WO2019171515A1 - Converter device - Google Patents

Converter device Download PDF

Info

Publication number
WO2019171515A1
WO2019171515A1 PCT/JP2018/008852 JP2018008852W WO2019171515A1 WO 2019171515 A1 WO2019171515 A1 WO 2019171515A1 JP 2018008852 W JP2018008852 W JP 2018008852W WO 2019171515 A1 WO2019171515 A1 WO 2019171515A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
substrate
switching element
power supply
group
Prior art date
Application number
PCT/JP2018/008852
Other languages
French (fr)
Japanese (ja)
Inventor
章斗 田中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/008852 priority Critical patent/WO2019171515A1/en
Priority to JP2020504571A priority patent/JP6896143B2/en
Publication of WO2019171515A1 publication Critical patent/WO2019171515A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to a converter device including a plurality of reactors.
  • the output of the rectifier circuit is branched into a plurality of current paths, and a plurality of series circuits including a reactor and a switching element are provided in parallel with each other.
  • the switching element is off, the current output from the reactor provided in each of the plurality of series circuits is supplied to the smoothing capacitor via the backflow prevention diode.
  • the switching elements provided in each of the plurality of series circuits are driven with different phases. Thereby, the current flowing through each of the plurality of switching elements is suppressed, and the ripple component of the current output from the reactor is suppressed.
  • a switching element composed of silicon (Si) or silicon carbide (SiC) is used as the switching element.
  • Si silicon
  • SiC silicon carbide
  • the size of the switching element becomes large, and since a large amount of heat is generated during operation, it is necessary to take heat dissipation measures such as providing a heat sink. For this reason, the mounting area of the booster circuit is increased on the power supply circuit board, and the mounting area of the booster circuit occupies a large proportion on the power supply circuit board, and the mountable area of elements other than the booster circuit is reduced. It was.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a converter device capable of expanding the mountable area of elements other than the elements constituting the booster circuit in the power supply circuit board. To do.
  • a converter device includes a first substrate, a second substrate that is a substrate different from the first substrate, and a reactor.
  • the first substrate includes a rectifier circuit that rectifies an AC voltage output from an AC power supply, and a smoothing capacitor that smoothes the output voltage of the booster that boosts the output voltage of the rectifier circuit.
  • the second substrate includes a switching element that constitutes a booster together with the reactor, and a backflow prevention element that constitutes a booster together with the reactor and the switching element.
  • the converter device according to the present invention has an effect that the mountable area of elements other than the elements constituting the booster circuit can be increased in the power supply circuit board.
  • FIG. 1 is a configuration diagram illustrating an example of a converter device according to an embodiment of the present invention.
  • the converter device 100 according to the present embodiment is a device that converts AC power supplied from an AC power source 1 that is a single-phase AC power source into DC power and supplies the DC power to a load 2.
  • Converter device 100 is applicable to, for example, a power converter of a motor drive device, an air conditioner, a refrigerator, and a heat pump hot water supply device.
  • the converter device 100 shown in FIG. 1 includes a power circuit board 10, another board 20 that is a board different from the power circuit board 10, and a reactor group 31.
  • the power circuit board 10 corresponds to the first board.
  • the separate substrate 20 corresponds to the second substrate.
  • the separate substrate 20 includes a MOSFET (Metal Oxide Semiconductor-Field Effect Transistor) group 21, which is a switching element group configured using gallium nitride (GaN), and a diode group 22.
  • the reactor group 31, the MOSFET group 21, and the diode group 22 constitute a boosting unit 40.
  • the power supply circuit board 10 is provided between an inrush current prevention circuit 11 for preventing an inrush current, and the AC power supply 1 and the inrush current prevention circuit 11, and is superposed on a current output from the AC power supply 1.
  • a noise filter 12 that reduces noise, and a rectifier circuit 13 that rectifies an AC voltage output from the AC power supply 1 via the noise filter 12 and the inrush current prevention circuit 11 are provided.
  • the power supply circuit board 10 includes a smoothing capacitor 14 that smoothes the voltage boosted by the booster 40 and a shunt resistor 15 for detecting a bus current.
  • the power supply circuit board 10 includes a bus current detection circuit 16 that is a current detection circuit connected to the negative output terminal 13 b of the rectifier circuit 13, and a control unit 17.
  • Examples of the rectifier circuit 13 include a full-wave rectifier circuit configured by combining four diodes.
  • the rectifier circuit 13 may be configured by combining MOSFETs other than diodes.
  • the positive terminal of the smoothing capacitor 14 is connected to the positive DC bus P.
  • the negative terminal of the smoothing capacitor 14 is connected to the negative DC bus N.
  • the booster 40 boosts the voltage rectified by the rectifier circuit 13.
  • the MOSFET group 21 includes MOSFETs 21a, 21b, and 21c that are three switching elements.
  • the diode group 22 includes three backflow prevention diodes 22a, 22b, and 22c.
  • the backflow prevention diodes 22a, 22b, and 22c are examples of backflow prevention elements.
  • the drain of the MOSFET 21a is connected to the anode of the backflow prevention diode 22a, and the source of the MOSFET 21a is connected to one end of the shunt resistor 15. The other end of the shunt resistor 15 is connected to the negative DC bus N.
  • a PWM (Pulse Width Modulation) drive signal X generated by the control unit 17 is input to the gate of the MOSFET 21a.
  • the PWM drive signal X is a signal for turning on and off the MOSFET 21a.
  • the cathode of the backflow prevention diode 22 a is connected to the positive side DC bus P of the power circuit board 10.
  • the drain of the MOSFET 21b is connected to the anode of the backflow prevention diode 22b, and the source of the MOSFET 21b is connected to one end of the shunt resistor 15.
  • the PWM drive signal Y generated by the control unit 17 is input to the gate of the MOSFET 21b.
  • the PWM drive signal Y is a signal for turning on and off the MOSFET 21b.
  • the cathode of the backflow prevention diode 22 b is connected to the positive DC bus P of the power circuit board 10.
  • the drain of the MOSFET 21c is connected to the anode of the backflow prevention diode 22c, and the source of the MOSFET 21c is connected to one end of the shunt resistor 15.
  • the PWM drive signal Z generated by the control unit 17 is input to the gate of the MOSFET 21c.
  • the PWM drive signal Z is a signal for turning on and off the MOSFET 21c.
  • the cathode of the backflow prevention diode 22 c is connected to the positive DC bus P of the power circuit board 10.
  • the reactor group 31 includes three reactors 31a, 31b, and 31c connected in parallel. One end of each of the three reactors 31a, 31b, 31c is connected to the positive output terminal 13a of the rectifier circuit 13. The other end of the reactor 31a is connected to the MOSFET 21a and the backflow prevention diode 22a. The other end of the reactor 31b is connected to the MOSFET 21b and the backflow prevention diode 22b. The other end of the reactor 31c is connected to the MOSFET 21c and the backflow prevention diode 22c. Each of the three reactors 31a, 31b, and 31c uses a core with a small harmonic iron loss.
  • the core is controlled by the control unit 17 by the boost unit 40, the power conversion efficiency of the converter device 100, and the boost It may be selected in consideration of factors such as the amount of heat generated in the unit 40, the weight of the converter device 100, and the volume of the converter device 100.
  • the reactor group 31 may be provided at a location different from the power circuit board 10 and the separate substrate 20 or may be mounted on the separate substrate 20.
  • the booster 40 is configured by connecting boosters 41a, 41b, and 41c in parallel with reactors 31a, 31b, and 31c, MOSFETs 21a, 21b, and 21c, and backflow prevention diodes 22a, 22b, and 22c, respectively. .
  • converter device 100 configured in this way, AC power supplied from AC power supply 1 is input to rectifier circuit 13 via noise filter 12 and inrush current prevention circuit 11, and AC power input to rectifier circuit 13 is input. Full-wave rectification.
  • the power that has been full-wave rectified by the rectifier circuit 13 is boosted by the booster 40, and the power boosted by the booster 40 is smoothed by the smoothing capacitor 14 and supplied to the load 2.
  • the MOSFET group 21 and the diode group 22 constituting the boosting unit 40 are provided on the separate substrate 20 which is a substrate different from the power supply circuit substrate 10.
  • the mountable area of elements other than the elements constituting the boosting unit 40 is increased. Can be enlarged.
  • the power circuit board 10 and the separate board 20 are different boards. Therefore, it is not necessary to significantly change the wiring pattern of the power circuit board 10 between the case where the booster 40 is necessary and the case where it is not necessary, and the power circuit board 10 can be easily shared.
  • the MOSFET group 21 is a switching element group configured using GaN.
  • the size of the switching element is reduced and the amount of heat generated during operation is small as compared with the switching element configured using Si or SiC.
  • the switching element can be downsized, the heat sink can be downsized, or a heat sink can be eliminated, and the separate substrate 20 can be downsized.
  • the heat sink provided on the separate substrate 20 can be reduced in size, and for example, a heat sink different from the heat sink provided on the inverter device can be used, so that the degree of freedom of arrangement of the heat sink provided on the separate substrate 20 is increased. Can do.
  • the boosting unit 40 includes three boosting circuits each including a reactor, a switching element, and a backflow prevention diode.
  • the boosting unit 40 includes a reactor, a switching element, and a backflow prevention diode.
  • One boosting circuit may be provided, or two or four or more boosting circuits including a reactor, a switching element, and a backflow prevention diode may be provided in parallel.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit and change the part.

Abstract

This converter device (100) is provided with: a power supply circuit board (10); a separate board (20) which is separate from the power supply circuit board (10); and a reactor group (31). The power supply circuit board (10) is provided with: a rectifying circuit (13) which rectifies an AC voltage output from an AC power supply (1); and a smoothing capacitor (14) which smooths an output voltage from a voltage boosting unit (40) that boosts an output voltage from the rectifying circuit (13). The separate board (20) is provided with: a MOSFET group (21) which constitutes the voltage boosting unit (40) together with the reactor group (31); and a diode group (22) which constitutes the voltage boosting unit (40) together with the reactor group (31) and the MOSFET group (21).

Description

コンバータ装置Converter device
 本発明は、複数のリアクタを備えたコンバータ装置に関する。 The present invention relates to a converter device including a plurality of reactors.
 特許文献1に開示される電源装置には、整流回路の出力が複数の電流経路に分岐され、リアクタおよびスイッチング素子で構成される複数の直列回路が互いに並列に設けられる。スイッチング素子がオフのときに、複数の直列回路のそれぞれに設けられたリアクタから出力される電流は、逆流防止ダイオードを介して平滑コンデンサに供給される。また、複数の直列回路のそれぞれに設けられたスイッチング素子は、それぞれが異なる位相で駆動される。これにより、複数のスイッチング素子のそれぞれに流れる電流が抑制されるとともに、リアクタから出力される電流のリプル成分が抑制される。 In the power supply device disclosed in Patent Document 1, the output of the rectifier circuit is branched into a plurality of current paths, and a plurality of series circuits including a reactor and a switching element are provided in parallel with each other. When the switching element is off, the current output from the reactor provided in each of the plurality of series circuits is supplied to the smoothing capacitor via the backflow prevention diode. The switching elements provided in each of the plurality of series circuits are driven with different phases. Thereby, the current flowing through each of the plurality of switching elements is suppressed, and the ripple component of the current output from the reactor is suppressed.
特開2007-195282号公報JP 2007-195282 A
 しかしながら、従来のリアクタおよびスイッチング素子で構成される昇圧回路では、スイッチング素子としてシリコン(Si)またはシリコンカーバイド(SiC)を用いて構成されたスイッチング素子が用いられている。SiまたはSiCを用いて構成されたスイッチング素子では、スイッチング素子のサイズが大きくなり、また動作時の発熱量が多いためヒートシンクを設けるといった放熱対策を講じる必要がある。このため、電源回路基板において昇圧回路の実装面積が大きくなり、電源回路基板において昇圧回路の実装面積が大きな割合を占めて、昇圧回路以外の素子の実装可能面積が小さくなってしまうといった問題があった。 However, in a booster circuit composed of a conventional reactor and switching element, a switching element composed of silicon (Si) or silicon carbide (SiC) is used as the switching element. In a switching element configured using Si or SiC, the size of the switching element becomes large, and since a large amount of heat is generated during operation, it is necessary to take heat dissipation measures such as providing a heat sink. For this reason, the mounting area of the booster circuit is increased on the power supply circuit board, and the mounting area of the booster circuit occupies a large proportion on the power supply circuit board, and the mountable area of elements other than the booster circuit is reduced. It was.
 本発明は、上記に鑑みてなされたものであって、電源回路基板において、昇圧回路を構成する素子以外の他の素子などの実装可能面積を拡大させることができるコンバータ装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a converter device capable of expanding the mountable area of elements other than the elements constituting the booster circuit in the power supply circuit board. To do.
 上述した課題を解決し、目的を達成するために、本発明にかかるコンバータ装置は、第1の基板と、第1の基板とは別の基板である第2の基板と、リアクタとを備える。第1の基板は、交流電源から出力される交流電圧を整流する整流回路と、整流回路の出力電圧を昇圧する昇圧部の出力電圧を平滑する平滑コンデンサとを備える。第2の基板は、リアクタとともに、昇圧部を構成する、スイッチング素子と、リアクタおよびスイッチング素子とともに、昇圧部を構成する、逆流防止素子とを備える。 In order to solve the above-described problems and achieve the object, a converter device according to the present invention includes a first substrate, a second substrate that is a substrate different from the first substrate, and a reactor. The first substrate includes a rectifier circuit that rectifies an AC voltage output from an AC power supply, and a smoothing capacitor that smoothes the output voltage of the booster that boosts the output voltage of the rectifier circuit. The second substrate includes a switching element that constitutes a booster together with the reactor, and a backflow prevention element that constitutes a booster together with the reactor and the switching element.
 本発明にかかるコンバータ装置は、電源回路基板において、昇圧回路を構成する素子以外の他の素子などの実装可能面積を拡大させることができるという効果を奏する。 The converter device according to the present invention has an effect that the mountable area of elements other than the elements constituting the booster circuit can be increased in the power supply circuit board.
本発明の実施の形態にかかるコンバータ装置の一例を示す構成図The block diagram which shows an example of the converter apparatus concerning embodiment of this invention
 以下に、本発明の実施の形態にかかるコンバータ装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a converter device according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態.
 図1は、本発明の実施の形態にかかるコンバータ装置の一例を示す構成図である。本実施の形態にかかるコンバータ装置100は、単相交流電源である交流電源1から供給される交流電力を直流電力に変換し、負荷2に供給する装置である。コンバータ装置100は、たとえばモータ駆動装置、空気調和装置、冷蔵庫およびヒートポンプ給湯装置の電力変換装置に適用可能である。
Embodiment.
FIG. 1 is a configuration diagram illustrating an example of a converter device according to an embodiment of the present invention. The converter device 100 according to the present embodiment is a device that converts AC power supplied from an AC power source 1 that is a single-phase AC power source into DC power and supplies the DC power to a load 2. Converter device 100 is applicable to, for example, a power converter of a motor drive device, an air conditioner, a refrigerator, and a heat pump hot water supply device.
 図1に示す、コンバータ装置100は、電源回路基板10と、電源回路基板10とは別の基板である別基板20と、リアクタ群31とを備える。電源回路基板10は、第1の基板に対応する。別基板20は、第2の基板に対応する。別基板20は、窒化ガリウム(GaN)を用いて構成されたスイッチング素子群であるMOSFET(Metal Oxide Semiconductor-Field Effect Transistor)群21と、ダイオード群22とを備える。リアクタ群31と、MOSFET群21と、ダイオード群22とは、昇圧部40を構成する。 The converter device 100 shown in FIG. 1 includes a power circuit board 10, another board 20 that is a board different from the power circuit board 10, and a reactor group 31. The power circuit board 10 corresponds to the first board. The separate substrate 20 corresponds to the second substrate. The separate substrate 20 includes a MOSFET (Metal Oxide Semiconductor-Field Effect Transistor) group 21, which is a switching element group configured using gallium nitride (GaN), and a diode group 22. The reactor group 31, the MOSFET group 21, and the diode group 22 constitute a boosting unit 40.
 電源回路基板10は、突入電流を防止するための突入電流防止回路11と、交流電源1と突入電流防止回路11との間に設けられ、交流電源1から出力される電流に重畳している高周波ノイズを低減するノイズフィルタ12と、ノイズフィルタ12および突入電流防止回路11を介して交流電源1から出力される交流電圧を整流する整流回路13とを備える。電源回路基板10は、昇圧部40で昇圧された電圧を平滑する平滑コンデンサ14と、母線電流検出用のシャント抵抗15とを備える。電源回路基板10は、整流回路13の負側出力端子13bに接続された電流検出回路である母線電流検出回路16と、制御部17とを備える。 The power supply circuit board 10 is provided between an inrush current prevention circuit 11 for preventing an inrush current, and the AC power supply 1 and the inrush current prevention circuit 11, and is superposed on a current output from the AC power supply 1. A noise filter 12 that reduces noise, and a rectifier circuit 13 that rectifies an AC voltage output from the AC power supply 1 via the noise filter 12 and the inrush current prevention circuit 11 are provided. The power supply circuit board 10 includes a smoothing capacitor 14 that smoothes the voltage boosted by the booster 40 and a shunt resistor 15 for detecting a bus current. The power supply circuit board 10 includes a bus current detection circuit 16 that is a current detection circuit connected to the negative output terminal 13 b of the rectifier circuit 13, and a control unit 17.
 整流回路13としては、4つのダイオードを組み合わせて構成される全波整流回路を例示できる。整流回路13は、ダイオード以外にもMOSFETを組み合わせて構成したものでもよい。 Examples of the rectifier circuit 13 include a full-wave rectifier circuit configured by combining four diodes. The rectifier circuit 13 may be configured by combining MOSFETs other than diodes.
 平滑コンデンサ14の正極端子は、正側直流母線Pに接続される。平滑コンデンサ14の負極端子は、負側直流母線Nに接続される。 The positive terminal of the smoothing capacitor 14 is connected to the positive DC bus P. The negative terminal of the smoothing capacitor 14 is connected to the negative DC bus N.
 昇圧部40は、整流回路13で整流された電圧を昇圧する。MOSFET群21は、3つのスイッチング素子であるMOSFET21a,21b,21cで構成される。ダイオード群22は、3つの逆流防止ダイオード22a,22b,22cで構成される。逆流防止ダイオード22a,22b,22cは、逆流防止素子の一例である。 The booster 40 boosts the voltage rectified by the rectifier circuit 13. The MOSFET group 21 includes MOSFETs 21a, 21b, and 21c that are three switching elements. The diode group 22 includes three backflow prevention diodes 22a, 22b, and 22c. The backflow prevention diodes 22a, 22b, and 22c are examples of backflow prevention elements.
 MOSFET21aのドレインは、逆流防止ダイオード22aのアノードに接続され、MOSFET21aのソースは、シャント抵抗15の一端に接続される。シャント抵抗15の他端は負側直流母線Nに接続される。MOSFET21aのゲートには、制御部17で生成されたPWM(Pulse Width Modulation)駆動信号Xが入力される。PWM駆動信号Xは、MOSFET21aをオンオフ動作させる信号である。逆流防止ダイオード22aのカソードは、電源回路基板10の正側直流母線Pに接続される。 The drain of the MOSFET 21a is connected to the anode of the backflow prevention diode 22a, and the source of the MOSFET 21a is connected to one end of the shunt resistor 15. The other end of the shunt resistor 15 is connected to the negative DC bus N. A PWM (Pulse Width Modulation) drive signal X generated by the control unit 17 is input to the gate of the MOSFET 21a. The PWM drive signal X is a signal for turning on and off the MOSFET 21a. The cathode of the backflow prevention diode 22 a is connected to the positive side DC bus P of the power circuit board 10.
 MOSFET21bのドレインは、逆流防止ダイオード22bのアノードに接続され、MOSFET21bのソースは、シャント抵抗15の一端に接続される。MOSFET21bのゲートには、制御部17で生成されたPWM駆動信号Yが入力される。PWM駆動信号Yは、MOSFET21bをオンオフ動作させる信号である。逆流防止ダイオード22bのカソードは、電源回路基板10の正側直流母線Pに接続される。 The drain of the MOSFET 21b is connected to the anode of the backflow prevention diode 22b, and the source of the MOSFET 21b is connected to one end of the shunt resistor 15. The PWM drive signal Y generated by the control unit 17 is input to the gate of the MOSFET 21b. The PWM drive signal Y is a signal for turning on and off the MOSFET 21b. The cathode of the backflow prevention diode 22 b is connected to the positive DC bus P of the power circuit board 10.
 MOSFET21cのドレインは、逆流防止ダイオード22cのアノードに接続され、MOSFET21cのソースは、シャント抵抗15の一端に接続される。MOSFET21cのゲートには、制御部17で生成されたPWM駆動信号Zが入力される。PWM駆動信号Zは、MOSFET21cをオンオフ動作させる信号である。逆流防止ダイオード22cのカソードは、電源回路基板10の正側直流母線Pに接続される。 The drain of the MOSFET 21c is connected to the anode of the backflow prevention diode 22c, and the source of the MOSFET 21c is connected to one end of the shunt resistor 15. The PWM drive signal Z generated by the control unit 17 is input to the gate of the MOSFET 21c. The PWM drive signal Z is a signal for turning on and off the MOSFET 21c. The cathode of the backflow prevention diode 22 c is connected to the positive DC bus P of the power circuit board 10.
 リアクタ群31は、並列接続された3つのリアクタ31a,31b,31cで構成される。3つのリアクタ31a,31b,31cのそれぞれの一端は整流回路13の正側出力端子13aに接続される。リアクタ31aの他端は、MOSFET21aおよび逆流防止ダイオード22aに接続される。リアクタ31bの他端は、MOSFET21bおよび逆流防止ダイオード22bに接続される。リアクタ31cの他端は、MOSFET21cおよび逆流防止ダイオード22cに接続される。3つのリアクタ31a,31b,31cのそれぞれには高調波鉄損が小さいコアが用いられるが、当該コアは、制御部17による昇圧部40の制御方法と、コンバータ装置100の電力変換効率と、昇圧部40で発生する熱量と、コンバータ装置100の重量と、コンバータ装置100の体積といった要素を考慮して選定したものであればよい。リアクタ群31は、電源回路基板10および別基板20とは別の場所に設けられていてもよく、別基板20に実装されていてもよい。 The reactor group 31 includes three reactors 31a, 31b, and 31c connected in parallel. One end of each of the three reactors 31a, 31b, 31c is connected to the positive output terminal 13a of the rectifier circuit 13. The other end of the reactor 31a is connected to the MOSFET 21a and the backflow prevention diode 22a. The other end of the reactor 31b is connected to the MOSFET 21b and the backflow prevention diode 22b. The other end of the reactor 31c is connected to the MOSFET 21c and the backflow prevention diode 22c. Each of the three reactors 31a, 31b, and 31c uses a core with a small harmonic iron loss. The core is controlled by the control unit 17 by the boost unit 40, the power conversion efficiency of the converter device 100, and the boost It may be selected in consideration of factors such as the amount of heat generated in the unit 40, the weight of the converter device 100, and the volume of the converter device 100. The reactor group 31 may be provided at a location different from the power circuit board 10 and the separate substrate 20 or may be mounted on the separate substrate 20.
 昇圧部40は、リアクタ31a,31b,31cと、MOSFET21a,21b,21cと、逆流防止ダイオード22a,22b,22cとで構成される昇圧回路41a,41b,41cがそれぞれ並列に接続されて構成される。 The booster 40 is configured by connecting boosters 41a, 41b, and 41c in parallel with reactors 31a, 31b, and 31c, MOSFETs 21a, 21b, and 21c, and backflow prevention diodes 22a, 22b, and 22c, respectively. .
 このように構成されたコンバータ装置100では、交流電源1から供給される交流電力がノイズフィルタ12および突入電流防止回路11を介して整流回路13に入力され、整流回路13に入力された交流電力が全波整流される。整流回路13で全波整流された電力は昇圧部40で昇圧され、昇圧部40で昇圧された電力は平滑コンデンサ14で平滑されて負荷2に供給される。 In converter device 100 configured in this way, AC power supplied from AC power supply 1 is input to rectifier circuit 13 via noise filter 12 and inrush current prevention circuit 11, and AC power input to rectifier circuit 13 is input. Full-wave rectification. The power that has been full-wave rectified by the rectifier circuit 13 is boosted by the booster 40, and the power boosted by the booster 40 is smoothed by the smoothing capacitor 14 and supplied to the load 2.
 本実施の形態によれば、昇圧部40を構成する、MOSFET群21と、ダイオード群22とは、電源回路基板10とは別の基板である別基板20が備えている。これにより、MOSFET群21と、ダイオード群22とを、電源回路基板10に実装する必要がないため、電源回路基板10において、昇圧部40を構成する素子以外の他の素子などの実装可能面積を拡大させることができる。 According to the present embodiment, the MOSFET group 21 and the diode group 22 constituting the boosting unit 40 are provided on the separate substrate 20 which is a substrate different from the power supply circuit substrate 10. Thereby, since it is not necessary to mount the MOSFET group 21 and the diode group 22 on the power supply circuit board 10, in the power supply circuit board 10, the mountable area of elements other than the elements constituting the boosting unit 40 is increased. Can be enlarged.
 本実施の形態によれば、電源回路基板10と、別基板20とを別の基板としている。これにより、昇圧部40が必要な場合と不要な場合とで、電源回路基板10の配線パターンなどを大幅に変更する必要がなく、電源回路基板10の共通化が容易となる。 According to the present embodiment, the power circuit board 10 and the separate board 20 are different boards. Thereby, it is not necessary to significantly change the wiring pattern of the power circuit board 10 between the case where the booster 40 is necessary and the case where it is not necessary, and the power circuit board 10 can be easily shared.
 本実施の形態によれば、MOSFET群21は、GaNを用いて構成されたスイッチング素子群である。GaNを用いて構成されたスイッチング素子では、SiまたはSiCを用いて構成されたスイッチング素子と比較して、スイッチング素子のサイズが小さくなり、また動作時の発熱量が少ない。これにより、スイッチング素子の小型化、およびヒートシンクの小型化またはヒートシンクが不要となり、別基板20の小型化を図ることができる。さらに、別基板20に設けるヒートシンクを、小型化することができるとともに、たとえばインバータ装置に設けるヒートシンクとは別のヒートシンクとすることができるため、別基板20に設けるヒートシンクの配置の自由度を高めることができる。 According to the present embodiment, the MOSFET group 21 is a switching element group configured using GaN. In the switching element configured using GaN, the size of the switching element is reduced and the amount of heat generated during operation is small as compared with the switching element configured using Si or SiC. As a result, the switching element can be downsized, the heat sink can be downsized, or a heat sink can be eliminated, and the separate substrate 20 can be downsized. Furthermore, the heat sink provided on the separate substrate 20 can be reduced in size, and for example, a heat sink different from the heat sink provided on the inverter device can be used, so that the degree of freedom of arrangement of the heat sink provided on the separate substrate 20 is increased. Can do.
 なお、本実施の形態にかかる昇圧部40は、リアクタ、スイッチング素子および逆流防止ダイオードで構成される昇圧回路が3つ並列に設けられたものであるが、リアクタ、スイッチング素子および逆流防止ダイオードで構成される昇圧回路が1つ設けられたもの、または、リアクタ、スイッチング素子および逆流防止ダイオードで構成される昇圧回路が2つ、または4つ以上並列に設けられたものであってもよい。 The boosting unit 40 according to the present embodiment includes three boosting circuits each including a reactor, a switching element, and a backflow prevention diode. The boosting unit 40 includes a reactor, a switching element, and a backflow prevention diode. One boosting circuit may be provided, or two or four or more boosting circuits including a reactor, a switching element, and a backflow prevention diode may be provided in parallel.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略および変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit and change the part.
 1 交流電源、2 負荷、10 電源回路基板、11 突入電流防止回路、12 ノイズフィルタ、13 整流回路、13a 正側出力端子、13b 負側出力端子、14 平滑コンデンサ、15 シャント抵抗、16 母線電流検出回路、17 制御部、20 別基板、21 MOSFET群、21a,21b,21c MOSFET、22 ダイオード群、22a,22b,22c 逆流防止ダイオード、31 リアクタ群、31a,31b,31c リアクタ、40 昇圧部、41a,41b,41c 昇圧回路、100 コンバータ装置。 1 AC power supply, 2 loads, 10 power circuit board, 11 inrush current prevention circuit, 12 noise filter, 13 rectifier circuit, 13a positive output terminal, 13b negative output terminal, 14 smoothing capacitor, 15 shunt resistor, 16 bus current detection Circuit, 17 control unit, 20 separate substrate, 21 MOSFET group, 21a, 21b, 21c MOSFET, 22 diode group, 22a, 22b, 22c backflow prevention diode, 31 reactor group, 31a, 31b, 31c reactor, 40 boosting unit, 41a , 41b, 41c booster circuit, 100 converter device.

Claims (3)

  1.  第1の基板と、
     前記第1の基板とは別の基板である第2の基板と、
     リアクタとを備え、
     前記第1の基板は、
     交流電源から出力される交流電圧を整流する整流回路と、
     前記整流回路の出力電圧を昇圧する昇圧部の出力電圧を平滑する平滑コンデンサとを備え、
     前記第2の基板は、
     前記リアクタとともに、前記昇圧部を構成する、スイッチング素子と、
     前記リアクタおよび前記スイッチング素子とともに、前記昇圧部を構成する、逆流防止素子とを備える
     コンバータ装置。
    A first substrate;
    A second substrate which is a substrate different from the first substrate;
    A reactor,
    The first substrate is
    A rectifier circuit for rectifying the AC voltage output from the AC power supply;
    A smoothing capacitor that smoothes the output voltage of the booster that boosts the output voltage of the rectifier circuit;
    The second substrate is
    A switching element that constitutes the boosting unit together with the reactor;
    The converter apparatus provided with the backflow prevention element which comprises the said pressure | voltage rise part with the said reactor and the said switching element.
  2.  複数の前記リアクタを備え、
     前記第2の基板は、
     複数の前記スイッチング素子と、
     複数の前記逆流防止素子とを備え、
     前記昇圧部は、前記リアクタと前記スイッチング素子と前記逆流防止素子とで構成される昇圧回路が複数段並列に接続されて構成される
     請求項1に記載のコンバータ装置。
    Comprising a plurality of the reactors;
    The second substrate is
    A plurality of the switching elements;
    A plurality of the backflow prevention elements,
    The converter device according to claim 1, wherein the boosting unit is configured by connecting a plurality of boosting circuits including the reactor, the switching element, and the backflow prevention element in parallel.
  3.  前記スイッチング素子は、窒化ガリウムを用いて構成されたスイッチング素子である
     請求項1または2に記載のコンバータ装置。
    The converter device according to claim 1, wherein the switching element is a switching element configured using gallium nitride.
PCT/JP2018/008852 2018-03-07 2018-03-07 Converter device WO2019171515A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/008852 WO2019171515A1 (en) 2018-03-07 2018-03-07 Converter device
JP2020504571A JP6896143B2 (en) 2018-03-07 2018-03-07 Converter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/008852 WO2019171515A1 (en) 2018-03-07 2018-03-07 Converter device

Publications (1)

Publication Number Publication Date
WO2019171515A1 true WO2019171515A1 (en) 2019-09-12

Family

ID=67846720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008852 WO2019171515A1 (en) 2018-03-07 2018-03-07 Converter device

Country Status (2)

Country Link
JP (1) JP6896143B2 (en)
WO (1) WO2019171515A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010023978A1 (en) * 2008-09-01 2010-03-04 三菱電機株式会社 Converter circuit, and motor drive controller equipped with converter circuit, air conditioner, refrigerator, and induction cooking heater
JP2013106469A (en) * 2011-11-15 2013-05-30 Toshiba Lighting & Technology Corp Switching power supply apparatus and lighting device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107210673B (en) * 2015-03-27 2019-10-18 三菱电机株式会社 Converter apparatus
AU2016394625B2 (en) * 2016-02-24 2019-08-15 Mitsubishi Electric Corporation Converter device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010023978A1 (en) * 2008-09-01 2010-03-04 三菱電機株式会社 Converter circuit, and motor drive controller equipped with converter circuit, air conditioner, refrigerator, and induction cooking heater
JP2013106469A (en) * 2011-11-15 2013-05-30 Toshiba Lighting & Technology Corp Switching power supply apparatus and lighting device

Also Published As

Publication number Publication date
JPWO2019171515A1 (en) 2020-08-06
JP6896143B2 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
EP3166219B1 (en) Power converter and air-conditioning device provided with said power converter
JP5866964B2 (en) Control circuit and electronic device using the same
US9013159B2 (en) Parallel-operating power supply system
KR20120022860A (en) Power converter circuit
CN111213311B (en) AC-AC converter circuit
JP2010246204A (en) Dc power supply device and refrigerator with the same
JP6591092B2 (en) Converter device, motor drive device, refrigerator, air conditioner, and heat pump water heater
JP4705950B2 (en) DC power supply
JP6896143B2 (en) Converter device
JP2013247788A (en) Power-supply device
JP2016123148A (en) Switching power supply
WO2011058665A1 (en) Power conversion device
JP2000324843A (en) Power supply and air conditioner provided with that power supply
CN109643958B (en) Power conversion device
KR100832965B1 (en) Current supply circuit, multi-phase drive circuit, current supply circuit design method
KR20190019330A (en) Power transforming apparatus and air conditioner including the same
JP2013219921A (en) Dc power supply device
KR102069067B1 (en) Power transforming apparatus including rectifier decreasing ripple current and air conditioner including the same
US20050248963A1 (en) Circuit for controlling the reverse recovery current in a blocking diode
JP5170024B2 (en) Power converter
JP6336137B2 (en) Power converter
CN115943550A (en) Power conversion device and metal working device
JP2008236988A (en) Power supply unit
JP2018157725A (en) Power conversion device
JP2007325424A (en) Step-up converter device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909253

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504571

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909253

Country of ref document: EP

Kind code of ref document: A1