WO2019169512A1 - 工具机主轴与刀具偏摆与震动快速测量装置与方法 - Google Patents

工具机主轴与刀具偏摆与震动快速测量装置与方法 Download PDF

Info

Publication number
WO2019169512A1
WO2019169512A1 PCT/CN2018/000098 CN2018000098W WO2019169512A1 WO 2019169512 A1 WO2019169512 A1 WO 2019169512A1 CN 2018000098 W CN2018000098 W CN 2018000098W WO 2019169512 A1 WO2019169512 A1 WO 2019169512A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
tool
module
position sensor
spindle
Prior art date
Application number
PCT/CN2018/000098
Other languages
English (en)
French (fr)
Inventor
刘建宏
Original Assignee
刘建宏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘建宏 filed Critical 刘建宏
Priority to PCT/CN2018/000098 priority Critical patent/WO2019169512A1/zh
Publication of WO2019169512A1 publication Critical patent/WO2019169512A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means

Definitions

  • the invention relates to a tool machine shaft measuring device, in particular to a differential energy measuring machine tool spindle and tool yaw and vibration rapid measuring device and method for shielding a laser beam, the invention has low cost, convenient assembly and accurate The high efficiency and the obvious effect of direct measurement of the processing speed state.
  • the existing tool line measuring device can measure the maximum speed of about 3000 rpm.
  • the measured spindle yaw condition at this speed cannot meet the actual processing conditions.
  • the commercially available tool line measuring device needs to read the machine tool. The coordinates are used as the basis for judging the displacement. Therefore, the accuracy of the rotation on the spindle line cannot be measured.
  • 3000 rpm does not conform to the processing under the low speed measurement. In the state of the tool, this speed is much smaller than the actual machining speed of 6000 rpm or more, and the spindle rotation accuracy at high speed cannot be detected in real time on the line.
  • the assembly position of the sensor head and the lens group is fixed, and the height of the spindle and the working platform is also fixed, so Applicable to each type of machine to be adjusted, can not be assembled in a position that does not interfere with processing operations And when the spindle is to be measured, the tool and the object to be processed are removed, resulting in reduced applicability and time-consuming labor.
  • the ultrasonic processing technology will be widely used in the aerospace industry processing and mobile ceramic back shell processing, the future will be The market explosion point, and at present, for the ultrasonic machining precision maintenance technology, the ultrasonic machining tool needs to measure the high-frequency vibration of the tool after a period of time, that is, the non-line real-time measurement, can not be adjusted immediately Keeping the processing parameters stable and reducing the processing quality, the above are all technical problems to be solved by the invention.
  • the present invention is directed to the above problems existing in the prior art, and provides a tool machine spindle and a tool yaw and vibration rapid measuring device.
  • the utility model provides a machine tool spindle and a tool yaw and vibration rapid measuring device, which comprises a laser emitting receiving module and a reflecting module.
  • the laser emitting receiving module comprises a laser component, a beam splitter, a wave plate and a two-quadrant light position sensor.
  • the beam splitter is disposed between the wave plate and the laser element, and the laser element emits a laser beam toward the beam splitter, and the laser beam passes through the beam splitter to form a first light beam extending linearly with the wave plate.
  • the two-quadrant optical position sensor is disposed on a side of the beam splitter, and the two-quadrant optical position sensor is separated by a first line and a second energy receiving area by a dividing line, and the reflecting module is provided with a mirror, and the reflection is
  • the module is disposed on the same line as the laser emitting and receiving module, and a measuring section with a variable distance is formed between the wave plate and the mirror, so that the first light beam is projected to the mirror and reflected by the incident direction to The wave plate and the beam splitter, and splitting the first light beam with the beam splitter to form a second light beam, and the second light beam is projected on the two-quadrant light Proportional position of the first energy receiving region opposing the second energy sensor receiving area.
  • the two-quadrant optical position sensor is obliquely disposed on the laser emitting and receiving module, so that a projection between the dividing line and the first light beam forms an acute angle (an angle between thirty degrees and sixty degrees).
  • the laser emitting and receiving module and the reflecting module are both fixed on the body, and the two seats make the laser element, the beam splitter, the wave plate, the two quadrant light position sensors and the mirror all equal heights, so that the first light beam and the first light beam
  • the second beam is located at the center of the beam splitter, the wave plate, the two-quadrant light position sensor, and the mirror.
  • the laser emitting and receiving module and the base of the reflective module are covered with a casing, the two casings are provided with a through hole for the first light beam to pass through, and the casing is provided with a through hole on one side.
  • the through hole, the through hole is connected to the airflow to form a positive pressure micro gas wall at the perforation, thereby preventing the cutting fluid and the cuttings from invading to form interference.
  • An auxiliary laser module is further disposed at the laser emitting and receiving module, and the auxiliary laser module is internally provided with a second laser component, a second beam splitter, a second wave plate and a four-quadrant light position sensor, and the The second beam splitter is disposed between the second laser component and the second wave plate, and the four-quadrant light position sensor is disposed on a side of the second beam splitter, and the second mirror is mounted on the spindle, and the second mirror is mounted The mirror reflects the third beam emitted by the auxiliary laser module.
  • the present invention provides a method for quickly measuring the yaw and vibration of a machine tool spindle and a tool according to the above problems existing in the prior art.
  • the tool machine spindle and the tool yaw and vibration rapid measurement method include the following steps: the laser emitting and receiving module is mounted on the working platform corresponding to the spindle or the tool, and the laser emitting and receiving module is internally provided with a laser component and a a beam splitter, a wave plate and a two-quadrant light position sensor, wherein the beam splitter is disposed between the laser element and the wave plate, and the two-quadrant light position sensor is disposed on a side of the beam splitter, and the two-quadrant light position sensor is formed a first energy receiving area and a second energy receiving area; the reflective module is mounted on the working platform and forms a same line with the laser emitting and receiving module, the reflecting module is internally provided with a mirror, and the mirror is facing the mirror
  • the wave plate is formed with a measuring section; the laser element generates a laser beam passing through the beam splitter and the wave plate, and the laser beam is converted into a first beam by the wave plate, and the first beam is incident on the
  • the spindle or tool moves into the measuring section at a machining speed state, and partially blocks the first beam forming by the spindle or the tool circumference, such that the second beam is projected to the two-quadrant light position sensor to form a first energy value and The value of the second energy value changes; the differential energy is obtained by subtracting the second energy value from the first energy value, and the yaw of the spindle and the high frequency vibration of the tool cause the differential energy to form a change value.
  • the method further includes the following steps: g.
  • the laser emitting and receiving module is further provided with an auxiliary laser module for emitting a third light beam toward the main shaft, wherein the auxiliary laser module is internally provided with a second laser component and a second beam splitter.
  • a second wave plate and a four-quadrant light position sensor wherein the second beam splitter is disposed between the second laser element and the second wave plate, and the four-quadrant light position sensor is disposed on the side of the second beam splitter; Forming a second mirror with the second mirror, and the third beam is directed to the third beam of the auxiliary laser module, so that the third beam is reflected by the second beam splitter to the four-quadrant light position sensor, The measured axial yaw path of the spindle at the working speed; i. The yaw value measured by the two-image light position sensor and the four-quadrant light position sensor is further calculated, and the yaw value is further calculated to achieve error correction. purpose.
  • the two-quadrant optical position sensor is separated from the first energy receiving area and the second energy receiving area by a dividing line, and the two-quadrant optical position sensor is obliquely mounted on the laser transmitting and receiving module, and the dividing line is The projection between the first beam forms an acute angle (an angle between thirty and sixty degrees).
  • the laser emitting and receiving module and the reflecting module can be installed at any position of the working platform and form different measuring sections under the condition that the same plane and the same straight line are disposed, and the laser emitting and receiving module is a laser component.
  • the power is linked to the two-quadrant optical position sensor, and the reflective module is an unpowered structure, thereby improving the variability of assembling the laser transmitting and receiving module and the reflective module on the working platform.
  • the laser emitting and receiving module and the reflective module are both fixed on the body, and the laser emitting and receiving module and the base of the reflective module are covered with a casing, and the two casings are provided with a first
  • the through hole passes through the light beam, and the casing has a through hole penetrating through the hole on one side, and the through hole is connected to the airflow to form a positive pressure micro gas wall at the perforation.
  • a first main object of the present invention is that the laser emitting and receiving module is disposed on a working platform corresponding to the spindle or the tool, and the beam splitter of the laser emitting and receiving module is disposed between the laser component and the wave plate, and the two-quadrant light
  • the position sensor is disposed on a side of the beam splitter, and a second light beam is formed between the beam splitter and the two-quadrant light position sensor, and the reflection module is disposed on the working platform and forms a same line with the laser light emitting and receiving module.
  • the mirror is internally provided with a mirror, and the mirror is formed with a first light beam to the wave plate, and the upper spindle of the machine blocks a portion of the first light beam at a processing speed (above 6000 rpm), and the second light beam is incident on the two quadrants.
  • the optical position sensor generates a change value of the differential energy to determine the yaw amount of the main shaft without decelerating or stopping.
  • a second main object of the present invention is that the laser emitting and receiving module and the reflecting module can be installed at any position of the working platform and form different measuring sections under the condition that the same plane and the same line are disposed.
  • the tooling machine can be freely assembled in the most ideal measuring position, and the laser transmitting and receiving module is connected with a power supply by a laser element and a two-quadrant optical position sensor, and the reflecting module is an unpowered structure, thereby simplifying the wiring requirement, and further The variability of assembling the laser emitting and receiving module and the reflective module on the working platform is improved.
  • a third main object of the present invention is that the two-quadrant optical position sensor is separated by a dividing line, and the dividing line between the first energy receiving area and the second energy receiving area is a gap of about 20-30 ⁇ m, and the two-quadrant light
  • the position sensor is obliquely mounted on the laser emitting and receiving module, and the projection between the dividing line and the first beam forms an acute angle (between thirty degrees and sixty degrees), so that the spindle or the tool blocks The shadowed edge of the first beam does not completely overlap the dividing line, thereby overcoming the unreacted area produced during the measurement to improve the accuracy of its measurement.
  • a fourth main object of the present invention is that the housing is provided with a through hole for the passage of the first light beam, and the housing has a through hole penetrating through the through hole at one side, and the through hole is connected to the airflow to form a through hole.
  • the positive pressure micro-gas wall prevents the cutting fluid and cuttings from invading to form interference, thereby improving its durability.
  • a fifth main object of the present invention is that the laser emitting and receiving module is further provided with an auxiliary laser module for emitting a third light beam toward the main shaft, and the main shaft is assembled with a second reflecting mirror, and the second reflecting mirror is directly
  • a third beam of the auxiliary laser module is received by the four-quadrant optical position sensor of the auxiliary laser module, thereby measuring an axial yaw path of the main shaft at the working speed, and comparing the two images
  • the yaw value measured by the optical position sensor and the four-quadrant optical position sensor further calculates the yaw value to achieve the purpose of error correction, and increases the yaw direction that the laser transmitting and receiving module and the reflecting module cannot measure.
  • a sixth main object of the present invention is that the tool can shield the first light beam from the top to the bottom, and the ultrasonically processed tool will change the range of the first light beam to be shielded by the high frequency vibration frequency.
  • the first energy value measured by the position sensor is subtracted from the second energy value to obtain the differential energy, so as to accurately measure the high-frequency vibration amount of the ultrasonically processed tool, and the instrument that needs to be measured in the technique of maintaining the ultrasonic machining precision can detect
  • the ultrasonic machining tool is attenuated by the high-frequency vibration amount after a period of time, and can be adjusted immediately to maintain the stability of the processing parameters.
  • Figure 1 is a perspective view of the present invention.
  • Figure 2 is a schematic illustration of the invention.
  • Figure 3 is a schematic view (I) of the use state of the present invention.
  • Figure 4 is a schematic view of the use state of the present invention (2).
  • Figure 5 is a schematic illustration of the maximum energy change value of the present invention.
  • Figure 6 is a schematic illustration of the minimum energy change value of the present invention.
  • Figure 7 is a schematic illustration of still another embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a maximum energy change value according to still another embodiment of the present invention.
  • Figure 9 is a schematic illustration of minimum energy change values in accordance with yet another embodiment of the present invention.
  • Figure 10 is a schematic view showing the structure of a micro gas wall of the present invention.
  • Figure 11 is a schematic view showing another use state of the present invention.
  • Figure 12 is a schematic view showing still another use state of the present invention.
  • Figure 13 is a perspective view of another embodiment of the present invention.
  • Figure 14 is a schematic view showing the state of use of another embodiment of the present invention.
  • FIG. 15 is a schematic diagram of a third beam projection according to another embodiment of the present invention.
  • FIG. 16 is a schematic diagram of a four-quadrant position sensor according to another embodiment of the present invention.
  • 10-laser transmitting and receiving module 11-laser element; 111-laser beam; 112-first beam; 113-second beam; 12-splitter; 13-wave plate; 14-two-quad position Sensor; 141-divided line; 142-first energy receiving area; 143-second energy receiving area; 15, 22-seat; 16, 23-shell; 161, 231-perforated; 162, 232-through hole; 20-reflection module; 21-mirror; 30-spindle; 301-tool; 31-second mirror; ⁇ 1-angle; D1-measurement section; 40-auxiliary laser module; 401-third beam; Second laser element; 42 - second beam splitter; 43 - second wave plate; 44 - four quadrant light position sensor.
  • a tool machine spindle and tool yaw and vibration rapid measuring device comprises: a laser transmitting and receiving module 10 and a reflecting module 20 , a laser
  • the transmitting and receiving module 10 includes a laser element 11, a beam splitter 12, a wave plate 13 and a two-quadrant light position sensor 14.
  • the laser element 11 can be a semiconductor laser, and the beam splitter 12 is disposed on the wave plate 13 and the laser element.
  • the laser element 11 emits a laser beam 111 toward the beam splitter 12, and the laser beam 111 passes through the beam splitter 12 and the wave plate 13 forms a first beam 112 extending in a straight line, and the two quadrants
  • the light position sensor 14 is disposed on the side of the beam splitter 12, and the two-quadrant light position sensor 14 is separated by a dividing line 141 with a first energy receiving area 142 and a second energy receiving area 143, and the two-quadrant light position sensor
  • the slanting is disposed on the laser emitting and receiving module 10, and the projection between the dividing line 141 and the first light beam 112 forms an acute angle (the angle ⁇ 1 between thirty degrees and sixty degrees), and the reflection module 20 Equipped with a mirror 21
  • the mirror 21 can be a spherical mirror, a plane mirror or a convex-concave composite mirror, and the reflection module 20 is disposed on the same line as the laser emitting and receiving module 10, and is disposed on the wave plate 13
  • the differential energy generated by the two-quadrant optical position sensor 14 is zero. As shown in FIG. 5
  • the laser transmitting and receiving module 10 and the reflective module 20 are fixed on a body (15, 22), and the two bodies are (15, 22) such that the laser element 11, the beam splitter 12, the wave plate 13, the two-quadrant light position sensor 14 and the mirror 21 are equal in height, so that the first light beam 112 and the second light beam 113 are located in the beam splitter 12, Wave plate 13, two-quad position optical position sensor 14 and mirror 21
  • the laser emitting and receiving module 10 and the bases (1, 22) of the reflective module 20 are respectively covered with a casing (1, 23), and the two casings (16, 23) are provided with a a through hole (161, 231) through which the light beam 112 passes, and the housing (16, 23) has a through hole (162, 232) communicating with the through hole (161, 231) on one side, and the through hole (162, 232) is connected
  • the through airflow can form a positive pressure micro-gas wall at the perforations (161, 231), thereby preventing the intrusion of cutting fluid and cuttings from forming
  • the upper spindle 30 or The cutter 301 is placed in the measurement section D1 at a processing speed (6000 rpm or more) to form a partial block on the first beam 112, and the second beam 113 is incident on the first energy receiving area 142 and the second energy receiving area 143 to generate a differential.
  • the change value of the energy (a variation value between the maximum value and the minimum value or a variation value between the two maximum values) to quickly measure the yaw amount of the spindle 30 on the machine and the high-frequency vibration amount of the cutter 301.
  • the tool spindle and tool yaw and vibration rapid measurement method are used for dynamic measurement of the machine tool spindle 30 or the tool 301 at the processing speed, thereby judging
  • the yaw amount of the spindle 30 and the high-frequency vibration amount of the tool 301 include:
  • the laser emitting and receiving module 10 is mounted on the working platform 31 corresponding to the spindle 30 or the tool 301.
  • the laser emitting and receiving module 10 is internally provided with a laser component 11, a beam splitter 12, a wave plate 13 and a quadrant.
  • the position sensor 14 is disposed between the laser element 11 and the wave plate 13.
  • the two-quad position light position sensor 14 is disposed on the side of the beam splitter 12, and the two-quadrant light position sensor 14 is formed with a first The energy receiving area 142 and the second energy receiving area 143;
  • the reflecting module 20 is disposed on the working platform 31 and forms a line with the laser emitting and receiving module 10.
  • the reflecting module 20 is internally provided with a mirror 21, and the mirror 21 is formed with the wave plate 13
  • the measuring section D1, the laser emitting and receiving module 10 and the reflecting module 20 are modularized to form a micro structure, which facilitates installation and correction thereof, and can greatly reduce processing interference to the spindle 30 or the tool 301;
  • the laser element 11 generates a laser beam 111 passing through the beam splitter 12 and the wave plate 13, and the laser beam 111 is converted into a first beam 112 by the wave plate 13, and the first beam 112 is incident on the mirror 21 And reflected back to the wave plate 13 and the beam splitter 12 in the incident direction;
  • the reflected first light beam 112 is formed by the beam splitter 12 toward the two-quadrant light position sensor 14 with a second light beam 113, and the second light beam 113 is projected into the first energy receiving region 142 to generate a first energy value.
  • the second light beam 113 is projected into the second energy receiving region 143 to generate a second energy value, and the first energy value in the state to be measured is equal to the second energy value, that is, the first energy value is subtracted from the second energy.
  • the laser transmitting and receiving module 10 and the reflecting module 20 are corrected to the same plane and the same linear position;
  • the spindle 30 or the tool 301 moves into the measurement section D1 in a process speed state, and partially blocks the first beam 112 with the spindle 30 or the periphery of the tool 301 such that the second beam 113 is projected to the two-quadrant light position sensor. Forming a value change of the first energy value and the second energy value;
  • the differential energy is obtained by subtracting the second energy value from the first energy value, and the yaw of the spindle 30 and the high frequency vibration of the tool 301 cause the differential energy to form a change value (between the maximum value and the minimum value)
  • a variation value between the two values or a variation value between the two maximum values, that is, the yaw amount of the spindle 30 and the high-frequency vibration amount of the tool 301 can be judged in the undecelerated or stopped state, and the differential energy signal is Through the analysis and judgment of the computer's analysis software, this part has nothing to do with the case, and there is no technical difficulty. The content is not detailed here.
  • the two-quadrant optical position sensor 14 is separated by a dividing line 141 between the first energy receiving area 142 and the second energy receiving area 143 by a dividing line 141 of about 20 ⁇ . a gap of 30 ⁇ m, and the two-quadrant light position sensor 14 is obliquely mounted on the laser emitting and receiving module 10, and the projection between the dividing line 141 and the first light beam 112 forms an acute angle (between thirty degrees and The angle of sixty degrees ⁇ 1) causes the main shaft 30 to block the shielding edge of the first light beam 112 from completely overlapping the separation line 141, thereby overcoming the unreacted area generated during the measurement to improve the accuracy of the measurement, Moreover, the sampling frequency of the two-quadrant optical position sensor 14 is 250 kHz, and 1250 points per revolution of the spindle 30 processing rotation speed of 12000 rpm can be sampled, thereby dynamically analyzing the yaw amount of the main shaft 30 without decelerating or stopping the
  • Section D1 is another embodiment of the present invention. Since the ultrasonic processing technology will be widely applied in the processing of the aerospace industry and the manufacturing of the mobile ceramic back shell, the future will be a market explosion point, like measurement.
  • the laser illuminating module 10 and the reflecting module 20 are erected in the same manner as the spindle yaw amount, so that the tool 301 can shield the first light beam 112 from the top to the bottom, and the ultrasonically processed tool 301 will have a high frequency vibration frequency.
  • the range of the first light beam 112 is changed, and the first energy value measured by the two-quadrant light position sensor 14 is subtracted from the second energy value to obtain the differential energy, so that the high frequency vibration of the ultrasonically processed tool 301 can be accurately measured.
  • the instrument that needs to be measured in the technique of maintaining ultrasonic precision can detect the attenuation of the high-frequency vibration amount of the ultrasonically processed tool 301 after a period of time, and can be adjusted immediately to maintain the stability of the processing parameters, and the present invention
  • the application can further develop a measuring instrument capable of measuring the vibration amount of the ultrasonic wave 301 on the line and can be extended to the tool 301 tool length, the tool tip and the tool 301 grinding machine. As shown in FIG. 11 and FIG.
  • the first light beam 112 between the laser transmitting and receiving module 10 and the reflecting module 20 can move back and forth or left and right of the spindle 30 in parallel, and the measuring section D1 can be as large as
  • the distance between the sides of the working platform 31 is as small as the distance through which the spindle 30 can pass, thereby being freely assembled to the optimal measuring position in cooperation with the machine tool, and the laser emitting and receiving module 10 is laser-receiver 11 and two-quadrant light.
  • the position sensor 14 is connected to the power source, and the reflection module 20 is an unpowered structure, thereby simplifying the wiring requirement, so that the laser emission receiving module 10 and the reflection module 20 have more measurement positions, and are easy to assemble and fast.
  • the efficiencies of the measurement increase the variability of the assembly of the laser emitting and receiving module 10 and the reflective module 20 on the work platform 31.
  • the laser emitting and receiving module 10 is further provided with an auxiliary laser module 40 , and the auxiliary laser module 40 is internally provided with a second laser component 41 .
  • a second beam splitter 42, a second wave plate 43 and a four-quadrant light position sensor 44, and the second beam splitter 42 is disposed between the second laser element 41 and the second wave plate 43, and the four quadrants
  • the optical position sensor 44 is disposed on the side of the second beam splitter 42.
  • the main shaft 30 is mounted with a second mirror 31.
  • the second mirror 31 is opposite to the third beam 401 of the auxiliary laser module 40.
  • the second mirror 311 reflects the third beam 401 emitted by the auxiliary laser module 40, so that the third beam 401 is reflected by the second beam splitter 42 to the four-quadrant position sensor 44, and passes through the four-quadrant position sensor 44.
  • the four equal-divided energy regions obtain the corresponding differential energy, and the spindle 30 can be measured as the yaw path projected on the working platform 31, thereby measuring the axial yaw path of the spindle 30 at the working speed, and then Comparing the two-image light position sensor 14 with four-quadrant light
  • the yaw value measured by the position sensor 44 further calculates the yaw value for the purpose of error correction, and increases the yaw direction that the laser transmitting and receiving module 10 and the reflection module 20 cannot measure.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种工具机主轴与刀具偏摆与震动快速测量装置与方法,测量装置包括一激光发射接收模块(10)和一反射模块(20),激光发射接收模块(10)包括有一激光元件(11)、一分光镜(12)、一波片(13)及一两象限光位置传感器(14),分光镜(12)设置于波片(13)与激光元件(11)之间,两象限光位置传感器(14)设置于分光镜(12)一侧,反射模块(20)装设有一反射镜(21),且反射模块(20)与激光发射接收模块(10)设置于同一直线上,藉此使得机上主轴(30)或刀具(301)以加工转速置入激光发射接收模块(10)与反射模块(20)之间进行测量,获得两象限光位置传感器(14)产生差动能量的变化值,以快速测量机上主轴(30)的偏摆量与刀具(301)的高频震动量。

Description

工具机主轴与刀具偏摆与震动快速测量装置与方法 技术领域
本发明涉及一种工具机轴测量装置,尤指一种以遮蔽激光束产生的差动能量测量工具机主轴与刀具偏摆与震动快速测量装置与方法,本发明具有低成本、方便组装、准确度高及加工转速状态直接测量的明显功效。
背景技术
目前,现有的刀具线上测量装置可测量最大转速约3000rpm,此转速下的测量主轴偏摆状况无法符合实际加工时的条件状况,此外市售的刀具线上测量装置需读取工具机的坐标当作判断位移的依据因此对于主轴线上的旋转精度并无法测量,这些都是目前产品的存在问题,将导致主轴转速无法跟实际加工转速一样条件下测量,低转速测量下3000rpm不符合加工状态时的刀具情形,此转速远小于真正加工时的转速6000rpm以上,无法线上实时侦测高转速下主轴旋转精度,因此无法测量主轴目前精度与寿命状况,又于测量时需要停机安装感测头与透镜组,并只能在减速状态进行测量,会因为测量效率低而降低其产能,另外,该感测头与透镜组的组装位置固定,该主轴与工作平台的高度亦固定,因此要适用每一机种就要配合进行调整,无法组装于不干扰加工作业的位置,并在欲测量主轴时要拆下刀具与加工对象,导致其适用性降低及耗时费力,另外,由于超声波加工技术将广泛应用于航天产业加工与手机陶瓷背壳加工制造,因此未来将是市场爆发点,而目前对于超声波加工精度的保持技术中,皆需要于超声波加工的刀具经过一段时间后再以仪器测量刀具的高频振动量的衰减,即非线上实时测量,无法马上调整以保持加工制程参数的稳定,使其加工质量降低,上述皆为本发明所欲解决的技术问题点。
有鉴于此,本案发明人于多年从事相关产品的制造开发与设计经验,针对上述的目标,详加设计与审慎评估后,终得一确具实用性的本发明。
发明内容
本发明针对现有技术存在的上述问题,提供一种工具机主轴与刀具偏摆与震动快速测量装置。
本发明提供的工具机主轴与刀具偏摆与震动快速测量装置包括一激光发射接收模块和一反射模块,激光发射接收模块包括有一激光元件、一分光镜、一波片及一两象限光位置传感器,该分光镜设置于该波片与激光元件之间,又该激光元件朝向该分光镜发射有一激光束,该激光束穿过该分光镜与该波片形成有一直线延伸的第一光束,该两象限光位置传感器设置于该分光镜一侧,且该两象限光位置传感器由一分隔线间隔有一第一能量接收区与一第二能量接收区,反射模块装设有一反射镜,且该反射模块与该激光发射接收模块设置于同一直线上,并于该波片与该反射镜之间形成有一可变距离的测量区段,使得该第一光束投射至该反射镜而由入射方向反射至该波片与分光镜,并以该分光镜分光该第一光束形成有一第二光束,又该第二光束投射于该两象限光位置传感器的第一能量接收区与第二能量接收区的等比例位置。
其中,该两象限光位置传感器倾斜装设于该激光发射接收模块,令该分隔线与该第一光束之间的投影形成有一锐角(介于三十度至六十度的夹角)。
其中,该激光发射接收模块与该反射模块皆固定于一座体上,两个座体使得激光元件、分光镜、波片、两象限光位置传感器及反射镜皆等高度,使该第一光束与第二光束皆位于该分光镜、波片、两象限光位置传感器及反射镜的中央处。
其中,该激光发射接收模块与该反射模块的座体处皆盖合有一壳体,两个壳体穿设有一供该第一光束通过的穿孔,且该壳体于一侧开设有一相通穿孔的通孔,该通孔接通气流能形成穿孔处的正压微气墙,藉此防止切削液及切屑物入侵形成干扰。
其中,该激光发射接收模块处另装设有一辅助激光模块,该辅助激光模块内部装设有一第二激光元件、一第二分光镜、一第二波片及一四象限光位置传感器,且该第二分光镜设于第二激光元件与第二波片之间,又该四象限光位置传感器设于第二分光镜一侧,又该主轴上装设有一第二反光镜,并通过该第二 反光镜反射该辅助激光模块所发射的第三光束。
本发明针对现有技术存在的上述问题,提供一种工具机主轴与刀具偏摆与震动快速测量方法。
本发明提供的工具机主轴与刀具偏摆与震动快速测量方法包括以下步骤:将激光发射接收模块装设于该主轴或刀具对应的工作平台,该激光发射接收模块内部装设有一激光元件、一分光镜、一波片及一两象限光位置传感器,且该分光镜设于激光元件与波片之间,又该两象限光位置传感器设于分光镜一侧,且该两象限光位置传感器形成有一第一能量接收区与第二能量接收区;将反射模块装设于该工作平台并与该激光发射接收模块形成同一直线,该反射模块内部装设有一反射镜,且该反射镜正对该波片形成有一测量区段;该激光元件产生一激光束穿过该分光镜与该波片,并由该波片转换激光束为第一光束,且该第一光束射入反射镜并沿射入方向反射回该波片与分光镜;反射后的第一光束由分光镜朝该两象限光位置传感器方向形成有第二光束,该第二光束投射于该第一能量接收区产生一第一能量值,且该第二光束投射于该第二能量接收区产生一第二能量值;
e.该主轴或刀具以加工转速状态移动进入该测量区段,并以主轴或刀具周缘对第一光束形成部分阻挡,使得第二光束投射至该两象限光位置传感器而形成第一能量值与第二能量值的数值变化;通过第一能量值相减第二能量值取得差动能量,该主轴的偏摆与刀具的高频震动会导致差动能量形成有变化值。
其中更包括有以下步骤:g.该激光发射接收模块处另装设有一朝向该主轴发射第三光束的辅助激光模块,该辅助激光模块内部装设有一第二激光元件、一第二分光镜、一第二波片及一四象限光位置传感器,且该第二分光镜设于第二激光元件与第二波片之间,又该四象限光位置传感器设于第二分光镜一侧;h.将主轴组装有一第二反射镜,并以该第二反射镜正对该辅助激光模块的第三光束,使该第三光束反射由该第二分光镜折射至该四象限光位置传感器,藉此测得主轴于工作转速下的轴向偏摆路径;i.比对该两象现光位置传感器与四象限光位置传感器所测得的偏摆值,进一步计算该偏摆值达到误差校正的目的。
其中,该两象限光位置传感器由一分隔线间隔该第一能量接收区与该第二 能量接收区,又该两象限光位置传感器呈倾斜状装设于该激光发射接收模块,而该分隔线与该第一光束之间的投影形成有一锐角(介于三十度至六十度的夹角)。
其中,该激光发射接收模块与反射模块于满足设置于同一平面与同一直线的条件下,能装设于工作平台的任意位置并相对形成不同的测量区段,又该激光发射接收模块以激光元件与两象限光位置传感器链接电源,且该反射模块为未接电结构,进而提高该激光发射接收模块与反射模块组装于工作平台上的变化性。
其中,该激光发射接收模块与该反射模块皆固定于一座体上,且该激光发射接收模块与该反射模块的座体处皆盖合有一壳体,两个壳体穿设有一供该第一光束通过的穿孔,且该壳体于一侧开设有一相通穿孔的通孔,而该通孔接通气流能形成穿孔处的正压微气墙。
本发明的第一主要目的在于,该激光发射接收模块装设于该主轴或刀具对应的工作平台,且该激光发射接收模块的分光镜设于激光元件与波片之间,而该两象限光位置传感器设于分光镜一侧,并于分光镜与两象限光位置传感器之间形成有第二光束,又该反射模块装设于该工作平台并与该激光发射接收模块形成同一直线,该反射模块内部装设有一反射镜,且该反射镜正对该波片形成有一第一光束,该机上主轴以加工转速(6000rpm以上)对第一光束形成部分阻挡,获得该第二光束射入两象限光位置传感器产生差动能量的变化值,以能于未减速或停机状态判断主轴的偏摆量。
本发明的第二主要目的在于,该激光发射接收模块与反射模块于满足设置于同一平面与同一直线的条件下,能装设于工作平台的任意位置并相对形成不同的测量区段,藉此配合工具机款式自由组装于最理想的测量位置,又该激光发射接收模块以激光元件与两象限光位置传感器链接电源,且该反射模块为未接电结构,藉此能简化配线需求,进而提高该激光发射接收模块与反射模块组装于工作平台上的变化性。
本发明的第三主要目的在于,该两象限光位置传感器由一分隔线间隔该第一能量接收区与该第二能量接收区其分隔线为一个约20~30μm的间隙,又该两 象限光位置传感器呈倾斜状装设于该激光发射接收模块,而该分隔线与该第一光束之间的投影形成有一锐角(介于三十度至六十度的夹角),使得主轴或刀具阻挡第一光束的遮蔽边缘不会完全重迭该分隔线,藉此克服测量时所产生的无反应区域,以提高其测量的准确度。
本发明的第四主要目的在于,该壳体穿设有一供该第一光束通过的穿孔,且该壳体于一侧开设有一相通穿孔的通孔,而该通孔接通气流能形成穿孔处的正压微气墙,藉此防止切削液及切屑物入侵形成干扰,以提高其耐用度。
本发明的第五主要目的在于,该激光发射接收模块处另装设有一朝向该主轴发射第三光束的辅助激光模块,将主轴组装有一第二反射镜,并以该第二反射镜正对该辅助激光模块的第三光束,使该第三光束反射由该辅助激光模块的该四象限光位置传感器接收,藉此测得主轴于工作转速下的轴向偏摆路径,比对该两象现光位置传感器与四象限光位置传感器所测得的偏摆值,进一步计算该偏摆值达到误差校正的目的,并增加该激光发射接收模块与该反射模块所无法测得的偏摆方向。
本发明的第六主要目的在于,该刀具能由上至下的部分遮蔽该第一光束,此时该超声波加工的刀具将会以高频震动频率改变遮蔽第一光束的范围,该两象限光位置传感器所测得的第一能量值相减第二能量值取得差动能量,以精准的测量该超声波加工的刀具的高频震动量,对于超声波加工精度的保持技术中需要测量的仪器可以侦测超声波加工的刀具经过一段时间后的高频振动量的衰减,并可马上调整以保持加工制程参数的稳定。
其他目的、优点和本发明的新颖特性将从以下详细的描述与相关的附图更加显明。
附图说明
图1为本发明的立体图。
图2为本发明的示意图。
图3为本发明的使用状态示意图(一)。
图4为本发明的使用状态示意图(二)。
图5为本发明于最大能量变化值的示意图。
图6为本发明于最小能量变化值的示意图。
图7为本发明再一实施例的示意图。
图8为本发明的再一实施例最大能量变化值的示意图。
图9为本发明的再一实施例最小能量变化值的示意图。
图10为本发明的微气墙结构示意图。
图11为本发明的另一使用状态示意图。
图12为本发明的再一使用状态示意图。
图13为本发明另一实施例的立体图。
图14为本发明另一实施例的使用状态示意图。
图15为本发明另一实施例的第三光束投射示意图。
图16为本发明另一实施例的四象限位置传感器示意图。
附图标记说明:10-激光发射接收模块;11-激光元件;111-激光束;112-第一光束;113-第二光束;12-分光镜;13-波片;14-两象限光位置传感器;141-分隔线;142-第一能量接收区;143-第二能量接收区;15、22-座体;16、23-壳体;161、231-穿孔;162、232-通孔;20-反射模块;21-反射镜;30-主轴;301-刀具;31-第二反光镜;θ1-夹角;D1-测量区段;40-辅助激光模块;401-第三光束;41-第二激光元件;42-第二分光镜;43-第二波片;44-四象限光位置传感器。
具体实施方式
如图1、图2、图3与图11所示,本发明提供的一种工具机主轴与刀具偏摆与震动快速测量装置包括有:一激光发射接收模块10与一反射模块20,一激光发射接收模块10包括有一激光元件11、一分光镜12、一波片13及一两象限光位置传感器14,该激光元件11可为半导体激光,该分光镜12设置于该波片13与激光元件11之间,又该激光元件11朝向该分光镜12发射有一激光束111,而该激光束111穿过该分光镜12与该波片13形成有一直线延伸的第一光束112,另该两象限光位置传感器14设置于该分光镜12一侧,且该两象限光位置传感器14由一分隔线141间隔有一第一能量接收区142与一第二能量接收区143, 而该两象限光位置传感器14倾斜装设于该激光发射接收模块10,令该分隔线141与该第一光束112之间的投影形成有一锐角(介于三十度至六十度的夹角θ1),一反射模块20装设有一反射镜21,该反射镜21可为球面反射镜、平面反射镜或凸凹复合反射镜,且该反射模块20与该激光发射接收模块10设置于同一直线上,并于该波片13与该反射镜21之间形成有一可变距离的测量区段D1,使得该第一光束112投射至该反射镜21而由入射方向反射至该波片13与分光镜12,并以该分光镜12分光该第一光束112形成有一第二光束113,又该第二光束113投射于该两象限光位置传感器14的第一能量接收区142与第二能量接收区143的等比例位置(如图5所示),使该两象限光位置传感器14产生的差动能量为零,再配合图10所示,该激光发射接收模块10与该反射模块20皆固定于一座体(15、22)上,两个该座体(15、22)使得激光元件11、分光镜12、波片13、两象限光位置传感器14及反射镜21皆等高度,使该第一光束112与第二光束113皆位于该分光镜12、波片13、两象限光位置传感器14及反射镜21的中央处,该激光发射接收模块10与该反射模块20的座体(1、22)处皆盖合有一壳体(1、23),两个壳体(16、23)穿设有一供该第一光束112通过的穿孔(161、231),且壳体(16、23)于一侧开设有一相通穿孔(161、231)的通孔(162、232),而通孔(162、232)接通气流能形成穿孔(161、231)处的正压微气墙,藉此防止切削液及切屑物入侵形成干扰,当进行主轴30偏摆测量或刀具高频震动测量时,该机上主轴30或刀具301以加工转速(6000rpm以上)置入该测量区段D1而对第一光束112形成部分阻挡,获得该第二光束113射入第一能量接收区142与第二能量接收区143产生差动能量的变化值(介于最大值与最小值之间的一变动值或二最大值之间的一变动值),以快速测量机上主轴30的偏摆量与刀具301的高频震动量。
续请由图1连续至图12所示观之,本发明提供的工具机主轴与刀具偏摆与震动快速测量方法用于工具机主轴30或刀具301于加工转速时的动态测量,藉此判断该主轴30的偏摆量与或刀具301的高频震动量,其测量方法包括:
a.将激光发射接收模块10装设于该主轴30或刀具301对应的工作平台31,该激光发射接收模块10内部装设有一激光元件11、一分光镜12、一波片13及一两象限光位置传感器14,且该分光镜12设于激光元件11与波片13之间,又 该两象限光位置传感器14设于分光镜12一侧,且该两象限光位置传感器14形成有一第一能量接收区142与第二能量接收区143;
b.将反射模块20装设于该工作平台31并与该激光发射接收模块10形成同一直线,该反射模块20内部装设有一反射镜21,且该反射镜21正对该波片13形成有一测量区段D1,该激光发射接收模块10与该反射模块20以模块化构成微型结构,有利于其安装与校正,并能大幅减少对主轴30或刀具301的加工干涉;
c.该激光元件11产生一激光束111穿过该分光镜12与该波片13,并由该波片13转换激光束111为第一光束112,且该第一光束112射入反射镜21并沿射入方向反射回该波片13与分光镜12;
d.反射后的第一光束112由分光镜12朝该两象限光位置传感器14方向形成有第二光束113,该第二光束113投射于该第一能量接收区142产生一第一能量值,且该第二光束113投射于该第二能量接收区143产生一第二能量值,于待测量状态下的第一能量值等于该第二能量值,即第一能量值相减该第二能量值为零时,该激光发射接收模块10与该反射模块20校正至同一平面与同一直线位置;
e.该主轴30或刀具301以加工转速状态移动进入该测量区段D1,并以主轴30或刀具301周缘对第一光束112形成部分阻挡,使得第二光束113投射至该两象限光位置传感器14而形成第一能量值与第二能量值的数值变化;以及
f.通过第一能量值相减第二能量值得到差动能量,而该主轴30的偏摆与该刀具301的高频震动会导致差动能量形成有变化值(介于最大值与最小值之间的一变动值或两个最大值之间的一变动值),即能于未减速或停机状态判断主轴30的偏摆量与刀具301的高频震动量,而该差动能量信号是通过计算机的分析软件进行分析与判断,此部分与本案较无关联,且无技术上的难度,在此不详加叙述其内容。
再请由图3至图6所示观之,该两象限光位置传感器14由一分隔线141间隔该第一能量接收区142与该第二能量接收区143其分隔线141为一个约20~30μm的间隙,又该两象限光位置传感器14呈倾斜状装设于该激光发射接收模块 10,而该分隔线141与该第一光束112之间的投影形成有一锐角(介于三十度至六十度的夹角θ1),使得主轴30阻挡第一光束112的遮蔽边缘不会完全重迭该分隔线141,藉此克服测量时所产生的无反应区域,以提高其测量的准确度,又该两象限光位置传感器14的取样频率为250kHz,于主轴30加工转速12000rpm的每转能取样1250点,藉此动态分析主轴30偏摆量,不需将主轴30减速或停止旋转,进而有效节省测量时间与提高产能,又该激光发射接收模块10与反射模块20于满足设置于同一平面与同一直线的条件下,能装设于工作平台31的任意位置并相对形成不同的测量区段D1,又如图7至图9所示为本发明再一实施例,由于超声波加工技术将广泛应用于航天产业加工与手机陶瓷背壳加工制造,因此未来将是市场爆发点,如同测量主轴偏摆量一样架设该激光发射模块10与该反射模块20,使得该刀具301能由上至下的部分遮蔽该第一光束112,此时该超声波加工的刀具301将会以高频震动频率改变遮蔽第一光束112的范围,该两象限光位置传感器14所测得的第一能量值相减第二能量值取得差动能量,就能精准的测量该超声波加工的刀具301的高频震动量,对于超声波加工精度的保持技术中需要测量的仪器可以侦测超声波加工的刀具301经过一段时间后的高频振动量的衰减,并可马上调整以保持加工制程参数的稳定,而本发明的应用更能发展可线上测量超声波高频的刀具301振动量的测量仪器并可延伸应用于刀具301刀长、刀尖与刀具301磨耗检测,如图11、图12所示,该激光发射接收模块10与反射模块20之间的第一光束112能平行该主轴30的前后移动或左右移动,且该测量区段D1能大至该工作平台31的边长间距或小至仅能让主轴30通过的间距,藉此配合工具机款式自由组装于最理想的测量位置,又该激光发射接收模块10以激光元件11与两象限光位置传感器14链接电源,且该反射模块20为未接电结构,藉此能简化配线需求,使得该激光发射接收模块10与反射模块20具有更多的测量位置可选择,具有简便组装与快速测量的功效,进而提高该激光发射接收模块10与反射模块20组装于工作平台31上的变化性。
本发明另一实施例,再请由图13至图16所示观之,该激光发射接收模块10处另装设有一辅助激光模块40,该辅助激光模块40内部装设有一第二激光 元件41、一第二分光镜42、一第二波片43及一四象限光位置传感器44,且该第二分光镜42设于第二激光元件41与第二波片43之间,又该四象限光位置传感器44设于第二分光镜42一侧,又该主轴30上装设有一第二反光镜31,将该第二反射镜31正对该辅助激光模块40的第三光束401,并通过该第二反光镜31反射该辅助激光模块40所发射的第三光束401,使该第三光束401反射由该第二分光镜42折射至该四象限光位置传感器44,通过四象限光位置传感器44的四个等分能量区取得对应的差动能量,就能测得该主轴30如同投影于工作平台31的偏摆路径,藉此测得主轴30于工作转速下的轴向偏摆路径,再比对该两象现光位置传感器14与四象限光位置传感器44所测得的偏摆值,进一步计算该偏摆值达到误差校正的目的,并增加该激光发射接收模块10与该反射模块20所无法测得的偏摆方向。
以上所述仅为本发明的一较佳实施例而已,当不能以之限定本发明实施的范围;即大凡依本发明权利要求范围所作的均等变化与修饰,皆应仍属本发明专利涵盖的范围内。

Claims (10)

  1. 一种工具机主轴与刀具偏摆与震动快速测量装置,其特征在于,包括:
    一激光发射接收模块,该激光发射接收模块包括一激光元件、一分光镜、一波片及一两象限光位置传感器,该分光镜设置于该波片与激光元件之间,又该激光元件朝向该分光镜发射有一激光束,该激光束穿过该分光镜与该波片形成有一直线延伸的第一光束,该两象限光位置传感器设置于该分光镜一侧,且该两象限光位置传感器由一分隔线间隔有一第一能量接收区与一第二能量接收区;以及
    一反射模块,该反射模块装设有一反射镜,且该反射模块与该激光发射接收模块设置于同一直线上,并于该波片与该反射镜之间形成有一可变距离的测量区段,使得该第一光束投射至该反射镜而由入射方向反射至该波片与分光镜,并以该分光镜分光该第一光束形成有一第二光束,又该第二光束投射于该两象限光位置传感器的第一能量接收区与第二能量接收区的等比例位置,使该两象限光位置传感器产生的差动能量为零,藉此使得机上主轴或刀具以加工转速置入该测量区段而对第一光束形成部分阻挡,获得该第二光束射入第一能量接收区与第二能量接收区产生差动能量的变化值,以快速测量机上主轴或刀具的偏摆量。
  2. 根据权利要求1所述的工具机主轴与刀具偏摆与震动快速测量装置,其特征在于,该两象限光位置传感器倾斜装设于该激光发射接收模块,该分隔线与该第一光束之间的投影形成一锐角。
  3. 根据权利要求1所述的工具机主轴与刀具偏摆与震动快速测量装置,其特征在于,该激光发射接收模块与该反射模块皆固定于一座体上,两个座体使得激光元件、分光镜、波片、两象限光位置传感器及反射镜皆等高度,使该第一光束与第二光束皆位于该分光镜、波片、两象限光位置传感器及反射镜的中央处。
  4. 根据权利要求1所述的工具机主轴与刀具偏摆与震动快速测量装置,其特征在于,该激光发射接收模块与该反射模块的座体处皆盖合有一壳体,两个 壳体穿设有一供该第一光束通过的穿孔,且该壳体于一侧开设有一相通穿孔的通孔,该通孔接通气流能够形成穿孔处的正压微气墙,藉此防止切削液及切屑物入侵形成干扰。
  5. 根据权利要求1所述的工具机主轴与刀具偏摆与震动快速测量装置,其特征在于,该激光发射接收模块处另装设有一辅助激光模块,该辅助激光模块内部装设有一第二激光元件、一第二分光镜、一第二波片及一四象限光位置传感器,且该第二分光镜设于第二激光元件与第二波片之间,又该四象限光位置传感器设于第二分光镜一侧,又该主轴上装设有一第二反光镜,并通过该第二反光镜反射该辅助激光模块所发射的第三光束。
  6. 一种工具机主轴与刀具偏摆与震动快速测量方法,用于工具机主轴或刀具于加工转速时的动态测量,藉此判断该主轴的偏摆量与刀具的高频震动量,其特征在于,包括以下步骤:
    a.将激光发射接收模块装设于该主轴或刀具对应的工作平台,该激光发射接收模块内部装设有一激光元件、一分光镜、一波片及一两象限光位置传感器,且该分光镜设于激光元件与波片之间,又该两象限光位置传感器设于分光镜一侧,且该两象限光位置传感器形成有一第一能量接收区与第二能量接收区;
    b.将反射模块装设于该工作平台并与该激光发射接收模块形成同一直线,该反射模块内部装设有一反射镜,且该反射镜正对该波片形成有一测量区段;
    c.该激光元件产生一激光束穿过该分光镜与该波片,并由该波片转换激光束为第一光束,且该第一光束射入反射镜并沿射入方向反射回该波片与分光镜;
    d.反射后的第一光束由分光镜朝该两象限光位置传感器方向形成有第二光束,该第二光束投射于该第一能量接收区产生一第一能量值,且该第二光束投射于该第二能量接收区产生一第二能量值;
    e.该主轴或刀具以加工转速状态移动进入该测量区段,并以主轴或刀具周缘对第一光束形成部分阻挡,使得第二光束投射至该两象限光位置传感器而形成第一能量值与第二能量值的数值变化;以及
    f.通过第一能量值相减第二能量值得到差动能量,该主轴的偏摆与刀具的高频震动量导致差动能量形成有变化值,即能够于未减速或停机状态判断主轴的 偏摆量与刀具的高频震动量。
  7. 根据权利要求6所述的工具机主轴与刀具偏摆与震动快速测量方法,其特征在于,更包括以下步骤:g.该激光发射接收模块处另装设有一朝向该主轴发射第三光束的辅助激光模块,该辅助激光模块内部装设有一第二激光元件、一第二分光镜、一第二波片及一四象限光位置传感器,且该第二分光镜设于第二激光元件与第二波片之间,又该四象限光位置传感器设于第二分光镜一侧;h.将主轴组装有一第二反射镜,并以该第二反射镜正对该辅助激光模块的第三光束,使该第三光束反射由该第二分光镜折射至该四象限光位置传感器,藉此测得主轴于工作转速下的轴向偏摆路径;i.比对该两象现光位置传感器与四象限光位置传感器所测得的偏摆值,进一步计算该偏摆值,以进行误差校正。
  8. 根据权利要求6所述的工具机主轴与刀具偏摆与震动快速测量方法,其特征在于,该两象限光位置传感器由一分隔线间隔该第一能量接收区与该第二能量接收区,又该两象限光位置传感器呈倾斜状装设于该激光发射接收模块,该分隔线与该第一光束之间的投影形成一锐角。
  9. 根据权利要求6所述的工具机主轴与刀具偏摆与震动快速测量方法,其特征在于,该激光发射接收模块与反射模块于满足设置于同一平面与同一直线的条件下,能够装设于工作平台的任意位置并相对形成不同的测量区段,又该激光发射接收模块以激光元件与两象限光位置传感器链接电源,且该反射模块为未接电结构,以提高该激光发射接收模块与该反射模块组装于工作平台上的变化性。
  10. 根据权利要求6所述的工具机主轴与刀具偏摆与震动快速测量方法,其特征在于,该激光发射接收模块与该反射模块皆固定于一座体上,且该激光发射接收模块与该反射模块的座体处皆盖合有一壳体,两个该壳体穿设有一供该第一光束通过的穿孔,且该壳体于一侧开设有一相通穿孔的通孔,该通孔接通气流能形成穿孔处的正压微气墙。
PCT/CN2018/000098 2018-03-08 2018-03-08 工具机主轴与刀具偏摆与震动快速测量装置与方法 WO2019169512A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/000098 WO2019169512A1 (zh) 2018-03-08 2018-03-08 工具机主轴与刀具偏摆与震动快速测量装置与方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/000098 WO2019169512A1 (zh) 2018-03-08 2018-03-08 工具机主轴与刀具偏摆与震动快速测量装置与方法

Publications (1)

Publication Number Publication Date
WO2019169512A1 true WO2019169512A1 (zh) 2019-09-12

Family

ID=67845450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/000098 WO2019169512A1 (zh) 2018-03-08 2018-03-08 工具机主轴与刀具偏摆与震动快速测量装置与方法

Country Status (1)

Country Link
WO (1) WO2019169512A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115008256A (zh) * 2022-08-04 2022-09-06 南京木木西里科技有限公司 一种旋转轴运动过程中振动测试系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060196060A1 (en) * 2005-03-04 2006-09-07 Prueftechnik Dieter Busch Ag Device and process for alignment of machines, machine parts or other technical articles
US7227627B1 (en) * 2005-06-23 2007-06-05 L-3 Communications Sonoma Eo, Inc. Optical biaxial angle sensor
US20120176628A1 (en) * 2011-01-12 2012-07-12 Canon Kabushiki Kaisha Apparatus and method for measuring displacement, method of making die for molding optical element, and optical element
CN105277119A (zh) * 2014-07-16 2016-01-27 刘建宏 多轴工具机的误差检测装置与误差检测方法
CN105737765A (zh) * 2016-04-06 2016-07-06 合肥工业大学 基于半导体激光器组件的四自由度光学测头
WO2017042365A1 (de) * 2015-09-09 2017-03-16 Sauer Gmbh Verfahren und vorrichtung zum bestimmen einer schwingungsamplitude eines werkzeugs
DE102015225127A1 (de) * 2015-12-14 2017-06-14 Robert Bosch Gmbh Handwerkzeugmaschinenvorrichtung und Verfahren mit einer Handwerkzeugmaschinenvorrichtung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060196060A1 (en) * 2005-03-04 2006-09-07 Prueftechnik Dieter Busch Ag Device and process for alignment of machines, machine parts or other technical articles
US7227627B1 (en) * 2005-06-23 2007-06-05 L-3 Communications Sonoma Eo, Inc. Optical biaxial angle sensor
US20120176628A1 (en) * 2011-01-12 2012-07-12 Canon Kabushiki Kaisha Apparatus and method for measuring displacement, method of making die for molding optical element, and optical element
CN105277119A (zh) * 2014-07-16 2016-01-27 刘建宏 多轴工具机的误差检测装置与误差检测方法
WO2017042365A1 (de) * 2015-09-09 2017-03-16 Sauer Gmbh Verfahren und vorrichtung zum bestimmen einer schwingungsamplitude eines werkzeugs
DE102015225127A1 (de) * 2015-12-14 2017-06-14 Robert Bosch Gmbh Handwerkzeugmaschinenvorrichtung und Verfahren mit einer Handwerkzeugmaschinenvorrichtung
CN105737765A (zh) * 2016-04-06 2016-07-06 合肥工业大学 基于半导体激光器组件的四自由度光学测头

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115008256A (zh) * 2022-08-04 2022-09-06 南京木木西里科技有限公司 一种旋转轴运动过程中振动测试系统
CN115008256B (zh) * 2022-08-04 2022-12-16 南京木木西里科技有限公司 一种旋转轴运动过程中振动测试系统

Similar Documents

Publication Publication Date Title
TWI644088B (zh) Tool machine spindle and tool yaw and vibration rapid measuring device and method
TWI632344B (zh) 光學式轉軸多自由度誤差檢測裝置與方法(二)
US10712147B2 (en) Measurement system and method of manufacturing shaft with hole
JP6464216B2 (ja) 非接触式内径測定装置
CN109211166B (zh) 一种基于壁厚和外型约束的舱体结构件在机快速找正装置及其找正方法
Kuschmierz et al. Optical, in situ, three-dimensional, absolute shape measurements in CNC metal working lathes
US20130319122A1 (en) Laser-based edge detection
US3520607A (en) Phase sensing laser contour mapper
WO2019169512A1 (zh) 工具机主轴与刀具偏摆与震动快速测量装置与方法
WO2023142186A1 (zh) 同时检测薄壁回转体内外壁面形与厚度分布的方法与装置
CN206788358U (zh) 激光扫描测量仪
US11761756B2 (en) Method and device for simultaneously detecting surface shapes and thickness distribution of inner and outer walls of thin-wall rotating body
JP2019032179A (ja) ブレードの計測方法
RU189989U1 (ru) Оптическое устройство для 3d-сканирования, измерения и контроля осевого режущего инструмента для мехобработки
JPH05272958A (ja) 平面基板と3センサによる回転中心位置の自動検出法及び検出装置
CN104061833A (zh) 一种涡轮增压器涡轮壳位置度检具
JPS6255502A (ja) 三次元測定機による物体形状の測定方法
CN111141931A (zh) 一种用于激光干涉仪速度校准的装置和方法
TWM545243U (zh) 光學式轉軸多自由度誤差檢測裝置
JPH0632605Y2 (ja) 平行光束の平行度測定装置
JPS62115315A (ja) レ−ザ変位計
JP2007263638A (ja) 3次元形状測定装置
CN219104954U (zh) 一种噪声自校正激光多普勒测速系统
JPH09189545A (ja) 距離測定装置
Song et al. Research on In-Situ Measurement Technology of NC Machining Based on Line Laser Sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908713

Country of ref document: EP

Kind code of ref document: A1