplying the complex conjugate signal of the pilot signal by an imaginary unit.
  • the optical transmitter 1 transmits the single carrier signal to the optical receiver 4 by using the light output from the light source 1 a and outputting the single carrier signal including the pilot signal as an optical signal to the optical fiber 2. To do.
  • the optical fiber 2 is an optical transmission line having one end connected to the optical transmitter 1 and the other end connected to the optical receiver 4.
  • the local light source 3 is a light source that outputs a local signal, which is local light, to the optical receiver 4.
  • the optical receiver 4 includes a photoelectric conversion circuit 11, an A / D converter 12 that is an analog-digital converter, and a digital signal processing unit 13.
  • the optical receiver 4 is a digital coherent receiver that receives the single carrier signal transmitted from the optical transmitter 1 and demodulates the received single carrier signal.
  • the photoelectric conversion circuit 11 converts the single carrier signal transmitted from the optical transmitter 1 from an optical signal into an electrical signal, and converts the local signal output from the local light source 3 from an optical signal into an electrical signal.
  • the photoelectric conversion circuit 11 outputs a single carrier signal that is an electric signal and a local oscillation signal that is an electric signal to the A / D converter 12.
  • the A / D converter 12 converts the single carrier signal output from the photoelectric conversion circuit 11 from an analog signal to a digital signal, and converts the local signal output from the photoelectric conversion circuit 11 from an analog signal to a digital signal. .
  • the A / D converter 12 outputs a single carrier signal that is a digital signal and a local signal that is a digital signal to the digital signal processing unit 13.
  • the digital signal processing unit 13 includes a frame synchronization unit 21, a frequency compensation unit 22, a phase compensation unit 23, an IQ distortion compensation unit 24, and a demodulation unit 25.
  • the frame synchronization unit 21 is realized by, for example, the frame synchronization circuit 41 illustrated in FIG.
  • the frame synchronization unit 21 uses the local signal output from the A / D converter 12 to detect the head of the single carrier signal output from the A / D converter 12, and detects the single carrier signal that has detected the head and Each of the local signals is output to the frequency compensation unit 22.
  • the frequency compensation unit 22 is realized by, for example, the frequency compensation circuit 42 illustrated in FIG.
  • the frequency compensation unit 22 detects a frequency error between the frequency of the single carrier signal output from the frame synchronization unit 21 and the frequency of the local oscillation signal, and performs a process of removing the frequency error included in the frequency of the single carrier signal. carry out.
  • the frequency compensation unit 22 outputs the single carrier signal from which the frequency error has been removed to the phase compensation unit 23.
  • the phase compensation unit 23 is realized by, for example, the phase compensation circuit 43 illustrated in FIG.
  • the phase compensation unit 23 performs a process for removing phase noise included in the phase of the single carrier signal output from the frequency compensation unit 22.
  • the phase compensation unit 23 outputs the single carrier signal from which the phase noise has been removed to the IQ distortion compensation unit 24.
  • the IQ distortion compensation unit 24 includes a pilot signal detection unit 24a, a distortion amount estimation unit 24b, and a distortion correction unit 24e.
  • the pilot signal detection unit 24a is realized by, for example, a signal detection circuit 44 illustrated in FIG.
  • the pilot signal detection unit 24a detects a pilot signal included in the single carrier signal output from the phase compensation unit 23, and performs processing to output the pilot signal to the distortion amount estimation unit 24b.
  • the distortion amount estimation unit 24b includes a distortion amount estimation processing unit 24c and an averaging processing unit 24d, and is realized by, for example, the distortion amount estimation circuit 45 illustrated in FIG.
  • the distortion amount estimation unit 24b from the pilot signal output from the pilot signal detection unit 24a and the single carrier signal, an amplitude distortion amount that is the magnitude of the amplitude distortion of the pilot signal and a phase that is the magnitude of the phase distortion of the pilot signal. A process of estimating the amount of distortion is performed.
  • the distortion amount estimation unit 24b outputs each of the amplitude distortion amount and the phase distortion amount to the distortion correction unit 24e.
  • the distortion amount estimation processing unit 24c Based on the fact that the pilot signal output from the pilot signal detector 24a is a signal equal to a signal obtained by multiplying the complex conjugate signal of the pilot signal by an imaginary unit, the distortion amount estimation processing unit 24c generates a single carrier signal. A process of decomposing the real part and the imaginary part is performed. The distortion amount estimation processing unit 24c performs processing of estimating the amplitude distortion amount of the pilot signal from the imaginary part of the single carrier signal and estimating the phase distortion amount of the pilot signal from the real part of the single carrier signal. The averaging processing unit 24d performs a process of calculating the average amplitude distortion amount by averaging the amplitude distortion amount estimated N times by the distortion amount estimation processing unit 24c. The averaging processing unit 24d performs a process of calculating the average phase distortion amount by averaging the phase distortion amount estimated N times by the distortion amount estimation processing unit 24c.
  • the distortion correction unit 24e includes a delay unit 24f and a distortion correction processing unit 24g, and is realized by, for example, the distortion correction circuit 46 illustrated in FIG.
  • the distortion correction unit 24e performs a process of correcting the amplitude distortion of the single carrier signal using the average amplitude distortion amount calculated by the averaging processing unit 24d.
  • the distortion correction unit 24e performs a process of correcting the phase distortion of the single carrier signal using the average phase distortion amount calculated by the averaging processing unit 24d.
  • the distortion correction unit 24 e outputs a single carrier signal obtained by correcting each of the amplitude distortion and the phase distortion to the demodulation unit 25.
  • the delay unit 24f is a total time of the processing time of the pilot signal detection unit 24a for detecting the pilot signal and the processing time of the distortion amount estimation unit 24b for calculating each of the average amplitude distortion amount and the average phase distortion amount.
  • a process of delaying the single carrier signal by the amount is performed.
  • the delay unit 24f outputs the delayed single carrier signal to the distortion correction processing unit 24g.
  • the distortion correction processing unit 24g performs a process of correcting the amplitude distortion of the single carrier signal output from the delay unit 24f using the average amplitude distortion amount calculated by the averaging processing unit 24d. Further, the distortion correction processing unit 24g performs a process of correcting the phase distortion of the single carrier signal in which the amplitude distortion is corrected, using the average phase distortion amount calculated by the averaging processing unit 24d.
  • the demodulator 25 is realized by, for example, a demodulator circuit 47 shown in FIG.
  • the demodulator 25 performs a process of demodulating the single carrier signal whose amplitude distortion and phase distortion are corrected by the distortion correction processor 24g.
  • a frame synchronization unit 21, a frequency compensation unit 22, a phase compensation unit 23, a pilot signal detection unit 24 a, a distortion amount estimation unit 24 b, a distortion correction unit 24 e, and a demodulation unit 25 that are components of the digital signal processing unit 13.
  • Each is assumed to be realized by dedicated hardware as shown in FIG. That is, it is assumed that the digital signal processing unit 13 is realized by the frame synchronization circuit 41, the frequency compensation circuit 42, the phase compensation circuit 43, the signal detection circuit 44, the distortion amount estimation circuit 45, the distortion correction circuit 46, and the demodulation circuit 47. doing.
  • the frame synchronization circuit 41, the frequency compensation circuit 42, the phase compensation circuit 43, the signal detection circuit 44, the distortion amount estimation circuit 45, the distortion correction circuit 46, and the demodulation circuit 47 are, for example, a single circuit, a composite circuit, a programmed processor, A parallel-programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof is applicable.
  • FIG. 4 is a hardware configuration diagram of a computer when the digital signal processing unit 13 is realized by software or firmware.
  • the components of the digital signal processing unit 13 are not limited to those realized by dedicated hardware, but the digital signal processing unit 13 is realized by software, firmware, or a combination of software and firmware. May be.
  • Software or firmware is stored as a program in the memory of a computer.
  • the computer means hardware that executes a program, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, a processing unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor) To do.
  • a program for causing the computer to execute the 25 processing procedures is stored in the memory 52.
  • the computer processor 51 executes the program stored in the memory 52.
  • FIG. 3 shows an example in which each component of the digital signal processing unit 13 is realized by dedicated hardware
  • FIG. 4 shows an example in which the digital signal processing unit 13 is realized by software or firmware. ing. However, some components in the digital signal processing unit 13 may be realized by dedicated hardware, and the remaining components may be realized by software or firmware.
  • FIG. 5 is an explanatory diagram showing a frame configuration of a single carrier signal including a pilot signal.
  • the frame of the single carrier signal is a burst frame 61.
  • the burst frame 61 includes a first frame 62 that stores a frame synchronization signal, a second frame 63 that stores a pilot signal, and a third frame 64 that stores a payload of a single carrier signal. .
  • a fourth frame 65 for storing a frame end signal is arranged.
  • the frame synchronization signal stored in the first frame 62 is a signal set in advance between the optical transmitter 1 and the optical receiver 4.
  • Each of the pilot signal stored in the second frame 63 and the payload stored in the third frame 64 is modulated using, for example, a quadrature phase shift keying (QPSK).
  • the pilot signal is a signal set in advance between the optical transmitter 1 and the optical receiver 4 and is a signal equal to a signal obtained by multiplying the complex conjugate signal of the pilot signal by an imaginary unit.
  • the pilot signal s n is expressed by the following equation (1).
  • the single carrier signal in the nth sampling is a single carrier signal that the optical transmitter 1 transmits nth.
  • j is an imaginary unit
  • s n * is a complex conjugate signal of the pilot signal s n .
  • the optical transmitter 1 transmits the single carrier signal to the optical receiver 4 by using the light output from the light source 1 a and outputting the single carrier signal including the pilot signal as an optical signal to the optical fiber 2. To do.
  • the single carrier signal which is an optical signal, is output to the optical receiver 4 with IQ distortion and additive white Gaussian noise added.
  • the local light source 3 outputs a local signal, which is local light, to the optical receiver 4.
  • the photoelectric conversion circuit 11 converts the single carrier signal transmitted from the optical transmitter 1 from an optical signal to an electrical signal, and outputs the single carrier signal, which is an electrical signal, to the A / D converter 12.
  • the photoelectric conversion circuit 11 converts the local oscillation signal output from the local light source 3 from an optical signal into an electrical signal, and outputs the local oscillation signal, which is an electrical signal, to the A / D converter 12.
  • the A / D converter 12 When receiving a single carrier signal from the photoelectric conversion circuit 11, the A / D converter 12 converts the single carrier signal from an analog signal to a digital signal, and outputs the single carrier signal, which is a digital signal, to the frame synchronization unit 21.
  • the A / D converter 12 converts the local oscillation signal from an analog signal to a digital signal, and outputs the local oscillation signal, which is a digital signal, to the frame synchronization unit 21.
  • the frame synchronization unit 21 causes the local signal output from the A / D converter 12 to interfere with the single carrier signal output from the A / D converter 12 to thereby convert the signal sequence included in the single carrier signal. Determine.
  • the frame synchronization unit 21 compares the signal sequence included in the single carrier signal with the frame synchronization signal set in advance between the optical transmitter 1 and the optical receiver 4 to obtain the first
  • the frame synchronization signal stored in the frame 62 is detected.
  • the frame synchronization unit 21 detects the head of the single carrier signal by detecting the frame synchronization signal stored in the first frame 62.
  • the frame synchronization unit 21 outputs each of the single carrier signal and the local oscillation signal whose head is detected to the frequency compensation unit 22.
  • the frequency compensation unit 22 detects a frequency error ⁇ f between the frequency of the single carrier signal output from the frame synchronization unit 21 and the frequency of the local signal output from the frame synchronization unit 21. Then, the frequency compensation unit 22 removes the frequency error ⁇ f included in the frequency of the single carrier signal. Since the frequency error ⁇ f removal process itself is a known technique, a detailed description thereof will be omitted. For example, the removal process of the frequency error ⁇ f is disclosed in Non-Patent Document 1 below.
  • Non-Patent Document 1 “Frequency Estimation in Intradyne Reception” Andreas Leven, Senior Member, IEEE, Noriaki Kaneda, Member, IEEE, Ut-Va Koc, Member, IEEE, and Young-Kai Chen, Fellow, IEEE The frequency compensation unit 22 outputs a single carrier signal from which the frequency error ⁇ f has been removed to the phase compensation unit 23.
  • the phase compensation unit 23 removes the phase noise ⁇ included in the phase of the single carrier signal output from the frequency compensation unit 22.
  • the phase noise ⁇ is noise generated from the light source 1 a or the local light source 3 of the optical transmitter 1. Since the process of removing the phase noise ⁇ itself is a known technique, a detailed description thereof is omitted. For example, the removal process of the phase noise ⁇ is disclosed in Non-Patent Document 2 below. [Non-Patent Document 2] “Nonlinear Estimation of PSK-Modulated Carrier Phase with Application to Burst Digital Transmission” ANDREW J. VITERBI, FELLOW, IEEE, AND AUDREY M. VITERBI, MEMBER, IEEE Abstract
  • the phase compensation unit 23 outputs a single carrier signal from which the phase noise ⁇ has been removed to the IQ distortion compensation unit 24.
  • FIG. 6 is an explanatory diagram showing a frequency spectrum of a single carrier signal to which IQ distortion is not added and a frequency spectrum of a single carrier signal to which IQ distortion is added.
  • reference numeral 71 denotes a frequency spectrum of a single carrier signal to which no IQ distortion is added.
  • the single carrier signal to which no IQ distortion is added is the desired signal itself.
  • a single carrier signal to which IQ distortion is added includes an interference signal in addition to a desired signal.
  • Reference numeral 72 denotes the frequency spectrum of the desired signal.
  • the intensity of the frequency spectrum 72 of the desired signal is lower than that of the frequency spectrum 71 due to the influence of IQ distortion.
  • 73 shows the frequency spectrum of the interference signal accompanying IQ distortion.
  • a desired signal x n if the composite signal between the interfering signal and the desired signal x n is to be y n, the synthesized signal y n is represented by the following formula (2).
  • g is amplitude distortion of the desired signal x n
  • theta is the phase distortion of the desired signal x n
  • x n * is the complex conjugate signal of the desired signal x n.
  • Pilot signal optical transmitter 1 is included in the single-carrier signal is a pilot signal s n shown in equation (1). Therefore, when the single-carrier signal from the phase compensation unit 23 is output to the IQ distortion compensator 24 is assumed to be r n, the single-carrier signal r n, is expressed by the following equation (3).
  • the letter "g” can not be denoted by the symbol of the character " ⁇ ” on the “ ⁇ ”, hereinafter referred to as "g n hat", “ ⁇ n hat ".
  • g n hat the instantaneous value of the amplitude distortion of the pilot signal s n at the n-th sampling
  • theta n hat is the instantaneous value of the phase distortion of the pilot signal s n at the n-th sampling.
  • Pilot signal detection unit 24a receives a single carrier signal r n from the phase compensation unit 23, detects a pilot signal s n contained in the single-carrier signal r n. Pilot signal s n is stored in the second frame 63 included in the burst frames 61. Pilot signal detection unit 24a outputs the detected pilot signal s n to the distortion amount estimation processing unit 24c.
  • Distortion amount estimation processing unit 24c decomposes the single-carrier signal r n output from the phase compensation unit 23 to the real part Re and imaginary part Im.
  • Pilot signal s n output from the pilot signal detection unit 24a is, because it is equal to the signal and the complex conjugate signal s n * to signal the imaginary unit j is multiplied by the single-carrier signal r n shown in equation (3) is, It can be decomposed into a real part Re and an imaginary part Im.
  • Distortion amount estimation processing unit 24c estimates the phase distortion amount theta n hat of a pilot signal s n from the real part Re of the single-carrier signal r n, and outputs the phase distortion amount theta n hat averaging unit 24d. Further, the distortion amount estimation processing unit 24c estimates and the imaginary part Im of the single-carrier signal r n, and a phase distortion amount theta n hat estimated pilot signal s n the amplitude distortion amount g n hat, amplitude distortion amount g The n hat is output to the averaging processing unit 24d.
  • Phase distortion amount theta n hat of a pilot signal s n corresponds to phase distortion of a single-carrier signal r n
  • an amplitude distortion amount g n-hat of the pilot signal s n is equivalent to the amplitude distortion of the single-carrier signal r n To do.
  • the averaging processing unit 24d performs an averaging process on each of the phase distortion amount ⁇ n hat and the amplitude distortion amount g n hat output from the distortion amount estimation processing unit 24c in order to reduce the influence of white noise or the like. Specifically, as shown in the following equation (6), the averaging processing unit 24d performs N phase distortion amounts ⁇ n hat in the first to Nth samplings output from the distortion amount estimation processing unit 24c. Is averaged to calculate the average phase distortion amount ⁇ hat.
  • the averaging processing section 24d as shown in the following equation (7), the N amplitude distortion amount g n-hat of the first ⁇ N th sampling output from the distortion amount estimating unit 24c averages Thus, the average amplitude distortion amount g hat is calculated.
  • the averaging processing unit 24d outputs each of the average phase distortion amount ⁇ hat and the average amplitude distortion amount g hat to the distortion correction processing unit 24g.
  • the total time T 3 is pre-stored.
  • Processing time T 1 of the pilot signal detecting unit 24a is the time required for detection of the pilot signal s n.
  • Processing time T 2 of the distortion amount estimating unit 24b and calculates the average phase distortion amount ⁇ hat, the average amplitude distortion amount g hat calculated and the time required.
  • Delay unit 24f receives a single carrier signal r n from the phase compensation unit 23, only the total time T 3, and outputs the hold the single-carrier signal r n, the single-carrier signal r n to the distortion correction processing section 24g .
  • Distortion correction processing unit 24g using the average amplitude distortion amount g hat output from the averaging process unit 24d, to correct the amplitude distortion of the single-carrier signal r n output from the delay section 24f.
  • Amplitude distortion of the single-carrier signal r n for example, multiplication and addition average amplitude distortion amount g hat to the amplitude of the single-carrier signal r n, or subtracts multiply the average amplitude distortion amount g hat from the amplitude of the single carrier signal r n This can be corrected.
  • the distortion correction processing section 24g uses the average phase distortion amount ⁇ hat output from the averaging process unit 24d, corrects the phase distortion of the single-carrier signal r n the amplitude distortion has been corrected.
  • Phase distortion of the single-carrier signal r n for example, multiplication and addition average phase distortion amount ⁇ hat to the phase of the single-carrier signal r n obtained by correcting the amplitude distortion, or from the phase of a single carrier signal r n obtained by correcting the amplitude distortion Correction can be made by multiplying and subtracting the average phase distortion amount ⁇ hat.
  • the distortion correction processing section 24g is, after correcting the amplitude distortion of the single-carrier signal r n, shows an example of correcting a phase distortion of the single-carrier signal r n.
  • the distortion correction processing section 24g is also possible to previously correct the phase distortion of the single-carrier signal r n, correcting the amplitude distortion of the single-carrier signal r n obtained by correcting the phase distortion Good.
  • Distortion correction processing unit 24g is a single carrier signal r n obtained by correcting the respective amplitude distortion and phase distortion, and outputs to the demodulation section 25 as a single-carrier signal r n '.
  • the demodulation unit 25 performs a demodulation process on the single carrier signal r n ′ output from the distortion correction processing unit 24g, and extracts signal points existing on a complex plane having the I axis and the Q axis. Since the demodulation processing itself of the single carrier signal r n ′ is a known technique, detailed description thereof is omitted.
  • FIG. 7 is an explanatory diagram illustrating simulation results of the phase distortion amount ⁇ hat and the amplitude distortion amount g hat estimated by the distortion amount estimation unit 24b.
  • the optical transmitter 1 it is assumed that the single-carrier signal r n is transmitted at a symbol rate of 32Gb / s. Further, in the simulation, 50,000 symbols such as the payload contained in the single-carrier signal r n is, are modulated by the modulation scheme of QPSK, pilot signals of N symbols is included in the single-carrier signal r n It is supposed to be.
  • the single-carrier signals r n which are transmitted from the optical transmitter 1, on the IQ distortion and additive white Gaussian noise is added, it is assumed to be received in the optical receiver 4.
  • the amplitude distortion in IQ distortion is 4 dB
  • the phase distortion in IQ distortion is 40 degrees
  • the signal-to-noise ratio (Signal to Noise Ratio: SNR) is 11.5 dB.
  • FIG. 7 shows the relationship between the average filter length and the square error, where (1) represents the estimation error of the amplitude distortion amount g hat, and (2) represents the estimation error of the phase distortion amount ⁇ hat. ing.
  • the average filter length corresponds to the number of samples used for averaging the phase distortion amount ⁇ n hat and the amplitude distortion amount g n hat in the averaging processing unit 24d.
  • Each estimation error in the amplitude distortion amount g hat and the phase distortion amount ⁇ hat is a square error of 10 ⁇ 2 or less in an average filter length of 10 or more, as shown in FIG.
  • the estimation error included in each of the phase distortion amount ⁇ hat and the amplitude distortion amount g hat is a square error of 10 ⁇ 2 or less at an average filter length of 10 or more, and the distortion amount estimation unit 24 b performs high estimation. It can be seen that an accurate distortion amount can be obtained.
  • the bit error rate of a single carrier signal r n demodulated by the demodulator 25 is an explanatory diagram showing experimental results of (Bit Error Ratio BER).
  • the transmission distance of the single-carrier signals r n which are transmitted from the optical transmitter 1 to the optical receiver 4 is assumed to be 40 km.
  • the experiment has a frame synchronizing signal included in the single-carrier signal r n, the pilot signal, each of the transmission time corresponding to each of the signal length of the payload and frame termination signal 816ns, 10ns, 10495ns, assumed to be 100 ns.
  • the modulation scheme of a single carrier signal r n is polarization multiplexed 4-level phase modulation 32Gbaud: is assumed to be (Dual Polarization Quadrature Phase Shift Keying DP -QPSK).
  • the amplitude distortion in IQ distortion is 4 dB
  • the phase distortion in IQ distortion is 40 degrees
  • Figure 8 shows the relationship between the received optical power and BER of the single-carrier signals r n which are input to the optical receiver 4. 8, (1) shows the BER of the case where compensation processing of the IQ skew in the single-carrier signal r n is not performed. (2), as the optical receiver 4 shown in FIG. 1 shows the BER of the case where performing compensation processing of the IQ skew in the single-carrier signal r n. (3) shows an ideal BER in the case where the IQ distortion single carrier signal r n is not added.
  • the received optical power when the BER is 4.3 ⁇ 10 ⁇ 3 is ⁇ 31.4 (dBm).
  • the received optical power when the BER is 4.3 ⁇ 10 -3 is -27.3 (DBm) received light power. Accordingly, the optical receiver 4 shown in Figure 1, than if the compensation processing of the IQ skew is not performed in the single-carrier signal r n, only 4.1 (dB), even at low received optical power, BER is The same 4.3 ⁇ 10 ⁇ 3 , and the reception sensitivity is improved.
  • the optical receiver 4 shown in FIG. 1 if the received optical power is the same, the BER is lower than that in the case where the IQ distortion compensation processing for the single carrier signal rn is not performed. If IQ distortion single carrier signal r n is not added, as shown in (3) in FIG. 8, the received optical power when the BER is 4.3 ⁇ 10 -3 is, -31.7 (dBm) It is. Accordingly, the optical receiver 4 shown in FIG. 1, as compared with the case where the IQ distortion single carrier signal r n is not added, the deterioration of the reception sensitivity when the BER is 4.3 ⁇ 10 -3 is slightly 0 .3 (dBm).
  • Figure 9 is an explanatory view showing the arrangement of signal points in a single carrier signal r n when received optical power is -29.7 (dBm).
  • Figure 9A shows an arrangement of signal points in the case where compensation processing of the IQ skew in the single-carrier signal r n is not performed
  • FIG. 9B shows an arrangement of signal points when doing the compensation of the IQ skew in r n.
  • 9A and 9B show the respective arrangements at 11 signal points, 10 signal points, 01 signal points, and 00 signal points.
  • the signal points are arranged at appropriate positions as shown in FIG. 9B.
  • the optical receiver 4 shown in FIG. 1 it is possible to prevent the demodulation accuracy of the degradation of a single-carrier signal r n.
  • the optical receiver is not performed compensation processing of the IQ skew in the single-carrier signal r n, the influence of IQ distortion, as shown in FIG. 9A, the arrangement of signal points are shifted from the proper position.
  • 11 signal points are originally arranged in the vicinity of the position where the I axis is +1 and the Q axis is +1, as shown in FIG. 9B.
  • FIG. 9A there are signal points in which the I axis is arranged on the ⁇ 1 side from 0
  • the distortion amount estimation unit 24b that estimates the amplitude distortion amount of the pilot signal and the phase distortion amount of the pilot signal from the pilot signal and the single carrier signal detected by the pilot signal detection unit 24a, The amplitude distortion of the single carrier signal is corrected using the amplitude distortion amount estimated by the distortion amount estimation unit 24b, and the phase distortion of the single carrier signal is corrected using the phase distortion amount estimated by the distortion amount estimation unit 24b.
  • the optical receiver 4 is configured to include the distortion correcting unit 24e. Therefore, the optical receiver 4 can compensate for IQ distortion in a single carrier signal in which signal points exist on a complex plane having the I axis and the Q axis.
  • the digital signal processing unit 13 illustrated in FIG. 1 illustrates an example including a frequency compensation unit 22 and a phase compensation unit 23.
  • the optical transmitter 1 outputs the phase of the light output from the light source 1a and the output from the local light source 3.
  • a phase synchronization circuit that synchronizes with the phase of the local light to be emitted may be provided. If the optical transmitter 1 includes the phase synchronization circuit, it is possible to prevent the generation of the frequency error ⁇ f included in the frequency of the single carrier signal and the generation of the phase noise ⁇ included in the phase of the single carrier signal.
  • phase synchronization circuit In the phase synchronization circuit, the processing itself for synchronizing the phase of the light output from the light source 1a and the phase of the local light output from the local light source 3 is a known technique, and thus detailed description thereof is omitted. It is also known that the phase synchronization circuit can prevent the occurrence of the frequency error ⁇ f and the generation of the phase noise ⁇ by performing a process for achieving synchronization.
  • FIG. 1 In the optical receiver 4 according to the first embodiment, an example is shown in which a single carrier signal in which signal points are present on a complex plane having an I axis and a Q axis is demodulated.
  • an optical receiver 82 that demodulates a first single carrier signal for the first polarization and a second single carrier signal for the second polarization will be described.
  • the first polarization and the second polarization are polarizations orthogonal to each other.
  • each of the first single carrier signal and the second single carrier signal is a signal on a complex plane having the I axis and the Q axis, similarly to the single carrier signal demodulated by the optical receiver 4 of the first embodiment. It is a single carrier signal in which dots exist.
  • FIG. 10 is a configuration diagram illustrating an optical transmission / reception system according to the second embodiment.
  • FIG. 11 is a configuration diagram showing the inside of the IQ distortion compensation unit 105.
  • FIG. 12 is a hardware configuration diagram showing hardware of the digital signal processing unit 93. 10 to 12, the same reference numerals as those in FIGS. 1 to 3 denote the same or corresponding parts, and thus the description thereof is omitted.
  • the optical transmitter 81 includes a light source 81 a and is connected to the optical receiver 82 via the optical fiber 2.
  • the optical transmitter 81 includes the first pilot signal in the first single carrier signal and includes the second pilot signal in the second single carrier signal.
  • the first pilot signal is a signal equal to a signal obtained by multiplying the complex conjugate signal of the first pilot signal by an imaginary unit.
  • the second pilot signal is a signal equal to a signal obtained by multiplying the complex conjugate signal of the second pilot signal by an imaginary unit.
  • the optical transmitter 81 generates a polarization multiplexed signal in which the first single carrier signal and the second single carrier signal are multiplexed.
  • the optical transmitter 81 transmits the polarization multiplexed signal to the optical receiver 82 by using the light output from the light source 81 a and outputting the polarization multiplexed signal as an optical signal to the optical fiber 2.
  • the optical receiver 82 includes a photoelectric conversion circuit 91, an A / D converter 92, and a digital signal processing unit 93.
  • the optical receiver 82 receives the polarization multiplexed signal transmitted from the optical transmitter 81 and separates each of the first single carrier signal and the second single carrier signal from the polarization multiplexed signal.
  • the optical receiver 82 demodulates each of the first single carrier signal and the second single carrier signal.
  • the photoelectric conversion circuit 91 converts the polarization multiplexed signal transmitted from the optical transmitter 81 from an optical signal to an electrical signal, and converts the local oscillation signal output from the local light source 3 from an optical signal to an electrical signal.
  • the photoelectric conversion circuit 91 outputs a polarization multiplexed signal that is an electric signal and a local signal that is an electric signal to the A / D converter 92.
  • the A / D converter 92 converts the polarization multiplexed signal output from the photoelectric conversion circuit 91 from an analog signal to a digital signal, and converts the local oscillation signal output from the photoelectric conversion circuit 91 from an analog signal to a digital signal. To do.
  • the A / D converter 92 outputs a polarization multiplexed signal that is a digital signal and a local signal that is a digital signal to the digital signal processing unit 93.
  • the digital signal processing unit 93 includes a frame synchronization unit 101, a polarization separation unit 102, a frequency compensation unit 103, a phase compensation unit 104, an IQ distortion compensation unit 105, and a demodulation unit 106.
  • the frame synchronization unit 101 is realized by, for example, the frame synchronization circuit 111 illustrated in FIG.
  • the frame synchronization unit 101 uses the local signal output from the A / D converter 92 and the first single carrier signal and the first signal included in the polarization multiplexed signal output from the A / D converter 92. The head of each of the two single carrier signals is detected.
  • the frame synchronization unit 101 generates a first detection signal indicating the start detection timing of the first single carrier signal and a second detection signal indicating the start detection timing of the second single carrier signal. To 102. Also, the frame synchronization unit 101 outputs the polarization multiplexed signal to the polarization separation unit 102 and outputs the local oscillation signal to the frequency compensation unit 103.
  • the polarization separation unit 102 is realized by, for example, the polarization separation circuit 112 illustrated in FIG.
  • the polarization separation unit 102 performs signal separation processing on the polarization multiplexed signal at the timing when the first detection signal is output from the frame synchronization unit 101 and the timing at which the second detection signal is output from the frame synchronization unit 101.
  • a constant envelope reference algorithm CMA: Constant Modulus Algorithm
  • the polarization separation unit 102 When the polarization separation unit 102 separates the first single carrier signal and the second single carrier signal by performing signal separation processing on the polarization multiplexed signal, the polarization separation unit 102 performs the first single carrier signal and the second single carrier signal. Each of the carrier signals is output to the frequency compensation unit 103.
  • the frequency compensation unit 103 is realized by, for example, the frequency compensation circuit 113 illustrated in FIG.
  • the frequency compensator 103 performs a process of detecting a frequency error between the first single carrier signal output from the polarization separator 102 and the frequency of the local signal output from the frame synchronizer 101. Further, the frequency compensation unit 103 performs a process of detecting a frequency error between the second single carrier signal output from the polarization separation unit 102 and the frequency of the local signal output from the frame synchronization unit 101.
  • the frequency compensation unit 103 performs a process of removing the frequency error included in the frequency of the first single carrier signal and removing the frequency error included in the frequency of the second single carrier signal.
  • the frequency compensation unit 103 outputs each of the first single carrier signal from which the frequency error has been removed and the second single carrier signal from which the frequency error has been removed to the phase compensation unit 104.
  • the phase compensation unit 104 is realized by, for example, the phase compensation circuit 114 illustrated in FIG.
  • the phase compensator 104 removes phase noise included in the phase of the first single carrier signal output from the frequency compensator 103, and at the same time the phase of the second single carrier signal output from the frequency compensator 103.
  • the process which removes the phase noise contained in is implemented.
  • the phase compensation unit 104 outputs each of the first single carrier signal and the second single carrier signal from which phase noise has been removed to the IQ distortion compensation unit 105.
  • the IQ distortion compensation unit 105 includes a pilot signal detection unit 105a, a distortion amount estimation unit 105b, and a distortion correction unit 105e.
  • the pilot signal detection unit 105a is realized by, for example, a signal detection circuit 115 illustrated in FIG.
  • the pilot signal detection unit 105a detects a first pilot signal included in the first single carrier signal output from the phase compensation unit 104, and outputs the first pilot signal to the distortion amount estimation unit 105b.
  • Pilot signal detection section 105a detects the second pilot signal included in the second single carrier signal output from phase compensation section 104, and outputs the second pilot signal to distortion amount estimation section 105b. Perform the process.
  • the distortion amount estimation unit 105b includes a distortion amount estimation processing unit 105c and an averaging processing unit 105d, and is realized by, for example, the distortion amount estimation circuit 116 illustrated in FIG.
  • the distortion amount estimation unit 105b uses the first pilot signal and the first single carrier signal to calculate the first amplitude distortion amount that is the magnitude of the amplitude distortion of the first pilot signal and the phase distortion of the first pilot signal.
  • the first phase distortion amount that is the size of each is estimated.
  • the distortion amount estimation unit 105b calculates a second amplitude distortion amount that is the magnitude of the amplitude distortion of the second pilot signal and the phase distortion of the second pilot signal from the second pilot signal and the second single carrier signal.
  • a process of estimating the second phase distortion amount that is the magnitude of each of the first and second phase distortions is performed.
  • the distortion amount estimation unit 105b outputs each of the first amplitude distortion amount, the second amplitude distortion amount, the first phase distortion amount, and the second phase distortion amount to the distortion correction unit 105e.
  • the distortion amount estimation processing unit 105 c performs processing for decomposing each of the first single carrier signal and the second single carrier signal output from the phase compensation unit 104 into a real part and an imaginary part.
  • the decomposition processing of the first single carrier signal uses that the first pilot signal is a signal equal to a signal obtained by multiplying the complex conjugate signal of the first pilot signal by an imaginary unit.
  • the decomposition processing of the second single carrier signal uses that the second pilot signal is a signal equal to a signal obtained by multiplying the complex conjugate signal of the second pilot signal by an imaginary unit.
  • the distortion amount estimation processing unit 105c estimates the first amplitude distortion amount of the first pilot signal from the imaginary part of the first single carrier signal, and calculates the first pilot signal from the real part of the first single carrier signal.
  • a process of estimating the first phase distortion amount is performed.
  • the distortion amount estimation processing unit 105c estimates the second amplitude distortion amount of the second pilot signal from the imaginary part of the second single carrier signal, and calculates the second pilot signal from the real part of the second single carrier signal.
  • a process of estimating the second phase distortion amount is performed.
  • the averaging processing unit 105d performs a process of calculating the first average amplitude distortion amount by averaging the first amplitude distortion amount estimated N times by the distortion amount estimation processing unit 105c.
  • the averaging processing unit 105d performs a process of calculating the first average phase distortion amount by averaging the first phase distortion amount estimated N times by the distortion amount estimation processing unit 105c.
  • the averaging processing unit 105d performs a process of calculating the second average amplitude distortion amount by averaging the second amplitude distortion amount estimated N times by the distortion amount estimation processing unit 105c.
  • the averaging processing unit 105d performs a process of calculating the second average phase distortion amount by averaging the second phase distortion amount estimated N times by the distortion amount estimation processing unit 105c.
  • the distortion correction unit 105e includes a delay unit 105f and a distortion correction processing unit 105g, and is realized by, for example, the distortion correction circuit 117 illustrated in FIG.
  • the distortion correction unit 105e performs a process of correcting the amplitude distortion of the first single carrier signal using the first average amplitude distortion amount calculated by the averaging processing unit 105d.
  • the distortion correction unit 105e performs a process of correcting the phase distortion of the first single carrier signal using the first average phase distortion amount calculated by the averaging processing unit 105d.
  • the distortion correction unit 105e performs a process of correcting the amplitude distortion of the second single carrier signal using the second average amplitude distortion amount calculated by the averaging processing unit 105d.
  • the distortion correction unit 105e performs a process of correcting the phase distortion of the second single carrier signal using the second average phase distortion amount calculated by the averaging processing unit 105d.
  • the distortion correction unit 105e outputs each of the corrected first single carrier signal and the corrected second single carrier signal to the demodulation unit 106.
  • Processing time T 4 of the pilot signal detecting unit 105a includes a detection of the first pilot signal is detected and the time required for the second pilot signal.
  • Processing time T 5 of the strain amount estimating unit 105b a calculation of the first average amplitude distortion amount, the calculation of the second average amplitude distortion amount, the calculation of the first average phase distortion amount, a second average phase This is the time required to calculate the amount of distortion.
  • the delay unit 105f outputs each of the delayed first single carrier signal and the delayed second single carrier signal to the distortion correction processing unit 105g.
  • the distortion correction processing unit 105g performs a process of correcting the amplitude distortion of the first single carrier signal output from the delay unit 105f using the first average amplitude distortion amount calculated by the averaging processing unit 105d. . Further, the distortion correction processing unit 105g performs a process of correcting the phase distortion of the first single carrier signal in which the amplitude distortion is corrected, using the first average phase distortion amount calculated by the averaging processing unit 105d. . The distortion correction processing unit 105g performs a process of correcting the amplitude distortion of the second single carrier signal output from the delay unit 105f using the second average amplitude distortion amount calculated by the averaging processing unit 105d. . Further, the distortion correction processing unit 105g performs a process of correcting the phase distortion of the second single carrier signal in which the amplitude distortion is corrected, using the second average phase distortion amount calculated by the averaging processing unit 105d. .
  • the demodulation unit 106 is realized by, for example, a demodulation circuit 118 illustrated in FIG.
  • the demodulation unit 106 performs a process of demodulating the first single carrier signal in which each of the amplitude distortion and the phase distortion is corrected by the distortion correction processing unit 105g.
  • the demodulation unit 106 performs a process of demodulating the second single carrier signal in which each of the amplitude distortion and the phase distortion is corrected by the distortion correction processing unit 105g.
  • the frame synchronization unit 101, the polarization separation unit 102, the frequency compensation unit 103, the phase compensation unit 104, the pilot signal detection unit 105a, the distortion amount estimation unit 105b, and the distortion correction unit which are components of the digital signal processing unit 93.
  • each of 105e and demodulator 106 is realized by dedicated hardware as shown in FIG. That is, the digital signal processing unit 93 includes a frame synchronization circuit 111, a polarization separation circuit 112, a frequency compensation circuit 113, a phase compensation circuit 114, a signal detection circuit 115, a distortion amount estimation circuit 116, a distortion correction circuit 117, and a demodulation circuit 118. It is assumed that it will be realized.
  • the frame synchronization circuit 111, the polarization separation circuit 112, the frequency compensation circuit 113, the phase compensation circuit 114, the signal detection circuit 115, the distortion amount estimation circuit 116, the distortion correction circuit 117, and the demodulation circuit 118 are, for example, a single circuit or a composite circuit. , A programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • the components of the digital signal processing unit 93 are not limited to those realized by dedicated hardware, but the digital signal processing unit 13 is realized by software, firmware, or a combination of software and firmware. May be.
  • the digital signal processing unit 93 is realized by software or firmware
  • a program for causing the computer to execute the processing procedures of the correction unit 105e and the demodulation unit 106 is stored in the memory 52 shown in FIG.
  • the computer processor 51 executes the program stored in the memory 52.
  • 12 shows an example in which each component of the digital signal processing unit 93 is realized by dedicated hardware
  • FIG. 4 shows an example in which the digital signal processing unit 93 is realized by software or firmware. ing.
  • some components in the digital signal processing unit 93 may be realized by dedicated hardware, and the remaining components may be realized by software, firmware, or the like.
  • the optical transmitter 81 generates a first single carrier signal having signal points on a complex plane having the I axis and the Q axis, and includes the first pilot signal in the first single carrier signal.
  • the optical transmitter 81 generates a second single carrier signal having signal points on a complex plane having the I axis and the Q axis, and includes the second pilot signal in the second single carrier signal.
  • the first single carrier signal is a single carrier signal for the first polarization
  • the second single carrier signal is a single carrier signal for the second polarization.
  • the first polarization and the second polarization are polarizations that are orthogonal to each other.
  • the optical transmitter 81 generates a polarization multiplexed signal in which the first single carrier signal and the second single carrier signal are multiplexed.
  • FIG. 13 is an explanatory diagram showing a frame configuration of a polarization multiplexed signal in which the first single carrier signal and the second single carrier signal are multiplexed.
  • the frame of the polarization multiplexed signal is a burst frame 121.
  • a first frame 122 that stores a frame synchronization signal and a second frame 123 that stores a polarization separation sequence for separating the first polarization and the second polarization are arranged.
  • the burst frame 121 includes a third frame 124 that stores the first and second pilot signals, and a fourth frame 125 that stores the payloads of the first and second single carrier signals. Is arranged.
  • a fifth frame 126 for storing the frame end signal is arranged.
  • the frame synchronization signal stored in the first frame 122 is a signal set in advance between the optical transmitter 81 and the optical receiver 82.
  • the polarization separation sequence stored in the second frame is a processing procedure for separating the first single carrier signal for the first polarization and the second single carrier signal for the second polarization. Etc. are described. Since the polarization separation sequence itself is known, detailed description thereof is omitted.
  • Each of the first and second pilot signals stored in the third frame 124 and the payload stored in the fourth frame 125 is modulated using, for example, a four-level phase modulation method.
  • the first pilot signal is a signal set in advance between the optical transmitter 81 and the optical receiver 82, and is equal to a signal obtained by multiplying the complex conjugate signal of the first pilot signal by an imaginary unit. Signal.
  • the first pilot signal included in the first single carrier signal is s 1, n
  • the first pilot signal s 1, n is expressed by the following equation (8).
  • Equation (8) s 1, n * is a complex conjugate signal of the first pilot signal s 1, n .
  • the second pilot signal is a signal set in advance between the optical transmitter 81 and the optical receiver 82, and is equal to a signal obtained by multiplying the complex conjugate signal of the second pilot signal by an imaginary unit.
  • the second pilot signal included in the second single carrier signal is s 2, n
  • the second pilot signal s 2, n is expressed by the following equation (9).
  • Equation (9) s 2, n * is a complex conjugate signal of the second pilot signal s 2, n .
  • the optical transmitter 81 transmits the polarization multiplexed signal to the optical receiver 82 by using the light output from the light source 81 a and outputting the polarization multiplexed signal as an optical signal to the optical fiber 2.
  • the polarization multiplexed signal which is an optical signal, is output to the optical receiver 82 after adding IQ distortion and additive white Gaussian noise.
  • the local light source 3 outputs a local signal, which is local light, to the optical receiver 82.
  • the photoelectric conversion circuit 91 converts the polarization multiplexed signal transmitted from the optical transmitter 81 from an optical signal to an electrical signal, and outputs the polarization multiplexed signal that is an electrical signal to the A / D converter 92.
  • the photoelectric conversion circuit 91 converts the local signal output from the local light source 3 from an optical signal into an electrical signal, and outputs the local signal, which is an electrical signal, to the A / D converter 92.
  • the A / D converter 92 Upon receiving the polarization multiplexed signal from the photoelectric conversion circuit 91, the A / D converter 92 converts the polarization multiplexed signal from an analog signal to a digital signal, and outputs the polarization multiplexed signal, which is a digital signal, to the frame synchronization unit 101. To do.
  • the A / D converter 92 receives the local oscillation signal from the photoelectric conversion circuit 91, the A / D converter 92 converts the local oscillation signal from an analog signal to a digital signal, and outputs the local oscillation signal which is a digital signal to the frame synchronization unit 101.
  • the frame synchronization unit 101 causes the local oscillation signal output from the A / D converter 92 to interfere with the polarization multiplexed signal output from the A / D converter 92, so that the signal included in the polarization multiplexed signal Determine the column.
  • the frame synchronization unit 101 compares the signal sequence included in the polarization multiplexed signal with the frame synchronization signal set in advance between the optical transmitter 81 and the optical receiver 82, thereby The frame synchronization signal stored in the frame 122 is detected.
  • the frame synchronization unit 101 detects each of the first single carrier signal and the second single carrier signal included in the polarization multiplexed signal by detecting the frame synchronization signal stored in the first frame 122. Detect the beginning.
  • the frame synchronization unit 101 Since the processing itself for detecting the head of each of the first single carrier signal and the second single carrier signal is a known technique, detailed description thereof is omitted.
  • the frame synchronization unit 101 generates a first detection signal indicating the start detection timing of the first single carrier signal and a second detection signal indicating the start detection timing of the second single carrier signal. To 102. Also, the frame synchronization unit 101 outputs the polarization multiplexed signal to the polarization separation unit 102 and outputs the local oscillation signal to the frequency compensation unit 103.
  • the polarization separation unit 102 performs signal separation processing of the polarization multiplexed signal at the timing when the first detection signal is output from the frame synchronization unit 101. In addition, the polarization separation unit 102 performs signal separation processing of the polarization multiplexed signal at the timing when the second detection signal is output from the frame synchronization unit 101.
  • CMA can be used as the signal separation process for the polarization multiplexed signal, but the signal separation process itself is a known technique, and thus detailed description thereof is omitted.
  • the signal separation processing of the polarization multiplexed signal the polarization separation sequence stored in the second frame 123 may be used.
  • the polarization separation unit 102 separates the first single carrier signal and the second single carrier signal by performing signal separation processing on the polarization multiplexed signal, the polarization separation unit 102 performs the first single carrier signal and the second single carrier signal. Each of the carrier signals is output to the frequency compensation unit 103.
  • the frequency compensation unit 103 detects a frequency error ⁇ f1 between the first single carrier signal output from the polarization separation unit 102 and the frequency of the local signal output from the frame synchronization unit 101. Further, the frequency compensation unit 103 detects a frequency error ⁇ f2 between the second single carrier signal output from the polarization demultiplexing unit 102 and the frequency of the local signal output from the frame synchronization unit 101. The frequency compensation unit 103 removes the frequency error ⁇ f1 included in the frequency of the first single carrier signal and removes the frequency error ⁇ f1 included in the frequency of the second single carrier signal.
  • the frequency compensation unit 103 outputs each of the first single carrier signal from which the frequency error ⁇ f1 has been removed and the second single carrier signal from which the frequency error ⁇ f2 has been removed to the phase compensation unit 104.
  • the frequency error removal processing itself by the frequency compensation unit 103 is the same as the frequency error removal processing by the frequency compensation unit 22 shown in FIG. 1, and is disclosed in Non-Patent Document 1, for example.
  • the phase compensator 104 removes the phase noise ⁇ 1 included in the phase of the first single carrier signal output from the frequency compensator 103, and the second single carrier signal output from the frequency compensator 103.
  • the phase noise ⁇ 2 included in the phase is removed.
  • the phase noises ⁇ 1 and ⁇ 2 are noises generated from the light source 1a or the local light source 3 of the optical transmitter 1.
  • the phase compensation unit 104 outputs each of the first single carrier signal from which phase noise has been removed and the second single carrier signal from which phase noise has been removed to the IQ distortion compensation unit 105.
  • the phase noise removal processing itself by the phase compensation unit 104 is the same as the phase noise removal processing by the phase compensation unit 23 illustrated in FIG. 1, and is disclosed in Non-Patent Document 2, for example.
  • the first pilot signal included in the first single carrier signal by the optical transmitter 81 is the first pilot signal s 1, n shown in Expression (8). Therefore, if the first single carrier signal output from the phase compensation unit 104 to the IQ distortion compensation unit 105 is r 1, n , the first single carrier signal r 1, n is expressed by the following equation (10): It is represented by In Equation (10), g 1, n hat is an instantaneous value of amplitude distortion of the first pilot signal s 1, n in the n-th sampling, and ⁇ 1, n hat is the first pilot in the n-th sampling. This is an instantaneous value of the phase distortion of the signals s 1 and n .
  • the second pilot signal included in the second single carrier signal by the optical transmitter 81 is the second pilot signal s2 , n shown in Expression (9). Therefore, if the second single carrier signal output from the phase compensation unit 104 to the IQ distortion compensation unit 105 is r 2, n , the second single carrier signal r 2, n is expressed by the following equation (11). It is represented by In Expression (11), g 2, n hat is an instantaneous value of amplitude distortion of the second pilot signal s 2, n in the n-th sampling, and ⁇ 2, n hat is a second pilot in the n-th sampling. This is an instantaneous value of the phase distortion of the signals s 2 and n .
  • the pilot signal detection unit 105a Upon receiving the first single carrier signal r 1, n from the phase compensation unit 104, the pilot signal detection unit 105a receives the first pilot signal s 1, n included in the first single carrier signal r 1, n. Is detected. Upon receiving the second single carrier signal r 2, n from the phase compensation unit 104, the pilot signal detection unit 105a receives the second pilot signal s 2, n included in the second single carrier signal r 2, n. Is detected. Each of the first pilot signals s 1, n and the second pilot signals s 2, n is stored in a third frame 124 included in the burst frame 121. The pilot signal detection unit 105a outputs each of the first pilot signals s 1, n and the second pilot signals s 2, n to the distortion amount estimation processing unit 105c.
  • the distortion amount estimation processing unit 105c converts the first single carrier signal r1 , n output from the pilot signal detection unit 105a into a real part Re and an imaginary part. Decomposes into Im. Since the first pilot signal s 1, n is equal to the signal obtained by multiplying the complex conjugate signal s 1, n * by the imaginary unit j, the first single carrier signal r 1, shown in Equation (10) is used. n can be decomposed into a real part Re and an imaginary part Im.
  • the distortion amount estimation processing unit 105c converts the second single carrier signal r2 , n output from the pilot signal detection unit 105a into a real part Re and an imaginary part. Decomposes into Im. Since the second pilot signal s 2, n is a signal equal to the signal obtained by multiplying the complex conjugate signal s 2, n * by the imaginary unit j, the second single carrier signal r 2, shown in Equation (11) is used. n can be decomposed into a real part Re and an imaginary part Im.
  • the distortion amount estimation processing unit 105c estimates the first phase distortion amount ⁇ 1, n hat of the first pilot signals s 1, n from the real part Re of the first single carrier signal r 1, n , and the first Of the phase distortion ⁇ 1, n is output to the averaging processing unit 105d. Further, the distortion amount estimation processing unit 105c generates the first pilot signal s 1, from the imaginary part Im of the first single carrier signal r 1, n and the estimated first phase distortion amount ⁇ 1, n hat . estimating a first amplitude distortion amount g 1, n hat n. The distortion amount estimation processing unit 105c outputs the first amplitude distortion amount g 1, n hat to the averaging processing unit 105d.
  • the first phase distortion amount theta 1, n hat of the first pilot signal s 1, n corresponds to the phase distortion of the first single-carrier signals r 1, n, the first pilot signal s 1, n
  • the first amplitude distortion amount g 1, n hat corresponds to the amplitude distortion amount of the first single carrier signal r 1, n .
  • the distortion amount estimation processing unit 105c estimates the second phase distortion amount ⁇ 2, n hat of the second pilot signal s 2, n from the real part Re of the second single carrier signal r 2, n , Of phase distortion ⁇ 2, n is output to the averaging processing unit 105d. Further, the distortion amount estimation processing unit 105c generates the second pilot signal s 2, from the imaginary part Im of the second single carrier signal r 2, n and the estimated second phase distortion amount ⁇ 2, n hat . second amplitude distortion amount of n g 2, estimates the n hat. The distortion amount estimation processing unit 105c outputs the second amplitude distortion amount g2 , n hat to the averaging processing unit 105d.
  • the second phase distortion amount theta 2, n-hat of the second pilot signal s 2, n corresponds to phase distortion amount of the second single-carrier signal r 2, n, the second pilot signal s 2, n
  • the second amplitude distortion amount g 2, n hat corresponds to the amplitude distortion amount of the second single carrier signal r 2, n .
  • the averaging processing unit 105d outputs the first phase distortion amount ⁇ 1, n hat, the first amplitude distortion amount g 1, n hat, and the second phase distortion amount ⁇ 2, output from the distortion amount estimation processing unit 105c .
  • An averaging process is performed for each of the n hat and the second amplitude distortion amount g 2 and the n hat.
  • the averaging processing unit 105d performs the N first phase distortion amounts in the first to Nth samplings output from the distortion amount estimation processing unit 105c as shown in the following equation (16).
  • the first average phase distortion amount ⁇ 1 hat is calculated by averaging ⁇ 1, n hat.
  • the averaging processing unit 105d outputs the N first amplitude distortion amounts g 1, n hat in the first to N-th samplings output from the distortion amount estimation processing unit 105c. Is averaged to calculate the first average amplitude distortion amount g 1 hat.
  • the averaging processing unit 105d outputs N second phase distortion amounts ⁇ 2, n hat in the first to N-th samplings output from the distortion amount estimation processing unit 105c. Is averaged to calculate the second average phase distortion amount ⁇ 2 hat. As shown in the following equation (19), the averaging processing unit 105d outputs the N second amplitude distortion amounts g 2, n hat in the first to Nth samplings output from the distortion amount estimation processing unit 105c. Is averaged to calculate the second average amplitude distortion amount g 2 hat.
  • the averaging processing unit 105d includes a first average phase distortion amount ⁇ 1 hat, a first average amplitude distortion amount g 1 hat, a second average phase distortion amount ⁇ 2 hat, and a second average amplitude distortion amount g 2 hat. Are output to the distortion correction processing unit 105g.
  • Processing time T 4 of the pilot signal detecting unit 105a includes a detection of the first pilot signal s 1, n, a second pilot signal s 2, n of the detection and the time required.
  • Processing time T 5 of the strain amount estimating unit 105b a calculation of the first average amplitude distortion amount g 1 hat, the calculation of the second average amplitude distortion amount g 2 hat, the first average phase distortion amount theta 1 hat And the calculation of the second average phase distortion amount ⁇ 2 hat.
  • the delay unit 105f When receiving the first single carrier signal r 1, n and the second single carrier signal r 2, n from the phase compensation unit 104, the delay unit 105f receives the first single carrier signal r for a total time T 6. 1, n and the second single carrier signal r 2, n are held. Delay unit 105f is output to each of the first single-carrier signals r 1, n and a second single carrier signal r 2, n holding only the total time T 6 was held for a total time T 6 the distortion correction processing section 105g To do.
  • Distortion correction processing unit 105g uses the first amplitude distortion amount g 1 hat output from the averaging process unit 105d, the amplitude distortion of the first single-carrier signals r 1, n output from the delay unit 105f to correct. Further, the distortion correction processing unit 105g uses the second amplitude distortion amount g 2 hat output from the averaging process unit 105d, the amplitude of the second single-carrier signal r 2, n output from the delay unit 105f Correct distortion.
  • the amplitude distortion correction processing itself by the distortion correction processing unit 105g is the same as the amplitude distortion correction processing by the distortion correction processing unit 24g shown in FIG.
  • the distortion correction processing unit 105 g corrects the phase distortion of the first single carrier signals r 1 and n in which the amplitude distortion is corrected, using the first phase distortion amount ⁇ 1 hat output from the averaging processing unit 105 d. .
  • the distortion correction processing unit 105 g uses the second phase distortion amount ⁇ 2 hat output from the averaging processing unit 105 d to calculate the phase distortion of the second single carrier signals r 2 and n corrected for amplitude distortion. to correct.
  • the phase distortion correction processing itself by the distortion correction processing unit 105g is the same as the phase distortion correction processing by the distortion correction processing unit 24g shown in FIG.
  • the distortion correction processing section 105g is shows an example in which after correcting the amplitude distortion of the first single-carrier signals r 1, n, to correct the phase distortion of the first single-carrier signals r 1, n .
  • the distortion correction processing section 105g is, earlier the phase distortion of the first single-carrier signals r 1, n is corrected, the first single-carrier signals r 1, n obtained by correcting the phase distortion The amplitude distortion may be corrected.
  • the distortion correction processing section 105g is, the phase distortion of the second single-carrier signal r 2, n is corrected earlier, correct the amplitude distortion of the second single-carrier signal r 2, n obtained by correcting the phase distortion You may make it do.
  • the distortion correction processing unit 105g outputs the first single carrier signal r 1, n obtained by correcting the amplitude distortion and the phase distortion to the demodulation unit 106 as the first single carrier signal r 1, n ′.
  • the distortion correction processing unit 105g outputs the second single carrier signal r2 , n obtained by correcting each of the amplitude distortion and the phase distortion to the demodulation unit 106 as the second single carrier signal r2 , n '.
  • the demodulation unit 106 performs demodulation processing on the first single carrier signal r 1, n ′ output from the distortion correction processing unit 105g, and obtains signal points existing on the complex plane having the I axis and the Q axis. Extract.
  • the demodulator 106 performs a demodulation process on the second single carrier signal r 2, n ′ output from the distortion correction processor 105g, and obtains signal points existing on the complex plane having the I axis and the Q axis. Extract. Since the single carrier signal demodulation process itself is a known technique, a detailed description thereof will be omitted.
  • Embodiment 2 described above shows the optical receiver 82 that demodulates the first single carrier signal for the first polarization and the second single carrier signal for the second polarization. Similar to the optical receiver 4 shown in FIG. 1, the optical receiver 82 can compensate IQ distortion in a single carrier signal in which signal points exist on a complex plane having an I axis and a Q axis.
  • the present invention is suitable for an optical receiver that demodulates a single carrier signal having a signal point on a complex plane having an I axis and a Q axis.
  • the present invention is also suitable for an optical transmission / reception system including an optical receiver that demodulates a single carrier signal in which signal points exist on a complex plane having an I axis and a Q axis.

Abstract

An optical receiver (4) is provided with: a distortion amount estimation unit (24b) that estimates, from a pilot signal detected by a pilot signal detection unit (24a) and from a single carrier signal, an amplitude distortion amount of the pilot signal and a phase distortion amount of the pilot signal, respectively; and a distortion correction unit (24e) that corrects an amplitude distortion of the single carrier signal by use of the amplitude distortion amount estimated by the distortion amount estimation unit (24b) and also corrects a phase distortion of the single carrier signal by use of the phase distortion amount estimated by the distortion amount estimation unit (24b).

Description

光受信器及び光送受信システムOptical receiver and optical transmission / reception system
 この発明は、同位相軸(In-Phase軸:I軸)及び直交位相軸(Quadrature-Phase軸:Q軸)を有する複素平面に信号点が存在しているシングルキャリア信号を復調する光受信器と、シングルキャリア信号を復調する光受信器を含む光送受信システムとに関するものである。 The present invention relates to an optical receiver that demodulates a single carrier signal having signal points on a complex plane having the same phase axis (In-Phase axis: I axis) and a quadrature phase axis (Quadrature-Phase axis: Q axis). And an optical transmission / reception system including an optical receiver that demodulates a single carrier signal.
 IEEE802.3では、100Gイーサネットパッシブオプティカルネットワーク(以下、「100G-EPON」と称する。)を規格している。IEEE802.3は、米国電機電子技術者協会(IEEE)により発表されたイーサネットに関する規格である。(イーサネットは登録商標)
 100G-EPONでは、100Gbps(Giga Bits Per Second)級の伝送速度を達成するネットワークとして、コヒーレントパッシブオプティカルネットワーク(以下、「Coherent PON」と称する。)を候補に挙げている。
 Coherent PONは、同期検波方式とディジタル信号処理とを組み合わせて、ディジタルコヒーレント受信を行う手法である。Coherent PONを実施する光受信器は、多値信号を高い感度で復調することができる。
IEEE 802.3 standardizes a 100G Ethernet passive optical network (hereinafter referred to as “100G-EPON”). IEEE 802.3 is a standard related to Ethernet published by the American Institute of Electrical and Electronics Engineers (IEEE). (Ethernet is a registered trademark)
In 100G-EPON, a coherent passive optical network (hereinafter referred to as “Coherent PON”) is listed as a candidate for achieving a transmission rate of 100 Gbps (Giga Bits Per Second) class.
Coherent PON is a technique for performing digital coherent reception by combining synchronous detection and digital signal processing. An optical receiver that implements Coherent PON can demodulate a multilevel signal with high sensitivity.
 しかし、ディジタルコヒーレント受信の性能は、I軸とQ軸の不均衡であるIQ歪みによって制限される。IQ歪みは、送受信デバイスの不完全性から生じる。
 特に、光アクセスネットワークで使用される低コストデバイスは、大きなIQ歪みをもたらすため、ディジタルコヒーレント受信の性能は、深刻な劣化を生じる。
However, the performance of digital coherent reception is limited by IQ distortion, which is an imbalance between the I axis and the Q axis. IQ distortion results from imperfections in the transmitting / receiving device.
In particular, low-cost devices used in optical access networks introduce large IQ distortion, so the performance of digital coherent reception results in severe degradation.
 以下の特許文献1には、直交周波数分割多重信号における第1のキャリア周波及び第2のキャリア周波数のそれぞれに変調された既知信号を用いて、IQインバランスを補償する補償方法が開示されている。
 以下、直交周波数分割多重をOFDM(Orthogonal Frequency Division Multiplexing)と称する。
Patent Document 1 below discloses a compensation method for compensating IQ imbalance by using known signals modulated respectively to a first carrier frequency and a second carrier frequency in an orthogonal frequency division multiplexed signal. .
Hereinafter, the orthogonal frequency division multiplexing is referred to as OFDM (Orthogonal Frequency Division Multiplexing).
特表2014-502816号公報Special table 2014-502816
 特許文献1に開示されている補償方法では、IQインバランスを補償する際、OFDM信号における第1のキャリア周波及び第2のキャリア周波数のそれぞれに変調された既知信号を用いている。しかし、上記の既知信号を用いる補償方法では、I軸及びQ軸を有する複素平面に信号点が存在しているシングルキャリア信号におけるIQ歪みについては、補償することができないという課題があった。 In the compensation method disclosed in Patent Document 1, when IQ imbalance is compensated, a known signal modulated to each of the first carrier frequency and the second carrier frequency in the OFDM signal is used. However, the compensation method using the known signal has a problem that it cannot compensate for IQ distortion in a single carrier signal in which signal points exist on a complex plane having an I axis and a Q axis.
 この発明は上記のような課題を解決するためになされたもので、I軸及びQ軸を有する複素平面に信号点が存在しているシングルキャリア信号におけるIQ歪みを補償することができる光受信器を得ることを目的とする。
 また、この発明は、I軸及びQ軸を有する複素平面に信号点が存在しているシングルキャリア信号におけるIQ歪みを補償することができる光受信器を備える光送受信システムを得ることを目的とする。
The present invention has been made to solve the above-described problems, and is an optical receiver capable of compensating for IQ distortion in a single carrier signal in which signal points exist on a complex plane having an I axis and a Q axis. The purpose is to obtain.
Another object of the present invention is to provide an optical transmission / reception system including an optical receiver capable of compensating for IQ distortion in a single carrier signal having signal points on a complex plane having an I axis and a Q axis. .
 この発明に係る光受信器は、同位相軸及び直交位相軸を有する複素平面に信号点が存在しているシングルキャリア信号に含まれているパイロット信号を検出するパイロット信号検出部と、パイロット信号検出部により検出されたパイロット信号とシングルキャリア信号とから、パイロット信号の振幅歪み量及びパイロット信号の位相歪み量をそれぞれ推定する歪み量推定部と、歪み量推定部により推定された振幅歪み量を用いて、シングルキャリア信号の振幅歪みを補正し、歪み量推定部により推定された位相歪み量を用いて、シングルキャリア信号の位相歪みを補正する歪み補正部とを設け、復調部が、歪み補正部により振幅歪み及び位相歪みのそれぞれが補正されたシングルキャリア信号を復調するようにしたものである。 An optical receiver according to the present invention includes a pilot signal detector that detects a pilot signal included in a single carrier signal in which signal points exist on a complex plane having the same phase axis and a quadrature phase axis, and a pilot signal detection A distortion amount estimation unit for estimating the amplitude distortion amount of the pilot signal and the phase distortion amount of the pilot signal from the pilot signal detected by the monitoring unit and the single carrier signal, and the amplitude distortion amount estimated by the distortion amount estimation unit. A distortion correction unit that corrects the amplitude distortion of the single carrier signal and corrects the phase distortion of the single carrier signal using the phase distortion amount estimated by the distortion amount estimation unit. Thus, the single carrier signal in which each of the amplitude distortion and the phase distortion is corrected is demodulated.
 この発明によれば、パイロット信号検出部により検出されたパイロット信号とシングルキャリア信号とから、パイロット信号の振幅歪み量及びパイロット信号の位相歪み量をそれぞれ推定する歪み量推定部と、歪み量推定部により推定された振幅歪み量を用いて、シングルキャリア信号の振幅歪みを補正し、歪み量推定部により推定された位相歪み量を用いて、シングルキャリア信号の位相歪みを補正する歪み補正部とを備えるように、光受信器を構成した。したがって、この発明に係る光受信器は、I軸及びQ軸を有する複素平面に信号点が存在しているシングルキャリア信号におけるIQ歪みを補償することができる。 According to the present invention, the distortion amount estimation unit and the distortion amount estimation unit for estimating the amplitude distortion amount of the pilot signal and the phase distortion amount of the pilot signal from the pilot signal and the single carrier signal detected by the pilot signal detection unit, respectively. A distortion correction unit that corrects the amplitude distortion of the single carrier signal using the amplitude distortion amount estimated by the step, and corrects the phase distortion of the single carrier signal using the phase distortion amount estimated by the distortion amount estimation unit. An optical receiver was configured to provide. Therefore, the optical receiver according to the present invention can compensate for IQ distortion in a single carrier signal in which signal points exist on a complex plane having an I axis and a Q axis.
実施の形態1による光送受信システムを示す構成図である。1 is a configuration diagram illustrating an optical transmission / reception system according to Embodiment 1. FIG. IQ歪み補償部24の内部を示す構成図である。2 is a configuration diagram showing the inside of an IQ distortion compensation unit 24. FIG. ディジタル信号処理部13のハードウェアを示すハードウェア構成図である。2 is a hardware configuration diagram showing hardware of a digital signal processing unit 13. FIG. ディジタル信号処理部13がソフトウェア又はファームウェアなどで実現される場合のコンピュータのハードウェア構成図である。It is a hardware block diagram of a computer in case the digital signal processing part 13 is implement | achieved by software or firmware. パイロット信号を含んでいるシングルキャリア信号のフレーム構成を示す説明図である。It is explanatory drawing which shows the frame structure of the single carrier signal containing a pilot signal. IQ歪みが付加されていないシングルキャリア信号の周波数スペクトル及びIQ歪みが付加されているシングルキャリア信号の周波数スペクトルを示す説明図である。It is explanatory drawing which shows the frequency spectrum of the single carrier signal to which IQ distortion is not added, and the frequency spectrum of the single carrier signal to which IQ distortion is added. 歪み量推定部24bにより推定される位相歪み量θハット及び振幅歪み量gハットのそれぞれのシミュレーション結果を示す説明図である。It is explanatory drawing which shows each simulation result of phase distortion amount (theta) hat and amplitude distortion amount g hat estimated by the distortion amount estimation part 24b. 復調部25により復調されたシングルキャリア信号rのビット誤り率の実験結果を示す説明図である。Is an explanatory diagram showing experimental results of bit error rate of a single carrier signal r n demodulated by the demodulator 25. 図9Aは、シングルキャリア信号rにおけるIQ歪みの補償処理が行われていない場合の信号点の配置を示す説明図、図9Bは、図1に示す光受信器4のように、シングルキャリア信号rにおけるIQ歪みの補償処理を行っている場合の信号点の配置を示す説明図である。Figure 9A is an explanatory view showing the arrangement of signal points in the case where compensation processing of the IQ skew in the single-carrier signal r n is not performed, FIG. 9B, as the optical receiver 4 shown in FIG. 1, the single carrier signal is an explanatory view showing the arrangement of signal points when doing the compensation of the IQ skew in r n. 実施の形態2による光送受信システムを示す構成図である。FIG. 6 is a configuration diagram illustrating an optical transmission / reception system according to a second embodiment. IQ歪み補償部105の内部を示す構成図である。2 is a configuration diagram showing the inside of an IQ distortion compensation unit 105. FIG. ディジタル信号処理部93のハードウェアを示すハードウェア構成図である。2 is a hardware configuration diagram showing hardware of a digital signal processing unit 93. FIG. 第1のシングルキャリア信号と第2のシングルキャリア信号とが多重されている偏波多重信号のフレーム構成を示す説明図である。It is explanatory drawing which shows the frame structure of the polarization multiplexing signal with which the 1st single carrier signal and the 2nd single carrier signal are multiplexed.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
実施の形態1.
 図1は、実施の形態1による光送受信システムを示す構成図である。
 図2は、IQ歪み補償部24の内部を示す構成図である。
 図3は、ディジタル信号処理部13のハードウェアを示すハードウェア構成図である。
 図1から図3において、光送信器1は、光源1aを備えており、光ファイバ2を介して光受信器4と接続されている。
 光送信器1は、同位相軸(In-Phase軸:I軸)及び直交位相軸(Quadrature-Phase軸:Q軸)を有する複素平面に信号点が存在しているシングルキャリア信号にパイロット信号を含める。
 光送信器1がシングルキャリア信号に含めるパイロット信号は、当該パイロット信号の複素共役信号に虚数単位が乗じられた信号と等しい信号である。
 光送信器1は、光源1aから出力される光を用いて、パイロット信号を含んでいるシングルキャリア信号を光信号として、光ファイバ2に出力することで、シングルキャリア信号を光受信器4に送信する。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram illustrating an optical transmission / reception system according to the first embodiment.
FIG. 2 is a configuration diagram showing the inside of the IQ distortion compensation unit 24.
FIG. 3 is a hardware configuration diagram showing hardware of the digital signal processing unit 13.
1 to 3, the optical transmitter 1 includes a light source 1 a and is connected to an optical receiver 4 through an optical fiber 2.
The optical transmitter 1 transmits a pilot signal to a single carrier signal having signal points on a complex plane having the same phase axis (In-Phase axis: I axis) and a quadrature phase axis (Quadrature-Phase axis: Q axis). include.
The pilot signal included in the single carrier signal by the optical transmitter 1 is a signal equal to a signal obtained by multiplying the complex conjugate signal of the pilot signal by an imaginary unit.
The optical transmitter 1 transmits the single carrier signal to the optical receiver 4 by using the light output from the light source 1 a and outputting the single carrier signal including the pilot signal as an optical signal to the optical fiber 2. To do.
 光ファイバ2は、一端が光送信器1と接続され、他端が光受信器4と接続されている光伝送路である。
 局発光源3は、局発光である局発信号を光受信器4に出力する光源である。
 光受信器4は、光電変換回路11、アナログデジタル変換器であるA/D変換器12及びディジタル信号処理部13を備えている。
 光受信器4は、光送信器1から送信されたシングルキャリア信号を受信し、受信したシングルキャリア信号を復調するディジタルコヒーレント受信器である。
The optical fiber 2 is an optical transmission line having one end connected to the optical transmitter 1 and the other end connected to the optical receiver 4.
The local light source 3 is a light source that outputs a local signal, which is local light, to the optical receiver 4.
The optical receiver 4 includes a photoelectric conversion circuit 11, an A / D converter 12 that is an analog-digital converter, and a digital signal processing unit 13.
The optical receiver 4 is a digital coherent receiver that receives the single carrier signal transmitted from the optical transmitter 1 and demodulates the received single carrier signal.
 光電変換回路11は、光送信器1から送信されたシングルキャリア信号を光信号から電気信号に変換するとともに、局発光源3から出力された局発信号を光信号から電気信号に変換する。
 光電変換回路11は、電気信号であるシングルキャリア信号と、電気信号である局発信号とをA/D変換器12に出力する。
 A/D変換器12は、光電変換回路11から出力されたシングルキャリア信号をアナログ信号からディジタル信号に変換するとともに、光電変換回路11から出力された局発信号をアナログ信号からディジタル信号に変換する。
 A/D変換器12は、ディジタル信号であるシングルキャリア信号と、ディジタル信号である局発信号とをディジタル信号処理部13に出力する。
The photoelectric conversion circuit 11 converts the single carrier signal transmitted from the optical transmitter 1 from an optical signal into an electrical signal, and converts the local signal output from the local light source 3 from an optical signal into an electrical signal.
The photoelectric conversion circuit 11 outputs a single carrier signal that is an electric signal and a local oscillation signal that is an electric signal to the A / D converter 12.
The A / D converter 12 converts the single carrier signal output from the photoelectric conversion circuit 11 from an analog signal to a digital signal, and converts the local signal output from the photoelectric conversion circuit 11 from an analog signal to a digital signal. .
The A / D converter 12 outputs a single carrier signal that is a digital signal and a local signal that is a digital signal to the digital signal processing unit 13.
 ディジタル信号処理部13は、フレーム同期部21、周波数補償部22、位相補償部23、IQ歪み補償部24及び復調部25を備えている。
 フレーム同期部21は、例えば、図3に示すフレーム同期回路41で実現される。
 フレーム同期部21は、A/D変換器12から出力された局発信号を用いて、A/D変換器12から出力されたシングルキャリア信号の先頭を検出し、先頭を検出したシングルキャリア信号及び局発信号のそれぞれを周波数補償部22に出力する。
The digital signal processing unit 13 includes a frame synchronization unit 21, a frequency compensation unit 22, a phase compensation unit 23, an IQ distortion compensation unit 24, and a demodulation unit 25.
The frame synchronization unit 21 is realized by, for example, the frame synchronization circuit 41 illustrated in FIG.
The frame synchronization unit 21 uses the local signal output from the A / D converter 12 to detect the head of the single carrier signal output from the A / D converter 12, and detects the single carrier signal that has detected the head and Each of the local signals is output to the frequency compensation unit 22.
 周波数補償部22は、例えば、図3に示す周波数補償回路42で実現される。
 周波数補償部22は、フレーム同期部21から出力されたシングルキャリア信号の周波数と局発信号の周波数との周波数誤差を検出し、シングルキャリア信号の周波数に含まれている周波数誤差を除去する処理を実施する。
 周波数補償部22は、周波数誤差を除去したシングルキャリア信号を位相補償部23に出力する。
 位相補償部23は、例えば、図3に示す位相補償回路43で実現される。
 位相補償部23は、周波数補償部22から出力されたシングルキャリア信号の位相に含まれている位相雑音を除去する処理を実施する。
 位相補償部23は、位相雑音を除去したシングルキャリア信号をIQ歪み補償部24に出力する。
The frequency compensation unit 22 is realized by, for example, the frequency compensation circuit 42 illustrated in FIG.
The frequency compensation unit 22 detects a frequency error between the frequency of the single carrier signal output from the frame synchronization unit 21 and the frequency of the local oscillation signal, and performs a process of removing the frequency error included in the frequency of the single carrier signal. carry out.
The frequency compensation unit 22 outputs the single carrier signal from which the frequency error has been removed to the phase compensation unit 23.
The phase compensation unit 23 is realized by, for example, the phase compensation circuit 43 illustrated in FIG.
The phase compensation unit 23 performs a process for removing phase noise included in the phase of the single carrier signal output from the frequency compensation unit 22.
The phase compensation unit 23 outputs the single carrier signal from which the phase noise has been removed to the IQ distortion compensation unit 24.
 IQ歪み補償部24は、図2に示すように、パイロット信号検出部24a、歪み量推定部24b及び歪み補正部24eを備えている。
 パイロット信号検出部24aは、例えば、図3に示す信号検出回路44で実現される。
 パイロット信号検出部24aは、位相補償部23から出力されたシングルキャリア信号に含まれているパイロット信号を検出し、パイロット信号を歪み量推定部24bに出力する処理を実施する。
As shown in FIG. 2, the IQ distortion compensation unit 24 includes a pilot signal detection unit 24a, a distortion amount estimation unit 24b, and a distortion correction unit 24e.
The pilot signal detection unit 24a is realized by, for example, a signal detection circuit 44 illustrated in FIG.
The pilot signal detection unit 24a detects a pilot signal included in the single carrier signal output from the phase compensation unit 23, and performs processing to output the pilot signal to the distortion amount estimation unit 24b.
 歪み量推定部24bは、歪み量推定処理部24c及び平均化処理部24dを備えており、例えば、図3に示す歪み量推定回路45で実現される。
 歪み量推定部24bは、パイロット信号検出部24aから出力されたパイロット信号とシングルキャリア信号とから、パイロット信号の振幅歪みの大きさである振幅歪み量及びパイロット信号の位相歪みの大きさである位相歪み量をそれぞれ推定する処理を実施する。
 歪み量推定部24bは、振幅歪み量及び位相歪み量のそれぞれを歪み補正部24eに出力する。
The distortion amount estimation unit 24b includes a distortion amount estimation processing unit 24c and an averaging processing unit 24d, and is realized by, for example, the distortion amount estimation circuit 45 illustrated in FIG.
The distortion amount estimation unit 24b, from the pilot signal output from the pilot signal detection unit 24a and the single carrier signal, an amplitude distortion amount that is the magnitude of the amplitude distortion of the pilot signal and a phase that is the magnitude of the phase distortion of the pilot signal. A process of estimating the amount of distortion is performed.
The distortion amount estimation unit 24b outputs each of the amplitude distortion amount and the phase distortion amount to the distortion correction unit 24e.
 歪み量推定処理部24cは、パイロット信号検出部24aから出力されたパイロット信号が、当該パイロット信号の複素共役信号に虚数単位が乗じられた信号と等しい信号であることに基づいて、シングルキャリア信号を実数部と虚数部に分解する処理を実施する。
 歪み量推定処理部24cは、シングルキャリア信号の虚数部からパイロット信号の振幅歪み量を推定し、シングルキャリア信号の実数部からパイロット信号の位相歪み量を推定する処理を実施する。
 平均化処理部24dは、歪み量推定処理部24cによりN回推定された振幅歪み量を平均化することで、平均振幅歪み量を算出する処理を実施する。
 平均化処理部24dは、歪み量推定処理部24cによりN回推定された位相歪み量を平均化することで、平均位相歪み量を算出する処理を実施する。
Based on the fact that the pilot signal output from the pilot signal detector 24a is a signal equal to a signal obtained by multiplying the complex conjugate signal of the pilot signal by an imaginary unit, the distortion amount estimation processing unit 24c generates a single carrier signal. A process of decomposing the real part and the imaginary part is performed.
The distortion amount estimation processing unit 24c performs processing of estimating the amplitude distortion amount of the pilot signal from the imaginary part of the single carrier signal and estimating the phase distortion amount of the pilot signal from the real part of the single carrier signal.
The averaging processing unit 24d performs a process of calculating the average amplitude distortion amount by averaging the amplitude distortion amount estimated N times by the distortion amount estimation processing unit 24c.
The averaging processing unit 24d performs a process of calculating the average phase distortion amount by averaging the phase distortion amount estimated N times by the distortion amount estimation processing unit 24c.
 歪み補正部24eは、遅延部24f及び歪み補正処理部24gを備えており、例えば、図3に示す歪み補正回路46で実現される。
 歪み補正部24eは、平均化処理部24dにより算出された平均振幅歪み量を用いて、シングルキャリア信号の振幅歪みを補正する処理を実施する。
 また、歪み補正部24eは、平均化処理部24dにより算出された平均位相歪み量を用いて、シングルキャリア信号の位相歪みを補正する処理を実施する。
 歪み補正部24eは、振幅歪み及び位相歪みのそれぞれを補正したシングルキャリア信号を復調部25に出力する。
The distortion correction unit 24e includes a delay unit 24f and a distortion correction processing unit 24g, and is realized by, for example, the distortion correction circuit 46 illustrated in FIG.
The distortion correction unit 24e performs a process of correcting the amplitude distortion of the single carrier signal using the average amplitude distortion amount calculated by the averaging processing unit 24d.
In addition, the distortion correction unit 24e performs a process of correcting the phase distortion of the single carrier signal using the average phase distortion amount calculated by the averaging processing unit 24d.
The distortion correction unit 24 e outputs a single carrier signal obtained by correcting each of the amplitude distortion and the phase distortion to the demodulation unit 25.
 遅延部24fは、パイロット信号を検出するためのパイロット信号検出部24aの処理時間と、平均振幅歪み量及び平均位相歪み量のそれぞれを算出するための歪み量推定部24bの処理時間との総時間分だけ、シングルキャリア信号を遅延する処理を実施する。
 遅延部24fは、遅延したシングルキャリア信号を歪み補正処理部24gに出力する。
 歪み補正処理部24gは、平均化処理部24dにより算出された平均振幅歪み量を用いて、遅延部24fから出力されたシングルキャリア信号の振幅歪みを補正する処理を実施する。
 また、歪み補正処理部24gは、平均化処理部24dにより算出された平均位相歪み量を用いて、振幅歪みを補正したシングルキャリア信号の位相歪みを補正する処理を実施する。
The delay unit 24f is a total time of the processing time of the pilot signal detection unit 24a for detecting the pilot signal and the processing time of the distortion amount estimation unit 24b for calculating each of the average amplitude distortion amount and the average phase distortion amount. A process of delaying the single carrier signal by the amount is performed.
The delay unit 24f outputs the delayed single carrier signal to the distortion correction processing unit 24g.
The distortion correction processing unit 24g performs a process of correcting the amplitude distortion of the single carrier signal output from the delay unit 24f using the average amplitude distortion amount calculated by the averaging processing unit 24d.
Further, the distortion correction processing unit 24g performs a process of correcting the phase distortion of the single carrier signal in which the amplitude distortion is corrected, using the average phase distortion amount calculated by the averaging processing unit 24d.
 復調部25は、例えば、図3に示す復調回路47で実現される。
 復調部25は、歪み補正処理部24gにより振幅歪み及び位相歪みのそれぞれが補正されたシングルキャリア信号を復調する処理を実施する。
The demodulator 25 is realized by, for example, a demodulator circuit 47 shown in FIG.
The demodulator 25 performs a process of demodulating the single carrier signal whose amplitude distortion and phase distortion are corrected by the distortion correction processor 24g.
 図1では、ディジタル信号処理部13の構成要素であるフレーム同期部21、周波数補償部22、位相補償部23、パイロット信号検出部24a、歪み量推定部24b、歪み補正部24e及び復調部25のそれぞれが、図3に示すような専用のハードウェアで実現されるものを想定している。即ち、ディジタル信号処理部13が、フレーム同期回路41、周波数補償回路42、位相補償回路43、信号検出回路44、歪み量推定回路45、歪み補正回路46及び復調回路47で実現されるものを想定している。
 フレーム同期回路41、周波数補償回路42、位相補償回路43、信号検出回路44、歪み量推定回路45、歪み補正回路46及び復調回路47は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、または、これらを組み合わせたものが該当する。
 図4は、ディジタル信号処理部13がソフトウェア又はファームウェアなどで実現される場合のコンピュータのハードウェア構成図である。
In FIG. 1, a frame synchronization unit 21, a frequency compensation unit 22, a phase compensation unit 23, a pilot signal detection unit 24 a, a distortion amount estimation unit 24 b, a distortion correction unit 24 e, and a demodulation unit 25 that are components of the digital signal processing unit 13. Each is assumed to be realized by dedicated hardware as shown in FIG. That is, it is assumed that the digital signal processing unit 13 is realized by the frame synchronization circuit 41, the frequency compensation circuit 42, the phase compensation circuit 43, the signal detection circuit 44, the distortion amount estimation circuit 45, the distortion correction circuit 46, and the demodulation circuit 47. doing.
The frame synchronization circuit 41, the frequency compensation circuit 42, the phase compensation circuit 43, the signal detection circuit 44, the distortion amount estimation circuit 45, the distortion correction circuit 46, and the demodulation circuit 47 are, for example, a single circuit, a composite circuit, a programmed processor, A parallel-programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof is applicable.
FIG. 4 is a hardware configuration diagram of a computer when the digital signal processing unit 13 is realized by software or firmware.
 ディジタル信号処理部13の構成要素は、専用のハードウェアで実現されるものに限るものではなく、ディジタル信号処理部13がソフトウェア、ファームウェア、または、ソフトウェアとファームウェアとの組み合わせで実現されるものであってもよい。
 ソフトウェア又はファームウェアはプログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。
The components of the digital signal processing unit 13 are not limited to those realized by dedicated hardware, but the digital signal processing unit 13 is realized by software, firmware, or a combination of software and firmware. May be.
Software or firmware is stored as a program in the memory of a computer. The computer means hardware that executes a program, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, a processing unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor) To do.
 ディジタル信号処理部13がソフトウェア又はファームウェアなどで実現される場合、フレーム同期部21、周波数補償部22、位相補償部23、パイロット信号検出部24a、歪み量推定部24b、歪み補正部24e及び復調部25の処理手順をコンピュータに実行させるためのプログラムがメモリ52に格納される。そして、コンピュータのプロセッサ51がメモリ52に格納されているプログラムを実行する。
 また、図3では、ディジタル信号処理部13の構成要素のそれぞれが専用のハードウェアで実現される例を示し、図4では、ディジタル信号処理部13がソフトウェア又はファームウェアなどで実現される例を示している。しかし、ディジタル信号処理部13における一部の構成要素が専用のハードウェアで実現され、残りの構成要素がソフトウェア又はファームウェアなどで実現されるものであってもよい。
When the digital signal processing unit 13 is realized by software or firmware, the frame synchronization unit 21, the frequency compensation unit 22, the phase compensation unit 23, the pilot signal detection unit 24a, the distortion amount estimation unit 24b, the distortion correction unit 24e, and the demodulation unit A program for causing the computer to execute the 25 processing procedures is stored in the memory 52. Then, the computer processor 51 executes the program stored in the memory 52.
FIG. 3 shows an example in which each component of the digital signal processing unit 13 is realized by dedicated hardware, and FIG. 4 shows an example in which the digital signal processing unit 13 is realized by software or firmware. ing. However, some components in the digital signal processing unit 13 may be realized by dedicated hardware, and the remaining components may be realized by software or firmware.
 次に、図1に示す光送受信システムの動作について説明する。
 光送信器1は、I軸及Q軸を有する複素平面に信号点が存在しているシングルキャリア信号を生成し、シングルキャリア信号にパイロット信号を含める。
 ここで、図5は、パイロット信号を含んでいるシングルキャリア信号のフレーム構成を示す説明図である。
 シングルキャリア信号のフレームは、バーストフレーム61である。
 バーストフレーム61には、フレーム同期信号を格納する第1のフレーム62と、パイロット信号を格納する第2のフレーム63と、シングルキャリア信号のペイロードを格納する第3のフレーム64とが配置されている。また、バーストフレーム61には、フレーム終端信号を格納する第4のフレーム65が配置されている。
Next, the operation of the optical transmission / reception system shown in FIG. 1 will be described.
The optical transmitter 1 generates a single carrier signal having signal points on a complex plane having an I axis and a Q axis, and includes a pilot signal in the single carrier signal.
Here, FIG. 5 is an explanatory diagram showing a frame configuration of a single carrier signal including a pilot signal.
The frame of the single carrier signal is a burst frame 61.
The burst frame 61 includes a first frame 62 that stores a frame synchronization signal, a second frame 63 that stores a pilot signal, and a third frame 64 that stores a payload of a single carrier signal. . In the burst frame 61, a fourth frame 65 for storing a frame end signal is arranged.
 第1のフレーム62に格納されるフレーム同期信号は、光送信器1と光受信器4との間で事前に設定されている信号である。
 第2のフレーム63に格納されるパイロット信号及び第3のフレーム64に格納されるペイロードのそれぞれは、例えば、四値位相変調方式(Quadrature Phase Shift Keying:QPSK)を用いて、変調されている。
 パイロット信号は、光送信器1と光受信器4との間で事前に設定されている信号であり、当該パイロット信号の複素共役信号に虚数単位が乗じられた信号と等しい信号である。
 例えば、n番目のサンプリングにおいて、シングルキャリア信号に含めるパイロット信号をsとすると、パイロット信号sは、以下の式(1)で表される。n番目のサンプリングにおけるシングルキャリア信号は、光送信器1が、n番目に送信するシングルキャリア信号である。
Figure JPOXMLDOC01-appb-I000001
 式(1)において、jは、虚数単位、s は、パイロット信号sの複素共役信号である。
The frame synchronization signal stored in the first frame 62 is a signal set in advance between the optical transmitter 1 and the optical receiver 4.
Each of the pilot signal stored in the second frame 63 and the payload stored in the third frame 64 is modulated using, for example, a quadrature phase shift keying (QPSK).
The pilot signal is a signal set in advance between the optical transmitter 1 and the optical receiver 4 and is a signal equal to a signal obtained by multiplying the complex conjugate signal of the pilot signal by an imaginary unit.
For example, in the n-th sampling, if the pilot signal included in the single carrier signal is s n , the pilot signal s n is expressed by the following equation (1). The single carrier signal in the nth sampling is a single carrier signal that the optical transmitter 1 transmits nth.
Figure JPOXMLDOC01-appb-I000001
In Expression (1), j is an imaginary unit, and s n * is a complex conjugate signal of the pilot signal s n .
 光送信器1は、光源1aから出力される光を用いて、パイロット信号を含んでいるシングルキャリア信号を光信号として、光ファイバ2に出力することで、シングルキャリア信号を光受信器4に送信する。
 光信号であるシングルキャリア信号は、IQ歪み及び加法白色ガウス雑音のそれぞれが付加された上で、光受信器4に出力される。
 局発光源3は、局発光である局発信号を光受信器4に出力する。
The optical transmitter 1 transmits the single carrier signal to the optical receiver 4 by using the light output from the light source 1 a and outputting the single carrier signal including the pilot signal as an optical signal to the optical fiber 2. To do.
The single carrier signal, which is an optical signal, is output to the optical receiver 4 with IQ distortion and additive white Gaussian noise added.
The local light source 3 outputs a local signal, which is local light, to the optical receiver 4.
 光電変換回路11は、光送信器1から送信されたシングルキャリア信号を光信号から電気信号に変換し、電気信号であるシングルキャリア信号をA/D変換器12に出力する。
 また、光電変換回路11は、局発光源3から出力された局発信号を光信号から電気信号に変換し、電気信号である局発信号をA/D変換器12に出力する。
The photoelectric conversion circuit 11 converts the single carrier signal transmitted from the optical transmitter 1 from an optical signal to an electrical signal, and outputs the single carrier signal, which is an electrical signal, to the A / D converter 12.
The photoelectric conversion circuit 11 converts the local oscillation signal output from the local light source 3 from an optical signal into an electrical signal, and outputs the local oscillation signal, which is an electrical signal, to the A / D converter 12.
 A/D変換器12は、光電変換回路11からシングルキャリア信号を受けると、シングルキャリア信号をアナログ信号からディジタル信号に変換し、ディジタル信号であるシングルキャリア信号をフレーム同期部21に出力する。
 A/D変換器12は、光電変換回路11から局発信号を受けると、局発信号をアナログ信号からディジタル信号に変換し、ディジタル信号である局発信号をフレーム同期部21に出力する。
When receiving a single carrier signal from the photoelectric conversion circuit 11, the A / D converter 12 converts the single carrier signal from an analog signal to a digital signal, and outputs the single carrier signal, which is a digital signal, to the frame synchronization unit 21.
When receiving the local oscillation signal from the photoelectric conversion circuit 11, the A / D converter 12 converts the local oscillation signal from an analog signal to a digital signal, and outputs the local oscillation signal, which is a digital signal, to the frame synchronization unit 21.
 フレーム同期部21は、A/D変換器12から出力された局発信号をA/D変換器12から出力されたシングルキャリア信号に干渉させることで、シングルキャリア信号に含まれている信号列を判別する。
 フレーム同期部21は、シングルキャリア信号に含まれている信号列と、光送信器1と光受信器4との間で事前に設定されているフレーム同期信号とを比較することで、第1のフレーム62に格納されているフレーム同期信号を検出する。
 フレーム同期部21は、第1のフレーム62に格納されているフレーム同期信号を検出することで、シングルキャリア信号の先頭を検出する。
 フレーム同期部21は、先頭を検出したシングルキャリア信号及び局発信号のそれぞれを周波数補償部22に出力する。
The frame synchronization unit 21 causes the local signal output from the A / D converter 12 to interfere with the single carrier signal output from the A / D converter 12 to thereby convert the signal sequence included in the single carrier signal. Determine.
The frame synchronization unit 21 compares the signal sequence included in the single carrier signal with the frame synchronization signal set in advance between the optical transmitter 1 and the optical receiver 4 to obtain the first The frame synchronization signal stored in the frame 62 is detected.
The frame synchronization unit 21 detects the head of the single carrier signal by detecting the frame synchronization signal stored in the first frame 62.
The frame synchronization unit 21 outputs each of the single carrier signal and the local oscillation signal whose head is detected to the frequency compensation unit 22.
 周波数補償部22は、フレーム同期部21から出力されたシングルキャリア信号の周波数と、フレーム同期部21から出力された局発信号の周波数との周波数誤差Δfを検出する。
 そして、周波数補償部22は、シングルキャリア信号の周波数に含まれている周波数誤差Δfを除去する。
 周波数誤差Δfの除去処理自体は、公知の技術であるため詳細な説明を省略する。例えば、周波数誤差Δfの除去処理は、以下の非特許文献1に開示されている。
[非特許文献1]
“Frequency Estimation in Intradyne Reception” Andreas Leven, Senior Member, IEEE, Noriaki Kaneda, Member, IEEE, Ut-Va Koc, Member, IEEE, and Young-Kai Chen, Fellow, IEEE
 周波数補償部22は、周波数誤差Δfを除去したシングルキャリア信号を位相補償部23に出力する。
The frequency compensation unit 22 detects a frequency error Δf between the frequency of the single carrier signal output from the frame synchronization unit 21 and the frequency of the local signal output from the frame synchronization unit 21.
Then, the frequency compensation unit 22 removes the frequency error Δf included in the frequency of the single carrier signal.
Since the frequency error Δf removal process itself is a known technique, a detailed description thereof will be omitted. For example, the removal process of the frequency error Δf is disclosed in Non-Patent Document 1 below.
[Non-Patent Document 1]
“Frequency Estimation in Intradyne Reception” Andreas Leven, Senior Member, IEEE, Noriaki Kaneda, Member, IEEE, Ut-Va Koc, Member, IEEE, and Young-Kai Chen, Fellow, IEEE
The frequency compensation unit 22 outputs a single carrier signal from which the frequency error Δf has been removed to the phase compensation unit 23.
 位相補償部23は、周波数補償部22から出力されたシングルキャリア信号の位相に含まれている位相雑音ρを除去する。位相雑音ρは、光送信器1の光源1a又は局発光源3から生じる雑音である。
 位相雑音ρの除去処理自体は、公知の技術であるため詳細な説明を省略する。例えば、位相雑音ρの除去処理は、以下の非特許文献2に開示されている。
[非特許文献2]
“Nonlinear Estimation of PSK-Modulated Carrier Phase with Application to Burst Digital Transmission” ANDREW J. VITERBI, FELLOW, IEEE, AND AUDREY M. VITERBI, MEMBER, IEEE Abstract
 位相補償部23は、位相雑音ρを除去したシングルキャリア信号をIQ歪み補償部24に出力する。
The phase compensation unit 23 removes the phase noise ρ included in the phase of the single carrier signal output from the frequency compensation unit 22. The phase noise ρ is noise generated from the light source 1 a or the local light source 3 of the optical transmitter 1.
Since the process of removing the phase noise ρ itself is a known technique, a detailed description thereof is omitted. For example, the removal process of the phase noise ρ is disclosed in Non-Patent Document 2 below.
[Non-Patent Document 2]
“Nonlinear Estimation of PSK-Modulated Carrier Phase with Application to Burst Digital Transmission” ANDREW J. VITERBI, FELLOW, IEEE, AND AUDREY M. VITERBI, MEMBER, IEEE Abstract
The phase compensation unit 23 outputs a single carrier signal from which the phase noise ρ has been removed to the IQ distortion compensation unit 24.
 図6は、IQ歪みが付加されていないシングルキャリア信号の周波数スペクトル及びIQ歪みが付加されているシングルキャリア信号の周波数スペクトルを示す説明図である。
 図6において、71は、IQ歪みが付加されていないシングルキャリア信号の周波数スペクトルを示している。IQ歪みが付加されていないシングルキャリア信号は、所望信号そのものである。
 IQ歪みが付加されているシングルキャリア信号は、所望信号の他に、干渉信号を含んでいる。
 72は、所望信号の周波数スペクトルを示している。所望信号の周波数スペクトル72は、IQ歪みの影響で、周波数スペクトル71よりも、強度が低減されている。
 73は、IQ歪みに伴う干渉信号の周波数スペクトルを示している。
FIG. 6 is an explanatory diagram showing a frequency spectrum of a single carrier signal to which IQ distortion is not added and a frequency spectrum of a single carrier signal to which IQ distortion is added.
In FIG. 6, reference numeral 71 denotes a frequency spectrum of a single carrier signal to which no IQ distortion is added. The single carrier signal to which no IQ distortion is added is the desired signal itself.
A single carrier signal to which IQ distortion is added includes an interference signal in addition to a desired signal.
Reference numeral 72 denotes the frequency spectrum of the desired signal. The intensity of the frequency spectrum 72 of the desired signal is lower than that of the frequency spectrum 71 due to the influence of IQ distortion.
73 shows the frequency spectrum of the interference signal accompanying IQ distortion.
 ここで、所望信号がxであり、所望信号xと干渉信号との合成信号がyであるとすれば、合成信号yは、以下の式(2)で表される。
Figure JPOXMLDOC01-appb-I000002
 式(2)において、gは、所望信号xの振幅歪み、θは、所望信号xの位相歪み、x は、所望信号xの複素共役信号である。
Here, a desired signal x n, if the composite signal between the interfering signal and the desired signal x n is to be y n, the synthesized signal y n is represented by the following formula (2).
Figure JPOXMLDOC01-appb-I000002
In the formula (2), g is amplitude distortion of the desired signal x n, theta is the phase distortion of the desired signal x n, x n * is the complex conjugate signal of the desired signal x n.
 光送信器1がシングルキャリア信号に含めているパイロット信号は、式(1)に示すパイロット信号sである。したがって、位相補償部23からIQ歪み補償部24に出力されるシングルキャリア信号がrであるとすると、シングルキャリア信号rは、以下の式(3)で表される。
Figure JPOXMLDOC01-appb-I000003
 明細書の文章中では、電子出願の関係上、文字「g」、文字「θ」の上に“^”の記号を付することができないので、以下、「gハット」、「θハット」のように表記する。
 式(3)において、gハットは、n番目のサンプリングにおけるパイロット信号sの振幅歪みの瞬時値、θハットは、n番目のサンプリングにおけるパイロット信号sの位相歪みの瞬時値である。
Pilot signal optical transmitter 1 is included in the single-carrier signal is a pilot signal s n shown in equation (1). Therefore, when the single-carrier signal from the phase compensation unit 23 is output to the IQ distortion compensator 24 is assumed to be r n, the single-carrier signal r n, is expressed by the following equation (3).
Figure JPOXMLDOC01-appb-I000003
In the text of the specification, on the relationship between the electronic filing, the letter "g", can not be denoted by the symbol of the character "θ" on the "^", hereinafter referred to as "g n hat", "θ n hat ".
In the formula (3), g n hat the instantaneous value of the amplitude distortion of the pilot signal s n at the n-th sampling, theta n hat is the instantaneous value of the phase distortion of the pilot signal s n at the n-th sampling.
 パイロット信号検出部24aは、位相補償部23からシングルキャリア信号rを受けると、シングルキャリア信号rに含まれているパイロット信号sを検出する。
 パイロット信号sは、バーストフレーム61に含まれている第2のフレーム63に格納されている。
 パイロット信号検出部24aは、検出したパイロット信号sを歪み量推定処理部24cに出力する。
Pilot signal detection unit 24a receives a single carrier signal r n from the phase compensation unit 23, detects a pilot signal s n contained in the single-carrier signal r n.
Pilot signal s n is stored in the second frame 63 included in the burst frames 61.
Pilot signal detection unit 24a outputs the detected pilot signal s n to the distortion amount estimation processing unit 24c.
 歪み量推定処理部24cは、以下の式(4)及び式(5)に示すように、位相補償部23から出力されたシングルキャリア信号rを実数部Reと虚数部Imに分解する。
 パイロット信号検出部24aから出力されたパイロット信号sが、複素共役信号s に虚数単位jが乗じられた信号と等しい信号であるため、式(3)に示すシングルキャリア信号rは、実数部Reと虚数部Imに分解することができる。
Figure JPOXMLDOC01-appb-I000004
Distortion amount estimation processing unit 24c, as shown in the following equation (4) and (5), decomposes the single-carrier signal r n output from the phase compensation unit 23 to the real part Re and imaginary part Im.
Pilot signal s n output from the pilot signal detection unit 24a is, because it is equal to the signal and the complex conjugate signal s n * to signal the imaginary unit j is multiplied by the single-carrier signal r n shown in equation (3) is, It can be decomposed into a real part Re and an imaginary part Im.
Figure JPOXMLDOC01-appb-I000004
 歪み量推定処理部24cは、シングルキャリア信号rの実数部Reからパイロット信号sの位相歪み量θハットを推定し、位相歪み量θハットを平均化処理部24dに出力する。
 また、歪み量推定処理部24cは、シングルキャリア信号rの虚数部Imと、推定した位相歪み量θハットとからパイロット信号sの振幅歪み量gハットを推定し、振幅歪み量gハットを平均化処理部24dに出力する。
 パイロット信号sの位相歪み量θハットは、シングルキャリア信号rの位相歪み量に相当し、パイロット信号sの振幅歪み量gハットは、シングルキャリア信号rの振幅歪み量に相当する。
Distortion amount estimation processing unit 24c estimates the phase distortion amount theta n hat of a pilot signal s n from the real part Re of the single-carrier signal r n, and outputs the phase distortion amount theta n hat averaging unit 24d.
Further, the distortion amount estimation processing unit 24c estimates and the imaginary part Im of the single-carrier signal r n, and a phase distortion amount theta n hat estimated pilot signal s n the amplitude distortion amount g n hat, amplitude distortion amount g The n hat is output to the averaging processing unit 24d.
Phase distortion amount theta n hat of a pilot signal s n corresponds to phase distortion of a single-carrier signal r n, an amplitude distortion amount g n-hat of the pilot signal s n is equivalent to the amplitude distortion of the single-carrier signal r n To do.
 平均化処理部24dは、白色雑音等の影響を緩和するため、歪み量推定処理部24cから出力された位相歪み量θハット及び振幅歪み量gハットのそれぞれについて、平均化処理を行う。
 具体的には、平均化処理部24dは、以下の式(6)に示すように、歪み量推定処理部24cから出力された1番目~N番目のサンプリングにおけるN個の位相歪み量θハットを平均化することで、平均位相歪み量θハットを算出する。
Figure JPOXMLDOC01-appb-I000005
The averaging processing unit 24d performs an averaging process on each of the phase distortion amount θ n hat and the amplitude distortion amount g n hat output from the distortion amount estimation processing unit 24c in order to reduce the influence of white noise or the like.
Specifically, as shown in the following equation (6), the averaging processing unit 24d performs N phase distortion amounts θ n hat in the first to Nth samplings output from the distortion amount estimation processing unit 24c. Is averaged to calculate the average phase distortion amount θ hat.
Figure JPOXMLDOC01-appb-I000005
 また、平均化処理部24dは、以下の式(7)に示すように、歪み量推定処理部24cから出力された1番目~N番目のサンプリングにおけるN個の振幅歪み量gハットを平均化することで、平均振幅歪み量gハットを算出する。
Figure JPOXMLDOC01-appb-I000006
 平均化処理部24dは、平均位相歪み量θハット及び平均振幅歪み量gハットのそれぞれを歪み補正処理部24gに出力する。
The averaging processing section 24d, as shown in the following equation (7), the N amplitude distortion amount g n-hat of the first ~ N th sampling output from the distortion amount estimating unit 24c averages Thus, the average amplitude distortion amount g hat is calculated.
Figure JPOXMLDOC01-appb-I000006
The averaging processing unit 24d outputs each of the average phase distortion amount θ hat and the average amplitude distortion amount g hat to the distortion correction processing unit 24g.
 遅延部24fは、事前に、パイロット信号検出部24aの処理時間Tと、歪み量推定部24bの処理時間Tとの総時間T(=T+T)を認識している。例えば、遅延部24fの内部メモリには、総時間Tが事前に記憶されている。
 パイロット信号検出部24aの処理時間Tは、パイロット信号sの検出に要する時間である。
 歪み量推定部24bの処理時間Tは、平均位相歪み量θハットの算出と、平均振幅歪み量gハットの算出とに要する時間である。 
 遅延部24fは、位相補償部23からシングルキャリア信号rを受けると、総時間Tだけ、シングルキャリア信号rを保持してから、シングルキャリア信号rを歪み補正処理部24gに出力する。
Delay section 24f in advance, the processing time T 1 of the pilot signal detecting unit 24a, is aware of the total time T 3 (= T 1 + T 2) and the processing time T 2 of the distortion amount estimating section 24b. For example, the internal memory of the delay section 24f, the total time T 3 is pre-stored.
Processing time T 1 of the pilot signal detecting unit 24a is the time required for detection of the pilot signal s n.
Processing time T 2 of the distortion amount estimating unit 24b, and calculates the average phase distortion amount θ hat, the average amplitude distortion amount g hat calculated and the time required.
Delay unit 24f receives a single carrier signal r n from the phase compensation unit 23, only the total time T 3, and outputs the hold the single-carrier signal r n, the single-carrier signal r n to the distortion correction processing section 24g .
 歪み補正処理部24gは、平均化処理部24dから出力された平均振幅歪み量gハットを用いて、遅延部24fから出力されたシングルキャリア信号rの振幅歪みを補正する。
 シングルキャリア信号rの振幅歪みは、例えば、シングルキャリア信号rの振幅に平均振幅歪み量gハットを乗加算、あるいは、シングルキャリア信号rの振幅から平均振幅歪み量gハットを乗減算することで補正することができる。
 また、歪み補正処理部24gは、平均化処理部24dから出力された平均位相歪み量θハットを用いて、振幅歪みを補正したシングルキャリア信号rの位相歪みを補正する。
 シングルキャリア信号rの位相歪みは、例えば、振幅歪みを補正したシングルキャリア信号rの位相に平均位相歪み量θハットを乗加算、あるいは、振幅歪みを補正したシングルキャリア信号rの位相から平均位相歪み量θハットを乗減算することで補正することができる。
Distortion correction processing unit 24g, using the average amplitude distortion amount g hat output from the averaging process unit 24d, to correct the amplitude distortion of the single-carrier signal r n output from the delay section 24f.
Amplitude distortion of the single-carrier signal r n, for example, multiplication and addition average amplitude distortion amount g hat to the amplitude of the single-carrier signal r n, or subtracts multiply the average amplitude distortion amount g hat from the amplitude of the single carrier signal r n This can be corrected.
Further, the distortion correction processing section 24g, using the average phase distortion amount θ hat output from the averaging process unit 24d, corrects the phase distortion of the single-carrier signal r n the amplitude distortion has been corrected.
Phase distortion of the single-carrier signal r n, for example, multiplication and addition average phase distortion amount θ hat to the phase of the single-carrier signal r n obtained by correcting the amplitude distortion, or from the phase of a single carrier signal r n obtained by correcting the amplitude distortion Correction can be made by multiplying and subtracting the average phase distortion amount θ hat.
 ここでは、歪み補正処理部24gが、シングルキャリア信号rの振幅歪みを補正してから、シングルキャリア信号rの位相歪みを補正する例を示している。しかし、これは一例に過ぎず、歪み補正処理部24gが、先にシングルキャリア信号rの位相歪みを補正し、位相歪みを補正したシングルキャリア信号rの振幅歪みを補正するようにしてもよい。
 歪み補正処理部24gは、振幅歪み及び位相歪みのそれぞれを補正したシングルキャリア信号rを、シングルキャリア信号r’として復調部25に出力する。
Here, the distortion correction processing section 24g is, after correcting the amplitude distortion of the single-carrier signal r n, shows an example of correcting a phase distortion of the single-carrier signal r n. However, this is only an example, the distortion correction processing section 24g is also possible to previously correct the phase distortion of the single-carrier signal r n, correcting the amplitude distortion of the single-carrier signal r n obtained by correcting the phase distortion Good.
Distortion correction processing unit 24g is a single carrier signal r n obtained by correcting the respective amplitude distortion and phase distortion, and outputs to the demodulation section 25 as a single-carrier signal r n '.
 復調部25は、歪み補正処理部24gから出力されたシングルキャリア信号r’の復調処理を実施して、I軸及Q軸を有する複素平面に存在している信号点を抽出する。
 シングルキャリア信号r’の復調処理自体は、公知の技術であるため詳細な説明を省略する。
The demodulation unit 25 performs a demodulation process on the single carrier signal r n ′ output from the distortion correction processing unit 24g, and extracts signal points existing on a complex plane having the I axis and the Q axis.
Since the demodulation processing itself of the single carrier signal r n ′ is a known technique, detailed description thereof is omitted.
 図7は、歪み量推定部24bにより推定される位相歪み量θハット及び振幅歪み量gハットのそれぞれのシミュレーション結果を示す説明図である。
 ここでのシミュレーションでは、光送信器1によって、シングルキャリア信号rが32Gb/sのシンボルレートで送信されるものとしている。
 また、シミュレーションでは、シングルキャリア信号rに含まれているペイロード等の50,000のシンボルが、QPSKの変調方式で変調されており、Nシンボルのパイロット信号がシングルキャリア信号rに含まれているものとしている。
 シミュレーションでは、光送信器1から送信されるシングルキャリア信号rには、IQ歪み及び加法白色ガウス雑音が付加された上で、光受信器4に受信されるものとしている。
 シミュレーションでは、IQ歪みにおける振幅歪みが4dB、IQ歪みにおける位相歪みが40度、信号対雑音電力比(Signal to Noise Ratio:SNR)が11.5dBであるものとしている。
FIG. 7 is an explanatory diagram illustrating simulation results of the phase distortion amount θ hat and the amplitude distortion amount g hat estimated by the distortion amount estimation unit 24b.
In the simulation of this case, the optical transmitter 1, it is assumed that the single-carrier signal r n is transmitted at a symbol rate of 32Gb / s.
Further, in the simulation, 50,000 symbols such as the payload contained in the single-carrier signal r n is, are modulated by the modulation scheme of QPSK, pilot signals of N symbols is included in the single-carrier signal r n It is supposed to be.
In the simulation, the single-carrier signals r n which are transmitted from the optical transmitter 1, on the IQ distortion and additive white Gaussian noise is added, it is assumed to be received in the optical receiver 4.
In the simulation, the amplitude distortion in IQ distortion is 4 dB, the phase distortion in IQ distortion is 40 degrees, and the signal-to-noise ratio (Signal to Noise Ratio: SNR) is 11.5 dB.
 図7は、平均フィルタ長と二乗誤差の関係を示しており、(1)は、振幅歪み量gハットの推定誤差を表しており、(2)は、位相歪み量θハットの推定誤差を表している。平均フィルタ長は、平均化処理部24dにおいて、位相歪み量θハット及び振幅歪み量gハットのそれぞれの平均化に用いるサンプル数に対応している。
 振幅歪み量gハット及び位相歪み量θハットにおけるそれぞれの推定誤差は、図7に示すように、10以上の平均フィルタ長において、10-2以下の二乗誤差である。
 したがって、位相歪み量θハット及び振幅歪み量gハットのそれぞれが含んでいる推定誤差は、10以上の平均フィルタ長において、10-2以下の二乗誤差であり、歪み量推定部24bでは、高い推定精度の歪み量が得られることが分かる。
FIG. 7 shows the relationship between the average filter length and the square error, where (1) represents the estimation error of the amplitude distortion amount g hat, and (2) represents the estimation error of the phase distortion amount θ hat. ing. The average filter length corresponds to the number of samples used for averaging the phase distortion amount θ n hat and the amplitude distortion amount g n hat in the averaging processing unit 24d.
Each estimation error in the amplitude distortion amount g hat and the phase distortion amount θ hat is a square error of 10 −2 or less in an average filter length of 10 or more, as shown in FIG.
Therefore, the estimation error included in each of the phase distortion amount θ hat and the amplitude distortion amount g hat is a square error of 10 −2 or less at an average filter length of 10 or more, and the distortion amount estimation unit 24 b performs high estimation. It can be seen that an accurate distortion amount can be obtained.
 図8は、復調部25により復調されたシングルキャリア信号rのビット誤り率(Bit Error Ratio:BER)の実験結果を示す説明図である。
 ここでの実験では、光送信器1から光受信器4に送信されるシングルキャリア信号rの伝送距離が40kmであるものとしている。
 実験では、シングルキャリア信号rに含まれるフレーム同期信号、パイロット信号、ペイロード及びフレーム終端信号のそれぞれの信号長に対応するそれぞれの送信時間が816ns、10ns、10495ns、100nsであるものとしている。
 シミュレーションでは、シングルキャリア信号rの変調方式が、32Gbaudの偏波多重四値位相変調(Dual Polarization Quadrature Phase Shift Keying:DP-QPSK)であるものとしている。
 シミュレーションでは、IQ歪みにおける振幅歪みが4dB、IQ歪みにおける位相歪みが40度、平均フィルタ長が20(平均化処理部24dにおいて、平均化に用いるサンプル数がN=20)であるものとしている。
8, the bit error rate of a single carrier signal r n demodulated by the demodulator 25: is an explanatory diagram showing experimental results of (Bit Error Ratio BER).
In this case the experiment, the transmission distance of the single-carrier signals r n which are transmitted from the optical transmitter 1 to the optical receiver 4 is assumed to be 40 km.
In the experiment, has a frame synchronizing signal included in the single-carrier signal r n, the pilot signal, each of the transmission time corresponding to each of the signal length of the payload and frame termination signal 816ns, 10ns, 10495ns, assumed to be 100 ns.
In the simulation, the modulation scheme of a single carrier signal r n is polarization multiplexed 4-level phase modulation 32Gbaud: is assumed to be (Dual Polarization Quadrature Phase Shift Keying DP -QPSK).
In the simulation, it is assumed that the amplitude distortion in IQ distortion is 4 dB, the phase distortion in IQ distortion is 40 degrees, and the average filter length is 20 (in the averaging processing unit 24d, the number of samples used for averaging is N = 20).
 図8は、光受信器4に入力されるシングルキャリア信号rの受信光パワーとBERとの関係を示している。
 図8において、(1)は、シングルキャリア信号rにおけるIQ歪みの補償処理が行われていない場合のBERを示している。
 (2)は、図1に示す光受信器4のように、シングルキャリア信号rにおけるIQ歪みの補償処理を行っている場合のBERを示している。
 (3)は、シングルキャリア信号rにIQ歪みが付加されていない場合の理想的なBERを示している。
Figure 8 shows the relationship between the received optical power and BER of the single-carrier signals r n which are input to the optical receiver 4.
8, (1) shows the BER of the case where compensation processing of the IQ skew in the single-carrier signal r n is not performed.
(2), as the optical receiver 4 shown in FIG. 1 shows the BER of the case where performing compensation processing of the IQ skew in the single-carrier signal r n.
(3) shows an ideal BER in the case where the IQ distortion single carrier signal r n is not added.
 図1に示す光受信器4では、図8の(2)に示すように、BERが4.3×10-3のときの受信光パワーは、-31.4(dBm)である。
 シングルキャリア信号rにおけるIQ歪みの補償処理が行われていない場合、図8の(1)に示すように、BERが4.3×10-3のときの受信光パワーは、-27.3(dBm)の受信光パワーである。
 したがって、図1に示す光受信器4は、シングルキャリア信号rにおけるIQ歪みの補償処理が行われていない場合よりも、4.1(dB)だけ、受信光パワーが低くても、BERが同じ4.3×10-3となっており、受信感度が改善されている。
 換言すると、図1に示す光受信器4は、受信光パワーが同じであれば、シングルキャリア信号rにおけるIQ歪みの補償処理が行われていない場合よりも、BERが低下している。
 シングルキャリア信号rにIQ歪みが付加されていない場合、図8の(3)に示すように、BERが4.3×10-3のときの受信光パワーは、-31.7(dBm)である。
 したがって、図1に示す光受信器4は、シングルキャリア信号rにIQ歪みが付加されていない場合と比べて、BERが4.3×10-3のときの受信感度の劣化は、僅か0.3(dBm)である。
In the optical receiver 4 shown in FIG. 1, as shown in (2) of FIG. 8, the received optical power when the BER is 4.3 × 10 −3 is −31.4 (dBm).
If the compensation processing of the IQ skew in the single-carrier signal r n is not performed, as shown in (1) in FIG. 8, the received optical power when the BER is 4.3 × 10 -3 is -27.3 (DBm) received light power.
Accordingly, the optical receiver 4 shown in Figure 1, than if the compensation processing of the IQ skew is not performed in the single-carrier signal r n, only 4.1 (dB), even at low received optical power, BER is The same 4.3 × 10 −3 , and the reception sensitivity is improved.
In other words, in the optical receiver 4 shown in FIG. 1, if the received optical power is the same, the BER is lower than that in the case where the IQ distortion compensation processing for the single carrier signal rn is not performed.
If IQ distortion single carrier signal r n is not added, as shown in (3) in FIG. 8, the received optical power when the BER is 4.3 × 10 -3 is, -31.7 (dBm) It is.
Accordingly, the optical receiver 4 shown in FIG. 1, as compared with the case where the IQ distortion single carrier signal r n is not added, the deterioration of the reception sensitivity when the BER is 4.3 × 10 -3 is slightly 0 .3 (dBm).
 図9は、受信光パワーが-29.7(dBm)であるときのシングルキャリア信号rにおける信号点の配置を示す説明図である。
 図9Aは、シングルキャリア信号rにおけるIQ歪みの補償処理が行われていない場合の信号点の配置を示しており、図9Bは、図1に示す光受信器4のように、シングルキャリア信号rにおけるIQ歪みの補償処理を行っている場合の信号点の配置を示している。
 図9A及び図9Bでは、11の信号点、10の信号点、01の信号点及び00の信号点におけるそれぞれの配置を示している。
 図1に示す光受信器4では、IQ歪みの影響が除去されているため、図9Bに示すように、信号点が適正な位置に配置されている。したがって、図1に示す光受信器4では、シングルキャリア信号rの復調精度の劣化を防止することができる。
 シングルキャリア信号rにおけるIQ歪みの補償処理を行っていない光受信器では、IQ歪みの影響によって、図9Aに示すように、信号点の配置が、適正な位置からずれている。
 例えば、11の信号点は、本来、図9Bに示すように、I軸が+1の位置及びQ軸が+1の位置の近傍に配置される。しかし、IQ歪みの補償処理を行っていない場合、11の信号点の中には、図9Aに示すように、I軸が0よりも-1側に配置されている信号点があり、また、Q軸が0よりも-1側に配置されている信号点がある。
Figure 9 is an explanatory view showing the arrangement of signal points in a single carrier signal r n when received optical power is -29.7 (dBm).
Figure 9A shows an arrangement of signal points in the case where compensation processing of the IQ skew in the single-carrier signal r n is not performed, FIG. 9B, as the optical receiver 4 shown in FIG. 1, the single carrier signal It shows an arrangement of signal points when doing the compensation of the IQ skew in r n.
9A and 9B show the respective arrangements at 11 signal points, 10 signal points, 01 signal points, and 00 signal points.
In the optical receiver 4 shown in FIG. 1, since the influence of IQ distortion is removed, the signal points are arranged at appropriate positions as shown in FIG. 9B. Accordingly, the optical receiver 4 shown in FIG. 1, it is possible to prevent the demodulation accuracy of the degradation of a single-carrier signal r n.
The optical receiver is not performed compensation processing of the IQ skew in the single-carrier signal r n, the influence of IQ distortion, as shown in FIG. 9A, the arrangement of signal points are shifted from the proper position.
For example, 11 signal points are originally arranged in the vicinity of the position where the I axis is +1 and the Q axis is +1, as shown in FIG. 9B. However, when IQ distortion compensation processing is not performed, among the 11 signal points, as shown in FIG. 9A, there are signal points in which the I axis is arranged on the −1 side from 0, There is a signal point in which the Q axis is arranged on the −1 side from 0.
 以上の実施の形態1は、パイロット信号検出部24aにより検出されたパイロット信号とシングルキャリア信号とから、パイロット信号の振幅歪み量及びパイロット信号の位相歪み量をそれぞれ推定する歪み量推定部24bと、歪み量推定部24bにより推定された振幅歪み量を用いて、シングルキャリア信号の振幅歪みを補正し、歪み量推定部24bにより推定された位相歪み量を用いて、シングルキャリア信号の位相歪みを補正する歪み補正部24eとを備えるように、光受信器4を構成した。したがって、光受信器4は、I軸及びQ軸を有する複素平面に信号点が存在しているシングルキャリア信号におけるIQ歪みを補償することができる。 In the first embodiment, the distortion amount estimation unit 24b that estimates the amplitude distortion amount of the pilot signal and the phase distortion amount of the pilot signal from the pilot signal and the single carrier signal detected by the pilot signal detection unit 24a, The amplitude distortion of the single carrier signal is corrected using the amplitude distortion amount estimated by the distortion amount estimation unit 24b, and the phase distortion of the single carrier signal is corrected using the phase distortion amount estimated by the distortion amount estimation unit 24b. The optical receiver 4 is configured to include the distortion correcting unit 24e. Therefore, the optical receiver 4 can compensate for IQ distortion in a single carrier signal in which signal points exist on a complex plane having the I axis and the Q axis.
 図1に示すディジタル信号処理部13は、周波数補償部22及び位相補償部23を備えている例を示している。
 図1に示すディジタル信号処理部13が、周波数補償部22及び位相補償部23を備える代わりに、例えば、光送信器1が、光源1aから出力される光の位相と、局発光源3から出力される局発光の位相との同期を図る位相同期回路を備えるようにしてもよい。
 光送信器1は、位相同期回路を備えていれば、シングルキャリア信号の周波数に含まれる周波数誤差Δfの発生を防止できるとともに、シングルキャリア信号の位相に含まれる位相雑音ρの発生を防止できる。
 位相同期回路において、光源1aから出力される光の位相と、局発光源3から出力される局発光の位相との同期を図る処理自体は、公知の技術であるため詳細な説明を省略する。また、位相同期回路が、同期を図る処理を実施することで、周波数誤差Δfの発生及び位相雑音ρの発生のそれぞれを防止できることも、公知である。
The digital signal processing unit 13 illustrated in FIG. 1 illustrates an example including a frequency compensation unit 22 and a phase compensation unit 23.
In place of the digital signal processing unit 13 shown in FIG. 1 including the frequency compensation unit 22 and the phase compensation unit 23, for example, the optical transmitter 1 outputs the phase of the light output from the light source 1a and the output from the local light source 3. A phase synchronization circuit that synchronizes with the phase of the local light to be emitted may be provided.
If the optical transmitter 1 includes the phase synchronization circuit, it is possible to prevent the generation of the frequency error Δf included in the frequency of the single carrier signal and the generation of the phase noise ρ included in the phase of the single carrier signal.
In the phase synchronization circuit, the processing itself for synchronizing the phase of the light output from the light source 1a and the phase of the local light output from the local light source 3 is a known technique, and thus detailed description thereof is omitted. It is also known that the phase synchronization circuit can prevent the occurrence of the frequency error Δf and the generation of the phase noise ρ by performing a process for achieving synchronization.
実施の形態2.
 実施の形態1の光受信器4では、I軸及びQ軸を有する複素平面に信号点が存在しているシングルキャリア信号を復調する例を示している。
 実施の形態2では、第1の偏波についての第1のシングルキャリア信号と第2の偏波についての第2のシングルキャリア信号とを復調する光受信器82について説明する。
 第1の偏波と第2の偏波とは、互いに直交する偏波である。また、第1のシングルキャリア信号及び第2のシングルキャリア信号のそれぞれは、実施の形態1の光受信器4により復調されるシングルキャリア信号と同様に、I軸及びQ軸を有する複素平面に信号点が存在しているシングルキャリア信号である。
Embodiment 2. FIG.
In the optical receiver 4 according to the first embodiment, an example is shown in which a single carrier signal in which signal points are present on a complex plane having an I axis and a Q axis is demodulated.
In the second embodiment, an optical receiver 82 that demodulates a first single carrier signal for the first polarization and a second single carrier signal for the second polarization will be described.
The first polarization and the second polarization are polarizations orthogonal to each other. Further, each of the first single carrier signal and the second single carrier signal is a signal on a complex plane having the I axis and the Q axis, similarly to the single carrier signal demodulated by the optical receiver 4 of the first embodiment. It is a single carrier signal in which dots exist.
 図10は、実施の形態2による光送受信システムを示す構成図である。
 図11は、IQ歪み補償部105の内部を示す構成図である。
 図12は、ディジタル信号処理部93のハードウェアを示すハードウェア構成図である。
 図10から図12において、図1から図3と同一符号は同一又は相当部分を示すので説明を省略する。
 光送信器81は、光源81aを備えており、光ファイバ2を介して光受信器82と接続されている。
 光送信器81は、第1のシングルキャリア信号に第1のパイロット信号を含めるとともに、第2のシングルキャリア信号に第2のパイロット信号を含める。
 第1のパイロット信号は、第1のパイロット信号の複素共役信号に虚数単位が乗じられた信号と等しい信号である。
 第2のパイロット信号は、第2のパイロット信号の複素共役信号に虚数単位が乗じられた信号と等しい信号である。
 光送信器81は、第1のシングルキャリア信号と第2のシングルキャリア信号とを多重している偏波多重信号を生成する。
 光送信器81は、光源81aから出力される光を用いて、偏波多重信号を光信号として、光ファイバ2に出力することで、偏波多重信号を光受信器82に送信する。
FIG. 10 is a configuration diagram illustrating an optical transmission / reception system according to the second embodiment.
FIG. 11 is a configuration diagram showing the inside of the IQ distortion compensation unit 105.
FIG. 12 is a hardware configuration diagram showing hardware of the digital signal processing unit 93.
10 to 12, the same reference numerals as those in FIGS. 1 to 3 denote the same or corresponding parts, and thus the description thereof is omitted.
The optical transmitter 81 includes a light source 81 a and is connected to the optical receiver 82 via the optical fiber 2.
The optical transmitter 81 includes the first pilot signal in the first single carrier signal and includes the second pilot signal in the second single carrier signal.
The first pilot signal is a signal equal to a signal obtained by multiplying the complex conjugate signal of the first pilot signal by an imaginary unit.
The second pilot signal is a signal equal to a signal obtained by multiplying the complex conjugate signal of the second pilot signal by an imaginary unit.
The optical transmitter 81 generates a polarization multiplexed signal in which the first single carrier signal and the second single carrier signal are multiplexed.
The optical transmitter 81 transmits the polarization multiplexed signal to the optical receiver 82 by using the light output from the light source 81 a and outputting the polarization multiplexed signal as an optical signal to the optical fiber 2.
 光受信器82は、光電変換回路91、A/D変換器92及びディジタル信号処理部93を備えている。
 光受信器82は、光送信器81から送信された偏波多重信号を受信し、偏波多重信号から第1のシングルキャリア信号及び第2のシングルキャリア信号のそれぞれを分離する。
 光受信器82は、第1のシングルキャリア信号及び第2のシングルキャリア信号のそれぞれを復調する。
The optical receiver 82 includes a photoelectric conversion circuit 91, an A / D converter 92, and a digital signal processing unit 93.
The optical receiver 82 receives the polarization multiplexed signal transmitted from the optical transmitter 81 and separates each of the first single carrier signal and the second single carrier signal from the polarization multiplexed signal.
The optical receiver 82 demodulates each of the first single carrier signal and the second single carrier signal.
 光電変換回路91は、光送信器81から送信された偏波多重信号を光信号から電気信号に変換するとともに、局発光源3から出力された局発信号を光信号から電気信号に変換する。
 光電変換回路91は、電気信号である偏波多重信号と、電気信号である局発信号とをA/D変換器92に出力する。
 A/D変換器92は、光電変換回路91から出力された偏波多重信号をアナログ信号からディジタル信号に変換するとともに、光電変換回路91から出力された局発信号をアナログ信号からディジタル信号に変換する。
 A/D変換器92は、ディジタル信号である偏波多重信号と、ディジタル信号である局発信号とをディジタル信号処理部93に出力する。
The photoelectric conversion circuit 91 converts the polarization multiplexed signal transmitted from the optical transmitter 81 from an optical signal to an electrical signal, and converts the local oscillation signal output from the local light source 3 from an optical signal to an electrical signal.
The photoelectric conversion circuit 91 outputs a polarization multiplexed signal that is an electric signal and a local signal that is an electric signal to the A / D converter 92.
The A / D converter 92 converts the polarization multiplexed signal output from the photoelectric conversion circuit 91 from an analog signal to a digital signal, and converts the local oscillation signal output from the photoelectric conversion circuit 91 from an analog signal to a digital signal. To do.
The A / D converter 92 outputs a polarization multiplexed signal that is a digital signal and a local signal that is a digital signal to the digital signal processing unit 93.
 ディジタル信号処理部93は、フレーム同期部101、偏波分離部102、周波数補償部103、位相補償部104、IQ歪み補償部105及び復調部106を備えている。
 フレーム同期部101は、例えば、図12に示すフレーム同期回路111で実現される。
 フレーム同期部101は、A/D変換器92から出力された局発信号を用いて、A/D変換器92から出力された偏波多重信号に含まれている第1のシングルキャリア信号及び第2のシングルキャリア信号のそれぞれの先頭を検出する。
 フレーム同期部101は、第1のシングルキャリア信号の先頭の検出タイミングを示す第1の検出信号と、第2のシングルキャリア信号の先頭の検出タイミングを示す第2の検出信号とを偏波分離部102に出力する。
 また、フレーム同期部101は、偏波多重信号を偏波分離部102に出力し、局発信号を周波数補償部103に出力する。
The digital signal processing unit 93 includes a frame synchronization unit 101, a polarization separation unit 102, a frequency compensation unit 103, a phase compensation unit 104, an IQ distortion compensation unit 105, and a demodulation unit 106.
The frame synchronization unit 101 is realized by, for example, the frame synchronization circuit 111 illustrated in FIG.
The frame synchronization unit 101 uses the local signal output from the A / D converter 92 and the first single carrier signal and the first signal included in the polarization multiplexed signal output from the A / D converter 92. The head of each of the two single carrier signals is detected.
The frame synchronization unit 101 generates a first detection signal indicating the start detection timing of the first single carrier signal and a second detection signal indicating the start detection timing of the second single carrier signal. To 102.
Also, the frame synchronization unit 101 outputs the polarization multiplexed signal to the polarization separation unit 102 and outputs the local oscillation signal to the frequency compensation unit 103.
 偏波分離部102は、例えば、図12に示す偏波分離回路112で実現される。
 偏波分離部102は、フレーム同期部101から第1の検出信号が出力されたタイミングと、フレーム同期部101から第2の検出信号が出力されたタイミングとにおいて、偏波多重信号の信号分離処理を実施する。
 第1の偏波についての第1のシングルキャリア信号と、第2の偏波についての第2のシングルキャリア信号とを分離する手法としては、例えば定包絡線基準アルゴリズム(CMA:Constant Modulus Algorithm)を用いることができる。
 偏波分離部102は、偏波多重信号の信号分離処理を実施することで、第1のシングルキャリア信号と第2のシングルキャリア信号とを分離すると、第1のシングルキャリア信号及び第2のシングルキャリア信号のそれぞれを周波数補償部103に出力する。
The polarization separation unit 102 is realized by, for example, the polarization separation circuit 112 illustrated in FIG.
The polarization separation unit 102 performs signal separation processing on the polarization multiplexed signal at the timing when the first detection signal is output from the frame synchronization unit 101 and the timing at which the second detection signal is output from the frame synchronization unit 101. To implement.
As a method of separating the first single carrier signal for the first polarization and the second single carrier signal for the second polarization, for example, a constant envelope reference algorithm (CMA: Constant Modulus Algorithm) is used. Can be used.
When the polarization separation unit 102 separates the first single carrier signal and the second single carrier signal by performing signal separation processing on the polarization multiplexed signal, the polarization separation unit 102 performs the first single carrier signal and the second single carrier signal. Each of the carrier signals is output to the frequency compensation unit 103.
 周波数補償部103は、例えば、図12に示す周波数補償回路113で実現される。
 周波数補償部103は、偏波分離部102から出力された第1のシングルキャリア信号と、フレーム同期部101から出力された局発信号の周波数との周波数誤差を検出する処理を実施する。
 また、周波数補償部103は、偏波分離部102から出力された第2のシングルキャリア信号と、フレーム同期部101から出力された局発信号の周波数との周波数誤差を検出する処理を実施する。
 周波数補償部103は、第1のシングルキャリア信号の周波数に含まれている周波数誤差を除去するとともに、第2のシングルキャリア信号の周波数に含まれている周波数誤差を除去する処理を実施する。
 周波数補償部103は、周波数誤差を除去した第1のシングルキャリア信号及び周波数誤差を除去した第2のシングルキャリア信号のそれぞれを位相補償部104に出力する。
The frequency compensation unit 103 is realized by, for example, the frequency compensation circuit 113 illustrated in FIG.
The frequency compensator 103 performs a process of detecting a frequency error between the first single carrier signal output from the polarization separator 102 and the frequency of the local signal output from the frame synchronizer 101.
Further, the frequency compensation unit 103 performs a process of detecting a frequency error between the second single carrier signal output from the polarization separation unit 102 and the frequency of the local signal output from the frame synchronization unit 101.
The frequency compensation unit 103 performs a process of removing the frequency error included in the frequency of the first single carrier signal and removing the frequency error included in the frequency of the second single carrier signal.
The frequency compensation unit 103 outputs each of the first single carrier signal from which the frequency error has been removed and the second single carrier signal from which the frequency error has been removed to the phase compensation unit 104.
 位相補償部104は、例えば、図12に示す位相補償回路114で実現される。
 位相補償部104は、周波数補償部103から出力された第1のシングルキャリア信号の位相に含まれている位相雑音を除去するとともに、周波数補償部103から出力された第2のシングルキャリア信号の位相に含まれている位相雑音を除去する処理を実施する。
 位相補償部104は、位相雑音を除去した第1のシングルキャリア信号及び第2のシングルキャリア信号のそれぞれをIQ歪み補償部105に出力する。
The phase compensation unit 104 is realized by, for example, the phase compensation circuit 114 illustrated in FIG.
The phase compensator 104 removes phase noise included in the phase of the first single carrier signal output from the frequency compensator 103, and at the same time the phase of the second single carrier signal output from the frequency compensator 103. The process which removes the phase noise contained in is implemented.
The phase compensation unit 104 outputs each of the first single carrier signal and the second single carrier signal from which phase noise has been removed to the IQ distortion compensation unit 105.
 IQ歪み補償部105は、図11に示すように、パイロット信号検出部105a、歪み量推定部105b及び歪み補正部105eを備えている。
 パイロット信号検出部105aは、例えば、図12に示す信号検出回路115で実現される。
 パイロット信号検出部105aは、位相補償部104から出力された第1のシングルキャリア信号に含まれている第1のパイロット信号を検出し、第1のパイロット信号を歪み量推定部105bに出力する処理を実施する。
 また、パイロット信号検出部105aは、位相補償部104から出力された第2のシングルキャリア信号に含まれている第2のパイロット信号を検出し、第2のパイロット信号を歪み量推定部105bに出力する処理を実施する。
As shown in FIG. 11, the IQ distortion compensation unit 105 includes a pilot signal detection unit 105a, a distortion amount estimation unit 105b, and a distortion correction unit 105e.
The pilot signal detection unit 105a is realized by, for example, a signal detection circuit 115 illustrated in FIG.
The pilot signal detection unit 105a detects a first pilot signal included in the first single carrier signal output from the phase compensation unit 104, and outputs the first pilot signal to the distortion amount estimation unit 105b. To implement.
Pilot signal detection section 105a detects the second pilot signal included in the second single carrier signal output from phase compensation section 104, and outputs the second pilot signal to distortion amount estimation section 105b. Perform the process.
 歪み量推定部105bは、歪み量推定処理部105c及び平均化処理部105dを備えており、例えば、図12に示す歪み量推定回路116で実現される。
 歪み量推定部105bは、第1のパイロット信号と第1のシングルキャリア信号とから、第1のパイロット信号の振幅歪みの大きさである第1の振幅歪み量及び第1のパイロット信号の位相歪みの大きさである第1の位相歪み量をそれぞれ推定する処理を実施する。
 歪み量推定部105bは、第2のパイロット信号と第2のシングルキャリア信号とから、第2のパイロット信号の振幅歪みの大きさである第2の振幅歪み量及び第2のパイロット信号の位相歪みの大きさである第2の位相歪み量をそれぞれ推定する処理を実施する。
 歪み量推定部105bは、第1の振幅歪み量、第2の振幅歪み量、第1の位相歪み量及び第2の位相歪み量のそれぞれを歪み補正部105eに出力する。
The distortion amount estimation unit 105b includes a distortion amount estimation processing unit 105c and an averaging processing unit 105d, and is realized by, for example, the distortion amount estimation circuit 116 illustrated in FIG.
The distortion amount estimation unit 105b uses the first pilot signal and the first single carrier signal to calculate the first amplitude distortion amount that is the magnitude of the amplitude distortion of the first pilot signal and the phase distortion of the first pilot signal. The first phase distortion amount that is the size of each is estimated.
The distortion amount estimation unit 105b calculates a second amplitude distortion amount that is the magnitude of the amplitude distortion of the second pilot signal and the phase distortion of the second pilot signal from the second pilot signal and the second single carrier signal. A process of estimating the second phase distortion amount that is the magnitude of each of the first and second phase distortions is performed.
The distortion amount estimation unit 105b outputs each of the first amplitude distortion amount, the second amplitude distortion amount, the first phase distortion amount, and the second phase distortion amount to the distortion correction unit 105e.
 歪み量推定処理部105cは、位相補償部104から出力された第1のシングルキャリア信号及び第2のシングルキャリア信号のそれぞれを実数部と虚数部に分解する処理を実施する。
 第1のシングルキャリア信号の分解処理は、第1のパイロット信号が、当該第1のパイロット信号の複素共役信号に虚数単位が乗じられた信号と等しい信号であることを利用する。
 第2のシングルキャリア信号の分解処理は、第2のパイロット信号が、当該第2のパイロット信号の複素共役信号に虚数単位が乗じられた信号と等しい信号であることを利用する。
 歪み量推定処理部105cは、第1のシングルキャリア信号の虚数部から第1のパイロット信号の第1の振幅歪み量を推定し、第1のシングルキャリア信号の実数部から第1のパイロット信号の第1の位相歪み量を推定する処理を実施する。
 歪み量推定処理部105cは、第2のシングルキャリア信号の虚数部から第2のパイロット信号の第2の振幅歪み量を推定し、第2のシングルキャリア信号の実数部から第2のパイロット信号の第2の位相歪み量を推定する処理を実施する。
The distortion amount estimation processing unit 105 c performs processing for decomposing each of the first single carrier signal and the second single carrier signal output from the phase compensation unit 104 into a real part and an imaginary part.
The decomposition processing of the first single carrier signal uses that the first pilot signal is a signal equal to a signal obtained by multiplying the complex conjugate signal of the first pilot signal by an imaginary unit.
The decomposition processing of the second single carrier signal uses that the second pilot signal is a signal equal to a signal obtained by multiplying the complex conjugate signal of the second pilot signal by an imaginary unit.
The distortion amount estimation processing unit 105c estimates the first amplitude distortion amount of the first pilot signal from the imaginary part of the first single carrier signal, and calculates the first pilot signal from the real part of the first single carrier signal. A process of estimating the first phase distortion amount is performed.
The distortion amount estimation processing unit 105c estimates the second amplitude distortion amount of the second pilot signal from the imaginary part of the second single carrier signal, and calculates the second pilot signal from the real part of the second single carrier signal. A process of estimating the second phase distortion amount is performed.
 平均化処理部105dは、歪み量推定処理部105cによりN回推定された第1の振幅歪み量を平均化することで、第1の平均振幅歪み量を算出する処理を実施する。
 平均化処理部105dは、歪み量推定処理部105cによりN回推定された第1の位相歪み量を平均化することで、第1の平均位相歪み量を算出する処理を実施する。
 平均化処理部105dは、歪み量推定処理部105cによりN回推定された第2の振幅歪み量を平均化することで、第2の平均振幅歪み量を算出する処理を実施する。
 平均化処理部105dは、歪み量推定処理部105cによりN回推定された第2の位相歪み量を平均化することで、第2の平均位相歪み量を算出する処理を実施する。
The averaging processing unit 105d performs a process of calculating the first average amplitude distortion amount by averaging the first amplitude distortion amount estimated N times by the distortion amount estimation processing unit 105c.
The averaging processing unit 105d performs a process of calculating the first average phase distortion amount by averaging the first phase distortion amount estimated N times by the distortion amount estimation processing unit 105c.
The averaging processing unit 105d performs a process of calculating the second average amplitude distortion amount by averaging the second amplitude distortion amount estimated N times by the distortion amount estimation processing unit 105c.
The averaging processing unit 105d performs a process of calculating the second average phase distortion amount by averaging the second phase distortion amount estimated N times by the distortion amount estimation processing unit 105c.
 歪み補正部105eは、遅延部105f及び歪み補正処理部105gを備えており、例えば、図12に示す歪み補正回路117で実現される。
 歪み補正部105eは、平均化処理部105dにより算出された第1の平均振幅歪み量を用いて、第1のシングルキャリア信号の振幅歪みを補正する処理を実施する。
 また、歪み補正部105eは、平均化処理部105dにより算出された第1の平均位相歪み量を用いて、第1のシングルキャリア信号の位相歪みを補正する処理を実施する。
 歪み補正部105eは、平均化処理部105dにより算出された第2の平均振幅歪み量を用いて、第2のシングルキャリア信号の振幅歪みを補正する処理を実施する。
 また、歪み補正部105eは、平均化処理部105dにより算出された第2の平均位相歪み量を用いて、第2のシングルキャリア信号の位相歪みを補正する処理を実施する。
 歪み補正部105eは、補正した第1のシングルキャリア信号及び補正した第2のシングルキャリア信号のそれぞれを復調部106に出力する。
The distortion correction unit 105e includes a delay unit 105f and a distortion correction processing unit 105g, and is realized by, for example, the distortion correction circuit 117 illustrated in FIG.
The distortion correction unit 105e performs a process of correcting the amplitude distortion of the first single carrier signal using the first average amplitude distortion amount calculated by the averaging processing unit 105d.
In addition, the distortion correction unit 105e performs a process of correcting the phase distortion of the first single carrier signal using the first average phase distortion amount calculated by the averaging processing unit 105d.
The distortion correction unit 105e performs a process of correcting the amplitude distortion of the second single carrier signal using the second average amplitude distortion amount calculated by the averaging processing unit 105d.
In addition, the distortion correction unit 105e performs a process of correcting the phase distortion of the second single carrier signal using the second average phase distortion amount calculated by the averaging processing unit 105d.
The distortion correction unit 105e outputs each of the corrected first single carrier signal and the corrected second single carrier signal to the demodulation unit 106.
 遅延部105fは、パイロット信号検出部105aの処理時間Tと歪み量推定部105bの処理時間Tとの総時間T(=T+T)分だけ、第1のシングルキャリア信号及び第2のシングルキャリア信号のそれぞれを遅延する処理を実施する。
 パイロット信号検出部105aの処理時間Tは、第1のパイロット信号の検出と、第2のパイロット信号の検出とに要する時間である。 
 歪み量推定部105bの処理時間Tは、第1の平均振幅歪み量の算出と、第2の平均振幅歪み量の算出と、第1の平均位相歪み量の算出と、第2の平均位相歪み量の算出とに要する時間である。 
 遅延部105fは、遅延した第1のシングルキャリア信号及び遅延した第2のシングルキャリア信号のそれぞれを歪み補正処理部105gに出力する。
Delay unit 105f, only the total time T 6 (= T 4 + T 5) worth of processing time T 5 of the processing time T 4 and distortion amount estimating section 105b of the pilot signal detecting unit 105a, a first single-carrier signal and the A process of delaying each of the two single carrier signals is performed.
Processing time T 4 of the pilot signal detecting unit 105a includes a detection of the first pilot signal is detected and the time required for the second pilot signal.
Processing time T 5 of the strain amount estimating unit 105b, a calculation of the first average amplitude distortion amount, the calculation of the second average amplitude distortion amount, the calculation of the first average phase distortion amount, a second average phase This is the time required to calculate the amount of distortion.
The delay unit 105f outputs each of the delayed first single carrier signal and the delayed second single carrier signal to the distortion correction processing unit 105g.
 歪み補正処理部105gは、平均化処理部105dにより算出された第1の平均振幅歪み量を用いて、遅延部105fから出力された第1のシングルキャリア信号の振幅歪みを補正する処理を実施する。
 また、歪み補正処理部105gは、平均化処理部105dにより算出された第1の平均位相歪み量を用いて、振幅歪みを補正した第1のシングルキャリア信号の位相歪みを補正する処理を実施する。
 歪み補正処理部105gは、平均化処理部105dにより算出された第2の平均振幅歪み量を用いて、遅延部105fから出力された第2のシングルキャリア信号の振幅歪みを補正する処理を実施する。
 また、歪み補正処理部105gは、平均化処理部105dにより算出された第2の平均位相歪み量を用いて、振幅歪みを補正した第2のシングルキャリア信号の位相歪みを補正する処理を実施する。
The distortion correction processing unit 105g performs a process of correcting the amplitude distortion of the first single carrier signal output from the delay unit 105f using the first average amplitude distortion amount calculated by the averaging processing unit 105d. .
Further, the distortion correction processing unit 105g performs a process of correcting the phase distortion of the first single carrier signal in which the amplitude distortion is corrected, using the first average phase distortion amount calculated by the averaging processing unit 105d. .
The distortion correction processing unit 105g performs a process of correcting the amplitude distortion of the second single carrier signal output from the delay unit 105f using the second average amplitude distortion amount calculated by the averaging processing unit 105d. .
Further, the distortion correction processing unit 105g performs a process of correcting the phase distortion of the second single carrier signal in which the amplitude distortion is corrected, using the second average phase distortion amount calculated by the averaging processing unit 105d. .
 復調部106は、例えば、図12に示す復調回路118で実現される。
 復調部106は、歪み補正処理部105gにより振幅歪み及び位相歪みのそれぞれが補正された第1のシングルキャリア信号を復調する処理を実施する。
 復調部106は、歪み補正処理部105gにより振幅歪み及び位相歪みのそれぞれが補正された第2のシングルキャリア信号を復調する処理を実施する。
The demodulation unit 106 is realized by, for example, a demodulation circuit 118 illustrated in FIG.
The demodulation unit 106 performs a process of demodulating the first single carrier signal in which each of the amplitude distortion and the phase distortion is corrected by the distortion correction processing unit 105g.
The demodulation unit 106 performs a process of demodulating the second single carrier signal in which each of the amplitude distortion and the phase distortion is corrected by the distortion correction processing unit 105g.
 図10では、ディジタル信号処理部93の構成要素であるフレーム同期部101、偏波分離部102、周波数補償部103、位相補償部104、パイロット信号検出部105a、歪み量推定部105b、歪み補正部105e及び復調部106のそれぞれが、図12に示すような専用のハードウェアで実現されるものを想定している。即ち、ディジタル信号処理部93が、フレーム同期回路111、偏波分離回路112、周波数補償回路113、位相補償回路114、信号検出回路115、歪み量推定回路116、歪み補正回路117及び復調回路118で実現されるものを想定している。
 フレーム同期回路111、偏波分離回路112、周波数補償回路113、位相補償回路114、信号検出回路115、歪み量推定回路116、歪み補正回路117及び復調回路118は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、または、これらを組み合わせたものが該当する。
In FIG. 10, the frame synchronization unit 101, the polarization separation unit 102, the frequency compensation unit 103, the phase compensation unit 104, the pilot signal detection unit 105a, the distortion amount estimation unit 105b, and the distortion correction unit, which are components of the digital signal processing unit 93. It is assumed that each of 105e and demodulator 106 is realized by dedicated hardware as shown in FIG. That is, the digital signal processing unit 93 includes a frame synchronization circuit 111, a polarization separation circuit 112, a frequency compensation circuit 113, a phase compensation circuit 114, a signal detection circuit 115, a distortion amount estimation circuit 116, a distortion correction circuit 117, and a demodulation circuit 118. It is assumed that it will be realized.
The frame synchronization circuit 111, the polarization separation circuit 112, the frequency compensation circuit 113, the phase compensation circuit 114, the signal detection circuit 115, the distortion amount estimation circuit 116, the distortion correction circuit 117, and the demodulation circuit 118 are, for example, a single circuit or a composite circuit. , A programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
 ディジタル信号処理部93の構成要素は、専用のハードウェアで実現されるものに限るものではなく、ディジタル信号処理部13がソフトウェア、ファームウェア、または、ソフトウェアとファームウェアとの組み合わせで実現されるものであってもよい。
 ディジタル信号処理部93がソフトウェア又はファームウェアなどで実現される場合、フレーム同期部101、偏波分離部102、周波数補償部103、位相補償部104、パイロット信号検出部105a、歪み量推定部105b、歪み補正部105e及び復調部106の処理手順をコンピュータに実行させるためのプログラムが図4に示すメモリ52に格納される。そして、コンピュータのプロセッサ51がメモリ52に格納されているプログラムを実行する。
 また、図12では、ディジタル信号処理部93の構成要素のそれぞれが専用のハードウェアで実現される例を示し、図4では、ディジタル信号処理部93がソフトウェア又はファームウェアなどで実現される例を示している。しかし、ディジタル信号処理部93における一部の構成要素が専用のハードウェアで実現され、残りの構成要素がソフトウェアやファームウェアなどで実現されるものであってもよい。
The components of the digital signal processing unit 93 are not limited to those realized by dedicated hardware, but the digital signal processing unit 13 is realized by software, firmware, or a combination of software and firmware. May be.
When the digital signal processing unit 93 is realized by software or firmware, the frame synchronization unit 101, polarization separation unit 102, frequency compensation unit 103, phase compensation unit 104, pilot signal detection unit 105a, distortion amount estimation unit 105b, distortion A program for causing the computer to execute the processing procedures of the correction unit 105e and the demodulation unit 106 is stored in the memory 52 shown in FIG. Then, the computer processor 51 executes the program stored in the memory 52.
12 shows an example in which each component of the digital signal processing unit 93 is realized by dedicated hardware, and FIG. 4 shows an example in which the digital signal processing unit 93 is realized by software or firmware. ing. However, some components in the digital signal processing unit 93 may be realized by dedicated hardware, and the remaining components may be realized by software, firmware, or the like.
 次に、図10に示す光送受信システムの動作について説明する。
 光送信器81は、I軸及Q軸を有する複素平面に信号点が存在している第1のシングルキャリア信号を生成し、第1のシングルキャリア信号に第1のパイロット信号を含める。
 また、光送信器81は、I軸及Q軸を有する複素平面に信号点が存在している第2のシングルキャリア信号を生成し、第2のシングルキャリア信号に第2のパイロット信号を含める。
 第1のシングルキャリア信号は、第1の偏波についてのシングルキャリア信号であり、第2のシングルキャリア信号は、第2の偏波についてのシングルキャリア信号である。
 第1の偏波と第2の偏波は、互いに直交している偏波である。
 光送信器81は、第1のシングルキャリア信号と第2のシングルキャリア信号とを多重している偏波多重信号を生成する。
Next, the operation of the optical transmission / reception system shown in FIG. 10 will be described.
The optical transmitter 81 generates a first single carrier signal having signal points on a complex plane having the I axis and the Q axis, and includes the first pilot signal in the first single carrier signal.
The optical transmitter 81 generates a second single carrier signal having signal points on a complex plane having the I axis and the Q axis, and includes the second pilot signal in the second single carrier signal.
The first single carrier signal is a single carrier signal for the first polarization, and the second single carrier signal is a single carrier signal for the second polarization.
The first polarization and the second polarization are polarizations that are orthogonal to each other.
The optical transmitter 81 generates a polarization multiplexed signal in which the first single carrier signal and the second single carrier signal are multiplexed.
 ここで、図13は、第1のシングルキャリア信号と第2のシングルキャリア信号とが多重されている偏波多重信号のフレーム構成を示す説明図である。
 偏波多重信号のフレームは、バーストフレーム121である。
 バーストフレーム121には、フレーム同期信号を格納する第1のフレーム122と、第1の偏波と第2の偏波を分離するための偏波分離シーケンスを格納する第2のフレーム123とが配置されている。
 また、バーストフレーム121には、第1及び第2のパイロット信号のそれぞれを格納する第3のフレーム124と、第1及び第2のシングルキャリア信号におけるそれぞれのペイロードを格納する第4のフレーム125とが配置されている。
 さらに、バーストフレーム121には、フレーム終端信号を格納する第5のフレーム126が配置されている。
Here, FIG. 13 is an explanatory diagram showing a frame configuration of a polarization multiplexed signal in which the first single carrier signal and the second single carrier signal are multiplexed.
The frame of the polarization multiplexed signal is a burst frame 121.
In the burst frame 121, a first frame 122 that stores a frame synchronization signal and a second frame 123 that stores a polarization separation sequence for separating the first polarization and the second polarization are arranged. Has been.
The burst frame 121 includes a third frame 124 that stores the first and second pilot signals, and a fourth frame 125 that stores the payloads of the first and second single carrier signals. Is arranged.
Further, in the burst frame 121, a fifth frame 126 for storing the frame end signal is arranged.
 第1のフレーム122に格納されるフレーム同期信号は、光送信器81と光受信器82との間で事前に設定されている信号である。
 第2のフレームに格納される偏波分離シーケンスは、第1の偏波についての第1のシングルキャリア信号と、第2の偏波についての第2のシングルキャリア信号とを分離するための処理手順などを記述している。偏波分離シーケンス自体は公知であるため詳細な説明を省略する。
 第3のフレーム124に格納される第1及び第2のパイロット信号と、第4のフレーム125に格納されるペイロードとのそれぞれは、例えば、四値位相変調方式を用いて、変調されている。
 第1のパイロット信号は、光送信器81と光受信器82との間で事前に設定されている信号であり、当該第1のパイロット信号の複素共役信号に虚数単位が乗じられた信号と等しい信号である。
 例えば、n番目のサンプリングにおいて、第1のシングルキャリア信号に含める第1のパイロット信号をs1,nとすると、第1のパイロット信号s1,nは、以下の式(8)で表される。
Figure JPOXMLDOC01-appb-I000007
 式(8)において、s1,n は、第1のパイロット信号s1,nの複素共役信号である。
The frame synchronization signal stored in the first frame 122 is a signal set in advance between the optical transmitter 81 and the optical receiver 82.
The polarization separation sequence stored in the second frame is a processing procedure for separating the first single carrier signal for the first polarization and the second single carrier signal for the second polarization. Etc. are described. Since the polarization separation sequence itself is known, detailed description thereof is omitted.
Each of the first and second pilot signals stored in the third frame 124 and the payload stored in the fourth frame 125 is modulated using, for example, a four-level phase modulation method.
The first pilot signal is a signal set in advance between the optical transmitter 81 and the optical receiver 82, and is equal to a signal obtained by multiplying the complex conjugate signal of the first pilot signal by an imaginary unit. Signal.
For example, in the n-th sampling, when the first pilot signal included in the first single carrier signal is s 1, n , the first pilot signal s 1, n is expressed by the following equation (8). .
Figure JPOXMLDOC01-appb-I000007
In Equation (8), s 1, n * is a complex conjugate signal of the first pilot signal s 1, n .
 第2のパイロット信号は、光送信器81と光受信器82との間で事前に設定されている信号であり、当該第2のパイロット信号の複素共役信号に虚数単位が乗じられた信号と等しい信号である。
 例えば、n番目のサンプリングにおいて、第2のシングルキャリア信号に含める第2のパイロット信号をs2,nとすると、第2のパイロット信号s2,nは、以下の式(9)で表される。
Figure JPOXMLDOC01-appb-I000008
 式(9)において、s2,n は、第2のパイロット信号s2,nの複素共役信号である。
The second pilot signal is a signal set in advance between the optical transmitter 81 and the optical receiver 82, and is equal to a signal obtained by multiplying the complex conjugate signal of the second pilot signal by an imaginary unit. Signal.
For example, in the n-th sampling, when the second pilot signal included in the second single carrier signal is s 2, n , the second pilot signal s 2, n is expressed by the following equation (9). .
Figure JPOXMLDOC01-appb-I000008
In Equation (9), s 2, n * is a complex conjugate signal of the second pilot signal s 2, n .
 光送信器81は、光源81aから出力される光を用いて、偏波多重信号を光信号として、光ファイバ2に出力することで、偏波多重信号を光受信器82に送信する。
 光信号である偏波多重信号は、IQ歪み及び加法白色ガウス雑音のそれぞれが付加された上で、光受信器82に出力される。
 局発光源3は、局発光である局発信号を光受信器82に出力する。
The optical transmitter 81 transmits the polarization multiplexed signal to the optical receiver 82 by using the light output from the light source 81 a and outputting the polarization multiplexed signal as an optical signal to the optical fiber 2.
The polarization multiplexed signal, which is an optical signal, is output to the optical receiver 82 after adding IQ distortion and additive white Gaussian noise.
The local light source 3 outputs a local signal, which is local light, to the optical receiver 82.
 光電変換回路91は、光送信器81から送信された偏波多重信号を光信号から電気信号に変換し、電気信号である偏波多重信号をA/D変換器92に出力する。
 また、光電変換回路91は、局発光源3から出力された局発信号を光信号から電気信号に変換し、電気信号である局発信号をA/D変換器92に出力する。
The photoelectric conversion circuit 91 converts the polarization multiplexed signal transmitted from the optical transmitter 81 from an optical signal to an electrical signal, and outputs the polarization multiplexed signal that is an electrical signal to the A / D converter 92.
The photoelectric conversion circuit 91 converts the local signal output from the local light source 3 from an optical signal into an electrical signal, and outputs the local signal, which is an electrical signal, to the A / D converter 92.
 A/D変換器92は、光電変換回路91から偏波多重信号を受けると、偏波多重信号をアナログ信号からディジタル信号に変換し、ディジタル信号である偏波多重信号をフレーム同期部101に出力する。
 A/D変換器92は、光電変換回路91から局発信号を受けると、局発信号をアナログ信号からディジタル信号に変換し、ディジタル信号である局発信号をフレーム同期部101に出力する。
Upon receiving the polarization multiplexed signal from the photoelectric conversion circuit 91, the A / D converter 92 converts the polarization multiplexed signal from an analog signal to a digital signal, and outputs the polarization multiplexed signal, which is a digital signal, to the frame synchronization unit 101. To do.
When the A / D converter 92 receives the local oscillation signal from the photoelectric conversion circuit 91, the A / D converter 92 converts the local oscillation signal from an analog signal to a digital signal, and outputs the local oscillation signal which is a digital signal to the frame synchronization unit 101.
 フレーム同期部101は、A/D変換器92から出力された局発信号をA/D変換器92から出力された偏波多重信号に干渉させることで、偏波多重信号に含まれている信号列を判別する。
 フレーム同期部101は、偏波多重信号に含まれている信号列と、光送信器81と光受信器82との間で事前に設定されているフレーム同期信号とを比較することで、第1のフレーム122に格納されているフレーム同期信号を検出する。
 フレーム同期部101は、第1のフレーム122に格納されているフレーム同期信号を検出することで、偏波多重信号に含まれている第1のシングルキャリア信号及び第2のシングルキャリア信号のそれぞれの先頭を検出する。
 第1のシングルキャリア信号及び第2のシングルキャリア信号におけるそれぞれの先頭を検出する処理自体は、公知の技術であるため詳細な説明を省略する。
 フレーム同期部101は、第1のシングルキャリア信号の先頭の検出タイミングを示す第1の検出信号と、第2のシングルキャリア信号の先頭の検出タイミングを示す第2の検出信号とを偏波分離部102に出力する。
 また、フレーム同期部101は、偏波多重信号を偏波分離部102に出力し、局発信号を周波数補償部103に出力する。
The frame synchronization unit 101 causes the local oscillation signal output from the A / D converter 92 to interfere with the polarization multiplexed signal output from the A / D converter 92, so that the signal included in the polarization multiplexed signal Determine the column.
The frame synchronization unit 101 compares the signal sequence included in the polarization multiplexed signal with the frame synchronization signal set in advance between the optical transmitter 81 and the optical receiver 82, thereby The frame synchronization signal stored in the frame 122 is detected.
The frame synchronization unit 101 detects each of the first single carrier signal and the second single carrier signal included in the polarization multiplexed signal by detecting the frame synchronization signal stored in the first frame 122. Detect the beginning.
Since the processing itself for detecting the head of each of the first single carrier signal and the second single carrier signal is a known technique, detailed description thereof is omitted.
The frame synchronization unit 101 generates a first detection signal indicating the start detection timing of the first single carrier signal and a second detection signal indicating the start detection timing of the second single carrier signal. To 102.
Also, the frame synchronization unit 101 outputs the polarization multiplexed signal to the polarization separation unit 102 and outputs the local oscillation signal to the frequency compensation unit 103.
 偏波分離部102は、フレーム同期部101から第1の検出信号が出力されたタイミングにおいて、偏波多重信号の信号分離処理を実施する。
 また、偏波分離部102は、フレーム同期部101から第2の検出信号が出力されたタイミングにおいて、偏波多重信号の信号分離処理を実施する。
 偏波多重信号の信号分離処理としては、例えば、CMAを用いることができるが、信号分離処理自体は、公知の技術であるため詳細な説明を省略する。
 また、偏波多重信号の信号分離処理としては、第2のフレーム123に格納されている偏波分離シーケンスを用いるようにしてもよい。偏波分離シーケンスを用いる信号分離処理自体は、公知の技術であるため詳細な説明を省略する。
 偏波分離部102は、偏波多重信号の信号分離処理を実施することで、第1のシングルキャリア信号と第2のシングルキャリア信号とを分離すると、第1のシングルキャリア信号及び第2のシングルキャリア信号のそれぞれを周波数補償部103に出力する。
The polarization separation unit 102 performs signal separation processing of the polarization multiplexed signal at the timing when the first detection signal is output from the frame synchronization unit 101.
In addition, the polarization separation unit 102 performs signal separation processing of the polarization multiplexed signal at the timing when the second detection signal is output from the frame synchronization unit 101.
For example, CMA can be used as the signal separation process for the polarization multiplexed signal, but the signal separation process itself is a known technique, and thus detailed description thereof is omitted.
Further, as the signal separation processing of the polarization multiplexed signal, the polarization separation sequence stored in the second frame 123 may be used. Since the signal separation process itself using the polarization separation sequence is a known technique, a detailed description thereof will be omitted.
When the polarization separation unit 102 separates the first single carrier signal and the second single carrier signal by performing signal separation processing on the polarization multiplexed signal, the polarization separation unit 102 performs the first single carrier signal and the second single carrier signal. Each of the carrier signals is output to the frequency compensation unit 103.
 周波数補償部103は、偏波分離部102から出力された第1のシングルキャリア信号と、フレーム同期部101から出力された局発信号の周波数との周波数誤差Δf1を検出する。
 また、周波数補償部103は、偏波分離部102から出力された第2のシングルキャリア信号と、フレーム同期部101から出力された局発信号の周波数との周波数誤差Δf2を検出する。
 周波数補償部103は、第1のシングルキャリア信号の周波数に含まれている周波数誤差Δf1を除去するとともに、第2のシングルキャリア信号の周波数に含まれている周波数誤差Δf1を除去する。
 周波数補償部103は、周波数誤差Δf1を除去した第1のシングルキャリア信号及び周波数誤差Δf2を除去した第2のシングルキャリア信号のそれぞれを位相補償部104に出力する。
 周波数補償部103による周波数誤差の除去処理自体は、図1に示す周波数補償部22による周波数誤差の除去処理と同様であり、例えば、非特許文献1に開示されている。
The frequency compensation unit 103 detects a frequency error Δf1 between the first single carrier signal output from the polarization separation unit 102 and the frequency of the local signal output from the frame synchronization unit 101.
Further, the frequency compensation unit 103 detects a frequency error Δf2 between the second single carrier signal output from the polarization demultiplexing unit 102 and the frequency of the local signal output from the frame synchronization unit 101.
The frequency compensation unit 103 removes the frequency error Δf1 included in the frequency of the first single carrier signal and removes the frequency error Δf1 included in the frequency of the second single carrier signal.
The frequency compensation unit 103 outputs each of the first single carrier signal from which the frequency error Δf1 has been removed and the second single carrier signal from which the frequency error Δf2 has been removed to the phase compensation unit 104.
The frequency error removal processing itself by the frequency compensation unit 103 is the same as the frequency error removal processing by the frequency compensation unit 22 shown in FIG. 1, and is disclosed in Non-Patent Document 1, for example.
 位相補償部104は、周波数補償部103から出力された第1のシングルキャリア信号の位相に含まれている位相雑音ρ1を除去するとともに、周波数補償部103から出力された第2のシングルキャリア信号の位相に含まれている位相雑音ρ2を除去する。位相雑音ρ1,ρ2は、光送信器1の光源1a又は局発光源3から生じる雑音である。
 位相補償部104は、位相雑音を除去した第1のシングルキャリア信号及び位相雑音を除去した第2のシングルキャリア信号のそれぞれをIQ歪み補償部105に出力する。
 位相補償部104による位相雑音の除去処理自体は、図1に示す位相補償部23による位相雑音の除去処理と同様であり、例えば、非特許文献2に開示されている。
The phase compensator 104 removes the phase noise ρ1 included in the phase of the first single carrier signal output from the frequency compensator 103, and the second single carrier signal output from the frequency compensator 103. The phase noise ρ2 included in the phase is removed. The phase noises ρ1 and ρ2 are noises generated from the light source 1a or the local light source 3 of the optical transmitter 1.
The phase compensation unit 104 outputs each of the first single carrier signal from which phase noise has been removed and the second single carrier signal from which phase noise has been removed to the IQ distortion compensation unit 105.
The phase noise removal processing itself by the phase compensation unit 104 is the same as the phase noise removal processing by the phase compensation unit 23 illustrated in FIG. 1, and is disclosed in Non-Patent Document 2, for example.
 光送信器81が第1のシングルキャリア信号に含めている第1のパイロット信号は、式(8)に示す第1のパイロット信号s1,nである。したがって、位相補償部104からIQ歪み補償部105に出力される第1のシングルキャリア信号がr1,nであるとすると、第1のシングルキャリア信号r1,nは、以下の式(10)で表される。
Figure JPOXMLDOC01-appb-I000009
 式(10)において、g1,nハットは、n番目のサンプリングにおける第1のパイロット信号s1,nの振幅歪みの瞬時値、θ1,nハットは、n番目のサンプリングにおける第1のパイロット信号s1,nの位相歪みの瞬時値である。
The first pilot signal included in the first single carrier signal by the optical transmitter 81 is the first pilot signal s 1, n shown in Expression (8). Therefore, if the first single carrier signal output from the phase compensation unit 104 to the IQ distortion compensation unit 105 is r 1, n , the first single carrier signal r 1, n is expressed by the following equation (10): It is represented by
Figure JPOXMLDOC01-appb-I000009
In Equation (10), g 1, n hat is an instantaneous value of amplitude distortion of the first pilot signal s 1, n in the n-th sampling, and θ 1, n hat is the first pilot in the n-th sampling. This is an instantaneous value of the phase distortion of the signals s 1 and n .
 光送信器81が第2のシングルキャリア信号に含めている第2のパイロット信号は、式(9)に示す第2のパイロット信号s2,nである。したがって、位相補償部104からIQ歪み補償部105に出力される第2のシングルキャリア信号がr2,nであるとすると、第2のシングルキャリア信号r2,nは、以下の式(11)で表される。
Figure JPOXMLDOC01-appb-I000010
 式(11)において、g2,nハットは、n番目のサンプリングにおける第2のパイロット信号s2,nの振幅歪みの瞬時値、θ2,nハットは、n番目のサンプリングにおける第2のパイロット信号s2,nの位相歪みの瞬時値である。
The second pilot signal included in the second single carrier signal by the optical transmitter 81 is the second pilot signal s2 , n shown in Expression (9). Therefore, if the second single carrier signal output from the phase compensation unit 104 to the IQ distortion compensation unit 105 is r 2, n , the second single carrier signal r 2, n is expressed by the following equation (11). It is represented by
Figure JPOXMLDOC01-appb-I000010
In Expression (11), g 2, n hat is an instantaneous value of amplitude distortion of the second pilot signal s 2, n in the n-th sampling, and θ 2, n hat is a second pilot in the n-th sampling. This is an instantaneous value of the phase distortion of the signals s 2 and n .
 パイロット信号検出部105aは、位相補償部104から第1のシングルキャリア信号r1,nを受けると、第1のシングルキャリア信号r1,nに含まれている第1のパイロット信号s1,nを検出する。
 パイロット信号検出部105aは、位相補償部104から第2のシングルキャリア信号r2,nを受けると、第2のシングルキャリア信号r2,nに含まれている第2のパイロット信号s2,nを検出する。
 第1のパイロット信号s1,n及び第2のパイロット信号s2,nのそれぞれは、バーストフレーム121に含まれている第3のフレーム124に格納されている。
 パイロット信号検出部105aは、第1のパイロット信号s1,n及び第2のパイロット信号s2,nのそれぞれを歪み量推定処理部105cに出力する。
Upon receiving the first single carrier signal r 1, n from the phase compensation unit 104, the pilot signal detection unit 105a receives the first pilot signal s 1, n included in the first single carrier signal r 1, n. Is detected.
Upon receiving the second single carrier signal r 2, n from the phase compensation unit 104, the pilot signal detection unit 105a receives the second pilot signal s 2, n included in the second single carrier signal r 2, n. Is detected.
Each of the first pilot signals s 1, n and the second pilot signals s 2, n is stored in a third frame 124 included in the burst frame 121.
The pilot signal detection unit 105a outputs each of the first pilot signals s 1, n and the second pilot signals s 2, n to the distortion amount estimation processing unit 105c.
 歪み量推定処理部105cは、以下の式(12)及び式(13)に示すように、パイロット信号検出部105aから出力された第1のシングルキャリア信号r1,nを実数部Reと虚数部Imに分解する。
 第1のパイロット信号s1,nが、複素共役信号s1,n に虚数単位jが乗じられた信号と等しい信号であるため、式(10)に示す第1のシングルキャリア信号r1,nは、実数部Reと虚数部Imに分解することができる。
Figure JPOXMLDOC01-appb-I000011
As shown in the following formulas (12) and (13), the distortion amount estimation processing unit 105c converts the first single carrier signal r1 , n output from the pilot signal detection unit 105a into a real part Re and an imaginary part. Decomposes into Im.
Since the first pilot signal s 1, n is equal to the signal obtained by multiplying the complex conjugate signal s 1, n * by the imaginary unit j, the first single carrier signal r 1, shown in Equation (10) is used. n can be decomposed into a real part Re and an imaginary part Im.
Figure JPOXMLDOC01-appb-I000011
 歪み量推定処理部105cは、以下の式(14)及び式(15)に示すように、パイロット信号検出部105aから出力された第2のシングルキャリア信号r2,nを実数部Reと虚数部Imに分解する。
 第2のパイロット信号s2,nが、複素共役信号s2,n に虚数単位jが乗じられた信号と等しい信号であるため、式(11)に示す第2のシングルキャリア信号r2,nは、実数部Reと虚数部Imに分解することができる。
Figure JPOXMLDOC01-appb-I000012
As shown in the following formulas (14) and (15), the distortion amount estimation processing unit 105c converts the second single carrier signal r2 , n output from the pilot signal detection unit 105a into a real part Re and an imaginary part. Decomposes into Im.
Since the second pilot signal s 2, n is a signal equal to the signal obtained by multiplying the complex conjugate signal s 2, n * by the imaginary unit j, the second single carrier signal r 2, shown in Equation (11) is used. n can be decomposed into a real part Re and an imaginary part Im.
Figure JPOXMLDOC01-appb-I000012
 歪み量推定処理部105cは、第1のシングルキャリア信号r1,nの実数部Reから第1のパイロット信号s1,nの第1の位相歪み量θ1,nハットを推定し、第1の位相歪み量θ1,nハットを平均化処理部105dに出力する。
 また、歪み量推定処理部105cは、第1のシングルキャリア信号r1,nの虚数部Imと、推定した第1の位相歪み量θ1,nハットとから、第1のパイロット信号s1,nの第1の振幅歪み量g1,nハットを推定する。
 歪み量推定処理部105cは、第1の振幅歪み量g1,nハットを平均化処理部105dに出力する。
 第1のパイロット信号s1,nの第1の位相歪み量θ1,nハットは、第1のシングルキャリア信号r1,nの位相歪み量に相当し、第1のパイロット信号s1,nの第1の振幅歪み量g1,nハットは、第1のシングルキャリア信号r1,nの振幅歪み量に相当する。
The distortion amount estimation processing unit 105c estimates the first phase distortion amount θ 1, n hat of the first pilot signals s 1, n from the real part Re of the first single carrier signal r 1, n , and the first Of the phase distortion θ 1, n is output to the averaging processing unit 105d.
Further, the distortion amount estimation processing unit 105c generates the first pilot signal s 1, from the imaginary part Im of the first single carrier signal r 1, n and the estimated first phase distortion amount θ 1, n hat . estimating a first amplitude distortion amount g 1, n hat n.
The distortion amount estimation processing unit 105c outputs the first amplitude distortion amount g 1, n hat to the averaging processing unit 105d.
The first phase distortion amount theta 1, n hat of the first pilot signal s 1, n corresponds to the phase distortion of the first single-carrier signals r 1, n, the first pilot signal s 1, n The first amplitude distortion amount g 1, n hat corresponds to the amplitude distortion amount of the first single carrier signal r 1, n .
 歪み量推定処理部105cは、第2のシングルキャリア信号r2,nの実数部Reから第2のパイロット信号s2,nの第2の位相歪み量θ2,nハットを推定し、第2の位相歪み量θ2,nハットを平均化処理部105dに出力する。
 また、歪み量推定処理部105cは、第2のシングルキャリア信号r2,nの虚数部Imと、推定した第2の位相歪み量θ2,nハットとから、第2のパイロット信号s2,nの第2の振幅歪み量g2,nハットを推定する。
 歪み量推定処理部105cは、第2の振幅歪み量g2,nハットを平均化処理部105dに出力する。
 第2のパイロット信号s2,nの第2の位相歪み量θ2,nハットは、第2のシングルキャリア信号r2,nの位相歪み量に相当し、第2のパイロット信号s2,nの第2の振幅歪み量g2,nハットは、第2のシングルキャリア信号r2,nの振幅歪み量に相当する。
The distortion amount estimation processing unit 105c estimates the second phase distortion amount θ 2, n hat of the second pilot signal s 2, n from the real part Re of the second single carrier signal r 2, n , Of phase distortion θ 2, n is output to the averaging processing unit 105d.
Further, the distortion amount estimation processing unit 105c generates the second pilot signal s 2, from the imaginary part Im of the second single carrier signal r 2, n and the estimated second phase distortion amount θ 2, n hat . second amplitude distortion amount of n g 2, estimates the n hat.
The distortion amount estimation processing unit 105c outputs the second amplitude distortion amount g2 , n hat to the averaging processing unit 105d.
The second phase distortion amount theta 2, n-hat of the second pilot signal s 2, n corresponds to phase distortion amount of the second single-carrier signal r 2, n, the second pilot signal s 2, n The second amplitude distortion amount g 2, n hat corresponds to the amplitude distortion amount of the second single carrier signal r 2, n .
 平均化処理部105dは、歪み量推定処理部105cから出力された第1の位相歪み量θ1,nハット、第1の振幅歪み量g1,nハット、第2の位相歪み量θ2,nハット及び第2の振幅歪み量g2,nハットのそれぞれについて、平均化処理を行う。
 具体的には、平均化処理部105dは、以下の式(16)に示すように、歪み量推定処理部105cから出力された1番目~N番目のサンプリングにおけるN個の第1の位相歪み量θ1,nハットを平均化することで、第1の平均位相歪み量θハットを算出する。
Figure JPOXMLDOC01-appb-I000013
 平均化処理部105dは、以下の式(17)に示すように、歪み量推定処理部105cから出力された1番目~N番目のサンプリングにおけるN個の第1の振幅歪み量g1,nハットを平均化することで、第1の平均振幅歪み量gハットを算出する。
Figure JPOXMLDOC01-appb-I000014
The averaging processing unit 105d outputs the first phase distortion amount θ 1, n hat, the first amplitude distortion amount g 1, n hat, and the second phase distortion amount θ 2, output from the distortion amount estimation processing unit 105c . An averaging process is performed for each of the n hat and the second amplitude distortion amount g 2 and the n hat.
Specifically, the averaging processing unit 105d performs the N first phase distortion amounts in the first to Nth samplings output from the distortion amount estimation processing unit 105c as shown in the following equation (16). The first average phase distortion amount θ 1 hat is calculated by averaging θ 1, n hat.
Figure JPOXMLDOC01-appb-I000013
As shown in the following equation (17), the averaging processing unit 105d outputs the N first amplitude distortion amounts g 1, n hat in the first to N-th samplings output from the distortion amount estimation processing unit 105c. Is averaged to calculate the first average amplitude distortion amount g 1 hat.
Figure JPOXMLDOC01-appb-I000014
 平均化処理部105dは、以下の式(18)に示すように、歪み量推定処理部105cから出力された1番目~N番目のサンプリングにおけるN個の第2の位相歪み量θ2,nハットを平均化することで、第2の平均位相歪み量θハットを算出する。
Figure JPOXMLDOC01-appb-I000015
 平均化処理部105dは、以下の式(19)に示すように、歪み量推定処理部105cから出力された1番目~N番目のサンプリングにおけるN個の第2の振幅歪み量g2,nハットを平均化することで、第2の平均振幅歪み量gハットを算出する。
Figure JPOXMLDOC01-appb-I000016
 平均化処理部105dは、第1の平均位相歪み量θハット、第1の平均振幅歪み量gハット、第2の平均位相歪み量θハット及び第2の平均振幅歪み量gハットのそれぞれを歪み補正処理部105gに出力する。
As shown in the following formula (18), the averaging processing unit 105d outputs N second phase distortion amounts θ 2, n hat in the first to N-th samplings output from the distortion amount estimation processing unit 105c. Is averaged to calculate the second average phase distortion amount θ 2 hat.
Figure JPOXMLDOC01-appb-I000015
As shown in the following equation (19), the averaging processing unit 105d outputs the N second amplitude distortion amounts g 2, n hat in the first to Nth samplings output from the distortion amount estimation processing unit 105c. Is averaged to calculate the second average amplitude distortion amount g 2 hat.
Figure JPOXMLDOC01-appb-I000016
The averaging processing unit 105d includes a first average phase distortion amount θ 1 hat, a first average amplitude distortion amount g 1 hat, a second average phase distortion amount θ 2 hat, and a second average amplitude distortion amount g 2 hat. Are output to the distortion correction processing unit 105g.
 遅延部105fは、事前に、パイロット信号検出部105aの処理時間Tと歪み量推定部105bの処理時間Tとの総時間T(=T+T)を認識している。
 パイロット信号検出部105aの処理時間Tは、第1のパイロット信号s1,nの検出と、第2のパイロット信号s2,nの検出とに要する時間である。 
 歪み量推定部105bの処理時間Tは、第1の平均振幅歪み量gハットの算出と、第2の平均振幅歪み量gハットの算出と、第1の平均位相歪み量θハットの算出と、第2の平均位相歪み量θハットの算出とに要する時間である。 
 遅延部105fは、位相補償部104から第1のシングルキャリア信号r1,n及び第2のシングルキャリア信号r2,nのそれぞれを受けると、総時間Tだけ、第1のシングルキャリア信号r1,n及び第2のシングルキャリア信号r2,nのそれぞれを保持する。
 遅延部105fは、総時間Tだけ保持した第1のシングルキャリア信号r1,n及び総時間Tだけ保持した第2のシングルキャリア信号r2,nのそれぞれを歪み補正処理部105gに出力する。
Delay unit 105f in advance to, knows the total time T 6 (= T 4 + T 5) and the processing time T 5 of the processing time T 4 and distortion amount estimating section 105b of the pilot signal detecting unit 105a.
Processing time T 4 of the pilot signal detecting unit 105a includes a detection of the first pilot signal s 1, n, a second pilot signal s 2, n of the detection and the time required.
Processing time T 5 of the strain amount estimating unit 105b, a calculation of the first average amplitude distortion amount g 1 hat, the calculation of the second average amplitude distortion amount g 2 hat, the first average phase distortion amount theta 1 hat And the calculation of the second average phase distortion amount θ 2 hat.
When receiving the first single carrier signal r 1, n and the second single carrier signal r 2, n from the phase compensation unit 104, the delay unit 105f receives the first single carrier signal r for a total time T 6. 1, n and the second single carrier signal r 2, n are held.
Delay unit 105f is output to each of the first single-carrier signals r 1, n and a second single carrier signal r 2, n holding only the total time T 6 was held for a total time T 6 the distortion correction processing section 105g To do.
 歪み補正処理部105gは、平均化処理部105dから出力された第1の振幅歪み量gハットを用いて、遅延部105fから出力された第1のシングルキャリア信号r1,nの振幅歪みを補正する。
 また、歪み補正処理部105gは、平均化処理部105dから出力された第2の振幅歪み量gハットを用いて、遅延部105fから出力された第2のシングルキャリア信号r2,nの振幅歪みを補正する。
 歪み補正処理部105gによる振幅歪みの補正処理自体は、図2に示す歪み補正処理部24gによる振幅歪みの補正処理と同様である。
Distortion correction processing unit 105g uses the first amplitude distortion amount g 1 hat output from the averaging process unit 105d, the amplitude distortion of the first single-carrier signals r 1, n output from the delay unit 105f to correct.
Further, the distortion correction processing unit 105g uses the second amplitude distortion amount g 2 hat output from the averaging process unit 105d, the amplitude of the second single-carrier signal r 2, n output from the delay unit 105f Correct distortion.
The amplitude distortion correction processing itself by the distortion correction processing unit 105g is the same as the amplitude distortion correction processing by the distortion correction processing unit 24g shown in FIG.
 歪み補正処理部105gは、平均化処理部105dから出力された第1の位相歪み量θハットを用いて、振幅歪みを補正した第1のシングルキャリア信号r1,nの位相歪みを補正する。
 また、歪み補正処理部105gは、平均化処理部105dから出力された第2の位相歪み量θハットを用いて、振幅歪みを補正した第2のシングルキャリア信号r2,nの位相歪みを補正する。
 歪み補正処理部105gによる位相歪みの補正処理自体は、図2に示す歪み補正処理部24gによる位相歪みの補正処理と同様である。
The distortion correction processing unit 105 g corrects the phase distortion of the first single carrier signals r 1 and n in which the amplitude distortion is corrected, using the first phase distortion amount θ 1 hat output from the averaging processing unit 105 d. .
In addition, the distortion correction processing unit 105 g uses the second phase distortion amount θ 2 hat output from the averaging processing unit 105 d to calculate the phase distortion of the second single carrier signals r 2 and n corrected for amplitude distortion. to correct.
The phase distortion correction processing itself by the distortion correction processing unit 105g is the same as the phase distortion correction processing by the distortion correction processing unit 24g shown in FIG.
 ここでは、歪み補正処理部105gが、第1のシングルキャリア信号r1,nの振幅歪みを補正してから、第1のシングルキャリア信号r1,nの位相歪みを補正する例を示している。しかし、これは一例に過ぎず、歪み補正処理部105gが、先に第1のシングルキャリア信号r1,nの位相歪みを補正し、位相歪みを補正した第1のシングルキャリア信号r1,nの振幅歪みを補正するようにしてもよい。
 また同様に、歪み補正処理部105gが、先に第2のシングルキャリア信号r2,nの位相歪みを補正し、位相歪みを補正した第2のシングルキャリア信号r2,nの振幅歪みを補正するようにしてもよい。
 歪み補正処理部105gは、振幅歪み及び位相歪みのそれぞれを補正した第1のシングルキャリア信号r1,nを、第1のシングルキャリア信号r1,n’として復調部106に出力する。
 また、歪み補正処理部105gは、振幅歪み及び位相歪みのそれぞれを補正した第2のシングルキャリア信号r2,nを、第2のシングルキャリア信号r2,n’として復調部106に出力する。
Here, the distortion correction processing section 105g is shows an example in which after correcting the amplitude distortion of the first single-carrier signals r 1, n, to correct the phase distortion of the first single-carrier signals r 1, n . However, this is only an example, the distortion correction processing section 105g is, earlier the phase distortion of the first single-carrier signals r 1, n is corrected, the first single-carrier signals r 1, n obtained by correcting the phase distortion The amplitude distortion may be corrected.
Similarly, the distortion correction processing section 105g is, the phase distortion of the second single-carrier signal r 2, n is corrected earlier, correct the amplitude distortion of the second single-carrier signal r 2, n obtained by correcting the phase distortion You may make it do.
The distortion correction processing unit 105g outputs the first single carrier signal r 1, n obtained by correcting the amplitude distortion and the phase distortion to the demodulation unit 106 as the first single carrier signal r 1, n ′.
In addition, the distortion correction processing unit 105g outputs the second single carrier signal r2 , n obtained by correcting each of the amplitude distortion and the phase distortion to the demodulation unit 106 as the second single carrier signal r2 , n '.
 復調部106は、歪み補正処理部105gから出力された第1のシングルキャリア信号r1,n’の復調処理を実施して、I軸及Q軸を有する複素平面に存在している信号点を抽出する。
 復調部106は、歪み補正処理部105gから出力された第2のシングルキャリア信号r2,n’の復調処理を実施して、I軸及Q軸を有する複素平面に存在している信号点を抽出する。
 シングルキャリア信号の復調処理自体は、公知の技術であるため詳細な説明を省略する。
The demodulation unit 106 performs demodulation processing on the first single carrier signal r 1, n ′ output from the distortion correction processing unit 105g, and obtains signal points existing on the complex plane having the I axis and the Q axis. Extract.
The demodulator 106 performs a demodulation process on the second single carrier signal r 2, n ′ output from the distortion correction processor 105g, and obtains signal points existing on the complex plane having the I axis and the Q axis. Extract.
Since the single carrier signal demodulation process itself is a known technique, a detailed description thereof will be omitted.
 以上の実施の形態2は、第1の偏波についての第1のシングルキャリア信号と第2の偏波についての第2のシングルキャリア信号とを復調する光受信器82を示している。光受信器82は、図1に示す光受信器4と同様に、I軸及びQ軸を有する複素平面に信号点が存在しているシングルキャリア信号におけるIQ歪みを補償することができる。 Embodiment 2 described above shows the optical receiver 82 that demodulates the first single carrier signal for the first polarization and the second single carrier signal for the second polarization. Similar to the optical receiver 4 shown in FIG. 1, the optical receiver 82 can compensate IQ distortion in a single carrier signal in which signal points exist on a complex plane having an I axis and a Q axis.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, any combination of the embodiments, or any modification of any component in each embodiment, or omission of any component in each embodiment is possible. .
 この発明は、I軸及びQ軸を有する複素平面に信号点が存在しているシングルキャリア信号を復調する光受信器に適している。
 また、この発明は、I軸及びQ軸を有する複素平面に信号点が存在しているシングルキャリア信号を復調する光受信器を含む光送受信システムに適している。
The present invention is suitable for an optical receiver that demodulates a single carrier signal having a signal point on a complex plane having an I axis and a Q axis.
The present invention is also suitable for an optical transmission / reception system including an optical receiver that demodulates a single carrier signal in which signal points exist on a complex plane having an I axis and a Q axis.
 1 光送信器、1a 光源、2 光ファイバ、3 局発光源、4 光受信器、11 光電変換回路、12 A/D変換器、13 ディジタル信号処理部、21 フレーム同期部、22 周波数補償部、23 位相補償部、24 IQ歪み補償部、24a パイロット信号検出部、24b 歪み量推定部、24c 歪み量推定処理部、2d 平均化処理部、24e 歪み補正部、24f 遅延部、24g 歪み補正処理部、25 復調部、41 フレーム同期回路、42 周波数補償回路、43 位相補償回路、44 信号検出回路、45 歪み量推定回路、46 歪み補正回路、47 復調回路、51 プロセッサ、52 メモリ、61 バーストフレーム、62 第1のフレーム、63 第2のフレーム、64 第3のフレーム、65 第4のフレーム、71 IQ歪みが付加されていないシングルキャリア信号の周波数スペクトル、72 所望信号の周波数スペクトル、73 干渉信号の周波数スペクトル、81 光送信器、81a 光源、82 光受信器、91 光電変換回路、92 A/D変換器、93 ディジタル信号処理部、101 フレーム同期部、102 偏波分離部、103 周波数補償部、104 位相補償部、105 IQ歪み補償部、105a パイロット信号検出部、105b 歪み量推定部、105c 歪み量推定処理部、105d 平均化処理部、105e 歪み補正部、105f 遅延部、105g 歪み補正処理部、106 復調部、111 フレーム同期回路、112 偏波分離回路、113 周波数補償回路、114 位相補償回路、115 信号検出回路、116 歪み量推定回路、117 歪み補正回路、118 復調回路、121 バーストフレーム、122 第1のフレーム、123 第2のフレーム、124 第3のフレーム、125 第4のフレーム、126 第5のフレーム。 1 optical transmitter, 1a light source, 2 optical fiber, 3 local light source, 4 optical receiver, 11 photoelectric conversion circuit, 12 A / D converter, 13 digital signal processing unit, 21 frame synchronization unit, 22 frequency compensation unit, 23 phase compensation unit, 24 IQ distortion compensation unit, 24a pilot signal detection unit, 24b distortion amount estimation unit, 24c distortion amount estimation processing unit, 2d averaging processing unit, 24e distortion correction unit, 24f delay unit, 24g distortion correction processing unit 25 demodulator, 41 frame synchronization circuit, 42 frequency compensation circuit, 43 phase compensation circuit, 44 signal detection circuit, 45 distortion amount estimation circuit, 46 distortion correction circuit, 47 demodulation circuit, 51 processor, 52 memory, 61 burst frame, 62 1st frame, 63 2nd frame, 64 3rd frame, 65 4 frame, 71 frequency spectrum of single carrier signal without IQ distortion, 72 frequency spectrum of desired signal, 73 frequency spectrum of interference signal, 81 optical transmitter, 81a light source, 82 optical receiver, 91 photoelectric conversion circuit , 92 A / D converter, 93 digital signal processing unit, 101 frame synchronization unit, 102 polarization separation unit, 103 frequency compensation unit, 104 phase compensation unit, 105 IQ distortion compensation unit, 105a pilot signal detection unit, 105b distortion amount Estimator, 105c distortion amount estimation processor, 105d averaging processor, 105e distortion correction unit, 105f delay unit, 105g distortion correction processor, 106 demodulator, 111 frame synchronization circuit, 112 polarization separation circuit, 113 frequency compensation circuit 114 phase compensation circuit, 1 5 signal detection circuit, 116 distortion amount estimation circuit, 117 distortion correction circuit, 118 demodulation circuit, 121 burst frame, 122 first frame, 123 second frame, 124 third frame, 125 fourth frame, 126th 5 frames.

Claims (9)

  1.  同位相軸及び直交位相軸を有する複素平面に信号点が存在しているシングルキャリア信号に含まれているパイロット信号を検出するパイロット信号検出部と、
     前記パイロット信号検出部により検出されたパイロット信号と前記シングルキャリア信号とから、前記パイロット信号の振幅歪み量及び前記パイロット信号の位相歪み量をそれぞれ推定する歪み量推定部と、
     前記歪み量推定部により推定された振幅歪み量を用いて、前記シングルキャリア信号の振幅歪みを補正し、前記歪み量推定部により推定された位相歪み量を用いて、前記シングルキャリア信号の位相歪みを補正する歪み補正部と、
     前記歪み補正部により振幅歪み及び位相歪みのそれぞれが補正されたシングルキャリア信号を復調する復調部と
     を備えた光受信器。
    A pilot signal detector that detects a pilot signal included in a single carrier signal in which a signal point exists in a complex plane having the same phase axis and a quadrature phase axis;
    A distortion amount estimation unit for estimating an amplitude distortion amount of the pilot signal and a phase distortion amount of the pilot signal from the pilot signal detected by the pilot signal detection unit and the single carrier signal;
    The amplitude distortion of the single carrier signal is corrected using the amplitude distortion amount estimated by the distortion amount estimation unit, and the phase distortion of the single carrier signal is corrected using the phase distortion amount estimated by the distortion amount estimation unit. A distortion correction unit for correcting
    An optical receiver comprising: a demodulator that demodulates a single carrier signal in which each of amplitude distortion and phase distortion is corrected by the distortion correction unit.
  2.  前記歪み量推定部は、前記パイロット信号検出部により検出されたパイロット信号と、当該パイロット信号の複素共役信号に虚数単位が乗じられた信号とが等しい信号であることに基づいて、前記シングルキャリア信号を実数部と虚数部に分解し、前記虚数部から前記パイロット信号の振幅歪み量を推定し、前記実数部から前記パイロット信号の位相歪み量を推定することを特徴とする請求項1記載の光受信器。 The distortion amount estimation unit is based on the fact that the pilot signal detected by the pilot signal detection unit and the signal obtained by multiplying the complex conjugate signal of the pilot signal by an imaginary unit are the same signal. 2. The light according to claim 1, wherein an amplitude distortion amount of the pilot signal is estimated from the imaginary part, and a phase distortion amount of the pilot signal is estimated from the real part. Receiver.
  3.  前記歪み補正部は、
     前記パイロット信号を検出するための前記パイロット信号検出部の処理時間と、前記振幅歪み量及び前記位相歪み量のそれぞれを推定するための前記歪み量推定部の処理時間との総時間分だけ、前記シングルキャリア信号を遅延し、
     前記振幅歪み量を用いて、前記遅延したシングルキャリア信号の振幅歪みを補正するとともに、前記位相歪み量を用いて、前記振幅歪みを補正したシングルキャリア信号の位相歪みを補正し、あるいは、前記位相歪み量を用いて、前記遅延したシングルキャリア信号の位相歪みを補正するとともに、前記振幅歪み量を用いて、前記位相歪みを補正したシングルキャリア信号の振幅歪みを補正することを特徴とする請求項1記載の光受信器。
    The distortion correction unit
    For the total time of the processing time of the pilot signal detection unit for detecting the pilot signal and the processing time of the distortion amount estimation unit for estimating each of the amplitude distortion amount and the phase distortion amount, Delay single carrier signal,
    Using the amplitude distortion amount, the amplitude distortion of the delayed single carrier signal is corrected, and using the phase distortion amount, the phase distortion of the single carrier signal in which the amplitude distortion is corrected, or the phase The phase distortion of the delayed single carrier signal is corrected using a distortion amount, and the amplitude distortion of the single carrier signal whose phase distortion is corrected is corrected using the amplitude distortion amount. The optical receiver according to 1.
  4.  第1の偏波についての第1のシングルキャリア信号と、前記第1の偏波と直交している第2の偏波についての第2のシングルキャリア信号とのそれぞれが、前記複素平面に信号点が存在しているシングルキャリア信号であり、
     前記第1のシングルキャリア信号と、前記第2のシングルキャリア信号とが多重されている偏波多重信号の信号分離処理を実施して、分離した前記第1のシングルキャリア信号と、分離した前記第2のシングルキャリア信号とを前記パイロット信号検出部に出力する偏波分離部を備え、
     前記パイロット信号検出部は、前記分離した第1のシングルキャリア信号に含まれている第1のパイロット信号を検出するとともに、前記分離した第2のシングルキャリア信号に含まれている第2のパイロット信号を検出し、
     前記歪み量推定部は、前記第1のパイロット信号と前記分離した第1のシングルキャリア信号とから、前記第1のパイロット信号の第1の振幅歪み量及び前記第1のパイロット信号の第1の位相歪み量をそれぞれ推定するとともに、前記第2のパイロット信号と前記分離した第2のシングルキャリア信号とから、前記第2のパイロット信号の第2の振幅歪み量及び前記第2のパイロット信号の第2の位相歪み量をそれぞれ推定し、
     前記歪み補正部は、前記第1の振幅歪み量を用いて、前記分離した第1のシングルキャリア信号の振幅歪みを補正し、前記第1の位相歪み量を用いて、前記分離した第1のシングルキャリア信号の位相歪みを補正し、前記第2の振幅歪み量を用いて、前記分離した第2のシングルキャリア信号の振幅歪みを補正し、前記第2の位相歪み量を用いて、前記分離した第2のシングルキャリア信号の位相歪みを補正し、
     前記復調部は、前記歪み補正部により振幅歪み及び位相歪みのそれぞれが補正された第1のシングルキャリア信号を復調し、前記歪み補正部により振幅歪み及び位相歪みのそれぞれが補正された第2のシングルキャリア信号を復調することを特徴とする請求項1記載の光受信器。
    Each of the first single carrier signal for the first polarization and the second single carrier signal for the second polarization orthogonal to the first polarization are signal points on the complex plane. Is a single carrier signal that exists,
    Signal separation processing of a polarization multiplexed signal in which the first single carrier signal and the second single carrier signal are multiplexed is performed to separate the first single carrier signal and the separated first single carrier signal. A polarization separation unit that outputs two single carrier signals to the pilot signal detection unit;
    The pilot signal detection unit detects a first pilot signal included in the separated first single carrier signal and a second pilot signal included in the separated second single carrier signal. Detect
    The distortion amount estimator includes a first amplitude distortion amount of the first pilot signal and a first of the first pilot signal from the first pilot signal and the separated first single carrier signal. The phase distortion amount is estimated, and the second amplitude distortion amount of the second pilot signal and the second pilot signal of the second pilot signal are calculated from the second pilot signal and the separated second single carrier signal. 2 estimate the amount of phase distortion,
    The distortion correction unit corrects the amplitude distortion of the separated first single carrier signal using the first amplitude distortion amount, and uses the first phase distortion amount to separate the separated first first carrier signal. The phase distortion of the single carrier signal is corrected, the amplitude distortion of the separated second single carrier signal is corrected using the second amplitude distortion amount, and the separation is performed using the second phase distortion amount. Corrected phase distortion of the second single carrier signal,
    The demodulation unit demodulates the first single carrier signal in which each of the amplitude distortion and the phase distortion is corrected by the distortion correction unit, and the second that the amplitude distortion and the phase distortion are corrected by the distortion correction unit. 2. The optical receiver according to claim 1, wherein a single carrier signal is demodulated.
  5.  同位相軸及び直交位相軸を有する複素平面に信号点が存在しているシングルキャリア信号にパイロット信号を含め、前記パイロット信号を含んでいるシングルキャリア信号を送信する光送信器と、
     前記光送信器から送信されたシングルキャリア信号を受信し、前記受信したシングルキャリア信号を復調する光受信器とを備え、
     前記光受信器は、
     前記受信したシングルキャリア信号に含まれているパイロット信号を検出するパイロット信号検出部と、
     前記パイロット信号検出部により検出されたパイロット信号と前記受信したシングルキャリア信号とから、前記パイロット信号の振幅歪み量及び前記パイロット信号の位相歪み量をそれぞれ推定する歪み量推定部と、
     前記歪み量推定部により推定された振幅歪み量を用いて、前記受信したシングルキャリア信号の振幅歪みを補正し、前記歪み量推定部により推定された位相歪み量を用いて、前記受信したシングルキャリア信号の位相歪みを補正する歪み補正部と、
     前記歪み補正部により振幅歪み及び位相歪みのそれぞれが補正されたシングルキャリア信号を復調する復調部と
     を備えていることを特徴とする光送受信システム。
    An optical transmitter that includes a pilot signal in a single carrier signal in which signal points exist on a complex plane having the same phase axis and a quadrature phase axis, and transmits the single carrier signal including the pilot signal;
    An optical receiver that receives a single carrier signal transmitted from the optical transmitter and demodulates the received single carrier signal;
    The optical receiver is:
    A pilot signal detector for detecting a pilot signal included in the received single carrier signal;
    A distortion amount estimation unit for estimating an amplitude distortion amount of the pilot signal and a phase distortion amount of the pilot signal from the pilot signal detected by the pilot signal detection unit and the received single carrier signal;
    The amplitude distortion amount of the received single carrier signal is corrected using the amplitude distortion amount estimated by the distortion amount estimation unit, and the received single carrier is corrected using the phase distortion amount estimated by the distortion amount estimation unit. A distortion correction unit for correcting the phase distortion of the signal;
    An optical transmission / reception system comprising: a demodulator that demodulates a single carrier signal in which each of amplitude distortion and phase distortion is corrected by the distortion correction unit.
  6.  前記光送信器は、前記シングルキャリア信号に含めるパイロット信号が、当該パイロット信号の複素共役信号に虚数単位が乗じられた信号と等しい信号であることを特徴とする請求項5記載の光送受信システム。 6. The optical transmission / reception system according to claim 5, wherein the optical transmitter includes a pilot signal included in the single carrier signal equal to a signal obtained by multiplying a complex conjugate signal of the pilot signal by an imaginary unit.
  7.  前記光送信器は、
     フレーム同期信号を格納する第1のフレームと、パイロット信号を格納する第2のフレームと、シングルキャリア信号のペイロードを格納する第3のフレームとが配置されているバーストフレームを生成し、
     前記バーストフレームのシングルキャリア信号を前記光受信器に送信することを特徴とする請求項5記載の光送受信システム。
    The optical transmitter is
    Generating a burst frame in which a first frame storing a frame synchronization signal, a second frame storing a pilot signal, and a third frame storing a payload of a single carrier signal are arranged;
    6. The optical transmission / reception system according to claim 5, wherein a single carrier signal of the burst frame is transmitted to the optical receiver.
  8.  前記光送信器は、前記パイロット信号及び前記シングルキャリア信号のペイロードのそれぞれを四値位相変調方式で変調し、変調したパイロット信号を前記第2のフレームに格納し、変調したペイロードを前記第3のフレームに格納することを特徴とする請求項7記載の光送受信システム。 The optical transmitter modulates each of the pilot signal and the payload of the single carrier signal by a quaternary phase modulation method, stores the modulated pilot signal in the second frame, and transmits the modulated payload to the third payload. 8. The optical transmission / reception system according to claim 7, wherein the optical transmission / reception system is stored in a frame.
  9.  前記光受信器は、
     局発光源から出力された局発光を用いて、前記光送信器から送信されたシングルキャリア信号の先頭を検出するフレーム同期部と、
     前記フレーム同期部により先頭が検出されたシングルキャリア信号の周波数と、前記局発光の周波数との周波数誤差を検出し、前記シングルキャリア信号の周波数に含まれている前記周波数誤差を除去する周波数補償部と、
     前記フレーム同期部により先頭が検出されたシングルキャリア信号の位相に含まれている位相雑音を除去する位相補償部と
     を備えていることを特徴とする請求項5記載の光送受信システム。
    The optical receiver is:
    A frame synchronization unit that detects the head of a single carrier signal transmitted from the optical transmitter using local light output from a local light source;
    A frequency compensation unit that detects a frequency error between the frequency of the single carrier signal whose head is detected by the frame synchronization unit and the frequency of the local light, and removes the frequency error included in the frequency of the single carrier signal When,
    6. The optical transmission / reception system according to claim 5, further comprising: a phase compensation unit that removes phase noise included in a phase of a single carrier signal whose head is detected by the frame synchronization unit.
PCT/JP2018/009267 2018-03-09 2018-03-09 Optical receiver and optical transmission/reception system WO2019171587A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018538898A JP6479278B1 (en) 2018-03-09 2018-03-09 Optical receiver and optical transmission / reception system
PCT/JP2018/009267 WO2019171587A1 (en) 2018-03-09 2018-03-09 Optical receiver and optical transmission/reception system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/009267 WO2019171587A1 (en) 2018-03-09 2018-03-09 Optical receiver and optical transmission/reception system

Publications (1)

Publication Number Publication Date
WO2019171587A1 true WO2019171587A1 (en) 2019-09-12

Family

ID=65655813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009267 WO2019171587A1 (en) 2018-03-09 2018-03-09 Optical receiver and optical transmission/reception system

Country Status (2)

Country Link
JP (1) JP6479278B1 (en)
WO (1) WO2019171587A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4033299A4 (en) * 2019-09-18 2022-11-23 KDDI Corporation Reception device and program
WO2023119627A1 (en) * 2021-12-24 2023-06-29 日本電信電話株式会社 Gain adjustment method, optical reception device, and computer program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508781A (en) * 2004-07-29 2008-03-21 エスケーテレコム カンパニー リミテッド Switching timing signal generation method and system for separating transmission signals by optical repeater of mobile communication network using TDD method and OFDM modulation method
JP2010268210A (en) * 2009-05-14 2010-11-25 Nippon Telegr & Teleph Corp <Ntt> Light receiver and light receiving method
WO2013105538A1 (en) * 2012-01-10 2013-07-18 川崎マイクロエレクトロニクス株式会社 Method for iq mismatch compensation, and rf transceiver device
WO2016148158A1 (en) * 2015-03-17 2016-09-22 Mitsubishi Electric Corporation Method and receiver for decoding optical signal
WO2018042838A1 (en) * 2016-08-29 2018-03-08 Nttエレクトロニクス株式会社 Optical transmission distortion compensation device, optical transmission distortion compensation method, and communication device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109520A (en) * 2009-11-19 2011-06-02 Hitachi Kokusai Electric Inc Receiver
CN103684600B (en) * 2012-09-14 2016-08-31 富士通株式会社 The updating device of equalizer coefficients and method and receiver and optical communication system
JP2015005803A (en) * 2013-06-19 2015-01-08 日本電信電話株式会社 Digital signal processor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508781A (en) * 2004-07-29 2008-03-21 エスケーテレコム カンパニー リミテッド Switching timing signal generation method and system for separating transmission signals by optical repeater of mobile communication network using TDD method and OFDM modulation method
JP2010268210A (en) * 2009-05-14 2010-11-25 Nippon Telegr & Teleph Corp <Ntt> Light receiver and light receiving method
WO2013105538A1 (en) * 2012-01-10 2013-07-18 川崎マイクロエレクトロニクス株式会社 Method for iq mismatch compensation, and rf transceiver device
WO2016148158A1 (en) * 2015-03-17 2016-09-22 Mitsubishi Electric Corporation Method and receiver for decoding optical signal
WO2018042838A1 (en) * 2016-08-29 2018-03-08 Nttエレクトロニクス株式会社 Optical transmission distortion compensation device, optical transmission distortion compensation method, and communication device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4033299A4 (en) * 2019-09-18 2022-11-23 KDDI Corporation Reception device and program
US11689295B2 (en) 2019-09-18 2023-06-27 Kddi Corporation Reception apparatus and non-transitory computer readable medium
WO2023119627A1 (en) * 2021-12-24 2023-06-29 日本電信電話株式会社 Gain adjustment method, optical reception device, and computer program

Also Published As

Publication number Publication date
JPWO2019171587A1 (en) 2020-04-16
JP6479278B1 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
US10038507B2 (en) Optical transmission system, phase compensation method, and optical reception apparatus
US8655191B2 (en) Symbol timing recovery in polarization division multiplexed coherent optical transmission system
US8073345B2 (en) Frequency estimation in an intradyne optical receiver
JP5651990B2 (en) Digital coherent receiver and receiving method
US8095019B2 (en) Digital clock and data recovery scheme
JP5287516B2 (en) Digital coherent optical receiver
JP4893672B2 (en) Coherent optical communication apparatus and method
Zhou et al. Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence
EP2930865B1 (en) Transmitter quadrature imbalance compensation at a coherent optical receiver
KR101278025B1 (en) Receiving apparatus with OFDM I/Q imbalance compensation and method thereof
US9031420B2 (en) Digital optical coherent transmission device
EP2583424B1 (en) Method for phase and oscillator frequency estimation
US20120087680A1 (en) Method for carrier frequency recovery and optical intradyne coherent receiver
US20180076903A1 (en) Receiving device and phase-error compensation method
JP6479278B1 (en) Optical receiver and optical transmission / reception system
CN108076002B (en) Offset drift compensation device, received signal recovery device, and receiver
EP2109272B1 (en) Method and device for phase recovery and communication system comprising such device
US8634726B2 (en) Polarization and differential-group-delay insensitive digital timing error detection for polarization-multiplexed coherent optical systems
KR20030027046A (en) Frequency correction with symmetrical phase adjustment in each OFDM symbol
CN111095823B (en) Optical transmitter/receiver and optical transmitting/receiving method
JP6885343B2 (en) Digital signal processing circuit and optical space communication system
JP4869859B2 (en) Pilot signal receiver
Chung et al. Compensation of IQ mismatch in optical PDM–OFDM coherent receivers
EP4325746A1 (en) Coherent receiver with polarization diversity clock detection
Chen et al. Real-time IQ imbalance compensation for coherent optical OFDM transmission

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018538898

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908811

Country of ref document: EP

Kind code of ref document: A1