WO2019171205A1 - 積層体、及び半導体装置 - Google Patents

積層体、及び半導体装置 Download PDF

Info

Publication number
WO2019171205A1
WO2019171205A1 PCT/IB2019/051516 IB2019051516W WO2019171205A1 WO 2019171205 A1 WO2019171205 A1 WO 2019171205A1 IB 2019051516 W IB2019051516 W IB 2019051516W WO 2019171205 A1 WO2019171205 A1 WO 2019171205A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
insulator
conductor
film
oxygen
Prior art date
Application number
PCT/IB2019/051516
Other languages
English (en)
French (fr)
Inventor
山崎舜平
高橋正弘
平松智記
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to US16/975,855 priority Critical patent/US11387343B2/en
Priority to KR1020207028278A priority patent/KR20200128554A/ko
Priority to CN201980017323.2A priority patent/CN111819670B/zh
Priority to JP2020504473A priority patent/JP7142081B2/ja
Publication of WO2019171205A1 publication Critical patent/WO2019171205A1/ja
Priority to US17/852,429 priority patent/US20220336616A1/en
Priority to JP2022144504A priority patent/JP2022171783A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/70Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the floating gate being an electrode shared by two or more components

Definitions

  • One embodiment of the present invention relates to a stacked body, a semiconductor device, and a manufacturing method thereof.
  • One embodiment of the present invention relates to a semiconductor wafer, a module, and an electronic device.
  • a semiconductor device refers to all devices that can function by utilizing semiconductor characteristics.
  • a semiconductor element such as a transistor, a semiconductor circuit, an arithmetic device, and a memory device are one embodiment of the semiconductor device.
  • a display device (a liquid crystal display device, a light-emitting display device, or the like), a projection device, a lighting device, an electro-optical device, a power storage device, a memory device, a semiconductor circuit, an imaging device, an electronic device, or the like may have a semiconductor device. .
  • one embodiment of the present invention is not limited to the above technical field.
  • One embodiment of the invention disclosed in this specification and the like relates to an object, a method, or a manufacturing method.
  • one embodiment of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter).
  • oxide semiconductor As a material for a semiconductor thin film applicable to a transistor, a silicon-based semiconductor material is widely known, but an oxide semiconductor has attracted attention as another material.
  • oxide semiconductors for example, not only single-component metal oxides such as indium oxide and zinc oxide but also multi-component metal oxides are known.
  • IGZO In—Ga—Zn oxide
  • Non-Patent Document 1 and Non-Patent Document 2 also disclose a technique for manufacturing a transistor using an oxide semiconductor having a CAAC structure. Furthermore, Non-Patent Document 4 and Non-Patent Document 5 show that even an oxide semiconductor having lower crystallinity than the CAAC structure and the nc structure has a minute crystal.
  • Non-Patent Document 6 a transistor using IGZO as an active layer has extremely low off-state current (see Non-Patent Document 6), and an LSI and a display using the characteristics have been reported (see Non-Patent Document 7 and Non-Patent Document 8). .
  • An object of one embodiment of the present invention is to provide a stacked body with favorable electrical characteristics. Another object of one embodiment of the present invention is to provide a stacked body with favorable reliability. Another object of one embodiment of the present invention is to provide a semiconductor device with high on-state current. Another object of one embodiment of the present invention is to provide a semiconductor device having high frequency characteristics. Another object of one embodiment of the present invention is to provide a semiconductor device with favorable reliability. Another object of one embodiment of the present invention is to provide a semiconductor device that can be miniaturized or highly integrated. Another object of one embodiment of the present invention is to provide a semiconductor device having favorable electrical characteristics. Another object of one embodiment of the present invention is to provide a semiconductor device with high productivity.
  • An object of one embodiment of the present invention is to provide a semiconductor device capable of retaining data for a long period of time.
  • An object of one embodiment of the present invention is to provide a semiconductor device with high data writing speed.
  • An object of one embodiment of the present invention is to provide a semiconductor device with high design freedom.
  • An object of one embodiment of the present invention is to provide a semiconductor device capable of suppressing power consumption.
  • An object of one embodiment of the present invention is to provide a novel semiconductor device.
  • One embodiment of the present invention includes an insulator, a conductor, and a first oxide between the insulator and the conductor, and the first oxide is a c-axis-aligned first crystal.
  • the c-axis of the first crystal region is a stacked body that is substantially perpendicular to the surface of the first oxide on the insulator side.
  • One embodiment of the present invention includes an insulator, a conductor, a first oxide between the insulator and the conductor, and a second oxide that faces the first oxide across the insulator.
  • the first oxide has a c-axis oriented first crystal region, and the c axis of the first crystal region is roughly the same as the surface of the first oxide on the insulator side.
  • Another embodiment of the present invention is the first oxide, the second oxide, the third oxide, the first insulator, the first conductor, and the second conductor.
  • a first conductor covering a side surface and a lower surface of the first conductor; a first insulator covering a side surface and a lower surface of the first oxide;
  • the second oxide covers the side surface and the lower surface of the first insulator, the third oxide is in contact with the lower surface of the second oxide, and the first oxide is c-axis oriented first
  • the first crystal region has a c-axis substantially perpendicular to the surface of the first oxide on the first insulator side, and the second conductor and the third conductor are third
  • the semiconductor device is located opposite to the other oxide via the second oxide.
  • the second oxide has a c-axis oriented second crystal region, and the c axis of the second crystal region corresponds to the surface of the second oxide on the first insulator side. It is preferable that it is substantially vertical.
  • the third oxide has a c-axis-oriented third crystal region, and the second crystal region has a c-axis in a direction different from the c-axis of the third crystal region. preferable.
  • the first crystal region preferably has a c-axis in a direction different from the c-axis of the third crystal region.
  • the height of the upper surface of the conductor is preferably substantially the same as the height of the upper surface of the first oxide, the upper surface of the second oxide, and the upper surface of the first insulator.
  • the above-described semiconductor device further includes a second insulator in contact with the side surface of the second oxide.
  • the second insulator has an opening, and the first oxide and the second oxide are formed in the opening.
  • the height of the upper surface of the second insulator is substantially the same as the height of the upper surface of the conductor.
  • One embodiment of the present invention includes a first oxide, a second oxide, a third oxide, a first insulator, and a conductor.
  • the first oxide includes: Covering the side and bottom surfaces of the conductor, the first insulator covers the side and bottom surfaces of the first oxide, the second oxide covers the side and bottom surfaces of the first insulator, and the third oxide
  • the oxide is in contact with the lower surface of the second oxide, the first oxide has a c-axis oriented first crystal region, and the c axis of the first crystal region is on the first insulator side.
  • the semiconductor device is substantially perpendicular to the surface of the first oxide.
  • the second oxide has a c-axis oriented second crystal region, and the c axis of the second crystal region corresponds to the surface of the second oxide on the first insulator side. It is preferable that it is substantially vertical.
  • the third oxide has a c-axis-oriented third crystal region, and the second crystal region has a c-axis in a direction different from the c-axis of the third crystal region. preferable.
  • the first crystal region preferably has a c-axis in a direction different from the c-axis of the third crystal region.
  • the third oxide includes a first region, a second region and a third region sandwiching the first region, and the first region overlaps with the conductor. It has a region, and it is preferable that the second region and the third region have one or more selected from phosphorus, boron, aluminum, or magnesium.
  • the height of the upper surface of the conductor is preferably substantially the same as the height of the upper surface of the first oxide, the upper surface of the second oxide, and the upper surface of the first insulator.
  • the above-described semiconductor device further includes a second insulator in contact with the side surface of the second oxide.
  • the second insulator has an opening, and the first oxide and the second oxide are formed in the opening.
  • the height of the upper surface of the second insulator is substantially the same as the height of the upper surface of the conductor.
  • the second oxide overlap with part of the second region and part of the third region.
  • One embodiment of the present invention includes a first oxide, a second oxide, a third oxide, a first insulator, a second insulator, and a first conductor.
  • the first oxide is in contact with the lower surface of the first conductor
  • the first insulator is in contact with the lower surface of the first oxide
  • the second oxide is in contact with the lower surface of the first insulator.
  • the third oxide is in contact with the lower surface, the third oxide is in contact with the lower surface of the second oxide, the first oxide has a c-axis oriented first crystal region, and the c-axis of the first crystal region is , Substantially perpendicular to the surface of the first oxide on the first insulator side, the second oxide has a second crystal region with c-axis orientation, and the c-axis of the second crystal region is The second insulator is substantially perpendicular to the surface of the second oxide on the first insulator side, the second insulator is located above the third oxide, and the second insulator is formed of the second oxide.
  • the third oxide in contact with the end portion includes the first region and the first region.
  • the first region has a region overlapping with the first conductor, and the second region and the third region are phosphorous, boron, and aluminum.
  • the semiconductor device includes one or more selected from magnesium.
  • the above-described semiconductor device further includes a third insulator having an opening, and the third insulator is a part of the lower surface of the second oxide and a part and a side surface of the upper surface of the third oxide. It is preferable that the second oxide and the third oxide are in contact with each other through the opening.
  • One embodiment of the present invention includes a first oxide, a second oxide, a third oxide, a first insulator, a second insulator, a first conductor, And the first oxide is in contact with the lower surface of the first conductor, and the first insulator is in contact with the lower surface of the first oxide.
  • the second oxide is in contact with the lower surface of the first insulator, the third oxide is in contact with the lower surface of the second oxide, and the first oxide is a c-axis oriented first crystal.
  • the c-axis of the first crystal region is substantially perpendicular to the surface of the first oxide on the first insulator side
  • the second oxide is a c-axis oriented second crystal region
  • the c-axis of the second crystal region is substantially perpendicular to the surface of the second oxide on the first insulator side
  • the second insulator is located above the third oxide.
  • the second insulator is in contact with the end of the second oxide and the second conductor.
  • Body and the third conductor is a semiconductor device located opposite through a second oxide in the third on-oxide.
  • the semiconductor device further includes a third insulator having an opening, and the third insulator is a part of the lower surface of the second oxide, a part of the upper surface and the side surface of the second conductor, It is preferable that the second oxide and the third oxide are in contact with part of the upper surface and the side surface of the third conductor and the side surface of the third oxide and through the opening.
  • the third oxide has a c-axis-oriented third crystal region, and the second crystal region has a c-axis in a direction different from the c-axis of the third crystal region. preferable.
  • the first crystal region preferably has a c-axis in a direction different from the c-axis of the third crystal region.
  • a stacked body with favorable electrical characteristics can be provided.
  • a stacked body with favorable reliability can be provided.
  • a semiconductor device with high on-state current can be provided.
  • a semiconductor device having high frequency characteristics can be provided.
  • a semiconductor device with favorable reliability can be provided.
  • a semiconductor device that can be miniaturized or highly integrated can be provided.
  • a semiconductor device having favorable electrical characteristics can be provided.
  • a highly productive semiconductor device can be provided.
  • a semiconductor device capable of retaining data for a long time can be provided.
  • a semiconductor device with high data writing speed can be provided.
  • a semiconductor device with a high degree of design freedom can be provided.
  • a semiconductor device that can reduce power consumption can be provided.
  • a novel semiconductor device can be provided.
  • Sectional drawing of the laminated body which concerns on 1 aspect of this invention illustrates a movement path of oxygen in an In—Ga—Zn oxide.
  • 4A and 4B are a top view and a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • 4A and 4B are a top view and a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • 4A and 4B are a top view and a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • FIG. 10 is a cross-sectional view illustrating a structure of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a cross-sectional view illustrating a structure of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a cross-sectional view illustrating a structure of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a cross-sectional view illustrating a structure of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a cross-sectional view illustrating a structure of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a cross-sectional view illustrating a structure of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a cross-sectional view illustrating a structure of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a block diagram illustrating a structure example of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a block diagram illustrating a structure example of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a circuit diagram illustrating a structural example of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a schematic view of a semiconductor device according to one embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a memory device according to one embodiment of the present invention.
  • FIG. 14 illustrates an electronic device according to one embodiment of the present invention. The calculation result of the diffusion coefficient and diffusion length of 18 O in a metal oxide film based on an Example.
  • a top view also referred to as a “plan view”
  • a perspective view a perspective view, and the like
  • some components may be omitted in order to facilitate understanding of the invention.
  • description of some hidden lines may be omitted.
  • the ordinal numbers attached as the first and second are used for convenience and do not indicate the order of steps or the order of lamination. Therefore, for example, the description can be made by appropriately replacing “first” with “second” or “third”.
  • the ordinal numbers described in this specification and the like may not match the ordinal numbers used to specify one embodiment of the present invention.
  • X and Y are assumed to be objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, etc.).
  • the functions of the source and drain may be switched when transistors with different polarities are used or when the direction of current changes during circuit operation. Therefore, in this specification and the like, the terms “source” and “drain” may be used interchangeably.
  • the channel width in a region where a channel is actually formed (hereinafter also referred to as an “effective channel width”) and the channel width shown in the top view of the transistor (Hereinafter also referred to as “apparent channel width”) may be different.
  • the effective channel width when the gate electrode covers the side surface of the semiconductor, the effective channel width may be larger than the apparent channel width, and the influence may not be negligible.
  • the ratio of a channel formation region formed on the side surface of the semiconductor may increase. In that case, the effective channel width is larger than the apparent channel width.
  • channel width when it is simply described as a channel width, it may indicate an apparent channel width.
  • channel width in the case where the term “channel width” is simply used, it may denote an effective channel width. Note that the channel length, channel width, effective channel width, apparent channel width, and the like can be determined by analyzing a cross-sectional TEM image or the like.
  • the impurity of a semiconductor means the thing other than the main component which comprises a semiconductor, for example.
  • an element having a concentration of less than 0.1 atomic% can be said to be an impurity.
  • the impurities are included, for example, DOS (Density of States) of the semiconductor may increase or crystallinity may decrease.
  • examples of the impurity that changes the characteristics of the semiconductor include a Group 1 element, a Group 2 element, a Group 13 element, a Group 14 element, a Group 15 element, and an oxide semiconductor.
  • water may also function as an impurity.
  • oxygen vacancies may be formed, for example, by mixing impurities.
  • impurities that change the characteristics of the semiconductor include group 1 elements, group 2 elements, group 13 elements, and group 15 elements excluding oxygen and hydrogen.
  • silicon oxynitride has a higher oxygen content than nitrogen.
  • silicon nitride oxide has a composition containing more nitrogen than oxygen.
  • the term “insulator” can be referred to as an insulating film or an insulating layer.
  • the term “conductor” can be restated as a conductive film or a conductive layer.
  • the term “semiconductor” can be restated as a semiconductor film or a semiconductor layer.
  • the barrier film is a film having a function of suppressing permeation of impurities such as water and hydrogen and oxygen, and when the barrier film has conductivity, Sometimes called.
  • a metal oxide is a metal oxide in a broad sense.
  • Metal oxides are classified into oxide insulators, oxide conductors (including transparent oxide conductors), and oxide semiconductors (also referred to as oxide semiconductors or simply OS).
  • oxide semiconductors also referred to as oxide semiconductors or simply OS.
  • the metal oxide may be referred to as an oxide semiconductor. That is, in the case of describing an OS FET or an OS transistor, it can be said to be a transistor including an oxide or an oxide semiconductor.
  • normally-off means that when a potential is not applied to the gate or a ground potential is applied to the gate, a current per channel width of 1 ⁇ m flowing through the transistor is 1 ⁇ 10 ⁇ 20 at room temperature. A or lower, 1 ⁇ 10 ⁇ 18 A or lower at 85 ° C., or 1 ⁇ 10 ⁇ 16 A or lower at 125 ° C.
  • FIG. 1A is a cross-sectional view of a stack 10 according to one embodiment of the present invention.
  • the stacked body 10 includes an insulator 11, a conductor 15, and an oxide 13 between the insulator 11 and the conductor 15.
  • the oxide 13 is an In-M-Zn oxide (the element M is aluminum, gallium, yttrium, tin, copper, vanadium, beryllium, boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium) It is preferable to use a metal oxide such as neodymium, hafnium, tantalum, tungsten, or magnesium.
  • the element M may be aluminum, gallium, yttrium, or tin.
  • an In—Ga oxide or an In—Zn oxide may be used as the oxide 13.
  • the oxide 13 preferably has crystallinity.
  • the oxide 13 it is preferable to use a CAAC-OS (c-axis aligned crystal oxide semiconductor).
  • the CAAC-OS has a c-axis orientation and a crystal structure in which a plurality of nanocrystals are connected in the ab plane direction and has a strain.
  • the strain refers to a portion where the orientation of the lattice arrangement changes between a region where the lattice arrangement is aligned and a region where another lattice arrangement is aligned in a region where a plurality of nanocrystals are connected.
  • Nanocrystals are based on hexagons, but are not limited to regular hexagons and may be non-regular hexagons.
  • a lattice arrangement such as a pentagon and a heptagon in the distortion.
  • it is difficult to check a clear crystal grain boundary also referred to as a grain boundary
  • the formation of crystal grain boundaries is suppressed by the distortion of the lattice arrangement. This is because the CAAC-OS can tolerate distortion due to the fact that the arrangement of oxygen atoms is not dense in the ab plane direction and the bond distance between atoms changes due to substitution of metal elements. Because.
  • the CAAC-OS includes a layered crystal in which a layer containing indium and oxygen (hereinafter referred to as In layer) and a layer including elements M, zinc, and oxygen (hereinafter referred to as (M, Zn) layers) are stacked.
  • In layer a layer containing indium and oxygen
  • M, Zn elements M, zinc, and oxygen
  • indium and the element M can be replaced with each other, and when the element M in the (M, Zn) layer is replaced with indium, it can also be expressed as an (In, M, Zn) layer. Further, when indium in the In layer is replaced with the element M, it can also be expressed as an (In, M) layer.
  • CAAC-OS is a metal oxide with high crystallinity.
  • CAAC-OS impurities and defects oxygen deficiency (V O:. Oxygen vacancy also referred) etc.) with less metal It can be said that it is an oxide. Therefore, the physical properties of the metal oxide including a CAAC-OS are stable. Therefore, a metal oxide including a CAAC-OS is resistant to heat and has high reliability.
  • CAAC-OS analyzed by X-ray diffraction X-ray Diffraction
  • XRD X-Ray Diffraction
  • a peak may appear when the diffraction angle (2 ⁇ ) is in the vicinity of 31 °. Since this peak is attributed to the (009) plane of the InGaZnO 4 crystal, the CAAC-OS crystal has c-axis orientation, and the c-axis is oriented substantially perpendicular to the formation surface or the top surface.
  • CAAC-OS analyzed by electron diffraction An example of a CAAC-OS analyzed by electron diffraction will be described. For example, when an electron beam with a probe diameter of 300 nm is incident on a CAAC-OS including an InGaZnO 4 crystal in parallel with a sample surface, a diffraction pattern (also referred to as a limited-field transmission electron diffraction pattern) may appear. This diffraction pattern includes spots caused by the (009) plane of the InGaZnO 4 crystal. Therefore, electron diffraction reveals that crystals included in the CAAC-OS have c-axis alignment and the c-axis is in a direction substantially perpendicular to the formation surface or the top surface.
  • a diffraction pattern also referred to as a limited-field transmission electron diffraction pattern
  • crystallography it is common to take a unit cell having a specific axis as the c-axis among the three axes (crystal axis) of the a-axis, b-axis, and c-axis constituting the unit cell.
  • a crystal having a layered structure two axes parallel to the plane direction of the layer are generally defined as an a axis and a b axis, and an axis intersecting the layer is generally defined as a c axis.
  • a crystal having such a layered structure there is graphite classified as a hexagonal system, the a-axis and b-axis of the unit cell are parallel to the cleavage plane, and the c-axis is orthogonal to the cleavage plane.
  • graphite classified as a hexagonal system the a-axis and b-axis of the unit cell are parallel to the cleavage plane, and the c-axis is orthogonal to the cleavage plane.
  • an InGaZnO 4 crystal having a layered structure of YbFe 2 O 4 type crystal structure can be classified into a hexagonal system, and the a-axis and b-axis of the unit cell are parallel to the plane direction of the layer, and the c-axis Is orthogonal to the layer (ie, the a-axis and b-axis).
  • the oxide 13 has a c-axis oriented crystal region. As shown in FIG. 1A, the oxide 13 includes a crystal layer 13P extending in the ab plane direction and a c-axis 13X perpendicular to the ab plane.
  • the oxide 13 has a plurality of layers 13P and a plurality of c-axes 13X.
  • the c-axis 13X of the crystal region is substantially perpendicular to the surface of the oxide 13 on the insulator 11 side. Being substantially perpendicular to the surface is synonymous with being substantially parallel to the normal of the surface. That is, in the oxide 13, the c-axis 13X of the crystal region can be said to be substantially parallel to the normal line of the surface of the oxide 13 on the insulator 11 side.
  • the insulator 11 and the oxide 13 are preferably provided in contact with each other. By providing the insulator 11 and the oxide 13 in contact with each other, it becomes easy to form a region having a c-axis 13X that is substantially perpendicular to the surface of the oxide 13 on the insulator 11 side.
  • the ab plane of the oxide 13 can be confirmed, for example, by observing a crystal lattice image of atoms arranged in a layered manner in observation of a cross section using transmission electron microscopy (TEM: Transmission Electron Microscopy).
  • the surface A and the straight line B are substantially perpendicular means a state where the angle formed by the surface A and the straight line B is 60 ° or more and 90 ° or less.
  • the plane A and the straight line B are substantially parallel means a state where the angle formed by the normal line of the plane A and the straight line B is 60 ° or more and 90 ° or less.
  • the straight line C and the straight line D being substantially vertical means a state in which the angle formed by the straight line C and the straight line D is 60 ° or more and 90 ° or less.
  • the straight line C and the straight line D being substantially parallel means a state in which the angle formed by the straight line C and the straight line D is 0 ° or more and 30 ° or less.
  • the film thickness of the oxide 13 is, for example, 2 nm or more, preferably 3 nm or more, more preferably 5 nm or more.
  • a region can be formed in which the c-axis 13 ⁇ / b> X is oriented so as to be substantially perpendicular to the surface of the oxide 13 on the insulator 11 side.
  • CAAC-OS has a property that oxygen is less likely to diffuse in the c-axis direction than in the ab plane direction. Therefore, the oxide 13 is provided below the insulator 11 or the insulator 11 by having a crystal region that is c-axis oriented so as to be substantially perpendicular to the surface of the oxide 13 on the insulator 11 side. It is possible to suppress diffusion of oxygen from the insulator containing oxygen into the conductor 15. Thereby, it can suppress that the conductor 15 is oxidized, and can suppress that the resistance of the conductor 15 becomes high.
  • the average surface roughness (Ra) of the formation surface of the insulator 11 may be 1 nm or less, preferably 0.5 nm or less, more preferably 0.3 nm or less.
  • the average surface roughness (Ra) is obtained by extending the arithmetic average roughness defined in JIS B0601: 2001 (ISO4287: 1997) to three dimensions so that it can be applied to curved surfaces. Yes, expressed as an average of the absolute values of deviations from the reference plane to the specified plane.
  • the average surface roughness (Ra) can be measured with an atomic force microscope (AFM).
  • an insulating oxide, nitride, oxynitride, nitride oxide, metal oxide, metal oxynitride, metal nitride oxide, resin, or the like can be used.
  • a plurality of insulating layers formed using the above materials may be stacked.
  • the oxide 13 includes a region in which the c-axis 13X is oriented so as to be substantially perpendicular to the surface of the oxide 13 on the insulator 11 side. 11 or oxygen diffused from the insulator containing oxygen provided under the insulator 11 into the oxide 13 is likely to diffuse in the ab plane direction in the oxide 13 (the diffusion path shown in FIG. 1A). Route 2).
  • oxygen diffused in the oxide 13 is difficult to diffuse in the c-axis direction in the oxide 13. Since oxygen is difficult to diffuse in the c-axis direction, oxygen can be prevented from diffusing into the conductor 15 from the insulator 11 or the insulator containing oxygen provided under the insulator 11 (FIG. 1A). Diffusion route Route 1) shown in FIG. Thereby, it can suppress that the conductor 15 is oxidized, and can suppress that the resistance of the conductor 15 becomes high.
  • FIG. 1A illustrates an example in which the c-axis 13X is in the vertical direction on the paper surface; however, one embodiment of the present invention is not limited thereto.
  • the c-axis 13X may be in the left-right direction on the paper surface.
  • the c-axis 13X can be at an arbitrary angle with respect to the paper surface.
  • FIG. 2A is a cross-sectional view of a stacked body 10A according to one embodiment of the present invention.
  • the stacked body 10A includes an insulator 11, a conductor 15, an oxide 13 between the insulator 11 and the conductor 15, and an oxide sandwiching the insulator 11. 13 and an oxide 17 opposite to each other.
  • the stacked body 10 ⁇ / b> A differs from the stacked body 10 in that it includes an oxide 17.
  • the oxide 17 is preferably a metal oxide. Since the description of the oxide 13 can be referred to for the metal oxide to be the oxide 17, detailed description thereof is omitted.
  • the oxide 17 preferably has crystallinity. In particular, as the oxide 17, a CAAC-OS is preferably used.
  • the oxide 17 has crystallinity, and includes a crystal layer 17P extending in the ab plane direction and a c-axis 17X perpendicular to the ab plane direction.
  • the oxide 17 has a region including a c-axis 17X that is substantially perpendicular to the surface of the oxide 17 on the insulator 11 side. It can also be said that the oxide 17 has a region including the c-axis 17X that is approximately parallel to the normal line of the surface of the oxide 17 on the insulator 11 side.
  • the film thickness of the oxide 17 is, for example, 2 nm or more, preferably 3 nm or more, more preferably 5 nm or more.
  • a region can be formed in which the c-axis 17 ⁇ / b> X is oriented so as to be substantially perpendicular to the surface of the oxide 17 on the insulator 11 side.
  • the c-axis 17 ⁇ / b> X includes a region oriented so as to be substantially perpendicular to the surface of the oxide 17 on the insulator 11 side, thereby including oxygen provided under the oxide 17. Oxygen can be prevented from diffusing from the insulator into the conductor 15. Thereby, it can suppress that the conductor 15 is oxidized, and can suppress that the resistance of the conductor 15 becomes high.
  • Oxygen may be desorbed from an oxygen-containing insulator provided under the oxide 17.
  • the oxide 13 includes a region in which the c-axis 13X is oriented so as to be substantially perpendicular to the surface of the oxide 13 on the insulator 11 side.
  • Oxygen diffused into the oxide 17 from the insulator containing oxygen provided under the oxide 17 is likely to diffuse in the ab plane direction in the oxide 17 (diffusion path Route 4 shown in FIG. 2A).
  • oxygen diffused in the oxide 17 is difficult to diffuse in the c-axis direction in the oxide 17.
  • oxygen can be prevented from diffusing from the insulator containing oxygen provided under the oxide 17 into the conductor 15 (a diffusion path Route shown in FIG. 2A). 3). Thereby, it can suppress that the conductor 15 is oxidized, and can suppress that the resistance of the conductor 15 becomes high.
  • FIG. 2A illustrates an example in which the c-axis 13X and the c-axis 17X are in the vertical direction on the paper surface
  • one embodiment of the present invention is not limited thereto.
  • the c-axis 13X and the c-axis 17X may be in the left-right direction on the paper surface.
  • the c-axis 17X can be at an arbitrary angle with respect to the paper surface. Further, the c-axis 13X and the c-axis 17X may be in different directions.
  • a stacked body with favorable electrical characteristics can be obtained.
  • a highly reliable stacked body can be obtained.
  • FIG. 3A and FIG. 3B are schematic views of region divisions in single crystal InGaZnO 4 (c-InGaZnO 4 ) in which the oxygen atom migration path is examined.
  • FIG. 3B is a schematic diagram in which the schematic diagram of FIG. 3A is rotated 90 degrees about the c-axis as a rotation axis.
  • the evaluation of the activation barrier uses the first principle electronic state calculation package VASP (Vienna ab initio simulation package), and the NEB (Nudged Elastic Band) method, which is a chemical reaction transfer route search method, is used for the atomic relaxation calculation.
  • VASP Vehicle Ab initio simulation package
  • NEB Nudged Elastic Band
  • the NEB method is a technique for finding a state where the required energy is the lowest among the states connecting the two states from the initial state and the final state.
  • Table 1 shows the calculation results of activation barriers for each movement route.
  • the movement path A has a large activation barrier, so that oxygen hardly moves in the c-axis direction, and oxygen easily moves in a direction parallel to the layer. That is, the CAAC-OS has a property that oxygen is less likely to diffuse in the c-axis direction than in the ab plane direction. Therefore, the oxide 13 has a region in which the c-axis 13X is oriented so as to be substantially perpendicular to the surface of the oxide 13 on the insulator 11 side, so that the insulator 11 or the insulator 11 is located below. Oxygen can be prevented from diffusing from the provided insulator containing oxygen into the conductor 15 (diffusion path Route 1 shown in FIG.
  • a substrate is prepared, and an oxide 17 is formed on the substrate.
  • the oxide 17 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. Note that when the stacked body 10 is manufactured, the oxide 17 is not formed.
  • the oxide 17 is formed by a sputtering method
  • oxygen or a mixed gas of oxygen and a rare gas is used as a sputtering gas.
  • excess oxygen in the oxide film can be increased.
  • the oxide is formed by a sputtering method
  • the above In-M-Zn oxide target or the like can be used.
  • a direct current (DC) power source or an alternating current (AC) power source such as a radio frequency (RF) power source is connected to the target, and necessary power can be applied according to the electric conductivity of the target.
  • DC direct current
  • AC alternating current
  • RF radio frequency
  • the crystallinity of the oxide 17 can be improved by performing film formation while heating the substrate.
  • the temperature of the substrate is preferably from room temperature to 250 ° C., more preferably from room temperature to 200 ° C., and further preferably from room temperature to 150 ° C. Note that one embodiment of the present invention is not limited to this.
  • the oxide 17 is formed by a sputtering method, when the film is formed so that the proportion of oxygen contained in the sputtering gas exceeds 30% and is 100% or less, preferably 70% or more and 100% or less, the crystallinity of the oxide 17 is increased. Can be improved.
  • a target can be formed. Note that the film formation conditions and the atomic ratio may be selected as appropriate in accordance with characteristics required for the oxide 17.
  • heat treatment is preferably performed before the insulator 11 is formed.
  • the heat treatment may be performed at 100 ° C. or more and 400 ° C. or less, for example, 200 ° C. Or it is preferable to carry out at the same temperature as the film formation temperature of the insulator 11.
  • the film formation temperature includes not only the substrate temperature during film formation but also the case of the set temperature of the film formation apparatus.
  • the heat treatment is preferably 350 ° C.
  • the heat treatment is preferably performed under reduced pressure, and may be performed in a vacuum atmosphere, for example.
  • the vacuum atmosphere is maintained by exhausting with a turbo molecular pump or the like.
  • the pressure in the processing chamber may be 1 ⁇ 10 ⁇ 2 Pa or less, preferably 1 ⁇ 10 ⁇ 3 Pa or less.
  • the insulator 11 is formed.
  • the insulator 11 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a stacked film of silicon oxide and gallium oxide over silicon oxide may be used as the insulator 11.
  • the film formation temperature at the time of forming the insulator 11 is preferably 300 ° C. or higher and lower than 450 ° C., preferably 300 ° C. or higher and lower than 400 ° C., particularly around 350 ° C.
  • an insulator with few impurities can be formed.
  • an oxide 13 is formed. Regarding the formation of the oxide 13, the description of the oxide 17 can be referred to, and thus detailed description thereof is omitted.
  • the oxide 13 may be formed using a target similar to the target used for forming the oxide 17.
  • the oxide 13 is preferably formed while heating the substrate. At this time, oxygen vacancies in the oxide 13 and the oxide 17 can be reduced by setting the substrate temperature to 300 ° C. or higher. By forming the film while heating the substrate, the crystallinity of the oxide 13 and the oxide 17 can be improved.
  • the proportion of oxygen contained in the sputtering gas of the oxide 13 may be 70% or more, preferably 80% or more, more preferably 100%. Further, by performing film formation while heating the substrate, the crystallinity of the oxide can be improved.
  • the conductor 15 is formed.
  • the conductor 15 can be formed by sputtering, CVD, MBE, PLD, ALD, or the like.
  • ALD method a thermal ALD method, a plasma ALD method, a PEALD method, or the like can be used.
  • the conductor 15 aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, lanthanum It is preferable to use a metal element selected from the above, an alloy including the above-described metal element as a component, an alloy combining the above-described metal elements, or the like.
  • tantalum nitride, titanium nitride, tungsten, nitride containing titanium and aluminum, nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxide containing strontium and ruthenium, oxide containing lanthanum and nickel, or the like is used. It is preferable. Also, tantalum nitride, titanium nitride, nitride containing titanium and aluminum, nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxide containing strontium and ruthenium, and oxide containing lanthanum and nickel are not easily oxidized.
  • a conductive material or a material that maintains conductivity even when oxygen is absorbed is preferable.
  • a semiconductor with high electrical conductivity typified by polycrystalline silicon containing an impurity element such as phosphorus, or silicide such as nickel silicide may be used.
  • a plurality of conductive layers formed of the above materials may be stacked.
  • a stacked structure in which the above-described material containing a metal element and a conductive material containing oxygen may be combined.
  • a stacked structure in which the above-described material containing a metal element and a conductive material containing nitrogen are combined may be employed.
  • a stacked structure of a combination of the above-described material containing a metal element, a conductive material containing oxygen, and a conductive material containing nitrogen may be employed.
  • a stacked body with favorable electrical characteristics can be provided.
  • a stacked body with favorable reliability can be provided.
  • a novel semiconductor device using the stacked body of one embodiment of the present invention can be provided.
  • 4A, 4B, and 4C are a top view and a cross-sectional view of the transistor 200 and the periphery of the transistor 200 according to one embodiment of the present invention.
  • FIG. 4A is a top view of the semiconductor device including the transistor 200.
  • FIG. 4B and 4C are cross-sectional views of the semiconductor device.
  • FIG. 4B is a cross-sectional view taken along dashed-dotted line A1-A2 in FIG. 4A and also a cross-sectional view in the channel length direction of the transistor 200.
  • FIG. 4C is a cross-sectional view taken along dashed-dotted line A3-A4 in FIG. 4A and is a cross-sectional view in the channel width direction of the transistor 200. Note that in the top view of FIG. 4A, some elements are omitted for clarity.
  • the transistor 200 includes an oxide 230a disposed on a substrate (not shown), an oxide 230b disposed on the oxide 230a, and an upper surface of the oxide 230b.
  • An oxide 230c disposed in the opening, an insulator 250 on the oxide 230c, an oxide 230d on the insulator 250, and a conductor 260 on the oxide 230d.
  • the top surface of the conductor 260 is preferably substantially coincident with the top surfaces of the insulator 250, the oxide 230c, the oxide 230d, and the insulator 280. .
  • the oxide 230a, the oxide 230b, the oxide 230c, and the oxide 230d may be collectively referred to as the oxide 230.
  • the conductor 242a and the conductor 242b may be collectively referred to as a conductor 242.
  • the insulator 254 and the insulator 244 are preferably provided between the insulator 224, the oxide 230a, the oxide 230b, the conductor 242, and the insulator 280.
  • the insulator 254 includes an upper surface and a side surface of the conductor 242a, an upper surface and a side surface of the conductor 242b, a side surface of the oxide 230a and the oxide 230b, In addition, it is preferable to be in contact with the upper surface of the insulator 224.
  • the transistor 200 a structure in which a layer where a channel is formed (hereinafter also referred to as a channel formation region) and three layers of an oxide 230a, an oxide 230b, and an oxide 230c are stacked is shown.
  • the present invention is not limited to this.
  • a structure in which a two-layer structure of the oxide 230b and the oxide 230c or a stacked structure of four or more layers may be provided may be employed.
  • each of the oxide 230a, the oxide 230b, and the oxide 230c may have a stacked structure of two or more layers.
  • the conductor 260 is illustrated as a two-layer structure, but the present invention is not limited to this.
  • the conductor 260 may have a single layer structure or a stacked structure of three or more layers.
  • the oxide 230c when the oxide 230c has a stacked structure including a first oxide and a second oxide over the first oxide, the first oxide has a composition similar to that of the oxide 230b.
  • the second oxide preferably has a composition similar to that of the oxide 230a.
  • the oxide 230d preferably has a composition similar to that of the second oxide.
  • the oxide 230d may have a stacked structure of two or more layers.
  • the conductor 260 functions as a gate electrode of the transistor, and the conductor 242a and the conductor 242b function as a source electrode or a drain electrode, respectively.
  • the conductor 260 is formed so as to be embedded in the opening of the insulator 280 and the region sandwiched between the conductors 242a and 242b.
  • the arrangement of the conductor 260, the conductor 242a, and the conductor 242b is selected in a self-aligned manner with respect to the opening of the insulator 280. That is, in the transistor 200, the gate electrode can be disposed in a self-aligned manner between the source electrode and the drain electrode. Accordingly, the conductor 260 can be formed without providing a margin for alignment, so that the area occupied by the transistor 200 can be reduced. Thereby, miniaturization and high integration of the semiconductor device can be achieved.
  • the insulator 250 functions as a gate insulator of the transistor.
  • the oxide 230d may also function as a gate insulating layer of the transistor.
  • the oxide 230d is not a semiconductor but an insulator or a property close thereto, and thus can function as a gate insulating layer.
  • the oxide 230d is a conductor or has properties close to that of the oxide 230d, and thus can function as a gate electrode.
  • the conductor 260 includes a conductor 260a provided inside the insulator 250 and a conductor 260b provided so as to be embedded inside the conductor 260a. preferable.
  • the conductor 260 corresponds to the conductor 10 of the stacked body 10 and the stacked body 10A described in the previous embodiment.
  • the oxide 230d corresponds to the stacked body 10 and the oxide 13 of the stacked body 10A described in the above embodiment.
  • the insulator 250 corresponds to the insulator 10 of the stacked body 10 and the stacked body 10A described in the previous embodiment.
  • the oxide 230c corresponds to the oxide 17 of the stacked body 10A described in the above embodiment.
  • FIG. 6 shows an enlarged view of the oxide 230 and its vicinity in FIG.
  • a crystal layer extending in the ab plane direction is indicated by a broken line.
  • the oxygen included in the insulator 280 diffuses in the oxide 230c, and then diffuses in the ab plane direction of the oxide 230c.
  • the oxygen diffused in the ab plane direction of the oxide 230c reaches the oxide 230b, it is combined with oxygen vacancies in the oxide 230b to reduce oxygen vacancies (Route shown in FIGS. 5 and 6).
  • the oxygen bonded to the oxygen vacancy in the oxide 230b moves to another oxygen vacancy and is bonded to the oxygen vacancy.
  • the oxygen vacancies generated by the movement of oxygen are combined with oxygen diffused from the insulator 280 to the oxide 230b through the oxide 230c.
  • oxygen contained in the insulator 280 passes through the oxide 230c and is successively diffused into the oxide 230b, and is combined with oxygen vacancies in the oxide 230b. Accordingly, oxygen vacancies in the oxide 230b can be reduced, and the transistor can be prevented from being normally on.
  • the insulator 280 in contact with the oxide 230c may be an insulator containing more oxygen than oxygen that satisfies the stoichiometric composition. That is, it is preferable that an excess oxygen region be formed in the insulator 280.
  • an insulator containing excess oxygen in contact with the oxide 230c oxygen vacancies in the oxide 230 can be reduced and the reliability of the transistor 200 can be improved.
  • the insulator 280 containing oxygen in excess of the stoichiometric composition can be referred to as an OST (Oxygen Storage Tank or Oxygen Stock Tank).
  • Oxygen included in the insulator 250 diffuses in the ab plane direction of the oxide 230d after diffusing into the oxide 230d.
  • the oxygen diffuses into the oxide 230b through the insulator 250 and the oxide 230c (Route C shown in FIGS. 5 and 6). Accordingly, oxygen vacancies in the oxide 230b can be reduced, and the transistor can be prevented from being normally on.
  • oxygen included in the insulator 250 is difficult to diffuse in the c-axis 230cX direction of the oxide 230c and the c-axis 230dX direction of the oxide 230d, oxygen can be prevented from diffusing into the conductor 260 (see FIG. 5 and FIG. 5). Route D shown in FIG.
  • the conductor 260 can be prevented from being oxidized, and the deterioration of the electrical characteristics of the transistor can be suppressed.
  • the electrical characteristics of the transistor can be stabilized and the reliability can be improved.
  • oxygen included in the insulator 250 may diffuse into the oxide 230b through the oxide 230c after diffusing through the insulator 250.
  • FIG. 7 shows an enlarged view of the oxide 230 and its vicinity when the oxide 230c has a stacked structure including the first oxide 230c1 and the second oxide 230c2 on the first oxide.
  • FIG. 7 is an enlarged view of the oxide 230 in FIG. 4B and the vicinity thereof.
  • a crystal layer extending in the ab plane direction is indicated by a broken line.
  • the first oxide 230c1 and the second oxide 230c2 preferably have a c-axis aligned crystal region.
  • the c-axis 230c1X of the first oxide 230c1 and the c-axis 230c2X of the second oxide 230c2 are illustrated.
  • the c-axis 230c1X and the c-axis 230c2X are preferably substantially perpendicular to the interface between the oxide 230c and the insulator 250, respectively.
  • FIG. 8 is an enlarged view of the oxide 230 in FIG. 4C and the vicinity thereof.
  • a crystal layer extending in the ab plane direction is indicated by a broken line.
  • the c-axis 230aX included in the oxide 230a is substantially perpendicular to the interface between the insulator 224, which is a formation surface of the oxide 230a, and the oxide 230a.
  • the oxide 230a has a plurality of c-axes 230aX, and the c-axes 230aX are substantially parallel to each other.
  • the c-axis 230bX included in the oxide 230b is substantially perpendicular to the interface between the oxide 230a and the oxide 230b, which is a formation surface of the oxide 230b.
  • the oxide 230b has a plurality of c-axes 230bX, and each c-axis 230bX is substantially parallel to each other.
  • the c-axis 230cX of the oxide 230c is substantially perpendicular to the interface between the oxide 230b, which is a surface on which the oxide 230c is formed, and the oxide 230c.
  • c-axis 230cX1 to c-axis 230cX5 are shown as examples of the c-axis 230cX.
  • the c-axis 230cX1 to c-axis 230cX5 are each substantially perpendicular to the nearest oxide 230b and oxide 230c interface.
  • the oxide 230c includes a region including the c-axis 230aX and the c-axis 230cX that is not parallel to the c-axis 230bX.
  • the oxide 230c has a region including the c-axis 230cX in a direction different from the c-axis 230aX and the c-axis 230bX.
  • oxygen desorbed in the oxide 230a or the oxide 230b diffuses in the ab plane direction of the oxide 230a or the oxide 230b and diffuses out of the oxide 230a or the oxide 230b.
  • the c-axis 230cX1 and the c-axis 230cX5 of the oxide 230c are substantially parallel to the c-axis 230aX and the c-axis 230bX, whereas the c-axis 230cX2 to the c-axis 230cX4 of the oxide 230c are c
  • shaft 230aX and the c-axis 230bX is shown.
  • the oxide 230c preferably has a c-axis 230cX whose angle formed with the c-axis 230bX is greater than 30 ° and equal to or less than 90 °.
  • the oxide 230c has a c-axis 230cX having an angle of 40 ° or more and 90 ° or less with the c-axis 230bX. It is more preferable that the oxide 230c has a c-axis 230cX whose angle with the c-axis 230bX is 45 ° or more and 90 ° or less.
  • the straight line E and the straight line F being not parallel means the state where the angle
  • the directions of the straight line E and the straight line F being different indicate that the straight line E and the straight line F are not parallel.
  • the c-axis 230dX included in the oxide 230d is substantially perpendicular to the interface between the insulator 250d and the oxide 230d, which is a surface on which the oxide 230d is formed.
  • c-axis 230dX1 to c-axis 230dX5 are shown as examples of the c-axis 230dX.
  • the c-axis 230dX1 to c-axis 230dX5 are each substantially perpendicular to the interface between the nearest insulator 250 and the oxide 230c.
  • the oxide 230d includes a region including the c-axis 230aX and the c-axis 230dX that is not parallel to the c-axis 230bX.
  • the oxide 230d has a region including the c-axis 230dX in a direction different from the c-axis 230aX and the c-axis 230bX.
  • oxygen desorbed in the oxide 230a or the oxide 230b diffuses in the ab plane direction of the oxide 230a or the oxide 230b and diffuses out of the oxide 230a or the oxide 230b.
  • the c-axis 230dX1 and the c-axis 230dX5 of the oxide 230d are substantially parallel to the c-axis 230aX and the c-axis 230bX, whereas the c-axis 230dX2 to the c-axis 230dX4 of the oxide 230d are c
  • shaft 230aX and the c-axis 230bX is shown.
  • the oxide 230d preferably has a c-axis 230dX that has an angle formed with the c-axis 230bX of greater than 30 ° and equal to or less than 90 °.
  • the oxide 230d has a c-axis 230dX having an angle of 40 ° or more and 90 ° or less with the c-axis 230bX. More preferably, the oxide 230d has a c-axis 230dX having an angle of 45 ° or more and 90 ° or less with respect to the c-axis 230bX.
  • the transistor 200 includes an insulator 214 disposed over a substrate (not shown), an insulator 216 disposed over the insulator 214, and a conductor 205 disposed so as to be embedded in the insulator 216.
  • the insulator 216 and the insulator 222 disposed on the conductor 205 and the insulator 224 disposed on the insulator 222 are preferably included. It is preferable that the oxide 230 a be disposed over the insulator 224.
  • an insulator 274 that functions as an interlayer film and an insulator 281 are preferably provided over the transistor 200.
  • the insulator 274 is preferably provided in contact with the top surfaces of the conductor 260, the insulator 250, the oxide 230c, and the insulator 280.
  • the insulator 222, the insulator 254, and the insulator 274 preferably have a function of suppressing diffusion of hydrogen (eg, hydrogen atoms and hydrogen molecules).
  • the insulator 222, the insulator 254, and the insulator 274 preferably have lower hydrogen permeability than the insulator 224, the insulator 250, and the insulator 280.
  • the insulator 222 and the insulator 254 preferably have a function of suppressing diffusion of oxygen (eg, oxygen atoms and oxygen molecules).
  • the insulator 222 and the insulator 254 preferably have lower oxygen permeability than the insulator 224, the insulator 250, and the insulator 280.
  • the insulator 224, the oxide 230a, the oxide 230b, and the insulator 250 are separated from the insulator 280 and the insulator 281 by the insulator 254, the oxide 230c, and the insulator 274.
  • impurities such as hydrogen contained in the insulator 280 and the insulator 281 and excess oxygen can be prevented from entering the insulator 224, the oxide 230a, the oxide 230b, and the insulator 250.
  • a conductor 240 (a conductor 240a and a conductor 240b) that is electrically connected to the transistor 200 and functions as a plug is provided.
  • an insulator 241 (the insulator 241a and the insulator 241b) is provided in contact with a side surface of the conductor 240 functioning as a plug. That is, the insulator 241 is provided in contact with the inner walls of the openings of the insulator 254, the insulator 280, the insulator 274, and the insulator 281.
  • the first conductor of the conductor 240 may be provided in contact with the side surface of the insulator 241, and the second conductor of the conductor 240 may be further provided inside.
  • the height of the upper surface of the conductor 240 and the height of the upper surface of the insulator 281 can be approximately the same.
  • the transistor 200 has a structure in which the first conductor of the conductor 240 and the second conductor of the conductor 240 are stacked, the present invention is not limited to this.
  • the conductor 240 may be provided as a single layer or a stacked structure of three or more layers. When a structure has a laminated structure, an ordinal number may be given in the order of formation to be distinguished.
  • a metal oxide that functions as an oxide semiconductor is preferably used for the oxides 230a, 230b, and 230c including a channel formation region.
  • an oxide semiconductor a metal oxide that functions as an oxide semiconductor
  • a metal oxide having a band gap of 2 eV or more, preferably 2.5 eV or more is preferably used as the metal oxide serving as the channel formation region of the oxide 230. In this manner, by using a metal oxide having a large band gap, leakage current (off-state current) in a non-conducting state of a transistor can be extremely reduced. By using such a transistor, a semiconductor device with low power consumption can be provided.
  • the oxide 230 includes an In-M-Zn oxide (the element M is aluminum, gallium, yttrium, tin, copper, vanadium, beryllium, boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium) It is preferable to use a metal oxide such as neodymium, hafnium, tantalum, tungsten, or magnesium.
  • the element M may be aluminum, gallium, yttrium, or tin.
  • indium oxide, zinc oxide, In—Ga oxide, In—Zn oxide, Ga—Zn oxide, or gallium oxide may be used as the oxide 230.
  • the thickness of a region that does not overlap with the conductor 242 may be smaller than the thickness of a region that overlaps with the conductor 242. This is formed by removing a part of the upper surface of the oxide 230b when forming the conductor 242a and the conductor 242b.
  • a region with low resistance may be formed in the vicinity of the interface with the conductive film. In this manner, by removing the low resistance region located between the conductors 242a and 242b on the top surface of the oxide 230b, formation of a channel in the region can be prevented.
  • a semiconductor device including a transistor with high on-state current can be provided.
  • a semiconductor device including a transistor having high frequency characteristics can be provided.
  • a semiconductor device including a transistor with low off-state current can be provided.
  • the conductor 205 is disposed so as to overlap with the oxide 230 and the conductor 260.
  • the conductor 205 is preferably provided so as to be embedded in the insulator 216.
  • the flatness of the upper surface of the conductor 205 is preferably improved.
  • the average surface roughness (Ra) of the upper surface of the conductor 205 may be 1 nm or less, preferably 0.5 nm or less, more preferably 0.3 nm or less. Accordingly, the flatness of the insulator 224 formed over the conductor 205 can be improved, and the crystallinity of the oxide 230a, the oxide 230b, and the oxide 230c can be improved.
  • the conductor 260 may function as a first gate (also referred to as a top gate) electrode.
  • the conductor 205 may function as a second gate (also referred to as a bottom gate) electrode.
  • Vth of the transistor 200 can be controlled by changing the potential applied to the conductor 205 independently of the potential applied to the conductor 260 without being interlocked.
  • Vth of the transistor 200 can be made higher than 0 V and off-state current can be reduced. Therefore, when a negative potential is applied to the conductor 205, the drain current when the potential applied to the conductor 260 is 0 V can be made smaller than when a negative potential is not applied.
  • the conductor 205 is preferably provided larger than the channel formation region in the oxide 230.
  • the conductor 205 is preferably extended also in a region outside the end portion intersecting with the channel width direction of the oxide 230. That is, it is preferable that the conductor 205 and the conductor 260 overlap with each other with an insulator outside the side surface in the channel width direction of the oxide 230.
  • the channel formation region of the oxide 230 is electrically isolated by the electric field of the conductor 260 functioning as the first gate electrode and the electric field of the conductor 205 functioning as the second gate electrode. Can be surrounded.
  • the conductor 205 is extended to function as wiring.
  • the present invention is not limited to this, and a conductor functioning as a wiring may be provided below the conductor 205.
  • One conductor 205 is not necessarily provided for each transistor.
  • the conductor 205 may be shared by a plurality of transistors.
  • the conductor 205 is preferably formed using a conductive material containing tungsten, copper, or aluminum as a main component. Note that although the conductor 205 has an example of a stacked structure including three layers of the conductor 205a, the conductor 205b, and the conductor 205c, this embodiment is not limited thereto.
  • the conductor 205 may be a single layer or may have a stacked structure of two layers or four or more layers.
  • the conductor 205a and the conductor 205b include a hydrogen atom, a hydrogen molecule, a water molecule, a nitrogen atom, a nitrogen molecule, and a nitrogen oxide molecule (N 2 O, NO, NO 2 ), and has a function of suppressing diffusion of at least one of impurities such as copper atoms and oxygen (for example, oxygen atoms and oxygen molecules) (at least one of the impurities and oxygen is not easily transmitted).
  • a conductive material selected from titanium, titanium nitride, tantalum, and tantalum nitride can be used.
  • a conductive material containing tungsten, copper, or aluminum as a main component can be used.
  • the function of suppressing diffusion of impurities or oxygen is a function of suppressing diffusion of any one or all of the impurities and oxygen.
  • the conductor having a function of suppressing oxygen diffusion By using a conductor having a function of suppressing oxygen diffusion as the conductor 205a or the conductor 205b, it is possible to prevent the conductivity of the conductor 205c from being reduced.
  • the conductor having a function of suppressing oxygen diffusion for example, tantalum, tantalum nitride, ruthenium, or ruthenium oxide is preferably used. Therefore, the conductive material may be a single layer or a stacked layer as the conductor 205a or the conductor 205b.
  • the insulator 214 preferably functions as a barrier insulating film which prevents impurities such as water or hydrogen from entering the transistor 200 from the substrate side. Therefore, the insulator 214 has a function of suppressing diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitric oxide molecules (N 2 O, NO, NO 2, and the like) and copper atoms. It is preferable to use an insulating material (which is difficult for the impurities to pass through). Alternatively, it is preferable to use an insulating material having a function of suppressing the diffusion of oxygen (for example, at least one of oxygen atoms and oxygen molecules) (the oxygen is difficult to transmit).
  • oxygen for example, at least one of oxygen atoms and oxygen molecules
  • the insulator 214 it is preferable to use aluminum oxide or silicon nitride as the insulator 214.
  • impurities such as water or hydrogen from the substrate side to the transistor 200 side with respect to the insulator 214 can be suppressed.
  • diffusion of oxygen contained in the insulator 224 and the like to the substrate side with respect to the insulator 214 can be suppressed.
  • the insulator 216, the insulator 280, and the insulator 281 that function as an interlayer film preferably have a lower dielectric constant than that of the insulator 214.
  • parasitic capacitance generated between the wirings can be reduced.
  • silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide added with fluorine, silicon oxide added with carbon, carbon, and nitrogen were added. Silicon oxide, silicon oxide having holes, or the like may be used as appropriate.
  • the insulator 216 may have a laminated structure.
  • an insulator similar to the insulator 214 may be provided at least in a portion in contact with the side surface of the conductor 205.
  • the conductor 205 can be prevented from being oxidized by oxygen contained in the insulator 216.
  • the conductor 205 can suppress absorption of oxygen contained in the insulator 216.
  • the insulator 222 and the insulator 224 have a function as a gate insulator.
  • the insulator 224 in contact with the oxide 230 desorbs oxygen by heating.
  • oxygen released by heating may be referred to as excess oxygen.
  • the insulator 224 may be formed using silicon oxide, silicon oxynitride, or the like as appropriate.
  • an oxide material from which part of oxygen is released by heating is preferably used as the insulator 224.
  • the oxide that desorbs oxygen by heating means that the amount of desorbed oxygen in terms of oxygen atom is 1.0 ⁇ 10 18 atoms / cm 3 or more, preferably 1 in TDS (Thermal Desorption Spectroscopy) analysis.
  • the oxide film is 0.0 ⁇ 10 19 atoms / cm 3 or more, more preferably 2.0 ⁇ 10 19 atoms / cm 3 or more, or 3.0 ⁇ 10 20 atoms / cm 3 or more.
  • the surface temperature of the film at the time of the TDS analysis is preferably in the range of 100 ° C. to 700 ° C.
  • the insulator 224 preferably has a smaller thickness in a region that does not overlap with the oxide 230b than in other regions.
  • the lower end portion of the conductor 260 can be positioned on the lower side, so that the electric field of the conductor 260 functioning as the first gate electrode is applied to the side surface of the oxide 230. It becomes easy.
  • the insulator 224 may be provided in an island shape so as to overlap with the oxide 230b and the oxide 230a.
  • the insulator 222 preferably functions as a barrier insulating film which prevents impurities such as water or hydrogen from entering the transistor 200 from the substrate side, like the insulator 214.
  • the insulator 222 preferably has lower hydrogen permeability than the insulator 224.
  • the insulator 222 preferably has a function of suppressing the diffusion of oxygen (for example, at least one of oxygen atoms and oxygen molecules) (the oxygen is difficult to permeate).
  • the insulator 222 preferably has lower oxygen permeability than the insulator 224.
  • the insulator 222 has a function of suppressing diffusion of oxygen and impurities, which is preferable because oxygen included in the oxide 230 can be prevented from diffusing to the substrate side.
  • the conductor 205 can be prevented from reacting with the oxygen included in the insulator 224 and the oxide 230.
  • an insulator containing one or both oxides of aluminum and hafnium which are insulating materials may be used.
  • the insulator containing one or both of aluminum and hafnium aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used.
  • the insulator 222 suppresses release of oxygen from the oxide 230 and entry of impurities such as hydrogen from the peripheral portion of the transistor 200 into the oxide 230. Acts as a layer.
  • aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, or zirconium oxide may be added to these insulators.
  • these insulators may be nitrided. Silicon insulator, silicon oxynitride, or silicon nitride may be stacked over the above insulator.
  • the insulator 222 is made of, for example, aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ), or (Ba, Sr) TiO 3 (BST).
  • An insulator including a so-called high-k material may be used as a single layer or a stacked layer. As transistor miniaturization and higher integration progress, problems such as leakage current may occur due to thinning of the gate insulator. By using a high-k material for the insulator functioning as a gate insulator, the gate potential during transistor operation can be reduced while maintaining the physical film thickness.
  • the insulator 222 it is particularly preferable to use hafnium oxide among the materials described above.
  • the interface state density may be reduced by using hafnium oxide for the insulator 222 as compared with the case of using aluminum oxide.
  • the insulator 222 and the insulator 224 may have a stacked structure of two or more layers.
  • the present invention is not limited to a laminated structure made of the same material, and may be a laminated structure made of different materials.
  • an insulator similar to the insulator 224 may be provided below the insulator 222.
  • the transistor 200 includes an oxide 230a, an oxide 230b on the oxide 230a, an oxide 230c on the oxide 230b, and an oxide 230d on the oxide 230c.
  • the oxide 230a under the oxide 230b, diffusion of impurities from the structure formed below the oxide 230a to the oxide 230b can be suppressed.
  • the oxide 230c over the oxide 230b, diffusion of impurities from the structure formed above the oxide 230c to the oxide 230b can be suppressed.
  • the oxide 230 preferably has a stacked structure of oxides having different atomic ratios of metal atoms. Specifically, in the metal oxide used for the oxide 230a, the atomic ratio of the element M in the constituent element is larger than the atomic ratio of the element M in the constituent element in the metal oxide used for the oxide 230b. It is preferable. In the metal oxide used for the oxide 230a, the atomic ratio of the element M to In is preferably larger than the atomic ratio of the element M to In in the metal oxide used for the oxide 230b. In the metal oxide used for the oxide 230b, the atomic ratio of In to the element M is preferably larger than the atomic ratio of In to the element M in the metal oxide used for the oxide 230a. As the oxide 230c, a metal oxide that can be used for the oxide 230a or the oxide 230b can be used. As the oxide 230d, a metal oxide that can be used for the oxide 230a or the oxide 230b can be used.
  • the oxide 230a, the oxide 230b, the oxide 230c, and the oxide 230d preferably have crystallinity, and in particular, a CAAC-OS is preferably used.
  • An oxide having crystallinity such as a CAAC-OS has a dense structure with few impurities and defects (such as oxygen vacancies) and high crystallinity. With such an oxide 230, the transistor 200 becomes stable against a high temperature (so-called thermal budget) in the manufacturing process.
  • the energy at the lower end of the conduction band of the oxide 230a and the oxide 230c is higher than the energy at the lower end of the conduction band of the oxide 230b.
  • the electron affinity of the oxide 230a and the oxide 230c is preferably smaller than the electron affinity of the oxide 230b.
  • the oxide 230c is preferably a metal oxide that can be used for the oxide 230a.
  • the atomic ratio of the element M in the constituent element is larger than the atomic ratio of the element M in the constituent element in the metal oxide used for the oxide 230b. It is preferable.
  • the atomic ratio of the element M to In is preferably larger than the atomic ratio of the element M to In in the metal oxide used for the oxide 230b.
  • the atomic ratio of In to the element M is preferably larger than the atomic ratio of In to the element M in the metal oxide used for the oxide 230c.
  • the energy level at the lower end of the conduction band changes gently.
  • the energy level at the lower end of the conduction band at the junction of the oxide 230a, the oxide 230b, and the oxide 230c is continuously changed or continuously joined.
  • the defect state density of the mixed layer formed at the interface between the oxide 230a and the oxide 230b and the interface between the oxide 230b and the oxide 230c is preferably low.
  • the oxide 230a and the oxide 230b, and the oxide 230b and the oxide 230c have a common element (main component) in addition to oxygen, so that a mixed layer with a low density of defect states is formed. can do.
  • the oxide 230b is an In—Ga—Zn oxide
  • an In—Ga—Zn oxide, a Ga—Zn oxide, a gallium oxide, or the like may be used as the oxide 230a and the oxide 230c.
  • the oxide 230c may have a stacked structure.
  • a stacked structure of gallium oxide can be used.
  • a stacked structure of an In—Ga—Zn oxide and an oxide containing no In may be used as the oxide 230c.
  • the main path of the carrier is the oxide 230b.
  • the oxide 230a and the oxide 230c have the above structure, the density of defect states at the interface between the oxide 230a and the oxide 230b and the interface between the oxide 230b and the oxide 230c can be reduced. Therefore, the influence on carrier conduction due to interface scattering is reduced, and the transistor 200 can obtain a high on-state current and a high frequency characteristic. Note that in the case where the oxide 230c has a stacked structure, in addition to the effect of reducing the defect state density at the interface between the oxide 230b and the oxide 230c, the constituent element of the oxide 230c is It is expected to suppress diffusion.
  • the oxide 230c has a stacked structure and an oxide not containing In is positioned above the stacked structure, In that can be diffused to the insulator 250 side can be suppressed. Since the insulator 250 functions as a gate insulator, when In is diffused, transistor characteristics are deteriorated. Therefore, with the stacked structure of the oxide 230c, a highly reliable semiconductor device can be provided.
  • Ga: Zn 1: 3: 4 [atomic ratio]
  • Ga: Zn 4: 2: 3 [atomic ratio]
  • Ga: Zn 2: 1 [atomic ratio]
  • a conductor 242 (conductor 242a and conductor 242b) functioning as a source electrode and a drain electrode is provided over the oxide 230b.
  • the conductor 242 include aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, It is preferable to use a metal element selected from lanthanum, an alloy containing the above metal element as a component, or an alloy combining the above metal elements.
  • tantalum nitride, titanium nitride, tungsten, nitride containing titanium and aluminum, nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxide containing strontium and ruthenium, oxide containing lanthanum and nickel, or the like is used. It is preferable. Also, tantalum nitride, titanium nitride, nitride containing titanium and aluminum, nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxide containing strontium and ruthenium, and oxide containing lanthanum and nickel are difficult to oxidize. A conductive material or a material that maintains conductivity even when oxygen is absorbed is preferable.
  • the oxygen concentration may be reduced in the vicinity of the conductor 242 of the oxide 230.
  • a metal compound layer including a metal contained in the conductor 242 and a component of the oxide 230 may be formed in the vicinity of the conductor 242 of the oxide 230. In such a case, the carrier density increases in a region near the conductor 242 of the oxide 230, and the region becomes a low-resistance region.
  • the region between the conductors 242a and 242b is formed so as to overlap with the opening of the insulator 280. Accordingly, the conductor 260 can be disposed in a self-aligned manner between the conductor 242a and the conductor 242b.
  • the insulator 250 functions as a gate insulator.
  • the insulator 250 is preferably provided in contact with the upper surface of the oxide 230c.
  • silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, or silicon oxide having a hole is used. be able to.
  • silicon oxide and silicon oxynitride are preferable because they are stable against heat.
  • the concentration of impurities such as water or hydrogen in the insulator 250 is reduced.
  • the thickness of the insulator 250 is preferably greater than or equal to 1 nm and less than or equal to 20 nm.
  • a metal oxide may be provided between the insulator 250 and the conductor 260.
  • the metal oxide preferably suppresses oxygen diffusion from the insulator 250 to the conductor 260. Thus, oxidation of the conductor 260 due to oxygen in the insulator 250 can be suppressed.
  • the metal oxide may function as a part of the gate insulator. Therefore, when silicon oxide, silicon oxynitride, or the like is used for the insulator 250, the metal oxide is preferably a metal oxide that is a high-k material with a high relative dielectric constant.
  • the gate insulator has a stacked structure of the insulator 250 and the metal oxide, a stacked structure having high relative dielectric constant and stability against heat can be obtained. Therefore, it is possible to reduce the gate potential applied during transistor operation while maintaining the physical film thickness of the gate insulator. In addition, it is possible to reduce the equivalent oxide thickness (EOT) of an insulator that functions as a gate insulator.
  • EOT equivalent oxide thickness
  • a metal oxide containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, magnesium, or the like is used. it can.
  • the conductor 260 is shown as a two-layer structure in FIG. 4, but may have a single-layer structure or a laminated structure of three or more layers.
  • the conductor 260a has a function of suppressing diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitric oxide molecules (N 2 O, NO, NO 2, etc.) and copper atoms. It is preferable to use a conductor having the same. Alternatively, it is preferable to use a conductive material having a function of suppressing diffusion of oxygen (for example, at least one of oxygen atoms and oxygen molecules).
  • the conductor 260a has a function of suppressing diffusion of oxygen, it is possible to prevent the conductivity of the conductor 260b from being oxidized by the oxygen contained in the insulator 250 and the conductivity from being lowered.
  • tantalum, tantalum nitride, ruthenium, or ruthenium oxide is preferably used as the conductive material having a function of suppressing oxygen diffusion.
  • the conductor 260b be made of a conductive material mainly containing tungsten, copper, or aluminum.
  • a conductor having high conductivity is preferably used.
  • a conductive material containing tungsten, copper, or aluminum as a main component can be used.
  • the conductor 260b may have a stacked structure, for example, a stacked structure of titanium, titanium nitride, and the conductive material.
  • a metal oxide that can be used as the oxide 230 may be provided between the insulator 250 and the conductor 260a. At this time, the metal oxide functions as a gate electrode similarly to the conductor 260.
  • oxygen can be supplied to at least one of the insulator 250 and the oxide 230, which is preferable.
  • the conductor 260 is prevented from being oxidized by oxygen contained in the insulator 250 or the insulator 280. Can do.
  • oxygen contained in the insulator 250 can be suppressed from being absorbed by the conductor 260.
  • a side surface of the oxide 230 is a conductor in a region where the conductor 2302 of the oxide 230b does not overlap, in other words, in a channel formation region of the oxide 230. It is arranged so as to be covered with 260. Accordingly, the electric field of the conductor 260 functioning as the first gate electrode is easily applied to the side surface of the oxide 230. Thus, the on-state current of the transistor 200 can be increased and the frequency characteristics can be improved.
  • the insulator 254 preferably functions as a barrier insulating film which prevents impurities such as water or hydrogen from entering the transistor 200 from the insulator 280 side, like the insulator 214 and the like.
  • the insulator 254 preferably has lower hydrogen permeability than the insulator 224.
  • the insulator 254 includes a part of a side surface of the oxide 230c, an upper surface and a side surface of the conductor 242a, and an upper surface and a side surface of the conductor 242b.
  • the oxide 230b be in contact with part of the top surface, part of the side surface, the side surface of the oxide 230a, and the top surface of the insulator 224.
  • hydrogen contained in the insulator 280 can be prevented from entering the oxide 230 from the top surfaces or side surfaces of the oxide 230a, the oxide 230b, and the insulator 224.
  • the insulator 254 preferably has a function of suppressing diffusion of oxygen (for example, at least one of oxygen atoms and oxygen molecules) (the oxygen is difficult to transmit).
  • the insulator 254 preferably has lower oxygen permeability than the insulator 280 or the insulator 224.
  • the insulator 254 is preferably formed using a sputtering method.
  • oxygen can be added in the vicinity of the region of the insulator 224 that is in contact with the insulator 254. Accordingly, oxygen can be supplied from the region into the oxide 230 through the insulator 224.
  • the insulator 254 has a function of suppressing diffusion of oxygen upward, whereby oxygen can be prevented from diffusing from the oxide 230 to the insulator 280.
  • the insulator 222 has a function of suppressing diffusion of oxygen downward, whereby oxygen can be prevented from diffusing from the oxide 230 to the substrate side. In this manner, oxygen is supplied to the channel formation region of the oxide 230. Accordingly, oxygen vacancies in the oxide 230 can be reduced, and the transistor can be prevented from being normally on.
  • an insulator containing one or both of aluminum and hafnium may be formed.
  • the insulator including one or both of aluminum and hafnium aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used.
  • the insulator 254 may have a stacked structure.
  • the second insulator may be formed using the ALD method over the first insulator formed using the sputtering method.
  • the first insulator and the second insulator may be made of the same material selected from the materials described above, or may be made of different materials.
  • aluminum oxide formed by a sputtering method may be used as the first insulator
  • aluminum oxide formed by an ALD method may be used as the second insulator.
  • a film formed by the ALD method has high coverage, and a film having high uniformity can be formed even on a step portion formed of a structure such as the oxide 230.
  • the insulator 280 is separated from the insulator 224 and the oxide 230 by covering the insulator 224 and the oxide 230 with the insulator 254 having a barrier property against hydrogen. Accordingly, intrusion of impurities such as hydrogen from the outside of the transistor 200 can be suppressed, so that favorable electrical characteristics and reliability can be given to the transistor 200.
  • an insulator containing aluminum nitride may be used.
  • a nitride insulator satisfying the composition formula of AlNx x is a real number greater than 0 and less than or equal to 2, preferably x is greater than 0.5 and less than or equal to 1.5
  • the insulator 254 can be formed using aluminum titanium nitride, titanium nitride, or the like.
  • the film by using a sputtering method because the film can be formed without using a highly oxidizing gas such as oxygen or ozone as the film forming gas.
  • a highly oxidizing gas such as oxygen or ozone as the film forming gas.
  • silicon nitride, silicon nitride oxide, or the like can be used.
  • an insulator containing one or both of aluminum and hafnium may be formed.
  • the insulator including one or both of aluminum and hafnium aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used.
  • the insulator 244 preferably functions as a barrier insulating film which prevents impurities such as water or hydrogen from entering the transistor 200 from the insulator 280 side, like the insulator 214 and the like.
  • the insulator 244 preferably has lower hydrogen permeability than the insulator 224.
  • the insulator 244 is preferably disposed so as to be in contact with the insulator 254. With such a structure, hydrogen contained in the insulator 280 can be prevented from entering the oxide 230 from the side surfaces of the conductor 260, the oxide 230c, and the insulator 250.
  • the insulator 280 can be formed using the insulator 254 and the insulator 244.
  • the insulator 224, the oxide 230, and the insulator 250 are separated from the insulator 224, the oxide 230, and the insulator 250. Accordingly, intrusion of impurities such as hydrogen from the outside of the transistor 200 can be suppressed, so that favorable electrical characteristics and reliability can be given to the transistor 200.
  • the insulator 244 preferably has a function of suppressing diffusion of oxygen (for example, at least one of oxygen atoms, oxygen molecules, and the like) (the above-described oxygen hardly transmits).
  • the insulator 244 preferably has lower oxygen permeability than the insulator 224.
  • an insulator containing aluminum nitride may be used.
  • a nitride insulator satisfying a composition formula of AlNx (x is a real number greater than 0 and equal to or less than 2, preferably x is greater than 0.5 and equal to or less than 1.5) is preferably used.
  • a film having excellent insulating properties and excellent thermal conductivity can be obtained, so that heat dissipation of heat generated when the transistor 200 is driven can be improved.
  • the insulator 244 can be formed using aluminum titanium nitride, titanium nitride, or the like.
  • the film by using a sputtering method because the film can be formed without using a highly oxidizing gas such as oxygen or ozone as the film forming gas.
  • a highly oxidizing gas such as oxygen or ozone as the film forming gas.
  • silicon nitride, silicon nitride oxide, or the like can be used.
  • an insulator containing one or both of aluminum and hafnium may be formed.
  • the insulator including one or both of aluminum and hafnium aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used.
  • the insulator 244 is preferably formed using an ALD method. Since the ALD method is a film-forming method with good coverage, it is possible to prevent step breakage and the like from being formed due to the unevenness of the insulator 244.
  • the insulator 280 is provided over the insulator 224 and the oxide 230 with the insulator 244 and the insulator 254 interposed therebetween.
  • the insulator 280 silicon oxide, silicon oxynitride, silicon nitride oxide, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, silicon oxide having a hole, or the like is used. It is preferable to have.
  • silicon oxide and silicon oxynitride are preferable because they are thermally stable.
  • a material such as silicon oxide, silicon oxynitride, or silicon oxide having a hole is preferable because a region containing oxygen that is released by heating can be easily formed.
  • the concentration of impurities such as water or hydrogen in the insulator 280 is reduced. Further, the upper surface of the insulator 280 may be planarized.
  • the insulator 274 preferably functions as a barrier insulating film that suppresses entry of impurities such as water or hydrogen into the insulator 280 from above, like the insulator 214.
  • an insulator that can be used for the insulator 214, the insulator 254, and the like may be used, for example.
  • an insulator 281 that functions as an interlayer film is preferably provided over the insulator 274.
  • the insulator 281 preferably has reduced concentration of impurities such as water or hydrogen in the film.
  • the conductor 240a and the conductor 240b are disposed in openings formed in the insulator 281, the insulator 274, the insulator 280, the insulator 244, and the insulator 254.
  • the conductor 240a and the conductor 240b are provided to face each other with the conductor 260 interposed therebetween. Note that the top surfaces of the conductors 240a and 240b may be flush with the top surface of the insulator 281.
  • an insulator 241a is provided in contact with the inner walls of the openings of the insulator 281, the insulator 274, the insulator 280, the insulator 244, and the insulator 254, and a first conductor of the conductor 240a is in contact with the side surface thereof. Is formed.
  • a conductor 242a is located at least at a part of the bottom of the opening, and the conductor 242a is in contact with the conductor 240a.
  • the insulator 241b is provided in contact with the inner walls of the openings of the insulator 281, the insulator 274, the insulator 280, the insulator 244, and the insulator 254, and the first conductor of the conductor 240b is in contact with the side surface thereof.
  • the body is formed.
  • a conductor 242b is located at least at a part of the bottom of the opening, and the conductor 242b is in contact with the conductor 240b.
  • the conductive material 240a and the conductive material 240b are preferably formed using a conductive material containing tungsten, copper, or aluminum as a main component.
  • the conductor 240a and the conductor 240b may have a stacked structure.
  • the conductor in contact with the oxide 230a, the oxide 230b, the insulator 254, the insulator 280, the insulator 274, and the insulator 281 includes the above-described water or hydrogen. It is preferable to use a conductor having a function of suppressing diffusion of impurities.
  • a conductor having a function of suppressing diffusion of impurities For example, tantalum, tantalum nitride, titanium, titanium nitride, ruthenium, or ruthenium oxide is preferably used.
  • the conductive material having a function of suppressing diffusion of impurities such as water or hydrogen may be used in a single layer or a stacked layer.
  • oxygen added to the insulator 280 can be prevented from being absorbed by the conductor 240a and the conductor 240b.
  • impurities such as water or hydrogen from an upper layer than the insulator 281 can be prevented from entering the oxide 230 through the conductor 240a and the conductor 240b.
  • an insulator that can be used for the insulator 214 or the like for example, aluminum oxide or silicon nitride may be used. Since the insulator 241a and the insulator 241b are provided in contact with the insulator 254, impurities such as water or hydrogen from the insulator 280 and the like are prevented from entering the oxide 230 through the conductor 240a and the conductor 240b. be able to. In addition, oxygen contained in the insulator 280 can be prevented from being absorbed by the conductors 240a and 240b.
  • an ALD method or a CVD method can be used for the formation of the insulator 241a and the insulator 241b.
  • a conductor functioning as a wiring may be disposed in contact with the upper surface of the conductor 240a and the upper surface of the conductor 240b.
  • a conductive material containing tungsten, copper, or aluminum as a main component is preferably used.
  • the conductor may have a stacked structure, for example, a stack of titanium, titanium nitride, and the conductive material.
  • the conductor may be formed so as to be embedded in an opening provided in the insulator.
  • the resistivity is 1.0 ⁇ 10 13 ⁇ cm or more and 1.0 ⁇ 10 15 ⁇ cm or less, preferably 5.0 ⁇ 10 13 ⁇ cm or more and 5.0 ⁇ 10 14 so as to cover the conductor. It is preferable to provide an insulator of ⁇ cm or less. By providing an insulator having the above-described resistivity on the conductor, the insulator disperses charges accumulated between the wiring of the transistor 200 and the conductor while maintaining insulation. It is preferable because it can suppress poor characteristics and electrostatic breakdown of the transistor due to the charge and an electronic device including the transistor.
  • 9A, 9B, and 9C are a top view and a cross-sectional view of the transistor 200A and the periphery of the transistor 200A according to one embodiment of the present invention.
  • FIG. 9A is a top view of a semiconductor device having a transistor 200A.
  • 9B and 9C are cross-sectional views of the semiconductor device.
  • FIG. 9B is a cross-sectional view taken along dashed-dotted line A1-A2 in FIG. 9A and also a cross-sectional view in the channel length direction of the transistor 200A.
  • FIG. 9C is a cross-sectional view taken along dashed-dotted line A3-A4 in FIG. 9A and is a cross-sectional view in the channel width direction of the transistor 200A. Note that in the top view of FIG. 9A, some elements are omitted for clarity.
  • the transistor 200A illustrated in FIGS. 9A, 9B, and 9C does not include the conductor 242a and the conductor 242b but includes the layer 253a and the layer 253b as described above. This is mainly different from the transistor 200 (see FIG. 4) shown in the device configuration example 1>. Note that the same components as those of the transistor 200 are denoted by the same reference numerals, and detailed description thereof may be omitted.
  • the transistor 200A is separated from the oxide 230a disposed on a substrate (not shown), the oxide 230b disposed on the oxide 230a, and the oxide 230b.
  • the insulator 280 which is disposed over the oxide 253b and overlaps between the layer 253a and the layer 253b, and the oxide disposed in the opening.
  • the layer 253a and the layer 253b may be collectively referred to as a layer 253.
  • the insulator 254 is preferably disposed between the insulator 224, the oxide 230a, the oxide 230b, and the insulator 280.
  • the insulator 254 includes an upper surface and a side surface of the layer 253a, an upper surface and a side surface of the layer 253b, a side surface of the oxide 230a and the oxide 230b, and an insulating material. It is preferable to contact the upper surface of the body 224.
  • the conductor 260 functions as a gate electrode of the transistor, and the layers 253a and 253b function as a source region or a drain region, respectively.
  • the conductor 260 is formed so as to be embedded in the opening of the insulator 280 and the insulator 254 and the region sandwiched between the layers 253a and 253b.
  • the arrangement of the conductor 260, the layers 253a, and 253b is selected in a self-aligned manner with respect to the openings of the insulator 280 and the insulator 254. That is, in the transistor 200A, the gate electrode can be disposed in a self-aligned manner between the source region and the drain region. Therefore, since the conductor 260 can be formed without providing an alignment margin, the area occupied by the transistor 200A can be reduced. Thereby, miniaturization and high integration of the semiconductor device can be achieved.
  • FIG. 10 shows an enlarged view of the oxide 230 in FIG. 9B and the vicinity thereof.
  • An enlarged view of the oxide 230 in FIG. 9C and the vicinity thereof is shown in FIG.
  • a crystal layer extending in the ab plane direction is indicated by a broken line.
  • the description of the transistor 200 described above can be referred to for the route of oxygen diffused from the insulator 280 into the oxide 230b, and thus detailed description thereof is omitted.
  • FIG. 12 shows an enlarged view of the oxide 230 and its vicinity when the oxide 230c has a stacked structure including the first oxide 230c1 and the second oxide 230c2 on the first oxide.
  • FIG. 12 is an enlarged view of the oxide 230 in FIG. 9B and the vicinity thereof.
  • a crystal layer extending in the ab plane direction is indicated by a broken line.
  • the description of the transistor 200 can be referred to for the c-axis directions of the oxides 230a to 230d, and thus a detailed description thereof is omitted (see FIG. 8).
  • the oxide 230 will be described.
  • the oxide 230 may be added with an element that forms oxygen vacancies or an element that combines with oxygen vacancies, whereby the carrier density may increase and the resistance may be reduced.
  • Typical examples of such an element include boron and phosphorus.
  • hydrogen, carbon, nitrogen, fluorine, sulfur, chlorine, titanium, rare gas, and the like can be used.
  • rare gases include helium, neon, argon, krypton, and xenon.
  • the oxide 230 includes aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, and strontium. Any one or more metal elements selected from metal elements such as lanthanum may be added. Among the elements described above, boron and phosphorus are preferable as the added element. For the addition of boron and phosphorus, equipment of an amorphous silicon or low-temperature polysilicon production line can be used, so that capital investment can be suppressed. The concentration of the element may be measured by using secondary ion mass spectrometry (SIMS) or the like.
  • SIMS secondary ion mass spectrometry
  • the layer 253 is a layer formed by adding the above element to the oxide 230.
  • the layers 253a and 253b are formed so as to face each other with the conductor 260 interposed therebetween, and the top surface thereof is preferably in contact with the insulator 254 and the oxide 230c.
  • the side surfaces of the layers 253a and 253b on the conductor 260 side coincide with the side surfaces of the conductor 260, or a part of the layers 253a and 253b overlap with the conductor 260.
  • the concentration of the element in the layer 253 is preferably equal to or higher than the concentration of the element in a portion where the layer 253 of the oxide 230 is not formed.
  • the amount of oxygen vacancies included in the layer 253 is preferably equal to or higher than the amount of oxygen vacancies in the portion where the layer 253 of the oxide 230 is not formed.
  • the layer 253 has a higher carrier density and lower resistance than a portion of the oxide 230 where the layer 253 is not formed.
  • the oxide 230 includes a first region overlapping with the conductor 260, a pair of second regions not overlapping with either the conductor 260 or the insulator 254, and a pair of third regions overlapping with the insulating layer 254.
  • the first region is located between the pair of second regions, and the first region and the pair of second regions are located between the pair of third regions.
  • the third region (for example, the region 231b in FIG. 10) has a higher carrier density and a lower resistance than the first region (the region 234 in FIG. 10).
  • the second region (for example, the region 232b in FIG. 10) has a higher carrier density and lower resistance than the first region, and has a carrier density higher than that of the third region.
  • the second region may have a carrier density equivalent to that of the third region and may have equivalent resistance. Therefore, the first region functions as a channel formation region of the transistor 200A, the third region functions as a source region or a drain region, and the second region functions as a junction region.
  • an offset region is prevented from being formed between the channel formation region of the oxide 230 and the source or drain region, and the effective channel length is larger than the width of the conductor 260. It can be suppressed. Accordingly, the on-state current of the transistor 200A can be increased, the S value can be improved, and the frequency characteristics can be improved.
  • the conductor 240 functioning as a plug can be connected to the region 231 without providing a source electrode and a drain electrode formed of metal. it can.
  • the source electrode and the drain electrode formed using a metal are provided in contact with the oxide 230, the source electrode and the drain electrode formed using the metal are oxidized when high-temperature heat treatment is performed in the manufacturing process or the later process of the transistor 200A.
  • the on-current, S value, and frequency characteristics of the transistor 200A may be deteriorated.
  • a semiconductor device that exhibits favorable on-state current, S value, and frequency characteristics can be provided even when high-temperature heat treatment is performed in a manufacturing process or a post-process of the transistor 200A.
  • a process in which a high temperature of about 750 ° C. to 800 ° C. is applied can be performed.
  • an element that forms an oxygen vacancy is added to the layer 253 and heat treatment is performed, so that hydrogen contained in the region 234 functioning as a channel formation region is captured by the oxygen vacancy contained in the layer 253.
  • it is possible Accordingly, stable electrical characteristics can be given to the transistor 200A, and reliability can be improved.
  • the region 232 may not function as a bonding region.
  • the region 232 has a carrier density equivalent to that of the region 234, an equivalent resistance value, or an equivalent property.
  • the region 232 functions as a so-called offset region.
  • the channel length is reduced (for example, when the channel length is 60 nm or less or the channel length is 30 nm or less), the influence of the offset region may be negligible.
  • the layer 253 is formed in the vicinity of the surfaces of the oxide 230b, the insulator 254, and the oxide 230c in the film thickness direction of the oxide 230b, but the present invention is not limited thereto.
  • the layer 253 may have substantially the same thickness as the oxide 230b, or may be formed on the oxide 230a.
  • the layer 253 is formed in the region 231 and the region 232, but is not limited thereto. For example, it may be formed only in the region 231, may be formed in the region 231 and a part of the region 232, or may be formed in the region 231, the region 232, and a part of the region 234. It may be formed.
  • concentrations of metal elements detected in each region and impurity elements such as hydrogen and nitrogen are not limited to stepwise changes in each region, but also continuously change in each region (also referred to as gradation). May be. That is, the closer to the channel formation region, the lower the concentration of the metal element and impurity elements such as hydrogen and nitrogen.
  • a semiconductor device including a transistor with high on-state current can be provided.
  • a semiconductor device including a transistor having high frequency characteristics can be provided.
  • a semiconductor device including a transistor with low off-state current can be provided.
  • the region between the layer 253a and the layer 253b is formed so as to overlap with the opening of the insulator 280. Accordingly, the conductor 260 can be disposed in a self-aligned manner between the layers 253a and 253b.
  • the side surface of the oxide 230 is disposed so as to be covered with the conductor 260. Accordingly, the electric field of the conductor 260 functioning as the first gate electrode is easily applied to the side surface of the oxide 230. Thus, the on-state current of the transistor 200A can be increased and the frequency characteristics can be improved.
  • the insulator 254 functioning as a barrier insulating film includes a part of a side surface of the oxide 230c, a top surface and a side surface of the layer 253a, a top surface and a side surface of the layer 253b, that is, a part of the top surface of the oxide 230b and a part of the side surface.
  • hydrogen contained in the insulator 280 can be prevented from entering the oxide 230 from the top surfaces or side surfaces of the oxide 230a, the oxide 230b, and the insulator 224.
  • the insulator 254 may have a function as a protective film when the layers 253a and 253b are formed.
  • the insulator 254 as a protective film, the surface of the oxide 230 is not directly exposed to ions or plasma, and the layer 253a And damage to the oxide 230 in forming the layer 253b can be suppressed, which is preferable.
  • the damage to the oxide 230 refers to the formation of excessive oxygen vacancies in the oxide 230, excessive decrease in crystallinity of the oxide 230, or the like.
  • silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, or oxide having a void Silicon or the like can be used as the insulator 254.
  • the insulator 280 is provided over the insulator 224 and the oxide 230 with the insulator 254 interposed therebetween.
  • the conductor 240a and the conductor 240b are disposed in openings formed in the insulator 281, the insulator 274, the insulator 280, and the insulator 254.
  • the conductor 240a and the conductor 240b are provided to face each other with the conductor 260 interposed therebetween. Note that the top surfaces of the conductors 240a and 240b may be flush with the top surface of the insulator 281.
  • an insulator 241a is provided in contact with the inner walls of the openings of the insulator 281, the insulator 274, the insulator 280, and the insulator 254, and a first conductor of the conductor 240a is formed in contact with a side surface thereof.
  • the layer 253a is located at least at a part of the bottom of the opening, and the conductor 240a is in contact with the layer 253a.
  • the insulator 241b is provided in contact with the inner walls of the openings of the insulator 281, the insulator 274, the insulator 280, and the insulator 254, and the first conductor of the conductor 240b is formed in contact with the side surface thereof.
  • the layer 253b is located at least at a part of the bottom of the opening, and the conductor 240b is in contact with the layer 253b.
  • 13A, 13B, and 13C are a top view and a cross-sectional view of the transistor 200B and the periphery of the transistor 200B according to one embodiment of the present invention.
  • FIG. 13A is a top view of a semiconductor device having a transistor 200B.
  • 13B and 13C are cross-sectional views of the semiconductor device.
  • FIG. 13B is a cross-sectional view taken along the dashed-dotted line A1-A2 in FIG. 13A and also a cross-sectional view in the channel length direction of the transistor 200B.
  • FIG. 13C is a cross-sectional view taken along the dashed-dotted line A3-A4 in FIG. 13A and also a cross-sectional view in the channel width direction of the transistor 200B.
  • FIG. 13A some elements are omitted for clarity. Note that the same components as those of the transistor 200 and the transistor 200A described above are denoted by the same reference numerals, and detailed description thereof may be omitted.
  • the transistor 200B includes an oxide 230a disposed over a substrate (a substrate is not shown) provided with an insulator 224, and an oxide 230b disposed over the oxide 230a.
  • layers 253a and 253b formed separately from each other and the insulator 224 and the oxide 230b are formed over the top surface of the oxide 230b, and an opening is formed so as to overlap between the layers 253a and 253b.
  • the insulator 254 may have a stacked structure of two or more layers.
  • an insulator 254 is preferably disposed between the insulator 224, the oxide 230 a, the oxide 230 b, and the insulator 280.
  • the insulator 254 includes an upper surface and a side surface of the layer 253a, an upper surface and a side surface of the layer 253b, a side surface of the oxide 230a and the oxide 230b, and an insulating material. It is preferable to contact the upper surface of the body 224.
  • an insulator 270 is disposed between the conductor 260 and the insulator 280.
  • the insulator 270 is in contact with the side surface of the conductor 260a, the upper surface and the side surface of the conductor 260b, and part of the upper surface of the oxide 230d. Is preferred.
  • the conductor 260 functions as a gate electrode of the transistor, and the layer 253a and the layer 253b function as a source region or a drain region, respectively.
  • the layers 253a and 253b are regions where the resistance is reduced by adding a dopant to at least part of the oxide 230b of the oxide 230a and the oxide 230b. Further, the layer 253a and the layer 253b are preferably overlapped with the insulator 254 in a top view.
  • FIG. 14 shows an enlarged view of the oxide 230 and its vicinity in FIG.
  • the description of the transistor 200 described above can be referred to for the route of oxygen diffused from the insulator 280 into the oxide 230b, and thus detailed description thereof is omitted.
  • Route C and Route D are omitted.
  • FIG. 15 shows an enlarged view of the oxide 230 and the vicinity thereof when the oxide 230c has a stacked structure including the first oxide 230c1 and the second oxide 230c2 on the first oxide.
  • FIG. 15 is an enlarged view of the oxide 230 in FIG. 13B and the vicinity thereof.
  • Route C and Route D are omitted.
  • the description of the transistor 200 can be referred to for the c-axis directions of the oxides 230a to 230d, and thus a detailed description thereof is omitted (see FIG. 8).
  • an insulator containing more oxygen than oxygen that satisfies the stoichiometric composition is preferably used as the insulator 280 in contact with the oxide 230c. Furthermore, the insulator 280 is preferably in contact with the end surface of the oxide 230c. The insulator 280 is preferably in contact with the end surface of the oxide 230d. The insulator 280 is preferably in contact with the end surface of the insulator 250. With such a structure, oxygen can be efficiently supplied from the insulator 280 to the oxide 230, and oxygen vacancies can be reduced.
  • an insulator 274 that functions as an interlayer film and an insulator 281 are preferably provided over the transistor 200B.
  • the insulator 274 is preferably disposed in contact with the upper surface of the insulator 280.
  • 16A, 16B, and 16C are a top view and a cross-sectional view of the transistor 200C according to one embodiment of the present invention and the periphery of the transistor 200C.
  • FIG. 16A is a top view of the transistor 200C.
  • FIG. 16B is a cross-sectional view corresponding to the portion indicated by the dashed-dotted line A1-A2 in FIG. 16A and also a cross-sectional view in the channel length direction of the transistor 200C.
  • FIG. 16C is a cross-sectional view corresponding to the portion indicated by the dashed-dotted line A3-A4 in FIG. 16A, and is also a cross-sectional view in the channel width direction of the transistor 200C.
  • some elements are omitted for clarity.
  • a transistor 200C illustrated in FIGS. 16A, 16B, and 16C does not include the layer 253a and the layer 253b, and the conductor 242a which is disposed separately from each other over the oxide 230b.
  • the transistor 200B is different from the transistor 200B illustrated in FIGS. Note that the same components as those of the transistor 200B are denoted by the same reference numerals, and detailed description thereof may be omitted.
  • the transistor 200C is provided over the conductor 242a and the conductor 242b, and includes an insulator 254 in which an opening is formed so as to overlap between the conductor 242a and the conductor 242b, and an oxide 230c disposed in the opening.
  • An insulator 250, an oxide 230d, and a conductor 260 are included.
  • a substrate over which the transistor 200 is formed for example, an insulator substrate, a semiconductor substrate, or a conductor substrate may be used.
  • the insulator substrate include a glass substrate, a quartz substrate, a sapphire substrate, a stabilized zirconia substrate (such as a yttria stabilized zirconia substrate), and a resin substrate.
  • the semiconductor substrate include a semiconductor substrate made of silicon or germanium, or a compound semiconductor substrate made of silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide, or gallium oxide.
  • a semiconductor substrate having an insulator region inside the above-described semiconductor substrate for example, an SOI (Silicon On Insulator) substrate.
  • the conductor substrate include a graphite substrate, a metal substrate, an alloy substrate, and a conductive resin substrate.
  • a substrate in which a conductor or a semiconductor is provided on an insulator substrate a substrate in which a conductor or an insulator is provided on a semiconductor substrate, a substrate in which a semiconductor or an insulator is provided on a conductor substrate, and the like.
  • a substrate in which an element is provided may be used. Examples of the element provided on the substrate include a capacitor element, a resistor element, a switch element, a light emitting element, and a memory element.
  • Insulator examples include an insulating oxide, nitride, oxynitride, nitride oxide, metal oxide, metal oxynitride, and metal nitride oxide.
  • the transistor when the transistor is miniaturized and highly integrated, problems such as leakage current may occur due to thinning of the gate insulator.
  • a high-k material for the insulator functioning as a gate insulator the voltage during transistor operation can be reduced while maintaining the physical film thickness.
  • a parasitic capacitance generated between wirings can be reduced by using a material having a low relative dielectric constant for the insulator functioning as an interlayer film. Therefore, the material may be selected according to the function of the insulator.
  • Insulators having a high relative dielectric constant include gallium oxide, hafnium oxide, zirconium oxide, oxides containing aluminum and hafnium, oxynitrides containing aluminum and hafnium, oxides containing silicon and hafnium, silicon and hafnium.
  • an oxynitride having silicon, or a nitride having silicon and hafnium are examples of gallium oxide, hafnium oxide, zirconium oxide, oxides containing aluminum and hafnium, oxynitrides containing aluminum and hafnium, oxides containing silicon and hafnium, silicon and hafnium.
  • Insulators having a low dielectric constant include silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, For example, silicon oxide having a hole or resin may be used.
  • a transistor including an oxide semiconductor is surrounded by an insulator (such as the insulator 214, the insulator 222, the insulator 254, and the insulator 274) having a function of suppressing transmission of impurities such as hydrogen and oxygen.
  • an insulator such as the insulator 214, the insulator 222, the insulator 254, and the insulator 2704.
  • the insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen include boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, and zirconium.
  • An insulator containing lanthanum, neodymium, hafnium, or tantalum may be used in a single layer or a stacked layer.
  • an insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen
  • a metal oxide such as tantalum oxide, or a metal nitride such as aluminum nitride, aluminum nitride titanium, titanium nitride, silicon nitride oxide, or silicon nitride can be used.
  • the insulator functioning as a gate insulator is preferably an insulator having a region containing oxygen that is desorbed by heating.
  • the oxide 230 By using a structure in which silicon oxide or silicon oxynitride including a region containing oxygen which is released by heating is in contact with the oxide 230, oxygen vacancies in the oxide 230 can be compensated.
  • Conductor a material used for the conductor 15 described in the above embodiment can be used.
  • the conductor functioning as the gate electrode has a stacked structure in which the above-described material containing a metal element and the conductive material containing oxygen are combined. Is preferred.
  • a conductive material containing oxygen is preferably provided on the channel formation region side.
  • a conductive material containing oxygen and a metal element contained in a metal oxide in which a channel is formed as a conductor functioning as a gate electrode it is preferable to use a conductive material containing oxygen and a metal element contained in a metal oxide in which a channel is formed as a conductor functioning as a gate electrode.
  • the above-described conductive material containing a metal element and nitrogen may be used.
  • a conductive material containing nitrogen such as titanium nitride or tantalum nitride may be used.
  • Indium tin oxide may be used.
  • indium gallium zinc oxide containing nitrogen may be used.
  • a metal oxide functioning as an oxide semiconductor (hereinafter also referred to as an oxide semiconductor) is preferably used.
  • an oxide semiconductor a metal oxide functioning as an oxide semiconductor
  • the metal oxide applicable to the oxide 230 which concerns on this invention is demonstrated.
  • the oxide semiconductor preferably contains at least indium or zinc. In particular, it is preferable to contain indium and zinc. In addition to these, it is preferable that aluminum, gallium, yttrium, tin, or the like is contained. Further, one kind or plural kinds selected from boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, or the like may be included.
  • the oxide semiconductor is an In-M-Zn oxide containing indium, an element M, and zinc is considered.
  • the element M is aluminum, gallium, yttrium, tin, or the like.
  • Other elements applicable to the element M include boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, and magnesium.
  • the element M may be a combination of a plurality of the aforementioned elements.
  • metal oxides containing nitrogen may be collectively referred to as metal oxides.
  • a metal oxide containing nitrogen may be referred to as a metal oxynitride.
  • An oxide semiconductor is classified into a single crystal oxide semiconductor and a non-single crystal oxide semiconductor.
  • a non-single-crystal oxide semiconductor for example, a polycrystalline oxide semiconductor and an amorphous oxide semiconductor are known.
  • a thin film with high crystallinity is preferably used as the oxide semiconductor used for the semiconductor of the transistor.
  • the stability or reliability of the transistor can be improved.
  • the thin film include a single crystal oxide semiconductor thin film and a polycrystalline oxide semiconductor thin film.
  • a high temperature or laser heating step is required in order to form a single crystal oxide semiconductor thin film or a polycrystalline oxide semiconductor thin film on a substrate. Therefore, the cost of the manufacturing process increases and the throughput also decreases.
  • Non-Patent Document 1 and Non-Patent Document 2 an In—Ga—Zn oxide having a CAAC structure (referred to as CAAC-IGZO) was discovered in 2009.
  • CAAC-IGZO In—Ga—Zn oxide having a CAAC structure
  • CAAC-IGZO can be formed on a substrate at a low temperature with c-axis orientation, crystal grain boundaries are not clearly confirmed.
  • a transistor using CAAC-IGZO has excellent electrical characteristics and reliability.
  • nc-IGZO In 2013, an In—Ga—Zn oxide having an nc structure (referred to as nc-IGZO) was discovered (see Non-Patent Document 3). Here, it is reported that nc-IGZO has periodicity in atomic arrangement in a minute region (for example, a region of 1 nm or more and 3 nm or less), and regularity is not observed in crystal orientation between different regions. Yes.
  • Non-Patent Document 4 and Non-Patent Document 5 show the transition of the average crystal size due to the electron beam irradiation on the thin films of CAAC-IGZO, nc-IGZO, and IGZO having low crystallinity.
  • a CAAC-IGZO thin film or an nc-IGZO thin film is preferably used as a semiconductor of the transistor.
  • a transistor including an oxide semiconductor has a very small leakage current in a non-conducting state. Specifically, an off-current per 1 ⁇ m channel width of the transistor is on the order of yA / ⁇ m (10 ⁇ 24 A / ⁇ m).
  • yA / ⁇ m 10 ⁇ 24 A / ⁇ m.
  • Non-Patent Document 8 an application of a transistor using an oxide semiconductor to a display device using a characteristic of low leakage current of the transistor has been reported (see Non-Patent Document 8).
  • the display device the displayed image is switched several tens of times per second. The number of switching of images per second is called a refresh rate.
  • the refresh rate may be referred to as a drive frequency.
  • Such high-speed screen switching that is difficult for human eyes to perceive is considered as a cause of eye fatigue.
  • it has been proposed to reduce the number of times of image rewriting by lowering the refresh rate of the display device.
  • power consumption of the display device can be reduced by driving at a reduced refresh rate.
  • Such a driving method is called idling stop (IDS) driving.
  • IDS idling stop
  • the discovery of the CAAC structure and the nc structure contributes to the improvement of the electrical characteristics and reliability of the transistor using the oxide semiconductor having the CAAC structure or the nc structure, and the cost reduction and the throughput of the manufacturing process.
  • research on application of the transistor to a display device and an LSI utilizing the characteristic that the leakage current of the transistor is low is underway.
  • composition of metal oxide A structure of a CAC (Cloud-Aligned Composite) -OS that can be used for the transistor disclosed in one embodiment of the present invention is described below.
  • CAAC c-axis aligned crystal
  • CAC Cloud-Aligned Composite
  • CAC-OS or CAC-metal oxide has a conductive function in a part of the material and an insulating function in a part of the material, and the whole material has a function as a semiconductor.
  • the conductive function is a function of flowing electrons (or holes) serving as carriers
  • the insulating function is an electron serving as carriers. It is a function that does not flow.
  • a function of switching (a function of turning on / off) can be imparted to CAC-OS or CAC-metal oxide by causing the conductive function and the insulating function to act complementarily. In CAC-OS or CAC-metal oxide, by separating each function, both functions can be maximized.
  • CAC-OS or CAC-metal oxide has a conductive region and an insulating region.
  • the conductive region has the above-described conductive function
  • the insulating region has the above-described insulating function.
  • the conductive region and the insulating region may be separated at the nanoparticle level.
  • the conductive region and the insulating region may be unevenly distributed in the material, respectively.
  • the conductive region may be observed with the periphery blurred and connected in a cloud shape.
  • the conductive region and the insulating region are dispersed in the material with a size of 0.5 nm to 10 nm, preferably 0.5 nm to 3 nm, respectively. There is.
  • CAC-OS or CAC-metal oxide is composed of components having different band gaps.
  • CAC-OS or CAC-metal oxide includes a component having a wide gap caused by an insulating region and a component having a narrow gap caused by a conductive region.
  • the carrier when the carrier flows, the carrier mainly flows in the component having the narrow gap.
  • the component having a narrow gap acts in a complementary manner to the component having a wide gap, and the carrier flows through the component having the wide gap in conjunction with the component having the narrow gap. Therefore, when the CAC-OS or the CAC-metal oxide is used for a channel formation region of a transistor, high current driving force, that is, high on-state current and high field-effect mobility can be obtained in the on-state of the transistor.
  • CAC-OS or CAC-metal oxide can also be called a matrix composite material (metal matrix composite) or a metal matrix composite material (metal matrix composite).
  • An oxide semiconductor is classified into a single crystal oxide semiconductor and a non-single-crystal oxide semiconductor.
  • the non-single-crystal oxide semiconductor include a CAAC-OS (c-axis aligned crystal oxide semiconductor), a polycrystalline oxide semiconductor, an nc-OS (nanocrystalline oxide semiconductor), and a pseudo-amorphous oxide semiconductor (a-like oxide semiconductor).
  • OS amorphous-like oxide semiconductor) and amorphous oxide semiconductor.
  • the CAAC-OS has a c-axis orientation and a crystal structure in which a plurality of nanocrystals are connected in the ab plane direction and has a strain.
  • the strain refers to a portion where the orientation of the lattice arrangement changes between a region where the lattice arrangement is aligned and a region where another lattice arrangement is aligned in a region where a plurality of nanocrystals are connected.
  • Nanocrystals are based on hexagons, but are not limited to regular hexagons and may be non-regular hexagons.
  • a lattice arrangement such as a pentagon and a heptagon in the distortion.
  • a clear crystal grain boundary also referred to as a grain boundary
  • the formation of crystal grain boundaries is suppressed by the distortion of the lattice arrangement. This is because the CAAC-OS can tolerate distortion due to the fact that the arrangement of oxygen atoms is not dense in the ab plane direction and the bond distance between atoms changes due to substitution of metal elements. This is probably because of this.
  • the CAAC-OS includes a layered crystal in which a layer containing indium and oxygen (hereinafter referred to as In layer) and a layer including elements M, zinc, and oxygen (hereinafter referred to as (M, Zn) layers) are stacked.
  • In layer a layer containing indium and oxygen
  • M, Zn elements M, zinc, and oxygen
  • indium and the element M can be replaced with each other, and when the element M in the (M, Zn) layer is replaced with indium, it can also be expressed as an (In, M, Zn) layer. Further, when indium in the In layer is replaced with the element M, it can also be expressed as an (In, M) layer.
  • CAAC-OS is an oxide semiconductor with high crystallinity.
  • CAAC-OS cannot confirm a clear crystal grain boundary, it can be said that a decrease in electron mobility due to the crystal grain boundary hardly occurs.
  • the CAAC-OS can be said to be an oxide semiconductor with few impurities and defects (such as oxygen vacancies). Therefore, the physical properties of the oxide semiconductor including a CAAC-OS are stable. Therefore, an oxide semiconductor including a CAAC-OS is resistant to heat and has high reliability.
  • Nc-OS has periodicity in atomic arrangement in a minute region (for example, a region of 1 nm to 10 nm, particularly a region of 1 nm to 3 nm).
  • the nc-OS has no regularity in crystal orientation between different nanocrystals. Therefore, orientation is not seen in the whole film. Therefore, the nc-OS may not be distinguished from an a-like OS or an amorphous oxide semiconductor depending on an analysis method.
  • the a-like OS is an oxide semiconductor having a structure between the nc-OS and the amorphous oxide semiconductor.
  • the a-like OS has a void or a low density region. That is, the a-like OS has lower crystallinity than the nc-OS and the CAAC-OS.
  • Oxide semiconductors have various structures and have different characteristics.
  • the oxide semiconductor of one embodiment of the present invention may include two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, an nc-OS, and a CAAC-OS.
  • the oxide semiconductor for a transistor, a transistor with high field-effect mobility can be realized. In addition, a highly reliable transistor can be realized.
  • an oxide semiconductor with low carrier density is preferably used.
  • the impurity concentration in the oxide semiconductor film may be decreased and the defect level density may be decreased.
  • a low impurity concentration and a low density of defect states are referred to as high purity intrinsic or substantially high purity intrinsic.
  • the oxide semiconductor has a carrier density of less than 8 ⁇ 10 11 / cm 3 , preferably less than 1 ⁇ 10 11 / cm 3 , more preferably less than 1 ⁇ 10 10 / cm 3 , and 1 ⁇ 10 ⁇ 9 / What is necessary is just to be cm 3 or more.
  • a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor film has a low defect level density and thus may have a low trap level density.
  • the charge trapped in the trap level of the oxide semiconductor takes a long time to disappear, and may behave as if it were a fixed charge. Therefore, a transistor in which a channel formation region is formed in an oxide semiconductor with a high trap state density may have unstable electrical characteristics.
  • Impurities include hydrogen, nitrogen, alkali metal, alkaline earth metal, iron, nickel, silicon, and the like.
  • the concentration of silicon or carbon in the oxide semiconductor and the concentration of silicon or carbon in the vicinity of the interface with the oxide semiconductor are 2 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 17 atoms / cm 3 or less.
  • the oxide semiconductor contains an alkali metal or an alkaline earth metal
  • a defect level is formed and carriers may be generated in some cases. Therefore, a transistor including an oxide semiconductor containing an alkali metal or an alkaline earth metal is likely to be normally on. Therefore, it is preferable to reduce the concentration of alkali metal or alkaline earth metal in the oxide semiconductor.
  • the concentration of alkali metal or alkaline earth metal in the oxide semiconductor obtained by SIMS is set to 1 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 16 atoms / cm 3 or less.
  • the nitrogen concentration in the oxide semiconductor is less than 5 ⁇ 10 19 atoms / cm 3 , preferably 5 ⁇ 10 18 in SIMS. atoms / cm 3 or less, more preferably 1 ⁇ 10 18 atoms / cm 3 or less, and even more preferably 5 ⁇ 10 17 atoms / cm 3 or less.
  • the oxide semiconductor reacts with oxygen bonded to a metal atom to become water, so that an oxygen vacancy may be formed in some cases.
  • an oxygen vacancy may be formed in some cases.
  • electrons serving as carriers may be generated.
  • a part of hydrogen may be combined with oxygen bonded to a metal atom to generate electrons as carriers. Therefore, a transistor including an oxide semiconductor containing hydrogen is likely to be normally on. For this reason, it is preferable that hydrogen in the oxide semiconductor be reduced as much as possible.
  • the hydrogen concentration obtained by SIMS is less than 1 ⁇ 10 20 atoms / cm 3 , preferably less than 1 ⁇ 10 19 atoms / cm 3 , more preferably 5 ⁇ 10 18 atoms / cm 3. Less than 3 , more preferably less than 1 ⁇ 10 18 atoms / cm 3 .
  • Stable electrical characteristics can be provided by using an oxide semiconductor in which impurities are sufficiently reduced for a channel formation region of a transistor.
  • oxygen deficiency is an example of a defect that leads to poor electrical characteristics of the transistor.
  • the threshold voltage is likely to fluctuate in the negative direction, which tends to be normally on. This is because donors due to oxygen vacancies contained in the metal oxide are generated and the carrier concentration increases.
  • various problems such as an operation failure easily occurring during operation or a high power consumption during non-operation occur.
  • the metal oxide there are oxygen atoms that are weakly bonded to metal atoms and tend to be oxygen deficient.
  • the metal oxide is an In—Ga—Zn oxide
  • a zinc atom and an oxygen atom tend to form a weak bond (also referred to as a weak Zn—O bond).
  • the weak Zn—O bond is a bond between a zinc atom and an oxygen atom that is bonded at such a high strength as to be broken by a high-temperature treatment performed during the manufacturing process or an electrical stress applied during a stress test. The resulting bond.
  • the bond is cut by heat treatment or current stress, and oxygen vacancies are formed. Formation of oxygen vacancies lowers the stability of the transistor, such as resistance to heat treatment and resistance in stress tests.
  • impurities in the metal oxide when impurities are present in the metal oxide, it is presumed that a weak Zn—O bond is likely to be formed.
  • impurities in the metal oxide include water molecules and hydrogen. The presence of water molecules or hydrogen in the metal oxide may cause a hydrogen atom to bond with an oxygen atom constituting the metal oxide (also referred to as OH bond).
  • an oxygen atom bonded to a hydrogen atom When the In—Ga—Zn oxide is a single crystal, the oxygen atoms constituting the metal oxide are bonded to four metal atoms constituting the metal oxide.
  • an oxygen atom bonded to a hydrogen atom may be bonded to two or three metal atoms. By reducing the number of metal atoms bonded to oxygen atoms, the oxygen atoms are easily lost. Note that when a zinc atom is bonded to an oxygen atom forming an OH bond, the bond between the oxygen atom and the zinc atom is presumed to be weak.
  • weak Zn—O bonds may be formed in a strain existing in a region where a plurality of nanocrystals are connected. Nanocrystals are based on hexagons but have lattice arrangements such as pentagons and heptagons in the strain. In this strain, since the bond distance between atoms is not uniform, it is estimated that a weak Zn—O bond is formed.
  • the oxygen atoms and zinc atoms constituting the weak Zn—O bond By reducing the oxygen atoms and zinc atoms constituting the weak Zn—O bond, formation of oxygen vacancies due to heat treatment or current stress can be suppressed, and the stability of the transistor can be improved. Note that when only the oxygen atoms constituting the weak Zn—O bond are reduced and the zinc atoms constituting the weak Zn—O bond are not reduced, supplying the oxygen atom in the vicinity of the zinc atom causes the weak Zn—O bond to regenerate. May be formed. Therefore, it is preferable to reduce zinc atoms and oxygen atoms constituting weak Zn—O bonds.
  • Vacuum baking is a heat treatment performed in a vacuum atmosphere.
  • the vacuum atmosphere is maintained by exhausting with a turbo molecular pump or the like.
  • the pressure in the treatment chamber may be 1 ⁇ 10 ⁇ 2 Pa or less, preferably 1 ⁇ 10 ⁇ 3 Pa or less.
  • the temperature of the substrate at the time of heat treatment may be 300 ° C. or higher, preferably 400 ° C. or higher.
  • oxygen atoms and zinc atoms constituting weak Zn-O bonds can be reduced.
  • the atoms constituting the metal oxide are rearranged so that four metals are rearranged. More oxygen atoms are bonded to the atoms. Accordingly, oxygen atoms and zinc atoms constituting the weak Zn—O bond can be reduced, and the weak Zn—O bond can be prevented from being re-formed.
  • (A) in each figure shows a top view.
  • (B) in each drawing is a cross-sectional view corresponding to the portion indicated by the one-dot chain line of A1-A2 shown in (A), and is also a cross-sectional view in the channel length direction of the transistor 200.
  • (C) in each drawing is a cross-sectional view corresponding to the portion indicated by the one-dot chain line of A3-A4 in (A), and is also a cross-sectional view in the channel width direction of the transistor 200. Note that in the top view of each figure (A), some elements are omitted for the sake of clarity.
  • a substrate (not shown) is prepared, and an insulator 214 is formed on the substrate.
  • the insulator 214 is formed by a sputtering method, a chemical vapor deposition (CVD) method, a molecular beam epitaxy (MBE) method, a pulsed laser deposition (PLD: Pulsed Laser Deposition) method, or an ALD method. (Atomic Layer Deposition) method or the like can be used.
  • the CVD method can be classified into a plasma CVD (PECVD: Plasma Enhanced CVD) method using plasma, a thermal CVD (TCVD: Thermal CVD) method using heat, a photo CVD (Photo CVD) method using light, and the like.
  • PECVD Plasma Enhanced CVD
  • TCVD Thermal CVD
  • Photo CVD Photo CVD
  • MCVD Metal CVD
  • MOCVD Metal Organic CVD
  • the plasma CVD method can obtain a high-quality film at a relatively low temperature.
  • the thermal CVD method is a film formation method that can reduce plasma damage to an object to be processed because plasma is not used.
  • a wiring, an electrode, an element (a transistor, a capacitor, or the like) included in the semiconductor device may be charged up by receiving electric charge from plasma.
  • a wiring, an electrode, an element, or the like included in the semiconductor device may be destroyed by the accumulated charge.
  • plasma damage during film formation does not occur, so that a film with few defects can be obtained.
  • the ALD method utilizes the self-controllability that is the nature of atoms and can deposit atoms one layer at a time, so it is possible to form a very thin film, and to form a structure with a high aspect ratio. There are effects such as film formation with few defects such as holes, film formation with excellent coverage, and film formation at low temperature.
  • the ALD method also includes a film forming method PEALD (Plasma Enhanced ALD) method using plasma. Use of plasma may be preferable because it enables film formation at a lower temperature.
  • some precursors used in the ALD method include impurities such as carbon. Therefore, a film provided by the ALD method may contain a larger amount of impurities such as carbon than a film provided by another film formation method.
  • the quantification of impurities can be performed using X-ray photoelectron spectroscopy (XPS: X-ray Photoelectron Spectroscopy).
  • the CVD method and the ALD method are film forming methods in which a film is formed by a reaction on the surface of an object to be processed, unlike a film forming method in which particles emitted from a target or the like are deposited. Therefore, it is a film forming method that is not easily affected by the shape of the object to be processed and has good step coverage.
  • the ALD method has excellent step coverage and excellent thickness uniformity, and thus is suitable for covering the surface of an opening having a high aspect ratio.
  • the ALD method since the ALD method has a relatively low film formation rate, it may be preferable to use it in combination with another film formation method such as a CVD method with a high film formation rate.
  • the composition of the obtained film can be controlled by the flow rate ratio of the source gases.
  • a film having an arbitrary composition can be formed depending on the flow rate ratio of the source gases.
  • a film whose composition is continuously changed can be formed by changing the flow rate ratio of the source gas while forming the film.
  • an aluminum oxide film is formed as the insulator 214 by a sputtering method.
  • the insulator 214 may have a multilayer structure.
  • an aluminum oxide film may be formed by a sputtering method, and the aluminum oxide film may be formed on the aluminum oxide by an ALD method.
  • an aluminum oxide film may be formed by an ALD method, and an aluminum oxide film may be formed on the aluminum oxide by a sputtering method.
  • silicon nitride or silicon nitride oxide may be formed by a plasma CVD method.
  • an insulator 216 is formed over the insulator 214.
  • the insulator 216 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • silicon oxide is formed as the insulator 216 by a CVD method.
  • an opening reaching the insulator 214 is formed in the insulator 216 by using a lithography method.
  • the opening includes, for example, a groove and a slit. In some cases, the opening is pointed to a region where the opening is formed.
  • a wet etching method may be used for forming the opening, but a dry etching method is preferable for fine processing.
  • As the insulator 214 an insulator that functions as an etching stopper when the insulator 216 is etched to form an opening is preferably selected. For example, in the case where silicon oxide is used for the insulator 216 that forms the opening, silicon nitride, aluminum oxide, or hafnium oxide is preferably used as the insulator 214 that functions as an etching stopper.
  • a resist is exposed through a mask.
  • a resist mask is formed by removing or leaving the exposed region using a developer.
  • a conductor, a semiconductor, an insulator, or the like can be processed into a desired shape by etching through the resist mask.
  • the resist mask may be formed by exposing the resist using KrF excimer laser light, ArF excimer laser light, EUV (Extreme Ultraviolet) light, or the like.
  • an immersion technique may be used in which exposure is performed by filling a liquid (for example, water) between the substrate and the projection lens.
  • an electron beam or an ion beam may be used.
  • a mask is not necessary when an electron beam or an ion beam is used.
  • the resist mask can be removed by performing a dry etching process such as ashing, performing a wet etching process, performing a wet etching process after the dry etching process, or performing a dry etching process after the wet etching process.
  • a hard mask made of an insulator or a conductor may be used instead of the resist mask.
  • an insulating film or a conductive film to be a hard mask material is formed over the insulating film to be the insulator 216, a resist mask is formed thereover, and the hard mask material is etched to have a desired shape.
  • a hard mask can be formed. Etching of the insulating film to be the insulator 216 may be performed after removing the resist mask, or may be performed with the resist mask remaining. In the latter case, the resist mask may disappear during etching. The hard mask may be removed by etching after the insulating film to be the insulator 216 is etched. On the other hand, when the material of the hard mask does not affect the subsequent process or can be used in the subsequent process, it is not always necessary to remove the hard mask.
  • a capacitively coupled plasma (CCP) etching apparatus having parallel plate electrodes can be used as the dry etching apparatus.
  • the capacitively coupled plasma etching apparatus having parallel plate electrodes may be configured to apply a high frequency power source to one of the parallel plate electrodes.
  • a configuration in which a plurality of different high-frequency power sources are applied to one electrode of the parallel plate electrode may be employed.
  • mold electrode may be sufficient.
  • mold electrode may be sufficient.
  • a dry etching apparatus having a high-density plasma source can be used.
  • an inductively coupled plasma (ICP) etching apparatus can be used as the dry etching apparatus having a high-density plasma source.
  • a conductive film to be the conductor 205a is formed.
  • a conductive barrier film having a function of suppressing permeation of impurities and oxygen is preferably used.
  • tantalum nitride, tungsten nitride, titanium nitride, or the like can be used.
  • a stacked film of tantalum, tungsten, titanium, molybdenum, aluminum, copper, or molybdenum tungsten alloy can be used.
  • the conductive film to be the conductor 205a can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the conductive film to be the conductor 205a tantalum nitride or a film in which titanium nitride is stacked over tantalum nitride is formed by a sputtering method.
  • a metal nitride as the conductor 205a, diffusion of the metal from the conductor 205a to the outside can be suppressed even when a metal that easily diffuses such as copper is used in the conductor 205c described later.
  • a conductive film to be the conductor 205b is formed over the conductive film to be the conductor 205a.
  • the conductive film can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a conductive barrier film having a function of suppressing permeation of impurities and oxygen is preferably used as in the conductor 205a.
  • titanium nitride is formed using an ALD method as the conductive film to be the conductor 205b.
  • a conductive film to be the conductor 205c is formed over the conductive film to be the conductor 205b.
  • the conductive film can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a low-resistance conductive material such as tungsten, copper, or aluminum is formed as the conductive film to be the conductor 205c.
  • the conductive film to be the conductor 205a, the conductive film to be the conductor 205b, and a part of the conductive film to be the conductor 205c are removed by polishing, so that the insulator 216 is exposed.
  • the conductive film to be the conductor 205a, the conductive film to be the conductor 205b, and the conductive film to be the conductor 205c remain only in the opening.
  • the conductor 205 including the conductor 205a, the conductor 205b, and the conductor 205c with a flat upper surface can be formed (see FIG. 17).
  • part of the insulator 216 may be removed by the CMP treatment.
  • the method for manufacturing the insulator 216 and the conductor 205 is not limited to the above.
  • a conductive film to be the conductor 205 is formed over the insulator 214, and the conductive film 205 is formed by lithography using a lithography method.
  • an insulating film to be the insulator 216 is provided so as to cover the conductor 205, and a part of the insulating film is removed by CMP treatment until a part of the conductor 205 is exposed.
  • An insulator 216 may be formed.
  • the planarity of the upper surfaces of the conductor 205 and the insulator 216 can be improved, and the oxide 230b and The crystallinity of the CAAC-OS included in one or both of the oxides 230c can be improved.
  • the insulator 222 is formed over the insulator 216 and the conductor 205.
  • an insulator including one or both of aluminum and hafnium may be formed.
  • the insulator including one or both of aluminum and hafnium aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used.
  • An insulator including one or both of aluminum and hafnium has a barrier property against oxygen, hydrogen, and water. Since the insulator 222 has a barrier property against hydrogen and water, diffusion of hydrogen and water contained in a structure provided around the transistor 200 to the inside of the transistor 200 through the insulator 222 is suppressed. In addition, generation of oxygen vacancies in the oxide 230 can be suppressed.
  • the insulator 222 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the insulator 224 is formed over the insulator 222.
  • the insulator 224 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • heat treatment is preferably performed.
  • the heat treatment may be performed at 250 ° C to 650 ° C, preferably 300 ° C to 500 ° C, more preferably 320 ° C to 450 ° C.
  • the heat treatment is performed in a nitrogen or inert gas atmosphere or an atmosphere containing an oxidizing gas at 10 ppm or more, 1% or more, or 10% or more.
  • the heat treatment may be performed in a reduced pressure state.
  • the heat treatment may be performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas in order to supplement the desorbed oxygen after heat treatment in a nitrogen or inert gas atmosphere. Good.
  • the heat treatment after the insulator 224 is formed, treatment is performed at a temperature of 400 ° C. for one hour in a nitrogen atmosphere.
  • impurities such as water and hydrogen contained in the insulator 224 can be removed.
  • the heat treatment can also be performed at a timing after the insulator 222 is formed.
  • plasma treatment including oxygen may be performed in a reduced pressure state.
  • an apparatus having a power source that generates high-density plasma using microwaves for example.
  • a power source for applying RF Radio Frequency
  • high-density plasma high-density oxygen radicals can be generated.
  • RF Radio Frequency
  • oxygen radicals generated by the high-density plasma can be efficiently guided into the insulator 224. it can.
  • plasma treatment containing oxygen may be performed to supplement the desorbed oxygen. Note that impurities such as water and hydrogen contained in the insulator 224 can be removed by appropriately selecting the conditions for the plasma treatment. In that case, heat treatment may not be performed.
  • an oxide film 230A to be the oxide 230a, an oxide film 230B to be the oxide 230b, and a conductive film 242A are sequentially formed over the insulator 224 (see FIG. 17).
  • the oxide film is preferably formed continuously without being exposed to the atmospheric environment. By forming the film without opening to the atmosphere, impurities or moisture from the atmospheric environment can be prevented from adhering to the oxide film 230A and the oxide film 230B, and the vicinity of the interface between the oxide film 230A and the oxide film 230B can be prevented. Can be kept clean.
  • the oxide film 230A, the oxide film 230B, and the conductive film 242A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the oxide film 230A and the oxide film 230B are formed by a sputtering method
  • oxygen or a mixed gas of oxygen and a rare gas is used as a sputtering gas.
  • excess oxygen in the oxide film to be formed can be increased.
  • the above oxide film is formed by a sputtering method
  • the above In-M-Zn oxide target or the like can be used.
  • a direct current (DC) power source or an alternating current (AC) power source such as a radio frequency (RF) power source is connected to the target, and necessary power can be applied according to the electric conductivity of the target.
  • DC direct current
  • AC alternating current
  • RF radio frequency
  • part of oxygen contained in the sputtering gas may be supplied to the insulator 224 when the oxide film 230A is formed. Therefore, the proportion of oxygen contained in the sputtering gas for the oxide film 230A may be 70% or more, preferably 80% or more, more preferably 100%.
  • an oxygen-deficient oxide semiconductor is formed when the proportion of oxygen contained in the sputtering gas is 1% to 30%, preferably 5% to 20%. It is formed.
  • a transistor using an oxygen-deficient oxide semiconductor for a channel formation region can have a relatively high field-effect mobility. Further, by performing film formation while heating the substrate, the crystallinity of the oxide film can be improved. Note that one embodiment of the present invention is not limited to this.
  • an oxygen-excess type is formed by forming the film so that the proportion of oxygen contained in the sputtering gas exceeds 30% and is 100% or less, preferably 70% or more and 100% or less.
  • An oxide semiconductor is formed.
  • a transistor using an oxygen-excess type oxide semiconductor for a channel formation region can have relatively high reliability.
  • the insulator 222, the insulator 224, the oxide film 230A, and the oxide film 230B are preferably formed without being exposed to the atmosphere.
  • a multi-chamber film deposition apparatus may be used.
  • heat treatment may be performed.
  • the heat treatment conditions described above can be used for the heat treatment.
  • impurities such as water and hydrogen in the oxide film 230A and the oxide film 230B can be removed.
  • the processing is continuously performed for one hour at a temperature of 400 ° C. in an oxygen atmosphere.
  • the oxide film 230A, the oxide film 230B, and the conductive film 242A are processed into island shapes to form the oxide 230a, the oxide 230b, and the conductive film 242B. Note that in this step, the thickness of the region of the insulator 224 that does not overlap with the oxide 230a may be reduced (see FIG. 18).
  • the oxide 230 a and the oxide 230 b are formed so that at least a part thereof overlaps with the conductor 205.
  • the angle formed by the side surfaces of the oxides 230a and 230b and the upper surface of the insulator 222 may be a low angle.
  • the angle formed between the side surfaces of the oxides 230a and 230b and the upper surface of the insulator 222 is preferably greater than or equal to 60 ° and less than 70 °.
  • the side surface of the oxide 230 b may be substantially perpendicular to the upper surface of the insulator 222. Since the side surfaces of the oxide 230a and the oxide 230b are substantially perpendicular to the upper surface of the insulator 222, when the plurality of transistors 200 are provided, the area can be reduced and the density can be increased.
  • a curved surface is provided between the side surface of the oxide 230b and the upper surface of the oxide 230b. That is, it is preferable that the end of the side surface and the end of the upper surface are curved (hereinafter also referred to as a round shape).
  • the curved surface has a radius of curvature of 3 nm to 10 nm, preferably 5 nm to 6 nm, at the end of the oxide 230b.
  • the conductive film to be the oxide film 230A, the oxide film 230B, and the conductive film 242A may be processed by a lithography method.
  • a dry etching method or a wet etching method can be used. Processing by the dry etching method is suitable for fine processing.
  • impurities due to an etching gas or the like may adhere to or diffuse on the surface or inside of the oxide 230a and the oxide 230b.
  • impurities include fluorine and chlorine.
  • ⁇ Clean to remove the above impurities.
  • the cleaning method include wet cleaning using a cleaning liquid, plasma processing using plasma, cleaning by heat treatment, and the like, and the above cleanings may be combined as appropriate.
  • cleaning may be performed using an aqueous solution obtained by diluting oxalic acid, phosphoric acid, hydrofluoric acid or the like with carbonated water or pure water.
  • aqueous solution obtained by diluting oxalic acid, phosphoric acid, hydrofluoric acid or the like with carbonated water or pure water.
  • ultrasonic cleaning using pure water or carbonated water may be performed.
  • ultrasonic cleaning using pure water or carbonated water is performed.
  • heat treatment may be performed.
  • the above-described heat treatment conditions can be used.
  • heat treatment is preferably performed before the insulating film 254A is formed.
  • the heat treatment may be performed at 100 ° C. or more and 400 ° C. or less, for example, 200 ° C.
  • it is preferably performed at the same temperature as the deposition temperature of the insulating film 254A.
  • the film formation temperature includes not only the substrate temperature during film formation but also the case of the set temperature of the film formation apparatus.
  • the heat treatment is preferably performed at 200 ° C.
  • the heat treatment is preferably performed under reduced pressure, and may be performed in a vacuum atmosphere, for example.
  • the vacuum atmosphere is maintained by exhausting with a turbo molecular pump or the like.
  • the pressure in the processing chamber may be 1 ⁇ 10 ⁇ 2 Pa or less, preferably 1 ⁇ 10 ⁇ 3 Pa or less.
  • an insulating film 254A is formed over the insulator 224, the oxide 230a, the oxide 230b, and the conductive film 242B.
  • the insulating film 254A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the insulating film 254A is preferably an insulating film having a function of suppressing diffusion of impurities such as hydrogen and oxygen.
  • an aluminum oxide film is preferably formed by a sputtering method. By forming an aluminum oxide film with a gas containing oxygen by a sputtering method, oxygen can be injected into the insulator 224. That is, the insulator 224 can have excess oxygen.
  • the insulating film 254A aluminum oxide may be deposited while heating the substrate at a high temperature.
  • the substrate heating temperature at the time of forming the insulating film 254A may be 200 ° C. or higher, preferably 250 ° C. or higher, more preferably 350 ° C. or higher.
  • the insulating film 254A may have a stacked structure.
  • an insulating film 244A may be formed over the insulating film 254A (see FIG. 19).
  • the insulating film 244A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • an insulating film having a function of suppressing diffusion of impurities such as hydrogen and oxygen is preferably used.
  • the insulating film 244A having a uniform thickness can be formed even in the step portion formed by the dummy gate layer 262A or the like.
  • a dense thin film can be formed by using the ALD method. Since a dense thin film having excellent coverage can be formed in this manner, for example, even if a defect such as a void or a pinhole occurs in the insulating film 254A, it can be covered with the insulating film 244A.
  • the insulating film 244A may be formed as the insulating film 244A.
  • the flow rate of nitrogen gas with respect to the total flow rate of the deposition gas is 30% to 100%, preferably 40% or more. 100% or less, more preferably 50% or more and 100% or less.
  • the insulating film 244A aluminum oxide may be formed while heating the substrate at a high temperature.
  • the substrate heating temperature at the time of forming the insulating film 244A may be 200 ° C. or higher, preferably 250 ° C. or higher, more preferably 350 ° C. or higher.
  • the insulating film 254A by forming an aluminum oxide film using the ALD method as the insulating film 254A, it is possible to prevent the dummy gate layer 262A from being deformed when the insulating film 244A is formed at the above temperature. .
  • fluorine may be added after formation of one or both of the insulating film 244A and the insulating film 254A. Fluorine is added to one or both of the insulating film 244A and the insulating film 254A by performing plasma treatment in an atmosphere containing a fluorine-based gas (for example, CF 4 ) or by doping a gas containing fluorine. ,It can be carried out.
  • a fluorine-based gas for example, CF 4
  • excess oxygen contained in the insulator 224 can be prevented from diffusing outward, and impurities such as water and hydrogen can be prevented from entering the insulator 224 from the outside. Note that the formation of the insulating film 244A can be omitted.
  • a dummy gate layer 262A is formed (see FIG. 19).
  • the dummy gate film to be the dummy gate layer 262A is processed and used as a dummy gate.
  • a dummy gate is a temporary gate electrode. That is, a dummy gate film to be the dummy gate layer 262A is processed to form a temporary gate electrode, and the dummy gate is removed in a later process, and a gate electrode made of a conductive film or the like is formed instead. Therefore, it is preferable to use a film that can be easily processed and removed easily as the dummy gate film to be the dummy gate layer 262A.
  • the dummy gate film to be the dummy gate layer 262A can be formed by sputtering, CVD, MBE, PLD, ALD, or the like.
  • an insulator, a semiconductor, or a conductor can be used.
  • silicon such as polysilicon, microcrystalline silicon, or amorphous silicon, or a metal film such as aluminum, titanium, or tungsten may be used.
  • a film containing carbon, SOG (Spin On Glass), a resin film, or the like may be formed using a coating method.
  • the resin include photoresist, polyester, polyolefin, polyamide (such as nylon and aramid), polyimide, polycarbonate, and acrylic.
  • the dummy gate film to be the dummy gate layer 262A can be a multilayer film using different film types.
  • the dummy gate film serving as the dummy gate layer 262A can be a film having a two-layer structure in which a conductive film and a resin film are formed over the conductive film.
  • the conductive film may function as a stopper film for CMP processing.
  • the end point of the CMP process may be detected, and processing variations may be reduced.
  • the dummy gate layer 262A is formed by etching the dummy gate film to be the dummy gate layer 262A by lithography (see FIG. 19).
  • the dummy gate layer 262A is formed so that at least a part thereof overlaps with the conductor 205 and the oxide 230.
  • an insulating film to be the insulator 280 is formed over the dummy gate layer 262A and the insulating film 244A.
  • the insulating film to be the insulator 280 and part of the dummy gate layer 262A are removed until part of the dummy gate layer 262A is exposed, so that the insulator 280 and the dummy gate 262 are formed (see FIG. 20).
  • a CMP process is preferably used to form the insulator 280 and the dummy gate 262. As shown in FIG. 20B, the upper surface of the dummy gate 262 and the upper surface of the insulator 280 substantially coincide with each other.
  • the dummy gate 262 and part of the insulating film 254A and the insulating film 244A overlapping with the dummy gate 262 are removed to form an opening 263 (see FIG. 21).
  • the dummy gate 262 can be removed by wet etching, dry etching, ashing, or the like. Alternatively, a combination of a plurality of the above processes may be performed as appropriate. For example, a wet etching process is performed after the ashing process. By removing the dummy gate 262, a part of the surface of the conductive film 242B is exposed from the opening 263.
  • the removal can be performed using wet etching or dry etching. In this embodiment mode, dry etching is used. Use of dry etching is preferable because fine processing can be performed.
  • part of the top surface of the oxide 230b exposed from between the conductors 242a and 242b may be removed.
  • the conductor 242a and the conductor 242b are formed using the insulator 280, the insulator 244, and the insulator 254 as a mask. Accordingly, the insulator 280, the insulator 244, and the opening 263 formed in the insulator 254 overlap with a region between the conductor 242a and the conductor 242b. Thereby, the conductor 260 can be disposed in a self-aligned manner between the conductors 242a and 242b in a later step.
  • heat treatment is preferably performed before the formation of the oxide film 230C.
  • the heat treatment may be performed at 100 ° C. or more and 400 ° C. or less, for example, 200 ° C. Alternatively, it is preferably performed at the same temperature as the deposition temperature of the oxide film 230C.
  • the film formation temperature includes not only the substrate temperature during film formation but also the case of the set temperature of the film formation apparatus.
  • the heat treatment is preferably performed at 300 ° C.
  • the heat treatment is preferably performed under reduced pressure, and may be performed in a vacuum atmosphere, for example.
  • the vacuum atmosphere is maintained by exhausting with a turbo molecular pump or the like.
  • the pressure in the processing chamber may be 1 ⁇ 10 ⁇ 2 Pa or less, preferably 1 ⁇ 10 ⁇ 3 Pa or less.
  • an oxide film 230 ⁇ / b> C is formed so as to be embedded in the opening 263. Further, it is preferable that the oxide film 230C be continuously formed after the heat treatment without being exposed to the atmosphere. For example, it is preferable to perform the heat treatment and the film formation process continuously in different chambers using a multi-chamber film formation apparatus or the like. By performing such treatment, impurities such as moisture, hydrogen, and carbon adsorbed on the surfaces of the oxide 230a and the oxide 230b are removed, and the moisture concentration and hydrogen in the oxide 230a and the oxide 230b are removed. The concentration can be reduced.
  • the impurity removed by the heat treatment includes an impurity having a bond of hydrogen and carbon, an impurity having a bond of hydrogen and oxygen, and the like. Further, by performing heat treatment and film formation continuously without exposure to the outside air, impurities such as hydrogen can be prevented from re-entering the oxide 230.
  • the oxide film 230C can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the oxide film 230C to be the oxide 230c may be formed using a film formation method similar to that for the oxide film 230A or the oxide film 230B in accordance with characteristics required for the oxide 230c.
  • As the oxide film 230C an In—Ga—Zn oxide or an oxide containing no In can be used.
  • As the oxide not containing In a Ga—Zn oxide, gallium oxide, or the like can be used.
  • a stacked structure of an In—Ga—Zn oxide and an oxide containing no In may be used as the oxide film 230C.
  • an oxide film to be the oxide 230c is formed by a sputtering method using a 1: 3: 4 [atomic ratio] target.
  • the oxide film 230C may have a stacked structure including a first oxide film and a second oxide film on the first oxide film, and is similar to the target used for forming the oxide film 230B.
  • the first oxide film may be formed using a target
  • the second oxide film may be formed using a target similar to the target used for forming the oxide film 230A.
  • the oxide film 230C is preferably formed while heating the substrate. At this time, oxygen vacancies in the oxide 230a, the oxide 230b, and the oxide film 230C can be reduced by setting the substrate temperature to 300 ° C. or higher. Further, for example, the film may be formed at the same temperature as that of an insulating film 250A described later. In addition, by forming the film while heating the substrate in this manner, the crystallinity of the oxide 230a, the oxide 230b, and the oxide film 230C can be improved.
  • the oxide film 230C when the oxide film 230C is formed, part of oxygen contained in the sputtering gas may be supplied to the oxide 230a and the oxide 230b. Therefore, the ratio of oxygen contained in the sputtering gas for the oxide film 230C may be 70% or more, preferably 80% or more, more preferably 100%. Further, by performing film formation while heating the substrate, the crystallinity of the oxide film can be improved.
  • heat treatment is preferably performed before the formation of the insulating film 250A.
  • the heat treatment may be performed at 100 ° C. or more and 400 ° C. or less, for example, 200 ° C. Alternatively, it is preferably performed at the same temperature as the deposition temperature of the insulating film 250A.
  • the film formation temperature includes not only the substrate temperature during film formation but also the case of the set temperature of the film formation apparatus.
  • the heat treatment is preferably performed at 350 ° C.
  • the heat treatment is preferably performed under reduced pressure, and may be performed in a vacuum atmosphere, for example.
  • the vacuum atmosphere is maintained by exhausting with a turbo molecular pump or the like.
  • the pressure in the processing chamber may be 1 ⁇ 10 ⁇ 2 Pa or less, preferably 1 ⁇ 10 ⁇ 3 Pa or less.
  • an insulating film 250A is formed.
  • the insulating film 250A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • As the insulating film 250A it is preferable to form silicon oxide, hafnium oxide, gallium oxide, or the like by an ALD method.
  • a stacked film of silicon oxide and gallium oxide over silicon oxide may be used as the insulating film 250A.
  • the film formation temperature at the time of forming the insulating film 250A is 300 ° C. or higher and lower than 450 ° C., preferably 300 ° C. or higher and lower than 400 ° C., particularly preferably around 350 ° C.
  • an insulator with few impurities can be formed.
  • oxygen can be introduced into the insulating film 250A by exciting oxygen with a microwave to generate high-density oxygen plasma and exposing the insulating film 250A to the oxygen plasma.
  • heat treatment may be performed.
  • the heat treatment conditions described above can be used for the heat treatment. Through the heat treatment, the moisture concentration and the hydrogen concentration of the insulating film 250A can be reduced.
  • an oxide film 230D is formed. Further, it is preferable that the oxide film 230D be continuously formed after the heat treatment without being exposed to the atmosphere. For example, it is preferable to perform the heat treatment and the film formation process continuously in different chambers using a multi-chamber film formation apparatus or the like. By performing such treatment, impurities such as moisture, hydrogen, and carbon adsorbed on the surface of the insulating film 250A and the like can be removed, and the moisture concentration and the hydrogen concentration in the insulating film 250A can be reduced.
  • the impurity removed by the heat treatment includes an impurity having a bond of hydrogen and carbon, an impurity having a bond of hydrogen and oxygen, and the like. Further, by performing heat treatment and film formation continuously without exposure to the outside air, impurities such as hydrogen can be prevented from re-entering the oxide 230.
  • the oxide film 230D may be formed using a target similar to the target used for forming the oxide film 230C.
  • the oxide film 230D is preferably formed while heating the substrate. At this time, by setting the substrate temperature to 300 ° C. or higher, oxygen vacancies in the oxide 230a, the oxide 230b, the oxide film 230C, and the oxide film 230D can be reduced. By forming the film while heating the substrate, the crystallinity of the oxide 230a, the oxide 230b, the oxide film 230C, and the oxide film 230D can be improved.
  • the oxide film 230D when the oxide film 230D is formed, part of oxygen contained in the sputtering gas may be supplied to the oxide 230a, the oxide 230b, and the oxide film 230C through the insulating film 250A. Therefore, the ratio of oxygen contained in the sputtering gas for the oxide film 230D may be 70% or more, preferably 80% or more, more preferably 100%. Further, by performing film formation while heating the substrate, the crystallinity of the oxide film can be improved.
  • a conductive film 260A and a conductive film 260B are formed.
  • the conductive film 260A and the conductive film 260B can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a CVD method it is preferable to use a CVD method.
  • the conductive film 260A is formed using an ALD method
  • the conductive film 260B is formed using a CVD method (see FIG. 22).
  • the oxide film 230C, the insulator 250, and the oxide 230d are polished by polishing the oxide film 230C, the insulating film 250A, the oxide film 230D, the conductive film 260A, and the conductive film 260B until the insulator 280 is exposed. Then, a conductor 260 (conductor 260a and conductor 260b) is formed (see FIG. 23).
  • heat treatment may be performed.
  • the heat treatment conditions described above can be used for the heat treatment.
  • the moisture concentration and the hydrogen concentration of the insulator 280 can be reduced.
  • heat treatment is preferably performed before the formation of the insulating film to be the insulator 274.
  • the heat treatment may be performed at 100 ° C. or more and 400 ° C. or less, for example, 200 ° C. Or it is preferable to carry out at the same temperature as the film-forming temperature of this insulating film.
  • the film formation temperature includes not only the substrate temperature during film formation but also the case of the set temperature of the film formation apparatus.
  • the heat treatment is preferably performed at 250 ° C.
  • the heat treatment is preferably performed under reduced pressure, and may be performed in a vacuum atmosphere, for example.
  • the vacuum atmosphere is maintained by exhausting with a turbo molecular pump or the like.
  • the pressure in the processing chamber may be 1 ⁇ 10 ⁇ 2 Pa or less, preferably 1 ⁇ 10 ⁇ 3 Pa or less.
  • an insulating film to be the insulator 274 is formed over the insulator 280.
  • the insulating film to be the insulator 274 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • an aluminum oxide film is preferably formed by a sputtering method, for example. By forming an aluminum oxide film by a sputtering method, diffusion of hydrogen included in the insulator 280 to the oxide 230 may be suppressed in some cases.
  • heat treatment may be performed.
  • the heat treatment conditions described above can be used for the heat treatment.
  • the moisture concentration and the hydrogen concentration of the insulator 280 can be reduced.
  • an insulating film to be the insulator 281 may be formed over the insulator 274 (see FIG. 23).
  • the insulating film to be the insulator 281 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • openings that reach the conductor 242a and the conductor 242b are formed in the insulator 254, the insulator 244, the insulator 280, the insulator 274, and the insulator 281.
  • the opening may be formed using a lithography method.
  • an insulating film to be the insulator 241 is formed, and the insulating film is anisotropically etched to form the insulator 241.
  • the insulating film can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • an insulating film having a function of suppressing permeation of oxygen is preferably used.
  • a silicon nitride film may be formed by using an ALD method or a CVD method.
  • a precursor containing silicon and halogen or a precursor of aminosilanes can be used.
  • a precursor containing silicon and halogen SiCl 4 , SiH 2 Cl 2 , Si 2 Cl 6 , Si 3 Cl 8, or the like can be used.
  • monovalent, divalent, or trivalent aminosilanes can be used as precursors for aminosilanes.
  • ammonia or hydrazine can be used as the nitriding gas.
  • the anisotropic etching may be performed by, for example, a dry etching method.
  • the conductive film to be the conductor 240a and the conductor 240b preferably has a stacked structure including a conductor having a function of suppressing diffusion of impurities such as water and hydrogen.
  • a stack of tantalum nitride, titanium nitride, or the like and tungsten, molybdenum, copper, or the like can be used.
  • the conductive film to be the conductor 240 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a part of the conductive film to be the conductor 240a and the conductor 240b is removed, and the insulator 281 is exposed.
  • the conductive film remains only in the opening, whereby the conductor 240a and the conductor 240b having a flat upper surface can be formed (see FIG. 23).
  • part of the insulator 281 may be removed by the CMP treatment.
  • a semiconductor device including the transistor 200 illustrated in FIG. 4 can be manufactured. As illustrated in FIGS. 17 to 23, the transistor 200 can be manufactured using the method for manufacturing the semiconductor device described in this embodiment.
  • ⁇ Method for Manufacturing Semiconductor Device 1-2> A method for manufacturing a semiconductor device including the transistor 200 according to one embodiment of the present invention, which is different from that described in ⁇ Method 1-1 for Manufacturing Semiconductor Device>, will be described with reference to FIGS.
  • (A) in each figure shows a top view.
  • (B) in each drawing is a cross-sectional view corresponding to the portion indicated by the one-dot chain line of A1-A2 shown in (A), and is also a cross-sectional view in the channel length direction of the transistor 200.
  • (C) in each drawing is a cross-sectional view corresponding to the portion indicated by the one-dot chain line of A3-A4 in (A), and is also a cross-sectional view in the channel width direction of the transistor 200. Note that in the top view of each figure (A), some elements are omitted for the sake of clarity.
  • the manufacturing method is the same as that described in ⁇ Semiconductor Device Manufacturing Method 1-1>. Therefore, the method for manufacturing the semiconductor device according to FIGS. 17 to 21 can be referred to.
  • an oxide film 230 ⁇ / b> C is formed so as to be embedded in the opening 263.
  • a dopant 258 is added to the oxide film 230C (see FIG. 24).
  • the dopant 258 is preferably oxygen.
  • oxygen vacancies in the oxide 230a, the oxide 230b, and the oxide 230c can be reduced.
  • a method for adding the dopant 258 an ion implantation method in which an ionized source gas is added after mass separation, an ion doping method in which an ionized source gas is added without mass separation, a plasma immersion ion implantation method, or the like is used. be able to.
  • the ionic species to be added and the concentration thereof can be strictly controlled.
  • high-concentration ions can be added in a short time.
  • an ion doping method in which atomic or molecular clusters are generated and ionized may be used. Note that the dopant may be referred to as an ion, a donor, an acceptor, an impurity, an element, or the like.
  • an insulating layer to be the insulator 250, an oxide film to be the oxide 230d, and a conductive film to be the conductor 260 (the conductors 260a and 260b) are formed over the oxide film 230C.
  • the oxide 230c is polished by polishing the oxide film 230C, the insulating layer to be the insulator 250, the oxide film to be the oxide 230d, and the conductive film to be the conductor 260 by CMP treatment until the insulator 280 is exposed.
  • the insulator 250, the oxide 230d, and the conductor 260 are formed.
  • a dopant 259 is added to the insulator 280 (see FIG. 25). As the dopant 259, oxygen is preferable.
  • oxygen can be supplied to the oxide 230a, the oxide 230b, and the oxide 230c through the insulator 280, and oxygen vacancies in the oxide 230a, the oxide 230b, and the oxide 230c are reduced. it can. Since the description of the dopant 258 can be referred to for the addition method of the dopant 259, detailed description is omitted.
  • an insulating film 275 is formed over the insulator 280 (see FIG. 26).
  • the insulating film 275 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • an aluminum oxide film is preferably formed by a sputtering method, for example. By forming an aluminum oxide film by a sputtering method, diffusion of hydrogen included in the insulator 280 to the oxide 230 may be suppressed in some cases.
  • heat treatment may be performed.
  • the heat treatment may be performed at 100 ° C. or more and 400 ° C. or less, for example, 350 ° C. for 4 hours.
  • oxygen included in the insulating film 275 is supplied to the insulator 280, and oxygen can be supplied to the oxide 230a, the oxide 230b, and the oxide 230c through the insulator 280, and the oxide 230a, the oxide 230b, and Oxygen vacancies in the oxide 230c can be reduced.
  • the moisture concentration and the hydrogen concentration of the insulator 280 can be reduced.
  • the insulating film 275 is removed, and the insulator 280, the oxide 230c, the insulator 250, the oxide 230d, the conductor 260a, and the conductor 260b are exposed.
  • an insulating film to be the insulator 274 is formed over the insulator 280.
  • An insulating film to be the insulator 281 may be formed over the insulator 274 (see FIG. 23).
  • openings that reach the conductor 242a and the conductor 242b are formed in the insulator 254, the insulator 244, the insulator 280, the insulator 274, and the insulator 281.
  • an insulating film to be the insulator 241 is formed, and the insulating film is anisotropically etched to form the insulator 241.
  • conductive films to be the conductors 240a and 240b are formed. Subsequently, by performing CMP treatment, part of the conductive film to be the conductor 240a and the conductor 240b is removed, and the insulator 281 is exposed. As a result, the conductive film remains only in the opening, whereby the conductor 240a and the conductor 240b having a flat upper surface can be formed (see FIG. 4).
  • a semiconductor device including the transistor 200 illustrated in FIG. 4 can be manufactured. As illustrated in FIGS. 24 to 26, the transistor 200 can be manufactured using the method for manufacturing the semiconductor device described in this embodiment.
  • (A) in each figure shows a top view.
  • (B) in each drawing is a cross-sectional view corresponding to the portion indicated by the one-dot chain line of A1-A2 shown in (A), and is also a cross-sectional view in the channel length direction of the transistor 200A.
  • (C) in each drawing is a cross-sectional view corresponding to the portion indicated by the one-dot chain line of A3-A4 in (A), and is also a cross-sectional view in the channel width direction of the transistor 200A. Note that in the top view of each figure (A), some elements are omitted for the sake of clarity.
  • the manufacturing method is the same as that described in ⁇ Semiconductor Device Manufacturing Method 1-1> (see FIG. 27). Accordingly, the description of ⁇ Method 1-1 for Manufacturing Semiconductor Device> can be referred to, and thus detailed description thereof is omitted.
  • heat treatment may be performed.
  • impurities such as water and hydrogen in the oxide film 230A and the oxide film 230B can be removed.
  • the oxide film 230A and the oxide film 230B are processed into an island shape to form an oxide 230a and an oxide 230b. Note that in this step, the thickness of the region of the insulator 224 that does not overlap with the oxide 230a may be reduced (see FIG. 28).
  • the oxide film 230A and the oxide film 230B may be processed by a lithography method.
  • a dry etching method or a wet etching method can be used. Processing by the dry etching method is suitable for fine processing.
  • Cleaning is performed in order to remove impurities during the processing of the oxide film 230A and the oxide film 230B.
  • the cleaning method include wet cleaning using a cleaning liquid, plasma processing using plasma, cleaning by heat treatment, and the like, and the above cleanings may be combined as appropriate.
  • heat treatment may be performed.
  • the above-described heat treatment conditions can be used.
  • heat treatment is preferably performed before the insulating film 254A is formed.
  • the heat treatment may be performed at 100 ° C. or more and 400 ° C. or less, for example, 200 ° C. Alternatively, it is preferably performed at the same temperature as the deposition temperature of the insulating film 254A.
  • an insulating film 254A is formed to cover the oxide 230a and the oxide 230b (see FIG. 28).
  • the insulating film 254A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a dummy gate film to be a dummy gate layer 262A is formed on the insulating film 254A.
  • the dummy gate film to be the dummy gate layer 262A is processed and used as a dummy gate.
  • a dummy gate is a temporary gate electrode. That is, a dummy gate film to be the dummy gate layer 262A is processed to form a temporary gate electrode, and the dummy gate is removed in a later process, and a gate electrode made of a conductive film or the like is formed instead. Therefore, it is preferable to use a film that can be easily processed and removed easily as the dummy gate film to be the dummy gate layer 262A.
  • the dummy gate film to be the dummy gate layer 262A can be formed by sputtering, CVD, MBE, PLD, ALD, or the like.
  • an insulator, a semiconductor, or a conductor can be used.
  • silicon such as polysilicon, microcrystalline silicon, or amorphous silicon, or a metal film such as aluminum, titanium, or tungsten may be used.
  • a film containing carbon, SOG (Spin On Glass), a resin film, or the like may be formed using a coating method.
  • the resin include photoresist, polyester, polyolefin, polyamide (such as nylon and aramid), polyimide, polycarbonate, and acrylic.
  • the dummy gate film to be the dummy gate layer 262A can be a multilayer film using different film types.
  • the dummy gate film serving as the dummy gate layer 262A can be a film having a two-layer structure in which a conductive film and a resin film are formed over the conductive film.
  • the conductive film may function as a stopper film for CMP processing.
  • the end point of the CMP process may be detected, and processing variations may be reduced.
  • the dummy gate layer 262A is formed by etching the dummy gate film to be the dummy gate layer 262A by lithography (see FIG. 28).
  • the dummy gate layer 262A is formed so that at least a part thereof overlaps with the conductor 205 and the oxide 230.
  • a dopant 257 is added to the oxide 230b using the dummy gate layer 262A as a mask (see FIG. 29).
  • the layer 253a and the layer 253b including the dopant 257 are formed in a region of the oxide 230b that does not overlap with the dummy gate layer 262A.
  • FIG. 29 illustrates a state where the dopant 257 is diffused and added to a region overlapping with the dummy gate layer 262A of the oxide 230b.
  • part of the layers 253a and 253b is also formed in a region overlapping with the dummy gate layer 262A.
  • the distance between the layer 253a and the layer 253b, that is, the channel length can be controlled by the length of the dummy gate layer 262A in the channel length direction.
  • an ion implantation method in which an ionized source gas is added by mass separation an ion doping method in which an ionized source gas is added without mass separation, a plasma immersion ion implantation method, or the like is used. be able to.
  • mass separation the ionic species to be added and the concentration thereof can be strictly controlled.
  • mass separation is not performed, high-concentration ions can be added in a short time.
  • an ion doping method in which atomic or molecular clusters are generated and ionized may be used.
  • the dopant may be referred to as an ion, a donor, an acceptor, an impurity, an element, or the like.
  • an element that forms the above-described oxygen vacancies or an element that binds to oxygen vacancies may be used.
  • an element typically, boron or phosphorus can be given.
  • hydrogen, carbon, nitrogen, fluorine, sulfur, chlorine, titanium, rare gas, or the like may be used.
  • rare gases include helium, neon, argon, krypton, and xenon.
  • metals such as aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, lanthanum, etc. Any one or more metal elements selected from the elements may be added.
  • boron and phosphorus are preferable as the dopant 257. When boron or phosphorus is used as the dopant 257, equipment for an amorphous silicon or low-temperature polysilicon production line can be used, so that capital investment can be suppressed.
  • the dopant 257 is added substantially perpendicularly to the upper surface of the insulator 214.
  • the present invention is not limited to this, and the dopant 257 may be added while being inclined with respect to the upper surface of the insulator 214.
  • the layers 253a and 253b can be easily formed in part of a region overlapping with the dummy gate layer 262A.
  • the dopant 257 is added to the oxide 230 through the insulating film 254A.
  • the dopant 257 is also added to the insulating film 254A. That is, both the oxide 230 and the insulating film 254A have an element contained in the dopant 257.
  • the dopant 257 may be able to suppress the diffusion of excess oxygen to the outside.
  • the conductor 260 formed in a later step can be disposed in a self-aligned manner between the layers 253a and 253b.
  • an insulating film 280A is formed over the insulating film 254A and the dummy gate layer 262A (see FIG. 30).
  • the insulating film 280A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the insulating film 280A and a part of the dummy gate layer 262A are removed until a part of the dummy gate layer 262A is exposed to form the insulator 280 and the dummy gate 262 (see FIG. 31).
  • a CMP process is preferably used for forming the insulator 280 and the dummy gate 262.
  • the dummy gate layer 262A is, for example, a film having a two-layer structure in which a conductive film and a resin film are formed over the conductive film. May function as.
  • the end point of the CMP process may be detected by the conductive film, and variation in height of the dummy gate 262 may be reduced.
  • the upper surface of the dummy gate 262 and the upper surface of the insulator 280 substantially coincide with each other.
  • the dummy gate 262 and a part of the insulating film 254A overlapping with the dummy gate 262 are removed to form an opening 263 (see FIG. 32).
  • the removal of the dummy gate 262 and the insulating film 254A can be performed by wet etching, dry etching, ashing, or the like. Alternatively, a combination of a plurality of the above processes may be performed as appropriate. For example, a wet etching process is performed after the ashing process.
  • the insulator 254 is formed by removing part of the insulating film 254A. By removing the dummy gate 262 and the insulating film 254A, part of the surface of the oxide 230b is exposed from the opening 263. At this time, part of the surface of the layer 253 may be exposed from the opening 263.
  • heat treatment is preferably performed before the formation of the oxide film 230C.
  • the heat treatment may be performed at 100 ° C. or more and 400 ° C. or less, for example, 200 ° C. Alternatively, it is preferably performed at the same temperature as the deposition temperature of the oxide film 230C.
  • the film formation temperature includes not only the substrate temperature during film formation but also the case of the set temperature of the film formation apparatus.
  • the heat treatment is preferably performed at 300 ° C.
  • the heat treatment is preferably performed under reduced pressure, and may be performed in a vacuum atmosphere, for example.
  • the vacuum atmosphere is maintained by exhausting with a turbo molecular pump or the like.
  • the pressure in the processing chamber may be 1 ⁇ 10 ⁇ 2 Pa or less, preferably 1 ⁇ 10 ⁇ 3 Pa or less.
  • an oxide film 230 ⁇ / b> C is formed so as to be embedded in the opening 263. Further, it is preferable that the oxide film 230C be continuously formed after the heat treatment without being exposed to the atmosphere. For example, it is preferable to perform the heat treatment and the film formation process continuously in different chambers using a multi-chamber film formation apparatus or the like.
  • the oxide film 230C can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the oxide film 230C to be the oxide 230c may be formed using a film formation method similar to that for the oxide film 230A or the oxide film 230B in accordance with characteristics required for the oxide 230c.
  • As the oxide film 230C an In—Ga—Zn oxide or an oxide containing no In can be used.
  • As the oxide not containing In a Ga—Zn oxide, gallium oxide, or the like can be used.
  • a stacked structure of an In—Ga—Zn oxide and an oxide containing no In may be used as the oxide film 230C.
  • the oxide film 230C may have a stacked structure including a first oxide film and a second oxide film on the first oxide film, and is similar to the target used for forming the oxide film 230B.
  • the first oxide film may be formed using a target
  • the second oxide film may be formed using a target similar to the target used for forming the oxide film 230A.
  • the oxide film 230C is preferably formed while heating the substrate. At this time, oxygen vacancies in the oxide 230a, the oxide 230b, and the oxide film 230C can be reduced by setting the substrate temperature to 300 ° C. or higher. Further, for example, the film may be formed at the same temperature as that of an insulating film 250A described later. In addition, by forming the film while heating the substrate in this manner, the crystallinity of the oxide 230a, the oxide 230b, and the oxide film 230C can be improved.
  • the oxide film 230C when the oxide film 230C is formed, part of oxygen contained in the sputtering gas may be supplied to the oxide 230a and the oxide 230b. Therefore, the ratio of oxygen contained in the sputtering gas for the oxide film 230C may be 70% or more, preferably 80% or more, more preferably 100%. Further, by performing film formation while heating the substrate, the crystallinity of the oxide film can be improved.
  • heat treatment is preferably performed before the formation of the insulating film 250A.
  • the heat treatment may be performed at 100 ° C. or more and 400 ° C. or less, for example, 200 ° C. Alternatively, it is preferably performed at the same temperature as the deposition temperature of the insulating film 250A.
  • the film formation temperature includes not only the substrate temperature during film formation but also the case of the set temperature of the film formation apparatus.
  • the heat treatment is preferably performed at 350 ° C.
  • the heat treatment is preferably performed under reduced pressure, and may be performed in a vacuum atmosphere, for example.
  • the vacuum atmosphere is maintained by exhausting with a turbo molecular pump or the like.
  • the pressure in the processing chamber may be 1 ⁇ 10 ⁇ 2 Pa or less, preferably 1 ⁇ 10 ⁇ 3 Pa or less.
  • an insulating film 250A is formed.
  • the insulating film 250A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • As the insulating film 250A it is preferable to form silicon oxide, hafnium oxide, gallium oxide, or the like by an ALD method.
  • a stacked film of silicon oxide and gallium oxide over silicon oxide may be used as the insulating film 250A.
  • the film formation temperature at the time of forming the insulating film 250A is 300 ° C. or higher and lower than 450 ° C., preferably 300 ° C. or higher and lower than 400 ° C., particularly preferably around 350 ° C.
  • an insulator with few impurities can be formed.
  • oxygen can be introduced into the insulating film 250A by exciting oxygen with a microwave to generate high-density oxygen plasma and exposing the insulating film 250A to the oxygen plasma.
  • heat treatment may be performed.
  • the heat treatment conditions described above can be used for the heat treatment. Through the heat treatment, the moisture concentration and the hydrogen concentration of the insulating film 250A can be reduced.
  • an oxide film 230D is formed. Further, it is preferable that the oxide film 230D be continuously formed after the heat treatment without being exposed to the atmosphere. For example, it is preferable to perform the heat treatment and the film formation process continuously in different chambers using a multi-chamber film formation apparatus or the like.
  • the oxide film 230D may be formed using a target similar to the target used for forming the oxide film 230C.
  • the oxide film 230D is preferably formed while heating the substrate. At this time, by setting the substrate temperature to 300 ° C. or higher, oxygen vacancies in the oxide 230a, the oxide 230b, the oxide film 230C, and the oxide film 230D can be reduced. By forming the film while heating the substrate, the crystallinity of the oxide 230a, the oxide 230b, the oxide film 230C, and the oxide film 230D can be improved.
  • the oxide film 230D when the oxide film 230D is formed, part of oxygen contained in the sputtering gas may be supplied to the oxide 230a, the oxide 230b, and the oxide film 230C through the insulating film 250A. Therefore, the ratio of oxygen contained in the sputtering gas for the oxide film 230D may be 70% or more, preferably 80% or more, more preferably 100%. Further, by performing film formation while heating the substrate, the crystallinity of the oxide film can be improved.
  • a conductive film 260A and a conductive film 260B are formed.
  • the conductive film 260A and the conductive film 260B can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a CVD method it is preferable to use a CVD method.
  • the conductive film 260A is formed using an ALD method
  • the conductive film 260B is formed using a CVD method (see FIG. 33).
  • the oxide film 230C, the insulator 250, and the oxide 230d are polished by polishing the oxide film 230C, the insulating film 250A, the oxide film 230D, the conductive film 260A, and the conductive film 260B until the insulator 280 is exposed. Then, a conductor 260 (conductor 260a and conductor 260b) is formed (see FIG. 34).
  • heat treatment may be performed.
  • the heat treatment conditions described above can be used for the heat treatment.
  • the moisture concentration and the hydrogen concentration of the insulator 280 can be reduced.
  • heat treatment is preferably performed before the formation of the insulating film to be the insulator 274.
  • the heat treatment may be performed at 100 ° C. or more and 400 ° C. or less, for example, 200 ° C. Or it is preferable to carry out at the same temperature as the film-forming temperature of this insulating film.
  • the film formation temperature includes not only the substrate temperature during film formation but also the case of the set temperature of the film formation apparatus.
  • the heat treatment is preferably performed at 250 ° C.
  • the heat treatment is preferably performed under reduced pressure, and may be performed in a vacuum atmosphere, for example.
  • the vacuum atmosphere is maintained by exhausting with a turbo molecular pump or the like.
  • the pressure in the processing chamber may be 1 ⁇ 10 ⁇ 2 Pa or less, preferably 1 ⁇ 10 ⁇ 3 Pa or less.
  • an insulating film to be the insulator 274 is formed over the insulator 280 (see FIG. 34).
  • the insulating film to be the insulator 274 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • an aluminum oxide film is preferably formed by a sputtering method, for example. By forming an aluminum oxide film by a sputtering method, diffusion of hydrogen included in the insulator 280 to the oxide 230 may be suppressed in some cases.
  • heat treatment may be performed.
  • the heat treatment conditions described above can be used for the heat treatment.
  • the moisture concentration and the hydrogen concentration of the insulator 280 can be reduced.
  • an insulating film to be the insulator 281 may be formed over the insulator 274.
  • the insulating film to be the insulator 281 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like (see FIG. 34).
  • openings reaching the layers 253a and 253b are formed in the insulator 254, the insulator 280, the insulator 274, and the insulator 281.
  • the opening may be formed using a lithography method.
  • an insulating film to be the insulator 241 is formed, and the insulating film is anisotropically etched to form the insulator 241.
  • the insulating film can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • an insulating film having a function of suppressing permeation of oxygen is preferably used.
  • a silicon nitride film may be formed by using an ALD method or a CVD method.
  • a precursor containing silicon and halogen or a precursor of aminosilanes can be used.
  • a precursor containing silicon and halogen SiCl 4 , SiH 2 Cl 2 , Si 2 Cl 6 , Si 3 Cl 8, or the like can be used.
  • monovalent, divalent, or trivalent aminosilanes can be used as precursors for aminosilanes.
  • ammonia or hydrazine can be used as the nitriding gas.
  • the anisotropic etching may be performed by, for example, a dry etching method.
  • the conductive film to be the conductor 240a and the conductor 240b preferably has a stacked structure including a conductor having a function of suppressing diffusion of impurities such as water and hydrogen.
  • a stack of tantalum nitride, titanium nitride, or the like and tungsten, molybdenum, copper, or the like can be used.
  • the conductive film to be the conductor 240 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a part of the conductive film to be the conductor 240a and the conductor 240b is removed, and the insulator 281 is exposed.
  • the conductive film remains only in the opening, whereby the conductor 240a and the conductor 240b having a flat upper surface can be formed (see FIG. 9).
  • part of the insulator 281 may be removed by the CMP treatment.
  • a semiconductor device including the transistor 200A illustrated in FIG. 9 can be manufactured.
  • the transistor 200A can be manufactured using the method for manufacturing the semiconductor device described in this embodiment.
  • ⁇ Method for Manufacturing Semiconductor Device 2-2> A method for manufacturing a semiconductor device including the transistor 200A according to one embodiment of the present invention, which is different from that described in ⁇ Method 2-1 for manufacturing a semiconductor device>, is described with reference to FIGS.
  • (A) in each figure shows a top view.
  • (B) in each drawing is a cross-sectional view corresponding to the portion indicated by the one-dot chain line of A1-A2 shown in (A), and is also a cross-sectional view in the channel length direction of the transistor 200A.
  • (C) in each drawing is a cross-sectional view corresponding to the portion indicated by the one-dot chain line of A3-A4 in (A), and is also a cross-sectional view in the channel width direction of the transistor 200A. Note that in the top view of each figure (A), some elements are omitted for the sake of clarity.
  • the manufacturing method is the same as that described in ⁇ Method for Manufacturing Semiconductor Device 2-1>. Therefore, the method for manufacturing the semiconductor device according to FIGS. 27 to 32 can be referred to.
  • an oxide film 230 ⁇ / b> C is formed so as to be embedded in the opening 263.
  • a dopant 258 is added to the oxide film 230C (see FIG. 35).
  • the dopant 258 is preferably oxygen.
  • oxygen vacancies in the oxide 230a, the oxide 230b, and the oxide 230c can be reduced. Since the description of the dopant 257 can be referred to for the addition method of the dopant 258, detailed description thereof is omitted.
  • an insulating layer to be the insulator 250, an oxide film to be the oxide 230d, and a conductive film to be the conductor 260 (the conductors 260a and 260b) are formed over the oxide film 230C.
  • the oxide 230c is polished by polishing the oxide film 230C, the insulating layer to be the insulator 250, the oxide film to be the oxide 230d, and the conductive film to be the conductor 260 by CMP treatment until the insulator 280 is exposed.
  • the insulator 250, the oxide 230d, and the conductor 260 are formed.
  • a dopant 259 is added to the insulator 280 (see FIG. 36). As the dopant 259, oxygen is preferable.
  • oxygen can be supplied to the oxide 230a, the oxide 230b, and the oxide 230c through the insulator 280, and oxygen vacancies in the oxide 230a, the oxide 230b, and the oxide 230c are reduced. it can. Since the description of the dopant 257 can be referred to for the addition method of the dopant 259, detailed description thereof is omitted.
  • an insulating film 275 is formed over the insulator 280 (see FIG. 37).
  • the insulating film 275 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • an aluminum oxide film is preferably formed by a sputtering method, for example. By forming an aluminum oxide film by a sputtering method, diffusion of hydrogen included in the insulator 280 to the oxide 230 may be suppressed in some cases.
  • heat treatment may be performed.
  • the heat treatment may be performed at 100 ° C. or more and 400 ° C. or less, for example, 350 ° C. for 4 hours.
  • oxygen included in the insulating film 275 is supplied to the insulator 280, and oxygen can be supplied to the oxide 230a, the oxide 230b, and the oxide 230c through the insulator 280, and the oxide 230a, the oxide 230b, and Oxygen vacancies in the oxide 230c can be reduced.
  • the moisture concentration and the hydrogen concentration of the insulator 280 can be reduced.
  • the insulating film 275 is removed, and the insulator 280, the oxide 230c, the insulator 250, the oxide 230d, the conductor 260a, and the conductor 260b are exposed.
  • an insulating film to be the insulator 274 is formed over the insulator 280.
  • An insulator to be the insulator 281 may be formed over the insulator 274 (see FIG. 34).
  • openings that reach the layers 253a and 253b are formed in the insulator 254, the insulator 244, the insulator 280, the insulator 274, and the insulator 281.
  • an insulating film to be the insulator 241 is formed, and the insulating film is anisotropically etched to form the insulator 241.
  • conductive films to be the conductors 240a and 240b are formed. Subsequently, by performing CMP treatment, part of the conductive film to be the conductor 240a and the conductor 240b is removed, and the insulator 281 is exposed. As a result, the conductive film remains only in the opening, whereby the conductor 240a and the conductor 240b having a flat upper surface can be formed (see FIG. 9).
  • a semiconductor device including the transistor 200A illustrated in FIG. 9 can be manufactured. As illustrated in FIGS. 35 to 37, the transistor 200A can be manufactured using the method for manufacturing the semiconductor device described in this embodiment.
  • (A) in each figure shows a top view.
  • (B) in each drawing is a cross-sectional view corresponding to the portion indicated by the one-dot chain line of A1-A2 shown in (A), and is also a cross-sectional view in the channel length direction of the transistor 200B.
  • (C) in each drawing is a cross-sectional view corresponding to the portion indicated by the one-dot chain line of A3-A4 in (A), and is also a cross-sectional view in the channel width direction of the transistor 200B. Note that in the top view of each figure (A), some elements are omitted for the sake of clarity.
  • the manufacturing method is the same as that described in ⁇ Semiconductor device manufacturing method 1-1> (see FIG. 38). Accordingly, the description of ⁇ Method 1-1 for Manufacturing Semiconductor Device> can be referred to, and thus detailed description thereof is omitted.
  • heat treatment may be performed.
  • impurities such as water and hydrogen in the oxide film 230A and the oxide film 230B can be removed.
  • the oxide film 230A and the oxide film 230B are processed into an island shape to form an oxide 230a and an oxide 230b. Note that in this step, the thickness of the region of the insulator 224 that does not overlap with the oxide 230a may be reduced (see FIG. 39).
  • the oxide film 230A and the oxide film 230B may be processed by a lithography method.
  • a dry etching method or a wet etching method can be used. Processing by the dry etching method is suitable for fine processing.
  • Cleaning is performed in order to remove impurities during the processing of the oxide film 230A and the oxide film 230B.
  • the cleaning method include wet cleaning using a cleaning liquid, plasma processing using plasma, cleaning by heat treatment, and the like, and the above cleanings may be combined as appropriate.
  • heat treatment may be performed.
  • the above-described heat treatment conditions can be used.
  • heat treatment is preferably performed before the insulating film 254A is formed.
  • the heat treatment may be performed at 100 ° C. or more and 400 ° C. or less, for example, 200 ° C. Alternatively, it is preferably performed at the same temperature as the deposition temperature of the insulating film 254A.
  • an insulating film 254A is formed to cover the oxide 230a and the oxide 230b (see FIG. 39).
  • the insulating film 254A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the insulating film 254A is preferably an insulating film having a function of suppressing diffusion of impurities such as hydrogen and oxygen.
  • an aluminum oxide film is preferably formed by a sputtering method. By forming an aluminum oxide film with a gas containing oxygen by a sputtering method, oxygen can be injected into the insulator 224. That is, the insulator 224 can have excess oxygen.
  • the insulating film 254A aluminum oxide may be deposited while heating the substrate at a high temperature.
  • the substrate heating temperature at the time of forming the insulating film 254A may be 200 ° C. or higher, preferably 250 ° C. or higher, more preferably 350 ° C. or higher.
  • the insulating film 254A may have a stacked structure.
  • a dummy gate film to be a dummy gate layer 262A is formed on the insulating film 254A.
  • the dummy gate film to be the dummy gate layer 262A can be formed by sputtering, CVD, MBE, PLD, ALD, or the like.
  • an insulator, a semiconductor, or a conductor can be used.
  • silicon such as polysilicon, microcrystalline silicon, or amorphous silicon, or a metal film such as aluminum, titanium, or tungsten may be used.
  • a film containing carbon, SOG (Spin On Glass), a resin film, or the like may be formed using a coating method.
  • the dummy gate film to be the dummy gate layer 262A can be a multilayer film using different film types.
  • the dummy gate layer 262A is formed by etching the dummy gate film to be the dummy gate layer 262A by lithography (see FIG. 39).
  • the dummy gate layer 262A is formed so that at least a part thereof overlaps with the conductor 205 and the oxide 230.
  • a dopant 257 is added to the oxide 230b (see FIG. 40).
  • the layer 253a and the layer 253b including the dopant 257 are formed in a region of the oxide 230b that does not overlap with the dummy gate layer 262A.
  • FIG. 40 illustrates a state where the dopant 257 is diffused and added to a region overlapping with the dummy gate layer 262A of the oxide 230b.
  • part of the layers 253a and 253b is also formed in a region overlapping with the dummy gate layer 262A.
  • the distance between the layer 253a and the layer 253b, that is, the channel length can be controlled by the length of the dummy gate layer 262A in the channel length direction.
  • the addition method of the dopant 257 and the element that can be used as the dopant 257 can refer to the description of ⁇ Method for manufacturing semiconductor device 2-1>, detailed description thereof is omitted.
  • the dopant 257 is added substantially perpendicularly to the upper surface of the insulator 214.
  • the present invention is not limited to this, and the dopant 257 may be added while being inclined with respect to the upper surface of the insulator 214.
  • the layers 253a and 253b can be easily formed in part of a region overlapping with the dummy gate layer 262A.
  • the dopant 257 is added to the oxide 230 through the insulating film 254A.
  • the dopant 257 is also added to the insulating film 254A. That is, both the oxide 230 and the insulating film 254A have an element contained in the dopant 257.
  • the dopant 257 may be able to suppress the diffusion of excess oxygen to the outside.
  • the conductor 260 formed in a later step can be disposed in a self-aligned manner between the layers 253a and 253b.
  • an insulating film 279A is formed over the insulating film 254A and the dummy gate layer 262A (see FIG. 41).
  • the insulating film 279A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the insulating film 279A and a part of the dummy gate layer 262A are removed until a part of the dummy gate layer 262A is exposed to form the insulator 279 and the dummy gate 262 (see FIG. 42).
  • a CMP process is preferably used for forming the insulator 279 and the dummy gate 262.
  • the dummy gate layer 262A is, for example, a film having a two-layer structure in which a conductive film and a resin film are formed over the conductive film. May function as.
  • the end point of the CMP process may be detected by the conductive film, and variation in height of the dummy gate 262 may be reduced.
  • the upper surface of the dummy gate 262 and the upper surface of the insulator 279 substantially coincide with each other.
  • the dummy gate 262 and a part of the insulating film 254A overlapping with the dummy gate 262 are removed to form an opening 263 (see FIG. 43).
  • the removal of the dummy gate 262 and the insulating film 254A can be performed by wet etching, dry etching, ashing, or the like. Alternatively, a combination of a plurality of the above processes may be performed as appropriate. For example, a wet etching process is performed after the ashing process.
  • the insulator 254 is formed by removing part of the insulating film 254A. By removing the dummy gate 262 and the insulating film 254A, part of the surface of the oxide 230b is exposed from the opening 263.
  • the insulator 279 is removed.
  • the insulator 279 can be removed by wet etching, dry etching, or the like.
  • heat treatment is preferably performed before the formation of the oxide film 230C.
  • the heat treatment may be performed at 100 ° C. or more and 400 ° C. or less, for example, 200 ° C. Alternatively, it is preferably performed at the same temperature as the deposition temperature of the oxide film 230C.
  • the film formation temperature includes not only the substrate temperature during film formation but also the case of the set temperature of the film formation apparatus.
  • the heat treatment is preferably performed at 300 ° C.
  • the heat treatment is preferably performed under reduced pressure, and may be performed in a vacuum atmosphere, for example.
  • the vacuum atmosphere is maintained by exhausting with a turbo molecular pump or the like.
  • the pressure in the processing chamber may be 1 ⁇ 10 ⁇ 2 Pa or less, preferably 1 ⁇ 10 ⁇ 3 Pa or less.
  • an oxide film 230C is formed over the insulator 254 and the oxide 230b. Further, it is preferable that the oxide film 230C be continuously formed after the heat treatment without being exposed to the atmosphere. For example, it is preferable to perform the heat treatment and the film formation process continuously in different chambers using a multi-chamber film formation apparatus or the like.
  • the oxide film 230C can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the oxide film 230C to be the oxide 230c may be formed using a film formation method similar to that for the oxide film 230A or the oxide film 230B in accordance with characteristics required for the oxide 230c.
  • As the oxide film 230C an In—Ga—Zn oxide or an oxide containing no In can be used.
  • As the oxide not containing In a Ga—Zn oxide, gallium oxide, or the like can be used.
  • a stacked structure of an In—Ga—Zn oxide and an oxide containing no In may be used as the oxide film 230C.
  • the oxide film 230C may have a stacked structure including a first oxide film and a second oxide film on the first oxide film, and is similar to the target used for forming the oxide film 230B.
  • the first oxide film may be formed using a target
  • the second oxide film may be formed using a target similar to the target used for forming the oxide film 230A.
  • the oxide film 230C is preferably formed while heating the substrate. At this time, oxygen vacancies in the oxide 230a, the oxide 230b, and the oxide film 230C can be reduced by setting the substrate temperature to 300 ° C. or higher. Further, for example, the film may be formed at the same temperature as that of an insulating film 250A described later. In addition, by forming the film while heating the substrate in this manner, the crystallinity of the oxide 230a, the oxide 230b, and the oxide film 230C can be improved.
  • the oxide film 230C when the oxide film 230C is formed, part of oxygen contained in the sputtering gas may be supplied to the oxide 230a and the oxide 230b. Therefore, the ratio of oxygen contained in the sputtering gas for the oxide film 230C may be 70% or more, preferably 80% or more, more preferably 100%. Further, by performing film formation while heating the substrate, the crystallinity of the oxide film can be improved.
  • heat treatment is preferably performed before the formation of the insulating film 250A.
  • the heat treatment may be performed at 100 ° C. or more and 400 ° C. or less, for example, 200 ° C. Alternatively, it is preferably performed at the same temperature as the deposition temperature of the insulating film 250A.
  • the film formation temperature includes not only the substrate temperature during film formation but also the case of the set temperature of the film formation apparatus.
  • the heat treatment is preferably performed at 350 ° C.
  • the heat treatment is preferably performed under reduced pressure, and may be performed in a vacuum atmosphere, for example.
  • the vacuum atmosphere is maintained by exhausting with a turbo molecular pump or the like.
  • the pressure in the processing chamber may be 1 ⁇ 10 ⁇ 2 Pa or less, preferably 1 ⁇ 10 ⁇ 3 Pa or less.
  • an insulating film 250A is formed.
  • the insulating film 250A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • As the insulating film 250A it is preferable to form silicon oxide, hafnium oxide, gallium oxide, or the like by an ALD method.
  • a stacked film of silicon oxide and gallium oxide over silicon oxide may be used as the insulating film 250A.
  • the film formation temperature at the time of forming the insulating film 250A is 300 ° C. or higher and lower than 450 ° C., preferably 300 ° C. or higher and lower than 400 ° C., particularly preferably around 350 ° C.
  • an insulator with few impurities can be formed.
  • oxygen can be introduced into the insulating film 250A by exciting oxygen with a microwave to generate high-density oxygen plasma and exposing the insulating film 250A to the oxygen plasma.
  • heat treatment may be performed.
  • the heat treatment conditions described above can be used for the heat treatment. Through the heat treatment, the moisture concentration and the hydrogen concentration of the insulating film 250A can be reduced.
  • an oxide film 230D is formed. Further, it is preferable that the oxide film 230D be continuously formed after the heat treatment without being exposed to the atmosphere. For example, it is preferable to perform the heat treatment and the film formation process continuously in different chambers using a multi-chamber film formation apparatus or the like.
  • the oxide film 230D may be formed using a target similar to the target used for forming the oxide film 230C.
  • the oxide film 230D is preferably formed while heating the substrate. At this time, by setting the substrate temperature to 300 ° C. or higher, oxygen vacancies in the oxide 230a, the oxide 230b, the oxide film 230C, and the oxide film 230D can be reduced. By forming the film while heating the substrate, the crystallinity of the oxide 230a, the oxide 230b, the oxide film 230C, and the oxide film 230D can be improved.
  • the oxide film 230D when the oxide film 230D is formed, part of oxygen contained in the sputtering gas may be supplied to the oxide 230a, the oxide 230b, and the oxide film 230C through the insulating film 250A. Therefore, the ratio of oxygen contained in the sputtering gas for the oxide film 230D may be 70% or more, preferably 80% or more, more preferably 100%. Further, by performing film formation while heating the substrate, the crystallinity of the oxide film can be improved.
  • a conductive film 260A and a conductive film 260B are formed.
  • the conductive film 260A and the conductive film 260B can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a CVD method it is preferable to use a CVD method.
  • the conductive film 260A is formed using the ALD method
  • the conductive film 260B is formed using the CVD method (see FIG. 44).
  • the conductive film 260A and the conductive film 260B are processed to form the conductor 260 (the conductor 260a and the conductor 260b).
  • an insulating film 270A to be the insulator 270 is formed so as to cover the conductor 260 and the oxide film 230D.
  • an insulating film having a function of suppressing diffusion of impurities such as hydrogen and oxygen is preferably used as in the material used for the insulator 254.
  • aluminum oxide may be formed by a sputtering method (see FIG. 45).
  • the insulator 270, the oxide film 230D, the insulating film 250A, and the oxide film 230C are processed to form the insulator 270, the oxide 230d, the insulator 250, and the oxide 230c (see FIG. 46).
  • the processing of the insulating film 250A and the oxide film 230C may be performed continuously with the processing of the conductive film 260A and the conductive film 260B.
  • the side end of the conductor 260, the side end of the insulator 250, and the side end of the oxide 230c may be located in the same plane.
  • the insulator 270, the oxide 230d, the insulator 250, and the oxide 230c form the conductor 260 as illustrated in a top view in FIG.
  • the insulator 270, the oxide film 230D, the insulating film 250A, and the oxide film 230C may be processed so as to include them.
  • heat treatment may be performed.
  • the heat treatment conditions described above can be used for the heat treatment.
  • the moisture concentration and the hydrogen concentration of the insulator 280 can be reduced.
  • heat treatment is preferably performed before the formation of the insulating film to be the insulator 274.
  • the heat treatment may be performed at 100 ° C. or more and 400 ° C. or less, for example, 200 ° C. Or it is preferable to carry out at the same temperature as the film-forming temperature of this insulating film.
  • the film formation temperature includes not only the substrate temperature during film formation but also the case of the set temperature of the film formation apparatus.
  • the heat treatment is preferably performed at 250 ° C.
  • the heat treatment is preferably performed under reduced pressure, and may be performed in a vacuum atmosphere, for example.
  • the vacuum atmosphere is maintained by exhausting with a turbo molecular pump or the like.
  • the pressure in the processing chamber may be 1 ⁇ 10 ⁇ 2 Pa or less, preferably 1 ⁇ 10 ⁇ 3 Pa or less.
  • an insulator 280 is formed on the insulator 270.
  • the insulator 280 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • an insulating film to be the insulator 274 is formed over the insulator 280 (see FIG. 46).
  • the insulating film to be the insulator 274 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • an aluminum oxide film is preferably formed by a sputtering method, for example.
  • oxygen may be supplied to the insulator 280 when the insulator 274 is formed. In some cases, diffusion of oxygen included in the insulator 280 to the insulator 281 side can be suppressed. Further, in some cases, diffusion of hydrogen included in the insulator 281 to the oxide 230 side can be suppressed.
  • heat treatment may be performed.
  • the heat treatment conditions described above can be used for the heat treatment. Through the heat treatment, the moisture concentration and the hydrogen concentration of the insulator 280 and the insulator 274 can be reduced.
  • an insulating film to be the insulator 281 may be formed over the insulator 274.
  • the insulating film to be the insulator 281 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like (see FIG. 46).
  • openings reaching the layers 253a and 253b are formed in the insulator 254, the insulator 280, the insulator 274, and the insulator 281.
  • the opening may be formed using a lithography method.
  • an insulating film to be the insulator 241 is formed, and the insulating film is anisotropically etched to form the insulator 241.
  • the insulating film can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • an insulating film having a function of suppressing permeation of oxygen is preferably used.
  • a silicon nitride film may be formed by using an ALD method or a CVD method.
  • a precursor containing silicon and halogen or a precursor of aminosilanes can be used.
  • a precursor containing silicon and halogen SiCl 4 , SiH 2 Cl 2 , Si 2 Cl 6 , Si 3 Cl 8, or the like can be used.
  • monovalent, divalent, or trivalent aminosilanes can be used as precursors for aminosilanes.
  • ammonia or hydrazine can be used as the nitriding gas.
  • the anisotropic etching may be performed by, for example, a dry etching method.
  • the conductive film to be the conductor 240a and the conductor 240b preferably has a stacked structure including a conductor having a function of suppressing diffusion of impurities such as water and hydrogen.
  • a stack of tantalum nitride, titanium nitride, or the like and tungsten, molybdenum, copper, or the like can be used.
  • the conductive film to be the conductor 240 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a part of the conductive film to be the conductor 240a and the conductor 240b is removed, and the insulator 281 is exposed.
  • the conductive film remains only in the opening, whereby the conductor 240a and the conductor 240b having a flat upper surface can be formed (see FIG. 13).
  • part of the insulator 281 may be removed by the CMP treatment.
  • a semiconductor device including the transistor 200B illustrated in FIG. 13 can be manufactured. As illustrated in FIGS. 38 to 46, the transistor 200B can be manufactured using the method for manufacturing the semiconductor device described in this embodiment.
  • ⁇ Method for Manufacturing Semiconductor Device 3-2> A method for manufacturing a semiconductor device including the transistor 200B according to one embodiment of the present invention, which is different from that described in ⁇ Method 3-1 for manufacturing a semiconductor device>, is described with reference to FIGS.
  • (A) in each figure shows a top view.
  • (B) in each drawing is a cross-sectional view corresponding to the portion indicated by the one-dot chain line of A1-A2 shown in (A), and is also a cross-sectional view in the channel length direction of the transistor 200B.
  • (C) in each drawing is a cross-sectional view corresponding to the portion indicated by the one-dot chain line of A3-A4 in (A), and is also a cross-sectional view in the channel width direction of the transistor 200B. Note that in the top view of each figure (A), some elements are omitted for the sake of clarity.
  • the manufacturing method is the same as that described in ⁇ Method for Manufacturing Semiconductor Device 3-1>. Therefore, the method for manufacturing the semiconductor device according to FIGS. 38 to 43 can be referred to.
  • the insulator 279 is removed.
  • the insulator 279 can be removed by wet etching, dry etching, or the like.
  • heat treatment is preferably performed before the formation of the oxide film 230C.
  • an oxide film 230C is formed over the insulator 254 and the oxide 230b.
  • a dopant 258 is added to the oxide film 230C (see FIG. 47).
  • the dopant 258 is preferably oxygen.
  • oxygen vacancies in the oxide 230a, the oxide 230b, and the oxide 230c can be reduced. Since the description of the dopant 257 can be referred to for the addition method of the dopant 258, detailed description thereof is omitted.
  • an insulating film 250A, an oxide film 230D, a conductive film 260A, and a conductive film 260B are formed over the oxide film 230C.
  • the conductive film 260A and the conductive film 260B are processed to form the conductor 260a and the conductor 260b.
  • an insulating film 270A is formed.
  • the insulator 270A, the oxide film 230D, the insulating film 250A, and the oxide film 230C are processed to form the insulator 270, the oxide 230d, the insulator 250, and the oxide 230c (see FIGS. 44 and 45). . Since the above description can be referred to for formation of the insulator 270, the conductor 260, the oxide 230d, the insulator 250, and the oxide 230c, detailed description thereof is omitted.
  • the insulator 280 is formed over the insulator 254, the insulator 270, the conductor 260, the oxide 230d, the insulator 250, and the oxide 230c.
  • a dopant 259 is added to the insulator 280 (see FIG. 48).
  • oxygen is preferable.
  • oxygen can be supplied to the oxide 230a, the oxide 230b, and the oxide 230c through the insulator 280, and oxygen vacancies in the oxide 230a, the oxide 230b, and the oxide 230c are reduced. it can. Since the description of the dopant 257 can be referred to for the addition method of the dopant 259, detailed description thereof is omitted.
  • an insulating film 275 is formed over the insulator 280 (see FIG. 49).
  • the insulating film 275 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • an aluminum oxide film is preferably formed by a sputtering method, for example. By forming an aluminum oxide film by a sputtering method, diffusion of hydrogen included in the insulator 280 to the oxide 230 may be suppressed in some cases.
  • heat treatment may be performed.
  • the heat treatment may be performed at 100 ° C. or more and 400 ° C. or less, for example, 350 ° C. for 4 hours.
  • oxygen included in the insulating film 275 is supplied to the insulator 280, and oxygen can be supplied to the oxide 230a, the oxide 230b, and the oxide 230c through the insulator 280, and the oxide 230a, the oxide 230b, and Oxygen vacancies in the oxide 230c can be reduced.
  • the moisture concentration and the hydrogen concentration of the insulator 280 can be reduced.
  • the insulating film 275 is removed, and the insulator 280, the oxide 230c, the insulator 250, the oxide 230d, the conductor 260a, and the conductor 260b are exposed.
  • an insulating film to be the insulator 274 is formed over the insulator 280.
  • An insulating film to be the insulator 281 may be formed over the insulator 274 (see FIG. 46).
  • openings that reach the layers 253a and 253b are formed in the insulator 254, the insulator 244, the insulator 280, the insulator 274, and the insulator 281.
  • an insulating film to be the insulator 241 is formed, and the insulating film is anisotropically etched to form the insulator 241.
  • conductive films to be the conductors 240a and 240b are formed. Subsequently, by performing CMP treatment, part of the conductive film to be the conductor 240a and the conductor 240b is removed, and the insulator 281 is exposed. As a result, the conductive film remains only in the opening, whereby the conductor 240a and the conductor 240b having a flat upper surface can be formed (see FIG. 13).
  • a semiconductor device including the transistor 200B illustrated in FIG. 13 can be manufactured. As illustrated in FIGS. 47 to 49, the transistor 200B can be manufactured using the method for manufacturing the semiconductor device described in this embodiment.
  • (A) in each figure shows a top view.
  • (B) in each drawing is a cross-sectional view corresponding to the portion indicated by the one-dot chain line of A1-A2 shown in (A), and is also a cross-sectional view in the channel length direction of the transistor 200C.
  • (C) in each drawing is a cross-sectional view corresponding to the portion indicated by the one-dot chain line of A3-A4 in (A), and is also a cross-sectional view in the channel width direction of the transistor 200C. Note that in the top view of each figure (A), some elements are omitted for the sake of clarity.
  • the manufacturing method is the same as that described in ⁇ Semiconductor device manufacturing method 1-1> (see FIG. 17). Accordingly, the description of ⁇ Method 1-1 for Manufacturing Semiconductor Device> can be referred to, and thus detailed description thereof is omitted.
  • the conductive film 242B can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the conductive film to be the oxide film 230A, the oxide film 230B, and the conductive film 242B is processed into an island shape, so that the oxide 230a, the oxide 230b, and the conductive film 242B are formed. Note that in this step, the thickness of the region of the insulator 224 that does not overlap with the oxide 230a may be reduced (see FIG. 50).
  • an insulating film 254A is formed so as to cover the oxide 230a, the oxide 230b, and the conductive film 242B (see FIG. 50).
  • the insulating film 254A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the insulating film 254A and the conductive film 242B are processed to form the insulator 254, the conductor 242a, and the conductor 242b (see FIG. 51).
  • heat treatment is preferably performed before the formation of the oxide film 230C.
  • an oxide film 230C is formed over the insulator 254 and the oxide 230b.
  • An insulating film 250A, an oxide film 230D, a conductive film 260A, and a conductive film 260B are formed over the oxide film 230C (see FIG. 52). Since the above description can be referred to for the formation of the oxide film 230C, the insulating film 250A, the oxide film 230D, the conductive film 260A, and the conductive film 260B, detailed description thereof is omitted.
  • the conductive film 260A and the conductive film 260B are processed to form the conductor 260a and the conductor 260b.
  • an insulating film 270A is formed.
  • the insulating film 270A, the oxide film 230D, the insulating film 250A, and the oxide film 230C are processed to form the insulator 270, the oxide 230d, the insulator 250, and the oxide 230c (see FIG. 53). Since the above description can be referred to for formation of the insulator 270, the conductor 260, the oxide 230d, the insulator 250, and the oxide 230c, detailed description thereof is omitted.
  • heat treatment may be performed.
  • an insulator 280 is formed on the insulator 270.
  • an insulating film to be the insulator 274 is formed over the insulator 280 (see FIG. 54).
  • heat treatment may be performed.
  • an insulating film to be the insulator 281 may be formed over the insulator 274 (see FIG. 54).
  • openings that reach the conductors 242a and 242b are formed in the insulator 254, the insulator 280, the insulator 274, and the insulator 281.
  • the opening may be formed using a lithography method.
  • the insulator 241 is formed. Subsequently, the conductor 240a and the conductor 240b can be formed (see FIG. 16).
  • a semiconductor device including the transistor 200C illustrated in FIG. 16 can be manufactured. As illustrated in FIGS. 50 to 54, the transistor 200C can be manufactured using the method for manufacturing the semiconductor device described in this embodiment.
  • a semiconductor device with high on-state current can be provided.
  • a semiconductor device having high frequency characteristics can be provided.
  • a semiconductor device with favorable reliability can be provided.
  • a semiconductor device that can be miniaturized or highly integrated can be provided.
  • a semiconductor device having favorable electrical characteristics can be provided.
  • a semiconductor device with low off-state current can be provided.
  • a semiconductor device with reduced power consumption can be provided.
  • a highly productive semiconductor device can be provided.
  • FIGS. 1 One example of a semiconductor device (memory device) using a transistor which is one embodiment of the present invention is illustrated in FIGS.
  • the transistor 200 is provided above the transistor 300, and the capacitor 100 is provided above the transistor 300 and the transistor 200.
  • the transistor 200 the transistor 200 described in the above embodiment can be used.
  • the transistor 200 is a transistor in which a channel is formed in a semiconductor layer including an oxide semiconductor. Since the transistor 200 has a low off-state current, stored data can be held for a long time by using the transistor 200 for a memory device. That is, the refresh operation is not required or the frequency of the refresh operation is extremely low, so that the power consumption of the storage device can be sufficiently reduced.
  • the wiring 1001 is electrically connected to the source of the transistor 300
  • the wiring 1002 is electrically connected to the drain of the transistor 300.
  • the wiring 1003 is electrically connected to one of a source and a drain of the transistor 200
  • the wiring 1004 is electrically connected to the first gate of the transistor 200
  • the wiring 1006 is electrically connected to the second gate of the transistor 200. It is connected to the.
  • the gate of the transistor 300 and the other of the source and the drain of the transistor 200 are electrically connected to one of the electrodes of the capacitor 100
  • the wiring 1005 is electrically connected to the other of the electrodes of the capacitor 100. .
  • the memory device shown in FIG. 55 can be arranged in a matrix to constitute a memory cell array.
  • the transistor 300 is provided over the substrate 311 and functions as a conductor 316 functioning as a gate electrode, an insulator 315 functioning as a gate insulator, a semiconductor region 313 including a part of the substrate 311, and a source region or a drain region. It has a low resistance region 314a and a low resistance region 314b.
  • the transistor 300 may be either a p-channel type or an n-channel type.
  • a semiconductor region 313 (a part of the substrate 311) where a channel is formed has a convex shape.
  • a conductor 316 is provided so as to cover a side surface and an upper surface of the semiconductor region 313 with an insulator 315 interposed therebetween.
  • the conductor 316 may be formed using a material that adjusts a work function.
  • Such a transistor 300 is also called a FIN-type transistor because it uses a convex portion of a semiconductor substrate.
  • an insulator functioning as a mask for forming the convex portion may be provided in contact with the upper portion of the convex portion.
  • transistor 300 illustrated in FIGS. 55A and 55B is an example, and is not limited to the structure, and an appropriate transistor may be used depending on a circuit configuration or a driving method.
  • the capacitor 100 is provided above the transistor 200.
  • the capacitor 100 includes a conductor 110 that functions as a first electrode, a conductor 120 that functions as a second electrode, and an insulator 130 that functions as a dielectric.
  • the conductor 112 provided on the conductor 240 and the conductor 110 can be formed at the same time.
  • the conductor 112 functions as a plug or a wiring electrically connected to the capacitor 100, the transistor 200, or the transistor 300.
  • the conductor 112 and the conductor 110 have a single-layer structure; however, the structure is not limited thereto, and a stacked structure of two or more layers may be used.
  • a conductor having a high barrier property and a conductor having a high barrier property may be formed between a conductor having a barrier property and a conductor having a high conductivity.
  • the insulator 130 is formed of, for example, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, aluminum oxide, aluminum oxynitride, aluminum nitride oxide, aluminum nitride, hafnium oxide, hafnium oxynitride, hafnium nitride oxide, or hafnium nitride. Or the like may be used, and may be provided as a stacked layer or a single layer.
  • the insulator 130 is preferably formed using a stacked structure of a material having a high dielectric strength such as silicon oxynitride and a high dielectric constant (high-k) material.
  • the capacitor 100 has an insulator with a high dielectric constant (high-k), so that a sufficient capacitance can be secured, and the insulator having a high dielectric strength can improve the dielectric strength, The electrostatic breakdown of the element 100 can be suppressed.
  • an insulator of a high dielectric constant (high-k) material (a material having a high relative dielectric constant)
  • high-k high dielectric constant
  • gallium oxide, hafnium oxide, zirconium oxide, an oxide including aluminum and hafnium, an oxynitride including aluminum and hafnium And an oxide having silicon and hafnium, an oxynitride having silicon and hafnium, or a nitride having silicon and hafnium gallium oxide, hafnium oxide, zirconium oxide, an oxide including aluminum and hafnium, an oxynitride including aluminum and hafnium And an oxide having silicon and hafnium, an oxynitride having silicon and hafnium, or a nitride having silicon and hafnium.
  • silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide added with fluorine, silicon oxide added with carbon, carbon and nitrogen are used.
  • silicon oxide added, silicon oxide having holes, or resin examples include silicon oxide added, silicon oxide having holes, or resin.
  • a wiring layer provided with an interlayer film, a wiring, a plug, and the like may be provided. Further, a plurality of wiring layers can be provided depending on the design.
  • a conductor having a function as a plug or a wiring may be provided with the same reference numeral by collecting a plurality of structures.
  • the wiring and the plug electrically connected to the wiring may be integrated. That is, a part of the conductor may function as a wiring, and a part of the conductor may function as a plug.
  • an insulator 320, an insulator 322, an insulator 324, and an insulator 326 are sequentially stacked as an interlayer film.
  • the insulator 320, the insulator 322, the insulator 324, and the insulator 326 are embedded with a conductor 328 that is electrically connected to the capacitor 100 or the transistor 200, the conductor 330, and the like. Note that the conductor 328 and the conductor 330 function as a plug or a wiring.
  • the insulator that functions as an interlayer film may function as a planarizing film that covers the concave and convex shapes below the insulator.
  • the upper surface of the insulator 322 may be planarized by a planarization process using a chemical mechanical polishing (CMP) method or the like to improve planarity.
  • CMP chemical mechanical polishing
  • a wiring layer may be provided over the insulator 326 and the conductor 330.
  • an insulator 350, an insulator 352, and an insulator 354 are sequentially stacked.
  • a conductor 356 is formed in the insulator 350, the insulator 352, and the insulator 354.
  • the conductor 356 functions as a plug or a wiring.
  • a conductor 218, a conductor (conductor 205) included in the transistor 200, and the like are embedded in the insulator 210, the insulator 212, the insulator 214, and the insulator 216.
  • the conductor 218 functions as a plug or a wiring electrically connected to the capacitor 100 or the transistor 300.
  • an insulator 150 is provided over the conductor 120 and the insulator 130.
  • Examples of the insulator that can be used as the interlayer film include insulating oxides, nitrides, oxynitrides, nitride oxides, metal oxides, metal oxynitrides, and metal nitride oxides.
  • a parasitic capacitance generated between wirings can be reduced by using a material having a low relative dielectric constant for an insulator functioning as an interlayer film. Therefore, the material may be selected according to the function of the insulator.
  • the insulator includes silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, and silicon oxide having a hole Or it is preferable to have resin etc.
  • the insulator includes silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, or silicon oxide having a hole And a laminated structure of resin. Since silicon oxide and silicon oxynitride are thermally stable, a laminated structure having a low thermal stability and a low relative dielectric constant can be obtained by combining with silicon.
  • the resin include polyester, polyolefin, polyamide (such as nylon and aramid), polyimide, polycarbonate, and acrylic.
  • one or both of the conductor 112 and the insulator 130 and the insulator 150 provided over the conductor 120 have a resistivity of 1.0 ⁇ 10 12 ⁇ cm or more and 1.0 ⁇ 10 15 ⁇ cm or less, preferably It is preferable that the insulator be 5.0 ⁇ 10 12 ⁇ cm to 1.0 ⁇ 10 14 ⁇ cm, more preferably 1.0 ⁇ 10 13 ⁇ cm to 5.0 ⁇ 10 13 ⁇ cm.
  • the insulator 130 and the insulator 150 maintains the insulating property, and the transistor 200, the transistor 300, and the capacitor 100 are maintained.
  • charge accumulated between the wirings such as the conductor 112 and the conductor 120 can be dispersed, so that the characteristic failure and electrostatic breakdown of the transistor and the memory device including the transistor due to the charge can be suppressed.
  • silicon nitride or silicon nitride oxide can be used as such an insulator.
  • the insulator 140 may be provided below the conductor 112 as an insulator having the above-described resistivity.
  • the insulator 140 is formed over the insulator 281, and openings are formed in the insulator 140, the insulator 281, the insulator 274, the insulator 280, the insulator 244, the insulator 254, and the like, and the opening is formed in the opening.
  • the insulator 241 and the conductor 240 that is electrically connected to the transistor 200, the conductor 218, and the like may be formed.
  • the insulator 140 can be formed using the same material as the insulator 130 or the insulator 150.
  • a transistor including an oxide semiconductor can be stabilized in electrical characteristics of the transistor by being surrounded by an insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen. Therefore, an insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen may be used for the insulator 210, the insulator 350, and the like.
  • Examples of the insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen include boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, and zirconium.
  • An insulator containing lanthanum, neodymium, hafnium, or tantalum may be used as a single layer or a stacked layer.
  • an insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen
  • a metal oxide such as tantalum oxide, silicon nitride oxide, silicon nitride, or the like can be used.
  • Conductors that can be used for wiring and plugs are aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium
  • a material containing one or more metal elements selected from ruthenium and the like can be used.
  • a semiconductor with high electrical conductivity typified by polycrystalline silicon containing an impurity element such as phosphorus, or silicide such as nickel silicide may be used.
  • a metal material, an alloy material, a metal nitride material, a metal oxide material, or the like formed using the above materials can be used as the conductor 328, the conductor 330, the conductor 356, the conductor 218, the conductor 112, and the like.
  • These conductive materials can be used as a single layer or stacked layers. It is preferable to use a high melting point material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is preferable to use tungsten. Alternatively, it is preferably formed using a low-resistance conductive material such as aluminum or copper. Wiring resistance can be lowered by using a low-resistance conductive material.
  • an insulator having an excess oxygen region may be provided in the vicinity of the oxide semiconductor.
  • an insulator having a barrier property is preferably provided between the insulator having the excess oxygen region and the conductor provided in the insulator having the excess oxygen region.
  • an insulator 241 may be provided between the insulator 224 and the conductor 240.
  • the insulator 241 is preferably provided in contact with the insulator 222 and the insulator 254 which sandwich the insulator 224 having an excess oxygen region.
  • the insulator 224 can be sealed with an insulator having a barrier property.
  • the insulator 241 is preferably in contact with the insulator 280 and part of the insulator 281. When the insulator 241 extends to the insulator 280 and the insulator 281, diffusion of oxygen and impurities can be further suppressed.
  • the insulator 241 it is possible to suppress excess oxygen included in the insulator 224 from being absorbed by the conductor 240. Further, with the insulator 241, diffusion of hydrogen as an impurity to the transistor 200 through the conductor 240 can be suppressed.
  • an insulating material having a function of suppressing diffusion of impurities such as water or hydrogen and oxygen is preferably used.
  • aluminum oxide or hafnium oxide is preferably used.
  • a metal oxide such as magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, or tantalum oxide, silicon nitride oxide, silicon nitride, or the like can be used.
  • a semiconductor device having a structure different from that of the semiconductor device illustrated in FIG. 55 will be described.
  • the transistor 200A is provided above the transistor 300, and the capacitor 100 is provided above the transistor 300 and the transistor 200A.
  • the transistor 200A the transistor 200A described in the above embodiment can be used.
  • the transistor 200B is provided above the transistor 300, and the capacitor 100 is provided above the transistor 300 and the transistor 200B.
  • the transistor 200B the transistor 200B described in the above embodiment can be used. Since the above description can be referred to for the structure of the semiconductor device (memory device), detailed description thereof is omitted.
  • FIGS. 1 One example of a memory device using a semiconductor device which is one embodiment of the present invention is illustrated in FIGS.
  • the memory device illustrated in FIG. 58 includes a transistor 400 in addition to the semiconductor device including the transistor 200, the transistor 300, and the capacitor 100 illustrated in FIG.
  • the transistor 400 can control the second gate voltage of the transistor 200.
  • the first gate and the second gate of the transistor 400 are diode-connected to the source, and the source of the transistor 400 and the second gate of the transistor 200 are connected.
  • the negative potential of the second gate of the transistor 200 is held with this structure, the voltage between the first gate and the source of the transistor 400 and the voltage between the second gate and the source are 0V.
  • the transistor 400 since the drain current when the second gate voltage and the first gate voltage are 0 V is very small, the power supply to the transistor 200 and the transistor 400 is not supplied. Negative potential can be maintained for a long time. Accordingly, the memory device including the transistor 200 and the transistor 400 can hold stored data for a long time.
  • the wiring 1001 is electrically connected to the source of the transistor 300, and the wiring 1002 is electrically connected to the drain of the transistor 300.
  • the wiring 1003 is electrically connected to one of the source and the drain of the transistor 200, the wiring 1004 is electrically connected to the gate of the transistor 200, and the wiring 1006 is electrically connected to the back gate of the transistor 200.
  • the gate of the transistor 300 and the other of the source and the drain of the transistor 200 are electrically connected to one of the electrodes of the capacitor 100, and the wiring 1005 is electrically connected to the other of the electrodes of the capacitor 100. .
  • the wiring 1007 is electrically connected to the source of the transistor 400, the wiring 1008 is electrically connected to the gate of the transistor 400, the wiring 1009 is electrically connected to the back gate of the transistor 400, and the wiring 1010 is connected to the drain of the transistor 400. And are electrically connected.
  • the wiring 1006, the wiring 1007, the wiring 1008, and the wiring 1009 are electrically connected.
  • the transistor 400 can form a memory cell array by arranging in a matrix like the storage device shown in FIG. Note that one transistor 400 can control the second gate voltage of the plurality of transistors 200. Therefore, the transistor 400 is preferably provided in a smaller number than the transistor 200.
  • the transistor 400 is formed in the same layer as the transistor 200 and can be manufactured in parallel.
  • the transistor 400 includes a conductor 460 functioning as a first gate electrode (a conductor 460a and a conductor 460b), a conductor 405 functioning as a second gate electrode, an insulator 222 functioning as a gate insulating layer,
  • the functional layer 453b, the oxide 432a, the oxide 432b, and the conductor 440 are included.
  • the conductor 405 is the same layer as the conductor 205.
  • the oxide 431a and the oxide 432a are the same layer as the oxide 230a, and the oxide 431b and the oxide 432b are the same layer as the oxide 230b.
  • the conductors 453a and 453b are the same layer as the conductor 242.
  • the oxide 430c is the same layer as the oxide 230c.
  • the insulator 450 is the same layer as the insulator 250.
  • the conductor 460 is the same layer as the conductor 260.
  • the oxide 430c can be formed by processing an oxide film to be the oxide 230c.
  • the threshold voltage of the transistor 400 can be made higher than 0 V, the off-state current can be reduced, and the drain current when the second gate voltage and the first gate voltage are 0 V can be extremely reduced.
  • a dicing line (which may be referred to as a scribe line, a dividing line, or a cutting line) provided when a plurality of semiconductor devices are taken out in a chip shape by dividing the large-area substrate into semiconductor elements will be described.
  • a dividing method for example, a groove (dicing line) for dividing a semiconductor element may first be formed on a substrate, and then cut in the dicing line to be divided (divided) into a plurality of semiconductor devices.
  • the region where the insulator 254 and the insulator 222 are in contact with each other is a dicing line. That is, an opening is provided in the insulator 224 in the vicinity of a memory cell including the plurality of transistors 200 and a region serving as a dicing line provided on the outer edge of the transistor 400.
  • An insulator 254 is provided so as to cover the side surface of the insulator 224.
  • the insulator 222 and the insulator 254 are in contact with each other in the opening provided in the insulator 224.
  • the insulator 222 and the insulator 254 may be formed using the same material and the same method.
  • adhesion can be improved. For example, it is preferable to use aluminum oxide.
  • the insulator 224, the transistor 200, and the transistor 400 can be wrapped with the insulator 222 and the insulator 254. Since the insulator 222 and the insulator 254 have a function of suppressing diffusion of oxygen, hydrogen, and water, the substrate is divided for each circuit region in which the semiconductor element described in this embodiment is formed. Thus, even when processed into a plurality of chips, impurities such as hydrogen or water can be prevented from being mixed into the transistor 200 and the transistor 400 from the side surface direction of the divided substrate.
  • excess oxygen in the insulator 224 can be prevented from diffusing outside the insulator 254 and the insulator 222. Accordingly, excess oxygen in the insulator 224 is efficiently supplied to the oxide in which the channel in the transistor 200 or the transistor 400 is formed. With the oxygen, oxygen vacancies in the oxide in which a channel in the transistor 200 or the transistor 400 is formed can be reduced. Accordingly, an oxide in which a channel is formed in the transistor 200 or the transistor 400 can be an oxide semiconductor having low density of defect states and stable characteristics. That is, variation in electrical characteristics of the transistor 200 or the transistor 400 can be suppressed and reliability can be improved.
  • the memory device illustrated in FIG. 59 includes a transistor 400A in addition to the semiconductor device including the transistor 200A, the transistor 300, and the capacitor 100 illustrated in FIG.
  • the transistor 400A is formed in the same layer as the transistor 200A and can be manufactured in parallel.
  • the memory device illustrated in FIG. 60 includes a transistor 400B in addition to the semiconductor device including the transistor 200B, the transistor 300, and the capacitor 100 illustrated in FIG.
  • the transistor 400B is formed in the same layer as the transistor 200B and can be manufactured in parallel. Since the above description can be referred to for the configuration of the storage device, detailed description thereof is omitted.
  • an OS transistor a transistor using an oxide as a semiconductor
  • a capacitor according to one embodiment of the present invention
  • the storage device (hereinafter sometimes referred to as an OS memory device) is described.
  • An OS memory device is a storage device that includes at least a capacitor and an OS transistor that controls charging and discharging of the capacitor. Since the off-state current of the OS transistor is extremely small, the OS memory device has excellent retention characteristics and can function as a nonvolatile memory.
  • FIG. 61A shows an example of a structure of the OS memory device.
  • the memory device 1400 includes a peripheral circuit 1411 and a memory cell array 1470.
  • the peripheral circuit 1411 includes a row circuit 1420, a column circuit 1430, an output circuit 1440, and a control logic circuit 1460.
  • the column circuit 1430 includes, for example, a column decoder, a precharge circuit, a sense amplifier, a write circuit, and the like.
  • the precharge circuit has a function of precharging the wiring.
  • the sense amplifier has a function of amplifying a data signal read from the memory cell.
  • the wiring is a wiring connected to a memory cell included in the memory cell array 1470, which will be described in detail later.
  • the amplified data signal is output to the outside of the storage device 1400 through the output circuit 1440 as the data signal RDATA.
  • the row circuit 1420 includes, for example, a row decoder, a word line driver circuit, and the like, and can select a row to be accessed.
  • the storage device 1400 is supplied with a low power supply voltage (VSS), a high power supply voltage (VDD) for the peripheral circuit 1411, and a high power supply voltage (VIL) for the memory cell array 1470 as power supply voltages from the outside.
  • control signals CE, WE, RE
  • an address signal ADDR and a data signal WDATA are input to the storage device 1400 from the outside.
  • the address signal ADDR is input to the row decoder and the column decoder, and WDATA is input to the write circuit.
  • the control logic circuit 1460 processes external input signals (CE, WE, RE) to generate control signals for the row decoder and the column decoder.
  • CE is a chip enable signal
  • WE is a write enable signal
  • RE is a read enable signal.
  • the signal processed by the control logic circuit 1460 is not limited to this, and other control signals may be input as necessary.
  • the memory cell array 1470 includes a plurality of memory cells MC and a plurality of wirings arranged in a matrix. Note that the number of wirings connecting the memory cell array 1470 and the row circuit 1420 is determined by the configuration of the memory cells MC, the number of memory cells MC included in one column, and the like. The number of wirings connecting the memory cell array 1470 and the column circuit 1430 is determined by the configuration of the memory cells MC, the number of memory cells MC in one row, and the like.
  • the peripheral circuit 1411 and the memory cell array 1470 are formed on the same plane is shown in FIG. 61A, this embodiment is not limited to this.
  • the memory cell array 1470 may be provided over part of the peripheral circuit 1411.
  • a sense amplifier may be provided so as to overlap below the memory cell array 1470.
  • FIG. 62 illustrates a configuration example of a memory cell applicable to the above-described memory cell MC.
  • [DOSRAM] 62A to 62C show circuit configuration examples of DRAM memory cells.
  • a DRAM using a memory cell of 1 OS transistor and 1 capacitor element type is sometimes referred to as DOSRAM (Dynamic Oxide Semiconductor Random Access Memory).
  • a memory cell 1471 illustrated in FIG. 62A includes a transistor M1 and a capacitor CA.
  • the transistor M1 includes a gate (sometimes referred to as a front gate) and a back gate.
  • the first terminal of the transistor M1 is connected to the first terminal of the capacitor CA, the second terminal of the transistor M1 is connected to the wiring BIL, the gate of the transistor M1 is connected to the wiring WOL, and the back gate of the transistor M1 Is connected to the wiring BGL.
  • a second terminal of the capacitor element CA is connected to the wiring CAL.
  • the wiring BIL functions as a bit line
  • the wiring WOL functions as a word line.
  • the wiring CAL functions as a wiring for applying a predetermined potential to the second terminal of the capacitor CA.
  • a low level potential is preferably applied to the wiring CAL at the time of writing and reading of data.
  • the wiring BGL functions as a wiring for applying a potential to the back gate of the transistor M1. By applying an arbitrary potential to the wiring BGL, the threshold voltage of the transistor M1 can be increased or decreased.
  • the memory cell MC is not limited to the memory cell 1471, and the circuit configuration can be changed.
  • the memory cell MC may have a structure in which the back gate of the transistor M1 is connected to the wiring WOL instead of the wiring BGL as in the memory cell 1472 illustrated in FIG.
  • the memory cell MC may be a single-gate transistor, that is, a memory cell including a transistor M1 having no back gate as in the memory cell 1473 illustrated in FIG.
  • the transistor 200 can be used as the transistor M1
  • the capacitor 100 can be used as the capacitor CA.
  • the leakage current of the transistor M1 can be very low. That is, since the written data can be held for a long time by the transistor M1, the frequency of refreshing the memory cells can be reduced. Also, the refresh operation of the memory cell can be made unnecessary.
  • the leakage current is very low, multi-value data or analog data can be held in the memory cell 1471, the memory cell 1472, and the memory cell 1473.
  • the bit line can be shortened. As a result, the bit line capacitance is reduced, and the storage capacity of the memory cell can be reduced.
  • [NOSRAM] 62D to 62H show circuit configuration examples of a gain cell type memory cell having a two-transistor one-capacitance element.
  • a memory cell 1474 illustrated in FIG. 62D includes a transistor M2, a transistor M3, and a capacitor CB.
  • the transistor M2 includes a front gate (sometimes simply referred to as a gate) and a back gate.
  • NOSRAM Nonvolatile Oxide Semiconductor RAM
  • the first terminal of the transistor M2 is connected to the first terminal of the capacitor CB, the second terminal of the transistor M2 is connected to the wiring WBL, the gate of the transistor M2 is connected to the wiring WOL, and the back gate of the transistor M2 Is connected to the wiring BGL.
  • a second terminal of the capacitor CB is connected to the wiring CAL.
  • the first terminal of the transistor M3 is connected to the wiring RBL, the second terminal of the transistor M3 is connected to the wiring SL, and the gate of the transistor M3 is connected to the first terminal of the capacitor CB.
  • the wiring WBL functions as a write bit line
  • the wiring RBL functions as a read bit line
  • the wiring WOL functions as a word line.
  • the wiring CAL functions as a wiring for applying a predetermined potential to the second terminal of the capacitor CB. It is preferable to apply a low-level potential to the wiring CAL during data writing, during data holding, and during data reading.
  • the wiring BGL functions as a wiring for applying a potential to the back gate of the transistor M2. By applying an arbitrary potential to the wiring BGL, the threshold voltage of the transistor M2 can be increased or decreased.
  • the memory cell MC is not limited to the memory cell 1474, and the configuration of the circuit can be changed as appropriate.
  • the memory cell MC may have a structure in which the back gate of the transistor M2 is connected to the wiring WOL instead of the wiring BGL as in the memory cell 1475 illustrated in FIG.
  • the memory cell MC may be a memory cell including a single-gate transistor, that is, a transistor M2 having no back gate, like the memory cell 1476 illustrated in FIG.
  • the memory cell MC may have a structure in which the wiring WBL and the wiring RBL are combined into one wiring BIL as in the memory cell 1477 illustrated in FIG.
  • the transistor 200 can be used as the transistor M2
  • the transistor 300 can be used as the transistor M3
  • the capacitor 100 can be used as the capacitor CB.
  • an OS transistor as the transistor M2
  • the leakage current of the transistor M2 can be very low.
  • the written data can be held for a long time by the transistor M2, so that the frequency of refreshing the memory cell can be reduced.
  • the refresh operation of the memory cell can be made unnecessary.
  • the leakage current is very low, multi-value data or analog data can be held in the memory cell 1474. The same applies to the memory cells 1475 to 1477.
  • the transistor M3 may be a transistor having silicon in a channel formation region (hereinafter sometimes referred to as a Si transistor).
  • the conductivity type of the Si transistor may be an n-channel type or a p-channel type.
  • the Si transistor may have higher field effect mobility than the OS transistor. Therefore, a Si transistor may be used as the transistor M3 functioning as a reading transistor. Further, by using a Si transistor as the transistor M3, the transistor M2 can be provided over the transistor M3, so that the area occupied by the memory cells can be reduced and the storage device can be highly integrated.
  • the transistor M3 may be an OS transistor.
  • OS transistors are used as the transistors M2 and M3, the memory cell array 1470 can be configured using only n-type transistors.
  • FIG. 62H shows an example of a gain cell type memory cell having three transistors and one capacitor.
  • a memory cell 1478 illustrated in FIG. 62H includes transistors M4 to M6 and a capacitor CC.
  • the capacitor element CC is provided as appropriate.
  • the memory cell 1478 is electrically connected to wirings BIL, RWL, WWL, BGL, and GNDL.
  • the wiring GNDL is a wiring that applies a low level potential. Note that the memory cell 1478 may be electrically connected to the wirings RBL and WBL instead of the wiring BIL.
  • the transistor M4 is an OS transistor having a back gate, and the back gate is electrically connected to the wiring BGL. Note that the back gate and the gate of the transistor M4 may be electrically connected to each other. Alternatively, the transistor M4 may not have a back gate.
  • the transistors M5 and M6 may be n-channel Si transistors or p-channel Si transistors, respectively.
  • the transistors M4 to M6 may be OS transistors.
  • the memory cell array 1470 can be configured using only n-type transistors.
  • the transistor 200 can be used as the transistor M4, the transistor 300 can be used as the transistors M5 and M6, and the capacitor 100 can be used as the capacitor CC.
  • the leakage current of the transistor M4 can be very low.
  • peripheral circuit 1411 the memory cell array 1470, and the like described in this embodiment are not limited to the above.
  • the arrangement or function of these circuits, wirings connected to the circuits, circuit elements, and the like may be changed, deleted, or added as necessary.
  • FIGS. 5 an example of a chip 1200 on which the semiconductor device of one embodiment of the present invention is mounted is described with reference to FIGS.
  • a plurality of circuits (systems) are mounted on the chip 1200.
  • SoC system on chip
  • a chip 1200 includes a CPU (Central Processing Unit) 1211, a GPU (Graphics Processing Unit) 1212, one or more analog operation units 1213, one or more memory controllers 1214, one or more. Interface 1215, one or a plurality of network circuits 1216, and the like.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • Interface 1215 one or a plurality of network circuits 1216, and the like.
  • the chip 1200 is provided with bumps (not shown), and is connected to a first surface of a printed circuit board (PCB) 1201 as shown in FIG.
  • a plurality of bumps 1202 are provided on the back surface of the first surface of the PCB 1201 and connected to the motherboard 1203.
  • the motherboard 1203 may be provided with storage devices such as a DRAM 1221 and a flash memory 1222.
  • storage devices such as a DRAM 1221 and a flash memory 1222.
  • the DOSRAM described in the above embodiment can be used as the DRAM 1221.
  • the NOSRAM described in the above embodiment can be used for the flash memory 1222.
  • the CPU 1211 preferably has a plurality of CPU cores.
  • the GPU 1212 preferably has a plurality of GPU cores. Further, each of the CPU 1211 and the GPU 1212 may have a memory for temporarily storing data. Alternatively, a memory common to the CPU 1211 and the GPU 1212 may be provided in the chip 1200. As the memory, the above-described NOSRAM or DOSRAM can be used.
  • the GPU 1212 is suitable for parallel calculation of a large number of data, and can be used for image processing and product-sum operation. By providing the GPU 1212 with an image processing circuit using the oxide semiconductor of one embodiment of the present invention or a product-sum operation circuit, image processing and product-sum operation can be performed with low power consumption.
  • the wiring between the CPU 1211 and the GPU 1212 can be shortened, data transfer from the CPU 1211 to the GPU 1212, data transfer between the memories of the CPU 1211 and the GPU 1212, After the calculation in the GPU 1212, the calculation result can be transferred from the GPU 1212 to the CPU 1211 at high speed.
  • the analog operation unit 1213 has one or both of an A / D (analog / digital) conversion circuit and a D / A (digital / analog) conversion circuit. Further, the product-sum operation circuit may be provided in the analog operation unit 1213.
  • the memory controller 1214 has a circuit that functions as a controller for the DRAM 1221 and a circuit that functions as an interface for the flash memory 1222.
  • the interface 1215 has an interface circuit with external devices such as a display device, a speaker, a microphone, a camera, and a controller.
  • the controller includes a mouse, a keyboard, a game controller, and the like.
  • USB Universal Serial Bus
  • HDMI registered trademark
  • High-Definition Multimedia Interface or the like can be used.
  • the network circuit 1216 has a network circuit such as a LAN (Local Area Network).
  • a network security circuit may be included.
  • the above circuit (system) can be formed on the chip 1200 by the same manufacturing process. Therefore, even if the number of circuits necessary for the chip 1200 increases, it is not necessary to increase the manufacturing process, and the chip 1200 can be manufactured at low cost.
  • the PCB 1201 provided with the chip 1200 having the GPU 1212, the DRAM 1221, and the motherboard 1203 provided with the flash memory 1222 can be referred to as a GPU module 1204.
  • the GPU module 1204 includes the chip 1200 using the SoC technology, the size of the GPU module 1204 can be reduced. In addition, since it is excellent in image processing, it is preferably used for portable electronic devices such as smartphones, tablet terminals, laptop PCs, and portable (carry-out) game machines.
  • a product-sum operation circuit using the GPU 1212 allows a deep neural network (DNN), a convolutional neural network (CNN), a recursive neural network (RNN), a self-encoder, a deep Boltzmann machine (DBM), a deep belief network (
  • DNN deep neural network
  • CNN convolutional neural network
  • RNN recursive neural network
  • DBM deep Boltzmann machine
  • the chip 1200 can be used as an AI chip or the GPU module 1204 can be used as an AI system module.
  • the semiconductor device described in the above embodiment is, for example, a storage device of various electronic devices (for example, an information terminal, a computer, a smartphone, an electronic book terminal, a digital camera (including a video camera), a recording / playback device, a navigation system, and the like).
  • the computer includes a tablet computer, a notebook computer, a desktop computer, and a large computer such as a server system.
  • the semiconductor device described in any of the above embodiments is applied to various types of removable storage devices such as a memory card (for example, an SD card), a USB memory, and an SSD (solid state drive).
  • FIG. 64 schematically shows some configuration examples of the removable storage device.
  • the semiconductor device described in any of the above embodiments is processed into a packaged memory chip and used for various storage devices and removable memories.
  • FIG. 64A is a schematic diagram of a USB memory.
  • the USB memory 1100 includes a housing 1101, a cap 1102, a USB connector 1103, and a substrate 1104.
  • the substrate 1104 is housed in the housing 1101.
  • a memory chip 1105 and a controller chip 1106 are attached to the substrate 1104.
  • the semiconductor device described in any of the above embodiments can be incorporated in the memory chip 1105 or the like of the substrate 1104.
  • FIG. 64B is a schematic diagram of the appearance of the SD card
  • FIG. 64C is a schematic diagram of the internal structure of the SD card.
  • the SD card 1110 includes a housing 1111, a connector 1112, and a substrate 1113.
  • the substrate 1113 is housed in the housing 1111.
  • a memory chip 1114 and a controller chip 1115 are attached to the substrate 1113.
  • a wireless chip having a wireless communication function may be provided on the substrate 1113.
  • data can be read from and written to the memory chip 1114 by wireless communication between the host device and the SD card 1110.
  • the semiconductor device described in any of the above embodiments can be incorporated in the memory chip 1114 of the substrate 1113 or the like.
  • FIG. 64D is a schematic diagram of the external appearance of the SSD
  • FIG. 64E is a schematic diagram of the internal structure of the SSD.
  • the SSD 1150 includes a housing 1151, a connector 1152, and a substrate 1153.
  • the substrate 1153 is housed in the housing 1151.
  • a memory chip 1154, a memory chip 1155, and a controller chip 1156 are attached to the substrate 1153.
  • the memory chip 1155 is a work memory of the controller chip 1156.
  • a DOSRAM chip may be used.
  • the semiconductor device described in any of the above embodiments can be incorporated in the memory chip 1154 or the like of the substrate 1153.
  • the semiconductor device can be used for a processor such as a CPU or a GPU, or a chip.
  • FIG. 65 illustrates a specific example of an electronic device including a processor such as a CPU or a GPU or a chip according to one embodiment of the present invention.
  • the GPU or the chip according to one embodiment of the present invention can be mounted on various electronic devices.
  • electronic devices include relatively large game machines such as television devices, desktop or notebook personal computers, monitors for computers, digital signage (digital signage), and pachinko machines.
  • electronic devices including a screen, a digital camera, a digital video camera, a digital photo frame, a mobile phone, a portable game machine, a portable information terminal, a sound reproducing device, and the like can be given.
  • artificial intelligence can be mounted on the electronic device.
  • the electronic device of one embodiment of the present invention may have an antenna. By receiving a signal with an antenna, video, information, and the like can be displayed on the display unit.
  • the antenna may be used for non-contact power transmission.
  • the electronic device of one embodiment of the present invention includes a sensor (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, It may have a function of measuring voltage, power, radiation, flow rate, humidity, gradient, vibration, odor, or infrared).
  • the electronic device of one embodiment of the present invention can have various functions. For example, a function for displaying various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function for displaying a calendar, date or time, a function for executing various software (programs), and wireless communication A function, a function of reading a program or data recorded on a recording medium, and the like can be provided.
  • FIG. 65 illustrates an example of an electronic device.
  • FIG. 65A illustrates a mobile phone (smart phone) which is a kind of information terminal.
  • the information terminal 5500 includes a housing 5510 and a display portion 5511. As an input interface, a touch panel is provided in the display portion 5511 and a button is provided in the housing 5510.
  • the information terminal 5500 can execute an application using artificial intelligence by applying the chip of one embodiment of the present invention.
  • an application using artificial intelligence for example, an application for recognizing a conversation and displaying the content of the conversation on the display unit 5511, a character or a figure input by the user on the touch panel provided in the display unit 5511, Examples thereof include an application displayed on the display unit 5511 and an application for performing biometric authentication such as a fingerprint and a voiceprint.
  • FIG. 65B shows a desktop information terminal 5300.
  • the desktop information terminal 5300 includes an information terminal main body 5301, a display 5302, and a keyboard 5303.
  • the desktop information terminal 5300 can execute an application using artificial intelligence by applying the chip of one embodiment of the present invention, similarly to the information terminal 5500 described above.
  • Examples of the application using artificial intelligence include design support software, sentence correction software, menu automatic generation software, and the like. Further, by using the desktop information terminal 5300, new artificial intelligence can be developed.
  • a smartphone and a desktop information terminal are illustrated as examples of electronic devices in FIGS. 65A and 65B, respectively, but an information terminal other than the smartphone and the desktop information terminal is applied. be able to.
  • Examples of information terminals other than smartphones and desktop information terminals include PDAs (Personal Digital Assistants), notebook information terminals, and workstations.
  • FIG. 65C illustrates an electric refrigerator-freezer 5800 that is an example of an electrical appliance.
  • An electric refrigerator-freezer 5800 includes a housing 5801, a refrigerator compartment door 5802, a refrigerator compartment door 5803, and the like.
  • an electric refrigerator-freezer 5800 having artificial intelligence can be realized.
  • the electric refrigerator-freezer 5800 is stored in the electric refrigerator-freezer 5800, a function for automatically generating menus based on the ingredients stored in the electric refrigerator-freezer 5800, the expiration date of the ingredients, and the like. It can have a function of automatically adjusting the temperature to the food material.
  • an electric refrigerator-freezer has been described as an electrical appliance.
  • other electrical appliances include, for example, a vacuum cleaner, microwave oven, microwave oven, rice cooker, water heater, IH cooker, water server, and air conditioner. Examples include appliances, washing machines, dryers, and audiovisual equipment.
  • FIG. 65D illustrates a portable game machine 5200 which is an example of a game machine.
  • the portable game machine includes a housing 5201, a display portion 5202, a button 5203, and the like.
  • the portable game machine 5200 By applying the GPU or chip of one embodiment of the present invention to the portable game machine 5200, the portable game machine 5200 with low power consumption can be realized. Further, since heat generation from the circuit can be reduced with low power consumption, the influence of the heat generation on the circuit itself, peripheral circuits, and modules can be reduced.
  • the portable game machine 5200 having artificial intelligence can be realized.
  • expressions such as the progress of the game, the behavior of the creatures appearing in the game, and the phenomenon occurring in the game are determined by the program of the game, but by applying artificial intelligence to the portable game machine 5200
  • Expressions that are not limited to game programs are possible. For example, it is possible to express that the content that the player asks, the progress of the game, the time, and the behavior of the person appearing on the game change.
  • a game player when a game that requires a plurality of players is played on the portable game machine 5200, a game player can be formed artificially by artificial intelligence. Therefore, even if one player is made a game player using artificial intelligence, Can play games.
  • FIG. 65D illustrates a portable game machine as an example of a game machine, but a game machine to which the GPU or the chip of one embodiment of the present invention is applied is not limited thereto.
  • a game machine to which the GPU or the chip of one embodiment of the present invention is applied for example, a stationary game machine for home use, an arcade game machine installed in an entertainment facility (game center, amusement park, etc.), and a sports facility are installed. Pitching machine for batting practice.
  • the GPU or the chip of one embodiment of the present invention can be applied to an automobile that is a moving body and the vicinity of a driver's seat of the automobile.
  • FIG. 65 (E1) shows an automobile 5700 which is an example of a moving body
  • FIG. 65 (E2) is a view showing the periphery of the windshield in the interior of the automobile.
  • FIG. 65E2 illustrates a display panel 5704 attached to a pillar in addition to the display panel 5701, the display panel 5702, and the display panel 5703 attached to the dashboard.
  • Display panels 5701 to 5703 can provide various other information by displaying speedometers, tachometers, travel distances, fuel gauges, gear states, air conditioner settings, and the like.
  • the display items, layout, and the like displayed on the display panel can be changed as appropriate according to the user's preference, and the design can be improved.
  • the display panels 5701 to 5703 can also be used as lighting devices.
  • the field of view (dead angle) blocked by the pillar can be complemented. That is, by displaying an image from an imaging device provided outside the automobile 5700, the blind spot can be compensated for and safety can be improved. Also, by displaying a video that complements the invisible part, it is possible to confirm the safety more naturally and without a sense of incongruity.
  • the display panel 5704 can also be used as a lighting device.
  • the GPU or chip of one embodiment of the present invention can be applied as a component of artificial intelligence, for example, the chip can be used in an automatic driving system of an automobile 5700. Moreover, the chip can be used in a system for performing road guidance, risk prediction, and the like.
  • the display panels 5701 to 5704 may be configured to display information such as road guidance and danger prediction.
  • the automobile is described as an example of the moving body, but the moving body is not limited to the automobile.
  • the moving object include a train, a monorail, a ship, and a flying object (helicopter, unmanned aerial vehicle (drone), airplane, rocket).
  • the chip of one embodiment of the present invention is applied to these moving objects.
  • a system using artificial intelligence can be provided.
  • the GPU or the chip of one embodiment of the present invention can be applied to a broadcasting system.
  • FIG. 65 (F) schematically shows data transmission in the broadcasting system. Specifically, FIG. 65F shows a route through which a radio wave (broadcast signal) transmitted from the broadcasting station 5680 reaches the television receiver (TV) 5600 in each home.
  • the TV 5600 includes a receiving device (not shown), and a broadcast signal received by the antenna 5650 is transmitted to the TV 5600 through the receiving device.
  • the antenna 5650 is a UHF (Ultra High Frequency) antenna.
  • a BS / 110 ° CS antenna, a CS antenna, or the like can also be applied.
  • Radio wave 5675A and radio wave 5675B are broadcast signals for terrestrial broadcasting, and radio tower 5670 amplifies received radio wave 5675A and transmits radio wave 5675B.
  • the terrestrial TV broadcast can be viewed on the TV 5600 by receiving the radio wave 5675B with the antenna 5650.
  • the broadcasting system is not limited to the terrestrial broadcasting shown in FIG. 65F, and may be satellite broadcasting using an artificial satellite, data broadcasting using an optical line, or the like.
  • the above-described broadcasting system may be a broadcasting system using artificial intelligence by applying the chip of one embodiment of the present invention.
  • the broadcast data is transmitted from the broadcast station 5680 to the TV 5600 of each home, the broadcast data is compressed by the encoder.
  • the decoder of the receiving device included in the TV 5600 stores the broadcast data. Restoration is performed.
  • artificial intelligence for example, in motion compensated prediction, which is one of encoder compression methods, a display pattern included in a display image can be recognized.
  • intra-frame prediction using artificial intelligence can also be performed. For example, when broadcast data with a low resolution is received and the broadcast data is displayed on the TV 5600 with a high resolution, an image interpolation process such as up-conversion can be performed in the restoration of the broadcast data by the decoder.
  • the above-described broadcasting system using artificial intelligence is suitable for ultra-high definition television (UHDTV: 4K, 8K) broadcasting in which the amount of broadcast data increases.
  • a TV 5600 may be provided with a recording device having artificial intelligence.
  • a recording device having artificial intelligence By adopting such a configuration, it is possible to automatically record a program that meets the user's preference by causing the recording device to learn the user's preference using artificial intelligence.
  • the electronic device described in this embodiment the function of the electronic device, the application example of artificial intelligence, the effect, and the like can be combined with the description of other electronic devices as appropriate.
  • a thermal oxide film having a thickness of about 100 nm was formed on a single crystal silicon wafer.
  • the thermal oxide film was formed by oxidizing the surface of a single crystal silicon wafer at a temperature of 950 ° C. in an oxygen atmosphere containing 3% by volume of HCl.
  • a silicon oxide film having a thickness of about 300 nm was formed on the thermal oxide film by a sputtering method.
  • the silicon oxide film was formed using an oxygen gas containing 18 O as a film forming gas.
  • an oxide film having a thickness of about 50 nm was formed on the silicon oxide film by a sputtering method.
  • the oxide film was formed using an In—Ga—Zn oxide target, a substrate temperature of 200 ° C., and oxygen gas as a deposition gas. By forming the film under such conditions, an oxide film having c-axis aligned crystallinity can be formed.
  • heat treatment was performed at 400 ° C. for 1 hour in a nitrogen atmosphere.
  • the temperature increase rate from 40 ° C. to 400 ° C. was 7.2 ° C./min
  • the temperature decrease rate from 400 ° C. to 40 ° C. was 3.6 ° C./min.
  • FIG. 66A shows the diffusion coefficient D of 18 O in the oxide film calculated for the sample A1 and the sample A2. From this result, it was confirmed that the sample A2 was easier to diffuse oxygen than the sample A1.
  • FIG. 66B shows the result of the estimated value of the diffusion length of 18 O in the oxide film calculated from FIG. 66A.
  • the diffusion length As for the diffusion length, the diffusion length at 400 ° C. was estimated without considering the temperature increase period and the temperature decrease period in the heat treatment.
  • FIG. 66B shows a case where the heat treatment time is 1 hour and a case where the heat treatment time is 4 hours, respectively. As shown in FIG. 66B, it was confirmed that the diffusion length of the sample A2 was twice or more than that of the sample A1.
  • the ease of oxygen diffusion in the oxide film can be controlled by changing the composition even under the same film formation conditions.
  • the composition of the oxide film and the film formation conditions can be selected as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Semiconductor Memories (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

要約書 電気特性及び信頼性が良好な積層体を提供する。 絶縁体と、導電体と、絶縁体と導電体との間の第1の酸化物と、を有し、第1の酸化物は、c軸配向 した第1の結晶領域を有し、 第1の結晶領域のc軸は、 絶縁体側の第1の酸化物の面と概略垂直であ る積層体とする。または、絶縁体と、導電体と、絶縁体と導電体との間の第1の酸化物と、絶縁体を はさんで第1の酸化物と対向する第2の酸化物と、 を有し、 第1の酸化物は、 c軸配向した第1の結 晶領域を有し、 第1の結晶領域のc軸は、 絶縁体側の第1の酸化物の面と概略垂直であり、 第2の酸 化物は、 c軸配向した第2の結晶領域を有し、 第2の結晶領域のc軸は、 絶縁体側の第2の酸化物の 面と概略垂直である積層体とする。

Description

積層体、及び半導体装置
 本発明の一態様は、積層体、半導体装置及びそれらの作製方法に関する。または、本発明の一態様は、半導体ウエハ、モジュール、および電子機器に関する。
 なお、本明細書等において半導体装置とは、半導体特性を利用することで機能し得る装置全般を指す。トランジスタなどの半導体素子をはじめ、半導体回路、演算装置、記憶装置は、半導体装置の一態様である。表示装置(液晶表示装置、発光表示装置など)、投影装置、照明装置、電気光学装置、蓄電装置、記憶装置、半導体回路、撮像装置、および電子機器などは、半導体装置を有すると言える場合がある。
 なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。
 トランジスタに適用可能な半導体薄膜の材料として、シリコン系半導体材料が広く知られているが、その他の材料として酸化物半導体が注目されている。酸化物半導体としては、例えば、酸化インジウム、酸化亜鉛などの一元系金属の酸化物のみでなく、多元系金属の酸化物も知られている。多元系金属の酸化物の中でも、特に、In−Ga−Zn酸化物(以下、IGZOとも呼ぶ。)に関する研究が盛んに行われている。
 IGZOに関する研究により、酸化物半導体において、単結晶でも非晶質でもない、CAAC(c−axis aligned crystalline)構造およびnc(nanocrystalline)構造が見出された(非特許文献1乃至非特許文献3参照。)。非特許文献1および非特許文献2では、CAAC構造を有する酸化物半導体を用いてトランジスタを作製する技術も開示されている。さらに、CAAC構造およびnc構造よりも結晶性の低い酸化物半導体でさえも、微小な結晶を有することが、非特許文献4および非特許文献5に示されている。
 さらに、IGZOを活性層として用いたトランジスタは極めて低いオフ電流を持ち(非特許文献6参照。)、その特性を利用したLSIおよびディスプレイが報告されている(非特許文献7および非特許文献8参照。)。
S.Yamazaki et al.,"SID Symposium Digest of Technical Papers",2012,volume 43,issue 1,pp.183−186 S.Yamazaki et al.,"Japanese Journal of Applied Physics",2014,volume 53,Number 4S,pp.04ED18−1−04ED18−10 S.Ito et al.,"The Proceedings of AM−FPD’13 Digest of Technical Papers",2013,pp.151−154 S.Yamazaki et al.,"ECS Journal of Solid State Science and Technology",2014,volume 3,issue 9,pp.Q3012−Q3022 S.Yamazaki,"ECS Transactions",2014,volume 64,issue 10,pp.155−164 K.Kato et al.,"Japanese Journal of Applied Physics",2012,volume 51,pp.021201−1−021201−7 S.Matsuda et al.,"2015 Symposium on VLSI Technology Digest of Technical Papers",2015,pp.T216−T217 S.Amano et al.,"SID Symposium Digest of Technical Papers",2010,volume 41,issue 1,pp.626−629
 本発明の一態様は、電気特性が良好な積層体を提供することを課題の一つとする。または、本発明の一態様は、信頼性が良好な積層体を提供することを課題の一つとする。または、本発明の一態様は、オン電流が大きい半導体装置を提供することを課題の一つとする。または、本発明の一態様は、高い周波数特性を有する半導体装置を提供することを課題の一つとする。または、本発明の一態様は、信頼性が良好な半導体装置を提供することを課題の一つとする。または、本発明の一態様は、微細化または高集積化が可能な半導体装置を提供することを課題の一つとする。または、本発明の一態様は、良好な電気特性を有する半導体装置を提供することを課題の一つとする。または、本発明の一態様は、生産性の高い半導体装置を提供することを課題の一つとする。
 本発明の一態様は、長期間においてデータの保持が可能な半導体装置を提供することを課題の一つとする。本発明の一態様は、データの書き込み速度が速い半導体装置を提供することを課題の一つとする。本発明の一態様は、設計自由度が高い半導体装置を提供することを課題の一つとする。本発明の一態様は、消費電力を抑えることができる半導体装置を提供することを課題の一つとする。本発明の一態様は、新規な半導体装置を提供することを課題の一つとする。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
 本発明の一態様は、絶縁体と、導電体と、絶縁体と導電体との間の第1の酸化物と、を有し、第1の酸化物は、c軸配向した第1の結晶領域を有し、第1の結晶領域のc軸は、絶縁体側の第1の酸化物の面と概略垂直である積層体である。
 また、本発明の一態様は、絶縁体と、導電体と、絶縁体と導電体との間の第1の酸化物と、絶縁体をはさんで第1の酸化物と対向する第2の酸化物と、を有し、第1の酸化物は、c軸配向した第1の結晶領域を有し、第1の結晶領域のc軸は、絶縁体側の第1の酸化物の面と概略垂直であり、第2の酸化物は、c軸配向した第2の結晶領域を有し、第2の結晶領域のc軸は、絶縁体側の第2の酸化物の面と概略垂直である積層体である。
 また、本発明の一態様は、第1の酸化物と、第2の酸化物と、第3の酸化物と、第1の絶縁体と、第1の導電体と、第2の導電体と、第3の導電体と、を有し、第1の酸化物は、第1の導電体の側面及び下面を覆い、第1の絶縁体は、第1の酸化物の側面及び下面を覆い、第2の酸化物は、第1の絶縁体の側面及び下面を覆い、第3の酸化物は、第2の酸化物の下面と接し、第1の酸化物は、c軸配向した第1の結晶領域を有し、第1の結晶領域のc軸は、第1の絶縁体側の第1の酸化物の面と概略垂直であり、第2の導電体及び第3の導電体は、第3の酸化物上で第2の酸化物を介して対向して位置する半導体装置である。
 前述の半導体装置において、第2の酸化物は、c軸配向した第2の結晶領域を有し、第2の結晶領域のc軸は、第1の絶縁体側の第2の酸化物の面と概略垂直であると好ましい。
 前述の半導体装置において、第3の酸化物は、c軸配向した第3の結晶領域を有し、第2の結晶領域は、第3の結晶領域のc軸と異なる方向にc軸を有すると好ましい。
 前述の半導体装置において、第1の結晶領域は、第3の結晶領域のc軸と異なる方向にc軸を有すると好ましい。
 前述の半導体装置において、導電体の上面の高さは、第1の酸化物の上面、第2の酸化物の上面及び第1の絶縁体の上面の高さと略一致すると好ましい。
 前述の半導体装置において、さらに第2の酸化物の側面と接する第2の絶縁体を有し、第2の絶縁体は、開口を有し、開口の中に、第1の酸化物、第2の酸化物及び第1の絶縁体が配置され、第2の絶縁体の上面の高さは、導電体の上面の高さと略一致すると好ましい。
 本発明の一態様は、第1の酸化物と、第2の酸化物と、第3の酸化物と、第1の絶縁体と、導電体と、を有し、第1の酸化物は、導電体の側面及び下面を覆い、第1の絶縁体は、第1の酸化物の側面及び下面を覆い、第2の酸化物は、第1の絶縁体の側面及び下面を覆い、第3の酸化物は、第2の酸化物の下面と接し、第1の酸化物は、c軸配向した第1の結晶領域を有し、第1の結晶領域のc軸は、第1の絶縁体側の第1の酸化物の面と概略垂直である半導体装置である。
 前述の半導体装置において、第2の酸化物は、c軸配向した第2の結晶領域を有し、第2の結晶領域のc軸は、第1の絶縁体側の第2の酸化物の面と概略垂直であると好ましい。
 前述の半導体装置において、第3の酸化物は、c軸配向した第3の結晶領域を有し、第2の結晶領域は、第3の結晶領域のc軸と異なる方向にc軸を有すると好ましい。
 前述の半導体装置において、第1の結晶領域は、第3の結晶領域のc軸と異なる方向にc軸を有すると好ましい。
 前述の半導体装置において、第3の酸化物は、第1の領域と、第1の領域を挟む第2の領域及び第3の領域と、を有し、第1の領域は、導電体と重なる領域を有し、第2の領域及び3の領域は、リン、ホウ素、アルミニウムまたはマグネシウムから選ばれる一以上を有すると好ましい。
 前述の半導体装置において、導電体の上面の高さは、第1の酸化物の上面、第2の酸化物の上面及び第1の絶縁体の上面の高さと略一致すると好ましい。
 前述の半導体装置において、さらに第2の酸化物の側面と接する第2の絶縁体を有し、第2の絶縁体は、開口を有し、開口の中に、第1の酸化物、第2の酸化物及び第1の絶縁体が配置され、第2の絶縁体の上面の高さは、導電体の上面の高さと略一致すると好ましい。
 前述の半導体装置において、第2の酸化物は、第2の領域の一部、および第3の領域の一部と重なると好ましい。
 本発明の一態様は、第1の酸化物と、第2の酸化物と、第3の酸化物と、第1の絶縁体と、第2の絶縁体と、第1の導電体と、を有し、第1の酸化物は、第1の導電体の下面と接し、第1の絶縁体は、第1の酸化物の下面と接し、第2の酸化物は、第1の絶縁体の下面と接し、第3の酸化物は、第2の酸化物の下面と接し、第1の酸化物は、c軸配向した第1の結晶領域を有し、第1の結晶領域のc軸は、第1の絶縁体側の第1の酸化物の面と概略垂直であり、第2の酸化物は、c軸配向した第2の結晶領域を有し、第2の結晶領域のc軸は、第1の絶縁体側の第2の酸化物の面と概略垂直であり、第2の絶縁体は、第3の酸化物の上方に位置し、第2の絶縁体は、第2の酸化物の端部と接し、第3の酸化物は、第1の領域と、第1の領域を挟む第2の領域及び第3の領域と、を有し、第1の領域は、第1の導電体と重なる領域を有し、第2の領域及び第3の領域は、リン、ホウ素、アルミニウムまたはマグネシウムから選ばれる一以上を有する半導体装置である。
 前述の半導体装置において、さらに開口を有する第3の絶縁体を有し、第3の絶縁体は、第2の酸化物の下面の一部、ならびに第3の酸化物の上面の一部及び側面と接し、開口を介して、第2の酸化物と第3の酸化物が接すると好ましい。
 本発明の一態様は、第1の酸化物と、第2の酸化物と、第3の酸化物と、第1の絶縁体と、第2の絶縁体と、第1の導電体と、第2の導電体と、第3の導電体と、を有し、第1の酸化物は、第1の導電体の下面と接し、第1の絶縁体は、第1の酸化物の下面と接し、第2の酸化物は、第1の絶縁体の下面と接し、第3の酸化物は、第2の酸化物の下面と接し、第1の酸化物は、c軸配向した第1の結晶領域を有し、第1の結晶領域のc軸は、第1の絶縁体側の第1の酸化物の面と概略垂直であり、第2の酸化物は、c軸配向した第2の結晶領域を有し、第2の結晶領域のc軸は、第1の絶縁体側の第2の酸化物の面と概略垂直であり、第2の絶縁体は、第3の酸化物の上方に位置し、第2の絶縁体は、第2の酸化物の端部と接し、第2の導電体及び第3の導電体は、第3の酸化物上で第2の酸化物を介して対向して位置する半導体装置である。
 前述の半導体装置において、さらに開口を有する第3の絶縁体を有し、第3の絶縁体は、第2の酸化物の下面の一部、第2の導電体の上面の一部及び側面、第3の導電体の上面の一部及び側面、ならびに第3の酸化物の側面と接し、開口を介して、第2の酸化物と第3の酸化物が接すると好ましい。
 前述の半導体装置において、第3の酸化物は、c軸配向した第3の結晶領域を有し、第2の結晶領域は、第3の結晶領域のc軸と異なる方向にc軸を有すると好ましい。
 前述の半導体装置において、第1の結晶領域は、第3の結晶領域のc軸と異なる方向にc軸を有すると好ましい。
 本発明の一態様により、電気特性が良好な積層体を提供することができる。または、本発明の一態様により、信頼性が良好な積層体を提供することができる。または、本発明の一態様により、オン電流が大きい半導体装置を提供することができる。または、本発明の一態様により、高い周波数特性を有する半導体装置を提供することができる。または、本発明の一態様により、信頼性が良好な半導体装置を提供することができる。または、本発明の一態様により、微細化または高集積化が可能な半導体装置を提供することができる。または、本発明の一態様により、良好な電気特性を有する半導体装置を提供することができる。または、本発明の一態様により、生産性の高い半導体装置を提供することができる。
 または、長期間においてデータの保持が可能な半導体装置を提供することができる。または、データの書き込み速度が速い半導体装置を提供することができる。または、設計自由度が高い半導体装置を提供することができる。または、消費電力を抑えることができる半導体装置を提供することができる。または、新規な半導体装置を提供することができる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
本発明の一態様に係る積層体の断面図。 本発明の一態様に係る積層体の断面図。 In−Ga−Zn酸化物中の酸素の移動経路を説明する図。 本発明の一態様に係る半導体装置の上面図および断面図。 本発明の一態様に係る半導体装置の断面図。 本発明の一態様に係る半導体装置の断面図。 本発明の一態様に係る半導体装置の断面図。 本発明の一態様に係る半導体装置の断面図。 本発明の一態様に係る半導体装置の上面図および断面図。 本発明の一態様に係る半導体装置の断面図。 本発明の一態様に係る半導体装置の断面図。 本発明の一態様に係る半導体装置の断面図。 本発明の一態様に係る半導体装置の上面図および断面図。 本発明の一態様に係る半導体装置の断面図。 本発明の一態様に係る半導体装置の断面図。 本発明の一態様に係る半導体装置の上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る記憶装置の構成を示す断面図。 本発明の一態様に係る記憶装置の構成を示す断面図。 本発明の一態様に係る記憶装置の構成を示す断面図。 本発明の一態様に係る記憶装置の構成を示す断面図。 本発明の一態様に係る記憶装置の構成を示す断面図。 本発明の一態様に係る記憶装置の構成を示す断面図。 本発明の一態様に係る記憶装置の構成例を示すブロック図。 本発明の一態様に係る記憶装置の構成例を示す回路図。 本発明の一態様に係る半導体装置の模式図。 本発明の一態様に係る記憶装置の模式図。 本発明の一態様に係る電子機器を示す図。 実施例に係る、金属酸化物膜中の18Oの拡散係数及び拡散長の算出結果。
 以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。したがって、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
 また、図面において、大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお、図面は、理想的な例を模式的に示したものであり、図面に示す形状または値などに限定されない。例えば、実際の製造工程において、エッチングなどの処理により層やレジストマスクなどが意図せずに目減りすることがあるが、理解を容易とするために図に反映しないことがある。また、図面において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する場合がある。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
 また、特に上面図(「平面図」ともいう。)や斜視図などにおいて、発明の理解を容易とするため、一部の構成要素の記載を省略する場合がある。また、一部の隠れ線などの記載を省略する場合がある。
 また、本明細書等において、第1、第2等として付される序数詞は便宜上用いるものであり、工程順または積層順を示すものではない。そのため、例えば、「第1の」を「第2の」または「第3の」などと適宜置き換えて説明することができる。また、本明細書等に記載されている序数詞と、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。
 また、本明細書等において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。したがって、明細書で説明した語句に限定されず、状況に応じて適切に言い換えることができる。
 例えば、本明細書等において、XとYとが接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接的に接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも、図または文章に開示されているものとする。
 ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
 また、ソースやドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書等においては、ソースやドレインの用語は、入れ替えて用いることができる場合がある。
 なお、本明細書等において、トランジスタの構造によっては、実際にチャネルの形成される領域におけるチャネル幅(以下、「実効的なチャネル幅」ともいう。)と、トランジスタの上面図において示されるチャネル幅(以下、「見かけ上のチャネル幅」ともいう。)と、が異なる場合がある。例えば、ゲート電極が半導体の側面を覆う場合、実効的なチャネル幅が、見かけ上のチャネル幅よりも大きくなり、その影響が無視できなくなる場合がある。例えば、微細かつゲート電極が半導体の側面を覆うトランジスタでは、半導体の側面に形成されるチャネル形成領域の割合が大きくなる場合がある。その場合は、見かけ上のチャネル幅よりも、実効的なチャネル幅の方が大きくなる。
 このような場合、実効的なチャネル幅の、実測による見積もりが困難となる場合がある。例えば、設計値から実効的なチャネル幅を見積もるためには、半導体の形状が既知という仮定が必要である。したがって、半導体の形状が正確にわからない場合には、実効的なチャネル幅を正確に測定することは困難である。
 本明細書では、単にチャネル幅と記載した場合には、見かけ上のチャネル幅を指す場合がある。または、本明細書では、単にチャネル幅と記載した場合には、実効的なチャネル幅を指す場合がある。なお、チャネル長、チャネル幅、実効的なチャネル幅、見かけ上のチャネル幅などは、断面TEM像などを解析することなどによって、値を決定することができる。
 なお、半導体の不純物とは、例えば、半導体を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物と言える。不純物が含まれることにより、例えば、半導体のDOS(Density of States)が高くなることや、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第14族元素、第15族元素、および酸化物半導体の主成分以外の遷移金属などがあり、例えば、水素、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素などがある。酸化物半導体の場合、水も不純物として機能する場合がある。また、酸化物半導体の場合、例えば不純物の混入によって酸素欠損を形成する場合がある。また、半導体がシリコンである場合、半導体の特性を変化させる不純物としては、例えば、酸素、水素を除く第1族元素、第2族元素、第13族元素、第15族元素などがある。
 なお、本明細書等において、酸化窒化シリコンとは、その組成として、窒素よりも酸素の含有量が多いものである。また、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多いものである。
 また、本明細書等において、「絶縁体」という用語を、絶縁膜または絶縁層と言い換えることができる。また、「導電体」という用語を、導電膜または導電層と言い換えることができる。また、「半導体」という用語を、半導体膜または半導体層と言い換えることができる。
 なお、本明細書において、バリア膜とは、水、水素などの不純物および酸素の透過を抑制する機能を有する膜のことであり、当該バリア膜が導電性を有する場合は、導電性バリア膜と呼ぶことがある。
 本明細書等において、金属酸化物(metal oxide)とは、広い意味での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む。)、酸化物半導体(Oxide Semiconductorまたは単にOSともいう。)などに分類される。例えば、トランジスタの半導体層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、OS FETあるいはOSトランジスタと記載する場合においては、酸化物または酸化物半導体を有するトランジスタと換言することができる。
 また、本明細書等において、ノーマリーオフとは、ゲートに電位を印加しない、またはゲートに接地電位を与えたときに、トランジスタに流れるチャネル幅1μmあたりの電流が、室温において1×10−20A以下、85℃において1×10−18A以下、または125℃において1×10−16A以下であることをいう。
(実施の形態1)
 本実施の形態では、本発明の一態様に係る積層体について説明する。
<積層体の構成例>
 図1(A)は、本発明の一態様に係る積層体10の断面図である。図1(A)に示すように、積層体10は、絶縁体11と、導電体15と、絶縁体11と導電体15との間の酸化物13と、を有する。
 例えば、酸化物13として、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、錫、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)等の金属酸化物を用いるとよい。特に、元素Mは、アルミニウム、ガリウム、イットリウム、または錫を用いるとよい。また、酸化物13として、In−Ga酸化物、In−Zn酸化物を用いてもよい。
 酸化物13は、結晶性を有することが好ましい。特に、酸化物13として、CAAC−OS(c−axis aligned crystalline oxide semiconductor)を用いることが好ましい。
 CAAC−OSは、c軸配向性を有し、かつa−b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。
 ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形、および七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう。)を確認することは難しい。すなわち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためである。
 また、CAAC−OSは、インジウム、および酸素を有する層(以下、In層)と、元素M、亜鉛、および酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M,Zn)層の元素Mがインジウムと置換した場合、(In,M,Zn)層と表すこともできる。また、In層のインジウムが元素Mと置換した場合、(In,M)層と表すこともできる。
 CAAC−OSは結晶性の高い金属酸化物である。一方、CAAC−OSは、明確な結晶粒界を確認することが難しいため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、金属酸化物の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損(V:oxygen vacancyともいう。)など)の少ない金属酸化物ともいえる。したがって、CAAC−OSを有する金属酸化物は、物理的性質が安定する。そのため、CAAC−OSを有する金属酸化物は熱に強く、信頼性が高い。
 ここで、X線回折(XRD:X−Ray Diffraction)によって解析したCAAC−OSの例について説明する。例えば、InGaZnOの結晶を有するCAAC−OSに対し、out−of−plane法による構造解析を行うと、回折角(2θ)が31°近傍にピークが現れる場合がある。このピークは、InGaZnOの結晶の(009)面に帰属されることから、CAAC−OSの結晶がc軸配向性を有し、c軸が被形成面または上面に概略垂直な方向を向いていることを示す。
 また、電子回折によって解析したCAAC−OSの例について説明する。例えば、InGaZnOの結晶を有するCAAC−OSに対し、試料面に平行にプローブ径が300nmの電子線を入射させると、回折パターン(制限視野透過電子回折パターンともいう。)が現れる場合がある。この回折パターンには、InGaZnOの結晶の(009)面に起因するスポットが含まれる。したがって、電子回折によっても、CAAC−OSに含まれる結晶がc軸配向性を有し、c軸が被形成面または上面に概略垂直な方向を向いていることがわかる。一方、同じ試料に対し、試料面に垂直にプローブ径が300nmの電子線を入射させると、リング状の回折パターンが確認される。したがって、電子回折によっても、CAAC−OSに含まれる結晶のa軸およびb軸は配向性を有さないことがわかる。
 ここで、結晶学において、単位格子を構成するa軸、b軸、及びc軸の3つの軸(結晶軸)について、特異的な軸をc軸とした単位格子を取ることが一般的である。特に層状構造を有する結晶では、層の面方向に平行な2つの軸をa軸及びb軸とし、層に交差する軸をc軸とすることが一般的である。このような層状構造を有する結晶の代表的な例として、六方晶系に分類されるグラファイトがあり、その単位格子のa軸及びb軸は劈開面に平行であり、c軸は劈開面に直交する。例えば層状構造であるYbFe型の結晶構造をとるInGaZnOの結晶は六方晶系に分類することができ、その単位格子のa軸及びb軸は層の面方向に平行となり、c軸は層(すなわちa軸及びb軸)に直交する。
 酸化物13はc軸配向した結晶領域を有する。図1(A)に示すように、酸化物13は、a−b面方向に伸長した結晶の層13Pと、a−b面に垂直なc軸13Xと、を有する。酸化物13は複数の層13P、及び複数のc軸13Xを有する。酸化物13において、結晶領域のc軸13Xは、絶縁体11側の酸化物13の面と概略垂直である。面に概略垂直であるとは、面の法線と概略平行であるということと同義である。つまり、酸化物13において、結晶領域のc軸13Xは、絶縁体11側の酸化物13の面の法線と概略平行であるともいえる。また、絶縁体11と酸化物13は、接して設けられると好ましい。絶縁体11と酸化物13が接して設けられることで、絶縁体11側の酸化物13の面と概略垂直であるc軸13Xを有する領域を形成しやすくなる。
 酸化物13のa−b面は、例えば、透過電子顕微鏡法(TEM:Transmission Electron Microscopy)を用いた断面の観察において、層状に配列した原子の結晶格子像を観察することで確認できる。
 本明細書等において、面Aと直線Bが概略垂直とは、面Aと直線Bのなす角が60°以上90°以下の状態をいう。また、本明細書等において、面Aと直線Bが概略平行とは、面Aの法線と直線Bのなす角が60°以上90°以下の状態をいう。また、本明細書等において、直線Cと直線Dが概略垂直とは、直線Cと直線Dのなす角が60°以上90°以下の状態をいう。また、本明細書等において、直線Cと直線Dが概略平行とは、直線Cと直線Dのなす角が0°以上30°以下の状態をいう。
 酸化物13の膜厚は、例えば、2nm以上、好ましくは3nm以上、より好ましくは5nm以上であると好ましい。酸化物13の膜厚を厚くすることで、c軸13Xが絶縁体11側の酸化物13の面に対して概略垂直になるように配向した領域を形成できる。
 CAAC−OSは、a−b面方向と比較してc軸方向は酸素が拡散しにくい性質を有する。よって、酸化物13が、絶縁体11側の酸化物13の面に対して概略垂直になるようにc軸配向した結晶領域を有することで、絶縁体11又は絶縁体11より下に設けられた酸素を含む絶縁体から酸素が導電体15に拡散することを抑制できる。これにより、導電体15が酸化されることを抑制でき、導電体15の抵抗が高くなることを抑制できる。
 このような酸化物13を設けるには、絶縁体11の平坦性を良好にすることが好ましい。例えば、絶縁体11の被形成面の平均面粗さ(Ra)を1nm以下、好ましくは0.5nm以下、より好ましくは0.3nm以下にすればよい。
 本明細書等において、平均面粗さ(Ra)とは、JIS B0601:2001(ISO4287:1997)で定義されている算術平均粗さを、曲面に対して適用できるよう三次元に拡張したものであり、基準面から指定面までの偏差の絶対値を平均した値で表現される。平均面粗さ(Ra)は原子間力顕微鏡(AFM:Atomic Force Microscope)にて測定可能である。
 絶縁体11としては、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物、樹脂などを用いることができる。例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物、またはシリコンおよびハフニウムを有する窒化物などがある。また、上記の材料で形成される絶縁層を複数積層して用いてもよい。
 絶縁体11が酸素を有する、特に絶縁体11が過剰な酸素を有する場合、絶縁体11から酸素が脱離する場合がある。脱離した酸素が導電体15に達すると、導電体15が酸化され、抵抗が高くなる場合がある。本発明の一態様である積層体10において、酸化物13はc軸13Xが、絶縁体11側の酸化物13の面に対して概略垂直になるように配向した領域を有することで、絶縁体11、または絶縁体11の下に設けられた酸素を含む絶縁体から酸化物13に拡散した酸素は、酸化物13においてa−b面方向に拡散しやすい(図1(A)に示す拡散経路Route 2)。これに対し、酸化物13に拡散した酸素は、酸化物13においてc軸方向に拡散しづらい。c軸方向に酸素が拡散しづらいことから、絶縁体11、または絶縁体11の下に設けられた酸素を含む絶縁体から酸素が導電体15に拡散することを抑制できる(図1(A)に示す拡散経路Route 1)。これにより、導電体15が酸化されることを抑制でき、導電体15の抵抗が高くなることを抑制できる。
 なお、図1(A)ではc軸13Xが紙面の上下方向にある例を示しているが、本発明の一態様はこれに限られない。図1(B)に示すように、例えば、c軸13Xが紙面の左右方向にあってもよい。c軸13Xは、紙面に対し任意の角度とすることができる。
 次に、図1(A)及び図1(B)に示した積層体10と異なる構成について、説明する。
 図2(A)は、本発明の一態様に係る積層体10Aの断面図である。図2(A)に示すように、積層体10Aは、絶縁体11と、導電体15と、絶縁体11と導電体15との間の酸化物13と、絶縁体11をはさんで酸化物13と対向する酸化物17と、を有する。積層体10Aは酸化物17を有する点で積層体10と異なる。
 酸化物17は、金属酸化物を用いることが好ましい。酸化物17となる金属酸化物については、酸化物13の記載を参照できるため、詳細な説明は省略する。また、酸化物17は、結晶性を有することが好ましい。特に、酸化物17として、CAAC−OSを用いることが好ましい。
 酸化物17は結晶性を有し、a−b面方向に伸長した結晶の層17Pと、a−b面方向に垂直なc軸17Xと、を有する。酸化物17は、絶縁体11側の酸化物17の面と概略垂直であるc軸17Xを含む領域を有する。また、酸化物17は、絶縁体11側の酸化物17の面の法線と概略平行であるc軸17Xを含む領域を有するともいえる。
 酸化物17の膜厚は、例えば、2nm以上、好ましくは3nm以上、より好ましくは5nm以上であると好ましい。酸化物17の膜厚を厚くすることで、c軸17Xが絶縁体11側の酸化物17の面に対して概略垂直になるように配向した領域を形成できる。
 酸化物17中に、c軸17Xが、絶縁体11側の酸化物17の面に対して概略垂直になるように配向した領域を有することで、酸化物17の下に設けられた酸素を含む絶縁体から酸素が導電体15に拡散することを抑制できる。これにより、導電体15が酸化されることを抑制でき、導電体15の抵抗が高くなることを抑制できる。
 酸化物17の下に設けられた酸素を含む絶縁体から酸素が脱離する場合がある。本発明の一態様である積層体10Aにおいて、酸化物13はc軸13Xが、絶縁体11側の酸化物13の面に対して概略垂直になるように配向した領域を有することで、酸化物17の下に設けられた酸素を含む絶縁体から酸化物17に拡散した酸素は、酸化物17においてa−b面方向に拡散しやすい(図2(A)に示す拡散経路Route 4)。一方、酸化物17に拡散した酸素は、酸化物17においてc軸方向に拡散しづらい。c軸方向に酸素が拡散しづらいことから、酸化物17の下に設けられた酸素を含む絶縁体から酸素が導電体15に拡散することを抑制できる(図2(A)に示す拡散経路Route 3)。これにより、導電体15が酸化されることを抑制でき、導電体15の抵抗が高くなることを抑制できる。
 なお、図2(A)ではc軸13X及びc軸17Xが紙面の上下方向にある例を示しているが、本発明の一態様はこれに限られない。図2(B)に示すように、例えば、c軸13X及びc軸17Xが紙面の左右方向にあってもよい。c軸17Xは、紙面に対し任意の角度とすることができる。また、c軸13Xとc軸17Xが異なる方向となっていてもよい。
 本発明の一態様により、電気特性が良好な積層体とすることができる。または、本発明の一態様により、信頼性が良好な積層体とすることができる。
<In−Ga−Zn酸化物中の酸素の移動>
 InGaZnO結晶における酸素原子の移動の起こりやすさを、酸素の移動経路上の活性化障壁の観点から説明する。
 酸素原子の移動経路を検討した単結晶InGaZnO(c−InGaZnO)中の領域区分の模式図を図3(A)及び図3(B)に示す。なお、図3(B)は、図3(A)の模式図を、c軸を回転軸として90度回転させた模式図である。ここでは、図3(A)に示す、InO領域内における移動経路Aと、InO−(Ga,Zn)O領域内における移動経路Bと、(Ga,Zn)O領域内における移動経路Cおよび移動経路Dと、また、図3(B)に示すInO領域内における移動経路Eと、における酸素原子の移動について検討した。
 また、活性化障壁の評価は、第一原理電子状態計算パッケージVASP(Vienna ab initio simulation package)を用い、原子緩和計算に、化学反応移動経路探索手法であるNEB(Nudged Elastic Band)法を援用した。NEB法とは初期状態と最終状態からその2つの状態を結ぶ状態の中で必要なエネルギーが最も低くなる状態を探しだす手法である。
 各移動経路の活性化障壁の計算結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 以上の計算により、InGaZnO層において、移動経路Aは活性化障壁が大きいことから酸素はc軸方向には移動しづらく、酸素は層に平行な方向に移動しやすいことが示された。つまり、CAAC−OSは、a−b面方向と比較してc軸方向は酸素が拡散しにくい性質を有する。よって、酸化物13中に、c軸13Xが、絶縁体11側の酸化物13の面に対して概略垂直になるように配向した領域を有することで、絶縁体11又は絶縁体11より下に設けられた酸素を含む絶縁体から酸素が導電体15に拡散することを抑制できる(図1(A)に示す拡散経路Route 1)。これにより、導電体15が酸化されることを抑制でき、導電体15の抵抗が高くなることを抑制できる。このような構成とすることにより、電気特性が良好な積層体とすることができる。または、本発明の一態様により、信頼性が良好な積層体とすることができる。
<積層体の作製方法>
 本発明の一態様に係る積層体10及び積層体10Aについて、作製方法を説明する。
 まず、基板を準備し、当該基板上に酸化物17を成膜する。酸化物17の成膜はスパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。なお、積層体10を作製する場合には、酸化物17を形成しない。
 酸化物17をスパッタリング法によって成膜する場合は、スパッタリングガスとして酸素、または、酸素と希ガスの混合ガスを用いる。スパッタリングガスに含まれる酸素の割合を高めることで、成膜される酸化物中の過剰酸素を増やすことができる。また、上記の酸化物をスパッタリング法によって成膜する場合は、上記のIn−M−Zn酸化物ターゲットなどを用いることができる。また、ターゲットには、直流(DC)電源または、高周波(RF)電源などの交流(AC)電源が接続され、ターゲットの電気伝導度に応じて、必要な電力を印加することができる。
 酸化物17をスパッタリング法で形成する場合、基板を加熱しながら成膜を行うことによって、酸化物17の結晶性を向上させることができる。基板の温度は、室温以上250℃以下が好ましく、室温以上200℃以下がさらに好ましく、室温以上150℃以下がさらに好ましい。ただし、本発明の一態様はこれに限定されない。酸化物17をスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を、30%を超えて100%以下、好ましくは70%以上100%以下として成膜すると、酸化物17の結晶性を向上させることができる。
 酸化物17は、例えば、In:Ga:Zn=1:1:0.5[原子数比](2:2:1[原子数比])、1:3:4[原子数比]又はIn:Ga:Zn=4:2:4.1[原子数比]のターゲットを用いて成膜することができる。なお、酸化物17に求める特性に合わせて成膜条件、および原子数比を適宜選択するとよい。
 次に、絶縁体11の成膜前に加熱処理を行うことが好ましい。加熱処理は、100℃以上400℃以下で行えばよく、例えば200℃で行えばよい。あるいは、絶縁体11の成膜温度と同じ温度で行うことが好ましい。ここで、成膜温度とは、成膜中の基板温度に限らず、成膜装置の設定温度の場合を含む。例えば、絶縁体11を350℃で成膜する場合、当該加熱処理は350℃とすることが好ましい。当該加熱処理は、減圧下で行うことが好ましく、例えば、真空雰囲気で行ってもよい。真空雰囲気は、ターボ分子ポンプ等で排気を行うことで維持される。真空雰囲気では、処理室の圧力は、1×10−2Pa以下、好ましくは1×10−3Pa以下とすればよい。加熱処理によって、酸化物17中の水、水素などの不純物を除去することなどができる。
 次に、絶縁体11を成膜する。絶縁体11は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて成膜することができる。絶縁体11としては、ALD法を用いて、酸化シリコン、酸化ハフニウム、または酸化ガリウムなどを成膜することが好ましい。例えば、絶縁体11として、酸化シリコンと、酸化シリコン上の酸化ガリウムの積層膜を用いればよい。なお、絶縁体11を成膜する際の成膜温度は、300℃以上450℃未満、好ましくは300℃以上400℃未満、特に350℃前後とすることが好ましい。例えば、絶縁体11を、350℃で成膜することで、不純物が少ない絶縁体を成膜することができる。
 次に、酸化物13を成膜する。酸化物13の成膜については、酸化物17の記載を参照できるため、詳細な説明は省略する。酸化物13は、酸化物17の形成に用いるターゲットと同様のターゲットを用いて形成してもよい。
 酸化物13の成膜は、基板を加熱しながら行うことが好ましい。このとき、基板温度を300℃以上にすることで、酸化物13及び酸化物17中の酸素欠損を低減することができる。基板を加熱しながら成膜することで、酸化物13及び酸化物17の結晶性を向上させることもできる。
 特に、酸化物13の成膜時に、スパッタリングガスに含まれる酸素の一部が絶縁体11を介して酸化物17に供給される場合がある。したがって、酸化物13のスパッタリングガスに含まれる酸素の割合は70%以上、好ましくは80%以上、より好ましくは100%とすればよい。また、基板を加熱しながら成膜を行うことによって、当該酸化物の結晶性を向上させることができる。
 次に、導電体15を成膜する。導電体15の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。ALD法として、熱ALD法、プラズマALD法、PEALD法などを用いることができる。
 導電体15として、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化されにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
 また、上記の材料で形成される導電層を複数積層して用いてもよい。例えば、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、酸素を含む導電性材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。
 本発明の一態様により、電気特性が良好な積層体を提供することができる。または、本発明の一態様により、信頼性が良好な積層体を提供することができる。または、本発明の一態様の積層体を用いた、新規な半導体装置を提供することができる。
 以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。
(実施の形態2)
 以下では、先の実施の形態に示した積層体を適用したトランジスタを有する半導体装置の具体的な構成例について、説明する。
<半導体装置の構成例1>
 図4(A)、図4(B)及び図4(C)は、本発明の一態様に係るトランジスタ200、およびトランジスタ200周辺の上面図および断面図である。
 図4(A)は、トランジスタ200を有する半導体装置の上面図である。また、図4(B)及び図4(C)は、当該半導体装置の断面図である。ここで、図4(B)は、図4(A)にA1−A2の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、図4(C)は、図4(A)にA3−A4の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。なお、図4(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
 図4に示すように、トランジスタ200は、基板(図示しない。)の上に配置された酸化物230aと、酸化物230aの上に配置された酸化物230bと、酸化物230bの上面に、互いに離隔して配置された導電体242a、および導電体242bと、導電体242aおよび導電体242b上に配置され、導電体242aと導電体242bの間に重畳して開口が形成された絶縁体280と、開口の中に配置された酸化物230cと、酸化物230c上の絶縁体250と、絶縁体250上の酸化物230dと、酸化物230d上の導電体260と、を有する。ここで、図4(B)及び図4(C)に示すように、導電体260の上面は、絶縁体250、酸化物230c、酸化物230dおよび絶縁体280の上面と略一致することが好ましい。
 なお、以下において、酸化物230a、酸化物230b、酸化物230cおよび酸化物230dをまとめて酸化物230という場合がある。また、導電体242aおよび導電体242bをまとめて導電体242という場合がある。
 また、図4に示すように、絶縁体224、酸化物230a、酸化物230b及び導電体242と、絶縁体280と、の間に絶縁体254及び絶縁体244が配置されることが好ましい。ここで、絶縁体254は、図4(B)及び図4(C)に示すように、導電体242aの上面と側面、導電体242bの上面と側面、酸化物230aおよび酸化物230bの側面、ならびに絶縁体224の上面に接することが好ましい。
 なお、トランジスタ200では、チャネルが形成される領域(以下、チャネル形成領域ともいう。)と、その近傍において、酸化物230a、酸化物230b、および酸化物230cの3層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物230bと酸化物230cの2層構造、または4層以上の積層構造を設ける構成にしてもよい。また、酸化物230a、酸化物230b及び酸化物230cのそれぞれが2層以上の積層構造を有していてもよい。また、トランジスタ200では、導電体260を2層の積層構造として示しているが、本発明はこれに限られるものではない。例えば、導電体260が、単層構造であってもよいし、3層以上の積層構造であってもよい。
 例えば、酸化物230cが第1の酸化物と、第1の酸化物上の第2の酸化物からなる積層構造を有する場合、第1の酸化物は、酸化物230bと同様の組成を有し、第2の酸化物は、酸化物230aと同様の組成を有することが好ましい。また、酸化物230dは、第2の酸化物と同様の組成を有することが好ましい。酸化物230dは、2層以上の積層構造を有していてもよい。
 ここで、導電体260は、トランジスタのゲート電極として機能し、導電体242aおよび導電体242bは、それぞれソース電極またはドレイン電極として機能する。上記のように、導電体260は、絶縁体280の開口、および導電体242aと導電体242bに挟まれた領域に埋め込まれるように形成される。ここで、導電体260、導電体242aおよび導電体242bの配置は、絶縁体280の開口に対して、自己整合的に選択される。つまり、トランジスタ200において、ゲート電極を、ソース電極とドレイン電極の間に、自己整合的に配置させることができる。よって、導電体260を位置合わせのマージンを設けることなく形成することができるので、トランジスタ200の占有面積の縮小を図ることができる。これにより、半導体装置の微細化、高集積化を図ることができる。
 絶縁体250は、トランジスタのゲート絶縁体として機能する。また、酸化物230dも、トランジスタのゲート絶縁層としての機能を有していてもよい。酸化物230dのバンドギャップが十分に大きい場合には半導体ではなく絶縁体である、もしくはそれに近い性質を有するため、ゲート絶縁層として機能させることができる。また、酸化物230dのキャリア密度が十分に高い場合には導電体である、もしくはそれに近い性質を有するため、ゲート電極として機能させることができる。
 また、図4に示すように、導電体260は、絶縁体250の内側に設けられた導電体260aと、導電体260aの内側に埋め込まれるように設けられた導電体260bと、を有することが好ましい。
 ここで、導電体260は、先の実施の形態に示した積層体10及び積層体10Aの導電体15に対応する。酸化物230dは、先の実施の形態に示した積層体10及び積層体10Aの酸化物13に対応する。絶縁体250は、先の実施の形態に示した積層体10及び積層体10Aの絶縁体11に対応する。酸化物230cは、先の実施の形態に示した積層体10Aの酸化物17に対応する。
 絶縁体280から酸化物230b中に拡散する酸素の経路について、説明する。図4(B)における酸化物230およびその近傍の拡大図を、図5に示す。図4(C)における酸化物230およびその近傍の拡大図を、図6に示す。図5及び図6では、酸化物230c及び酸化物230dのそれぞれにおいて、a−b面方向に伸長した結晶の層を破線で示している。
 絶縁体280が有する酸素は、酸化物230cに拡散した後、酸化物230cのa−b面方向に拡散する。ここで、酸化物230cのa−b面方向に拡散した酸素は、酸化物230bに達すると、酸化物230bが有する酸素欠損と結合し、酸素欠損を低減する(図5及び図6に示すRoute A)。酸化物230bにおいて酸素欠損と結合した酸素は、別の酸素欠損へ移動し、該酸素欠損と結合する。この酸素の移動により生じた酸素欠損は、絶縁体280から酸化物230cを経て酸化物230bへ拡散した酸素と結合する。これが繰り返され、絶縁体280が有する酸素は酸化物230cを経て、酸化物230bへ次々に拡散し、酸化物230bの酸素欠損と結合する。これにより、酸化物230bの酸素欠損を低減し、トランジスタのノーマリーオンとなることを抑制できる。
 例えば、酸化物230cと接する絶縁体280は、化学量論的組成を満たす酸素よりも多くの酸素を含む絶縁体を用いてもよい。つまり、絶縁体280には、過剰酸素領域が形成されていることが好ましい。このような過剰酸素を含む絶縁体を酸化物230cに接して設けることにより、酸化物230中の酸素欠損を低減し、トランジスタ200の信頼性を向上させることができる。化学量論的組成を満たす酸素よりも多くの酸素を含む絶縁体280を、OST(Oxygen Storage Tank又はOxygen Stock Tank)と呼ぶことができる。
 また、絶縁体280が有する酸素は、酸化物230cのc軸230cX方向及び酸化物230dのc軸230dX方向に拡散しづらいことから、導電体260に酸素が拡散することを抑制できる(図5及び図6に示すRoute B)。これにより、導電体260が酸化されることを抑制でき、トランジスタの電気特性の低下を抑制できる。これにより、トランジスタの電気特性を安定化し、信頼性の向上を図ることができる。
 絶縁体250が有する酸素は、酸化物230dに拡散した後、酸化物230dのa−b面方向に拡散する。該酸素は、絶縁体250及び酸化物230cを介して、酸化物230bへ拡散する(図5及び図6に示すRoute C)。これにより、酸化物230bの酸素欠損を低減し、トランジスタのノーマリーオンとなることを抑制できる。また、絶縁体250が有する酸素は、酸化物230cのc軸230cX方向及び酸化物230dのc軸230dX方向に拡散しづらいことから、導電体260に酸素が拡散することを抑制できる(図5及び図6に示すRoute D)。したがって、導電体260が酸化されることを抑制でき、トランジスタの電気特性の低下を抑制できる。これにより、トランジスタの電気特性を安定化し、信頼性の向上を図ることができる。なお、絶縁体250が有する酸素は、絶縁体250を拡散した後に酸化物230cを介して、酸化物230bに拡散する場合がある。
 酸化物230cが第1の酸化物230c1と、第1の酸化物上の第2の酸化物230c2からなる積層構造を有する場合の、酸化物230およびその近傍の拡大図を、図7に示す。図7は、図4(B)における酸化物230およびその近傍の拡大図である。図7では、第1の酸化物230c1、第2の酸化物230c2及び酸化物230dのそれぞれにおいて、a−b面方向に伸長した結晶の層を破線で示している。第1の酸化物230c1及び第2の酸化物230c2は、c軸配向した結晶領域を有することが好ましい。図7では、第1の酸化物230c1のc軸230c1X、及び第2の酸化物230c2のc軸230c2Xを示している。c軸230c1X及びc軸230c2Xはそれぞれ、酸化物230cと絶縁体250との界面と概略垂直であることが好ましい。
 酸化物230a乃至酸化物230dのc軸の向きについて、説明する。図4(C)における酸化物230およびその近傍の拡大図を、図8に示す。図8では、酸化物230a、酸化物230b、酸化物230c及び酸化物230dのそれぞれにおいて、a−b面方向に伸長した結晶の層を破線で示している。酸化物230aが有するc軸230aXは、酸化物230aの被形成面である絶縁体224と、酸化物230aとの界面に概略垂直である。また、酸化物230aは複数のc軸230aXを有し、それぞれのc軸230aXは互いに概略平行である。酸化物230bが有するc軸230bXは、酸化物230bの被形成面である酸化物230aと、酸化物230bとの界面に概略垂直である。また、酸化物230bは複数のc軸230bXを有し、それぞれのc軸230bXは互いに概略平行である。
 酸化物230cが有するc軸230cXは、酸化物230cの被形成面である酸化物230bと、酸化物230cとの界面に概略垂直である。図8では、c軸230cXの例として、c軸230cX1乃至c軸230cX5を示している。c軸230cX1乃至c軸230cX5はそれぞれ、最寄りの酸化物230b及び酸化物230cの界面と概略垂直である。また、酸化物230cは、c軸230aX及びc軸230bXと平行でないc軸230cXを含む領域を有する。また、酸化物230cは、c軸230aX及びc軸230bXと異なる方向にc軸230cXを含む領域を有するともいえる。このような構成とすることで、酸化物230a又は酸化物230bにおいて脱離した酸素が酸化物230a又は酸化物230bのa−b面方向に拡散し、酸化物230a又は酸化物230bの外へ拡散することを抑制できる。したがって、酸化物230a及び酸化物230bに酸素欠損が形成されることを抑制できる。
 図8では、一例として、酸化物230cのc軸230cX1及びc軸230cX5は、c軸230aX及びc軸230bXと概略平行であるのに対し、酸化物230cのc軸230cX2乃至c軸230cX4は、c軸230aX及びc軸230bXと平行でない例を示している。また、酸化物230cは、c軸230bXとなす角が30°より大きく、90°以下であるc軸230cXを有すると好ましい。酸化物230cは、c軸230bXとなす角が40°以上90°以下であるc軸230cXを有するとさらに好ましい。酸化物230cは、c軸230bXとなす角が45°以上90°以下であるc軸230cXを有するとさらに好ましい。
 なお、本明細書等において、直線Eと直線Fが平行でないとは、直線Eと直線Fのなす角が30°より大きい状態をいう。また、本明細書等において、直線Eと直線Fの方向が異なるとは、直線Eと直線Fが平行でないことを指す。
 また、酸化物230dが有するc軸230dXは、酸化物230dの被形成面である絶縁体250と、酸化物230dとの界面に概略垂直である。図8では、c軸230dXの例として、c軸230dX1乃至c軸230dX5を示している。c軸230dX1乃至c軸230dX5はそれぞれ、最寄りの絶縁体250及び酸化物230cの界面と概略垂直である。また、酸化物230dは、c軸230aX及びc軸230bXと平行でないc軸230dXを含む領域を有する。酸化物230dは、c軸230aX及びc軸230bXと異なる方向のc軸230dXを含む領域を有するともいえる。このような構成とすることで、酸化物230a又は酸化物230bにおいて脱離した酸素が酸化物230a又は酸化物230bのa−b面方向に拡散し、酸化物230a又は酸化物230bの外へ拡散することを抑制できる。したがって、酸化物230a及び酸化物230bに酸素欠損が形成されることを抑制できる。
 図8では、一例として、酸化物230dのc軸230dX1及びc軸230dX5は、c軸230aX及びc軸230bXと概略平行であるのに対し、酸化物230dのc軸230dX2乃至c軸230dX4は、c軸230aX及びc軸230bXと平行でない例を示している。また、酸化物230dは、c軸230bXとなす角が30°より大きく、90°以下であるc軸230dXを有すると好ましい。酸化物230dは、c軸230bXとなす角が40°以上90°以下であるc軸230dXを有するとさらに好ましい。酸化物230dは、c軸230bXとなす角が45°以上90°以下であるc軸230dXを有するとさらに好ましい。
 トランジスタ200は、基板(図示しない。)の上に配置された絶縁体214と、絶縁体214の上に配置された絶縁体216と、絶縁体216に埋め込まれるように配置された導電体205と、絶縁体216と導電体205の上に配置された絶縁体222と、絶縁体222の上に配置された絶縁体224と、を有することが好ましい。絶縁体224の上に酸化物230aが配置されることが好ましい。
 また、トランジスタ200の上に、層間膜として機能する絶縁体274、および絶縁体281が配置されることが好ましい。ここで、絶縁体274は、導電体260、絶縁体250、酸化物230c、および絶縁体280の上面に接して配置されることが好ましい。
 絶縁体222、絶縁体254、および絶縁体274は、水素(例えば、水素原子、水素分子など)の拡散を抑制する機能を有することが好ましい。例えば、絶縁体222、絶縁体254、および絶縁体274は、絶縁体224、絶縁体250、および絶縁体280より水素透過性が低いことが好ましい。また、絶縁体222、および絶縁体254は、酸素(例えば、酸素原子、酸素分子など)の拡散を抑制する機能を有することが好ましい。例えば、絶縁体222、および絶縁体254は、絶縁体224、絶縁体250、および絶縁体280より酸素透過性が低いことが好ましい。
 ここで、絶縁体224、酸化物230a、酸化物230b、および絶縁体250は、絶縁体280および絶縁体281から、絶縁体254、酸化物230c、および絶縁体274によって離隔されている。ゆえに、絶縁体280および絶縁体281に含まれる水素などの不純物や、過剰な酸素が、絶縁体224、酸化物230a、酸化物230b、および絶縁体250に、混入することを抑制することができる。
 また、トランジスタ200と電気的に接続し、プラグとして機能する導電体240(導電体240a、および導電体240b)が設けられることが好ましい。なお、プラグとして機能する導電体240の側面に接して絶縁体241(絶縁体241a、および絶縁体241b)が設けられる。つまり、絶縁体254、絶縁体280、絶縁体274、および絶縁体281の開口の内壁に接して絶縁体241が設けられる。また、絶縁体241の側面に接して導電体240の第1の導電体が設けられ、さらに内側に導電体240の第2の導電体が設けられる構成にしてもよい。ここで、導電体240の上面の高さと、絶縁体281の上面の高さは同程度にできる。なお、トランジスタ200では、導電体240の第1の導電体および導電体240の第2の導電体を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体240を単層、または3層以上の積層構造として設ける構成にしてもよい。構造体が積層構造を有する場合、形成順に序数を付与し、区別する場合がある。
 また、トランジスタ200は、チャネル形成領域を含む酸化物230a、酸化物230b、および酸化物230cに、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう。)を用いることが好ましい。例えば、酸化物230のチャネル形成領域となる金属酸化物としては、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい金属酸化物を用いることで、トランジスタの非導通状態におけるリーク電流(オフ電流)を極めて小さくすることができる。このようなトランジスタを用いることで、低消費電力の半導体装置を提供できる。
 例えば、酸化物230として、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、錫、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)等の金属酸化物を用いるとよい。特に、元素Mは、アルミニウム、ガリウム、イットリウム、または錫を用いるとよい。また、酸化物230として、酸化インジウム、酸化亜鉛、In−Ga酸化物、In−Zn酸化物、Ga−Zn酸化物、または酸化ガリウムを用いてもよい。
 また、図4(B)に示すように、酸化物230bは、導電体242と重ならない領域の膜厚が、導電体242と重なる領域の膜厚より薄くなる場合がある。これは、導電体242aおよび導電体242bを形成する際に、酸化物230bの上面の一部を除去することにより形成される。酸化物230bの上面には、導電体242となる導電膜を成膜した際に、当該導電膜との界面近傍に抵抗の低い領域が形成される場合がある。このように、酸化物230bの上面の導電体242aと導電体242bの間に位置する、抵抗の低い領域を除去することにより、当該領域にチャネルが形成されることを防ぐことができる。
 以上より、オン電流が大きいトランジスタを有する半導体装置を提供することができる。または、高い周波数特性を有するトランジスタを有する半導体装置を提供することができる。または、電気特性の変動を抑制し、安定した電気特性を有するとともに、信頼性を向上させた半導体装置を提供することができる。または、オフ電流が小さいトランジスタを有する半導体装置を提供することができる。
 以下では、本発明の一態様に係るトランジスタ200を有する半導体装置の詳細な構成について説明する。
 導電体205は、酸化物230、および導電体260と、重なるように配置する。また、導電体205は、絶縁体216に埋め込まれて設けることが好ましい。ここで、導電体205の上面の平坦性を良好にすることが好ましい。例えば、導電体205上面の平均面粗さ(Ra)を1nm以下、好ましくは0.5nm以下、より好ましくは0.3nm以下にすればよい。これにより、導電体205の上に形成される、絶縁体224の平坦性を良好にし、酸化物230a、酸化物230bおよび酸化物230cの結晶性の向上を図ることができる。
 ここで、導電体260は、第1のゲート(トップゲートともいう。)電極として機能する場合がある。また、導電体205は、第2のゲート(ボトムゲートともいう。)電極として機能する場合がある。その場合、導電体205に印加する電位を、導電体260に印加する電位と、連動させず、独立して変化させることで、トランジスタ200のVthを制御することができる。特に、導電体205に負の電位を印加することにより、トランジスタ200のVthを0Vより大きくし、オフ電流を低減することが可能となる。したがって、導電体205に負の電位を印加したほうが、印加しない場合よりも、導電体260に印加する電位が0Vのときのドレイン電流を小さくすることができる。
 また、導電体205は、酸化物230におけるチャネル形成領域よりも、大きく設けるとよい。特に、図4(C)に示すように、導電体205は、酸化物230のチャネル幅方向と交わる端部よりも外側の領域においても、延伸していることが好ましい。つまり、酸化物230のチャネル幅方向における側面の外側において、導電体205と、導電体260とは、絶縁体を介して重畳していることが好ましい。
 上記構成を有することで、第1のゲート電極としての機能を有する導電体260の電界と、第2のゲート電極としての機能を有する導電体205の電界によって、酸化物230のチャネル形成領域を電気的に取り囲むことができる。
 また、図4(C)に示すように、導電体205は延伸させて、配線としても機能させている。ただし、これに限られることなく、導電体205の下に、配線として機能する導電体を設ける構成にしてもよい。また、導電体205は、必ずしも各トランジスタに一個ずつ設ける必要はない。例えば、導電体205を複数のトランジスタで共有する構成にしてもよい。
 また、導電体205は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。なお、導電体205は、導電体205a、導電体205b、および導電体205cの3層からなる積層構造を有する例を示したが、本実施の形態はこれに限定されない。導電体205は、単層でもよいし、2層または4層以上の積層構造を有してもよい。導電体205を3層からなる積層構造とする場合、導電体205a、および導電体205bは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物、および酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する(上記不純物および酸素の少なくとも一が透過しにくい)ことが好ましい。このような導電体として、チタン、窒化チタン、タンタル、および窒化タンタルから選ばれた導電性材料を用いることができる。また、導電体205cとして、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。
 なお、本明細書において、不純物、または酸素の拡散を抑制する機能とは、上記不純物、または上記酸素のいずれか一またはすべての拡散を抑制する機能とする。
 導電体205a、または導電体205bとして、酸素の拡散を抑制する機能を有する導電体を用いることにより、導電体205cが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電体としては、例えば、タンタル、窒化タンタル、ルテニウムまたは酸化ルテニウムなどを用いることが好ましい。したがって、導電体205a、または導電体205bとしては、上記導電性材料を単層または積層とすればよい。
 絶縁体214は、水または水素などの不純物が、基板側からトランジスタ200に混入することを抑制するバリア絶縁膜として機能することが好ましい。したがって、絶縁体214は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい)絶縁性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料を用いることが好ましい。
 例えば、絶縁体214として、酸化アルミニウムまたは窒化シリコンなどを用いることが好ましい。これにより、水または水素などの不純物が絶縁体214よりも基板側からトランジスタ200側に拡散することを抑制することができる。または、絶縁体224などに含まれる酸素が、絶縁体214よりも基板側に、拡散することを抑制することができる。
 また、層間膜として機能する絶縁体216、絶縁体280、および絶縁体281は、絶縁体214よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体216、絶縁体280、および絶縁体281として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、または空孔を有する酸化シリコンなどを適宜用いればよい。
 また、絶縁体216を積層構造にしてもよい。例えば、絶縁体216において、少なくとも導電体205の側面と接する部分に、絶縁体214と同様の絶縁体を設ける構成にしてもよい。このような構成にすることで、絶縁体216に含まれる酸素によって、導電体205が酸化することを抑制することができる。あるいは、導電体205により、絶縁体216に含まれる酸素が吸収されることを抑制することができる。
 絶縁体222および絶縁体224は、ゲート絶縁体としての機能を有する。
 ここで、酸化物230と接する絶縁体224は、加熱により酸素を脱離することが好ましい。本明細書では、加熱により離脱する酸素を過剰酸素と呼ぶことがある。例えば、絶縁体224は、酸化シリコンまたは酸化窒化シリコンなどを適宜用いればよい。酸素を含む絶縁体を酸化物230に接して設けることにより、酸化物230中の酸素欠損を低減し、トランジスタ200の信頼性を向上させることができる。
 絶縁体224として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは1.0×1019atoms/cm以上、さらに好ましくは2.0×1019atoms/cm以上、または3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上400℃以下の範囲が好ましい。
 また、図4(C)に示すように、絶縁体224は、酸化物230bと重ならない領域の膜厚が、それ以外の領域の膜厚より薄くなることが好ましい。このような構成にすることで、導電体260の下端部をより下側に位置させることができるので、第1のゲート電極として機能する導電体260の電界を、酸化物230の側面に作用させやすくなる。よって、トランジスタ200のオン電流を増大させ、周波数特性を向上させることができる。また、絶縁体224を、酸化物230bおよび酸化物230aと重畳させて、島状に設ける構成にしてもよい。
 絶縁体222は、絶縁体214などと同様に、水または水素などの不純物が、基板側からトランジスタ200に混入することを抑制するバリア絶縁膜として機能することが好ましい。例えば、絶縁体222は、絶縁体224より水素透過性が低いことが好ましい。絶縁体222、絶縁体254、および絶縁体274によって、絶縁体224、酸化物230、および絶縁体250などを囲むことにより、外方から水または水素などの不純物がトランジスタ200に侵入することを抑制することができる。
 さらに、絶縁体222は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい)ことが好ましい。例えば、絶縁体222は、絶縁体224より酸素透過性が低いことが好ましい。絶縁体222が、酸素や不純物の拡散を抑制する機能を有することで、酸化物230が有する酸素が、基板側へ拡散することを低減できるので、好ましい。また、導電体205が、絶縁体224や、酸化物230が有する酸素と反応することを抑制することができる。
 絶縁体222は、絶縁性材料であるアルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を用いるとよい。アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて絶縁体222を形成した場合、絶縁体222は、酸化物230からの酸素の放出や、トランジスタ200の周辺部から酸化物230への水素等の不純物の混入を抑制する層として機能する。
 または、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
 また、絶縁体222は、例えば、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などのいわゆるhigh−k材料を含む絶縁体を単層または積層で用いてもよい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。なお、絶縁体222としては、上述した材料の中でも、特に酸化ハフニウムを用いると好適である。例えば、絶縁体222をゲート絶縁体として使用する場合、絶縁体222に酸化ハフニウムを用いることで、酸化アルミニウムを用いる場合よりも界面準位密度を減少させられる場合がある。
 なお、絶縁体222、および絶縁体224が、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。例えば、絶縁体222の下に絶縁体224と同様の絶縁体を設ける構成にしてもよい。
 トランジスタ200は、酸化物230aと、酸化物230a上の酸化物230bと、酸化物230b上の酸化物230cと、酸化物230c上の酸化物230dとを有する。酸化物230b下に酸化物230aを有することで、酸化物230aよりも下方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。また、酸化物230b上に酸化物230cを有することで、酸化物230cよりも上方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。
 なお、酸化物230は、各金属原子の原子数比が異なる酸化物により、積層構造を有することが好ましい。具体的には、酸化物230aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物230bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物230aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物230bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物230aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。また、酸化物230cは、酸化物230aまたは酸化物230bに用いることができる金属酸化物を、用いることができる。酸化物230dは、酸化物230aまたは酸化物230bに用いることができる金属酸化物を、用いることができる。
 酸化物230a、酸化物230b、酸化物230cおよび酸化物230dは、結晶性を有することが好ましく、特に、CAAC−OSを用いることが好ましい。CAAC−OSなどの結晶性を有する酸化物は、不純物や欠陥(酸素欠損など)が少なく、結晶性の高い、緻密な構造を有している。このような酸化物230を有することで、トランジスタ200は、製造工程における高い温度(所謂サーマルバジェット)に対して安定になる。
 また、酸化物230aおよび酸化物230cの伝導帯下端のエネルギーが、酸化物230bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物230aおよび酸化物230cの電子親和力が、酸化物230bの電子親和力より小さいことが好ましい。この場合、酸化物230cは、酸化物230aに用いることができる金属酸化物を用いることが好ましい。具体的には、酸化物230cに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物230bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物230cに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物230bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物230cに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。
 ここで、酸化物230a、酸化物230b、および酸化物230cの接合部において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、酸化物230a、酸化物230b、および酸化物230cの接合部における伝導帯下端のエネルギー準位は、連続的に変化または連続接合するともいうことができる。このようにするためには、酸化物230aと酸化物230bとの界面、および酸化物230bと酸化物230cとの界面において形成される混合層の欠陥準位密度を低くするとよい。
 具体的には、酸化物230aと酸化物230b、酸化物230bと酸化物230cが、酸素以外に共通の元素を有する(主成分とする。)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物230bがIn−Ga−Zn酸化物の場合、酸化物230aおよび酸化物230cとして、In−Ga−Zn酸化物、Ga−Zn酸化物、酸化ガリウムなどを用いてもよい。また、酸化物230cを積層構造としてもよい。例えば、In−Ga−Zn酸化物と、当該In−Ga−Zn酸化物上のGa−Zn酸化物との積層構造、またはIn−Ga−Zn酸化物と、当該In−Ga−Zn酸化物上の酸化ガリウムとの積層構造を用いることができる。別言すると、In−Ga−Zn酸化物と、Inを含まない酸化物との積層構造を、酸化物230cとして用いても良い。
 具体的には、酸化物230aとして、In:Ga:Zn=1:3:4[原子数比]、または1:1:0.5[原子数比]の金属酸化物を用いればよい。また、酸化物230bとして、In:Ga:Zn=4:2:3[原子数比]、または3:1:2[原子数比]の金属酸化物を用いればよい。また、酸化物230cとして、In:Ga:Zn=1:3:4[原子数比]、In:Ga:Zn=4:2:3[原子数比]、Ga:Zn=2:1[原子数比]、またはGa:Zn=2:5[原子数比]の金属酸化物を用いればよい。また、酸化物230cを積層構造とする場合の具体例としては、In:Ga:Zn=4:2:3[原子数比]の金属酸化物と、Ga:Zn=2:1[原子数比]の金属酸化物との積層構造、In:Ga:Zn=4:2:3[原子数比]の金属酸化物と、Ga:Zn=2:5[原子数比]の金属酸化物との積層構造、In:Ga:Zn=4:2:3[原子数比]の金属酸化物と、酸化ガリウムとの積層構造などが挙げられる。
 このとき、キャリアの主たる経路は酸化物230bとなる。酸化物230a、酸化物230cを上述の構成とすることで、酸化物230aと酸化物230bとの界面、および酸化物230bと酸化物230cとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ200は高いオン電流、および高い周波数特性を得ることができる。なお、酸化物230cを積層構造とした場合、上述の酸化物230bと、酸化物230cとの界面における欠陥準位密度を低くする効果に加え、酸化物230cが有する構成元素が、絶縁体250側に拡散することを抑制することが期待される。より具体的には、酸化物230cを積層構造とし、積層構造の上方にInを含まない酸化物を位置させるため、絶縁体250側に拡散しうるInを抑制することができる。絶縁体250は、ゲート絶縁体として機能するため、Inが拡散した場合、トランジスタの特性不良となる。したがって、酸化物230cを積層構造とすることで、信頼性の高い半導体装置を提供することが可能となる。
 酸化物230dとして、In:Ga:Zn=1:3:4[原子数比]、In:Ga:Zn=4:2:3[原子数比]、Ga:Zn=2:1[原子数比]、またはGa:Zn=2:5[原子数比]の金属酸化物を用いればよい。
 酸化物230b上には、ソース電極、およびドレイン電極として機能する導電体242(導電体242a、および導電体242b)が設けられる。導電体242としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。
 酸化物230と接するように上記導電体242を設けることで、酸化物230の導電体242近傍において、酸素濃度が低減する場合がある。また、酸化物230の導電体242近傍において、導電体242に含まれる金属と、酸化物230の成分とを含む金属化合物層が形成される場合がある。このような場合、酸化物230の導電体242近傍の領域において、キャリア密度が増加し、当該領域は、低抵抗領域となる。
 ここで、導電体242aと導電体242bの間の領域は、絶縁体280の開口に重畳して形成される。これにより、導電体242aと導電体242bの間に導電体260を自己整合的に配置することができる。
 絶縁体250は、ゲート絶縁体として機能する。絶縁体250は、酸化物230cの上面に接して配置することが好ましい。絶縁体250は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、および酸化窒化シリコンは熱に対し安定であるため好ましい。
 絶縁体250は、絶縁体224と同様に、絶縁体250中の水または水素などの不純物濃度が低減されていることが好ましい。絶縁体250の膜厚は、1nm以上20nm以下とするのが好ましい。
 また、絶縁体250と導電体260との間に金属酸化物を設けてもよい。当該金属酸化物は、絶縁体250から導電体260への酸素拡散を抑制することが好ましい。これにより、絶縁体250の酸素による導電体260の酸化を抑制することができる。
 また、当該金属酸化物は、ゲート絶縁体の一部としての機能を有する場合がある。したがって、絶縁体250に酸化シリコンや酸化窒化シリコンなどを用いる場合、当該金属酸化物は、比誘電率が高いhigh−k材料である金属酸化物を用いることが好ましい。ゲート絶縁体を、絶縁体250と当該金属酸化物との積層構造とすることで、熱に対して安定、かつ比誘電率の高い積層構造とすることができる。したがって、ゲート絶縁体の物理膜厚を保持したまま、トランジスタ動作時に印加するゲート電位の低減化が可能となる。また、ゲート絶縁体として機能する絶縁体の等価酸化膜厚(EOT)の薄膜化が可能となる。
 具体的には、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、または、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。特に、アルミニウム、またはハフニウムの一方または双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。
 導電体260は、図4では2層構造として示しているが、単層構造でもよいし、3層以上の積層構造であってもよい。
 導電体260aは、上述の、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電体を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
 また、導電体260aが酸素の拡散を抑制する機能を持つことにより、絶縁体250に含まれる酸素により、導電体260bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。
 また、導電体260bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体260は、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体260bは積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層構造としてもよい。
 また、絶縁体250と導電体260aの間に、酸化物230として用いることができる金属酸化物を設けてもよい。このとき、該金属酸化物は、導電体260と同様にゲート電極として機能する。金属酸化物を設けることにより、絶縁体250、および酸化物230の少なくとも一方に酸素を供給することができ、好ましい。また、該金属酸化物として、酸素の透過を抑制する機能を有する金属酸化物を用いることにより、絶縁体250、または絶縁体280に含まれる酸素によって、導電体260が酸化することを抑制することができる。あるいは、絶縁体250に含まれる酸素が、導電体260に吸収されることを抑制できる。
 また、図4(A)及び図4(C)に示すように、酸化物230bの導電体242と重ならない領域、言い換えると、酸化物230のチャネル形成領域において、酸化物230の側面が導電体260で覆われるように配置されている。これにより、第1のゲート電極として機能する導電体260の電界を、酸化物230の側面に作用させやすくなる。よって、トランジスタ200のオン電流を増大させ、周波数特性を向上させることができる。
 絶縁体254は、絶縁体214などと同様に、水または水素などの不純物が、絶縁体280側からトランジスタ200に混入することを抑制するバリア絶縁膜として機能することが好ましい。例えば、絶縁体254は、絶縁体224より水素透過性が低いことが好ましい。さらに、図4(B)及び図4(C)に示すように、絶縁体254は、酸化物230cの側面の一部、導電体242aの上面と側面、導電体242bの上面と側面、すなわち、酸化物230bの上面の一部と、側面の一部、酸化物230aの側面、ならびに絶縁体224の上面に接することが好ましい。このような構成にすることで、絶縁体280に含まれる水素が、酸化物230a、酸化物230bおよび絶縁体224の上面または側面から酸化物230に侵入することを抑制することができる。
 さらに、絶縁体254は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい)ことが好ましい。例えば、絶縁体254は、絶縁体280または絶縁体224より酸素透過性が低いことが好ましい。
 絶縁体254は、スパッタリング法を用いて成膜されることが好ましい。絶縁体254を、酸素を含む雰囲気でスパッタリング法を用いて成膜することで、絶縁体224の絶縁体254と接する領域近傍に酸素を添加することができる。これにより、当該領域から、絶縁体224を介して酸化物230中に酸素を供給することができる。ここで、絶縁体254が、上方への酸素の拡散を抑制する機能を有することで、酸素が酸化物230から絶縁体280へ拡散することを防ぐことができる。また、絶縁体222が、下方への酸素の拡散を抑制する機能を有することで、酸素が酸化物230から基板側へ拡散することを防ぐことができる。このようにして、酸化物230のチャネル形成領域に酸素が供給される。これにより、酸化物230の酸素欠損を低減し、トランジスタのノーマリーオン化を抑制することができる。
 絶縁体254としては、例えば、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。
 また、絶縁体254は、積層構造としてもよい。絶縁体254を積層構造とする場合、スパッタリング法を用いて形成された第1の絶縁体上にALD法を用いて第2の絶縁体を形成してもよい。このとき、第1の絶縁体と、第2の絶縁体は上述した材料から選ばれた、同じ材料を用いてもよいし、異なる材料を用いてもよい。例えば、第1の絶縁体として、スパッタリング法により形成された酸化アルミニウムを用い、第2の絶縁体として、ALD法により形成された酸化アルミニウムを用いてもよい。ALD法により形成される膜は被覆性が高く、酸化物230などの構造体による段差部にも高い均一性を有する膜を形成することができる。また、スパッタリング法により形成された第1の絶縁膜における成膜不良を補てんすることができ、好ましい。
 このように、水素に対してバリア性を有する絶縁体254によって、絶縁体224、および酸化物230を覆うことで、絶縁体280は、絶縁体224、および酸化物230と離隔されている。これにより、トランジスタ200の外方から水素などの不純物が浸入することを抑制できるので、トランジスタ200に良好な電気特性および信頼性を与えることができる。
 また、絶縁体254としては、例えば、窒化アルミニウムを含む絶縁体を用いればよい。絶縁体254として、組成式がAlNx(xは0より大きく2以下の実数、好ましくは、xは0.5より大きく1.5以下の実数)を満たす窒化物絶縁体を用いることが好ましい。これにより、絶縁性に優れ、且つ熱伝導性に優れた膜とすることができるため、トランジスタ200を駆動したときに生じる熱の放熱性を高めることができる。また、絶縁体254として、窒化アルミニウムチタン、窒化チタンなどを用いることもできる。この場合、スパッタリング法を用いて成膜することで、成膜ガスに酸素またはオゾンなどの酸化性の強いガスを用いずに成膜することができるので、好ましい。また、窒化シリコンまたは窒化酸化シリコンなどを用いることもできる。
 また、絶縁体254としては、例えば、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。
 絶縁体244は、絶縁体214などと同様に、水または水素などの不純物が、絶縁体280側からトランジスタ200に混入するのを抑制するバリア絶縁膜として機能することが好ましい。例えば、絶縁体244は、絶縁体224より水素透過性が低いことが好ましい。さらに、図4(B)及び図4(C)に示すように、絶縁体244は、絶縁体254に接するように配置されることが好ましい。この様な構成とすることで、絶縁体280に含まれる水素が、導電体260、酸化物230cおよび絶縁体250の側面から酸化物230に侵入するのを抑制することができる。
 このように、水素に対してバリア性を有する絶縁体254および絶縁体244によって、絶縁体224、絶縁体250、および酸化物230を覆うことで、絶縁体280は、絶縁体254および絶縁体244によって、絶縁体224、酸化物230、および絶縁体250と離隔されている。これにより、トランジスタ200の外方から水素などの不純物が浸入することを抑制できるので、トランジスタ200に良好な電気特性および信頼性を与えることができる。
 さらに、絶縁体244は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい)ことが好ましい。例えば、絶縁体244は、絶縁体224より酸素透過性が低いことが好ましい。絶縁体244が、酸素の拡散を抑制する機能を有することで、導電体260が、絶縁体280が有する酸素と反応することを抑制することができる。
 絶縁体244としては、例えば、窒化アルミニウムを含む絶縁体を用いればよい。絶縁体244として、組成式がAlNx(xは0より大きく2以下の実数、好ましくは、xは0.5より大きく1.5以下の実数)を満たす窒化物絶縁体を用いることが好ましい。これにより、絶縁性に優れ、且つ熱伝導性に優れた膜とすることができるため、トランジスタ200を駆動したときに生じる熱の放熱性を高めることができる。また、絶縁体244として、窒化アルミニウムチタン、窒化チタンなどを用いることもできる。この場合、スパッタリング法を用いて成膜することで、成膜ガスに酸素またはオゾンなどの酸化性の強いガスを用いずに成膜することができるので、好ましい。また、窒化シリコンまたは窒化酸化シリコンなどを用いることもできる。
 また、絶縁体244としては、例えば、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。この場合、絶縁体244は、ALD法を用いて成膜されることが好ましい。ALD法は、被覆性の良好な成膜法なので、絶縁体244の凹凸によって、段切れなどが形成されるのを防ぐことができる。
 絶縁体280は、絶縁体244および絶縁体254を介して、絶縁体224、および酸化物230上に設けられる。例えば、絶縁体280として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、または空孔を有する酸化シリコンなどを有することが好ましい。特に、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、酸化窒化シリコン、空孔を有する酸化シリコンなどの材料は、加熱により脱離する酸素を含む領域を容易に形成することができるため好ましい。
 絶縁体280中の水または水素などの不純物濃度が低減されていることが好ましい。また、絶縁体280の上面は、平坦化されていてもよい。
 絶縁体274は、絶縁体214などと同様に、水または水素などの不純物が、上方から絶縁体280に混入することを抑制するバリア絶縁膜として機能することが好ましい。絶縁体274としては、例えば、絶縁体214、絶縁体254等に用いることができる絶縁体を用いればよい。
 また、絶縁体274の上に、層間膜として機能する絶縁体281を設けることが好ましい。絶縁体281は、絶縁体224などと同様に、膜中の水または水素などの不純物濃度が低減されていることが好ましい。
 また、絶縁体281、絶縁体274、絶縁体280、絶縁体244および絶縁体254に形成された開口に、導電体240aおよび導電体240bを配置する。導電体240aおよび導電体240bは、導電体260を挟んで対向して設ける。なお、導電体240aおよび導電体240bの上面は、絶縁体281の上面と、同一平面上としてもよい。
 なお、絶縁体281、絶縁体274、絶縁体280、絶縁体244および絶縁体254の開口の内壁に接して、絶縁体241aが設けられ、その側面に接して導電体240aの第1の導電体が形成されている。当該開口の底部の少なくとも一部には導電体242aが位置しており、導電体242aが導電体240aと接する。同様に、絶縁体281、絶縁体274、絶縁体280、絶縁体244および絶縁体254の開口の内壁に接して、絶縁体241bが設けられ、その側面に接して導電体240bの第1の導電体が形成されている。当該開口の底部の少なくとも一部には導電体242bが位置しており、導電体242bが導電体240bと接する。
 導電体240aおよび導電体240bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体240aおよび導電体240bは積層構造としてもよい。
 また、導電体240を積層構造とする場合、酸化物230a、酸化物230b、絶縁体254、絶縁体280、絶縁体274、絶縁体281と接する導電体には、上述の、水または水素などの不純物の拡散を抑制する機能を有する導電体を用いることが好ましい。例えば、タンタル、窒化タンタル、チタン、窒化チタン、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。また、水または水素などの不純物の拡散を抑制する機能を有する導電性材料は、単層または積層で用いてもよい。当該導電性材料を用いることで、絶縁体280に添加された酸素が導電体240aおよび導電体240bに吸収されるのを防ぐことができる。また、絶縁体281より上層から水または水素などの不純物が、導電体240aおよび導電体240bを通じて酸化物230に混入することを抑制することができる。
 絶縁体241aおよび絶縁体241bとしては、絶縁体214等に用いることができる絶縁体、例えば、酸化アルミニウムまたは窒化シリコンなどを用いればよい。絶縁体241aおよび絶縁体241bは、絶縁体254に接して設けられるので、絶縁体280などから水または水素などの不純物が、導電体240aおよび導電体240bを通じて酸化物230に混入することを抑制することができる。また、絶縁体280に含まれる酸素が導電体240aおよび導電体240bに吸収されるのを防ぐことができる。
 絶縁体241aおよび絶縁体241bの形成には、ALD法やCVD法を用いることができる。
 また、図示しないが、導電体240aの上面、および導電体240bの上面に接して配線として機能する導電体を配置してもよい。配線として機能する導電体は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、当該導電体は、積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。当該導電体は、絶縁体に設けられた開口に埋め込むように形成してもよい。
 また、図示しないが、当該導電体を覆うように、抵抗率が1.0×1013Ωcm以上1.0×1015Ωcm以下、好ましくは5.0×1013Ωcm以上5.0×1014Ωcm以下の絶縁体を設けることが好ましい。当該導電体上に上記のような抵抗率を有する絶縁体を設けることで、当該絶縁体は、絶縁性を維持しつつ、トランジスタ200、当該導電体等の配線間に蓄積される電荷を分散し、該電荷によるトランジスタや、該トランジスタを有する電子機器の特性不良や静電破壊を抑制することができ、好ましい。
<半導体装置の構成例2>
 図9(A)、図9(B)及び図9(C)は、本発明の一態様に係るトランジスタ200A、およびトランジスタ200A周辺の上面図および断面図である。
 図9(A)は、トランジスタ200Aを有する半導体装置の上面図である。また、図9(B)及び図9(C)は、当該半導体装置の断面図である。ここで、図9(B)は、図9(A)にA1−A2の一点鎖線で示す部位の断面図であり、トランジスタ200Aのチャネル長方向の断面図でもある。また、図9(C)は、図9(A)にA3−A4の一点鎖線で示す部位の断面図であり、トランジスタ200Aのチャネル幅方向の断面図でもある。なお、図9(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
 図9(A)、図9(B)及び図9(C)に示すトランジスタ200Aは、導電体242a、および導電体242bを有さず、層253aおよび層253bを有する点で、前述の<半導体装置の構成例1>に示したトランジスタ200(図4参照)と主に異なる。なお、トランジスタ200と同じ構成については同じ符号を付し、詳細な説明は省略する場合がある。
 図9に示すように、トランジスタ200Aは、基板(図示しない。)の上に配置された酸化物230aと、酸化物230aの上に配置された酸化物230bと、酸化物230bに、互いに離隔して形成された層253a、および層253bと、酸化物230b上に配置され、層253aと層253bの間に重畳して開口が形成された絶縁体280と、開口の中に配置された酸化物230cと、酸化物230c上の絶縁体250と、絶縁体250上の酸化物230dと、酸化物230d上の導電体260と、を有する。
 なお、以下において、層253aおよび層253bをまとめて層253という場合がある。
 また、図9に示すように、絶縁体224、酸化物230a、および酸化物230bと、絶縁体280と、の間に絶縁体254が配置されることが好ましい。ここで、絶縁体254は、図9(B)及び図9(C)に示すように、層253aの上面と側面、層253bの上面と側面、酸化物230aおよび酸化物230bの側面、ならびに絶縁体224の上面に接することが好ましい。
 ここで、導電体260は、トランジスタのゲート電極として機能し、層253aおよび層253bは、それぞれソース領域またはドレイン領域として機能する。上記のように、導電体260は、絶縁体280および絶縁体254の開口、および層253aと層253bに挟まれた領域に埋め込まれるように形成される。ここで、導電体260、層253aおよび層253bの配置は、絶縁体280および絶縁体254の開口に対して、自己整合的に選択される。つまり、トランジスタ200Aにおいて、ゲート電極を、ソース領域とドレイン領域の間に、自己整合的に配置させることができる。よって、導電体260を位置合わせのマージンを設けることなく形成することができるので、トランジスタ200Aの占有面積の縮小を図ることができる。これにより、半導体装置の微細化、高集積化を図ることができる。
 図9(B)における酸化物230およびその近傍の拡大図を、図10に示す。図9(C)における酸化物230およびその近傍の拡大図を、図11に示す。図10及び図11では、酸化物230c及び酸化物230dのそれぞれにおいて、a−b面方向に伸長した結晶の層を破線で示している。絶縁体280から酸化物230b中に拡散する酸素の経路については、前述のトランジスタ200の記載を参照できるため、詳細な説明は省略する。
 酸化物230cが第1の酸化物230c1と、第1の酸化物上の第2の酸化物230c2からなる積層構造を有する場合の、酸化物230およびその近傍の拡大図を、図12に示す。図12は、図9(B)における酸化物230およびその近傍の拡大図である。図12では、第1の酸化物230c1、第2の酸化物230c2及び酸化物230dのそれぞれにおいて、a−b面方向に伸長した結晶の層を破線で示している。酸化物230a乃至酸化物230dのc軸の向きについては、前述のトランジスタ200の記載を参照できるため、詳細な説明は省略する(図8参照)。
 酸化物230について、説明する。
 トランジスタ200Aにおいて、酸化物230は、酸素欠損を形成する元素、または酸素欠損と結合する元素を添加されることで、キャリア密度が増大し、低抵抗化する場合がある。このような元素としては、代表的にはホウ素やリンが挙げられる。また、ホウ素やリン以外にも、水素、炭素、窒素、フッ素、硫黄、塩素、チタン、希ガス等を用いることができる。また、希ガスの代表例としては、ヘリウム、ネオン、アルゴン、クリプトン、及びキセノン等がある。また、酸化物230は、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどの金属元素の中から選ばれるいずれか一つまたは複数の金属元素を添加してもよい。上述した中でも、添加される元素は、ホウ素、及びリンが好ましい。ホウ素およびリンの添加には、アモルファスシリコン、または低温ポリシリコンの製造ラインの装置を使用することができるため、設備投資を抑制することができる。上記元素の濃度は、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)などを用いて測定すればよい。
 層253は、酸化物230に上記の元素が添加されて形成された層である。図9(B)に示すように、層253aおよび層253bは、導電体260を挟んで対向して形成されており、上面が絶縁体254および酸化物230cと接することが好ましい。上面視において、層253aおよび層253bの導電体260側の側面は、導電体260の側面と一致する、または、層253aおよび層253bの一部が導電体260と重畳する、ことが好ましい。ここで、層253の上記元素の濃度は、酸化物230の層253が形成されていない部分の上記元素の濃度と、同等、またはそれよりも高いことが好ましい。また、層253に含まれる酸素欠損の量は、酸化物230の層253が形成されていない部分の酸素欠損の量と、同等、またはそれよりも高いことが好ましい。これにより、層253は、酸化物230の層253が形成されていない部分と比較して、キャリア密度が大きく、抵抗が低くなる。
 酸化物230は、導電体260と重畳する第1の領域と、導電体260及び絶縁体254のいずれとも重畳しない1対の第2の領域と、絶縁層254と重畳する1対の第3の領域と、を有する。第1の領域は、1対の第2の領域の間に位置し、第1の領域及び1対の第2の領域は、1対の第3の領域の間に位置する。ここで、第3の領域(例えば、図10の領域231b)は、第1の領域(図10の領域234)と比較して、キャリア密度が高く、低抵抗な領域である。また、第2の領域(例えば、図10の領域232b)は、第1の領域と比較して、キャリア密度が高く、低抵抗な領域であり、第3の領域と比較して、キャリア密度が低く、高抵抗な領域である。または、第2の領域は、第3の領域と同等なキャリア密度を有し、同等な抵抗を有していてもよい。よって、第1の領域はトランジスタ200Aのチャネル形成領域として機能し、第3の領域はソース領域またはドレイン領域として機能し、第2の領域は接合領域として機能する。
 このような構成にすることで、酸化物230のチャネル形成領域とソース領域またはドレイン領域との間に、オフセット領域が形成されるのを防ぎ、実効的なチャネル長が導電体260の幅より大きくなることを抑制することができる。これにより、トランジスタ200Aのオン電流を大きくし、S値を良好にし、周波数特性の向上を図ることができる。
 酸化物230にソース領域またはドレイン領域として機能する領域231を形成することで、金属で形成されたソース電極およびドレイン電極を設けることなく、領域231にプラグとして機能する導電体240を接続することができる。酸化物230に接して金属で形成されたソース電極およびドレイン電極を設けると、トランジスタ200Aの作製工程または後工程において、高温の熱処理を行った場合、金属で形成されたソース電極およびドレイン電極が酸化し、トランジスタ200Aのオン電流、S値、および周波数特性が劣化する場合がある。しかしながら、本実施の形態に示す半導体装置では、金属で形成されたソース電極およびドレイン電極を設ける必要がない。よって、トランジスタ200Aの作製工程または後工程において、高温の熱処理を行っても、良好なオン電流、S値、および周波数特性を示す半導体装置を提供することができる。例えば、本実施の形態に示す半導体装置では、トランジスタ200Aの作製後に、750℃以上800℃以下程度の高温がかかるプロセスを行うことができる。
 また、上記のように、層253に酸素欠損を形成する元素を添加して、熱処理を行うことで、チャネル形成領域として機能する領域234に含まれる水素を、層253に含まれる酸素欠損で捕獲できる場合がある。これにより、トランジスタ200Aに安定な電気特性を与え、信頼性の向上を図ることができる。
 ただし、本発明の一態様はこれに限定されない。例えば、領域232は、接合領域として機能しなくても良い。例えば、領域232が接合領域として機能しない場合、領域232は、領域234と同等なキャリア密度、同等な抵抗値、又は同等な性質を有する。領域232が領域234と同等な性質を有する場合、領域232は、所謂オフセット領域として機能する。チャネル長が微細化された場合(例えば、チャネル長が60nm以下、またはチャネル長が30nm以下の場合)においては、当該オフセット領域の影響を無視できる場合がある。
 なお、図10では、層253が、酸化物230bの膜厚方向において、酸化物230bと絶縁体254、および酸化物230cの面近傍に形成されているが、これに限られない。例えば、層253は、酸化物230bの膜厚と概略同じ厚さを有していてもよいし、酸化物230aにも、形成されていてもよい。また、図10では、層253が領域231、および領域232に形成されているが、これに限らない。例えば、領域231のみに形成されていてもよいし、領域231と、領域232の一部と、に形成されていてもよいし、領域231と、領域232と、領域234の一部と、に形成されていてもよい。
 また、酸化物230において、各領域の境界を明確に検出することが困難な場合がある。各領域内で検出される金属元素、ならびに水素、および窒素などの不純物元素の濃度は、領域ごとの段階的な変化に限らず、各領域内でも連続的に変化(グラデーションともいう。)していてもよい。つまり、チャネル形成領域に近い領域であるほど、金属元素、ならびに水素、および窒素などの不純物元素の濃度が減少していればよい。
 以上より、オン電流が大きいトランジスタを有する半導体装置を提供することができる。または、高い周波数特性を有するトランジスタを有する半導体装置を提供することができる。または、電気特性の変動を抑制し、安定した電気特性を有するとともに、信頼性を向上させた半導体装置を提供することができる。または、オフ電流が小さいトランジスタを有する半導体装置を提供することができる。
 以下では、本発明の一態様に係るトランジスタ200Aを有する半導体装置の詳細な構成について説明する。なお、トランジスタ200と共通する部分については、詳細な説明は省略する。
 図9(A)及び図9(B)に示すように、層253aと層253bの間の領域は、絶縁体280の開口に重畳して形成される。これにより、層253aと層253bの間に導電体260を自己整合的に配置することができる。
 また、酸化物230bの層253と重ならない領域、言い換えると、酸化物230のチャネル形成領域において、酸化物230の側面が導電体260で覆われるように配置されている。これにより、第1のゲート電極として機能する導電体260の電界を、酸化物230の側面に作用させやすくなる。よって、トランジスタ200Aのオン電流を増大させ、周波数特性を向上させることができる。
 バリア絶縁膜として機能する絶縁体254は、酸化物230cの側面の一部、層253aの上面と側面、層253bの上面と側面、すなわち、酸化物230bの上面の一部と、側面の一部、酸化物230aの側面、ならびに絶縁体224の上面に接することが好ましい。このような構成にすることで、絶縁体280に含まれる水素が、酸化物230a、酸化物230bおよび絶縁体224の上面または側面から酸化物230に侵入することを抑制することができる。
 また、後述するが、絶縁体254は、層253a、および層253bを形成する際の保護膜としての機能を有してもよい。層253a、および層253bの形成にイオンインプランテーションやイオンドーピングを用いる場合、保護膜として絶縁体254を設けることで、酸化物230の表面がイオンやプラズマに直接曝されることが無く、層253a、および層253bの形成における酸化物230へのダメージを抑制できるため、好ましい。ここで、酸化物230へのダメージとは、酸化物230中における、過度の酸素欠損の形成や、過度の酸化物230の結晶性の低下などをいう。例えば、絶縁体254として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、または空孔を有する酸化シリコンなどを用いることができる。
 絶縁体280は、絶縁体254を介して、絶縁体224、および酸化物230上に設けられる。
 絶縁体281、絶縁体274、絶縁体280、および絶縁体254に形成された開口に、導電体240aおよび導電体240bを配置する。導電体240aおよび導電体240bは、導電体260を挟んで対向して設ける。なお、導電体240aおよび導電体240bの上面は、絶縁体281の上面と、同一平面上としてもよい。
 また、絶縁体281、絶縁体274、絶縁体280、および絶縁体254の開口の内壁に接して、絶縁体241aが設けられ、その側面に接して導電体240aの第1の導電体が形成されている。当該開口の底部の少なくとも一部には層253aが位置しており、導電体240aが層253aと接する。同様に、絶縁体281、絶縁体274、絶縁体280、および絶縁体254の開口の内壁に接して、絶縁体241bが設けられ、その側面に接して導電体240bの第1の導電体が形成されている。当該開口の底部の少なくとも一部には層253bが位置しており、導電体240bが層253bと接する。
<半導体装置の構成例3>
 図13(A)、図13(B)及び図13(C)は、本発明の一態様に係るトランジスタ200B、およびトランジスタ200B周辺の上面図および断面図である。
 図13(A)は、トランジスタ200Bを有する半導体装置の上面図である。また、図13(B)及び図13(C)は、当該半導体装置の断面図である。ここで、図13(B)は、図13(A)にA1−A2の一点鎖線で示す部位の断面図であり、トランジスタ200Bのチャネル長方向の断面図でもある。また、図13(C)は、図13(A)にA3−A4の一点鎖線で示す部位の断面図であり、トランジスタ200Bのチャネル幅方向の断面図でもある。なお、図13(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。なお、前述のトランジスタ200及びトランジスタ200Aと同じ構成については同じ符号を付し、詳細な説明は省略する場合がある。
 図13に示すように、トランジスタ200Bは、絶縁体224が設けられた基板(基板は図示しない。)の上に配置された酸化物230aと、酸化物230aの上に配置された酸化物230bと、酸化物230bの上面に、互いに離隔して形成された層253a、および層253bと、絶縁体224および酸化物230b上に配置され、層253aと層253bの間に重畳して開口が形成された絶縁体254と、酸化物230bおよび絶縁体254の上に配置された酸化物230cと、酸化物230cの上に配置された絶縁体250と、絶縁体250の上に配置された酸化物230dと、酸化物230d上に配置された導電体260と、導電体260を覆うように配置された絶縁体270と、を有する。なお、絶縁体254は、2層以上の積層構造を有する場合がある。
 また、図13に示すように、絶縁体224、酸化物230a、および酸化物230bと、絶縁体280と、の間に絶縁体254が配置されることが好ましい。ここで、絶縁体254は、図13(B)及び図13(C)に示すように、層253aの上面と側面、層253bの上面と側面、酸化物230aおよび酸化物230bの側面、ならびに絶縁体224の上面に接することが好ましい。
 また、図13に示すように、導電体260と、絶縁体280と、の間に絶縁体270が配置されることが好ましい。ここで、絶縁体270は、図13(B)及び図13(C)に示すように、導電体260aの側面、導電体260bの上面と側面、及び酸化物230dの上面の一部に接することが好ましい。
 導電体260は、トランジスタのゲート電極として機能し、層253aおよび層253bは、それぞれソース領域またはドレイン領域として機能する。層253a、および層253bは、酸化物230a、および酸化物230bのうち、少なくとも酸化物230bの一部にドーパントを添加し、低抵抗化した領域である。また、上面視において、層253aおよび層253bは、絶縁体254と重畳することが好ましい。
 図13(B)における酸化物230およびその近傍の拡大図を、図14に示す。絶縁体280から酸化物230b中に拡散する酸素の経路については、前述のトランジスタ200の記載を参照できるため、詳細な説明は省略する。なお、図14ではRoute C及びRoute Dを省略している。
 酸化物230cが第1の酸化物230c1と、第1の酸化物上の第2の酸化物230c2からなる積層構造を有する場合の、酸化物230およびその近傍の拡大図を、図15に示す。図15は、図13(B)における酸化物230およびその近傍の拡大図である。なお、図15ではRoute C及びRoute Dを省略している。酸化物230a乃至酸化物230dのc軸の向きについては、前述のトランジスタ200の記載を参照できるため、詳細な説明は省略する(図8参照)。
 酸化物230cと接する絶縁体280は、化学量論的組成を満たす酸素よりも多くの酸素を含む絶縁体を用いると好ましい。さらに、絶縁体280は、酸化物230cの端面と接することが好ましい。また、絶縁体280は、酸化物230dの端面と接することが好ましい。また、絶縁体280は、絶縁体250の端面と接することが好ましい。このような構成とすることで、絶縁体280から酸化物230へ効率良く酸素を供給でき、酸素欠損を低減できる。
 また、トランジスタ200Bの上に、層間膜として機能する絶縁体274、および絶縁体281が配置されることが好ましい。ここで、絶縁体274は、絶縁体280の上面に接して配置されることが好ましい。
<半導体装置の構成例4>
 図16(A)、図16(B)及び図16(C)は、本発明の一態様に係るトランジスタ200C、およびトランジスタ200C周辺の上面図および断面図である。
 図16(A)は、トランジスタ200Cの上面図を示す。図16(B)は、図16(A)に示すA1−A2の一点鎖線で示す部位に対応する断面図であり、トランジスタ200Cのチャネル長方向の断面図でもある。また、図16(C)は、図16(A)にA3−A4の一点鎖線で示す部位に対応する断面図であり、トランジスタ200Cのチャネル幅方向の断面図でもある。図16(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
 図16(A)、図16(B)及び図16(C)に示すトランジスタ200Cは、層253aおよび層253bを有さず、酸化物230b上に、互いに離隔して配置された導電体242a、および導電体242bを有する点において、図13に示すトランジスタ200Bと異なる。なお、トランジスタ200Bと同じ構成については同じ符号を付し、詳細な説明は省略する場合がある。
 トランジスタ200Cは、導電体242aおよび導電体242b上に配置され、導電体242aと導電体242bの間に重畳して開口が形成された絶縁体254と、開口の中に配置された酸化物230c、絶縁体250、酸化物230d及び導電体260を有する。
<半導体装置の構成材料>
 以下では、半導体装置に用いることができる構成材料について説明する。
<<基板>>
 トランジスタ200を形成する基板としては、例えば、絶縁体基板、半導体基板、または導電体基板を用いればよい。絶縁体基板としては、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、樹脂基板などがある。また、半導体基板としては、例えば、シリコン、ゲルマニウムなどの半導体基板、または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、酸化ガリウムからなる化合物半導体基板などがある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えば、SOI(Silicon On Insulator)基板などがある。導電体基板としては、黒鉛基板、金属基板、合金基板、導電性樹脂基板などがある。または、金属の窒化物を有する基板、金属の酸化物を有する基板などがある。さらには、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に導電体または絶縁体が設けられた基板、導電体基板に半導体または絶縁体が設けられた基板などがある。または、これらの基板に素子が設けられたものを用いてもよい。基板に設けられる素子としては、容量素子、抵抗素子、スイッチ素子、発光素子、記憶素子などがある。
<<絶縁体>>
 絶縁体としては、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などがある。
 例えば、トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体に、high−k材料を用いることで物理膜厚を保ちながら、トランジスタ動作時の低電圧化が可能となる。一方、層間膜として機能する絶縁体には、比誘電率が低い材料を用いることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁体の機能に応じて、材料を選択するとよい。
 また、比誘電率の高い絶縁体としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物、またはシリコンおよびハフニウムを有する窒化物などがある。
 また、比誘電率が低い絶縁体としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などがある。
 また、酸化物半導体を用いたトランジスタは、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体(絶縁体214、絶縁体222、絶縁体254、および絶縁体274など)で囲うことによって、トランジスタの電気特性を安定にすることができる。水素などの不純物および酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウム、またはタンタルを含む絶縁体を、単層で、または積層で用いればよい。具体的には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体として、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、または酸化タンタルなどの金属酸化物、窒化アルミニウム、窒化アルミニウムチタン、窒化チタン、窒化酸化シリコンまたは窒化シリコンなどの金属窒化物を用いることができる。
 また、ゲート絶縁体として機能する絶縁体は、加熱により脱離する酸素を含む領域を有する絶縁体であることが好ましい。例えば、加熱により脱離する酸素を含む領域を有する酸化シリコンまたは酸化窒化シリコンを酸化物230と接する構造とすることで、酸化物230が有する酸素欠損を補償することができる。
<<導電体>>
 導電体としては、先の実施の形態に示した導電体15に用いることが材料を用いることができる。
 なお、トランジスタのチャネル形成領域に酸化物を用いる場合において、ゲート電極として機能する導電体には、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造を用いることが好ましい。この場合は、酸素を含む導電性材料をチャネル形成領域側に設けるとよい。酸素を含む導電性材料をチャネル形成領域側に設けることで、当該導電性材料から離脱した酸素がチャネル形成領域に供給されやすくなる。
 特に、ゲート電極として機能する導電体として、チャネルが形成される金属酸化物に含まれる金属元素および酸素を含む導電性材料を用いることが好ましい。また、前述した金属元素および窒素を含む導電性材料を用いてもよい。例えば、窒化チタン、窒化タンタルなどの窒素を含む導電性材料を用いてもよい。また、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物を用いてもよい。また、窒素を含むインジウムガリウム亜鉛酸化物を用いてもよい。このような材料を用いることで、チャネルが形成される金属酸化物に含まれる水素を捕獲することができる場合がある。または、外方の絶縁体などから混入する水素を捕獲することができる場合がある。
<<金属酸化物>>
 酸化物230として、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう)を用いることが好ましい。以下では、本発明に係る酸化物230に適用可能な金属酸化物について説明する。
 酸化物半導体は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウムまたはスズなどが含まれていることが好ましい。また、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
 ここでは、酸化物半導体が、インジウム、元素Mおよび亜鉛を有するIn−M−Zn酸化物である場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウムまたはスズなどとする。そのほかの元素Mに適用可能な元素としては、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウムなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。
 なお、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸化窒化物(metal oxynitride)と呼称してもよい。
 酸化物半導体は、単結晶酸化物半導体と、非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、多結晶酸化物半導体、および非晶質酸化物半導体などが知られている。
 トランジスタの半導体に用いる酸化物半導体として、結晶性の高い薄膜を用いることが好ましい。該薄膜を用いることで、トランジスタの安定性または信頼性を向上させることができる。該薄膜として、例えば、単結晶酸化物半導体の薄膜または多結晶酸化物半導体の薄膜が挙げられる。しかしながら、単結晶酸化物半導体の薄膜または多結晶酸化物半導体の薄膜を基板上に形成するには、高温またはレーザー加熱の工程が必要とされる。よって、製造工程のコストが増加し、さらに、スループットも低下してしまう。
 2009年に、CAAC構造を有するIn−Ga−Zn酸化物(CAAC−IGZOと呼ぶ。)が発見されたことが、非特許文献1および非特許文献2で報告されている。ここでは、CAAC−IGZOは、c軸配向性を有する、結晶粒界が明確に確認されない、低温で基板上に形成可能である、ことが報告されている。さらに、CAAC−IGZOを用いたトランジスタは、優れた電気特性および信頼性を有することが報告されている。
 また、2013年には、nc構造を有するIn−Ga−Zn酸化物(nc−IGZOと呼ぶ。)が発見された(非特許文献3参照。)。ここでは、nc−IGZOは、微小な領域(例えば、1nm以上3nm以下の領域)において原子配列に周期性を有し、異なる該領域間で結晶方位に規則性が見られないことが報告されている。
 非特許文献4および非特許文献5では、上記のCAAC−IGZO、nc−IGZO、および結晶性の低いIGZOのそれぞれの薄膜に対する電子線の照射による平均結晶サイズの推移が示されている。結晶性の低いIGZOの薄膜において、電子線が照射される前でさえ、1nm程度の結晶性IGZOが観察されている。よって、ここでは、IGZOにおいて、完全な非晶質構造(completely amorphous structure)の存在を確認できなかった、と報告されている。さらに、結晶性の低いIGZOの薄膜と比べて、CAAC−IGZOの薄膜およびnc−IGZOの薄膜は電子線照射に対する安定性が高いことが示されている。よって、トランジスタの半導体として、CAAC−IGZOの薄膜またはnc−IGZOの薄膜を用いることが好ましい。
 酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さい、具体的には、トランジスタのチャネル幅1μmあたりのオフ電流がyA/μm(10−24A/μm)オーダである、ことが非特許文献6に示されている。例えば、酸化物半導体を用いたトランジスタのリーク電流が低いという特性を応用した低消費電力のCPUなどが開示されている(非特許文献7参照。)。
 また、酸化物半導体を用いたトランジスタのリーク電流が低いという特性を利用した、該トランジスタの表示装置への応用が報告されている(非特許文献8参照。)。表示装置では、表示される画像が1秒間に数十回切り換っている。1秒間あたりの画像の切り換え回数はリフレッシュレートと呼ばれている。また、リフレッシュレートを駆動周波数と呼ぶこともある。このような人の目で知覚が困難である高速の画面の切り換えが、目の疲労の原因として考えられている。そこで、表示装置のリフレッシュレートを低下させて、画像の書き換え回数を減らすことが提案されている。また、リフレッシュレートを低下させた駆動により、表示装置の消費電力を低減することが可能である。このような駆動方法を、アイドリング・ストップ(IDS)駆動と呼ぶ。
 CAAC構造およびnc構造の発見は、CAAC構造またはnc構造を有する酸化物半導体を用いたトランジスタの電気特性および信頼性の向上、ならびに、製造工程のコスト低下およびスループットの向上に貢献している。また、該トランジスタのリーク電流が低いという特性を利用した、該トランジスタの表示装置およびLSIへの応用研究が進められている。
[金属酸化物の構成]
 以下では、本発明の一態様で開示されるトランジスタに用いることができるCAC(Cloud−Aligned Composite)−OSの構成について説明する。
 なお、本明細書等において、CAAC(c−axis aligned crystal)、及びCAC(Cloud−Aligned Composite)と記載する場合がある。なお、CAACは結晶構造の一例を表し、CACは機能、または材料の構成の一例を表す。
 CAC−OSまたはCAC−metal oxideとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC−OSまたはCAC−metal oxideを、トランジスタの活性層に用いる場合、導電性の機能は、キャリアとなる電子(またはホール)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC−OSまたはCAC−metal oxideに付与することができる。CAC−OSまたはCAC−metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。
 また、CAC−OSまたはCAC−metal oxideは、導電性領域、及び絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。
 また、CAC−OSまたはCAC−metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。
 また、CAC−OSまたはCAC−metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC−OSまたはCAC−metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC−OSまたはCAC−metal oxideをトランジスタのチャネル形成領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、及び高い電界効果移動度を得ることができる。
 すなわち、CAC−OSまたはCAC−metal oxideは、マトリックス複合材(matrix composite)、または金属マトリックス複合材(metal matrix composite)と呼称することもできる。
[金属酸化物の構造]
 酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC−OS(c−axis aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)および非晶質酸化物半導体などがある。
 CAAC−OSは、c軸配向性を有し、かつa−b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。
 ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形、および七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。
 また、CAAC−OSは、インジウム、および酸素を有する層(以下、In層)と、元素M、亜鉛、および酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M,Zn)層の元素Mがインジウムと置換した場合、(In,M,Zn)層と表すこともできる。また、In層のインジウムが元素Mと置換した場合、(In,M)層と表すこともできる。
 CAAC−OSは結晶性の高い酸化物半導体である。一方、CAAC−OSは、明確な結晶粒界を確認することはできないため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。
 nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。
 a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆または低密度領域を有する。即ち、a−like OSは、nc−OSおよびCAAC−OSと比べて、結晶性が低い。
 酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
[酸化物半導体を有するトランジスタ]
 続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
 なお、上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
 また、トランジスタには、キャリア密度の低い酸化物半導体を用いることが好ましい。酸化物半導体膜のキャリア密度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性と言う。例えば、酸化物半導体は、キャリア密度が8×1011/cm未満、好ましくは1×1011/cm未満、さらに好ましくは1×1010/cm未満であり、1×10−9/cm以上とすればよい。
 また、高純度真性または実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
 また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
 従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
[不純物]
 ここで、酸化物半導体中における各不純物の影響について説明する。
 酸化物半導体において、第14族元素の一つであるシリコンや炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコンや炭素の濃度と、酸化物半導体との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
 また、酸化物半導体にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属またはアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を低減することが好ましい。具体的には、SIMSにより得られる酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
 また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア密度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。従って、該酸化物半導体において、窒素はできる限り低減されていることが好ましく、例えば、酸化物半導体中の窒素濃度は、SIMSにおいて、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下とする。
 また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。
 不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
[真空ベークの効果]
 ここでは、金属酸化物に含まれる、弱いZn−O結合について説明し、該結合を構成する酸素原子および亜鉛原子を低減する方法の一例について示す。
 金属酸化物を用いたトランジスタにおいて、トランジスタの電気特性の不良に繋がる欠陥の一例として酸素欠損がある。例えば、膜中に酸素欠損が含まれている金属酸化物を用いたトランジスタは、閾値電圧がマイナス方向に変動しやすく、ノーマリーオン特性となりやすい。これは、金属酸化物に含まれる酸素欠損に起因したドナーが生成され、キャリア濃度が増加するためである。トランジスタがノーマリーオン特性を有すると、動作時に動作不良が発生しやすくなる、または非動作時の消費電力が高くなるなどの、様々な問題が生じる。
 また、モジュールを作製するための接続配線を形成する工程における熱処理により、閾値電圧の変動、寄生抵抗の増大、などのトランジスタの電気特性の劣化、該電気特性の劣化に伴う電気特性のばらつきの増大、などの問題がある。これらの問題は、製造歩留りの低下に直結するため、対策の検討は重要である。また、長期間の使用によって起こるトランジスタの特性変化(経年変化)を短時間で評価することができるストレス試験でも電気特性の劣化が生じる。該電気特性の劣化は、製造の過程で行われる高温処理、またはストレス試験時に与えられる電気的なストレスによって金属酸化物中の酸素が欠損することに起因すると推測される。
 金属酸化物中には、金属原子との結合が弱く、酸素欠損となりやすい酸素原子が存在する。特に、金属酸化物がIn−Ga−Zn酸化物である場合は、亜鉛原子と酸素原子とが弱い結合(弱いZn−O結合、ともいう)を形成しやすい。ここで、弱いZn−O結合とは、製造の過程で行われる高温処理、またはストレス試験時に与えられる電気的なストレスによって切断される程度の強さで結合した、亜鉛原子と酸素原子の間に生じる結合である。弱いZn−O結合が金属酸化物中に存在すると、熱処理または電流ストレスによって、該結合が切断され、酸素欠損が形成される。酸素欠損が形成されることにより、熱処理に対する耐性、ストレス試験における耐性などといった、トランジスタの安定性が低下する。
 亜鉛原子と多く結合している酸素原子と、該亜鉛原子との間に生じる結合は、弱いZn−O結合である場合がある。ガリウム原子と比べて、亜鉛原子は、酸素原子との結合が弱い。したがって、亜鉛原子と多く結合している酸素原子は欠損しやすい。すなわち、亜鉛原子と酸素原子との間に生じる結合は、その他の金属との結合よりも弱いと推測される。
 また、金属酸化物中に不純物が存在する場合、弱いZn−O結合が形成されやすいと推測される。金属酸化物中の不純物としては、例えば、水分子や水素がある。金属酸化物中に水分子や水素が存在することで、水素原子が、金属酸化物を構成する酸素原子と結合する(OH結合ともいう。)場合がある。金属酸化物を構成する酸素原子は、In−Ga−Zn酸化物が単結晶である場合、金属酸化物を構成する金属原子4つと結合している。しかしながら、水素原子と結合した酸素原子は、2つまたは3つの金属原子と結合している場合がある。酸素原子に結合している金属原子の数が減少することで、該酸素原子は欠損しやすくなる。なお、OH結合を形成している酸素原子に亜鉛原子が結合している場合、該酸素原子と該亜鉛原子との結合は弱いと推測される。
 また、弱いZn−O結合は、複数のナノ結晶が連結する領域に存在する歪みに形成される場合がある。ナノ結晶は六角形を基本とするが、該歪みにおいて、五角形、および七角形などの格子配列を有する。該歪みでは、原子間の結合距離が一様でないため、弱いZn−O結合が形成されていると推測される。
 また、弱いZn−O結合は、金属酸化物の結晶性が低い場合に形成されやすいと推測される。金属酸化物の結晶性が高い場合、金属酸化物を構成する亜鉛原子は、酸素原子4つまたは5つと結合している。しかし、金属酸化物の結晶性が低くなると、亜鉛原子と結合する酸素原子の数が減少する傾向がある。亜鉛原子に結合する酸素原子の数が減少すると、該亜鉛原子は欠損しやすくなる。すなわち、亜鉛原子と酸素原子との間に生じる結合は、単結晶で生じる結合よりも弱いと推測される。
 上記の弱いZn−O結合を構成する酸素原子および亜鉛原子を低減することで、熱処理または電流ストレスによる酸素欠損の形成を抑制し、トランジスタの安定性を向上させることができる。なお、弱いZn−O結合を構成する酸素原子のみを低減し、弱いZn−O結合を構成する亜鉛原子が減少しない場合、該亜鉛原子近傍に酸素原子を供給すると、弱いZn−O結合が再形成される場合がある。したがって、弱いZn−O結合を構成する亜鉛原子および酸素原子を低減することが好ましい。
 弱いZn−O結合を構成する酸素原子および亜鉛原子を低減する方法の一つとして、金属酸化物を成膜した後、真空ベークを実施する方法が挙げられる。真空ベークとは、真空雰囲気下で行う加熱処理のことである。真空雰囲気は、ターボ分子ポンプ等で排気を行うことで維持される。なお、処理室の圧力は、1×10−2Pa以下、好ましくは1×10−3Pa以下とすればよい。また、加熱処理時の基板の温度は、300℃以上、好ましくは400℃以上とすればよい。
 真空ベークを実施することで、弱いZn−O結合を構成する酸素原子および亜鉛原子を低減することができる。また、真空ベークによって金属酸化物に熱が与えられるため、弱いZn−O結合を構成する酸素原子および亜鉛原子を低減した後、金属酸化物を構成する原子が再配列することで、4つの金属原子と結合している酸素原子が増える。したがって、弱いZn−O結合を構成する酸素原子および亜鉛原子を低減するとともに、弱いZn−O結合が再形成されることを抑制することができる。
 また、金属酸化物中に不純物が存在する場合、真空ベークを実施することで、金属酸化物中の水分子または水素を放出し、OH結合を低減することができる。金属酸化物中のOH結合が減少することで、4つの金属原子と結合している酸素原子の割合が増える。また、水分子または水素が放出される際、金属酸化物を構成する原子が再配列することで、4つの金属原子と結合している酸素原子が増える。したがって、弱いZn−O結合が再形成されることを抑制することができる。
 以上のように、金属酸化物を成膜した後、真空ベークを実施することで、弱いZn−O結合を構成する酸素原子および亜鉛原子を低減することができる。したがって、該工程により、トランジスタの安定性を向上することができる。また、トランジスタの安定性が向上することで、材料や形成方法の選択の自由度が高くなる。
<半導体装置の作製方法1−1>
 図4に示す、本発明の一態様に係るトランジスタ200を有する半導体装置について、作製方法を図17乃至図23を用いて説明する。
 図17乃至図23において、各図の(A)は上面図を示す。また、各図の(B)は、(A)に示すA1−A2の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、各図の(C)は、(A)にA3−A4の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。なお、各図の(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
 まず、基板(図示しない。)を準備し、当該基板上に絶縁体214を成膜する。絶縁体214の成膜は、スパッタリング法、化学気相成長(CVD:Chemical Vapor Deposition)法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、パルスレーザ堆積(PLD:Pulsed Laser Deposition)法、またはALD(Atomic Layer Deposition)法などを用いて行うことができる。
 なお、CVD法は、プラズマを利用するプラズマCVD(PECVD:Plasma Enhanced CVD)法、熱を利用する熱CVD(TCVD:Thermal CVD)法、光を利用する光CVD(Photo CVD)法などに分類できる。さらに用いる原料ガスによって金属CVD(MCVD:Metal CVD)法、有機金属CVD(MOCVD:Metal Organic CVD)法に分けることができる。
 プラズマCVD法は、比較的低温で高品質の膜が得られる。また、熱CVD法は、プラズマを用いないため、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。例えば、半導体装置に含まれる配線、電極、素子(トランジスタ、容量素子など)などは、プラズマから電荷を受け取ることでチャージアップする場合がある。このとき、蓄積した電荷によって、半導体装置に含まれる配線、電極、素子などが破壊される場合がある。一方、プラズマを用いない熱CVD法の場合、こういったプラズマダメージが生じないため、半導体装置の歩留まりを高くすることができる。また、熱CVD法では、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。
 また、ALD法は、原子の性質である自己制御性を利用し、一層ずつ原子を堆積することができるので、極薄の成膜が可能、アスペクト比の高い構造への成膜が可能、ピンホールなどの欠陥の少ない成膜が可能、被覆性に優れた成膜が可能、および低温での成膜が可能、などの効果がある。また、ALD法には、プラズマを利用した成膜方法PEALD(Plasma Enhanced ALD)法も含まれる。プラズマを利用することで、より低温での成膜が可能となり好ましい場合がある。なお、ALD法で用いるプリカーサには炭素などの不純物を含むものがある。このため、ALD法により設けられた膜は、他の成膜法により設けられた膜と比較して、炭素などの不純物を多く含む場合がある。なお、不純物の定量は、X線光電子分光法(XPS:X−ray Photoelectron Spectroscopy)を用いて行うことができる。
 CVD法およびALD法は、ターゲットなどから放出される粒子が堆積する成膜方法とは異なり、被処理物の表面における反応により膜が形成される成膜方法である。したがって、被処理物の形状の影響を受けにくく、良好な段差被覆性を有する成膜方法である。特に、ALD法は、優れた段差被覆性と、優れた厚さの均一性を有するため、アスペクト比の高い開口部の表面を被覆する場合などに好適である。ただし、ALD法は、比較的成膜速度が遅いため、成膜速度の速いCVD法などの他の成膜方法と組み合わせて用いることが好ましい場合もある。
 CVD法およびALD法は、原料ガスの流量比によって、得られる膜の組成を制御することができる。例えば、CVD法およびALD法では、原料ガスの流量比によって、任意の組成の膜を成膜することができる。また、例えば、CVD法およびALD法では、成膜しながら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送や圧力調整に掛かる時間を要さない分、成膜に掛かる時間を短くすることができる。したがって、半導体装置の生産性を高めることができる場合がある。
 本実施の形態では、絶縁体214として、スパッタリング法によって酸化アルミニウムを成膜する。また、絶縁体214は、多層構造としてもよい。例えば、スパッタリング法によって酸化アルミニウムを成膜し、当該酸化アルミニウム上に、ALD法によって酸化アルミニウムを成膜する構造としてもよい。または、ALD法によって酸化アルミニウムを成膜し、当該酸化アルミニウム上に、スパッタリング法によって酸化アルミニウムを成膜する構造としてもよい。または、絶縁体214として、プラズマCVD法を用いて、窒化シリコン、または窒化酸化シリコンを成膜してもよい。
 次に絶縁体214上に絶縁体216を成膜する。絶縁体216の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。本実施の形態では、絶縁体216として、CVD法によって酸化シリコンを成膜する。
 次に、リソグラフィー法を用いて、絶縁体216に、絶縁体214に達する開口を形成する。開口とは、例えば、溝やスリットなども含まれる。また、開口が形成された領域を指して開口部とする場合がある。開口の形成にはウエットエッチング法を用いてもよいが、ドライエッチング法を用いるほうが微細加工には好ましい。また、絶縁体214は、絶縁体216をエッチングして開口を形成する際のエッチングストッパとして機能する絶縁体を選択することが好ましい。例えば、開口を形成する絶縁体216に酸化シリコンを用いた場合は、エッチングストッパとして機能する絶縁体214として、窒化シリコン、酸化アルミニウム、酸化ハフニウムを用いるとよい。
 なお、リソグラフィー法では、まず、マスクを介してレジストを露光する。次に、露光された領域を、現像液を用いて除去または残存させてレジストマスクを形成する。次に、当該レジストマスクを介してエッチング処理することで導電体、半導体または絶縁体などを所望の形状に加工することができる。例えば、KrFエキシマレーザ光、ArFエキシマレーザ光、EUV(Extreme Ultraviolet)光などを用いて、レジストを露光することでレジストマスクを形成すればよい。また、基板と投影レンズとの間に液体(例えば水)を満たして露光する、液浸技術を用いてもよい。また、前述した光に代えて、電子ビームやイオンビームを用いてもよい。なお、電子ビームやイオンビームを用いる場合には、マスクは不要となる。なお、レジストマスクの除去には、アッシングなどのドライエッチング処理を行う、ウエットエッチング処理を行う、ドライエッチング処理後にウエットエッチング処理を行う、またはウエットエッチング処理後にドライエッチング処理を行うことができる。
 また、レジストマスクの代わりに絶縁体や導電体からなるハードマスクを用いてもよい。ハードマスクを用いる場合、絶縁体216となる絶縁膜上にハードマスク材料となる絶縁膜や導電膜を形成し、その上にレジストマスクを形成し、ハードマスク材料をエッチングすることで所望の形状のハードマスクを形成することができる。絶縁体216となる絶縁膜のエッチングは、レジストマスクを除去してから行っても良いし、レジストマスクを残したまま行っても良い。後者の場合、エッチング中にレジストマスクが消失することがある。絶縁体216となる絶縁膜のエッチング後にハードマスクをエッチングにより除去しても良い。一方、ハードマスクの材料が後工程に影響が無い、あるいは後工程で利用できる場合、必ずしもハードマスクを除去する必要は無い。
 ドライエッチング装置としては、平行平板型電極を有する容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング装置を用いることができる。平行平板型電極を有する容量結合型プラズマエッチング装置は、平行平板型電極の一方の電極に高周波電源を印加する構成でもよい。または平行平板型電極の一方の電極に複数の異なった高周波電源を印加する構成でもよい。または平行平板型電極それぞれに同じ周波数の高周波電源を印加する構成でもよい。または平行平板型電極それぞれに周波数の異なる高周波電源を印加する構成でもよい。または高密度プラズマ源を有するドライエッチング装置を用いることができる。高密度プラズマ源を有するドライエッチング装置は、例えば、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング装置などを用いることができる。
 開口の形成後に、導電体205aとなる導電膜を成膜する。当該導電膜は、不純物や酸素の透過を抑制する機能を有する導電性バリア膜を用いることが好ましい。例えば、窒化タンタル、窒化タングステン、窒化チタンなどを用いることができる。またはタンタル、タングステン、チタン、モリブデン、アルミニウム、銅、モリブデンタングステン合金との積層膜とすることができる。導電体205aとなる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
 本実施の形態では、導電体205aとなる導電膜として、スパッタリング法によって窒化タンタル、または、窒化タンタルの上に窒化チタンを積層した膜を成膜する。導電体205aとしてこのような金属窒化物を用いることにより、後述する導電体205cで銅など拡散しやすい金属を用いても、当該金属が導電体205aから外に拡散することを抑制することができる。
 次に、導電体205aとなる導電膜上に、導電体205bとなる導電膜を成膜する。当該導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。導電体205bとして、導電体205aと同様に、不純物や酸素の透過を抑制する機能を有する導電性バリア膜を用いることが好ましい。本実施の形態では、導電体205bとなる導電膜として、ALD法を用いて窒化チタンを成膜する。
 次に、導電体205bとなる導電膜上に、導電体205cとなる導電膜を成膜する。当該導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。本実施の形態では、導電体205cとなる導電膜として、タングステン、銅、アルミニウムなどの低抵抗導電性材料を成膜する。
 次に、CMP(Chemical Mechanical Polishing)処理を行うことで、導電体205aとなる導電膜、導電体205bとなる導電膜、および導電体205cとなる導電膜の一部を研磨により除去し、絶縁体216を露出する。その結果、開口部のみに、導電体205aとなる導電膜、導電体205bとなる導電膜、および導電体205cとなる導電膜が残存する。これにより、上面が平坦な、導電体205a、導電体205b、および導電体205cを含む導電体205を形成することができる(図17参照。)。なお、当該CMP処理により、絶縁体216の一部が除去される場合がある。
 なお、絶縁体216および導電体205の作製方法は上記に限られるものではない。例えば、絶縁体214の上に導電体205となる導電膜を成膜し、リソグラフィー法を用いて当該導電膜加工することで導電体205を形成する。次に、導電体205を覆うように絶縁体216となる絶縁膜を設け、CMP処理により当該絶縁膜の一部を、導電体205の一部が露出するまで除去することで導電体205、および絶縁体216を形成してもよい。
 上記のようにCMP処理を用いて導電体205、および絶縁体216を形成することで、導電体205と絶縁体216の上面の平坦性を向上させることができ、後工程にて酸化物230bおよび酸化物230cの一方、または両方を構成するCAAC−OSの結晶性を向上させることができる。
 次に、絶縁体216、および導電体205上に絶縁体222を成膜する。絶縁体222として、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体は、酸素、水素、および水に対するバリア性を有する。絶縁体222が、水素および水に対するバリア性を有することで、トランジスタ200の周辺に設けられた構造体に含まれる水素、および水が、絶縁体222を通じてトランジスタ200の内側へ拡散することが抑制され、酸化物230中の酸素欠損の生成を抑制することができる。
 絶縁体222の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
 次に、絶縁体222上に絶縁体224を成膜する。絶縁体224の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
 続いて、加熱処理を行うと好ましい。加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下、さらに好ましくは320℃以上450℃以下で行えばよい。なお、加熱処理は、窒素または不活性ガス雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素または不活性ガス雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理を行ってもよい。
 本実施の形態では、加熱処理として、絶縁体224の成膜後に窒素雰囲気にて400℃の温度で1時間の処理を行う。当該加熱処理によって、絶縁体224に含まれる水、水素などの不純物を除去することなどができる。また、加熱処理は、絶縁体222の成膜後などのタイミングで行うこともできる。
 ここで、絶縁体224に過剰酸素領域を形成するために、減圧状態で酸素を含むプラズマ処理を行ってもよい。酸素を含むプラズマ処理は、例えばマイクロ波を用いた高密度プラズマを発生させる電源を有する装置を用いることが好ましい。または、基板側にRF(Radio Frequency)を印加する電源を有してもよい。高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができ、基板側にRFを印加することで、高密度プラズマによって生成された酸素ラジカルを効率よく絶縁体224内に導くことができる。または、この装置を用いて不活性ガスを含むプラズマ処理を行った後に、脱離した酸素を補うために酸素を含むプラズマ処理を行ってもよい。なお、当該プラズマ処理の条件を適宜選択することにより、絶縁体224に含まれる水、水素などの不純物を除去することができる。その場合、加熱処理は行わなくてもよい。
 次に、絶縁体224上に、酸化物230aとなる酸化膜230A、酸化物230bとなる酸化膜230B、および導電膜242Aを順に成膜する(図17参照。)。なお、上記酸化膜は、大気環境にさらさずに連続して成膜することが好ましい。大気開放せずに成膜することで、酸化膜230A、および酸化膜230B上に大気環境からの不純物または水分が付着することを防ぐことができ、酸化膜230Aと酸化膜230Bとの界面近傍を清浄に保つことができる。
 酸化膜230A、酸化膜230Bおよび導電膜242Aの成膜はスパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
 例えば、酸化膜230A、および酸化膜230Bをスパッタリング法によって成膜する場合は、スパッタリングガスとして酸素、または、酸素と希ガスの混合ガスを用いる。スパッタリングガスに含まれる酸素の割合を高めることで、成膜される酸化膜中の過剰酸素を増やすことができる。また、上記の酸化膜をスパッタリング法によって成膜する場合は、上記のIn−M−Zn酸化物ターゲットなどを用いることができる。また、ターゲットには、直流(DC)電源または、高周波(RF)電源などの交流(AC)電源が接続され、ターゲットの電気伝導度に応じて、必要な電力を印加することができる。
 特に、酸化膜230Aの成膜時に、スパッタリングガスに含まれる酸素の一部が絶縁体224に供給される場合がある。したがって、酸化膜230Aのスパッタリングガスに含まれる酸素の割合は70%以上、好ましくは80%以上、より好ましくは100%とすればよい。
 また、酸化膜230Bをスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を1%以上30%以下、好ましくは5%以上20%以下として成膜すると、酸素欠乏型の酸化物半導体が形成される。酸素欠乏型の酸化物半導体をチャネル形成領域に用いたトランジスタは、比較的高い電界効果移動度が得られる。また、基板を加熱しながら成膜を行うことによって、当該酸化膜の結晶性を向上させることができる。ただし、本発明の一態様はこれに限定されない。酸化物230bとなる酸化膜をスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を、30%を超えて100%以下、好ましくは70%以上100%以下として成膜すると、酸素過剰型の酸化物半導体が形成される。酸素過剰型の酸化物半導体をチャネル形成領域に用いたトランジスタは、比較的高い信頼性が得られる。
 本実施の形態では、酸化膜230Aとして、スパッタリング法によって、In:Ga:Zn=1:1:0.5[原子数比](2:2:1[原子数比])、あるいは1:3:4[原子数比]のターゲットを用いて成膜する。また、酸化膜230Bとして、スパッタリング法によって、In:Ga:Zn=4:2:4.1[原子数比]のターゲットを用いて成膜する。なお、各酸化膜は、成膜条件、および原子数比を適宜選択することで、酸化物230に求める特性に合わせて形成するとよい。
 ここで、絶縁体222、絶縁体224、酸化膜230A、および酸化膜230Bを、大気に暴露することなく成膜することが好ましい。例えば、マルチチャンバー方式の成膜装置を用いればよい。
 次に、加熱処理を行ってもよい。加熱処理は、上述した加熱処理条件を用いることができる。加熱処理によって、酸化膜230A、および酸化膜230B中の水、水素などの不純物を除去することなどができる。本実施の形態では、窒素雰囲気にて400℃の温度で1時間の処理を行った後に、連続して酸素雰囲気にて400℃の温度で1時間の処理を行う。
 次に、酸化膜230A、酸化膜230Bおよび導電膜242Aを島状に加工して、酸化物230a、酸化物230b及び導電膜242Bを形成する。なお、当該工程において、絶縁体224の酸化物230aと重ならない領域の膜厚が薄くなることがある(図18参照。)。
 ここで、酸化物230a、および酸化物230bは、少なくとも一部が導電体205と重なるように形成する。また、酸化物230a、および酸化物230bの側面と絶縁体222の上面のなす角が低い角度になる構成にしてもよい。その場合、酸化物230a、および酸化物230bの側面と絶縁体222の上面のなす角は60°以上70°未満が好ましい。この様な形状とすることで、これより後の工程において、絶縁体254などの被覆性が向上し、鬆などの欠陥を低減することができる。または、酸化物230bの側面は、絶縁体222の上面に対し、概略垂直にしてもよい。酸化物230a、および酸化物230bの側面が、絶縁体222の上面に対し、概略垂直であることで、複数のトランジスタ200を設ける際に、小面積化、高密度化が可能となる。
 また、酸化物230bの側面と酸化物230bの上面との間に、湾曲面を有する。つまり、側面の端部と上面の端部は、湾曲していることが好ましい(以下、ラウンド状ともいう)。湾曲面は、例えば、酸化物230bの端部において、曲率半径が、3nm以上10nm以下、好ましくは、5nm以上6nm以下とする。端部に角を有さないことで、以降の成膜工程における膜の被覆性が向上する。
 なお、酸化膜230A、酸化膜230B及び導電膜242Aとなる導電膜の加工はリソグラフィー法を用いて行えばよい。また、当該加工はドライエッチング法やウエットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。
 また、ドライエッチングなどの処理を行うことによって、エッチングガスなどに起因した不純物が酸化物230a、および酸化物230bなどの表面または内部に付着または拡散することがある。不純物としては、例えば、フッ素または塩素などがある。
 上記の不純物などを除去するために、洗浄を行う。洗浄方法としては、洗浄液などを用いたウエット洗浄、プラズマを用いたプラズマ処理、または熱処理による洗浄などがあり、上記洗浄を適宜組み合わせて行ってもよい。
 ウエット洗浄としては、シュウ酸、リン酸、またはフッ化水素酸などを炭酸水または純水で希釈した水溶液を用いて洗浄処理を行ってもよい。または、純水または炭酸水を用いた超音波洗浄を行ってもよい。本実施の形態では、純水または炭酸水を用いた超音波洗浄を行う。
 続いて、加熱処理を行ってもよい。加熱処理の条件は、前述の加熱処理の条件を用いることができる。または、絶縁膜254Aの成膜前に加熱処理を行うことが好ましい。加熱処理は、100℃以上400℃以下で行えばよく、例えば200℃で行えばよい。あるいは、絶縁膜254Aの成膜温度と同じ温度で行うことが好ましい。ここで、成膜温度とは、成膜中の基板温度に限らず、成膜装置の設定温度の場合を含む。例えば、絶縁膜254Aを200℃で成膜する場合、当該加熱処理は200℃とすることが好ましい。当該加熱処理は、減圧下で行うことが好ましく、例えば、真空雰囲気で行ってもよい。真空雰囲気は、ターボ分子ポンプ等で排気を行うことで維持される。真空雰囲気では、処理室の圧力は、1×10−2Pa以下、好ましくは1×10−3Pa以下とすればよい。
 次に、絶縁体224、酸化物230a、酸化物230bおよび導電膜242Bの上に、絶縁膜254Aを成膜する。絶縁膜254Aの成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて成膜することができる。
 絶縁膜254Aは、水素などの不純物や、酸素の拡散を抑制する機能を有する絶縁膜を用いることが好ましい。例えば、スパッタリング法によって、酸化アルミニウム膜を成膜することが好ましい。スパッタリング法によって、酸素を含むガスを用いて酸化アルミニウム膜を成膜することによって、絶縁体224中へ酸素を注入することができる。つまり、絶縁体224は過剰酸素を有することができる。また、絶縁膜254Aとして、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)、窒化アルミニウムを含む絶縁体、窒化アルミニウムチタン、窒化チタン、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、または空孔を有する酸化シリコンなどを用いることができる。
 また、絶縁膜254Aとして、高温で基板加熱を行いながら、酸化アルミニウムを成膜してもよい。絶縁膜254A成膜時の基板加熱温度は、200℃以上、好ましくは250℃以上、より好ましくは350℃以上にすればよい。
 また、絶縁膜254Aは、積層構造としてもよい。
 続いて、絶縁膜254Aの上に絶縁膜244Aを成膜してもよい(図19参照。)。絶縁膜244Aの成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて成膜することができる。
 絶縁膜244Aは、水素などの不純物や、酸素の拡散を抑制する機能を有する絶縁膜を用いることが好ましい。例えば、ALD法によって、酸化アルミニウム膜を成膜することが好ましい。被覆性に優れたALD法を用いることで、ダミーゲート層262Aなどにより形成された段差部においても、均一な厚さを有する絶縁膜244Aを形成することができる。また、ALD法を用いることで、緻密な薄膜を成膜することができる。このように被覆性に優れ、緻密な薄膜を成膜することが出来るので、例えば、絶縁膜254Aにボイドやピンホールなどの欠陥が生じても、絶縁膜244Aによって覆うことができる。
 また、絶縁膜244Aとして、窒化アルミニウム、窒化シリコン、窒化酸化シリコンなどを、成膜してもよい。例えば、絶縁膜244Aとして、アルミニウムターゲットを用いた反応性スパッタリングで、窒化アルミニウム膜を成膜する場合、成膜ガスの全流量に対する窒素ガスの流量を30%以上100%以下、好ましくは40%以上100%以下、より好ましくは50%以上100%以下とすることが好ましい。
 また、絶縁膜244Aとして、高温で基板加熱を行いながら、酸化アルミニウムを成膜してもよい。絶縁膜244A成膜時の基板加熱温度は、200℃以上、好ましくは250℃以上、より好ましくは350℃以上にすればよい。このとき、絶縁膜254AとしてALD法を用いて酸化アルミニウムを成膜しておくことにより、上記の温度で絶縁膜244Aを成膜したときに、ダミーゲート層262Aが変形することを防ぐことができる。
 また、絶縁膜244Aまたは絶縁膜254Aのいずれか一方または両方の成膜後に、フッ素の添加を行っても良い。絶縁膜244Aまたは絶縁膜254Aのいずれか一方または両方へのフッ素の添加は、フッ素系のガス(例えば、CFなど)を含む雰囲気でプラズマ処理を行う、またはフッ素を含むガスをドーピングすることで、行うことができる。絶縁膜244Aまたは絶縁膜254Aのいずれか一方または両方へフッ素を添加することにより、当該膜中に含まれる水素を、フッ素によって終端化またはゲッタリングすることが期待できる。
 以上により、絶縁体224に含まれる過剰酸素が外方へ拡散することを防止し、また外方から水や水素のような不純物の絶縁体224への侵入を防止することができる。尚、絶縁膜244Aの成膜は省略することができる。
 次に、ダミーゲート層262Aを形成する(図19参照。)。
 ダミーゲート層262Aとなるダミーゲート膜は、加工してダミーゲートとして使用する。ダミーゲートとは、仮のゲート電極のことである。つまり、ダミーゲート層262Aとなるダミーゲート膜を加工することで、仮のゲート電極を形成し、後の工程において該ダミーゲートを除去し、代わりに導電膜等によるゲート電極を形成する。従って、ダミーゲート層262Aとなるダミーゲート膜は微細加工が容易であり、かつ、除去も容易な膜を用いることが好ましい。
 ダミーゲート層262Aとなるダミーゲート膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。例えば、絶縁体、半導体、または導電体を用いることができる。具体的には、ポリシリコン、微結晶シリコン、アモルファスシリコンなどのシリコン、アルミニウム、チタン、タングステンなどの金属膜などを用いればよい。または、塗布法を用いて、炭素を含む膜、SOG(Spin On Glass)、樹脂膜などを形成しても良い。樹脂としては、例えば、フォトレジスト、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネートまたはアクリルなどがある。SOG、樹脂膜を塗布法によって形成することで、ダミーゲート膜の表面を平坦にすることができる。このように、ダミーゲート膜の表面を平坦にすることで、微細加工が容易となり、さらに、除去も容易である。
 また、ダミーゲート層262Aとなるダミーゲート膜は、異なる膜種を用いて多層膜とすることもできる。例えば、ダミーゲート層262Aとなるダミーゲート膜を導電膜と該導電膜上に樹脂膜を形成する2層構造の膜とすることができる。ダミーゲート膜をこのような構造とすることで、例えば、後のCMP工程において、該導電膜がCMP処理のストッパ膜として機能する場合がある。または、CMP処理の終点検出が可能となる場合があり、加工ばらつきの低減が可能となる場合がある。
 次に、リソグラフィー法によって、ダミーゲート層262Aとなるダミーゲート膜をエッチングし、ダミーゲート層262Aを形成する(図19参照。)。ダミーゲート層262Aは、少なくとも一部が、導電体205および酸化物230と重なるように形成する。
 次に、ダミーゲート層262A及び絶縁膜244A上に、絶縁体280となる絶縁膜を成膜する。
 次に、絶縁体280となる絶縁膜、ダミーゲート層262Aの一部を、ダミーゲート層262Aの一部が露出するまで除去し、絶縁体280及びダミーゲート262を形成する(図20参照。)。絶縁体280及びダミーゲート262の形成にはCMP処理を用いることが好ましい。図20(B)に示すように、ダミーゲート262の上面と、絶縁体280の上面が略一致する。
 次に、ダミーゲート262、およびダミーゲート262と重畳する絶縁膜254A及び絶縁膜244Aの一部を除去し、開口263を形成する(図21参照。)。ダミーゲート262の除去は、ウエットエッチング、ドライエッチング、またはアッシングなどを用いて行うことができる。または、適宜、上記の処理を複数組み合わせて行ってもよい。例えば、アッシング処理の後に、ウエットエッチング処理を行うなどがある。ダミーゲート262を除去することにより、開口263から導電膜242Bの表面の一部が露出する。
 次に、導電膜242Bの開口263から露出している部分を除去することで、酸化物230bの表面の一部が露出し、導電体242aおよび導電体242bを形成することができる。当該除去は、ウエットエッチングまたはドライエッチングを用いて行うことができる。本実施の形態ではドライエッチングを用いる。ドライエッチングを用いることで微細加工ができるので好ましい。ここで、導電体242aと導電体242bの間から露出した、酸化物230bの上面の一部が除去される場合がある。
 このとき、絶縁体280、絶縁体244、および絶縁体254をマスクとして用いて、導電体242a、および導電体242bを形成する。よって、絶縁体280、絶縁体244、および絶縁体254に形成された開口263は、導電体242aと導電体242bの間の領域に重畳することになる。これにより、後の工程において、導電体242aと導電体242bの間に導電体260を自己整合的に配置することができる。
 次に、酸化膜230Cの成膜前に加熱処理を行うことが好ましい。加熱処理は、100℃以上400℃以下で行えばよく、例えば200℃で行えばよい。あるいは、酸化膜230Cの成膜温度と同じ温度で行うことが好ましい。ここで、成膜温度とは、成膜中の基板温度に限らず、成膜装置の設定温度の場合を含む。例えば、酸化膜230Cを300℃で成膜する場合、当該加熱処理は300℃とすることが好ましい。当該加熱処理は、減圧下で行うことが好ましく、例えば、真空雰囲気で行ってもよい。真空雰囲気は、ターボ分子ポンプ等で排気を行うことで維持される。真空雰囲気では、処理室の圧力は、1×10−2Pa以下、好ましくは1×10−3Pa以下とすればよい。
 次に、開口263に埋め込むように、酸化膜230Cを成膜する。また、上記加熱処理後、大気に暴露することなく、連続して酸化膜230Cの成膜を行うことが好ましい。例えば、マルチチャンバー方式の成膜装置などを用いて、加熱処理と成膜処理を異なるチャンバーで、連続して行うことが好ましい。このような処理を行うことによって、酸化物230aおよび酸化物230bの表面などに吸着している水分、水素、炭素などの不純物を除去し、さらに酸化物230aおよび酸化物230b中の水分濃度および水素濃度を低減させることができる。当該加熱処理により除去される不純物には、水素と炭素の結合を有する不純物や、水素と酸素の結合を有する不純物なども含まれる。さらに、外気に曝さず連続で加熱処理と成膜を行うことで、水素などの不純物が酸化物230に再侵入することを防ぐことができる。
 酸化膜230Cの成膜はスパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。酸化物230cに求める特性に合わせて、酸化膜230A、または酸化膜230Bと同様の成膜方法を用いて、酸化物230cとなる酸化膜230Cを成膜すればよい。酸化膜230Cとして、In−Ga−Zn酸化物や、Inを含まない酸化物を用いることができる。Inを含まない酸化物として、Ga−Zn酸化物や、酸化ガリウムなどを用いることができる。また、酸化膜230Cとして、In−Ga−Zn酸化物とInを含まない酸化物の積層構造を用いてもよい。酸化膜230Cとして、スパッタリング法によって、In:Ga:Zn=1:3:4[原子数比]、4:2:4.1[原子数比]、Ga:Zn=2:1[原子数比]、あるいはGa:Zn=2:5[原子数比]のターゲットを用いて成膜する。本実施の形態では、酸化膜230Cとして、スパッタリング法によって、1:3:4[原子数比]のターゲットを用いて酸化物230cとなる酸化膜を成膜する。
 また、酸化膜230Cは、第1の酸化膜と、第1の酸化膜上の第2の酸化膜からなる積層構造を有していてもよく、酸化膜230Bの形成に用いたターゲットと同様のターゲットを用いて第1の酸化膜を形成し、酸化膜230Aの形成に用いたターゲットと同様のターゲットを用いて第2の酸化膜を形成してもよい。
 酸化膜230Cの成膜は、基板を加熱しながら行うことが好ましい。このとき、基板温度を300℃以上にすることで、酸化物230a、酸化物230b、および酸化膜230C中の酸素欠損を低減することができる。また、例えば、後述する絶縁膜250Aの成膜温度と同じ温度で成膜してもよい。また、このように基板を加熱しながら成膜することで、酸化物230a、酸化物230b、および酸化膜230Cの結晶性の向上を図ることもできる。
 特に、酸化膜230Cの成膜時に、スパッタリングガスに含まれる酸素の一部が酸化物230aおよび酸化物230bに供給される場合がある。したがって、酸化膜230Cのスパッタリングガスに含まれる酸素の割合は70%以上、好ましくは80%以上、より好ましくは100%とすればよい。また、基板を加熱しながら成膜を行うことによって、当該酸化膜の結晶性を向上させることができる。
 次に、絶縁膜250Aの成膜前に加熱処理を行うことが好ましい。加熱処理は、100℃以上400℃以下で行えばよく、例えば200℃で行えばよい。あるいは、絶縁膜250Aの成膜温度と同じ温度で行うことが好ましい。ここで、成膜温度とは、成膜中の基板温度に限らず、成膜装置の設定温度の場合を含む。例えば、絶縁膜250Aを350℃で成膜する場合、当該加熱処理は350℃とすることが好ましい。当該加熱処理は、減圧下で行うことが好ましく、例えば、真空雰囲気で行ってもよい。真空雰囲気は、ターボ分子ポンプ等で排気を行うことで維持される。真空雰囲気では、処理室の圧力は、1×10−2Pa以下、好ましくは1×10−3Pa以下とすればよい。
 次に、絶縁膜250Aを成膜する。絶縁膜250Aは、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて成膜することができる。絶縁膜250Aとしては、ALD法を用いて、酸化シリコン、酸化ハフニウム、または酸化ガリウムなどを成膜することが好ましい。例えば、絶縁膜250Aとして、酸化シリコンと、酸化シリコン上の酸化ガリウムの積層膜を用いればよい。なお、絶縁膜250Aを成膜する際の成膜温度は、300℃以上450℃未満、好ましくは300℃以上400℃未満、特に350℃前後とすることが好ましい。例えば、絶縁膜250Aを、350℃で成膜することで、不純物が少ない絶縁体を成膜することができる。
 なお、マイクロ波で酸素を励起し、高密度な酸素プラズマを発生させ、当該酸素プラズマに絶縁膜250Aを曝すことで、絶縁膜250Aへ酸素を導入することができる。
 また、加熱処理を行ってもよい。加熱処理は、前述の加熱処理条件を用いることができる。当該加熱処理によって、絶縁膜250Aの水分濃度および水素濃度を低減させることができる。
 次に、酸化膜230Dを成膜する。また、上記加熱処理後、大気に暴露することなく、連続して酸化膜230Dの成膜を行うことが好ましい。例えば、マルチチャンバー方式の成膜装置などを用いて、加熱処理と成膜処理を異なるチャンバーで、連続して行うことが好ましい。このような処理を行うことによって、絶縁膜250Aの表面などに吸着している水分、水素、炭素などの不純物を除去し、さらに絶縁膜250A中の水分濃度および水素濃度を低減させることができる。当該加熱処理により除去される不純物には、水素と炭素の結合を有する不純物や、水素と酸素の結合を有する不純物なども含まれる。さらに、外気に曝さず連続で加熱処理と成膜を行うことで、水素などの不純物が酸化物230に再侵入することを防ぐことができる。
 酸化膜230Dの成膜については、酸化膜230Cの記載を参照できるため、詳細な説明は省略する。酸化膜230Dは、酸化膜230Cの形成に用いるターゲットと同様のターゲットを用いて形成してもよい。
 酸化膜230Dの成膜は、基板を加熱しながら行うことが好ましい。このとき、基板温度を300℃以上にすることで、酸化物230a、酸化物230b、酸化膜230Cおよび酸化膜230D中の酸素欠損を低減することができる。基板を加熱しながら成膜することで、酸化物230a、酸化物230b、酸化膜230Cおよび酸化膜230Dの結晶性を向上させることもできる。
 特に、酸化膜230Dの成膜時に、スパッタリングガスに含まれる酸素の一部が絶縁膜250Aを介して酸化物230a、酸化物230b及び酸化膜230Cに供給される場合がある。したがって、酸化膜230Dのスパッタリングガスに含まれる酸素の割合は70%以上、好ましくは80%以上、より好ましくは100%とすればよい。また、基板を加熱しながら成膜を行うことによって、当該酸化膜の結晶性を向上させることができる。
 次に、導電膜260Aおよび導電膜260Bを成膜する。導電膜260Aおよび導電膜260Bの成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。例えば、CVD法を用いることが好ましい。本実施の形態では、ALD法を用いて、導電膜260Aを成膜し、CVD法を用いて導電膜260Bを成膜する(図22参照。)。
 次に、CMP処理によって、酸化膜230C、絶縁膜250A、酸化膜230D、導電膜260Aおよび導電膜260Bを絶縁体280が露出するまで研磨することによって、酸化物230c、絶縁体250、酸化物230dおよび導電体260(導電体260aおよび導電体260b)を形成する(図23参照。)。
 次に加熱処理を行っても良い。加熱処理は、前述の加熱処理条件を用いることができる。当該加熱処理によって、絶縁体280の水分濃度および水素濃度を低減させることができる。または、絶縁体274となる絶縁膜の成膜前に加熱処理を行うことが好ましい。加熱処理は、100℃以上400℃以下で行えばよく、例えば200℃で行えばよい。あるいは、該絶縁膜の成膜温度と同じ温度で行うことが好ましい。ここで、成膜温度とは、成膜中の基板温度に限らず、成膜装置の設定温度の場合を含む。例えば、該絶縁膜を250℃で成膜する場合、当該加熱処理は250℃とすることが好ましい。当該加熱処理は、減圧下で行うことが好ましく、例えば、真空雰囲気で行ってもよい。真空雰囲気は、ターボ分子ポンプ等で排気を行うことで維持される。真空雰囲気では、処理室の圧力は、1×10−2Pa以下、好ましくは1×10−3Pa以下とすればよい。
 次に、絶縁体280上に、絶縁体274となる絶縁膜を形成する。絶縁体274となる絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。絶縁体274となる絶縁膜としては、例えば、スパッタリング法によって、酸化アルミニウム膜を成膜することが好ましい。スパッタリング法によって、酸化アルミニウム膜を成膜することによって、絶縁体280が有する水素を酸化物230へ拡散することを抑制することができる場合がある。
 次に加熱処理を行っても良い。加熱処理は、前述の加熱処理条件を用いることができる。当該加熱処理によって、絶縁体280の水分濃度および水素濃度を低減させることができる。
 次に絶縁体274上に、絶縁体281となる絶縁膜を成膜してもよい(図23参照。)。絶縁体281となる絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
 次に、絶縁体254、絶縁体244、絶縁体280、絶縁体274および絶縁体281に、導電体242aおよび導電体242bに達する開口を形成する。当該開口の形成は、リソグラフィー法を用いて行えばよい。
 次に、絶縁体241となる絶縁膜を成膜し、当該絶縁膜を異方性エッチングして絶縁体241を形成する。当該絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。絶縁体241となる絶縁膜としては、酸素の透過を抑制する機能を有する絶縁膜を用いることが好ましい。例えば、ALD法によって、酸化アルミニウム膜を成膜することが好ましい。また、ALD法やCVD法を用いて、窒化シリコン膜を成膜してもよい。ALD法を用いて窒化シリコン膜を成膜する場合、シリコンおよびハロゲンを含むプリカーサや、アミノシラン類のプリカーサを用いることができる。シリコンおよびハロゲンを含むプリカーサとして、SiCl、SiHCl、SiCl、SiCl等を用いることができる。また、アミノシラン類のプリカーサとして、1価、2価、または3価のアミノシラン類を用いることができる。また、窒化ガスとしてアンモニアや、ヒドラジンを用いることができる。また、異方性エッチングは、例えばドライエッチング法などを行えばよい。開口の側壁部をこのような構成とすることで、外方からの酸素の透過を抑制し、次に形成する導電体240aおよび導電体240bの酸化を防止することができる。また、導電体240aおよび導電体240bから、水、水素などの不純物が外部に拡散することを防ぐことができる。
 次に、導電体240aおよび導電体240bとなる導電膜を成膜する。導電体240aおよび導電体240bとなる導電膜は、水、水素など不純物の拡散を抑制する機能を有する導電体を含む積層構造とすることが望ましい。たとえば、窒化タンタル、窒化チタンなどと、タングステン、モリブデン、銅など、と、の積層とすることができる。導電体240となる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。
 次に、CMP処理を行うことで、導電体240aおよび導電体240bとなる導電膜の一部を除去し、絶縁体281を露出する。その結果、上記開口のみに、当該導電膜が残存することで上面が平坦な導電体240aおよび導電体240bを形成することができる(図23参照。)。なお、当該CMP処理により、絶縁体281の一部が除去される場合がある。
 以上により、図4に示すトランジスタ200を有する半導体装置を作製することができる。図17乃至図23に示すように、本実施の形態に示す半導体装置の作製方法を用いることで、トランジスタ200を作製することができる。
<半導体装置の作製方法1−2>
 先の<半導体装置の作製方法1−1>に示したものとは異なる、本発明の一態様に係るトランジスタ200を有する半導体装置の作製方法について、図24乃至図26を用いて説明する。
 図24乃至図26において、各図の(A)は上面図を示す。また、各図の(B)は、(A)に示すA1−A2の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、各図の(C)は、(A)にA3−A4の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。なお、各図の(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
 開口263を形成するまでは、<半導体装置の作製方法1−1>に示した作製方法と同様である。よって、図17乃至図21に係る半導体装置の作製方法を参酌することができる。
 次に、開口263に埋め込むように、酸化膜230Cを成膜する。続いて、酸化膜230Cにドーパント258を添加する(図24参照。)。ドーパント258としては、酸素が好ましい。酸化膜230Cに酸素を添加することで、酸化物230a、酸化物230bおよび酸化物230cの酸素欠損を低減できる。ドーパント258の添加方法としては、イオン化された原料ガスを質量分離して添加するイオン注入法、イオン化された原料ガスを質量分離せずに添加するイオンドーピング法、プラズマイマージョンイオンインプランテーション法などを用いることができる。質量分離を行う場合、添加するイオン種およびその濃度を厳密に制御することができる。一方、質量分離を行わない場合、短時間で高濃度のイオンを添加することができる。また、原子または分子のクラスターを生成してイオン化するイオンドーピング法を用いてもよい。なお、ドーパントを、イオン、ドナー、アクセプター、不純物または元素などと言い換えてもよい。
 次に、酸化膜230C上に、絶縁体250となる絶縁層、酸化物230dとなる酸化膜および導電体260(導電体260aおよび導電体260b)となる導電膜を成膜する。
 次に、CMP処理によって、酸化膜230C、絶縁体250となる絶縁層、酸化物230dとなる酸化膜および導電体260となる導電膜を絶縁体280が露出するまで研磨することによって、酸化物230c、絶縁体250、酸化物230dおよび導電体260(導電体260aおよび導電体260b)を形成する。続いて、絶縁体280にドーパント259を添加する(図25参照。)。ドーパント259としては、酸素が好ましい。絶縁体280に酸素を添加することで、絶縁体280を介して酸化物230a、酸化物230bおよび酸化物230cに酸素を供給でき、酸化物230a、酸化物230bおよび酸化物230cの酸素欠損を低減できる。ドーパント259の添加方法としては、ドーパント258の記載を参照できるため、詳細な説明は省略する。
 次に、絶縁体280上に、絶縁膜275を形成する(図26参照。)。絶縁膜275の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。絶縁膜275としては、例えば、スパッタリング法によって、酸化アルミニウム膜を成膜することが好ましい。スパッタリング法によって、酸化アルミニウム膜を成膜することによって、絶縁体280が有する水素を酸化物230へ拡散することを抑制することができる場合がある。
 次に加熱処理を行っても良い。加熱処理は、100℃以上400℃以下で行えばよく、例えば350℃4時間で行えばよい。当該加熱処理によって、絶縁膜275が有する酸素が絶縁体280に供給され、絶縁体280を介して酸化物230a、酸化物230bおよび酸化物230cに酸素を供給でき、酸化物230a、酸化物230bおよび酸化物230cの酸素欠損を低減できる。また、絶縁体280の水分濃度および水素濃度を低減させることができる。
 次に、CMP処理を行うことで、絶縁膜275を除去し、絶縁体280、酸化物230c、絶縁体250、酸化物230d、導電体260aおよび導電体260bを露出する。
 次に、絶縁体280上に、絶縁体274となる絶縁膜を形成する。絶縁体274上に、絶縁体281となる絶縁膜を成膜してもよい(図23参照。)。
 次に、絶縁体254、絶縁体244、絶縁体280、絶縁体274および絶縁体281に、導電体242aおよび導電体242bに達する開口を形成する。
 次に、絶縁体241となる絶縁膜を成膜し、当該絶縁膜を異方性エッチングして絶縁体241を形成する。
 次に、導電体240aおよび導電体240bとなる導電膜を成膜する。続いて、CMP処理を行うことで、導電体240aおよび導電体240bとなる導電膜の一部を除去し、絶縁体281を露出する。その結果、上記開口のみに、当該導電膜が残存することで上面が平坦な導電体240aおよび導電体240bを形成することができる(図4参照。)。
 以上により、図4に示すトランジスタ200を有する半導体装置を作製することができる。図24乃至図26に示すように、本実施の形態に示す半導体装置の作製方法を用いることで、トランジスタ200を作製することができる。
<半導体装置の作製方法2−1>
 図9に示す、本発明の一態様に係るトランジスタ200Aを有する半導体装置について、作製方法を図27乃至図34を用いて説明する。
 図27乃至図34において、各図の(A)は上面図を示す。また、各図の(B)は、(A)に示すA1−A2の一点鎖線で示す部位に対応する断面図であり、トランジスタ200Aのチャネル長方向の断面図でもある。また、各図の(C)は、(A)にA3−A4の一点鎖線で示す部位に対応する断面図であり、トランジスタ200Aのチャネル幅方向の断面図でもある。なお、各図の(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
 酸化膜230Bを形成するまでは、<半導体装置の作製方法1−1>に示した作製方法と同様である(図27参照)。よって、<半導体装置の作製方法1−1>の記載を参照できるため、詳細な説明は省略する。
 次に、加熱処理を行ってもよい。加熱処理によって、酸化膜230A、および酸化膜230B中の水、水素などの不純物を除去することなどができる。
 次に、酸化膜230A、および酸化膜230Bを島状に加工して、酸化物230a、および酸化物230bを形成する。なお、当該工程において、絶縁体224の酸化物230aと重ならない領域の膜厚が薄くなることがある(図28参照。)。
 なお、酸化膜230A、および酸化膜230Bの加工はリソグラフィー法を用いて行えばよい。また、当該加工はドライエッチング法やウエットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。
 酸化膜230A、および酸化膜230Bの加工の際の不純物などを除去するために、洗浄を行う。洗浄方法としては、洗浄液などを用いたウエット洗浄、プラズマを用いたプラズマ処理、または熱処理による洗浄などがあり、上記洗浄を適宜組み合わせて行ってもよい。
 続いて、加熱処理を行ってもよい。加熱処理の条件は、前述の加熱処理の条件を用いることができる。または、絶縁膜254Aの成膜前に加熱処理を行うことが好ましい。加熱処理は、100℃以上400℃以下で行えばよく、例えば200℃で行えばよい。あるいは、絶縁膜254Aの成膜温度と同じ温度で行うことが好ましい。
 次に、酸化物230a、および酸化物230bを覆って、絶縁膜254Aを成膜する(図28参照。)。絶縁膜254Aの成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて成膜することができる。
 次に、絶縁膜254Aの上に、ダミーゲート層262Aとなるダミーゲート膜を成膜する。
 ダミーゲート層262Aとなるダミーゲート膜は、加工してダミーゲートとして使用する。ダミーゲートとは、仮のゲート電極のことである。つまり、ダミーゲート層262Aとなるダミーゲート膜を加工することで、仮のゲート電極を形成し、後の工程において該ダミーゲートを除去し、代わりに導電膜等によるゲート電極を形成する。従って、ダミーゲート層262Aとなるダミーゲート膜は微細加工が容易であり、かつ、除去も容易な膜を用いることが好ましい。
 ダミーゲート層262Aとなるダミーゲート膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。例えば、絶縁体、半導体、または導電体を用いることができる。具体的には、ポリシリコン、微結晶シリコン、アモルファスシリコンなどのシリコン、アルミニウム、チタン、タングステンなどの金属膜などを用いればよい。または、塗布法を用いて、炭素を含む膜、SOG(Spin On Glass)、樹脂膜などを形成しても良い。樹脂としては、例えば、フォトレジスト、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネートまたはアクリルなどがある。SOG、樹脂膜を塗布法によって形成することで、ダミーゲート膜の表面を平坦にすることができる。このように、ダミーゲート膜の表面を平坦にすることで、微細加工が容易となり、さらに、除去も容易である。
 また、ダミーゲート層262Aとなるダミーゲート膜は、異なる膜種を用いて多層膜とすることもできる。例えば、ダミーゲート層262Aとなるダミーゲート膜を導電膜と該導電膜上に樹脂膜を形成する2層構造の膜とすることができる。ダミーゲート膜をこのような構造とすることで、例えば、後のCMP工程において、該導電膜がCMP処理のストッパ膜として機能する場合がある。または、CMP処理の終点検出が可能となる場合があり、加工ばらつきの低減が可能となる場合がある。
 次に、リソグラフィー法によって、ダミーゲート層262Aとなるダミーゲート膜をエッチングし、ダミーゲート層262Aを形成する(図28参照。)。ダミーゲート層262Aは、少なくとも一部が、導電体205および酸化物230と重なるように形成する。
 次に、ダミーゲート層262Aをマスクとして、酸化物230bにドーパント257を添加する(図29参照。)。これにより、酸化物230bのダミーゲート層262Aと重畳していない領域に、ドーパント257を含む、層253aおよび層253bが形成される。なお、図29において、ドーパント257が、酸化物230bのダミーゲート層262Aと重畳する領域に拡散して添加される様子を示している。このため、層253aおよび層253bの一部は、ダミーゲート層262Aと重畳する領域にも形成されている。このように、ダミーゲート層262Aのチャネル長方向の長さによって、層253aと層253bの間の距離、つまりチャネル長を制御することができる。
 ドーパント257の添加方法としては、イオン化された原料ガスを質量分離して添加するイオン注入法、イオン化された原料ガスを質量分離せずに添加するイオンドーピング法、プラズマイマージョンイオンインプランテーション法などを用いることができる。質量分離を行う場合、添加するイオン種およびその濃度を厳密に制御することができる。一方、質量分離を行わない場合、短時間で高濃度のイオンを添加することができる。また、原子または分子のクラスターを生成してイオン化するイオンドーピング法を用いてもよい。なお、ドーパントを、イオン、ドナー、アクセプター、不純物または元素などと言い換えてもよい。
 ドーパント257としては、上述の酸素欠損を形成する元素、または酸素欠損と結合する元素などを用いればよい。このような元素としては、代表的には、ホウ素、またはリンが挙げられる。また、水素、炭素、窒素、フッ素、硫黄、塩素、チタン、希ガス等を用いてもよい。また、希ガスの代表例としては、ヘリウム、ネオン、アルゴン、クリプトン、及びキセノン等がある。また、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどの金属元素の中から選ばれるいずれか一つまたは複数の金属元素を添加してもよい。上述した中でもドーパント257としては、ホウ素、及びリンが好ましい。ホウ素、リンをドーパント257として用いる場合、アモルファスシリコン、または低温ポリシリコンの製造ラインの装置を使用することができるため、設備投資を抑制することができる。
 また、図29では、ドーパント257を絶縁体214の上面に概略垂直に添加しているが、これに限られず、ドーパント257の添加を絶縁体214の上面に対して傾斜させて行ってもよい。絶縁体214の上面に対して傾斜させてドーパントを添加させることにより、ダミーゲート層262Aと重畳する領域の一部に層253aおよび層253bを形成することが容易になる。
 また、本実施の形態の作製方法では、ドーパント257は、絶縁膜254Aを介して酸化物230に添加される。当該作製方法とすることで、絶縁膜254Aにもドーパント257が添加される。すなわち、酸化物230、及び絶縁膜254Aの双方がドーパント257に含まれる元素を有する。また、絶縁膜254Aが過剰酸素を有する場合、ドーパント257によって、外部への過剰酸素の拡散を抑制できる場合がある。
 以上のように、層253を形成することにより、後の工程で形成する導電体260を、層253aと層253bの間に自己整合的に配置することができる。
 次に、絶縁膜254A、およびダミーゲート層262A上に、絶縁膜280Aを成膜する(図30参照。)。絶縁膜280Aの成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。
 次に、絶縁膜280A、およびダミーゲート層262Aの一部を、ダミーゲート層262Aの一部が露出するまで除去し、絶縁体280、およびダミーゲート262を形成する(図31参照。)。絶縁体280、およびダミーゲート262の形成にはCMP処理を用いることが好ましい。
 また、上述のようにダミーゲート層262Aを、例えば、導電膜と該導電膜上に樹脂膜を形成する2層構造の膜とすることで、CMP工程において、該導電膜がCMP処理のストッパ膜として機能する場合がある。または、該導電膜によってCMP処理の終点検出が可能となる場合があり、ダミーゲート262の高さのばらつきの低減が可能となる場合がある。図31(B)に示すように、ダミーゲート262の上面と、絶縁体280の上面が略一致する。
 次に、ダミーゲート262、およびダミーゲート262と重畳する絶縁膜254Aの一部を除去し、開口263を形成する(図32参照。)。ダミーゲート262、および絶縁膜254Aの除去は、ウエットエッチング、ドライエッチング、またはアッシングなどを用いて行うことができる。または、適宜、上記の処理を複数組み合わせて行ってもよい。例えば、アッシング処理の後に、ウエットエッチング処理を行うなどがある。絶縁膜254Aの一部を除去することにより、絶縁体254を形成する。ダミーゲート262、および絶縁膜254Aを除去することにより、開口263から酸化物230bの表面の一部が露出する。このとき、開口263から層253の表面の一部が露出する場合がある。
 次に、酸化膜230Cの成膜前に加熱処理を行うことが好ましい。加熱処理は、100℃以上400℃以下で行えばよく、例えば200℃で行えばよい。あるいは、酸化膜230Cの成膜温度と同じ温度で行うことが好ましい。ここで、成膜温度とは、成膜中の基板温度に限らず、成膜装置の設定温度の場合を含む。例えば、酸化膜230Cを300℃で成膜する場合、当該加熱処理は300℃とすることが好ましい。当該加熱処理は、減圧下で行うことが好ましく、例えば、真空雰囲気で行ってもよい。真空雰囲気は、ターボ分子ポンプ等で排気を行うことで維持される。真空雰囲気では、処理室の圧力は、1×10−2Pa以下、好ましくは1×10−3Pa以下とすればよい。
 次に、開口263に埋め込むように、酸化膜230Cを成膜する。また、上記加熱処理後、大気に暴露することなく、連続して酸化膜230Cの成膜を行うことが好ましい。例えば、マルチチャンバー方式の成膜装置などを用いて、加熱処理と成膜処理を異なるチャンバーで、連続して行うことが好ましい。
 酸化膜230Cの成膜はスパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。酸化物230cに求める特性に合わせて、酸化膜230A、または酸化膜230Bと同様の成膜方法を用いて、酸化物230cとなる酸化膜230Cを成膜すればよい。酸化膜230Cとして、In−Ga−Zn酸化物や、Inを含まない酸化物を用いることができる。Inを含まない酸化物として、Ga−Zn酸化物や、酸化ガリウムなどを用いることができる。また、酸化膜230Cとして、In−Ga−Zn酸化物とInを含まない酸化物の積層構造を用いてもよい。
 また、酸化膜230Cは、第1の酸化膜と、第1の酸化膜上の第2の酸化膜からなる積層構造を有していてもよく、酸化膜230Bの形成に用いたターゲットと同様のターゲットを用いて第1の酸化膜を形成し、酸化膜230Aの形成に用いたターゲットと同様のターゲットを用いて第2の酸化膜を形成してもよい。
 酸化膜230Cの成膜は、基板を加熱しながら行うことが好ましい。このとき、基板温度を300℃以上にすることで、酸化物230a、酸化物230b、および酸化膜230C中の酸素欠損を低減することができる。また、例えば、後述する絶縁膜250Aの成膜温度と同じ温度で成膜してもよい。また、このように基板を加熱しながら成膜することで、酸化物230a、酸化物230b、および酸化膜230Cの結晶性の向上を図ることもできる。
 特に、酸化膜230Cの成膜時に、スパッタリングガスに含まれる酸素の一部が酸化物230aおよび酸化物230bに供給される場合がある。したがって、酸化膜230Cのスパッタリングガスに含まれる酸素の割合は70%以上、好ましくは80%以上、より好ましくは100%とすればよい。また、基板を加熱しながら成膜を行うことによって、当該酸化膜の結晶性を向上させることができる。
 次に、絶縁膜250Aの成膜前に加熱処理を行うことが好ましい。加熱処理は、100℃以上400℃以下で行えばよく、例えば200℃で行えばよい。あるいは、絶縁膜250Aの成膜温度と同じ温度で行うことが好ましい。ここで、成膜温度とは、成膜中の基板温度に限らず、成膜装置の設定温度の場合を含む。例えば、絶縁膜250Aを350℃で成膜する場合、当該加熱処理は350℃とすることが好ましい。当該加熱処理は、減圧下で行うことが好ましく、例えば、真空雰囲気で行ってもよい。真空雰囲気は、ターボ分子ポンプ等で排気を行うことで維持される。真空雰囲気では、処理室の圧力は、1×10−2Pa以下、好ましくは1×10−3Pa以下とすればよい。
 次に、絶縁膜250Aを成膜する。絶縁膜250Aは、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて成膜することができる。絶縁膜250Aとしては、ALD法を用いて、酸化シリコン、酸化ハフニウム、または酸化ガリウムなどを成膜することが好ましい。例えば、絶縁膜250Aとして、酸化シリコンと、酸化シリコン上の酸化ガリウムの積層膜を用いればよい。なお、絶縁膜250Aを成膜する際の成膜温度は、300℃以上450℃未満、好ましくは300℃以上400℃未満、特に350℃前後とすることが好ましい。例えば、絶縁膜250Aを、350℃で成膜することで、不純物が少ない絶縁体を成膜することができる。
 なお、マイクロ波で酸素を励起し、高密度な酸素プラズマを発生させ、当該酸素プラズマに絶縁膜250Aを曝すことで、絶縁膜250Aへ酸素を導入することができる。
 また、加熱処理を行ってもよい。加熱処理は、前述の加熱処理条件を用いることができる。当該加熱処理によって、絶縁膜250Aの水分濃度および水素濃度を低減させることができる。
 次に、酸化膜230Dを成膜する。また、上記加熱処理後、大気に暴露することなく、連続して酸化膜230Dの成膜を行うことが好ましい。例えば、マルチチャンバー方式の成膜装置などを用いて、加熱処理と成膜処理を異なるチャンバーで、連続して行うことが好ましい。
 酸化膜230Dの成膜については、酸化膜230Cの記載を参照できるため、詳細な説明は省略する。酸化膜230Dは、酸化膜230Cの形成に用いるターゲットと同様のターゲットを用いて形成してもよい。
 酸化膜230Dの成膜は、基板を加熱しながら行うことが好ましい。このとき、基板温度を300℃以上にすることで、酸化物230a、酸化物230b、酸化膜230Cおよび酸化膜230D中の酸素欠損を低減することができる。基板を加熱しながら成膜することで、酸化物230a、酸化物230b、酸化膜230Cおよび酸化膜230Dの結晶性を向上させることもできる。
 特に、酸化膜230Dの成膜時に、スパッタリングガスに含まれる酸素の一部が絶縁膜250Aを介して酸化物230a、酸化物230b及び酸化膜230Cに供給される場合がある。したがって、酸化膜230Dのスパッタリングガスに含まれる酸素の割合は70%以上、好ましくは80%以上、より好ましくは100%とすればよい。また、基板を加熱しながら成膜を行うことによって、当該酸化膜の結晶性を向上させることができる。
 次に、導電膜260Aおよび導電膜260Bを成膜する。導電膜260Aおよび導電膜260Bの成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。例えば、CVD法を用いることが好ましい。本実施の形態では、ALD法を用いて、導電膜260Aを成膜し、CVD法を用いて導電膜260Bを成膜する(図33参照。)。
 次に、CMP処理によって、酸化膜230C、絶縁膜250A、酸化膜230D、導電膜260Aおよび導電膜260Bを絶縁体280が露出するまで研磨することによって、酸化物230c、絶縁体250、酸化物230dおよび導電体260(導電体260aおよび導電体260b)を形成する(図34参照。)。
 次に加熱処理を行っても良い。加熱処理は、前述の加熱処理条件を用いることができる。当該加熱処理によって、絶縁体280の水分濃度および水素濃度を低減させることができる。または、絶縁体274となる絶縁膜の成膜前に加熱処理を行うことが好ましい。加熱処理は、100℃以上400℃以下で行えばよく、例えば200℃で行えばよい。あるいは、該絶縁膜の成膜温度と同じ温度で行うことが好ましい。ここで、成膜温度とは、成膜中の基板温度に限らず、成膜装置の設定温度の場合を含む。例えば、該絶縁膜を250℃で成膜する場合、当該加熱処理は250℃とすることが好ましい。当該加熱処理は、減圧下で行うことが好ましく、例えば、真空雰囲気で行ってもよい。真空雰囲気は、ターボ分子ポンプ等で排気を行うことで維持される。真空雰囲気では、処理室の圧力は、1×10−2Pa以下、好ましくは1×10−3Pa以下とすればよい。
 次に、絶縁体280上に、絶縁体274となる絶縁膜を形成する(図34参照。)。絶縁体274となる絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。絶縁体274となる絶縁膜としては、例えば、スパッタリング法によって、酸化アルミニウム膜を成膜することが好ましい。スパッタリング法によって、酸化アルミニウム膜を成膜することによって、絶縁体280が有する水素を酸化物230へ拡散することを抑制することができる場合がある。
 次に加熱処理を行っても良い。加熱処理は、前述の加熱処理条件を用いることができる。当該加熱処理によって、絶縁体280の水分濃度および水素濃度を低減させることができる。
 次に絶縁体274上に、絶縁体281となる絶縁膜を成膜してもよい。絶縁体281となる絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる(図34参照。)。
 次に、絶縁体254、絶縁体280、絶縁体274および絶縁体281に、層253aおよび層253bに達する開口を形成する。当該開口の形成は、リソグラフィー法を用いて行えばよい。
 次に、絶縁体241となる絶縁膜を成膜し、当該絶縁膜を異方性エッチングして絶縁体241を形成する。当該絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。絶縁体241となる絶縁膜としては、酸素の透過を抑制する機能を有する絶縁膜を用いることが好ましい。例えば、ALD法によって、酸化アルミニウム膜を成膜することが好ましい。また、ALD法やCVD法を用いて、窒化シリコン膜を成膜してもよい。ALD法を用いて窒化シリコン膜を成膜する場合、シリコンおよびハロゲンを含むプリカーサや、アミノシラン類のプリカーサを用いることができる。シリコンおよびハロゲンを含むプリカーサとして、SiCl、SiHCl、SiCl、SiCl等を用いることができる。また、アミノシラン類のプリカーサとして、1価、2価、または3価のアミノシラン類を用いることができる。また、窒化ガスとしてアンモニアや、ヒドラジンを用いることができる。また、異方性エッチングは、例えばドライエッチング法などを行えばよい。開口の側壁部をこのような構成とすることで、外方からの酸素の透過を抑制し、次に形成する導電体240aおよび導電体240bの酸化を防止することができる。また、導電体240aおよび導電体240bから、水、水素などの不純物が外部に拡散することを防ぐことができる。
 次に、導電体240aおよび導電体240bとなる導電膜を成膜する。導電体240aおよび導電体240bとなる導電膜は、水、水素など不純物の拡散を抑制する機能を有する導電体を含む積層構造とすることが望ましい。たとえば、窒化タンタル、窒化チタンなどと、タングステン、モリブデン、銅など、と、の積層とすることができる。導電体240となる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。
 次に、CMP処理を行うことで、導電体240aおよび導電体240bとなる導電膜の一部を除去し、絶縁体281を露出する。その結果、上記開口のみに、当該導電膜が残存することで上面が平坦な導電体240aおよび導電体240bを形成することができる(図9参照。)。なお、当該CMP処理により、絶縁体281の一部が除去される場合がある。
 以上により、図9に示すトランジスタ200Aを有する半導体装置を作製することができる。図27乃至図34に示すように、本実施の形態に示す半導体装置の作製方法を用いることで、トランジスタ200Aを作製することができる。
<半導体装置の作製方法2−2>
 先の<半導体装置の作製方法2−1>に示したものとは異なる、本発明の一態様に係るトランジスタ200Aを有する半導体装置の作製方法について、図35乃至図37を用いて説明する。
 図35乃至図37において、各図の(A)は上面図を示す。また、各図の(B)は、(A)に示すA1−A2の一点鎖線で示す部位に対応する断面図であり、トランジスタ200Aのチャネル長方向の断面図でもある。また、各図の(C)は、(A)にA3−A4の一点鎖線で示す部位に対応する断面図であり、トランジスタ200Aのチャネル幅方向の断面図でもある。なお、各図の(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
 開口263を形成するまでは、<半導体装置の作製方法2−1>に示した作製方法と同様である。よって、図27乃至図32に係る半導体装置の作製方法を参酌することができる。
 次に、開口263に埋め込むように、酸化膜230Cを成膜する。続いて、酸化膜230Cにドーパント258を添加する(図35参照。)。ドーパント258としては、酸素が好ましい。酸化膜230Cに酸素を添加することで、酸化物230a、酸化物230bおよび酸化物230cの酸素欠損を低減できる。ドーパント258の添加方法としては、ドーパント257の記載を参照できるため、詳細な説明は省略する。
 次に、酸化膜230C上に、絶縁体250となる絶縁層、酸化物230dとなる酸化膜および導電体260(導電体260aおよび導電体260b)となる導電膜を成膜する。
 次に、CMP処理によって、酸化膜230C、絶縁体250となる絶縁層、酸化物230dとなる酸化膜および導電体260となる導電膜を絶縁体280が露出するまで研磨することによって、酸化物230c、絶縁体250、酸化物230dおよび導電体260(導電体260aおよび導電体260b)を形成する。続いて、絶縁体280にドーパント259を添加する(図36参照。)。ドーパント259としては、酸素が好ましい。絶縁体280に酸素を添加することで、絶縁体280を介して酸化物230a、酸化物230bおよび酸化物230cに酸素を供給でき、酸化物230a、酸化物230bおよび酸化物230cの酸素欠損を低減できる。ドーパント259の添加方法としては、ドーパント257の記載を参照できるため、詳細な説明は省略する。
 次に、絶縁体280上に、絶縁膜275を形成する(図37参照。)。絶縁膜275の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。絶縁膜275としては、例えば、スパッタリング法によって、酸化アルミニウム膜を成膜することが好ましい。スパッタリング法によって、酸化アルミニウム膜を成膜することによって、絶縁体280が有する水素を酸化物230へ拡散することを抑制することができる場合がある。
 次に加熱処理を行っても良い。加熱処理は、100℃以上400℃以下で行えばよく、例えば350℃4時間で行えばよい。当該加熱処理によって、絶縁膜275が有する酸素が絶縁体280に供給され、絶縁体280を介して酸化物230a、酸化物230bおよび酸化物230cに酸素を供給でき、酸化物230a、酸化物230bおよび酸化物230cの酸素欠損を低減できる。また、絶縁体280の水分濃度および水素濃度を低減させることができる。
 次に、CMP処理を行うことで、絶縁膜275を除去し、絶縁体280、酸化物230c、絶縁体250、酸化物230d、導電体260aおよび導電体260bを露出する。
 次に、絶縁体280上に、絶縁体274となる絶縁膜を形成する。絶縁体274上に、絶縁体281となる絶縁体を成膜してもよい(図34参照。)。
 次に、絶縁体254、絶縁体244、絶縁体280、絶縁体274および絶縁体281に、層253aおよび層253bに達する開口を形成する。
 次に、絶縁体241となる絶縁膜を成膜し、当該絶縁膜を異方性エッチングして絶縁体241を形成する。
 次に、導電体240aおよび導電体240bとなる導電膜を成膜する。続いて、CMP処理を行うことで、導電体240aおよび導電体240bとなる導電膜の一部を除去し、絶縁体281を露出する。その結果、上記開口のみに、当該導電膜が残存することで上面が平坦な導電体240aおよび導電体240bを形成することができる(図9参照。)。
 以上により、図9に示すトランジスタ200Aを有する半導体装置を作製することができる。図35乃至図37に示すように、本実施の形態に示す半導体装置の作製方法を用いることで、トランジスタ200Aを作製することができる。
<半導体装置の作製方法3−1>
 図13に示す、本発明の一態様に係るトランジスタ200Bを有する半導体装置について、作製方法を図38乃至図46を用いて説明する。
 図38乃至図46において、各図の(A)は上面図を示す。また、各図の(B)は、(A)に示すA1−A2の一点鎖線で示す部位に対応する断面図であり、トランジスタ200Bのチャネル長方向の断面図でもある。また、各図の(C)は、(A)にA3−A4の一点鎖線で示す部位に対応する断面図であり、トランジスタ200Bのチャネル幅方向の断面図でもある。なお、各図の(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
 酸化膜230Bを形成するまでは、<半導体装置の作製方法1−1>に示した作製方法と同様である(図38参照)。よって、<半導体装置の作製方法1−1>の記載を参照できるため、詳細な説明は省略する。
 次に、加熱処理を行ってもよい。加熱処理によって、酸化膜230A、および酸化膜230B中の水、水素などの不純物を除去することなどができる。
 次に、酸化膜230A、および酸化膜230Bを島状に加工して、酸化物230a、および酸化物230bを形成する。なお、当該工程において、絶縁体224の酸化物230aと重ならない領域の膜厚が薄くなることがある(図39参照。)。
 なお、酸化膜230A、および酸化膜230Bの加工はリソグラフィー法を用いて行えばよい。また、当該加工はドライエッチング法やウエットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。
 酸化膜230A、および酸化膜230Bの加工の際の不純物などを除去するために、洗浄を行う。洗浄方法としては、洗浄液などを用いたウエット洗浄、プラズマを用いたプラズマ処理、または熱処理による洗浄などがあり、上記洗浄を適宜組み合わせて行ってもよい。
 続いて、加熱処理を行ってもよい。加熱処理の条件は、前述の加熱処理の条件を用いることができる。または、絶縁膜254Aの成膜前に加熱処理を行うことが好ましい。加熱処理は、100℃以上400℃以下で行えばよく、例えば200℃で行えばよい。あるいは、絶縁膜254Aの成膜温度と同じ温度で行うことが好ましい。
 次に、酸化物230a、および酸化物230bを覆って、絶縁膜254Aを成膜する(図39参照。)。絶縁膜254Aの成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて成膜することができる。
 絶縁膜254Aは、水素などの不純物や、酸素の拡散を抑制する機能を有する絶縁膜を用いることが好ましい。例えば、スパッタリング法によって、酸化アルミニウム膜を成膜することが好ましい。スパッタリング法によって、酸素を含むガスを用いて酸化アルミニウム膜を成膜することによって、絶縁体224中へ酸素を注入することができる。つまり、絶縁体224は過剰酸素を有することができる。また、絶縁膜254Aとして、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)、窒化アルミニウムを含む絶縁体、窒化アルミニウムチタン、窒化チタン、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、または空孔を有する酸化シリコンなどを用いることができる。
 また、絶縁膜254Aとして、高温で基板加熱を行いながら、酸化アルミニウムを成膜してもよい。絶縁膜254A成膜時の基板加熱温度は、200℃以上、好ましくは250℃以上、より好ましくは350℃以上にすればよい。
 また、絶縁膜254Aは、積層構造としてもよい。
 次に、絶縁膜254Aの上に、ダミーゲート層262Aとなるダミーゲート膜を成膜する。
 ダミーゲート層262Aとなるダミーゲート膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。例えば、絶縁体、半導体、または導電体を用いることができる。具体的には、ポリシリコン、微結晶シリコン、アモルファスシリコンなどのシリコン、アルミニウム、チタン、タングステンなどの金属膜などを用いればよい。または、塗布法を用いて、炭素を含む膜、SOG(Spin On Glass)、樹脂膜などを形成しても良い。
 また、ダミーゲート層262Aとなるダミーゲート膜は、異なる膜種を用いて多層膜とすることもできる。
 次に、リソグラフィー法によって、ダミーゲート層262Aとなるダミーゲート膜をエッチングし、ダミーゲート層262Aを形成する(図39参照。)。ダミーゲート層262Aは、少なくとも一部が、導電体205および酸化物230と重なるように形成する。
 次に、ダミーゲート層262Aをマスクとして、酸化物230bにドーパント257を添加する(図40参照。)。これにより、酸化物230bのダミーゲート層262Aと重畳していない領域に、ドーパント257を含む、層253aおよび層253bが形成される。なお、図40において、ドーパント257が、酸化物230bのダミーゲート層262Aと重畳する領域に拡散して添加される様子を示している。このため、層253aおよび層253bの一部は、ダミーゲート層262Aと重畳する領域にも形成されている。このように、ダミーゲート層262Aのチャネル長方向の長さによって、層253aと層253bの間の距離、つまりチャネル長を制御することができる。
 ドーパント257の添加方法、及びドーパント257として用いることができる元素は、<半導体装置の作製方法2−1>の記載を参照できるため、詳細な説明は省略する。
 また、図40では、ドーパント257を絶縁体214の上面に概略垂直に添加しているが、これに限られず、ドーパント257の添加を絶縁体214の上面に対して傾斜させて行ってもよい。絶縁体214の上面に対して傾斜させてドーパントを添加させることにより、ダミーゲート層262Aと重畳する領域の一部に層253aおよび層253bを形成することが容易になる。
 また、本実施の形態の作製方法では、ドーパント257は、絶縁膜254Aを介して酸化物230に添加される。当該作製方法とすることで、絶縁膜254Aにもドーパント257が添加される。すなわち、酸化物230、及び絶縁膜254Aの双方がドーパント257に含まれる元素を有する。また、絶縁膜254Aが過剰酸素を有する場合、ドーパント257によって、外部への過剰酸素の拡散を抑制できる場合がある。
 以上のように、層253を形成することにより、後の工程で形成する導電体260を、層253aと層253bの間に自己整合的に配置することができる。
 次に、絶縁膜254A、およびダミーゲート層262A上に、絶縁膜279Aを成膜する(図41参照。)。絶縁膜279Aの成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。
 次に、絶縁膜279A、およびダミーゲート層262Aの一部を、ダミーゲート層262Aの一部が露出するまで除去し、絶縁体279、およびダミーゲート262を形成する(図42参照。)。絶縁体279、およびダミーゲート262の形成にはCMP処理を用いることが好ましい。
 また、上述のようにダミーゲート層262Aを、例えば、導電膜と該導電膜上に樹脂膜を形成する2層構造の膜とすることで、CMP工程において、該導電膜がCMP処理のストッパ膜として機能する場合がある。または、該導電膜によってCMP処理の終点検出が可能となる場合があり、ダミーゲート262の高さのばらつきの低減が可能となる場合がある。図42(B)に示すように、ダミーゲート262の上面と、絶縁体279の上面が略一致する。
 次に、ダミーゲート262、およびダミーゲート262と重畳する絶縁膜254Aの一部を除去し、開口263を形成する(図43参照。)。ダミーゲート262、および絶縁膜254Aの除去は、ウエットエッチング、ドライエッチング、またはアッシングなどを用いて行うことができる。または、適宜、上記の処理を複数組み合わせて行ってもよい。例えば、アッシング処理の後に、ウエットエッチング処理を行うなどがある。絶縁膜254Aの一部を除去することにより、絶縁体254を形成する。ダミーゲート262、および絶縁膜254Aを除去することにより、開口263から酸化物230bの表面の一部が露出する。
 次に、絶縁体279を除去する。絶縁体279の除去は、ウェットエッチング、またはドライエッチングなどを用いて行うことができる。
 次に、酸化膜230Cの成膜前に加熱処理を行うことが好ましい。加熱処理は、100℃以上400℃以下で行えばよく、例えば200℃で行えばよい。あるいは、酸化膜230Cの成膜温度と同じ温度で行うことが好ましい。ここで、成膜温度とは、成膜中の基板温度に限らず、成膜装置の設定温度の場合を含む。例えば、酸化膜230Cを300℃で成膜する場合、当該加熱処理は300℃とすることが好ましい。当該加熱処理は、減圧下で行うことが好ましく、例えば、真空雰囲気で行ってもよい。真空雰囲気は、ターボ分子ポンプ等で排気を行うことで維持される。真空雰囲気では、処理室の圧力は、1×10−2Pa以下、好ましくは1×10−3Pa以下とすればよい。
 次に、絶縁体254及び酸化物230b上に、酸化膜230Cを成膜する。また、上記加熱処理後、大気に暴露することなく、連続して酸化膜230Cの成膜を行うことが好ましい。例えば、マルチチャンバー方式の成膜装置などを用いて、加熱処理と成膜処理を異なるチャンバーで、連続して行うことが好ましい。
 酸化膜230Cの成膜はスパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。酸化物230cに求める特性に合わせて、酸化膜230A、または酸化膜230Bと同様の成膜方法を用いて、酸化物230cとなる酸化膜230Cを成膜すればよい。酸化膜230Cとして、In−Ga−Zn酸化物や、Inを含まない酸化物を用いることができる。Inを含まない酸化物として、Ga−Zn酸化物や、酸化ガリウムなどを用いることができる。また、酸化膜230Cとして、In−Ga−Zn酸化物とInを含まない酸化物の積層構造を用いてもよい。
 また、酸化膜230Cは、第1の酸化膜と、第1の酸化膜上の第2の酸化膜からなる積層構造を有していてもよく、酸化膜230Bの形成に用いたターゲットと同様のターゲットを用いて第1の酸化膜を形成し、酸化膜230Aの形成に用いたターゲットと同様のターゲットを用いて第2の酸化膜を形成してもよい。
 酸化膜230Cの成膜は、基板を加熱しながら行うことが好ましい。このとき、基板温度を300℃以上にすることで、酸化物230a、酸化物230b、および酸化膜230C中の酸素欠損を低減することができる。また、例えば、後述する絶縁膜250Aの成膜温度と同じ温度で成膜してもよい。また、このように基板を加熱しながら成膜することで、酸化物230a、酸化物230b、および酸化膜230Cの結晶性の向上を図ることもできる。
 特に、酸化膜230Cの成膜時に、スパッタリングガスに含まれる酸素の一部が酸化物230aおよび酸化物230bに供給される場合がある。したがって、酸化膜230Cのスパッタリングガスに含まれる酸素の割合は70%以上、好ましくは80%以上、より好ましくは100%とすればよい。また、基板を加熱しながら成膜を行うことによって、当該酸化膜の結晶性を向上させることができる。
 次に、絶縁膜250Aの成膜前に加熱処理を行うことが好ましい。加熱処理は、100℃以上400℃以下で行えばよく、例えば200℃で行えばよい。あるいは、絶縁膜250Aの成膜温度と同じ温度で行うことが好ましい。ここで、成膜温度とは、成膜中の基板温度に限らず、成膜装置の設定温度の場合を含む。例えば、絶縁膜250Aを350℃で成膜する場合、当該加熱処理は350℃とすることが好ましい。当該加熱処理は、減圧下で行うことが好ましく、例えば、真空雰囲気で行ってもよい。真空雰囲気は、ターボ分子ポンプ等で排気を行うことで維持される。真空雰囲気では、処理室の圧力は、1×10−2Pa以下、好ましくは1×10−3Pa以下とすればよい。
 次に、絶縁膜250Aを成膜する。絶縁膜250Aは、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて成膜することができる。絶縁膜250Aとしては、ALD法を用いて、酸化シリコン、酸化ハフニウム、または酸化ガリウムなどを成膜することが好ましい。例えば、絶縁膜250Aとして、酸化シリコンと、酸化シリコン上の酸化ガリウムの積層膜を用いればよい。なお、絶縁膜250Aを成膜する際の成膜温度は、300℃以上450℃未満、好ましくは300℃以上400℃未満、特に350℃前後とすることが好ましい。例えば、絶縁膜250Aを、350℃で成膜することで、不純物が少ない絶縁体を成膜することができる。
 なお、マイクロ波で酸素を励起し、高密度な酸素プラズマを発生させ、当該酸素プラズマに絶縁膜250Aを曝すことで、絶縁膜250Aへ酸素を導入することができる。
 また、加熱処理を行ってもよい。加熱処理は、前述の加熱処理条件を用いることができる。当該加熱処理によって、絶縁膜250Aの水分濃度および水素濃度を低減させることができる。
 次に、酸化膜230Dを成膜する。また、上記加熱処理後、大気に暴露することなく、連続して酸化膜230Dの成膜を行うことが好ましい。例えば、マルチチャンバー方式の成膜装置などを用いて、加熱処理と成膜処理を異なるチャンバーで、連続して行うことが好ましい。
 酸化膜230Dの成膜については、酸化膜230Cの記載を参照できるため、詳細な説明は省略する。酸化膜230Dは、酸化膜230Cの形成に用いるターゲットと同様のターゲットを用いて形成してもよい。
 酸化膜230Dの成膜は、基板を加熱しながら行うことが好ましい。このとき、基板温度を300℃以上にすることで、酸化物230a、酸化物230b、酸化膜230Cおよび酸化膜230D中の酸素欠損を低減することができる。基板を加熱しながら成膜することで、酸化物230a、酸化物230b、酸化膜230Cおよび酸化膜230Dの結晶性を向上させることもできる。
 特に、酸化膜230Dの成膜時に、スパッタリングガスに含まれる酸素の一部が絶縁膜250Aを介して酸化物230a、酸化物230b及び酸化膜230Cに供給される場合がある。したがって、酸化膜230Dのスパッタリングガスに含まれる酸素の割合は70%以上、好ましくは80%以上、より好ましくは100%とすればよい。また、基板を加熱しながら成膜を行うことによって、当該酸化膜の結晶性を向上させることができる。
 次に、導電膜260Aおよび導電膜260Bを成膜する。導電膜260Aおよび導電膜260Bの成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。例えば、CVD法を用いることが好ましい。本実施の形態では、ALD法を用いて、導電膜260Aを成膜し、CVD法を用いて導電膜260Bを成膜する(図44参照。)。
 次に、導電膜260Aおよび導電膜260Bを加工して、導電体260(導電体260aおよび導電体260b)を形成する。
 次に、導電体260及び酸化膜230Dを覆うように、絶縁体270となる絶縁膜270Aを形成する。絶縁膜270Aは、絶縁体254に用いた材料と同様に、水素などの不純物や、酸素の拡散を抑制する機能を有する絶縁膜を用いることが好ましい。例えば、絶縁膜270Aとして、ALD法を用いて、酸化アルミニウムを形成することが好ましい。または、絶縁膜270Aとして、スパッタリング法を用いて酸化アルミニウムを形成してもよい(図45参照。)。
 次に、絶縁体270、酸化膜230D、絶縁膜250Aおよび酸化膜230Cを加工して、絶縁体270、酸化物230d、絶縁体250および酸化物230cを形成する(図46参照。)。絶縁膜250Aおよび酸化膜230Cの加工は、導電膜260Aおよび導電膜260Bの加工と連続して行ってもよい。この場合、導電体260の側端部、絶縁体250の側端部、および酸化物230cの側端部は、同一面内に位置する場合がある。あるいは、導電膜260Aおよび導電膜260Bの加工後に別途マスクを設け、図46(A)に示す上面図のように、絶縁体270、酸化物230d、絶縁体250および酸化物230cが導電体260を包含するように絶縁体270、酸化膜230D、絶縁膜250Aおよび酸化膜230Cを加工してもよい。
 次に加熱処理を行っても良い。加熱処理は、前述の加熱処理条件を用いることができる。当該加熱処理によって、絶縁体280の水分濃度および水素濃度を低減させることができる。または、絶縁体274となる絶縁膜の成膜前に加熱処理を行うことが好ましい。加熱処理は、100℃以上400℃以下で行えばよく、例えば200℃で行えばよい。あるいは、該絶縁膜の成膜温度と同じ温度で行うことが好ましい。ここで、成膜温度とは、成膜中の基板温度に限らず、成膜装置の設定温度の場合を含む。例えば、該絶縁膜を250℃で成膜する場合、当該加熱処理は250℃とすることが好ましい。当該加熱処理は、減圧下で行うことが好ましく、例えば、真空雰囲気で行ってもよい。真空雰囲気は、ターボ分子ポンプ等で排気を行うことで維持される。真空雰囲気では、処理室の圧力は、1×10−2Pa以下、好ましくは1×10−3Pa以下とすればよい。
 次に、絶縁体270上に、絶縁体280を形成する。絶縁体280の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。
 次に、絶縁体280上に、絶縁体274となる絶縁膜を形成する(図46参照。)。絶縁体274となる絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。絶縁体274となる絶縁膜としては、例えば、スパッタリング法によって、酸化アルミニウム膜を成膜することが好ましい。スパッタリング法によって、酸化アルミニウム膜を成膜することによって、絶縁体274の形成時に、絶縁体280に酸素を供給することができる場合がある。また、絶縁体280が有する酸素の、絶縁体281側への拡散を抑制することができる場合がある。また、絶縁体281が有する水素を酸化物230側へ拡散することを抑制することができる場合がある。
 次に加熱処理を行っても良い。加熱処理は、前述の加熱処理条件を用いることができる。当該加熱処理によって、絶縁体280、および絶縁体274の水分濃度および水素濃度を低減させることができる。
 次に絶縁体274上に、絶縁体281となる絶縁膜を成膜してもよい。絶縁体281となる絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる(図46参照。)。
 次に、絶縁体254、絶縁体280、絶縁体274および絶縁体281に、層253aおよび層253bに達する開口を形成する。当該開口の形成は、リソグラフィー法を用いて行えばよい。
 次に、絶縁体241となる絶縁膜を成膜し、当該絶縁膜を異方性エッチングして絶縁体241を形成する。当該絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。絶縁体241となる絶縁膜としては、酸素の透過を抑制する機能を有する絶縁膜を用いることが好ましい。例えば、ALD法によって、酸化アルミニウム膜を成膜することが好ましい。また、ALD法やCVD法を用いて、窒化シリコン膜を成膜してもよい。ALD法を用いて窒化シリコン膜を成膜する場合、シリコンおよびハロゲンを含むプリカーサや、アミノシラン類のプリカーサを用いることができる。シリコンおよびハロゲンを含むプリカーサとして、SiCl、SiHCl、SiCl、SiCl等を用いることができる。また、アミノシラン類のプリカーサとして、1価、2価、または3価のアミノシラン類を用いることができる。また、窒化ガスとしてアンモニアや、ヒドラジンを用いることができる。また、異方性エッチングは、例えばドライエッチング法などを行えばよい。開口の側壁部をこのような構成とすることで、外方からの酸素の透過を抑制し、次に形成する導電体240aおよび導電体240bの酸化を防止することができる。また、導電体240aおよび導電体240bから、水、水素などの不純物が外部に拡散することを防ぐことができる。
 次に、導電体240aおよび導電体240bとなる導電膜を成膜する。導電体240aおよび導電体240bとなる導電膜は、水、水素など不純物の拡散を抑制する機能を有する導電体を含む積層構造とすることが望ましい。たとえば、窒化タンタル、窒化チタンなどと、タングステン、モリブデン、銅など、と、の積層とすることができる。導電体240となる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。
 次に、CMP処理を行うことで、導電体240aおよび導電体240bとなる導電膜の一部を除去し、絶縁体281を露出する。その結果、上記開口のみに、当該導電膜が残存することで上面が平坦な導電体240aおよび導電体240bを形成することができる(図13参照。)。なお、当該CMP処理により、絶縁体281の一部が除去される場合がある。
 以上により、図13に示すトランジスタ200Bを有する半導体装置を作製することができる。図38乃至図46に示すように、本実施の形態に示す半導体装置の作製方法を用いることで、トランジスタ200Bを作製することができる。
<半導体装置の作製方法3−2>
 先の<半導体装置の作製方法3−1>に示したものとは異なる、本発明の一態様に係るトランジスタ200Bを有する半導体装置の作製方法について、図47乃至図49を用いて説明する。
 図47乃至図49において、各図の(A)は上面図を示す。また、各図の(B)は、(A)に示すA1−A2の一点鎖線で示す部位に対応する断面図であり、トランジスタ200Bのチャネル長方向の断面図でもある。また、各図の(C)は、(A)にA3−A4の一点鎖線で示す部位に対応する断面図であり、トランジスタ200Bのチャネル幅方向の断面図でもある。なお、各図の(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
 開口263を形成するまでは、<半導体装置の作製方法3−1>に示した作製方法と同様である。よって、図38乃至図43に係る半導体装置の作製方法を参酌することができる。
 次に、絶縁体279を除去する。絶縁体279の除去は、ウェットエッチング、またはドライエッチングなどを用いて行うことができる。
 次に、酸化膜230Cの成膜前に加熱処理を行うことが好ましい。
 次に、絶縁体254及び酸化物230b上に、酸化膜230Cを成膜する。続いて、酸化膜230Cにドーパント258を添加する(図47参照。)。ドーパント258としては、酸素が好ましい。酸化膜230Cに酸素を添加することで、酸化物230a、酸化物230bおよび酸化物230cの酸素欠損を低減できる。ドーパント258の添加方法としては、ドーパント257の記載を参照できるため、詳細な説明は省略する。
 次に、酸化膜230C上に、絶縁膜250A、酸化膜230D、導電膜260Aおよび導電膜260Bを成膜する。続いて、導電膜260Aおよび導電膜260Bを加工し、導電体260aおよび導電体260bを形成する。続いて、絶縁膜270Aを成膜する。続いて、絶縁体270A、酸化膜230D、絶縁膜250Aおよび酸化膜230Cを加工して、絶縁体270、酸化物230d、絶縁体250および酸化物230cを形成する(図44及び図45参照。)。絶縁体270、導電体260、酸化物230d、絶縁体250及び酸化物230cの形成については、前述の記載を参照できるため、詳細な説明は省略する。
 次に、絶縁体254、絶縁体270、導電体260、酸化物230d、絶縁体250及び酸化物230c上に、絶縁体280を形成する。続いて、絶縁体280にドーパント259を添加する(図48参照。)。ドーパント259としては、酸素が好ましい。絶縁体280に酸素を添加することで、絶縁体280を介して酸化物230a、酸化物230bおよび酸化物230cに酸素を供給でき、酸化物230a、酸化物230bおよび酸化物230cの酸素欠損を低減できる。ドーパント259の添加方法としては、ドーパント257の記載を参照できるため、詳細な説明は省略する。
 次に、絶縁体280上に、絶縁膜275を形成する(図49参照。)。絶縁膜275の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。絶縁膜275としては、例えば、スパッタリング法によって、酸化アルミニウム膜を成膜することが好ましい。スパッタリング法によって、酸化アルミニウム膜を成膜することによって、絶縁体280が有する水素を酸化物230へ拡散することを抑制することができる場合がある。
 次に加熱処理を行っても良い。加熱処理は、100℃以上400℃以下で行えばよく、例えば350℃4時間で行えばよい。当該加熱処理によって、絶縁膜275が有する酸素が絶縁体280に供給され、絶縁体280を介して酸化物230a、酸化物230bおよび酸化物230cに酸素を供給でき、酸化物230a、酸化物230bおよび酸化物230cの酸素欠損を低減できる。また、絶縁体280の水分濃度および水素濃度を低減させることができる。
 次に、CMP処理を行うことで、絶縁膜275を除去し、絶縁体280、酸化物230c、絶縁体250、酸化物230d、導電体260aおよび導電体260bを露出する。
 次に、絶縁体280上に、絶縁体274となる絶縁膜を形成する。絶縁体274上に、絶縁体281となる絶縁膜を成膜してもよい(図46参照。)。
 次に、絶縁体254、絶縁体244、絶縁体280、絶縁体274および絶縁体281に、層253aおよび層253bに達する開口を形成する。
 次に、絶縁体241となる絶縁膜を成膜し、当該絶縁膜を異方性エッチングして絶縁体241を形成する。
 次に、導電体240aおよび導電体240bとなる導電膜を成膜する。続いて、CMP処理を行うことで、導電体240aおよび導電体240bとなる導電膜の一部を除去し、絶縁体281を露出する。その結果、上記開口のみに、当該導電膜が残存することで上面が平坦な導電体240aおよび導電体240bを形成することができる(図13参照。)。
 以上により、図13に示すトランジスタ200Bを有する半導体装置を作製することができる。図47乃至図49に示すように、本実施の形態に示す半導体装置の作製方法を用いることで、トランジスタ200Bを作製することができる。
<半導体装置の作製方法4>
 図16に示す、本発明の一態様に係るトランジスタ200Cを有する半導体装置について、作製方法を図50乃至図54を用いて説明する。
 図50乃至図54において、各図の(A)は上面図を示す。また、各図の(B)は、(A)に示すA1−A2の一点鎖線で示す部位に対応する断面図であり、トランジスタ200Cのチャネル長方向の断面図でもある。また、各図の(C)は、(A)にA3−A4の一点鎖線で示す部位に対応する断面図であり、トランジスタ200Cのチャネル幅方向の断面図でもある。なお、各図の(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
 酸化膜230Bを形成するまでは、<半導体装置の作製方法1−1>に示した作製方法と同様である(図17参照)。よって、<半導体装置の作製方法1−1>の記載を参照できるため、詳細な説明は省略する。
 次に、導電膜242Bとなる導電膜を成膜する。導電膜242Bの成膜はスパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
 次に、酸化膜230A、酸化膜230B及び導電膜242Bとなる導電膜を島状に加工して、酸化物230a、酸化物230b及び導電膜242Bを形成する。なお、当該工程において、絶縁体224の酸化物230aと重ならない領域の膜厚が薄くなることがある(図50参照。)。
 次に、酸化物230a、酸化物230b及び導電膜242Bを覆って、絶縁膜254Aを成膜する(図50参照。)。絶縁膜254Aの成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて成膜することができる。
 次に、絶縁膜254A及び導電膜242Bを加工し、絶縁体254、導電体242a及び導電体242bを形成する(図51参照。)。
 次に、酸化膜230Cの成膜前に加熱処理を行うことが好ましい。
 次に、絶縁体254及び酸化物230b上に、酸化膜230Cを成膜する。酸化膜230C上に、絶縁膜250A、酸化膜230D、導電膜260Aおよび導電膜260Bを成膜する(図52参照。)。酸化膜230C、絶縁膜250A、酸化膜230D、導電膜260Aおよび導電膜260Bの成膜については、前述の記載を参照できるため、詳細な説明は省略する。
 次に、導電膜260Aおよび導電膜260Bを加工し、導電体260aおよび導電体260bを形成する。続いて、絶縁膜270Aを成膜する。続いて、絶縁膜270A、酸化膜230D、絶縁膜250Aおよび酸化膜230Cを加工して、絶縁体270、酸化物230d、絶縁体250および酸化物230cを形成する(図53参照。)。絶縁体270、導電体260、酸化物230d、絶縁体250及び酸化物230cの形成については、前述の記載を参照できるため、詳細な説明は省略する。
 次に加熱処理を行っても良い。
 次に、絶縁体270上に、絶縁体280を形成する。
 次に、絶縁体280上に、絶縁体274となる絶縁膜を形成する(図54参照。)。
 次に加熱処理を行っても良い。
 次に絶縁体274上に、絶縁体281となる絶縁膜を成膜してもよい(図54参照。)。
 次に、絶縁体254、絶縁体280、絶縁体274および絶縁体281に、導電体242aおよび導電体242bに達する開口を形成する。当該開口の形成は、リソグラフィー法を用いて行えばよい。
 次に、絶縁体241を形成する。続いて、導電体240aおよび導電体240bを形成することができる(図16参照。)。
 以上により、図16に示すトランジスタ200Cを有する半導体装置を作製することができる。図50乃至図54に示すように、本実施の形態に示す半導体装置の作製方法を用いることで、トランジスタ200Cを作製することができる。
 本発明の一態様により、オン電流の大きい半導体装置を提供することができる。または、本発明の一態様により、高い周波数特性を有する半導体装置を提供することができる。または、本発明の一態様により、信頼性が良好な半導体装置を提供することができる。または、本発明の一態様により、微細化または高集積化が可能な半導体装置を提供することができる。または、本発明の一態様により、良好な電気特性を有する半導体装置を提供することができる。または、本発明の一態様により、オフ電流の小さい半導体装置を提供することができる。または、本発明の一態様により、消費電力が低減された半導体装置を提供することができる。または、本発明の一態様により、生産性の高い半導体装置を提供することができる。
 以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。
(実施の形態3)
 本実施の形態では、半導体装置の一形態を、図55乃至図60を用いて説明する。
[記憶装置1]
 本発明の一態様であるトランジスタを使用した、半導体装置(記憶装置)の一例を図55乃至図57に示す。
 図55に示す本発明の一態様の半導体装置において、トランジスタ200はトランジスタ300の上方に設けられ、容量素子100はトランジスタ300、およびトランジスタ200の上方に設けられている。なお、トランジスタ200として、先の実施の形態で説明したトランジスタ200などを用いることができる。
 トランジスタ200は、酸化物半導体を有する半導体層にチャネルが形成されるトランジスタである。トランジスタ200は、オフ電流が小さいため、これを記憶装置に用いることにより長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必要としない、あるいは、リフレッシュ動作の頻度が極めて少ないため、記憶装置の消費電力を十分に低減することができる。
 図55に示す半導体装置において、配線1001はトランジスタ300のソースと電気的に接続され、配線1002はトランジスタ300のドレインと電気的に接続されている。また、配線1003はトランジスタ200のソースおよびドレインの一方と電気的に接続され、配線1004はトランジスタ200の第1のゲートと電気的に接続され、配線1006はトランジスタ200の第2のゲートと電気的に接続されている。そして、トランジスタ300のゲート、およびトランジスタ200のソースおよびドレインの他方は、容量素子100の電極の一方と電気的に接続され、配線1005は容量素子100の電極の他方と電気的に接続されている。
 また、図55に示す記憶装置は、マトリクス状に配置することで、メモリセルアレイを構成することができる。
<トランジスタ300>
 トランジスタ300は、基板311上に設けられ、ゲート電極として機能する導電体316、ゲート絶縁体として機能する絶縁体315、基板311の一部からなる半導体領域313、およびソース領域またはドレイン領域として機能する低抵抗領域314a、および低抵抗領域314bを有する。トランジスタ300は、pチャネル型、あるいはnチャネル型のいずれでもよい。
 ここで、図55に示すトランジスタ300はチャネルが形成される半導体領域313(基板311の一部)が凸形状を有する。また、半導体領域313の側面および上面を、絶縁体315を介して、導電体316が覆うように設けられている。なお、導電体316は仕事関数を調整する材料を用いてもよい。このようなトランジスタ300は半導体基板の凸部を利用していることからFIN型トランジスタとも呼ばれる。なお、凸部の上部に接して、凸部を形成するためのマスクとして機能する絶縁体を有していてもよい。また、ここでは半導体基板の一部を加工して凸部を形成する場合を示したが、SOI基板を加工して凸形状を有する半導体膜を形成してもよい。
 なお、図55に示すトランジスタ300は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
<容量素子100>
 容量素子100は、トランジスタ200の上方に設けられる。容量素子100は、第1の電極として機能する導電体110と、第2の電極として機能する導電体120、および誘電体として機能する絶縁体130とを有する。
 また、例えば、導電体240上に設けた導電体112と、導電体110は、同時に形成することができる。なお、導電体112は、容量素子100、トランジスタ200、またはトランジスタ300と電気的に接続するプラグ、または配線としての機能を有する。
 図55では、導電体112、および導電体110は単層構造を示したが、当該構成に限定されず、2層以上の積層構造でもよい。例えば、バリア性を有する導電体と導電性が高い導電体との間に、バリア性を有する導電体、および導電性が高い導電体に対して密着性が高い導電体を形成してもよい。
 また、絶縁体130は、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウム、酸化ハフニウム、酸化窒化ハフニウム、窒化酸化ハフニウム、窒化ハフニウムなどを用いればよく、積層または単層で設けることができる。
 例えば、絶縁体130には、酸化窒化シリコンなどの絶縁耐力が大きい材料と、高誘電率(high−k)材料との積層構造を用いることが好ましい。当該構成により、容量素子100は、高誘電率(high−k)の絶縁体を有することで、十分な容量を確保でき、絶縁耐力が大きい絶縁体を有することで、絶縁耐力が向上し、容量素子100の静電破壊を抑制することができる。
 なお、高誘電率(high−k)材料(高い比誘電率の材料)の絶縁体としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物またはシリコンおよびハフニウムを有する窒化物などがある。
 一方、絶縁耐力が大きい材料(低い比誘電率の材料)としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンまたは樹脂などがある。
<配線層>
 各構造体の間には、層間膜、配線、およびプラグ等が設けられた配線層が設けられていてもよい。また、配線層は、設計に応じて複数層設けることができる。ここで、プラグまたは配線としての機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と電気的に接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
 例えば、トランジスタ300上には、層間膜として、絶縁体320、絶縁体322、絶縁体324、および絶縁体326が順に積層して設けられている。また、絶縁体320、絶縁体322、絶縁体324、および絶縁体326には容量素子100、またはトランジスタ200と電気的に接続する導電体328、および導電体330等が埋め込まれている。なお、導電体328、および導電体330はプラグ、または配線として機能する。
 また、層間膜として機能する絶縁体は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。
 絶縁体326、および導電体330上に、配線層を設けてもよい。例えば、図55において、絶縁体350、絶縁体352、及び絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、及び絶縁体354には、導電体356が形成されている。導電体356は、プラグ、または配線として機能する。
 同様に、絶縁体210、絶縁体212、絶縁体214、および絶縁体216には、導電体218、及びトランジスタ200を構成する導電体(導電体205)等が埋め込まれている。なお、導電体218は、容量素子100、またはトランジスタ300と電気的に接続するプラグ、または配線としての機能を有する。さらに、導電体120、および絶縁体130上には、絶縁体150が設けられている。
 層間膜として用いることができる絶縁体としては、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などがある。
 例えば、層間膜として機能する絶縁体には、比誘電率が低い材料を用いることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁体の機能に応じて、材料を選択するとよい。
 例えば、絶縁体150、絶縁体212、絶縁体352、および絶縁体354等には、比誘電率の低い絶縁体を用いることが好ましい。例えば、当該絶縁体は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンまたは樹脂などを有することが好ましい。または、当該絶縁体は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコンまたは空孔を有する酸化シリコンと、樹脂と、の積層構造を有することが好ましい。酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、樹脂と組み合わせることで、熱的に安定かつ比誘電率の低い積層構造とすることができる。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネートまたはアクリルなどがある。
 また、導電体112、または導電体120上に設けられる絶縁体130、および絶縁体150の一方、または両方を抵抗率が1.0×1012Ωcm以上1.0×1015Ωcm以下、好ましくは5.0×1012Ωcm以上1.0×1014Ωcm以下、より好ましくは1.0×1013Ωcm以上5.0×1013Ωcm以下の絶縁体とすることが好ましい。絶縁体130、および絶縁体150の一方、または両方を上記のような抵抗率を有する絶縁体とすることで、当該絶縁体は、絶縁性を維持しつつ、トランジスタ200、トランジスタ300、容量素子100、および導電体112や導電体120等の配線間に蓄積される電荷を分散し、該電荷によるトランジスタ、該トランジスタを有する記憶装置の特性不良や静電破壊を抑制することができ、好ましい。このような絶縁体として、窒化シリコン、または窒化酸化シリコンを用いることができる。
 また、上記のような抵抗率を有する絶縁体として、絶縁体140を導電体112の下層に設けてもよい。この場合、絶縁体281上に絶縁体140を形成し、絶縁体140、絶縁体281、絶縁体274、絶縁体280、絶縁体244、絶縁体254などに開口部を形成し、当該開口部内に絶縁体241の形成や、トランジスタ200、導電体218などと電気的に接続する導電体240の形成を行えばよい。絶縁体140は、絶縁体130、または絶縁体150と同様の材料を用いることができる。
 また、酸化物半導体を用いたトランジスタは、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体で囲うことによって、トランジスタの電気特性を安定にすることができる。従って、絶縁体210、および絶縁体350等には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体を用いればよい。
 水素などの不純物および酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。具体的には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体として、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムまたは酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いることができる。
 配線、プラグに用いることができる導電体としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウムなどから選ばれた金属元素を1種以上含む材料を用いることができる。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
 例えば、導電体328、導電体330、導電体356、導電体218、および導電体112等としては、上記の材料で形成される金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。または、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
<<酸化物半導体が設けられた層の配線、またはプラグ>>
 なお、トランジスタ200に、酸化物半導体を用いる場合、酸化物半導体の近傍に過剰酸素領域を有する絶縁体が設けることがある。その場合、該過剰酸素領域を有する絶縁体と、該過剰酸素領域を有する絶縁体に設ける導電体との間に、バリア性を有する絶縁体を設けることが好ましい。
 例えば、図55では、絶縁体224と、導電体240との間に、絶縁体241を設けるとよい。特に、絶縁体241は、過剰酸素領域を有する絶縁体224を挟む絶縁体222と、絶縁体254と、接して設けられることが好ましい。絶縁体241と、絶縁体222、および絶縁体254とが接して設けられることで、絶縁体224は、バリア性を有する絶縁体により、封止する構造とすることができる。さらに、絶縁体241は、絶縁体280、および絶縁体281の一部とも接することが好ましい。絶縁体241が、絶縁体280、および絶縁体281まで延在していることで、酸素や不純物の拡散を、より抑制することができる。
 つまり、絶縁体241を設けることで、絶縁体224が有する過剰酸素が、導電体240に吸収されることを抑制することができる。また、絶縁体241を有することで、不純物である水素が、導電体240を介して、トランジスタ200へ拡散することを抑制することができる。
 なお、絶縁体241としては、水または水素などの不純物、および酸素の拡散を抑制する機能を有する絶縁性材料を用いるとよい。例えば、酸化アルミニウムまたは酸化ハフニウムなどを用いることが好ましい。また、他にも、例えば、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジムまたは酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いることができる。
 図55に示す半導体装置と異なる構成の半導体装置について、説明する。
 図56に示す本発明の一態様の半導体装置において、トランジスタ200Aはトランジスタ300の上方に設けられ、容量素子100はトランジスタ300、およびトランジスタ200Aの上方に設けられている。トランジスタ200Aとして、先の実施の形態で説明したトランジスタ200Aなどを用いることができる。図57に示す本発明の一態様の半導体装置において、トランジスタ200Bはトランジスタ300の上方に設けられ、容量素子100はトランジスタ300、およびトランジスタ200Bの上方に設けられている。トランジスタ200Bとして、先の実施の形態で説明したトランジスタ200Bなどを用いることができる。半導体装置(記憶装置)の構成については、先の記載を参照できるため、詳細な説明は省略する。
 以上が構成例についての説明である。本構成を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、電気特性の変動を抑制すると共に、信頼性を向上させることができる。または、オン電流が大きい酸化物半導体を有するトランジスタを提供することができる。または、オフ電流が小さい酸化物半導体を有するトランジスタを提供することができる。または、消費電力が低減された半導体装置を提供することができる。
[記憶装置2]
 本発明の一態様である半導体装置を使用した、記憶装置の一例を図58乃至図60に示す。
 図58に示す記憶装置は、図55で示したトランジスタ200、トランジスタ300、および容量素子100を有する半導体装置に加え、トランジスタ400を有している。
 トランジスタ400は、トランジスタ200の第2のゲート電圧を制御することができる。例えば、トランジスタ400の第1のゲート及び第2のゲートをソースとダイオード接続し、トランジスタ400のソースと、トランジスタ200の第2のゲートを接続する構成とする。当該構成でトランジスタ200の第2のゲートの負電位を保持するとき、トランジスタ400の第1のゲート−ソース間の電圧および、第2のゲート−ソース間の電圧は、0Vになる。トランジスタ400において、第2のゲート電圧及び第1のゲート電圧が0Vのときのドレイン電流が非常に小さいため、トランジスタ200およびトランジスタ400に電源供給をしなくても、トランジスタ200の第2のゲートの負電位を長時間維持することができる。これにより、トランジスタ200、およびトランジスタ400を有する記憶装置は、長期にわたり記憶内容を保持することが可能である。
 従って、図58において、配線1001はトランジスタ300のソースと電気的に接続され、配線1002はトランジスタ300のドレインと電気的に接続されている。また、配線1003はトランジスタ200のソースおよびドレインの一方と電気的に接続され、配線1004はトランジスタ200のゲートと電気的に接続され、配線1006はトランジスタ200のバックゲートと電気的に接続されている。そして、トランジスタ300のゲート、およびトランジスタ200のソースおよびドレインの他方は、容量素子100の電極の一方と電気的に接続され、配線1005は容量素子100の電極の他方と電気的に接続されている。配線1007はトランジスタ400のソースと電気的に接続され、配線1008はトランジスタ400のゲートと電気的に接続され、配線1009はトランジスタ400のバックゲートと電気的に接続され、配線1010はトランジスタ400のドレインと電気的に接続されている。ここで、配線1006、配線1007、配線1008、及び配線1009が電気的に接続されている。
 また、図58に示す記憶装置は、図55に示す記憶装置と同様に、マトリクス状に配置することで、メモリセルアレイを構成することができる。なお、1個のトランジスタ400は、複数のトランジスタ200の第2のゲート電圧を制御することができる。そのため、トランジスタ400は、トランジスタ200よりも、少ない個数を設けるとよい。
<トランジスタ400>
 トランジスタ400は、トランジスタ200と、同じ層に形成されており、並行して作製することができるトランジスタである。トランジスタ400は、第1のゲート電極として機能する導電体460(導電体460a、および導電体460b)と、第2のゲート電極として機能する導電体405と、ゲート絶縁層として機能する絶縁体222、絶縁体224、および絶縁体450と、チャネルが形成される領域を有する酸化物430cと、ソースまたはドレインの一方として機能する層453a、酸化物431a、および酸化物431bと、ソースまたはドレインの他方として機能する層453b、酸化物432a、および酸化物432bと、導電体440(導電体440a、および導電体440b)と、を有する。
 トランジスタ400において、導電体405は、導電体205と、同じ層である。酸化物431a、および酸化物432aは、酸化物230aと、同じ層であり、酸化物431b、および酸化物432bは、酸化物230bと、同じ層である。導電体453a及び導電体453bは、導電体242と、同じ層である。酸化物430cは、酸化物230cと同じ層である。絶縁体450は、絶縁体250と、同じ層である。導電体460は、導電体260と、同じ層である。
 なお、同じ層に形成された構造体は、同時に形成することができる。例えば、酸化物430cは、酸化物230cとなる酸化膜を加工することで、形成することができる。
 トランジスタ400の活性層として機能する酸化物430cは、酸化物230などと同様に、酸素欠損が低減され、水素または水などの不純物が低減されている。これにより、トランジスタ400のしきい値電圧を0Vより大きくし、オフ電流を低減し、第2のゲート電圧及び第1のゲート電圧が0Vのときのドレイン電流を非常に小さくすることができる。
<<ダイシングライン>>
 以下では、大面積基板を半導体素子ごとに分断することによって、複数の半導体装置をチップ状で取り出す場合に設けられるダイシングライン(スクライブライン、分断ライン、又は切断ラインと呼ぶ場合がある)について説明する。分断方法としては、例えば、まず、基板に半導体素子を分断するための溝(ダイシングライン)を形成した後、ダイシングラインにおいて切断し、複数の半導体装置に分断(分割)する場合がある。
 ここで、例えば、図58に示すように、絶縁体254と、絶縁体222とが接する領域をダイシングラインとなるように設計することが好ましい。つまり、複数のトランジスタ200を有するメモリセル、およびトランジスタ400の外縁に設けられるダイシングラインとなる領域近傍において、絶縁体224に開口を設ける。また、絶縁体224の側面を覆うように、絶縁体254を設ける。
 つまり、上記絶縁体224に設けた開口において、絶縁体222と、絶縁体254とが接する。例えば、このとき、絶縁体222と、絶縁体254とを同材料及び同方法を用いて形成してもよい。絶縁体222、および絶縁体254を、同材料、および同方法で設けることで、密着性を高めることができる。例えば、酸化アルミニウムを用いることが好ましい。
 当該構造により、絶縁体222、および絶縁体254で、絶縁体224、トランジスタ200、およびトランジスタ400を包み込むことができる。絶縁体222、および絶縁体254は、酸素、水素、及び水の拡散を抑制する機能を有しているため、本実施の形態に示す半導体素子が形成された回路領域ごとに、基板を分断することにより、複数のチップに加工しても、分断した基板の側面方向から、水素又は水などの不純物が混入し、トランジスタ200、およびトランジスタ400に拡散することを防ぐことができる。
 また、当該構造により、絶縁体224の過剰酸素が絶縁体254、および絶縁体222の外部に拡散することを防ぐことができる。従って、絶縁体224の過剰酸素は、効率的にトランジスタ200、またはトランジスタ400におけるチャネルが形成される酸化物に供給される。当該酸素により、トランジスタ200、またはトランジスタ400におけるチャネルが形成される酸化物の酸素欠損を低減することができる。これにより、トランジスタ200、またはトランジスタ400におけるチャネルが形成される酸化物を欠陥準位密度が低い、安定な特性を有する酸化物半導体とすることができる。つまり、トランジスタ200、またはトランジスタ400の電気特性の変動を抑制すると共に、信頼性を向上させることができる。
 図59に示す記憶装置は、図56で示したトランジスタ200A、トランジスタ300、および容量素子100を有する半導体装置に加え、トランジスタ400Aを有している。トランジスタ400Aは、トランジスタ200Aと、同じ層に形成されており、並行して作製することができるトランジスタである。
 図60に示す記憶装置は、図57で示したトランジスタ200B、トランジスタ300、および容量素子100を有する半導体装置に加え、トランジスタ400Bを有している。トランジスタ400Bは、トランジスタ200Bと、同じ層に形成されており、並行して作製することができるトランジスタである。記憶装置の構成については、先の記載を参照できるため、詳細な説明は省略する。
 本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態4)
 本実施の形態では、図61及び図62を用いて、本発明の一態様に係る、酸化物を半導体に用いたトランジスタ(以下、OSトランジスタと呼ぶ場合がある。)、および容量素子が適用されている記憶装置(以下、OSメモリ装置と呼ぶ場合がある。)について説明する。OSメモリ装置は、少なくとも容量素子と、容量素子の充放電を制御するOSトランジスタを有する記憶装置である。OSトランジスタのオフ電流は極めて小さいので、OSメモリ装置は優れた保持特性をもち、不揮発性メモリとして機能させることができる。
<記憶装置の構成例>
 図61(A)にOSメモリ装置の構成の一例を示す。記憶装置1400は、周辺回路1411、およびメモリセルアレイ1470を有する。周辺回路1411は、行回路1420、列回路1430、出力回路1440、コントロールロジック回路1460を有する。
 列回路1430は、例えば、列デコーダ、プリチャージ回路、センスアンプ、および書き込み回路等を有する。プリチャージ回路は、配線をプリチャージする機能を有する。センスアンプは、メモリセルから読み出されたデータ信号を増幅する機能を有する。なお、上記配線は、メモリセルアレイ1470が有するメモリセルに接続されている配線であり、詳しくは後述する。増幅されたデータ信号は、出力回路1440を介して、データ信号RDATAとして記憶装置1400の外部に出力される。また、行回路1420は、例えば、行デコーダ、ワード線ドライバ回路等を有し、アクセスする行を選択することができる。
 記憶装置1400には、外部から電源電圧として低電源電圧(VSS)、周辺回路1411用の高電源電圧(VDD)、メモリセルアレイ1470用の高電源電圧(VIL)が供給される。また、記憶装置1400には、制御信号(CE、WE、RE)、アドレス信号ADDR、データ信号WDATAが外部から入力される。アドレス信号ADDRは、行デコーダおよび列デコーダに入力され、WDATAは書き込み回路に入力される。
 コントロールロジック回路1460は、外部からの入力信号(CE、WE、RE)を処理して、行デコーダ、列デコーダの制御信号を生成する。CEは、チップイネーブル信号であり、WEは、書き込みイネーブル信号であり、REは、読み出しイネーブル信号である。コントロールロジック回路1460が処理する信号は、これに限定されるものではなく、必要に応じて、他の制御信号を入力すればよい。
 メモリセルアレイ1470は、行列状に配置された、複数個のメモリセルMCと、複数の配線を有する。なお、メモリセルアレイ1470と行回路1420とを接続している配線の数は、メモリセルMCの構成、一列に有するメモリセルMCの数などによって決まる。また、メモリセルアレイ1470と列回路1430とを接続している配線の数は、メモリセルMCの構成、一行に有するメモリセルMCの数などによって決まる。
 なお、図61(A)において、周辺回路1411とメモリセルアレイ1470を同一平面上に形成する例について示したが、本実施の形態はこれに限られるものではない。例えば、図61(B)に示すように、周辺回路1411の一部の上に、メモリセルアレイ1470が重なるように設けられてもよい。例えば、メモリセルアレイ1470の下に重なるように、センスアンプを設ける構成にしてもよい。
 図62に上述のメモリセルMCに適用できるメモリセルの構成例について説明する。
[DOSRAM]
 図62(A)乃至図62(C)に、DRAMのメモリセルの回路構成例を示す。本明細書等において、1OSトランジスタ1容量素子型のメモリセルを用いたDRAMを、DOSRAM(Dynamic Oxide Semiconductor Random Access Memory)と呼ぶ場合がある。図62(A)に示す、メモリセル1471は、トランジスタM1と、容量素子CAと、を有する。なお、トランジスタM1は、ゲート(フロントゲートと呼ぶ場合がある。)、及びバックゲートを有する。
 トランジスタM1の第1端子は、容量素子CAの第1端子と接続され、トランジスタM1の第2端子は、配線BILと接続され、トランジスタM1のゲートは、配線WOLと接続され、トランジスタM1のバックゲートは、配線BGLと接続されている。容量素子CAの第2端子は、配線CALと接続されている。
 配線BILは、ビット線として機能し、配線WOLは、ワード線として機能する。配線CALは、容量素子CAの第2端子に所定の電位を印加するための配線として機能する。データの書き込み時、及び読み出し時において、配線CALには、低レベル電位を印加するのが好ましい。配線BGLは、トランジスタM1のバックゲートに電位を印加するための配線として機能する。配線BGLに任意の電位を印加することによって、トランジスタM1のしきい値電圧を増減することができる。
 また、メモリセルMCは、メモリセル1471に限定されず、回路構成の変更を行うことができる。例えば、メモリセルMCは、図62(B)に示すメモリセル1472のように、トランジスタM1のバックゲートが、配線BGLでなく、配線WOLと接続される構成にしてもよい。また、例えば、メモリセルMCは、図62(C)に示すメモリセル1473ように、シングルゲート構造のトランジスタ、つまりバックゲートを有さないトランジスタM1で構成されたメモリセルとしてもよい。
 上記実施の形態に示す半導体装置をメモリセル1471等に用いる場合、トランジスタM1としてトランジスタ200を用い、容量素子CAとして容量素子100を用いることができる。トランジスタM1としてOSトランジスタを用いることによって、トランジスタM1のリーク電流を非常に低くすることができる。つまり、書き込んだデータをトランジスタM1によって長時間保持することができるため、メモリセルのリフレッシュの頻度を少なくすることができる。また、メモリセルのリフレッシュ動作を不要にすることができる。また、リーク電流が非常に低いため、メモリセル1471、メモリセル1472、メモリセル1473に対して多値データ、又はアナログデータを保持することができる。
 また、DOSRAMにおいて、上記のように、メモリセルアレイ1470の下に重なるように、センスアンプを設ける構成にすると、ビット線を短くすることができる。これにより、ビット線容量が小さくなり、メモリセルの保持容量を低減することができる。
[NOSRAM]
 図62(D)乃至図62(H)に、2トランジスタ1容量素子のゲインセル型のメモリセルの回路構成例を示す。図62(D)に示す、メモリセル1474は、トランジスタM2と、トランジスタM3と、容量素子CBと、を有する。なお、トランジスタM2は、フロントゲート(単にゲートと呼ぶ場合がある。)、及びバックゲートを有する。本明細書等において、トランジスタM2にOSトランジスタを用いたゲインセル型のメモリセルを有する記憶装置を、NOSRAM(Nonvolatile Oxide Semiconductor RAM)と呼ぶ場合がある。
 トランジスタM2の第1端子は、容量素子CBの第1端子と接続され、トランジスタM2の第2端子は、配線WBLと接続され、トランジスタM2のゲートは、配線WOLと接続され、トランジスタM2のバックゲートは、配線BGLと接続されている。容量素子CBの第2端子は、配線CALと接続されている。トランジスタM3の第1端子は、配線RBLと接続され、トランジスタM3の第2端子は、配線SLと接続され、トランジスタM3のゲートは、容量素子CBの第1端子と接続されている。
 配線WBLは、書き込みビット線として機能し、配線RBLは、読み出しビット線として機能し、配線WOLは、ワード線として機能する。配線CALは、容量素子CBの第2端子に所定の電位を印加するための配線として機能する。データの書き込み時、データ保持の最中、データの読み出し時において、配線CALには、低レベル電位を印加するのが好ましい。配線BGLは、トランジスタM2のバックゲートに電位を印加するための配線として機能する。配線BGLに任意の電位を印加することによって、トランジスタM2のしきい値電圧を増減することができる。
 また、メモリセルMCは、メモリセル1474に限定されず、回路の構成を適宜変更することができる。例えば、メモリセルMCは、図62(E)に示すメモリセル1475のように、トランジスタM2のバックゲートが、配線BGLでなく、配線WOLと接続される構成にしてもよい。また、例えば、メモリセルMCは、図62(F)に示すメモリセル1476のように、シングルゲート構造のトランジスタ、つまりバックゲートを有さないトランジスタM2で構成されたメモリセルとしてもよい。また、例えば、メモリセルMCは、図62(G)に示すメモリセル1477のように、配線WBLと配線RBLを一本の配線BILとしてまとめた構成であってもよい。
 上記実施の形態に示す半導体装置をメモリセル1474等に用いる場合、トランジスタM2としてトランジスタ200を用い、トランジスタM3としてトランジスタ300を用い、容量素子CBとして容量素子100を用いることができる。トランジスタM2としてOSトランジスタを用いることによって、トランジスタM2のリーク電流を非常に低くすることができる。これにより、書き込んだデータをトランジスタM2によって長時間保持することができるため、メモリセルのリフレッシュの頻度を少なくすることができる。また、メモリセルのリフレッシュ動作を不要にすることができる。また、リーク電流が非常に低いため、メモリセル1474に多値データ、又はアナログデータを保持することができる。メモリセル1475乃至1477も同様である。
 なお、トランジスタM3は、チャネル形成領域にシリコンを有するトランジスタ(以下、Siトランジスタと呼ぶ場合がある)であってもよい。Siトランジスタの導電型は、nチャネル型としてもよいし、pチャネル型としてもよい。Siトランジスタは、OSトランジスタよりも電界効果移動度が高くなる場合がある。よって、読み出しトランジスタとして機能するトランジスタM3として、Siトランジスタを用いてもよい。また、トランジスタM3にSiトランジスタを用いることで、トランジスタM3の上に積層してトランジスタM2を設けることができるので、メモリセルの占有面積を低減し、記憶装置の高集積化を図ることができる。
 また、トランジスタM3はOSトランジスタであってもよい。トランジスタM2、M3にOSトランジスタを用いた場合、メモリセルアレイ1470をn型トランジスタのみを用いて回路を構成することができる。
 また、図62(H)に3トランジスタ1容量素子のゲインセル型のメモリセルの一例を示す。図62(H)に示すメモリセル1478は、トランジスタM4乃至M6、および容量素子CCを有する。容量素子CCは適宜設けられる。メモリセル1478は、配線BIL、RWL、WWL、BGL、およびGNDLに電気的に接続されている。配線GNDLは低レベル電位を与える配線である。なお、メモリセル1478を、配線BILに代えて、配線RBL、WBLに電気的に接続してもよい。
 トランジスタM4は、バックゲートを有するOSトランジスタであり、バックゲートは配線BGLに電気的に接続されている。なお、トランジスタM4のバックゲートとゲートとを互いに電気的に接続してもよい。あるいは、トランジスタM4はバックゲートを有さなくてもよい。
 なお、トランジスタM5、M6はそれぞれ、nチャネル型Siトランジスタまたはpチャネル型Siトランジスタでもよい。或いは、トランジスタM4乃至M6がOSトランジスタでもよく、この場合、メモリセルアレイ1470をn型トランジスタのみを用いて回路を構成することができる。
 上記実施の形態に示す半導体装置をメモリセル1478に用いる場合、トランジスタM4としてトランジスタ200を用い、トランジスタM5、M6としてトランジスタ300を用い、容量素子CCとして容量素子100を用いることができる。トランジスタM4としてOSトランジスタを用いることによって、トランジスタM4のリーク電流を非常に低くすることができる。
 なお、本実施の形態に示す、周辺回路1411、およびメモリセルアレイ1470等の構成は、上記に限定されるものではない。これらの回路、および当該回路に接続される配線、回路素子等の、配置または機能は、必要に応じて、変更、削除、または追加してもよい。
 本実施の形態に示す構成は、他の実施の形態などに示す構成と適宜組み合わせて用いることができる。
(実施の形態5)
 本実施の形態では、図63を用いて、本発明の一態様の半導体装置が実装されたチップ1200の一例を示す。チップ1200には、複数の回路(システム)が実装されている。このように、複数の回路(システム)を一つのチップに集積する技術を、システムオンチップ(System on Chip:SoC)と呼ぶ場合がある。
 図63(A)に示すように、チップ1200は、CPU(Central Processing Unit)1211、GPU(Graphics Processing Unit)1212、一または複数のアナログ演算部1213、一または複数のメモリコントローラ1214、一または複数のインターフェース1215、一または複数のネットワーク回路1216等を有する。
 チップ1200には、バンプ(図示しない)が設けられ、図63(B)に示すように、プリント基板(Printed Circuit Board:PCB)1201の第1の面と接続する。また、PCB1201の第1の面の裏面には、複数のバンプ1202が設けられており、マザーボード1203と接続する。
 マザーボード1203には、DRAM1221、フラッシュメモリ1222等の記憶装置が設けられていてもよい。例えば、DRAM1221に先の実施の形態に示すDOSRAMを用いることができる。また、例えば、フラッシュメモリ1222に先の実施の形態に示すNOSRAMを用いることができる。
 CPU1211は、複数のCPUコアを有することが好ましい。また、GPU1212は、複数のGPUコアを有することが好ましい。また、CPU1211、およびGPU1212は、それぞれ一時的にデータを格納するメモリを有していてもよい。または、CPU1211、およびGPU1212に共通のメモリが、チップ1200に設けられていてもよい。該メモリには、前述したNOSRAMや、DOSRAMを用いることができる。また、GPU1212は、多数のデータの並列計算に適しており、画像処理や積和演算に用いることができる。GPU1212に、本発明の一態様の酸化物半導体を用いた画像処理回路や、積和演算回路を設けることで、画像処理、および積和演算を低消費電力で実行することが可能になる。
 また、CPU1211、およびGPU1212が同一チップに設けられていることで、CPU1211およびGPU1212間の配線を短くすることができ、CPU1211からGPU1212へのデータ転送、CPU1211、およびGPU1212が有するメモリ間のデータ転送、およびGPU1212での演算後に、GPU1212からCPU1211への演算結果の転送を高速に行うことができる。
 アナログ演算部1213はA/D(アナログ/デジタル)変換回路、およびD/A(デジタル/アナログ)変換回路の一、または両方を有する。また、アナログ演算部1213に上記積和演算回路を設けてもよい。
 メモリコントローラ1214は、DRAM1221のコントローラとして機能する回路、およびフラッシュメモリ1222のインターフェースとして機能する回路を有する。
 インターフェース1215は、表示装置、スピーカー、マイクロフォン、カメラ、コントローラなどの外部接続機器とのインターフェース回路を有する。コントローラとは、マウス、キーボード、ゲーム用コントローラなどを含む。このようなインターフェースとして、USB(Universal Serial Bus)、HDMI(登録商標)(High−Definition Multimedia Interface)などを用いることができる。
 ネットワーク回路1216は、LAN(Local Area Network)などのネットワーク回路を有する。また、ネットワークセキュリティー用の回路を有してもよい。
 チップ1200には、上記回路(システム)を同一の製造プロセスで形成することが可能である。そのため、チップ1200に必要な回路の数が増えても、製造プロセスを増やす必要が無く、チップ1200を低コストで作製することができる。
 GPU1212を有するチップ1200が設けられたPCB1201、DRAM1221、およびフラッシュメモリ1222が設けられたマザーボード1203は、GPUモジュール1204と呼ぶことができる。
 GPUモジュール1204は、SoC技術を用いたチップ1200を有しているため、そのサイズを小さくすることができる。また、画像処理に優れていることから、スマートフォン、タブレット端末、ラップトップPC、携帯型(持ち出し可能な)ゲーム機などの携帯型電子機器に用いることが好適である。また、GPU1212を用いた積和演算回路により、ディープニューラルネットワーク(DNN)、畳み込みニューラルネットワーク(CNN)、再帰型ニューラルネットワーク(RNN)、自己符号化器、深層ボルツマンマシン(DBM)、深層信念ネットワーク(DBN)などの演算を実行することができるため、チップ1200をAIチップ、またはGPUモジュール1204をAIシステムモジュールとして用いることができる。
 本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態6)
 本実施の形態では、先の実施の形態に示す半導体装置を用いた記憶装置の応用例について説明する。先の実施の形態に示す半導体装置は、例えば、各種電子機器(例えば、情報端末、コンピュータ、スマートフォン、電子書籍端末、デジタルカメラ(ビデオカメラも含む)、録画再生装置、ナビゲーションシステムなど)の記憶装置に適用できる。なお、ここで、コンピュータとは、タブレット型のコンピュータや、ノート型のコンピュータや、デスクトップ型のコンピュータの他、サーバシステムのような大型のコンピュータを含むものである。または、先の実施の形態に示す半導体装置は、メモリカード(例えば、SDカード)、USBメモリ、SSD(ソリッド・ステート・ドライブ)等の各種のリムーバブル記憶装置に適用される。図64にリムーバブル記憶装置の幾つかの構成例を模式的に示す。例えば、先の実施の形態に示す半導体装置は、パッケージングされたメモリチップに加工され、様々なストレージ装置、リムーバブルメモリに用いられる。
 図64(A)はUSBメモリの模式図である。USBメモリ1100は、筐体1101、キャップ1102、USBコネクタ1103および基板1104を有する。基板1104は、筐体1101に収納されている。例えば、基板1104には、メモリチップ1105、コントローラチップ1106が取り付けられている。基板1104のメモリチップ1105などに先の実施の形態に示す半導体装置を組み込むことができる。
 図64(B)はSDカードの外観の模式図であり、図64(C)は、SDカードの内部構造の模式図である。SDカード1110は、筐体1111、コネクタ1112および基板1113を有する。基板1113は筐体1111に収納されている。例えば、基板1113には、メモリチップ1114、コントローラチップ1115が取り付けられている。基板1113の裏面側にもメモリチップ1114を設けることで、SDカード1110の容量を増やすことができる。また、無線通信機能を備えた無線チップを基板1113に設けてもよい。これによって、ホスト装置とSDカード1110間の無線通信によって、メモリチップ1114のデータの読み出し、書き込みが可能となる。基板1113のメモリチップ1114などに先の実施の形態に示す半導体装置を組み込むことができる。
 図64(D)はSSDの外観の模式図であり、図64(E)は、SSDの内部構造の模式図である。SSD1150は、筐体1151、コネクタ1152および基板1153を有する。基板1153は筐体1151に収納されている。例えば、基板1153には、メモリチップ1154、メモリチップ1155、コントローラチップ1156が取り付けられている。メモリチップ1155はコントローラチップ1156のワークメモリであり、例えばDOSRAMチップを用いればよい。基板1153の裏面側にもメモリチップ1154を設けることで、SSD1150の容量を増やすことができる。基板1153のメモリチップ1154などに先の実施の形態に示す半導体装置を組み込むことができる。
 本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態7)
 本発明の一態様に係る半導体装置は、CPUやGPUなどのプロセッサ、またはチップに用いることができる。図65に、本発明の一態様に係るCPUやGPUなどのプロセッサ、またはチップを備えた電子機器の具体例を示す。
<電子機器・システム>
 本発明の一態様に係るGPU又はチップは、様々な電子機器に搭載することができる。電子機器の例としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ(Digital Signage:電子看板)、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。また、本発明の一態様に係る集積回路又はチップを電子機器に設けることにより、電子機器に人工知能を搭載することができる。
 本発明の一態様の電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示部で映像や情報等の表示を行うことができる。また、電子機器がアンテナ及び二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。
 本発明の一態様の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。
 本発明の一態様の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。図65に、電子機器の例を示す。
[携帯電話]
 図65(A)には、情報端末の一種である携帯電話(スマートフォン)が図示されている。情報端末5500は、筐体5510と、表示部5511と、を有しており、入力用インターフェースとして、タッチパネルが表示部5511に備えられ、ボタンが筐体5510に備えられている。
 情報端末5500は、本発明の一態様のチップを適用することで、人工知能を利用したアプリケーションを実行することができる。人工知能を利用したアプリケーションとしては、例えば、会話を認識してその会話内容を表示部5511に表示するアプリケーション、表示部5511に備えるタッチパネルに対してユーザが入力した文字、図形などを認識して、表示部5511に表示するアプリケーション、指紋や声紋などの生体認証を行うアプリケーションなどが挙げられる。
[情報端末1]
 図65(B)には、デスクトップ型情報端末5300が図示されている。デスクトップ型情報端末5300は、情報端末の本体5301と、ディスプレイ5302と、キーボード5303と、を有する。
 デスクトップ型情報端末5300は、先述した情報端末5500と同様に、本発明の一態様のチップを適用することで、人工知能を利用したアプリケーションを実行することができる。人工知能を利用したアプリケーションとしては、例えば、設計支援ソフトウェア、文章添削ソフトウェア、献立自動生成ソフトウェアなどが挙げられる。また、デスクトップ型情報端末5300を用いることで、新規の人工知能の開発を行うことができる。
 なお、上述では、電子機器としてスマートフォン、及びデスクトップ用情報端末を例として、それぞれ図65(A)及び図65(B)に図示したが、スマートフォン、及びデスクトップ用情報端末以外の情報端末を適用することができる。スマートフォン、及びデスクトップ用情報端末以外の情報端末としては、例えば、PDA(Personal Digital Assistant)、ノート型情報端末、ワークステーションなどが挙げられる。
[電化製品]
 図65(C)は、電化製品の一例である電気冷凍冷蔵庫5800を示している。電気冷凍冷蔵庫5800は、筐体5801、冷蔵室用扉5802、冷凍室用扉5803等を有する。
 電気冷凍冷蔵庫5800に本発明の一態様のチップを適用することによって、人工知能を有する電気冷凍冷蔵庫5800を実現することができる。人工知能を利用することによって電気冷凍冷蔵庫5800は、電気冷凍冷蔵庫5800に保存されている食材、その食材の消費期限などを基に献立を自動生成する機能や、電気冷凍冷蔵庫5800に保存されている食材に合わせた温度に自動的に調節する機能などを有することができる。
 本一例では、電化製品として電気冷凍冷蔵庫について説明したが、その他の電化製品としては、例えば、掃除機、電子レンジ、電子オーブン、炊飯器、湯沸かし器、IH調理器、ウォーターサーバ、エアーコンディショナーを含む冷暖房器具、洗濯機、乾燥機、オーディオビジュアル機器などが挙げられる。
[ゲーム機]
 図65(D)は、ゲーム機の一例である携帯ゲーム機5200を示している。携帯ゲーム機は、筐体5201、表示部5202、ボタン5203等を有する。
 携帯ゲーム機5200に本発明の一態様のGPU又はチップを適用することによって、低消費電力の携帯ゲーム機5200を実現することができる。また、低消費電力により、回路からの発熱を低減することができるため、発熱によるその回路自体、周辺回路、及びモジュールへの影響を少なくすることができる。
 更に、携帯ゲーム機5200に本発明の一態様のGPU又はチップを適用することによって、人工知能を有する携帯ゲーム機5200を実現することができる。
 本来、ゲームの進行、ゲーム上に登場する生物の言動、ゲーム上で発生する現象などの表現は、そのゲームが有するプログラムによって定められているが、携帯ゲーム機5200に人工知能を適用することにより、ゲームのプログラムに限定されない表現が可能になる。例えば、プレイヤーが問いかける内容、ゲームの進行状況、時刻、ゲーム上に登場する人物の言動が変化するといった表現が可能となる。
 また、携帯ゲーム機5200で複数のプレイヤーが必要なゲームを行う場合、人工知能によって擬人的にゲームプレイヤーを構成することができるため、対戦相手を人工知能によるゲームプレイヤーとすることによって、1人でもゲームを行うことができる。
 図65(D)では、ゲーム機の一例として携帯ゲーム機を図示しているが、本発明の一態様のGPU又はチップを適用するゲーム機はこれに限定されない。本発明の一態様のGPU又はチップを適用するゲーム機としては、例えば、家庭用の据え置き型ゲーム機、娯楽施設(ゲームセンター、遊園地など)に設置されるアーケードゲーム機、スポーツ施設に設置されるバッティング練習用の投球マシンなどが挙げられる。
[移動体]
 本発明の一態様のGPU又はチップは、移動体である自動車、及び自動車の運転席周辺に適用することができる。
 図65(E1)は移動体の一例である自動車5700を示し、図65(E2)は、自動車の室内におけるフロントガラス周辺を示す図である。図65(E2)では、ダッシュボードに取り付けられた表示パネル5701、表示パネル5702、表示パネル5703の他、ピラーに取り付けられた表示パネル5704を図示している。
 表示パネル5701乃至表示パネル5703は、スピードメーターやタコメーター、走行距離、燃料計、ギア状態、エアコンの設定などを表示することで、その他様々な情報を提供することができる。また、表示パネルに表示される表示項目やレイアウトなどは、ユーザの好みに合わせて適宜変更することができ、デザイン性を高めることが可能である。表示パネル5701乃至表示パネル5703は、照明装置として用いることも可能である。
 表示パネル5704には、自動車5700に設けられた撮像装置(図示しない。)からの映像を映し出すことによって、ピラーで遮られた視界(死角)を補完することができる。すなわち、自動車5700の外側に設けられた撮像装置からの画像を表示することによって、死角を補い、安全性を高めることができる。また、見えない部分を補完する映像を映すことによって、より自然に違和感なく安全確認を行うことができる。表示パネル5704は、照明装置として用いることもできる。
 本発明の一態様のGPU又はチップは人工知能の構成要素として適用できるため、例えば、当該チップを自動車5700の自動運転システムに用いることができる。また、当該チップを道路案内、危険予測などを行うシステムに用いることができる。表示パネル5701乃至表示パネル5704には、道路案内、危険予測などの情報を表示する構成としてもよい。
 なお、上述では、移動体の一例として自動車について説明しているが、移動体は自動車に限定されない。例えば、移動体としては、電車、モノレール、船、飛行体(ヘリコプター、無人航空機(ドローン)、飛行機、ロケット)なども挙げることができ、これらの移動体に本発明の一態様のチップを適用して、人工知能を利用したシステムを付与することができる。
[放送システム]
 本発明の一態様のGPU又はチップは、放送システムに適用することができる。
 図65(F)は、放送システムにおけるデータ伝送を模式的に示している。具体的には、図65(F)は、放送局5680から送信された電波(放送信号)が、各家庭のテレビジョン受信装置(TV)5600に届くまでの経路を示している。TV5600は、受信装置を備え(図示しない。)、アンテナ5650で受信された放送信号は、当該受信装置を介して、TV5600に送信される。
 図65(F)では、アンテナ5650は、UHF(Ultra High Frequency)アンテナを図示しているが、アンテナ5650としては、BS・110°CSアンテナ、CSアンテナなども適用できる。
 電波5675A、電波5675Bは地上波放送用の放送信号であり、電波塔5670は受信した電波5675Aを増幅して、電波5675Bの送信を行う。各家庭では、アンテナ5650で電波5675Bを受信することで、TV5600で地上波TV放送を視聴することができる。なお、放送システムは、図65(F)に示す地上波放送に限定せず、人工衛星を用いた衛星放送、光回線によるデータ放送などとしてもよい。
 上述した放送システムは、本発明の一態様のチップを適用して、人工知能を利用した放送システムとしてもよい。放送局5680から各家庭のTV5600に放送データを送信するとき、エンコーダによって放送データの圧縮が行われ、アンテナ5650が当該放送データを受信したとき、TV5600に含まれる受信装置のデコーダによって当該放送データの復元が行われる。人工知能を利用することによって、例えば、エンコーダの圧縮方法の一である動き補償予測において、表示画像に含まれる表示パターンの認識を行うことができる。また、人工知能を利用したフレーム内予測などを行うこともできる。また、例えば、解像度の低い放送データを受信して、解像度の高いTV5600で当該放送データの表示を行うとき、デコーダによる放送データの復元において、アップコンバートなどの画像の補間処理を行うことができる。
 上述した人工知能を利用した放送システムは、放送データの量が増大する超高精細度テレビジョン(UHDTV:4K、8K)放送に対して好適である。
 また、TV5600側における人工知能の応用として、例えば、TV5600に人工知能を有する録画装置を設けてもよい。このような構成にすることによって、当該録画装置にユーザの好みを人工知能に学習させることで、ユーザの好みにあった番組を自動的に録画することができる。
 本実施の形態で説明した電子機器、その電子機器の機能、人工知能の応用例、その効果などは、他の電子機器の記載と適宜組み合わせることができる。
 本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
 本実施例では、組成の異なる酸化物膜における、酸素の拡散のしやすさについて調べた。
[試料の作製]
 まず、単結晶シリコンウェハ上に、厚さ約100nmの熱酸化膜を形成した。熱酸化膜は、3体積%のHClを含む酸素雰囲気にて、950℃の温度で単結晶シリコンウェハの表面を酸化させることで形成した。
 続いて、熱酸化膜上に、厚さ約300nmの酸化シリコン膜をスパッタリング法により形成した。ここで、酸化シリコン膜の成膜は、成膜ガスとして18Oを含む酸素ガスを用いて行った。
 続いて、酸化シリコン膜上に、厚さ約50nmの酸化物膜をスパッタリング法により成膜した。酸化物膜の成膜は、In−Ga−Zn酸化物ターゲットを用い、基板温度を200℃とし、成膜ガスとして酸素ガスを用いて行った。このような条件で成膜することで、c軸配向の結晶性を有する酸化物膜を成膜することができる。
 また、ここではスパッタリングターゲットとして、In:Ga:Zn=1:3:4[原子数比]であるターゲットで成膜した試料A1と、またはIn:Ga:Zn=4:2:4.1[原子数比]であるターゲットで成膜した試料A2の、2種類の試料を作製した。
 続いて、酸化シリコン膜に含まれる酸素(特に18O)の一部を酸化物膜側に拡散させるため、窒素雰囲気下にて、400℃、1時間の加熱処理を行なった。加熱処理は、40℃から400℃までの昇温速度を7.2℃/分とし、400℃から40℃までの降温速度を3.6℃/分とした。
 以上の工程により、組成の異なる酸化物膜を有する試料A1及び試料A2を得た。
[評価]
 続いて、試料A1及び試料A2について、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)を用いて、酸化物膜中の18Oの深さ方向のプロファイルを測定し、その結果から18Oの拡散係数Dを算出した。なお、拡散係数Dは、上記熱処理の履歴を考慮して計算した。
 図66(A)に、試料A1及び試料A2について算出した、酸化物膜中における18Oの拡散係数Dを示す。この結果から、試料A2は、試料A1よりも酸素をより拡散しやすいことが確認できた。
 また、図66(B)は、図66(A)から算出した、酸化物膜中における18Oの拡散長の推定値の結果である。なお、拡散長については、上記加熱処理における昇温期間及び降温期間を考慮せず、400℃での拡散長を見積もった。図66(B)には、加熱処理の時間を1時間とした場合と、4時間とした場合について、それぞれ示している。図66(B)に示すように、試料A2は試料A1よりも2倍以上、拡散長が大きいことが確認できた。
 以上の結果から、同じ成膜条件であっても、組成を異ならせることで、酸化物膜の酸素の拡散のしやすさを制御できることが確認できた。目的に応じて、酸化物膜の組成、成膜条件を適宜選択することができる。
 200:トランジスタ、200A:トランジスタ、200B:トランジスタ、200C:トランジスタ、205:導電体、210:絶縁体、212:絶縁体、214:絶縁体、216:絶縁体、218:導電体、222:絶縁体、224:絶縁体、230:酸化物、230a:酸化物、230A:酸化膜、230b:酸化物、230B:酸化膜、230c:酸化物、230C:酸化膜、231:領域、231b:領域、232:領域、232b:領域、234:領域、240:導電体、240a:導電体、240b:導電体、241:絶縁体、241a:絶縁体、241b:絶縁体、244:絶縁体、244B:絶縁体、250:絶縁体、250A:絶縁膜、252:層、252b::層、254:絶縁体254:絶縁体254A:絶縁膜、258:ドーパント、259:ドーパント、260:導電体、260a:導電体、260b:導電体、262:ダミーゲート、262A:ダミーゲート層、263:開口、274:絶縁体、280:絶縁体、280A:絶縁膜、281:絶縁体

Claims (12)

  1.  第1の酸化物と、第2の酸化物と、第3の酸化物と、第1の絶縁体と、第2の絶縁体と、第1の導電体と、第2の導電体と、第3の導電体と、を有し、
     前記第1の酸化物は、前記第1の導電体の下面と接し、
     前記第1の絶縁体は、前記第1の酸化物の下面と接し、
     前記第2の酸化物は、前記第1の絶縁体の下面と接し、
     前記第3の酸化物は、前記第2の酸化物の下面と接し、
     前記第1の酸化物は、c軸配向した第1の結晶領域を有し、
     前記第1の結晶領域のc軸は、前記第1の絶縁体側の前記第1の酸化物の面と概略垂直であり、
     前記第2の酸化物は、c軸配向した第2の結晶領域を有し、
     前記第2の結晶領域のc軸は、前記第1の絶縁体側の前記第2の酸化物の面と概略垂直であり、
     前記第2の絶縁体は、前記第3の酸化物の上方に位置し、
     前記第2の絶縁体は、前記第2の酸化物の端部と接し、
     前記第2の導電体及び前記第3の導電体は、前記第3の酸化物上で前記第2の酸化物を介して対向して位置する半導体装置。
  2.  請求項1において、
     さらに開口を有する第3の絶縁体を有し、
     前記第3の絶縁体は、前記第2の酸化物の下面の一部、前記第2の導電体の上面の一部及び側面、前記第3の導電体の上面の一部及び側面、ならびに前記第3の酸化物の側面と接し、
     前記開口を介して、前記第2の酸化物と前記第3の酸化物が接する半導体装置。
  3.  第1の酸化物と、第2の酸化物と、第3の酸化物と、第1の絶縁体と、第2の絶縁体と、第1の導電体と、を有し、
     前記第1の酸化物は、前記第1の導電体の下面と接し、
     前記第1の絶縁体は、前記第1の酸化物の下面と接し、
     前記第2の酸化物は、前記第1の絶縁体の下面と接し、
     前記第3の酸化物は、前記第2の酸化物の下面と接し、
     前記第1の酸化物は、c軸配向した第1の結晶領域を有し、
     前記第1の結晶領域のc軸は、前記第1の絶縁体側の前記第1の酸化物の面と概略垂直であり、
     前記第2の酸化物は、c軸配向した第2の結晶領域を有し、
     前記第2の結晶領域のc軸は、前記第1の絶縁体側の前記第2の酸化物の面と概略垂直であり、
     前記第2の絶縁体は、前記第3の酸化物の上方に位置し、
     前記第2の絶縁体は、前記第2の酸化物の端部と接し、
     前記第3の酸化物は、第1の領域と、前記第1の領域を挟む第2の領域及び第3の領域と、を有し、
     前記第1の領域は、前記第1の導電体と重なる領域を有し、
     前記第2の領域及び前記第3の領域は、リン、ホウ素、アルミニウムまたはマグネシウムから選ばれる一以上を有する半導体装置。
  4.  請求項3において、
     さらに開口を有する第3の絶縁体を有し、
     前記第3の絶縁体は、前記第2の酸化物の下面の一部、ならびに前記第3の酸化物の上面の一部及び側面と接し、
     前記開口を介して、前記第2の酸化物と前記第3の酸化物が接する半導体装置。
  5.  第1の酸化物と、第2の酸化物と、第3の酸化物と、第1の絶縁体と、導電体と、を有し、
     前記第1の酸化物は、前記導電体の側面及び下面を覆い、
     前記第1の絶縁体は、前記第1の酸化物の側面及び下面を覆い、
     前記第2の酸化物は、前記第1の絶縁体の側面及び下面を覆い、
     前記第3の酸化物は、前記第2の酸化物の下面と接し、
     前記第1の酸化物は、c軸配向した第1の結晶領域を有し、
     前記第1の結晶領域のc軸は、前記第1の絶縁体側の前記第1の酸化物の面と概略垂直である半導体装置。
  6.  請求項5において、
     前記第3の酸化物は、第1の領域と、前記第1の領域を挟む第2の領域及び第3の領域と、を有し、
     前記第1の領域は、前記導電体と重なる領域を有し、
     前記第2の領域及び前記第3の領域は、リン、ホウ素、アルミニウムまたはマグネシウムから選ばれる一以上を有する半導体装置。
  7.  第1の酸化物と、第2の酸化物と、第3の酸化物と、第1の絶縁体と、第1の導電体と、第2の導電体と、第3の導電体と、を有し、
     前記第1の酸化物は、前記第1の導電体の側面及び下面を覆い、
     前記第1の絶縁体は、前記第1の酸化物の側面及び下面を覆い、
     前記第2の酸化物は、前記第1の絶縁体の側面及び下面を覆い、
     前記第3の酸化物は、前記第2の酸化物の下面と接し、
     前記第1の酸化物は、c軸配向した第1の結晶領域を有し、
     前記第1の結晶領域のc軸は、前記第1の絶縁体側の前記第1の酸化物の面と概略垂直であり、
     前記第2の導電体及び前記第3の導電体は、前記第3の酸化物上で前記第2の酸化物を介して対向して位置する半導体装置。
  8.  請求項5乃至請求項7のいずれか一において、
     前記第2の酸化物は、c軸配向した第2の結晶領域を有し、
     前記第2の結晶領域のc軸は、前記第1の絶縁体側の前記第2の酸化物の面と概略垂直である半導体装置。
  9.  請求項8において、
     前記第3の酸化物は、c軸配向した第3の結晶領域を有し、
     前記第2の結晶領域は、前記第3の結晶領域のc軸と異なる方向にc軸を有する半導体装置。
  10.  請求項9において、
     前記第1の結晶領域は、前記第3の結晶領域のc軸と異なる方向にc軸を有する半導体装置。
  11.  絶縁体と、導電体と、前記絶縁体と前記導電体との間の第1の酸化物と、を有し、
     前記第1の酸化物は、c軸配向した第1の結晶領域を有し、
     前記第1の結晶領域のc軸は、前記絶縁体側の前記第1の酸化物の面と概略垂直である積層体。
  12.  絶縁体と、導電体と、前記絶縁体と前記導電体との間の第1の酸化物と、前記絶縁体をはさんで前記第1の酸化物と対向する第2の酸化物と、を有し、
     前記第1の酸化物は、c軸配向した第1の結晶領域を有し、
     前記第1の結晶領域のc軸は、前記絶縁体側の前記第1の酸化物の面と概略垂直であり、
     前記第2の酸化物は、c軸配向した第2の結晶領域を有し、
     前記第2の結晶領域のc軸は、前記絶縁体側の前記第2の酸化物の面と概略垂直である積層体。
PCT/IB2019/051516 2018-03-06 2019-02-26 積層体、及び半導体装置 WO2019171205A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/975,855 US11387343B2 (en) 2018-03-06 2019-02-26 Stack and semiconductor device
KR1020207028278A KR20200128554A (ko) 2018-03-06 2019-02-26 적층체 및 반도체 장치
CN201980017323.2A CN111819670B (zh) 2018-03-06 2019-02-26 叠层体及半导体装置
JP2020504473A JP7142081B2 (ja) 2018-03-06 2019-02-26 積層体、及び半導体装置
US17/852,429 US20220336616A1 (en) 2018-03-06 2022-06-29 Stack and semiconductor device
JP2022144504A JP2022171783A (ja) 2018-03-06 2022-09-12 半導体装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-040046 2018-03-06
JP2018040041 2018-03-06
JP2018-040041 2018-03-06
JP2018040046 2018-03-06
JP2018-040042 2018-03-06
JP2018040042 2018-03-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/975,855 A-371-Of-International US11387343B2 (en) 2018-03-06 2019-02-26 Stack and semiconductor device
US17/852,429 Continuation US20220336616A1 (en) 2018-03-06 2022-06-29 Stack and semiconductor device

Publications (1)

Publication Number Publication Date
WO2019171205A1 true WO2019171205A1 (ja) 2019-09-12

Family

ID=67847021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/051516 WO2019171205A1 (ja) 2018-03-06 2019-02-26 積層体、及び半導体装置

Country Status (5)

Country Link
US (2) US11387343B2 (ja)
JP (2) JP7142081B2 (ja)
KR (1) KR20200128554A (ja)
CN (1) CN111819670B (ja)
WO (1) WO2019171205A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023047227A1 (ja) * 2021-09-21 2023-03-30 株式会社半導体エネルギー研究所 半導体装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109075207B (zh) 2016-07-19 2023-08-11 应用材料公司 在显示装置中利用的包含氧化锆的高k介电材料
CN115386887A (zh) * 2022-08-31 2022-11-25 青岛云路先进材料技术股份有限公司 一种非晶、纳米晶合金层叠体切割面的清洗液和清洗方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017118106A (ja) * 2015-12-18 2017-06-29 株式会社半導体エネルギー研究所 半導体装置
JP2017139460A (ja) * 2016-01-29 2017-08-10 株式会社半導体エネルギー研究所 マイクロコントローラシステム
US20170256652A1 (en) * 2016-03-03 2017-09-07 United Microelectronics Corp. Oxide semiconductor device and method of manufacturing the same
WO2017158465A1 (ja) * 2016-03-18 2017-09-21 株式会社半導体エネルギー研究所 記憶装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101396015B1 (ko) * 2009-11-28 2014-05-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP5806905B2 (ja) * 2011-09-30 2015-11-10 株式会社半導体エネルギー研究所 半導体装置
US9263531B2 (en) * 2012-11-28 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film, film formation method thereof, and semiconductor device
WO2015145292A1 (en) * 2014-03-28 2015-10-01 Semiconductor Energy Laboratory Co., Ltd. Transistor and semiconductor device
JP6674269B2 (ja) * 2015-02-09 2020-04-01 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
US9653613B2 (en) * 2015-02-27 2017-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10096631B2 (en) * 2015-11-30 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Signal processing circuit and semiconductor device including the signal processing circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017118106A (ja) * 2015-12-18 2017-06-29 株式会社半導体エネルギー研究所 半導体装置
JP2017139460A (ja) * 2016-01-29 2017-08-10 株式会社半導体エネルギー研究所 マイクロコントローラシステム
US20170256652A1 (en) * 2016-03-03 2017-09-07 United Microelectronics Corp. Oxide semiconductor device and method of manufacturing the same
WO2017158465A1 (ja) * 2016-03-18 2017-09-21 株式会社半導体エネルギー研究所 記憶装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023047227A1 (ja) * 2021-09-21 2023-03-30 株式会社半導体エネルギー研究所 半導体装置

Also Published As

Publication number Publication date
CN111819670B (zh) 2024-04-09
US11387343B2 (en) 2022-07-12
US20200411658A1 (en) 2020-12-31
JP7142081B2 (ja) 2022-09-26
US20220336616A1 (en) 2022-10-20
JP2022171783A (ja) 2022-11-11
CN111819670A (zh) 2020-10-23
KR20200128554A (ko) 2020-11-13
JPWO2019171205A1 (ja) 2021-02-25

Similar Documents

Publication Publication Date Title
WO2019175698A1 (ja) 金属酸化物、及び金属酸化物を有するトランジスタ
WO2019171196A1 (ja) 半導体装置、および半導体装置の作製方法
WO2019111096A1 (ja) 半導体装置、および半導体装置の作製方法
JP2023133365A (ja) 半導体装置
WO2019111105A1 (ja) 半導体装置、および半導体装置の作製方法
WO2019166906A1 (ja) 半導体装置、および半導体装置の作製方法
WO2019197946A1 (ja) 半導体装置、および半導体装置の作製方法
JP2022171783A (ja) 半導体装置
JP2023011801A (ja) 半導体装置
WO2019207429A1 (ja) 半導体装置、および半導体装置の作製方法
WO2019162807A1 (ja) 半導体装置、および半導体装置の作製方法
JP2019129320A (ja) 半導体装置、および半導体装置の作製方法
JPWO2019111106A1 (ja) 半導体装置、および半導体装置の作製方法
JP2022105184A (ja) 半導体装置及びその作製方法
WO2019207410A1 (ja) 半導体装置
WO2019145807A1 (ja) 半導体装置、および半導体装置の作製方法
JPWO2019166914A1 (ja) 半導体装置、および半導体装置の作製方法
JP2019140362A (ja) 半導体装置、および半導体装置の作製方法
WO2019145813A1 (ja) 半導体装置、および半導体装置の作製方法
WO2019207411A1 (ja) 半導体装置、および半導体装置の作製方法
WO2019155329A1 (ja) 半導体装置、及び半導体装置の作製方法
JP2019145539A (ja) 半導体装置、および半導体装置の作製方法
JP2019186496A (ja) 半導体装置、および半導体装置の作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19763211

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504473

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207028278

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19763211

Country of ref document: EP

Kind code of ref document: A1