WO2019169592A1 - 射频功放电路及其输出功率开关控制电路、控制方法 - Google Patents

射频功放电路及其输出功率开关控制电路、控制方法 Download PDF

Info

Publication number
WO2019169592A1
WO2019169592A1 PCT/CN2018/078375 CN2018078375W WO2019169592A1 WO 2019169592 A1 WO2019169592 A1 WO 2019169592A1 CN 2018078375 W CN2018078375 W CN 2018078375W WO 2019169592 A1 WO2019169592 A1 WO 2019169592A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
circuit
signal
output
switch
Prior art date
Application number
PCT/CN2018/078375
Other languages
English (en)
French (fr)
Inventor
伍长林
杜飞
李烨
Original Assignee
海能达通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海能达通信股份有限公司 filed Critical 海能达通信股份有限公司
Priority to PCT/CN2018/078375 priority Critical patent/WO2019169592A1/zh
Publication of WO2019169592A1 publication Critical patent/WO2019169592A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers

Definitions

  • the invention relates to the technical field of communication, and relates to an RF power amplifier circuit and an output power switch control circuit and a control method thereof.
  • the communication device of the communication protocol operates in accordance with a 30 ms transmission and a 30 ms off transmission.
  • ACTP Adjacent channel transmit Power
  • the instantaneous power of the transmission is a key indicator of the communication device, affecting the quality of the communication device.
  • the time and the time for the power of the communication device to rise need to be fast, that is, the power-on and power-off of the RF power amplifier circuit of the communication device is fast.
  • the RF power amplifier circuit is turned on or off, the lower the ACTP, the better, that is, the power-on and power-off of the RF power amplifier circuit of the communication device is slow.
  • the prior art communication device adjusts the size of the filter capacitor by adjusting the filter capacitor on the timing pulse signal link, thereby balancing the time and fall time of the ACTP and power rise.
  • it takes a long time to debug, which requires a lot of manpower, low efficiency, and high cost.
  • the present invention provides an RF power amplifier circuit and an output power switch control circuit and a control method thereof, which can improve efficiency and reduce cost.
  • the present invention further provides an output power switch control circuit for an RF power amplifier circuit, comprising: a first promotion auxiliary circuit coupled to a control end of the power tube of the RF power amplifier circuit, At least an initial stage of a rising edge of the power tube open signal, providing an auxiliary forward signal such that at least an initial phase of the rising edge accelerates the climb; and/or a second boosting auxiliary circuit coupled to the power amplifier of the RF power amplifier circuit
  • the control terminal is configured to provide an auxiliary reverse signal at least at an initial stage of a falling edge of the power tube turn-off signal such that at least an initial phase of the falling edge is accelerated to decrease.
  • the output power switch control circuit includes: a microcontroller, the microcontroller includes a first promotion signal output end and a second promotion signal output end; the first promotion signal output end is coupled to the first promotion auxiliary a circuit providing a first boosting signal to control operation of the first boosting auxiliary circuit; the second boosting signal output end coupled to the second boosting auxiliary circuit, providing a second boosting signal to control the second boosting aid
  • the circuit works.
  • the first facilitating auxiliary circuit includes a first voltage source, a first switch, the first voltage source is coupled to one end of the first switch, and the other end of the first switch is coupled to the radio frequency a control end of the power tube of the power amplifier circuit, the control end of the first switch is coupled to the first boost signal output end;
  • the second boost auxiliary circuit includes a second voltage source, a second switch, and the second voltage The source is coupled to one end of the second switch, the other end of the second switch is coupled to the control end of the power tube of the RF power amplifier circuit, and the control end of the second switch is coupled to the second promotion a signal output terminal; wherein a voltage of the first voltage source is higher than a voltage of the second voltage source, and a voltage of the first voltage source is higher than a voltage of an initial phase of the rising edge, the second voltage The voltage of the source is lower than the voltage of the initial phase of the falling edge.
  • the first facilitating auxiliary circuit includes a first resistor, and the first resistor is coupled between the first switch and a control end of the power tube of the radio frequency power amplifier circuit.
  • the one end of the first switch coupled to the control end of the power tube is also grounded through a second resistor.
  • the second facilitating auxiliary circuit does not operate when the first facilitating auxiliary circuit operates, and the first boosting auxiliary circuit does not operate when the second boosting auxiliary circuit operates.
  • the present invention further provides an RF power amplifier circuit, comprising: a control circuit and the output power switch control circuit, wherein the control circuit controls the work of the first promotion auxiliary circuit and the second promotion auxiliary circuit .
  • the present invention further provides an output power switch control method for an RF power amplifier circuit, comprising: providing an auxiliary forward signal at at least an initial stage of a rising edge of a power tube open signal of the RF power amplifier circuit, Having the at least an initial phase of the rising edge accelerate the climb; and/or at least an initial phase of the falling edge of the power tube shutdown signal, providing an auxiliary reverse signal such that at least an initial phase of the falling edge is accelerated to decrease.
  • the output power switch control circuit of the present invention includes: a first promotion auxiliary circuit coupled to the control end of the power tube of the RF power amplifier circuit for at least an initial stage of the rising edge of the power tube open signal, Providing an auxiliary forward signal such that at least an initial phase of the rising edge accelerates the climb; and/or a second boosting auxiliary circuit coupled to the control end of the RF power amplifier circuit power tube for at least initializing at the falling edge of the power tube shutdown signal
  • the auxiliary reverse signal is provided, so that at least the initial stage of the falling edge is accelerated to decrease; since the rising time and the falling time of the output power of the power tube are shortened by setting the first auxiliary auxiliary circuit and the second auxiliary auxiliary circuit, the RF power amplifier circuit is improved. Performance; In addition, there is no need to debug the filter capacitor of the RF power amplifier circuit. Therefore, when the RF power amplifier circuit meets the ACTP index, it avoids a lot of manpower and time for debugging, improving efficiency and
  • FIG. 1 is a schematic structural view of an output power switch control circuit according to a first embodiment of the present invention
  • FIG. 2 is a timing diagram of the output power switch control circuit and the power tube of FIG. 1;
  • FIG. 3 is a circuit diagram of an output power switch control circuit of a first embodiment of the present invention.
  • FIG. 4 is a waveform diagram of the actual output power of the power tube of FIG. 3;
  • FIG. 5 is a waveform diagram of the ACTP of the actual power tube of FIG. 3;
  • Figure 6 is a circuit diagram of an output power switch control circuit of a third embodiment of the present invention.
  • Figure 7 is a circuit diagram of an output power switch control circuit of a fourth embodiment of the present invention.
  • FIG. 8 is a schematic structural view of a radio frequency power amplifier circuit according to a first embodiment of the present invention.
  • FIG. 9 is a flow chart showing an output power switch control method of a radio frequency power amplifier circuit according to a first embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of an output power switch control circuit according to a first embodiment of the present invention.
  • the output power switch control circuit 10 is used for the RF power amplifier circuit 20, and the output power switch control circuit 10 can include a first boosting auxiliary circuit 11 and a second boosting auxiliary circuit 12, and the RF power amplifier circuit 20 includes a power tube 21 and a control loop circuit 22. .
  • the output power switch control circuit can include a first boost assist circuit or a second boost assist circuit.
  • the first facilitating auxiliary circuit 11 and the second boosting auxiliary circuit 12 are coupled to the control end 211 of the power tube 21, and the first boosting auxiliary circuit 11 is configured to provide auxiliary positive at least at an initial stage of the rising edge of the power tube 21 open signal.
  • the signal is directed to cause the power tube 21 to accelerate the climb at least at an initial stage of the rising edge.
  • the second boosting auxiliary circuit 11 is operative to provide an auxiliary reverse signal at at least a preliminary stage of the falling edge of the power tube 21 turn-off signal to cause the power transistor 21 to accelerate down at at least the initial stage of the falling edge.
  • control loop circuit 22 is coupled to the control end 211 of the power tube 21 for changing the voltage Vapc of the control terminal 211 of the power tube 21 to adjust the power output by the power tube 21.
  • the control loop circuit 22 supplies a voltage Vapc to the control terminal 211 of the power tube 21, and the power tube 21 operates, and the first boosting auxiliary circuit 11 supplies an auxiliary forward signal to the control terminal 211 of the power tube 21.
  • At least the initial phase of the rising edge of the power transistor 21 turn-on signal may be that the output power of the power transistor 21 climbs from zero to P2, as shown in FIG. 2, ie, time T0-T2.
  • the first boosting auxiliary circuit 11 and the control loop circuit 22 boost the voltage Vapc of the control terminal 211 to the first predetermined voltage V1 so that the output power of the power transistor 21 climbs from zero to P1.
  • the first boosting auxiliary circuit 11 and the control loop circuit 22 boost the voltage Vapc of the control terminal 211 to the second predetermined voltage V2 so that the output power of the power transistor 21 climbs from P1 to P2.
  • the first boosting auxiliary circuit 11 stops operating, and the control loop circuit 22 controls the voltage Vapc of the control terminal 211 to be maintained at the second predetermined voltage V2.
  • the first boosting auxiliary circuit 11 is configured to ramp up the voltage Vapc of the control terminal 211 from zero to the second predetermined voltage V2 in at least an initial stage (T0-T2) of the rising edge of the open signal, so that the output of the power transistor 21 The power is accelerated from zero to P2, which can shorten the time when the output power of the power tube 21 climbs from zero to P2.
  • the second boosting auxiliary circuit 12 supplies the auxiliary reverse signal to the control terminal 211 of the power tube 21.
  • At least the initial phase of the falling edge of the power transistor 21 turn-off signal may be that the output power of the power transistor 21 drops from zero to zero, as shown in FIG. 2, ie, time T3-T4.
  • the second boosting auxiliary circuit 12 and the control loop circuit 22 lower the voltage Vapc of the control terminal 211 from the second predetermined voltage V2 to zero, so that the output power of the power transistor 21 drops from zero to zero.
  • the power tube 21 stops operating. Therefore, the time during which the output power of the power transistor 21 drops from P2 to zero can be shortened.
  • T1 is the time when the output power of the power tube 21 climbs from zero to P1
  • T2 is the time when the output power of the power tube 21 climbs from zero to P2
  • T3 is the time when the output power of the power tube 21 starts to decrease
  • T4 is the power. The output power of the tube 21 drops to zero.
  • the first promotion auxiliary circuit 11 and the second promotion auxiliary circuit 12 are configured to shorten the time of at least the initial phase of the rising edge and the time of at least the initial phase of the falling edge, thereby shortening the rise time and the fall time of the output power of the power tube 21,
  • the performance of the RF power amplifier circuit 20 is improved.
  • the RF power amplifier circuit satisfies the ACTP index, it avoids a lot of manpower and time for debugging, improving efficiency and reducing cost.
  • the present invention provides an output power switch control circuit of the second embodiment.
  • the output power switch control circuit 10 further includes a microcontroller 13, and the microcontroller 13 includes a first boost signal output terminal 131 and a second boost. Signal output 132.
  • the first boosting signal output terminal 131 is coupled to the first boosting auxiliary circuit 11
  • the microcontroller 13 is configured to provide a first boosting signal to control the operation of the first boosting auxiliary circuit 11
  • the second boosting signal output terminal 132 is coupled.
  • the microcontroller 13 is configured to provide a second boosting signal to control the second boosting auxiliary circuit 12 to operate.
  • the first boosting auxiliary circuit 11 includes a first voltage source Vs and a first switch K1.
  • the first voltage source Vs is coupled to one end of the first switch K1, and the other end of the first switch K1 is coupled to the RF power amplifier circuit 20.
  • the control terminal 211 of the power tube 21 and the control end of the first switch K1 are coupled to the first boosting signal output terminal 131.
  • the second boosting auxiliary circuit 12 includes a second voltage source Vd and a second switch K2.
  • the second voltage source Vd is coupled to one end of the second switch K2, and the other end of the second switch K2 is coupled to the power tube of the RF power amplifier circuit 20.
  • the control terminal 211 of the second switch K2 is coupled to the second boosting signal output terminal 132.
  • the voltage of the first voltage source Vs is higher than the voltage of the second voltage source Vd, and the voltage of the first voltage source Vs is higher than the voltage of the initial stage of the rising edge, that is, the voltage of the first voltage source Vs is greater than the second preset voltage. V2; the voltage of the second voltage source Vs is lower than the voltage of the initial stage of the falling edge, that is, the voltage of the second voltage source Vd is smaller than the second preset voltage V2.
  • the first voltage source Vs can be a 5V voltage source, and the second voltage source Vd can be a ground voltage.
  • the first boosting auxiliary circuit 11 further includes a first resistor R1 and a second resistor R2, wherein the first resistor R1 is coupled between the first switch K1 and the control terminal 211 of the power tube 21; the first switch K1 is coupled to the power tube 21 One end of the control terminal 211 is grounded through the second resistor R2.
  • the microcontroller 13 outputs a first boosting signal to the control terminal of the first switch K1 through the first boosting signal output terminal 131 to control the first switch K1 to be turned on.
  • the first boosting auxiliary circuit 11 is turned to
  • the control terminal 211 of the power tube 21 provides an auxiliary forward signal, that is, the first voltage source Vs supplies an auxiliary forward signal to the control terminal 211 of the power tube 21 to accelerate the output power of the power tube 21 from zero to P2.
  • the second switch K2 is turned off, that is, when the first boosting auxiliary circuit 11 is operated, the second boosting auxiliary circuit 12 is not operated.
  • the microcontroller 13 stops outputting the first boosting signal, at which time the first switch K1 and the second switch K2 are turned off.
  • the microcontroller 13 outputs a second boosting signal to the control terminal of the second switch K2 through the second boosting signal output terminal 132 to control the second switch K2 to be turned on.
  • the second boosting auxiliary circuit 12 is turned to
  • the control terminal 211 of the power tube 21 provides an auxiliary reverse signal, that is, the control terminal 211 of the power tube 21 is grounded to accelerate the output power of the power tube 21 from P2 to zero.
  • the first switch K1 is turned off, that is, when the second boosting auxiliary circuit 12 is operated, the first boosting assisting circuit 11 does not operate.
  • the waveform of the output power of the power tube 21 is actually detected in the present embodiment; the first boosting auxiliary circuit 11 is used to shorten the time of at least the initial phase of the rising edge to improve the performance of the RF power amplifier circuit 20.
  • the waveform of the ACTP of the power tube 21 is actually detected in the embodiment; since the filter capacitor of the RF power amplifier circuit 20 is not required to be debugged, when the RF power amplifier circuit satisfies the ACTP index, it avoids a lot of manpower and time for debugging. Improve efficiency and reduce costs.
  • the first boosting auxiliary circuit 11 includes a first switch transistor Q1, a first diode D1, a first resistor R1, and a second resistor R2.
  • the pole is connected to one end of the third resistor R3 and the cathode of the first diode D1, and the other end of the third resistor R3 is connected to the control end 211 of the power tube 21 through the first resistor R1, one end of the second resistor R2 is grounded, and the second resistor
  • the other end of R2 is connected between the first resistor R1 and the third resistor R3, and the anode of the first diode D1 is connected to the first voltage source Vs through the fourth resistor R4.
  • the second boosting auxiliary circuit 12 includes a second switching transistor Q2 and a fifth resistor R5.
  • the gate of the second switching transistor Q2 is connected to the second boosting signal output terminal 132, the source of the second switching transistor Q2 is grounded, and the second switching transistor Q2 is connected.
  • the drain is connected to the control terminal 211 of the power transistor 21 through the fifth resistor R5.
  • the control loop circuit 22 includes a second diode D2 and a sixth resistor R6.
  • the anode of the second diode D2 is connected to the third output terminal 133 of the microcontroller 13, and the cathode of the second diode D2 is connected to the power tube 21.
  • the control terminal 211, the sixth resistor R6 is connected in parallel with the second diode D2.
  • the present invention provides an output power switch control circuit of the fourth embodiment.
  • the first boosting auxiliary circuit 11 includes a first switch transistor Q1, a second switch transistor Q2, a first resistor R1, a second resistor R2, and a first a voltage source Vs
  • the gate of the second switching transistor Q2 is connected to the first boosting signal output terminal 131
  • the source of the second switching transistor Q2 is grounded
  • the drain of the second switching transistor Q2 is connected to the gate of the first switching transistor Q1 and
  • One end of the first resistor R1, the other end of the first resistor R1 is connected to one end of the first voltage source Vs and the second resistor R2; the other end of the second resistor R2 is connected to the source of the first switch tube Q1, and the first switch tube Q1
  • the drain is connected to the control terminal 211 of the power transistor 21.
  • the voltage value of the first voltage source Vs may be 7V.
  • the second boosting auxiliary circuit 12 includes a third switching transistor Q3 and a third resistor R3.
  • the gate of the third switching transistor Q3 is connected to the second boosting signal output terminal 132.
  • the source of the third switching transistor Q3 is grounded, and the third switching transistor Q3 is connected.
  • the drain is connected to the control terminal 211 of the power transistor 21 through the third resistor R3.
  • the present invention further provides an RF power amplifier circuit.
  • the RF power amplifier circuit 70 includes a control circuit 71 and an output power switch control circuit 10 described in the above embodiment.
  • the control circuit 71 is used to control the first promotion auxiliary circuit. 11 and second facilitate the operation of the auxiliary circuit 12.
  • the present invention further provides an output power switch control method for an RF power amplifier circuit. As shown in FIG. 9, the control method includes the following steps:
  • S101 at least an initial stage of a rising edge of the power tube 21 open signal of the RF power amplifier circuit 20, providing an auxiliary forward signal, so that at least an initial stage of the rising edge accelerates the climb;
  • the output power switch control circuit of the present invention includes: a first boosting auxiliary circuit coupled to the control end of the power tube of the RF power amplifier circuit for providing assistance in at least an initial stage of the rising edge of the power tube open signal a forward signal that accelerates at least an initial phase of the rising edge; and/or a second boosting auxiliary circuit coupled to the control terminal of the power tube of the RF power amplifier circuit for at least an initial stage of a falling edge of the power tube shutdown signal, Providing an auxiliary reverse signal, so that at least an initial stage of the falling edge is accelerated to decrease; since the rising time and the falling time of the output power of the power tube are shortened by setting the first auxiliary auxiliary circuit and the second auxiliary auxiliary circuit, the performance of the RF power amplifier circuit is improved; In addition, there is no need to debug the filter capacitor of the RF power amplifier circuit. Therefore, when the RF power amplifier circuit meets the ACTP index, it avoids a lot of manpower and time for debugging, improving efficiency and reducing cost.
  • the invention discloses an RF power amplifier circuit and an output power switch control circuit and a control method thereof.
  • the output power switch control circuit comprises: a first promotion auxiliary circuit coupled to a control end of a power tube of the RF power amplifier circuit for use in power At least an initial stage of the rising edge of the tube open signal, providing an auxiliary forward signal such that at least an initial phase of the rising edge accelerates the climb; and/or a second boosting auxiliary circuit coupled to the control end of the power tube of the RF power amplifier circuit for At least an initial stage of the falling edge of the power tube shutdown signal, an auxiliary reverse signal is provided such that at least an initial phase of the falling edge accelerates down.
  • the invention can improve the performance of the RF power amplifier circuit and reduce the cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

一种射频功放电路(20)及其输出功率开关控制电路(10)、控制方法,该输出功率开关控制电路(10)包括:第一促进辅助电路(11),耦接至射频功放电路(20)功率管(21)的控制端(211),用于在功率管(21)打开信号的上升沿的至少初始阶段,提供辅助正向信号,使得上升沿的至少初始阶段加速爬升;和/或第二促进辅助电路(12),耦接至射频功放电路(20)功率管(21)的控制端(211),用于在功率管关闭信号的下降沿的至少初始阶段,提供辅助反向信号,使得下降沿的至少初始阶段加速下降。所述射频功放电路(20)及其输出功率开关控制电路(10)、控制方法能够提升射频功放电路的性能,降低成本。

Description

射频功放电路及其输出功率开关控制电路、控制方法
【技术领域】
本发明涉及通信的技术领域,涉及一种射频功放电路及其输出功率开关控制电路、控制方法。
【背景技术】
目前采用DMR(Digital Mobile Radio,数字集群通信)通信协议的通信装置按照30ms发射和30ms关闭发射进行工作。其中,ACTP(Adjacent channel transmit Power,发射瞬间临道功率)是通信装置的关键指标,影响通信装置的通话质量。为了避免发射数据丢失,因此通信装置的功率上升的时间和下降的时间需要快,即通信装置的射频功放电路的上电和关电要快。而在射频功放电路开启或者关闭时,ACTP越低越好,即通信装置的射频功放电路的上电和关电要缓慢。
现有技术的通信装置通过调试在时序脉冲信号链路上的滤波电容,以调整滤波电容的大小,进而平衡ACTP和功率上升的时间和下降的时间。但需要花费很长的时间去调试,耗费大量人力,效率低,成本高。
【发明内容】
为了解决上述问题,本发明提供一种射频功放电路及其输出功率开关控制电路、控制方法,能够提高效率,降低成本。
为解决上述技术问题,本发明还提供一种射频功放电路的输出功率开关控制电路,其包括:第一促进辅助电路,耦接至所述射频功放电路功率管的控制端,用于在所述功率管打开信号的上升沿的至少初始阶段,提供辅助正向信号,使得所述上升沿的至少初始阶段加速爬升;和/或第二促进辅助电路,耦接至所述射频功放电路功率管的控制端,用于在所述功率管关闭信号的下降沿的至少初始阶段,提供辅助反向信号,使得所述下降沿的至少初始阶段加速下降。
其中,输出功率开关控制电路包括:微控制器,所述微控制器包括第一促进信号输出端和第二促进信号输出端;所述第一促进信号输出端耦接至所述第一促进辅助电路,提供第一促进信号以控制所述第一促进辅助电路工作;所述第二促进信号输出端耦接至所述第二促进辅助电路,提供第二促进信号以控制所述第二促进辅助电路工作。
其中,所述第一促进辅助电路包括第一电压源、第一开关,所述第一电压源耦接至所述第一开关的一端,所述第一开关的另一端耦接至所述射频功放电路功率管的控制端,所述第一开关的控制端耦接至所述第一促进信号输出端;所述第二促进辅助电路包括第二电压源、第二开关,所述第二电压源耦接至所述第二开关的一端,所述第二开关的另一端耦接至所述射频功放电路功率管的控制端,所述第二开关的控制端耦接至所述第二促进信号输出端;其中,所述第一电压源的电压高于所述第二电压源的电压,且所述第一电压源的电压高于所述上升沿初始阶段的电压,所述第二电压源的电压低于所述下降沿初始阶段的电压。
其中,所述第一促进辅助电路包括第一电阻,所述第一电阻耦接于所述第一开关与所述射频功放电路功率管的控制端之间。
其中,所述第一开关耦接所述功率管控制端的一端还通过第二电阻接地。
其中,在所述功率管打开信号的上升沿的至少初始阶段,先以第一斜率K1=P1/T1控制所述功率管的输出功率从零爬升到P1,再以比第一斜率更缓的第二斜率K2=(P2-P1)/(T2-T1)控制功率管的输出功率爬升到目标功率P2;其中T1为所述功率管的输出功率从零爬升到P1的时间,T2为所述功率管的输出功率从零爬升到P2的时间,T3为所述功率管的输出功率开始下降的时间,T4为所述功率管的输出功率下降为零的时间。
其中,在所述功率管关闭信号的下降沿的至少初始阶段,以第三斜率K3=P2/(T4-T3)控制所述功率管的输出功率下降为零。
其中,在所述第一促进辅助电路工作时,所述第二促进辅助电路不工作,在所述第二促进辅助电路工作时,所述第一促进辅助电路不工作。
为解决上述技术问题,本发明还提供一种射频功放电路,其包括:控制电路以及上述输出功率开关控制电路,其中所述控制电路控制所述第一促进辅助电路、第二促进辅助电路的工作。
为解决上述技术问题,本发明还提供一种射频功放电路的输出功率开关控制方法,其包括:在所述射频功放电路的功率管打开信号的上升沿的至少初始阶段,提供辅助正向信号,使得所述上升沿的至少初始阶段加速爬升;和/或在所述功率管关闭信号的下降沿的至少初始阶段,提供辅助反向信号,使得所述下降沿的至少初始阶段加速下降。
与现有技术相比,本发明的输出功率开关控制电路包括:第一促进辅助电路,耦接至射频功放电路功率管的控制端,用于在功率管打开信号的上升沿的至少初始阶段,提供辅助正向信号,使得上升沿的至少初始阶段加速爬升;和/或第二促进辅助电路,耦接至射频功放电路功率管的控制端,用于在功率管关闭信号的下降沿的至少初始阶段,提供辅助反向信号,使得下降沿的至少初始阶段加速下降;由于通过设置第一促进辅助电路和第二促进辅助电路,缩短功率管输出功率的上升时间和下降时间,提升射频功放电路的性能;此外,无需调试射频功放电路的滤波电容,因此在射频功放电路满足ACTP指标时,避免耗费大量人力和时间进行调试,提高效率,降低成本。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要采用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本发明第一实施例输出功率开关控制电路的结构示意图;
图2是图1中输出功率开关控制电路和功率管的时序示意图;
图3是本发明第一实施例输出功率开关控制电路的电路图;
图4是图3中实际检测功率管的输出功率的波形示意图;
图5是图3中实际检测功率管的ACTP的波形示意图;
图6是本发明第三实施例输出功率开关控制电路的电路图;
图7是本发明第四实施例输出功率开关控制电路的电路图;
图8是本发明第一实施例射频功放电路的结构示意图;
图9是本发明第一实施例射频功放电路的输出功率开关控制方法的流程示意图。
【具体实施方式】
下面结合附图和实施例,对本发明作进一步的详细描述。特别指出的是,以下实施例仅用于说明本发明,但不对本发明的范围进行限定。同样的,以下实施例仅为本发明的部分实施例而非全部实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
请参见图1所示,图1是本发明第一实施例输出功率开关控制电路的结构示意图。该输出功率开关控制电路10用于射频功放电路20,输出功率开关控制电路10可包括第一促进辅助电路11和第二促进辅助电路12,射频功放电路20包括功率管21和控制环路电路22。在其他实施例中,输出功率开关控制电路可包括第一促进辅助电路或第二促进辅助电路。
其中,第一促进辅助电路11和第二促进辅助电路12耦接至功率管21的控制端211,第一促进辅助电路11用于在功率管21打开信号的上升沿的至少初始阶段提供辅助正向信号,以使功率管21在上升沿的至少初始阶段加速爬升。第二促进辅助电路11用于在功率管21关闭信号的下降沿的至少初级阶段提供辅助反向信号,以使功率管21在下降沿的至少初级阶段加速下降。
具体地,控制环路电路22耦接功率管21的控制端211,用于改变功率管21的控制端211的电压Vapc,以调整功率管21输出的功率。
结合图2的时序图描述功率开关控制电路10的工作原理。
在功率管21打开信号时,控制环路电路22向功率管21的控制端211提供电压Vapc,功率管21工作,第一促进辅助电路11向功率管21的控制端211提供辅助正向信号。功率管21打开信号的上升沿的至少初始阶段可为功率管21的输出功率从零爬升到P2,如图2所示,即时间T0-T2。在T0-T1时,第一促进辅助电路11和控制环路电路22将控制端211的电压Vapc提升到第一预设电压V1,以使得功率管21的输出功率从零爬升到P1。在T1-T2时,第一促进辅助电路11和控制环路电路22将控制端211的电压Vapc提升到第二预设电压V2,以使得功率管21的输出功率从P1爬升到P2。在T2-T3,功率管21的输出功率为P2时,第一促进辅助电路11停止工作,控制环路电路22控制控制端211的电压Vapc维持在第二预设电压V2。因此第一促进辅助电路11用于在打开信号的上升沿的至少初始阶段(T0-T2)将控制端211的电压Vapc由零加速爬升至第二预设电压V2,以使功率管21的输出功率从零加速爬升到P2,能够缩短功率管21的输出功率从零爬升到P2的时间。
在功率管21关闭信号时,功率管21的控制端211的电压Vapc由第二预设电压V2下降至0;第二促进辅助电路12向功率管21的控制端211提供辅助反向信号。功率管21关闭信号的下降沿的至少初始阶段可为功率管21的输出功率从P2下降为零,如图2所示,即时间T3-T4。在T3-T4时,第二促进辅助电路12和控制环路电路22将控制端211的电压Vapc从第二预设电压V2下降为零,以使得功率管21的输出功率从P2下降为零。在功率管21的输出功率为零时,功率管21停止工作。因此,能够缩短功率管21的输出功率从P2下降到零的时间。
其中,T1为功率管21的输出功率从零爬升到P1的时间,T2为功率管21的输出功率从零爬升到P2的时间,T3为功率管21的输出功率开始下降的时间,T4为功率管21的输出功率下降为零的时间。
其中,第一促进辅助电路11和第二促进辅助电路12用于缩短上升沿的至少初始阶段的时间和下降沿的至少初始阶段的时间,进而缩短功率管21输出功率的上升时间和下降时间,提升射频功放电路20的性能。此外,无需调试射频功放电路20的滤波电容,在射频功放电路满足ACTP指标时,避免耗费大量人力和时间进行调试,提高效率,降低成本。
本发明提供第二实施例的输出功率开关控制电路,如图3所示,该输出功率开关控制电路10还包括微控制器13,微控制器13包括第一促进信号输出端131和第二促进信号输出端132。其中,第一促进信号输出端131耦接至第一促进辅助电路11,微控制器13用于提供第一促进信号,以控制第一促进辅助电路11工作;第二促进信号输出端132耦接至第二促进辅助电路12,微控制器13用于提供第二促进信号,以控制第二促进辅助电路12工作。
其中,第一促进辅助电路11包括第一电压源Vs和第一开关K1,第一电压源Vs耦接至第一开关K1的一端,第一开关K1的另一端耦接至射频功放电路20的功率管21的控制端211,第一开关K1的控制端耦接至第一促进信号输出端131。第二促进辅助电路12包括第二电压源Vd和第二开关K2,第二电压源Vd耦接至第二开关K2的一端,第二开关K2的另一端耦接至射频功放电路20的功率管21的控制端211,第二开关K2的控制端耦接至第二促进信号输出端132。
其中,第一电压源Vs的电压高于第二电压源Vd的电压,且第一电压源Vs的电压高于上升沿初始阶段的电压,即第一电压源Vs的电压大于第二预设电压V2;第二电压源Vs的电压低于下降沿初始阶段的电压,即第二电压源Vd的电压小于第二预设电压V2。第一电压源Vs可为5V电压源,第二电压源Vd可为接地电压。
第一促进辅助电路11还包括第一电阻R1和第二电阻R2,其中第一电阻R1耦接于第一开关K1与功率管21的控制端211之间;第一开关K1耦接功率管21的控制端211的一端通过第二电阻R2接地。
在T0-T2时,微控制器13通过第一促进信号输出端131输出第一促进信号至第一开关K1的控制端,以控制第一开关K1导通,此时第一促进辅助电路11向功率管21的控制端211提供辅助正向信号,即第一电压源Vs向功率管21的控制端211提供辅助正向信号,以使功率管21的输出功率从零加速爬升到P2。此时,第二开关K2断开,即第一促进辅助电路11工作时,第二促进辅助电路12不工作。其中,在T0-T1时,即在功率管21打开信号的上升沿的至少初始阶段,先以第一斜率K1=P1/T1控制功率管21的输出功率从零爬升到P1;在T1-T2时,再以比第一斜率更缓的第二斜率K2=(P2-P1)/(T2-T1)控制功率管21的输出功率爬升到目标功率P2。
在T2-T3时,微控制器13停止输出第一促进信号,此时第一开关K1和第二开关K2断开。
在T3-T4时,微控制器13通过第二促进信号输出端132输出第二促进信号至第二开关K2的控制端,以控制第二开关K2导通,此时第二促进辅助电路12向功率管21的控制端211提供辅助反向信号,即功率管21的控制端211接地,以使功率管21的输出功率从P2加速下降到零。此时,第一开关K1断开,即第二促进辅助电路12工作时,第一促进辅助电路11不工作。其中,在所功率管21关闭信号的下降沿的至少初始阶段,以第三斜率K3=P2/(T4-T3)控制功率管21的输出功率下降为零。
如图4所示,本实施例的实际检测功率管21的输出功率的波形图;第一促进辅助电路11用于缩短上升沿的至少初始阶段的时间,提升射频功放电路20的性能。如图5所示,本实施例的实际检测功率管21的ACTP的波形图;由于无需调试射频功放电路20的滤波电容,在射频功放电路满足ACTP指标时,避免耗费大量人力和时间进行调试,提高效率,降低成本。
本发明提供第三实施例的输出功率开关控制电路,如图6所示,第一促进辅助电路11包括第一开关管Q1、第一二极管D1、第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4以及第一电压源Vs,第一开关管Q1的栅极连接第一促进信号输出端131,第一开关管Q1的源极接地,第一开关管Q1的漏极连接第三电阻R3的一端和第一二极管D1的负极,第三电阻R3的另一端通过第一电阻R1连接功率管21的控制端211,第二电阻R2的一端接地,第二电阻R2的另一端连接至第一电阻R1和第三电阻R3之间,第一二极管D1的正极通过第四电阻R4连接第一电压源Vs。其中,第一电压源Vs的电压值可为9V。
第二促进辅助电路12包括第二开关管Q2和第五电阻R5,第二开关管Q2的栅极连接第二促进信号输出端132,第二开关管Q2的源极接地,第二开关管Q2的漏极通过第五电阻R5连接功率管21的控制端211。
控制环路电路22包括第二二极管D2和第六电阻R6,第二二极管D2的正极连接微控制器13的第三输出端133,第二二极管D2的负极连接功率管21的控制端211,第六电阻R6与第二二极管D2并联连接。
本发明提供第四实施例的输出功率开关控制电路,如图7所示,第一促进辅助电路11包括第一开关管Q1、第二开关管Q2、第一电阻R1、第二电阻R2以及第一电压源Vs,第二开关管Q2的栅极连接第一促进信号输出端131,第二开关管Q2的源极接地,第二开关管Q2的漏极连接第一开关管Q1的栅极和第一电阻R1的一端,第一电阻R1的另一端连接第一电压源Vs和第二电阻R2的一端;第二电阻R2的另一端连接第一开关管Q1的源极,第一开关管Q1的漏极连接功率管21的控制端211。其中,第一电压源Vs的电压值可为7V。
第二促进辅助电路12包括第三开关管Q3和第三电阻R3,第三开关管Q3的栅极连接第二促进信号输出端132,第三开关管Q3的源极接地,第三开关管Q3的漏极通过第三电阻R3连接功率管21的控制端211。
本发明进一步提供一种射频功放电路,如图8所示,该射频功放电路70包括控制电路71和上述实施例所描述的输出功率开关控制电路10,控制电路71用于控制第一促进辅助电路11和第二促进辅助电路12的工作。
本发明进一步提供一种射频功放电路的输出功率开关控制方法,如图9所示,该控制方法包括以下步骤:
S101:在射频功放电路20的功率管21打开信号的上升沿的至少初始阶段,提供辅助正向信号,使得上升沿的至少初始阶段加速爬升;
S102:在功率管21关闭信号的下降沿的至少初始阶段,提供辅助反向信号,使得下降沿的至少初始阶段加速下降。
其中,步骤S101和S102应用于上述实施例的输出功率开关控制电路10,在此不再赘述。
综上所述,本发明的输出功率开关控制电路包括:第一促进辅助电路,耦接至射频功放电路功率管的控制端,用于在功率管打开信号的上升沿的至少初始阶段,提供辅助正向信号,使得上升沿的至少初始阶段加速爬升;和/或第二促进辅助电路,耦接至射频功放电路功率管的控制端,用于在功率管关闭信号的下降沿的至少初始阶段,提供辅助反向信号,使得下降沿的至少初始阶段加速下降;由于通过设置第一促进辅助电路和第二促进辅助电路,缩短功率管输出功率的上升时间和下降时间,提升射频功放电路的性能;此外,无需调试射频功放电路的滤波电容,因此在射频功放电路满足ACTP指标时,避免耗费大量人力和时间进行调试,提高效率,降低成本。
需要说明的是,以上各实施例均属于同一发明构思,各实施例的描述各有侧重,在个别实施例中描述未详尽之处,可参考其他实施例中的描述。
以上对本发明实施例所提供的保护电路和控制系统进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
摘要
本发明公开了一种射频功放电路及其输出功率开关控制电路、控制方法,该输出功率开关控制电路包括:第一促进辅助电路,耦接至射频功放电路功率管的控制端,用于在功率管打开信号的上升沿的至少初始阶段,提供辅助正向信号,使得上升沿的至少初始阶段加速爬升;和/或第二促进辅助电路,耦接至射频功放电路功率管的控制端,用于在功率管关闭信号的下降沿的至少初始阶段,提供辅助反向信号,使得下降沿的至少初始阶段加速下降。本发明能够提升射频功放电路的性能,降低成本。

Claims (10)

  1. 一种射频功放电路的输出功率开关控制电路,其中,包括:
    第一促进辅助电路,耦接至所述射频功放电路功率管的控制端,用于在所述功率管打开信号的上升沿的至少初始阶段,提供辅助正向信号,使得所述上升沿的至少初始阶段加速爬升;和/或
    第二促进辅助电路,耦接至所述射频功放电路功率管的控制端,用于在所述功率管关闭信号的下降沿的至少初始阶段,提供辅助反向信号,使得所述下降沿的至少初始阶段加速下降。
  2. 根据权利要求1所述的输出功率开关控制电路,其中,包括:
    微控制器,所述微控制器包括第一促进信号输出端和第二促进信号输出端;
    所述第一促进信号输出端耦接至所述第一促进辅助电路,提供第一促进信号以控制所述第一促进辅助电路工作;
    所述第二促进信号输出端耦接至所述第二促进辅助电路,提供第二促进信号以控制所述第二促进辅助电路工作。
  3. 根据权利要求2所述的输出功率开关控制电路,其中,
    所述第一促进辅助电路包括第一电压源、第一开关,所述第一电压源耦接至所述第一开关的一端,所述第一开关的另一端耦接至所述射频功放电路功率管的控制端,所述第一开关的控制端耦接至所述第一促进信号输出端;
    所述第二促进辅助电路包括第二电压源、第二开关,所述第二电压源耦接至所述第二开关的一端,所述第二开关的另一端耦接至所述射频功放电路功率管的控制端,所述第二开关的控制端耦接至所述第二促进信号输出端;
    其中,所述第一电压源的电压高于所述第二电压源的电压,且所述第一电压源的电压高于所述上升沿初始阶段的电压,所述第二电压源的电压低于所述下降沿初始阶段的电压。
  4. 根据权利要求3所述的输出功率开关控制电路,其中,所述第一促进辅助电路包括第一电阻,所述第一电阻耦接于所述第一开关与所述射频功放电路功率管的控制端之间。
  5. 根据权利要求4所述的输出功率开关控制电路,其中,所述第一开关耦接所述功率管控制端的一端还通过第二电阻接地。
  6. 根据权利要求1至5任一项所述的输出功率开关控制电路,其中,在所述功率管打开信号的上升沿的至少初始阶段,先以第一斜率K1=P1/T1控制所述功率管的输出功率从零爬升到P1,再以比第一斜率更缓的第二斜率K2=(P2-P1)/(T2-T1)控制功率管的输出功率爬升到目标功率P2;其中T1为所述功率管的输出功率从零爬升到P1的时间,T2为所述功率管的输出功率从零爬升到P2的时间,T3为所述功率管的输出功率开始下降的时间,T4为所述功率管的输出功率下降为零的时间。
  7. 根据权利要求6所述的输出功率开关控制电路,其中,在所述功率管关闭信号的下降沿的至少初始阶段,以第三斜率K3=P2/(T4-T3)控制所述功率管的输出功率下降为零。
  8. 根据权利要求1至6任一项所述的输出功率开关控制电路,其中,在所述第一促进辅助电路工作时,所述第二促进辅助电路不工作,在所述第二促进辅助电路工作时,所述第一促进辅助电路不工作。
  9. 一种射频功放电路,其中,包括:控制电路以及如权利要求1至5任一项所述的输出功率开关控制电路,其中所述控制电路控制所述第一促进辅助电路、第二促进辅助电路的工作。
  10. 一种射频功放电路的输出功率开关控制方法,其中,包括:
    在所述射频功放电路的功率管打开信号的上升沿的至少初始阶段,提供辅助正向信号,使得所述上升沿的至少初始阶段加速爬升;和/或
    在所述功率管关闭信号的下降沿的至少初始阶段,提供辅助反向信号,使得所述下降沿的至少初始阶段加速下降。
PCT/CN2018/078375 2018-03-08 2018-03-08 射频功放电路及其输出功率开关控制电路、控制方法 WO2019169592A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/078375 WO2019169592A1 (zh) 2018-03-08 2018-03-08 射频功放电路及其输出功率开关控制电路、控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/078375 WO2019169592A1 (zh) 2018-03-08 2018-03-08 射频功放电路及其输出功率开关控制电路、控制方法

Publications (1)

Publication Number Publication Date
WO2019169592A1 true WO2019169592A1 (zh) 2019-09-12

Family

ID=67845523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078375 WO2019169592A1 (zh) 2018-03-08 2018-03-08 射频功放电路及其输出功率开关控制电路、控制方法

Country Status (1)

Country Link
WO (1) WO2019169592A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101114860A (zh) * 2007-08-17 2008-01-30 华为技术有限公司 一种控制功率放大的方法及装置
US8260224B2 (en) * 2009-12-02 2012-09-04 Sige Semiconductor Inc. System and method of prebias for rapid power amplifier response correction
CN103368508A (zh) * 2012-03-29 2013-10-23 特里奎恩特半导体公司 具有低动态误差向量量值的射频功率放大器
CN104753479A (zh) * 2015-03-09 2015-07-01 上海海尔集成电路有限公司 射频功率放大器电路及射频发射机
CN104753471A (zh) * 2013-12-31 2015-07-01 天工方案公司 关于动态误差向量幅度校正的系统、电路和方法
CN105763164A (zh) * 2014-12-16 2016-07-13 沈阳中科微电子有限公司 一种射频功率放大器电路
CN106559041A (zh) * 2016-10-27 2017-04-05 锐迪科微电子(上海)有限公司 一种射频功率放大器的偏置控制电路以及控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101114860A (zh) * 2007-08-17 2008-01-30 华为技术有限公司 一种控制功率放大的方法及装置
US8260224B2 (en) * 2009-12-02 2012-09-04 Sige Semiconductor Inc. System and method of prebias for rapid power amplifier response correction
CN103368508A (zh) * 2012-03-29 2013-10-23 特里奎恩特半导体公司 具有低动态误差向量量值的射频功率放大器
CN104753471A (zh) * 2013-12-31 2015-07-01 天工方案公司 关于动态误差向量幅度校正的系统、电路和方法
CN105763164A (zh) * 2014-12-16 2016-07-13 沈阳中科微电子有限公司 一种射频功率放大器电路
CN104753479A (zh) * 2015-03-09 2015-07-01 上海海尔集成电路有限公司 射频功率放大器电路及射频发射机
CN106559041A (zh) * 2016-10-27 2017-04-05 锐迪科微电子(上海)有限公司 一种射频功率放大器的偏置控制电路以及控制方法

Similar Documents

Publication Publication Date Title
WO2014183323A1 (zh) 削角电路及其控制方法
WO2014153787A1 (zh) 一种led背光驱动电路及背光模组
WO2015006963A1 (zh) 一种led背光系统及显示装置
WO2012022088A1 (zh) 电流反馈电路及led灯驱动电路
WO2013181853A1 (zh) 一种led背光系统及显示装置
CN201032706Y (zh) 驱动电路
CN201499153U (zh) 一种缓启动电路及具有该电路的光模块
US20230131154A1 (en) Drive circuit with energy recovery function and switch mode power supply
WO2016090670A1 (zh) 一种扫描驱动电路
CN102801390A (zh) 用于d类音频放大器中的pop噪声抑制电路
CN100514830C (zh) 全桥式软切换转换器及其驱动方法
WO2013166737A1 (zh) 一种led背光驱动电路、液晶显示装置及一种驱动方法
WO2018076294A1 (zh) 防反接及电流反灌电路
CN107182148B (zh) 一种基于pwm调光的dc-dc led驱动电路
WO2017088512A1 (zh) 一种网络切换方法、装置以及终端
CN105048790A (zh) 功率管控制系统和用于驱动外置功率管的驱动电路
WO2018023859A1 (zh) 扫描驱动电路及具有该电路的平面显示装置
CN105305831A (zh) 一种采用隔离变压器的桥式变换器单路信号栅驱动电路
CN100552740C (zh) 信号隔离传送电路
WO2020156160A1 (zh) 升压芯片及其短路保护电路
WO2017197732A1 (zh) 一种数字电源提供电路及液晶驱动装置
WO2016023449A1 (zh) 采用ad方式进行红外学习的方法
WO2019169592A1 (zh) 射频功放电路及其输出功率开关控制电路、控制方法
CN112910240B (zh) 一种可变栅极电压开通控制电路、功率模块及电力变换器
CN208724068U (zh) 背光启动电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 220121)

122 Ep: pct application non-entry in european phase

Ref document number: 18908729

Country of ref document: EP

Kind code of ref document: A1