WO2019168270A1 - 세라믹 히터 및 그 제조 방법 - Google Patents

세라믹 히터 및 그 제조 방법 Download PDF

Info

Publication number
WO2019168270A1
WO2019168270A1 PCT/KR2019/001028 KR2019001028W WO2019168270A1 WO 2019168270 A1 WO2019168270 A1 WO 2019168270A1 KR 2019001028 W KR2019001028 W KR 2019001028W WO 2019168270 A1 WO2019168270 A1 WO 2019168270A1
Authority
WO
WIPO (PCT)
Prior art keywords
induction
carbide
ceramic
powder layer
heating element
Prior art date
Application number
PCT/KR2019/001028
Other languages
English (en)
French (fr)
Inventor
정철호
이범술
Original Assignee
주식회사 미코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 미코 filed Critical 주식회사 미코
Publication of WO2019168270A1 publication Critical patent/WO2019168270A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • H05B3/283Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material the insulating material being an inorganic material, e.g. ceramic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters

Definitions

  • the present invention relates to a ceramic heater and a method of manufacturing the same, and to a ceramic heater manufactured using an induction carbide to improve a local resistance change rate of an edge of a heating element, and a method of manufacturing the same.
  • Ceramic heaters are used to heat-treat heat-treatment objects for various purposes such as semiconductor wafers, glass substrates, and flexible substrates at predetermined heating temperatures. Ceramic heaters are also used in combination with the functions of electrostatic chucks for semiconductor wafer processing.
  • 1 is a diagram illustrating an example of a ceramic heater.
  • a ceramic heater generally includes a ceramic plate that generates heat by receiving power from an external electrode.
  • the ceramic plate 100 includes a heating element having a predetermined resistance embedded in the ceramic sintered body.
  • the heating element embedded in the ceramic heater may have various shapes, and may be one heating element connected thereto or two separate heating elements (2-ZONE heating element).
  • 2-zone heating element refers to a heating element in which a heating element embedded in a ceramic plate is separated into an inner heating element and an outer heating element.
  • FIG 3 is a cross-sectional view of a ceramic powder layer molded body in which a heating element according to the prior art is embedded.
  • a method of sintering a ceramic powder layer structure molded body in a carbon mold is used.As a result of sintering the molded body by the conventional method, the residual organic binder contained in the molded body, the atmosphere during hot press firing, and the carbon mold As a result, carbon is mixed to form a molybdenum carbide layer unevenly on the heating elements 210 and 220.
  • the molybdenum carbide layer thus formed has a problem of lowering the conductivity of the heating element and lowering the temperature uniformity of the ceramic heater.
  • Another object is to manufacture a ceramic heater for improving the local resistance change rate of the heating element and to improve the temperature uniformity by using the induction carbide and the induction carbide layer in the sintering process, and To provide a ceramic heater.
  • forming a ceramic powder layer structure embedded with a heating element and an induction carbide comprising the step of sintering the ceramic powder layer structure, the induction carbide provides a ceramic heater manufacturing method characterized in that the buried spaced apart a predetermined distance on the side of the heating element.
  • the ceramic powder layer structure forming step may include providing a first ceramic powder layer; Disposing the heating element and the induction carbide on the first ceramic powder layer; And providing a second ceramic powder layer on the first ceramic powder layer on which the heating element and the induction carbide are disposed. It may include.
  • the induction carbide may be further removed from the sintered ceramic powder layer structure.
  • the step of providing a first induction carbide layer before the step of providing the first ceramic powder layer, the step of providing a first induction carbide layer; After the providing of the second ceramic powder layer, a step of providing a second induction carbide layer may be further included.
  • the induction carbide may include at least one of Group 4 to Group 6 metals.
  • the induction carbide may include at least any one of Group 4 to Group 6 metals coated with nitride (NITRIDE COATING).
  • the induction carbide may be Ti (Titanium).
  • the induction carbide may be formed at positions spaced apart from each other by 6mm from the outer side of the heating element.
  • the induced carbon in the step of removing the induced carbon, may be removed by cutting at an interval of 3mm inward from the embedded position.
  • the induction carbide may have a ring shape.
  • the induction carbide may be any one of a coil type and a sheet type.
  • a ceramic powder layer structure in which a heating element and an induction carbide body embedded at a predetermined distance from the side of the heating element is embedded is molded, and the sintered molded body is formed, and then the Provided is a ceramic heater in which an induction carbide is removed.
  • the ceramic powder layer structure is provided with a first ceramic powder layer, the heating element and the induction carbide is disposed on the first ceramic powder layer, the heating element and the A second ceramic powder layer may be provided on the first ceramic powder layer on which the induction carbide is disposed.
  • the induction carbide may be Ti (Titanium).
  • the induction carbide is formed at a position spaced apart from the side edge of the heating element, thereby improving the local resistance change rate of the heating element in the sintering process. That is, since the increase in resistance of the local heating element is blocked by the use of the induction carbide, the temperature deviation for each position of the object heating surface such as a wafer is significantly reduced, thereby improving the temperature uniformity of the heating surface.
  • 1 is a diagram illustrating an example of a ceramic heater.
  • FIG. 2 is a diagram illustrating an example of a shape of a 2-zone heating element embedded in a ceramic plate.
  • FIG 3 is a cross-sectional view of a ceramic powder layer structure in which a heating element according to the prior art is embedded.
  • FIG. 4 is a flowchart illustrating a method of manufacturing a ceramic heater according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a ceramic powder layer structure in which a heating element and an induction carbide are embedded according to an embodiment of the present invention.
  • FIG. 6 is a view showing a cross-sectional shape of the ceramic heater from which the induction carbide is removed according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method of manufacturing a ceramic heater according to another embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a ceramic powder layer structure in which a heating element, an induction carbide, and an induction carbide layer are embedded according to another embodiment of the present invention.
  • FIG. 9 is a diagram illustrating the resistance change rate before and after sintering of resistors.
  • FIG. 10 is a graph illustrating a comparison of resistance increase rates before and after sintering of the heating element of the ceramic heater according to the related art and the heating element of the ceramic heater according to the present invention.
  • FIG 11 is a graph illustrating measurement of the edge temperature of the heating element of the ceramic heater according to the related art and the heating element of the ceramic heater according to the present invention.
  • FIG. 12 is a cross-sectional view of a ceramic powder layer structure in which a heating element and an induction carbide are embedded according to another embodiment of the present invention.
  • FIG. 13 is a diagram illustrating a cross-sectional shape of a ceramic heater from which an induction carbide is removed, according to another exemplary embodiment.
  • 'stacking' is used to define the relative positional relationship of each layer.
  • the expression 'layer B on layer A' expresses a relative positional relationship between layer A and layer B, and does not require that layer A and layer B contact each other, and a third layer may be interposed therebetween.
  • the expression 'the C layer is interposed between the A and B layers' does not exclude that a third layer is interposed between the A and C layers or between the B and C layers.
  • 1 is a diagram illustrating an example of a ceramic heater.
  • FIG. 1 there is a disc-shaped ceramic plate 100 having a heating element embedded thereon.
  • heat energy generated from the heating element may be transferred to the upper surface of the ceramic plate 100, and thermal energy may be transmitted to an object placed on the upper surface of the ceramic heater.
  • the heating element may be in various forms, and may be configured as one heating element, and may be configured as a combination of two heating elements.
  • FIG. 2 is a diagram illustrating an example of a shape of a 2-zone heating element embedded in a ceramic heater.
  • the heating element embedded in the ceramic plate 100 is composed of an INNER heating element 210 and an OUTER heating element 220.
  • the INNER heating element 210 may be made in various shapes and may have a circular ceramic plate. Located on the inner side of the (100) can be heated the inner side of the ceramic plate (100).
  • OUTER heating element 220 may also be made in a variety of shapes, for example, may be made in a ring shape, it is located on the outer surface of the circular ceramic plate 100 to heat the outer surface of the ceramic plate 100 can do.
  • FIG 3 is a cross-sectional view of a ceramic powder layer molded body in which a heating element according to the prior art is embedded.
  • the ceramic powder layer structure molded body 310 in which the heating elements 210 and 220 are embedded in the ceramic sintered body is a carbon mold (CARBON MOLD).
  • the ceramic plate 100 may be manufactured by sintering inside the 320. In the sintering process, the heating element is carbonized by the residual organic binder contained in the molded body, the atmosphere during hot press firing, and the carbon component included in the carbon mold 320, thereby increasing the resistance of the heating element. have.
  • the increase in the resistance of the heating element is mainly large in the OUTER heating element 220.
  • FIG. 4 is a flowchart illustrating a method of manufacturing a ceramic heater according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a ceramic powder layer molded body in which a heating element and an induction carbide 500 are embedded according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a cross-sectional shape of the ceramic heater from which the induction carbide 500 according to an embodiment of the present invention is removed.
  • a ceramic heater according to an embodiment of the present invention includes a ceramic sintered body 600 formed by sintering ceramic powder layers 510 and 520 and a heating element embedded in the ceramic sintered body 600. (210, 220).
  • the ceramic sintered body 600 and the heating elements 210 and 220 embedded in the ceramic sintered body 600 correspond to ceramic heaters.
  • the ceramic sintered body 600 in FIG. 5, the ceramic powder layer (510, 520) in which the heating elements (210, 220) and the induction carbide 500 is inserted in the carbon mold (CARBON MOLD) 320 After sintering, it is formed by a process of removing the induction carbide (500).
  • the ceramic powder layer structure is provided inside the carbon mold 320 (S410 to S430).
  • the ceramic powder layer structure may be laminated in various ways.
  • the first ceramic powder layer 510 is formed as part of the ceramic powder layer structure 540 (S410), and the heating elements 210 and 220 and the induction carbide 500 are formed on the first ceramic powder layer 510.
  • the ceramic powder layer structure 540 may be formed.
  • the first ceramic powder layer 510 may be provided in the form of a molded body that is pressed at a predetermined pressure to maintain a shape.
  • the entire ceramic powder layer structure 540 may be provided in the form of a press-molded molded body.
  • the induction carbide 500 may have a ring shape and may be any one of a coil type and a sheet type.
  • the diameter of the coil may be 3 mm
  • the induction carbide 500 is a sheet type its width may be 2 mm to 3 mm.
  • the induction carbide 500 may be formed outside the side of the heating element, and may be formed at a position spaced apart from the heating element by 6 mm.
  • the induction carbon 500 is formed so close to the heating element that the cutting becomes difficult while the induction carbon 500 is removed, and the induction carbon 500 is far from the heating element induction carbonization Since the effect is reduced, it is necessary to form a suitable distance apart. Therefore, the induction carbide 500 may be formed at a position spaced apart from 2 mm to 3 mm from the outer diameter of the ceramic plate 100 of the completed ceramic heater during the ceramic heater manufacturing process.
  • the side edge of the ceramic heater to be completed after the induction carbide 500 is removed may be buried in a position spaced apart from 2mm to 3mm, more preferably 3mm away from the. Therefore, in the step in which the induction carbide 500 is removed, the induction carbide 500 embedded in the ceramic sintered body 600 is cut at an interval of 3 mm inward from the position where the induction carbide 500 is embedded, and the ceramic sintered body is It can be safely removed with a portion of 600.
  • a method of manufacturing a ceramic heater will be described next.
  • a carbon mold CARBON MOLD
  • the sintering process is processed at 320 to make the ceramic powder layer structure 540 a ceramic sintered body (S440).
  • the sintering process may be performed by heating the carbon mold 320 to a predetermined temperature (eg, 1500 to 2500 ° C.) at which the ceramic is not decomposed and maintained for a predetermined time (eg, 10 hours or less).
  • this sintering process is preferably sintered in a non-oxidizing atmosphere such as vacuum or N 2 atmosphere.
  • the sintering process may be performed by conventional hot press sintering (Hot press).
  • the induction carbide 500 embedded in the ceramic sintered body is removed to sinter the ceramic sintered body 600 and the ceramic in which the first ceramic powder layer 510 and the second ceramic powder layer 520 are sintered.
  • a ceramic heater including the heating elements 210 and 220 embedded in the sintered body 600 is obtained (S450).
  • FIG. 6 is a view showing the shape of the ceramic heater cross-section in which the induction carbide 500 is removed according to an embodiment of the present invention.
  • the ceramic heater after the ceramic powder layer structure 540 is sintered, a portion of the ceramic sintered body including the induction carbide 500 is removed to include only the heating elements 210 and 220. ) Has the shape of.
  • the heating elements 210 and 220 embedded in the ceramic sintered body generate heat according to a resistance property by using power (eg, RF (Radio Frequency) power) supplied from the outside through an electrode (not shown).
  • power eg, RF (Radio Frequency) power
  • One side of the ceramic plate 100 may be a heating surface for heating the object, and may be a surface for placing the object or applying heat on the object. Electrodes (not shown) for supplying power to the heating elements 210 and 220 through the other side of the ceramic plate 100 may be combined.
  • the ceramic heater including the ceramic plate 100 may be used to heat-treat a heat treatment object for various purposes such as a semiconductor wafer, a glass substrate, a flexible substrate, and the like at a predetermined heating temperature. Ceramic heaters may be used in combination with the function of an electrostatic chuck for semiconductor wafer processing.
  • FIG. 7 is a flowchart illustrating a method of manufacturing a ceramic heater according to another embodiment of the present invention.
  • FIG 8 is a cross-sectional view of a ceramic powder layer molded body in which a heating element, an induction carbide 500, and an induction carbide 500 layer are embedded according to another embodiment of the present disclosure.
  • a stacked structure in which the first induction carbide layer 810 and the second induction carbide layer 820 are formed on the upper and lower surfaces of the ceramic powder layer 130 into which the heating elements 210 and 220 and the induction carbide 500 are inserted is formed. (S710 to S750).
  • the laminated structure and the components constituting the laminated structure may be manufactured by various methods.
  • first induction carbide layer 810 and / or the second induction carbide layer 820 may be applied in a carbon mold (CARBON MOLD) 320 or sprayed by spraying, and may also be in the form of a molded or sintered body. Can be provided.
  • the first induction carbide layer 810 and the second induction carbide layer 820 may effectively block the inflow of the carbon source from the external carbon mold 320.
  • a first induction carbide layer 810 is provided (S710), and a ceramic powder layer in which the heating elements 210 and 220 and the induction carbide 500 are embedded is formed on the first induction carbide layer 810.
  • the ceramic powder layer may be laminated in various ways.
  • the first ceramic powder layer 510 is formed as part of the ceramic powder layer (S720), and the heating elements 210 and 220 and the induction carbide 500 are disposed on the first ceramic powder layer 510.
  • the ceramic powder layer is covered by covering the second ceramic powder layer 520 on the first ceramic powder layer 510 on which the heating elements 210 and 220 and the induction carbide 500 are disposed (S740). Can be formed.
  • the first ceramic powder layer 510 may be provided in the form of a molded body that is pressed at a predetermined pressure to maintain a shape.
  • the entire ceramic powder layer may be provided in the form of a press-molded molded body.
  • the second induction carbide layer 820 is stacked on the ceramic powder layer (S760).
  • each of the induction carbide layers 500 formed on the upper and lower surfaces of the ceramic powder layer that is, either the first induction carbide layer 810 or the second induction carbide layer 820, and the ceramic powder between the layers, a material including BN (Boron Nitride) as an inert layer for the release agent may be formed in the form of a coating or spray, or a BN layer in the form of a sintered body.
  • BN Boron Nitride
  • the ceramic powder layer structure 800 is processed by sintering in a carbon mold 320 as shown in FIG. 8. To be a ceramic sintered body (S760).
  • the sintering process may be performed by heating the carbon mold 320 to a predetermined temperature (eg, 1500 to 2500 ° C.) at which the ceramic is not decomposed and maintained for a predetermined time (eg, 10 hours or less).
  • this sintering process is preferably sintered in a non-oxidizing atmosphere such as vacuum or N 2 atmosphere.
  • the sintering process may be performed by conventional hot press sintering (Hot press).
  • the first induction carbide layer 810, the second induction carbide layer 820, and the induction carbide 500 embedded in the ceramic sintered body are removed to remove the first ceramic powder layer 510 and A ceramic heater including the ceramic sintered body 600 in which the second ceramic powder layer 520 is sintered and the heating elements 210 and 220 embedded in the ceramic sintered body 600 is obtained (S770).
  • the cross section of the ceramic heater obtained by this process is the same as the cross section of the ceramic heater shown in FIG.
  • FIG. 6 is a view showing the shape of the ceramic heater cross-section in which the induction carbide 500 is removed according to an embodiment of the present invention.
  • the ceramic heater includes a first induction carbide layer 810, a second induction carbide layer 820, and an induction carbide 500 after the ceramic powder layer structure 800 is sintered.
  • a portion of the ceramic sintered body 600 includes only the heating elements 210 and 220 to be removed.
  • the heating elements 210 and 220 embedded in the ceramic sintered body generate heat according to a resistance property by using power (eg, RF (Radio Frequency) power) supplied from the outside through an electrode (not shown).
  • power eg, RF (Radio Frequency) power
  • One side of the ceramic plate 100 may be a heating surface for heating the object, and may be a surface for placing the object or applying heat on the object. Electrodes (not shown) for supplying power to the heating elements 210 and 220 through the other side of the ceramic plate 100 may be combined.
  • the ceramic heater including the ceramic plate 100 may be used to heat-treat a heat treatment object for various purposes such as a semiconductor wafer, a glass substrate, a flexible substrate, and the like at a predetermined heating temperature. Ceramic heaters may be used in combination with the function of an electrostatic chuck for semiconductor wafer processing.
  • the induction carbide 500, the first induction carbide layer 810, and the second induction carbide layer 820 described above are structures for suppressing resistance change due to carbonization of the heating elements 210 and 220.
  • the resistance change rate of the heating elements 210 and 220 is most affected by the carbon mold, and the resistance change rate of the heating elements 210 and 220 is not affected by the carbon content contained in the ceramic powder layers 510 and 520. It was confirmed that it does not.
  • the induction carbide 500, the first induction carbide layer 810, and the second induction carbide layer 820 described above absorb the carbon component well from the carbon mold 320, thereby generating the heating element 210.
  • a material that can inhibit the carbonization of 220 should be used.
  • the induction carbide 500, the first induction carbide layer 810 and the second induction carbide layer 820 described in the present invention are Group 4 to Group 6 metal or nitride coated (NITRIDE COATING) Group 4 to It may be a metal including at least one of Group 6 metals.
  • the induction carbide 500, the first induction carbide layer 810, and the second induction carbide layer 820 based on the present invention are coated with Mo (Molybdenum), TiN (Titanium Nitride), and TiN in the metal. It may include Mo or Ti (Titanium).
  • any one metal of Group 4 to Group 6 metals such as Mo, TiN, TiN coated Mo, or Ti may be used as the induction carbide 500.
  • metals containing two or more metals such as Mo and Ti alloys may be used.
  • Mo, TiN, and TiN are coated with the induction carbide 500, the first induction carbide layer 810, and the second induction carbide layer 820.
  • Any metal of Group 4 to Group 6 metals such as Mo or Ti may be used.
  • different metals of any one of Group 4 to Group 6 metals may be used as the induction carbide 500, the first induction carbide layer 810, and the second induction carbide layer 820.
  • Ti may be used as the induction carbide 500
  • Mo may be used as the first induction carbide layer 810 and the second induction carbide layer 820.
  • Mo may be used as the induction carbide 500
  • Mo coated with TiN may be used as the first induction carbide layer 810
  • Ti may be used as the second induction carbide layer 820.
  • the metal construction described in the above example is just one example of many embodiments according to the present invention, and other than that, the present invention may be implemented in various combinations using metals belonging to the Group 4 to Group 6 range.
  • FIG. 9 is a diagram illustrating the resistance change rate before and after sintering of resistors.
  • the metal used as the induction carbide 500, the first induction carbide layer 810, and the second induction carbide layer 820 based on the present invention has an advantageous effect as the carbon absorption ability is large.
  • the carbon mold (CARBON MOLD) 320 by embedding four representative metals (Mo, TiN, TiN-coated Mo, Ti) used in the ceramic powder layer in Figure 9, The result of having measured the resistance change rate by carbonization of each metal by GOM (resistance change measuring equipment) is shown.
  • the resistance of each metal heating element before sintering was 0.88, 0.85, 0.86, 0.89 ohm in order of Mo, TiN, MoN coated TiN, respectively, but the resistance values measured after sintering were 2.07, 1.49, 1.61, 4.04 ohms.
  • the titanium (Titanium) metal had the largest degree of carbonization, with a resistance change rate of about 355.
  • Ti (Titanium) metal has the greatest ability to absorb carbon. Therefore, when Ti (Titanium) metal is used as the induction carbide 500, the first induction carbide layer 810 and the second induction carbide layer 820, the ceramic heater temperature uniformity (TEMPERATURE UNIFORMITY) is improved The greatest effect can be obtained in.
  • FIG. 10 is a graph illustrating a comparison of resistance increase rates before and after sintering of the heating element of the ceramic heater according to the related art and the heating element of the ceramic heater according to the present invention.
  • the graph shown in FIG. 10 is a graph showing a numerical comparison of the effect of the induction carbide according to the present invention on the degree of carbonization of the heating elements (INNER heating element and OUTER heating element) of the ceramic heater in the ceramic heater manufacturing process.
  • the ceramic heater according to the present invention is a ceramic heater manufactured according to FIGS. 4 to 6, and a titanium (Titanium) metal corresponding to one embodiment of the present invention is used as the induction carbide 500.
  • Ti metal was used, but this is according to an embodiment of the present invention, and in addition to Ti metal, metals such as Mo, TiN, or TiN coated Mo may be used.
  • FIG. 10 (a) is a graph showing the resistance change before and after sintering the heating element of the ceramic heater according to the prior art.
  • the resistance change rate of the INNER heating element 210 when looking at the resistance change rate of the INNER heating element 210, about 20% rose from 1.5 ohm before sintering to 1.8 ohm after sintering, and the resistance of the OUTER heating element 220 was increased.
  • the rate of change about 40% rose from 2.0 ohm before sintering to 2.8 ohm after sintering.
  • 10 (b) to 10 (d) are graphs showing the resistance change before and after sintering the heating element of the ceramic heater according to the present invention.
  • Ti was used as the induction carbide 500.
  • the resistance change rate of the INNER heating element 210 about 2 to about 1.53 ohms after sintering from 1.5 ohms before sintering % Increased, and the resistance change rate of the OUTER heating element 220 was about 8% increased from 2.0 ohm before sintering to 2.16 ohm after sintering.
  • Mo was used as the induction carbide 500.
  • the resistance change rate of the INNER heating element 210 was about 1.5 ohm before sintering and about 1.59 ohm after sintering. % Increased, and when looking at the resistance change rate of the OUTER heating element 220, about 10% rose from 2.0 ohm before sintering to 2.2 ohm after sintering.
  • TiN was used as the induction carbide 500.
  • the resistance change rate of the INNER heating element 210 it was about 12 ohms after sintering to about 1.68 ohms after sintering.
  • % Increased and when looking at the resistance change rate of the OUTER heating element 220, about 20% rose from 2.0 ohm before sintering to 2.4 ohm after sintering.
  • the resistance change rate of the heating element before and after sintering was greatly reduced according to the present invention, and in particular, the resistance change rate of the OUTER heating element 220 was greatly reduced.
  • the difference between the resistance values of the INNER heating element 210 and the OUTER heating element 220 appears in a similar ratio before and after sintering.
  • the induction carbide 500 of the Ti, Mo or TiN material can be selected and designed as needed, It has a beneficial effect.
  • FIG 11 is a graph illustrating measurement of the edge temperature of the heating element of the ceramic heater according to the related art and the heating element of the ceramic heater according to the present invention.
  • the ceramic heater according to the present invention is a ceramic heater manufactured according to FIGS. 4 to 6, wherein the induction carbide 500, the first induction carbide layer 810, and the second induction carbide layer 820 are Ti (Titanium). Metal was used.
  • T / C WAFER (THERMOCOUPLE WAFER) was used to measure the temperature of the ceramic heater.
  • Fig. 11A is a result of measuring the edge temperature of the heating element of the ceramic heater according to the prior art. It is measured that the difference between the lowest temperature and the highest temperature among the points 1 to 8 is about 5.3 degrees.
  • FIG. 11 (b) is a result of measuring the edge temperature of the heating element of the ceramic heater according to the present invention.
  • the difference between the lowest temperature and the highest temperature among the points 1 to 8 is measured to be about 2.1 degrees.
  • the ceramic heater according to the present invention shows an excellent effect on improving the temperature uniformity (TEMPERATURE UNIFORMITY) of the ceramic heater.
  • the induction carbide 500 by forming the induction carbide 500 at positions spaced at regular intervals on the edge of the heating element embedded in the ceramic heater, it is possible to improve the local resistance change rate of the heating element during the sintering process. have. That is, since the increase in resistance of the local heating element is blocked by the use of the induction carbide 500, the temperature variation for each position of the object heating surface such as a wafer is significantly reduced, thereby improving the temperature uniformity of the heating surface. .
  • FIG. 12 is a cross-sectional view of a ceramic powder layer structure in which a heating element and an induction carbide 500 are embedded, according to another exemplary embodiment.
  • FIG. 13 is a diagram illustrating a cross-sectional shape of the ceramic heater from which the induction carbide 500 is removed according to another exemplary embodiment.
  • the heating element used in the ceramic heater disclosed in FIGS. 4 to 8 is a 2-zone heating element, and the INNER heating element 210 and the OUTER heating element 220 are present separately, but this is a technology that is limited to the 2-zone heating element.
  • the present invention may be used in the method of manufacturing the ceramic heater 1300 including the ceramic sintered body 600 in which one heating element 1200 is embedded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Resistance Heating (AREA)
  • General Induction Heating (AREA)

Abstract

본 발명은 세라믹 히터 및 그 제조 방법에 관한 것으로서, 발열체 및 유도 탄화체가 매설된 세라믹 분말층 구조를 성형하는 단계; 및 상기 세라믹 분말층 구조를 소결하는 단계를 포함하되, 상기 유도 탄화체는 상기 발열체 측면에 일정거리 이격 되어 매설되는 것을 특징으로 하는 세라믹 히터 제조 방법으로서, 발열체를 매설된 발열체 가장자리에 일정한 간격으로 이격된 위치에 유도 탄화체를 형성함으로써 소결 과정에서 발열체의 국부적인 저항 변화율을 개선할 수 있는 효과가 있다.

Description

세라믹 히터 및 그 제조 방법
본 발명은 세라믹 히터 및 그 제조 방법에 관한 것으로서, 발열체 가장자리의 국부적인 저항 변화율을 개선하기 위하여 유도 탄화체를 이용하여 제조되는 세라믹 히터 및 그 제조 방법에 관한 것이다.
세라믹 히터는 반도체 웨이퍼, 유리 기판, 플렉시블 기판 등 다양한 목적의 열처리 대상체를 소정의 가열 온도에서 열처리하기 위하여 사용된다. 반도체 웨이퍼 처리를 위하여 세라믹 히터는 정전척의 기능과 결합하여 사용되기도 한다.
도 1은 세라믹 히터의 일 예를 도시한 도면이다.
도 1을 참조하면, 일반적으로 세라믹 히터는 외부의 전극으로부터 전력을 공급받아 발열되는 세라믹 플레이트를 포함한다. 세라믹 플레이트(100)는 세라믹 소결체에 매설되는 소정의 저항을 갖는 발열체를 포함한다. 세라믹 히터에 매설되는 발열체는 다양한 형상일 수 있는데, 연결된 1개의 발열체일 수 있고, 분리된 2개의 발열체(2-ZONE 발열체) 일 수 있다.
도 2는 세라믹 히터에 매설된 2-ZONE 발열체의 형상의 일 예를 도시한 도면이다. 2-ZONE 발열체는 세라믹 플레이트 내에 매설된 발열체가 INNER 발열체와 OUTER 발열체로 분리되어있는 발열체를 의미한다.
도 3은 종래 기술에 의한 발열체가 매설된 세라믹 분말층 성형체의 단면을 도시한 도면이다.
종래 기술로는 카본 몰드 내부에서 세라믹 분말층 구조 성형체를 소결하는 방법이 사용되고 있는데, 종래 방법에 의한 성형체 소결 시, 성형체 내에 함유되는 잔류 유기 바인더, 핫프레스(HOT PRESS) 소성 시의 분위기 및 카본 몰드에 의해서 탄소가 혼입되어 발열체(210, 220)에 불균일하게 탄화몰리브덴층이 형성 된다.
이렇게 형성된 탄화몰리브덴층은 발열체의 도전성을 저하시키고 세라믹 히터의 온도 균일성(Temp. Uniformity)을 저하 시키는 문제점이 있다.
또한, 발열체의 안쪽 부분보다 바깥쪽 부분에서 더 많은 탄화몰리브덴층이 생성되고, 2-ZONE 발열체의 경우 INNER 발열체(210)보다 OUTER 발열체(220)에서 더 많은 탄화몰리브덴층이 생성되어, 발열체의 바깥쪽 부분 또는 OUTER 발열체(220) 부분에서 저항 증가율이 높고, 온도 균일성이 더 많이 저하되는 문제점이 있다.
본 발명은 전술한 문제 및 다른 문제를 해결하는 것을 목적으로 한다.
또 다른 목적은 소결 과정에서 유도 탄화체 및 유도 탄화체층을 이용하여 발열체의 국부적인 저항 변화율을 개선하고, 온도 균일성(TEMPERATURE UNIFORMITY)을 개선하기 위한 세라믹 히터의 제조 방법 및 그 방법에 의해 제조된 세라믹 히터를 제공하는 데 있다.
상기 또는 다른 목적을 달성하기 위해 본 발명의 일 측면에 따르면, 발열체 및 유도 탄화체가 매설된 세라믹 분말층 구조를 성형하는 단계; 및 상기 세라믹 분말층 구조를 소결하는 단계를 포함하되, 상기 유도 탄화체는 상기 발열체 측면에 일정거리 이격 되어 매설되는 것을 특징으로 하는 세라믹 히터 제조 방법을 제공한다.
또한, 본 발명의 일 측면에 따르면, 상기 세라믹 분말층 구조 성형 단계는, 제1 세라믹 분말층을 제공하는 단계; 상기 제1 세라믹 분말층 상에 상기 발열체 및 상기 유도 탄화체를 배치하는 단계; 및 상기 발열체 및 상기 유도 탄화체가 배치된 상기 제1 세라믹 분말층 상에 제2 세라믹 분말층을 제공하는 단계; 를 포함할 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 소결된 세라믹 분말층 구조에서 상기 유도 탄화체가 제거되는 단계를 더 포함할 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 제1 세라믹 분말층 제공 단계 전에, 제1 유도 탄화체층이 제공되는 단계; 상기 제2 세라믹 분말층 제공 단계 후에, 제2 유도 탄화체층이 제공되는 단계;를 더 포함할 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 유도 탄화체는 4족 내지 6족 금속 중 적어도 어느 하나를 포함할 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 유도 탄화체는 질화물이 코팅된(NITRIDE COATING) 4족 내지 6족 금속 중 적어도 어느 하나를 포함할 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 유도 탄화체는 Ti(Titanium)일 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 유도 탄화체는 상기 발열체 외 측면에서 6mm 간격을 두고 이격된 위치에 형성될 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 유도 탄화체가 제거되는 단계에서, 상기 유도 탄화체가 매설된 위치에서 안쪽으로 3mm 간격을 두고 컷팅되어 제거될 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 유도 탄화체는 링(RING) 형상일 수 있다.
또, 본 발명의 일 측면에 따르면, 상기 유도 탄화체는 coil type 또는 sheet type 중 어느 하나일 수 있다.
그리고, 본 발명의 또 다른 일 측면에 따르면, 발열체 및 상기 발열체 측면에 일정거리 이격 되어 매설되는 유도 탄화체가 매설된 세라믹 분말층 구조를 성형하고, 상기 성형체를 소결한 후, 상기 소결된 성형체에서 상기 유도 탄화체가 제거되어 제조되는 세라믹 히터를 제공한다.
또한, 본 발명의 또 다른 일 측면에 따르면, 상기 세라믹 분말층 구조는 제1 세라믹 분말층이 제공되고, 상기 제1 세라믹 분말층 상에 상기 발열체 및 상기 유도 탄화체가 배치된 후, 상기 발열체 및 상기 유도 탄화체가 배치된 상기 제1 세라믹 분말층 상에 제2 세라믹 분말층이 제공되어 형성될 수 있다.
또한, 본 발명의 또 다른 일 측면에 따르면, 상기 유도 탄화체는 Ti(Titanium)일 수 있다.
본 발명에 따른 세라믹 히터의 제조 방법에 따르면, 발열체 측면 가장자리에서 일정 간격 이격된 위치에 유도 탄화체를 형성함으로써 소결 과정에서 발열체의 국부적인 저항 변화율을 개선할 수 있는 효과가 있다. 즉, 유도 탄화체의 사용으로 국부적인 발열체의 저항 상승이 차단되므로 웨이퍼 등 대상체 가열면의 위치별 온도 편차가 현저히 줄어들어 가열면의 온도 균일성(TEMPERATURE UNIFORMITY)을 높일 수 있는 효과가 있다.
도 1은 세라믹 히터의 일 예를 도시한 도면이다.
도 2는 세라믹 플레이트에 매설된 2-ZONE 발열체의 형상의 일 예를 도시한 도면이다.
도 3은 종래 기술에 의한 발열체가 매설된 세라믹 분말층 구조의 단면을 도시한 도면이다.
도 4는 본 발명의 일 실시 예에 따른 세라믹 히터 제조 방법을 도시한 순서도이다.
도 5는 본 발명의 일 실시 예에 따른 발열체 및 유도 탄화체가 매설된 세라믹 분말층 구조의 단면을 도시한 도면이다.
도 6은 본 발명의 일 실시 예에 따른 유도 탄화체가 제거된 세라믹 히터의 단면의 형상을 도시한 도면이다.
도 7은 본 발명의 또 다른 일 실시 예에 따른 세라믹 히터 제조 방법을 도시한 순서도이다.
도 8은 본 발명의 또 다른 일 실시 예에 따른 발열체, 유도 탄화체 및 유도 탄화체층이 매설된 세라믹 분말층 구조의 단면을 도시한 도면이다.
도 9는 저항체들의 소결 전 후 저항변화율을 실험하여 도시한 도면이다.
도 10은 종래 기술에 의한 세라믹 히터의 발열체와 본 발명에 따른 세라믹 히터의 발열체의 소결 전, 후 저항 증가율을 비교하여 도시한 그래프 이다.
도 11은 종래 기술에 의한 세라믹 히터의 발열체와 본 발명에 따른 세라믹 히터의 발열체의 가장자리 온도를 측정하여 도시한 그래프이다.
도 12는 본 발명의 또 다른 일 실시 예에 따른 발열체 및 유도 탄화체가 매설된 세라믹 분말층 구조의 단면을 도시한 도면이다.
도 13은 본 발명의 또 다른 일 실시 예에 따른 유도 탄화체가 제거된 세라믹 히터의 단면의 형상을 도시한 도면이다.
이하에서는 첨부된 도면들을 참조하여 본 발명에 대해서 자세히 설명한다. 이때, 각각의 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타낸다. 또한, 이미 공지된 기능 및/또는 구성에 대한 상세한 설명은 생략한다. 이하에 개시된 내용은, 다양한 실시 예에 따른 동작을 이해하는데 필요한 부분을 중점적으로 설명하며, 그 설명의 요지를 흐릴 수 있는 요소들에 대한 설명은 생략한다. 또한 도면의 일부 구성요소는 과장되거나 생략되거나 또는 개략적으로 도시될 수 있다. 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니며, 따라서 각각의 도면에 그려진 구성요소들의 상대적인 크기나 간격에 의해 여기에 기재되는 내용들이 제한되는 것은 아니다.
또한, 본 발명에서 '적층'이란 각 층의 상대적인 위치 관계를 규정하는 의미로 사용된다. 'A층 상의 B층'이란 표현은 A층과 B층의 상대적인 위치 관계를 표현하는 것으로 A층와 B층이 반드시 접촉할 것을 요하지 않으며 그 사이에 제3의 층이 개재될 수 있다. 비슷하게, 'A층과 B층 사이에 C층이 개재'되었다는 표현도 A층과 C층 사이 또는 B층과 C층 사이에 제3의 층이 개재되는 것을 배제하지 않는다.
도 1은 세라믹 히터의 일 예를 도시한 도면이다.
도 1을 참고하면, 세라믹 히터의 상부에는 발열체가 매설된 원판모형의 세라믹 플레이트(100)가 존재한다. 세라믹 히터는 발열체에서 발생하는 열 에너지가 세라믹 플레이트(100)의 상부면으로 전달되어 세라믹 히터의 상부면 위에 놓인 물체에 열 에너지가 전달될 수 있다.
발열체는 다양한 형태일 수 있는데, 1개의 발열체로 구성될 수 있고, 2개의 발열체의 조합으로 구성될 수 있다.
도 2는 세라믹 히터에 매설된 2-ZONE 발열체의 형상의 일 예를 도시한 도면이다.
도 2를 참조하면, 세라믹 플레이트(100)에 매설된 발열체는 INNER 발열체(210) 및 OUTER 발열체(220)로 구성되어 있는데, INNER 발열체(210)는 다양한 형상으로 만들어질 수 있으며, 원형인 세라믹 플레이트(100)의 안쪽 면에 위치하여 세라믹 플레이트(100)의 안쪽 면을 가열할 수 있다. OUTER 발열체(220)도 다양한 형상으로 만들어질 수 있고, 그 일 예로 링 형상으로 만들어질 수 있으며, 원형인 세라믹 플레이트(100)의 바깥쪽 면에 위치하여 세라믹 플레이트(100)의 바깥쪽 면을 가열할 수 있다.
도 3은 종래 기술에 의한 발열체가 매설된 세라믹 분말층 성형체의 단면을 도시한 도면이다.
도 3을 참조하여, 종래 기술에 따른 세라믹 플레이트(100)의 제조 과정을 설명하면, 세라믹 소결체 내부에 발열체(210, 220)가 매설된 세라믹 분말층 구조 성형체(310)가 카본 몰드(CARBON MOLD)(320) 내부에서 소결되어 세라믹 플레이트(100)가 제조 될 수 있다. 상기 소결 과정에서 성형체 내에 함유되는 잔류 유기 바인더, 핫프레스(HOT PRESS) 소성 시의 분위기 및 카본 몰드(CARBON MOLD)(320)에 포함된 탄소성분에 의하여 발열체가 탄화되어 발열체 저항 값이 증가할 수 있다. 이러한 발열체 저항 증가는 주로 OUTER 발열체(220)에서 큰 폭으로 나타난다.
도 4는 본 발명의 일 예에 따른 세라믹 히터 제조 방법을 도시한 순서도이다.
도 5는 본 발명의 일 예에 따른 발열체 및 유도 탄화체(500)가 매설된 세라믹 분말층 성형체의 단면을 도시한 도면이다.
도 6은 본 발명의 일 예에 따른 유도 탄화체(500)가 제거된 세라믹 히터의 단면의 형상을 도시한 도면이다.
도 5 및 도 6을 참조하면, 본 발명의 일 실시예에 따른 세라믹 히터는, 세라믹 분말층(510, 520)을 소결하여 형성한 세라믹 소결체(600) 및 상기 세라믹 소결체(600)에 매설된 발열체(210, 220)를 포함한다. 세라믹 소결체(600) 및 세라믹 소결체(600)에 매설된 발열체(210, 220)는 세라믹 히터에 해당한다.
본 발명에서, 세라믹 소결체(600)는, 도 5에서, 발열체(210, 220) 및 유도 탄화체(500)가 삽입된 세라믹 분말층(510, 520)을 카본 몰드(CARBON MOLD)(320)에서 소결한 후, 유도 탄화체(500)를 제거하는 과정으로 처리하여 형성된 것이다.
이하, 도 5를 참고하여 도 4의 세라믹 히터 제조 방법을 상세하게 설명한다.
카본 몰드(CARBON MOLD)(320) 내부에 세라믹 분말층 구조가 제공된다(S410 내지 S430). 이 때, 세라믹 분말층 구조는 다양한 방식으로 적층될 수 있다. 예컨대, 세라믹 분말층 구조(540)의 일부로서 제1 세라믹 분말층(510)이 형성되고(S410), 상기 제1 세라믹 분말층(510) 상에 발열체(210, 220) 및 유도 탄화체(500)를 배치한 후(S420), 발열체(210, 220) 및 유도 탄화체(500)가 배치된 제1 세라믹 분말층(510) 상에 제2 세라믹 분말층(520)을 덮음으로써(S430) 상기 세라믹 분말층 구조(540)가 형성될 수 있다. 이 때, 상기 제1 세라믹 분말층(510)은 소정의 압력으로 가압되어 형상을 유지할 수 있는 성형체 형태로 제공될 수 있다. 물론, 상기 세라믹 분말층 구조(540) 전체가 가압 성형된 성형체 형태로 제공될 수도 있다.
세라믹 분말층 상에 발열체 및 유도 탄화체(500)가 배치되는 단계에서, 상기 유도 탄화체(500)는 링(RING) 형상 일 수 있고, COIL TYPE 또는 SHEET TYPE 중 어느 하나의 TYPE 일 수 있다. 유도 탄화체(500)가 COIL TYPE일 경우에는 코일의 지름이 3mm일 수 있고, 유도 탄화체(500)가 SHEET TYPE 일 경우에는 그 너비가 2mm 내지 3mm 일 수 있다.
그리고, 유도 탄화체(500)는 발열체 외 측면 바깥쪽에 형성될 수 있는데, 발열체와 6mm 간격을 두고 이격된 위치에 형성될 수 있다. 유도 탄화체(500)가 발열체와 너무 가까이에 위치하여 형성되면 유도 탄화체(500)가 제거되는 과정에서 컷팅(CUTTING)이 어려워지고, 유도 탄화체(500)가 발열체와 거리가 멀어지면 유도 탄화의 효과가 떨어지게 되므로 적당한 거리가 이격되어 형성될 필요가 있다. 따라서, 유도 탄화체(500)는 세라믹 히터 제조 과정에서, 완성된 세라믹 히터의 세라믹 플레이트(100) 외경 크기에서 2mm 내지 3mm 바깥쪽으로 이격된 위치에 형성되는 것이 효과적이다. 다시 말해, 세라믹 소결체(600)에 매설된 유도 탄화체(500)가 세라믹 소결체(600)의 일부와 함께 제거되는 최종 단계에서, 유도 탄화체(500)가 제거된 후 완성될 세라믹 히터의 측면 가장자리에서 바깥쪽으로 2mm 내지 3mm 이격된 위치에, 보다 바람직 하게는 3mm 이격된 위치에 유도 탄화체(500)가 매설될 수 있다. 따라서, 유도 탄화체(500)가 제거되는 단계에서, 유도 탄화체(500)가 매설된 위치에서 안쪽으로 3mm 간격을 두고 컷팅되어 세라믹 소결체(600)에 매설된 유도 탄화체(500)가 세라믹 소결체(600)의 일부와 함께 안전하게 제거될 수 있다.
다시, 도 5로 돌아가서 세라믹 히터의 제조 방법을 이어서 설명하면, 발열체(210, 220)가 매설된 세라믹 분말층 구조(540)를 갖는 성형체를 형성한 후, 도 5와 같이 카본 몰드(CARBON MOLD)(320)에서 소결 과정 처리하여 세라믹 분말층 구조(540)가 세라믹 소결체가 되도록 한다(S440).
소결 과정은 카본 몰드(CARBON MOLD)(320)를 세라믹이 분해되지 않는 소정의 온도(예, 1500∼2500℃)로 가열하여 소정의 시간 동안(예, 10 시간 이하) 유지시킴으로써 이루어질 수 있다. 또한, 이와 같은 소결 과정은 비산화성 분위기 예컨대 진공 또는 N2 분위기에서 소결하는 것이 바람직하다. 또한, 상기 소결 과정은 통상의 열간 가압 소결(Hot press)에 의해 이루어질 수 있다.
이와 같은 소결 과정을 거친 후, 세라믹 소결체에 매설된 유도 탄화체(500)를 제거하여, 제1 세라믹 분말층(510) 및 제2 세라믹 분말층(520)이 소결된 세라믹 소결체(600)와 세라믹 소결체(600)에 매설된 발열체(210, 220)를 포함하는 세라믹 히터가 획득된다(S450).
도 6은 본 발명의 일 실시 예에 따른 유도 탄화체(500)가 제거된 세라믹 히터 단면의 형상을 도시한 도면이다.
도 6을 참고하면, 세라믹 히터는 세라믹 분말층 구조(540)가 소결된 후 유도 탄화체(500)를 포함하는 세라믹 소결체의 일부가 제거되어 발열체(210, 220)만을 포함하고 있는 세라믹 소결체(600)의 형상을 가진다.
세라믹 소결체에 매설된 발열체(210, 220)는 전극(미도시)을 통해 외부로부터 공급되는 전력(예, RF(Radio Frequency) 전력)을 이용하여 저항 성질에 따라 열을 발생시킨다. 세라믹 플레이트(100)의 한쪽면은 대상체를 가열하기 위한 가열면으로서, 대상체를 올려 놓거나 대상체 위에서 열을 가하기 위한 면일 수 있다. 세라믹 플레이트(100)의 다른쪽 면을 통하여 발열체(210, 220)에 전력을 공급하기 위한 전극(미도시)이 결합될 수 있다.
이와 같은, 세라믹 플레이트(100)를 포함하는 세라믹 히터는, 반도체 웨이퍼, 유리 기판, 플렉시블 기판 등 다양한 목적의 열처리 대상체를 소정의 가열 온도에서 열처리하기 위하여 사용될 수 있다. 반도체 웨이퍼 처리를 위하여 세라믹 히터는 정전척의 기능과 결합하여 사용될 수도 있다.
도 7은 본 발명의 또 다른 일 실시 예에 따른 세라믹 히터 제조 방법을 도시한 순서도이다.
도 8은 본 발명의 또 다른 일 실시 예에 따른 발열체, 유도 탄화체(500) 및 유도 탄화체(500)층이 매설된 세라믹 분말층 성형체의 단면을 도시한 도면이다.
이하, 도 8을 참조하여 도 7의 세라믹 히터 제조 방법을 상세하게 설명한다.
먼저, 발열체(210, 220) 및 유도 탄화체(500)가 삽입된 세라믹 분말층(130)의 상하면에 제1 유도 탄화체층(810) 및 제2 유도 탄화체층(820)이 형성된 적층 구조를 형성한다(S710 내지 S750). 본 발명에서 상기 적층 구조 및 이를 구성하는 컴포넌트는 다양한 방법으로 제조될 수 있다.
예컨대, 제1 유도 탄화체층(810) 및/또는 제2 유도 탄화체층(820)은 카본 몰드(CARBON MOLD)(320) 내에서 도포되거나 또는 분무법에 의해 스프레이될 수 있으며, 또한 성형체 또는 소결체 형태로 제공될 수 있다. 상기 제1 유도 탄화체층(810) 및 제2 유도 탄화체층(820)은 외부 카본 몰드(CARBON MOLD)(320)로부터의 카본 소스의 유입을 효과적으로 차단할 수 있다.
제1 유도 탄화체층(810)이 제공되고(S710), 제1 유도 탄화체층(810) 상에 발열체(210, 220) 및 유도 탄화체(500)가 매설된 세라믹 분말층이 형성된다. 이 때, 세라믹 분말층은 다양한 방식으로 적층될 수 있다. 예컨대, 세라믹 분말층의 일부로서 제1 세라믹 분말층(510)이 형성되고(S720), 상기 제1 세라믹 분말층(510) 상에 발열체(210, 220) 및 유도 탄화체(500)를 배치한 후(S730), 발열체(210, 220) 및 유도 탄화체(500)가 배치된 제1 세라믹 분말층(510) 상에 제2 세라믹 분말층(520)을 덮음으로써(S740) 상기 세라믹 분말층이 형성될 수 있다. 이 때, 상기 제1 세라믹 분말층(510)은 소정의 압력으로 가압되어 형상을 유지할 수 있는 성형체 형태로 제공될 수 있다. 물론, 상기 세라믹 분말층 전체가 가압 성형된 성형체 형태로 제공될 수도 있다. 세라믹 분말층 상에는 제2 유도 탄화체층(820)이 적층된다(S760).
도 8에는 도시되지 않았으나, 세라믹 분말층의 상하면에 형성한 각각의 유도 탄화체(500)층, 즉, 제1 유도 탄화체층(810) 또는 제2 유도 탄화체층(820) 중 어느 하나와 세라믹 분말층 사이에는, 이형제 역할을 위한 불활성층으로서 BN(Boron Nitride)을 포함한 물질을 도포 또는 스프레이 형태로 형성하거나 소결체 형태의 BN층을 형성할 수 있다.
발열체(210, 220)가 매설된 세라믹 분말층 구조(800)를 갖는 성형체를 형성한 후, 도 8과 같이 카본 몰드(CARBON MOLD)(320)에서 소결 과정 처리하여 세라믹 분말층 구조(800)가 세라믹 소결체가 되도록 한다(S760).
소결 과정은 카본 몰드(CARBON MOLD)(320)를 세라믹이 분해되지 않는 소정의 온도(예, 1500∼2500℃)로 가열하여 소정의 시간 동안(예, 10 시간 이하) 유지시킴으로써 이루어질 수 있다. 또한, 이와 같은 소결 과정은 비산화성 분위기 예컨대 진공 또는 N2 분위기에서 소결하는 것이 바람직하다. 또한, 상기 소결 과정은 통상의 열간 가압 소결(Hot press)에 의해 이루어질 수 있다.
이와 같은 소결 과정을 거친 후, 제1 유도 탄화체층(810), 제2 유도 탄화체층(820) 및 세라믹 소결체에 매설된 유도 탄화체(500)를 제거하여, 제1 세라믹 분말층(510) 및 제2 세라믹 분말층(520)이 소결된 세라믹 소결체(600)와 세라믹 소결체(600)에 매설된 발열체(210, 220)를 포함하는 세라믹 히터가 획득된다(S770).
이와 같은 과정에 의하여 획득된 세라믹 히터의 단면은 상기 도 6에 도시된 세라믹 히터의 단면과 동일하다.
도 6은 본 발명의 일 실시 예에 따른 유도 탄화체(500)가 제거된 세라믹 히터 단면의 형상을 도시한 도면이다.
도 6을 참고하면, 세라믹 히터는 세라믹 분말층 구조(800)가 소결된 후 제1 유도 탄화체층(810), 제2 유도 탄화체층(820) 및 유도 탄화체(500)를 포함하는 세라믹 소결체의 일부가 제거되어 발열체(210, 220)만을 포함하고 있는 세라믹 소결체(600)의 형상을 가진다.
세라믹 소결체에 매설된 발열체(210, 220)는 전극(미도시)을 통해 외부로부터 공급되는 전력(예, RF(Radio Frequency) 전력)을 이용하여 저항 성질에 따라 열을 발생시킨다. 세라믹 플레이트(100)의 한쪽면은 대상체를 가열하기 위한 가열면으로서, 대상체를 올려 놓거나 대상체 위에서 열을 가하기 위한 면일 수 있다. 세라믹 플레이트(100)의 다른쪽 면을 통하여 발열체(210, 220)에 전력을 공급하기 위한 전극(미도시)이 결합될 수 있다.
이와 같은, 세라믹 플레이트(100)를 포함하는 세라믹 히터는, 반도체 웨이퍼, 유리 기판, 플렉시블 기판 등 다양한 목적의 열처리 대상체를 소정의 가열 온도에서 열처리하기 위하여 사용될 수 있다. 반도체 웨이퍼 처리를 위하여 세라믹 히터는 정전척의 기능과 결합하여 사용될 수도 있다.
상기에서 설명한 유도 탄화체(500), 제1 유도 탄화체층(810) 및 제2 유도 탄화체층(820)은 발열체(210, 220)의 탄화에 의한 저항 변화를 억제하기 위한 구조체 인데, 본 발명의 발열체(210, 220) 저항 변화율은 카본 몰드로 부터 가장 큰 영향을 받고, 세라믹 분말층(510, 520) 내에 함유된 카본 함량에 의해서는 발열체(210, 220)의 저항 변화율은 그다지 큰 영향을 받지 않는 것으로 확인되었다.
그리고, 상기에서 설명한 유도 탄화체(500), 제1 유도 탄화체층(810) 및 제2 유도 탄화체층(820)은 카본 몰드(CARBON MOLD)(320)로부터 탄소 성분을 잘 흡수하여 발열체(210, 220)의 탄화를 억제할 수 있는 소재가 사용되어야 한다.
따라서, 본 발명에서 기제된 유도 탄화체(500), 제1 유도 탄화체층(810) 및 제2 유도 탄화체층(820)은 4족 내지 6족 금속 또는 질화물이 코팅된(NITRIDE COATING) 4족 내지 6족 금속 중 적어도 어느 하나를 포함하는 금속일 수 있다. 그리고, 본 발명에서 기제된 유도 탄화체(500), 제1 유도 탄화체층(810) 및 제2 유도 탄화체층(820)은 상기 금속 중에서 Mo(Molybdenum), TiN(Titanium Nitride), TiN이 코팅된 Mo 또는 Ti(Titanium)를 포함할 수 있다. 예를 들어, 도 5에 도시된 세라믹 히터 제조 방법에서 유도 탄화체(500)로 Mo, TiN, TiN이 코팅된 Mo 또는 Ti 등과 같이 4족 내지 6족 금속 중 어느 하나의 금속이 사용될 수 있고, 또는, Mo와 Ti 합금처럼 2 이상의 금속이 포함된 금속이 사용될 수 도 있다.
그리고, 또 다른 예로, 도 8에 도시된 세라믹 히터 제조 방법에서, 유도 탄화체(500), 제1 유도 탄화체층(810) 및 제2 유도 탄화체층(820)으로 Mo, TiN, TiN이 코팅된 Mo 또는 Ti 등과 같이 4족 내지 6족 금속 중 어느 하나의 금속이 사용될 수 있다. 또는, 유도 탄화체(500), 제1 유도 탄화체층(810) 및 제2 유도 탄화체층(820)으로 각각 4족 내지 6족 금속 중 어느 하나인 서로 다른 금속이 사용될 수도 있다. 그 구체적인 예로, 유도 탄화체(500)로 Ti가 사용되고, 제1 유도 탄화체층(810) 및 제2 유도 탄화체층(820)으로 Mo가 사용될 수 있다. 또는 유도 탄화체(500)로 Mo가 사용되고, 제1 유도 탄화체층(810)으로 TiN이 코팅된 Mo가 사용되며, 제2 유도 탄화체층(820)으로 Ti가 사용될 수 있다. 상기 예시에서 기제된 금속 구성은 본 발명에 따른 수 많은 실시 예들 중 일 예에 불과하고, 그 외에 4족 내지 6족 범위에 속하는 금속들을 이용하여, 다양한 조합으로 본 발명을 실시할 수 있다.
도 9는 저항체들의 소결 전 후 저항변화율을 실험하여 도시한 도면이다.
본 발명에서 기제된 유도 탄화체(500), 제1 유도 탄화체층(810) 및 제2 유도 탄화체층(820)으로 사용되는 금속은 탄소 흡수력이 클수록 유리한 효과를 가진다. 도 9에서 탄화 방지 저항체로 사용되는 대표적인 금속4가지(Mo, TiN, TiN이 코팅된 Mo, Ti)를 세라믹 분말층에 매설하여 카본 몰드(CARBON MOLD)(320) 내에서 소결을 진행한 후, 각 금속의 탄화에 의한 저항 변화율을 GOM(저항 변화 측정 장비)으로 측정한 결과를 도시한다. 소결 전 각 금속 발열체의 저항은 Mo, TiN, TiN이 코팅된 Mo, Ti 가 순서대로 각각 0.88, 0.85, 0.86, 0.89 옴(Ω) 이었으나, 소결 후 측정된 저항값은 각각 2.07, 1.49, 1.61, 4.04 옴(Ω) 이었다. 상기 결과에 따라 Ti(Titanium) 금속이 저항 변화율이 355 정도로, 탄화 정도가 가장 컸다. 다시 말해, Ti(Titanium) 금속이 탄소를 흡수하는 능력이 가장 크다고 볼 수 있다. 따라서, 본 발명에서 유도 탄화체(500), 제1 유도 탄화체층(810) 및 제2 유도 탄화체층(820)으로 Ti(Titanium) 금속이 사용될 경우에, 세라믹 히터 온도 균일성(TEMPERATURE UNIFORMITY) 향상에 있어서 가장 큰 효과를 얻을 수 있다.
도 10은 종래 기술에 의한 세라믹 히터의 발열체와 본 발명에 따른 세라믹 히터의 발열체의 소결 전, 후 저항 증가율을 비교하여 도시한 그래프 이다.
도 10에 도시된 그래프는 세라믹 히터 제조 과정에서 본 발명에 따른 유도 탄화체가 세라믹 히터의 발열체들(INNER 발열체 및 OUTER 발열체)의 탄화 정도에 미치는 영향을 수치로써 비교하여 도시한 그래프이다.
본 발명에 따른 세라믹 히터는 상기 도 4 내지 도 6에 따라 제조된 세라믹 히터이고, 유도 탄화체(500) 로 본 발명의 일 실시 예에 해당하는 Ti(Titanium) 금속이 사용되었다. 본 실험에서는 Ti 금속이 사용되었지만, 이는 본 발명의 일 실시 예에 따른 것이고, Ti 금속 외에 Mo, TiN 또는 TiN이 코팅된 Mo 등의 금속이 사용될 수 있다.
도 10(a) 는 종래 기술에 의한 세라믹 히터의 발열체 소결 전, 후의 저항 변화를 도시한 그래프 이다. 도 10(a)를 참조하면, INNER 발열체(210)의 저항 변화율을 보면, 소결 전 1.5 옴(Ω)에서 소결 후 1.8옴(Ω)으로 약 20%가 상승하였고, OUTER 발열체(220)의 저항 변화율을 보면, 소결 전 2.0 옴(Ω)에서 소결 후 2.8옴(Ω)으로 약 40%가 상승하였다.
도 10(b) 내지 도 10(D) 는 본 발명에 따른 세라믹 히터의 발열체 소결 전, 후의 저항 변화를 도시한 그래프 이다.
도 10(b)를 참조하면, 유도 탄화체(500)로 Ti가 사용되었는데, INNER 발열체(210)의 저항 변화율을 보면, 소결 전 1.5 옴(Ω)에서 소결 후 1.53옴(Ω)으로 약 2%가 상승하였고, OUTER 발열체(220)의 저항 변화율을 보면, 소결 전 2.0 옴(Ω)에서 소결 후 2.16옴(Ω)으로 약 8%가 상승하였다.
도 10(C)를 참조하면, 유도 탄화체(500)로 Mo가 사용되었는데, INNER 발열체(210)의 저항 변화율을 보면, 소결 전 1.5 옴(Ω)에서 소결 후 1.59옴(Ω)으로 약 6%가 상승하였고, OUTER 발열체(220)의 저항 변화율을 보면, 소결 전 2.0 옴(Ω)에서 소결 후 2.2옴(Ω)으로 약 10%가 상승하였다.
도 10(D)를 참조하면, 유도 탄화체(500)로 TiN이 사용되었는데, INNER 발열체(210)의 저항 변화율을 보면, 소결 전 1.5 옴(Ω)에서 소결 후 1.68옴(Ω)으로 약 12%가 상승하였고, OUTER 발열체(220)의 저항 변화율을 보면, 소결 전 2.0 옴(Ω)에서 소결 후 2.4옴(Ω)으로 약 20%가 상승하였다.
도 10에서 나타난 결과와 같이, 본 발명에 따라 소결 전/후 발열체의 저항변화율이 큰 폭으로 줄었고, 그 중에서 특히 OUTER 발열체(220)의 저항 변화율이 큰 폭으로 감소하였다. 그 결과, INNER 발열체(210)와 OUTER 발열체(220) 저항 값의 차이가 소결 전/후 비슷한 비율로 나타난다. 상기 실험에서 나타난 바와 같이, 세라믹 히터 설계에서 원하는 저항 값을 얻기 위하여 필요에 따라 상기 Ti, Mo 또는 TiN 소재의 유도 탄화체(500)를 필요에 따라 선택하여 설계할 수 있기에, 세라믹 히터 설계 측면에서 유리한 효과가 있다.
도 11은 종래 기술에 의한 세라믹 히터의 발열체와 본 발명에 따른 세라믹 히터의 발열체의 가장자리 온도를 측정하여 도시한 그래프이다.
본 발명에 따른 세라믹 히터는 상기 도 4 내지 도 6에 따라 제조된 세라믹 히터이고, 유도 탄화체(500), 제1 유도 탄화체층(810) 및 제2 유도 탄화체층(820)으로 Ti(Titanium) 금속이 사용되었다.
도 11에서 세라믹 히터의 온도를 측정하기 위하여 T/C WAFER(THERMOCOUPLE WAFER)를 사용하였다.
세라믹 히터의 온도 균일성(TEMPERATURE UNIFORMITY)을 측정하기 위하여 세라믹 히터의 가장자리 8개의 지점(1 내지 8 지점)의 온도를 각각 측정하여 기록하였다.
도 11(a)는 종래 기술에 의한 세라믹 히터의 발열체의 가장자리 온도를 측정한 결과이다. 1 내지 8 지점 중 최저 온도와 최고 온도의 차이가 약 5.3도인 것으로 측정된다.
도 11(b)는 본 발명에 따른 세라믹 히터의 발열체의 가장자리 온도를 측정한 결과이다. 1 내지 8 지점 중 최저 온도와 최고 온도의 차이는 약 2.1도인 것으로 측정된다.
상기 결과에서 알 수 있듯이, 본 발명에 따른 세라믹 히터는 세라믹 히터의 온도 균일성(TEMPERATURE UNIFORMITY) 향상에 뛰어난 효과를 나타낸다.
본 발명에 따른 세라믹 히터의 제조 방법에 따르면, 세라믹 히터 내부에 매설된 발열체 가장자리에 일정한 간격으로 이격된 위치에 유도 탄화체(500)를 형성함으로써 소결 과정에서 발열체의 국부적인 저항 변화율을 개선할 수 있다. 즉, 유도 탄화체(500)의 사용으로 국부적인 발열체의 저항 상승이 차단되므로 웨이퍼 등 대상체 가열면의 위치별 온도 편차가 현저히 줄어들어 가열면의 온도 균일성(TEMPERATURE UNIFORMITY)을 높일 수 있는 효과가 있다.
도 12는 본 발명의 또 다른 일 실시 예에 따른 발열체 및 유도 탄화체(500)가 매설된 세라믹 분말층 구조의 단면을 도시한 도면이다.
도 13은 본 발명의 또 다른 일 실시 예에 따른 유도 탄화체(500)가 제거된 세라믹 히터의 단면의 형상을 도시한 도면이다.
상기 도 4 내지 도 8에서 개시한 세라믹 히터에서 사용된 발열체는 2-ZONE 발열체로써, INNER 발열체(210) 및 OUTER 발열체(220)가 분리되어 존재하였으나, 이는 2-ZONE 발열체에 국한되어 사용되는 기술이 아니라, 1개의 발열체(1200)가 매설된 세라믹 소결체(600)로 이루어진 세라믹 히터(1300) 제조 방법에서도 본 발명이 사용될 수 있음은 당업자에게 자명할 것이다.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (14)

  1. 발열체(210, 220) 및 유도 탄화체(500)가 매설된 세라믹 분말층 구조를 성형하는 단계; 및
    상기 세라믹 분말층 구조를 소결하는 단계를 포함하되,
    상기 유도 탄화체(500)는 상기 발열체(210, 220) 측면에 일정거리 이격 되어 매설되는 것을 특징으로 하는 세라믹 히터 제조 방법.
  2. 제1항에 있어서,
    상기 세라믹 분말층 구조 성형 단계는,
    제1 세라믹 분말층(510)을 제공하는 단계;
    상기 제1 세라믹 분말층(510) 상에 상기 발열체(210, 220) 및 상기 유도 탄화체(500)를 배치하는 단계; 및
    상기 발열체(210, 220) 및 상기 유도 탄화체(500)가 배치된 상기 제1 세라믹 분말층(510) 상에 제2 세라믹 분말층(520)을 제공하는 단계;
    를 포함하는 것을 특징으로 하는 세라믹 히터의 제조 방법.
  3. 제1항에 있어서,
    상기 소결된 세라믹 분말층 구조에서 상기 유도 탄화체(500)가 제거되는 단계를 더 포함하는 것을 특징으로하는 세라믹 히터 제조 방법.
  4. 제2항에 있어서,
    상기 제1 세라믹 분말층(510) 제공 단계 전에, 제1 유도 탄화체층(810)이 제공되는 단계;
    상기 제2 세라믹 분말층(520) 제공 단계 후에, 제2 유도 탄화체층(820)이 제공되는 단계;를 더 포함하는 것을 특징으로 하는 세라믹 히터 제조방법.
  5. 제1항에 있어서,
    상기 유도 탄화체(500)는 4족 내지 6족 금속 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 세라믹 히터 제조방법.
  6. 제1항에 있어서,
    상기 유도 탄화체(500)는 질화물이 코팅된(NITRIDE COATING) 4족 내지 6족 금속 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 세라믹 히터 제조방법.
  7. 제1항에 있어서,
    상기 유도 탄화체(500)는 Mo(Molybdenum), TiN(Titanium Nitride), TiN이 코팅된 Mo 또는 Ti(Titanium) 금속 중 어느 하나를 포함하는 것을 특징으로 하는 세라믹 히터 제조방법.
  8. 제1항에 있어서,
    상기 유도 탄화체(500)는 상기 발열체(210, 220) 외 측면에서 6mm 간격을 두고 이격된 위치에 형성되는 것을 특징으로 하는 세라믹 히터 제조방법.
  9. 제3항에 있어서,
    상기 유도 탄화체(500)가 제거되는 단계에서, 상기 유도 탄화체(500)가 매설된 위치에서 안쪽으로 3mm 간격을 두고 컷팅되어 제거되는 것을 특징으로 하는 세라믹 히터 제조방법.
  10. 제1항에 있어서,
    상기 유도 탄화체(500)는 링(RING) 형상인 것을 특징으로 하는 세라믹 히터 제조방법.
  11. 제1항에 있어서,
    상기 유도 탄화체(500)는 coil type 또는 sheet type 중 어느 하나인 것을 특징으로 하는 세라믹 히터 제조방법.
  12. 발열체(210, 220) 및 상기 발열체(210, 220) 측면에 일정거리 이격 되어 매설되는 유도 탄화체(500)가 매설된 세라믹 분말층 구조를 성형하고, 상기 성형체를 소결한 후, 상기 소결된 성형체에서 상기 유도 탄화체(500)가 제거되어 제조되는 세라믹 히터.
  13. 제12항에 있어서,
    상기 세라믹 분말층 구조는
    제1 세라믹 분말층(510)이 제공되고,
    상기 제1 세라믹 분말층(510) 상에 상기 발열체(210, 220) 및 상기 유도 탄화체(500)가 배치된 후,
    상기 발열체(210, 220) 및 상기 유도 탄화체(500)가 배치된 상기 제1 세라믹 분말층(510) 상에 제2 세라믹 분말층(520)이 제공되어 형성되는 것을 특징으로 하는 세라믹 히터.
  14. 제12항에 있어서,
    상기 유도 탄화체(500)는 Mo(Molybdenum), TiN(Titanium Nitride), TiN이 코팅된 Mo 또는 Ti(Titanium) 중 어느 하나를 포함하는 것을 특징으로 하는 세라믹 히터.
PCT/KR2019/001028 2018-02-28 2019-01-24 세라믹 히터 및 그 제조 방법 WO2019168270A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0024675 2018-02-28
KR1020180024675A KR102582111B1 (ko) 2018-02-28 2018-02-28 세라믹 히터 및 그 제조 방법

Publications (1)

Publication Number Publication Date
WO2019168270A1 true WO2019168270A1 (ko) 2019-09-06

Family

ID=67805860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001028 WO2019168270A1 (ko) 2018-02-28 2019-01-24 세라믹 히터 및 그 제조 방법

Country Status (2)

Country Link
KR (1) KR102582111B1 (ko)
WO (1) WO2019168270A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230002057A (ko) 2021-06-25 2023-01-05 주식회사 템네스트 전극 패턴이 내장된 고정밀 소결체 및 그 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030077973A (ko) * 2002-03-27 2003-10-04 니뽄 가이시 가부시키가이샤 세라믹 히터, 세라믹 히터의 제조 방법 및 금속 부재 매설품
US20130200067A1 (en) * 2010-10-29 2013-08-08 Nhk Spring Co., Ltd. Method of manufacturing ceramic sintered body, ceramic sintered body, and ceramic heater
US20130256297A1 (en) * 2012-03-28 2013-10-03 Ngk Insulators, Ltd. Ceramic heater, heater electrode, and method for manufacturing ceramic heater
KR20160057817A (ko) * 2014-11-14 2016-05-24 주식회사 케이에스엠컴포넌트 소결체 제조 방법 및 이에 의해 제조된 소결체를 포함하는 세라믹 히터 제조 방법
WO2017135706A2 (ko) * 2016-02-02 2017-08-10 동아하이테크 주식회사 히터 및 이의 제조 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103857643B (zh) * 2011-10-11 2015-09-09 日本碍子株式会社 陶瓷构件、半导体制造装置用构件及陶瓷构件的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030077973A (ko) * 2002-03-27 2003-10-04 니뽄 가이시 가부시키가이샤 세라믹 히터, 세라믹 히터의 제조 방법 및 금속 부재 매설품
US20130200067A1 (en) * 2010-10-29 2013-08-08 Nhk Spring Co., Ltd. Method of manufacturing ceramic sintered body, ceramic sintered body, and ceramic heater
US20130256297A1 (en) * 2012-03-28 2013-10-03 Ngk Insulators, Ltd. Ceramic heater, heater electrode, and method for manufacturing ceramic heater
KR20160057817A (ko) * 2014-11-14 2016-05-24 주식회사 케이에스엠컴포넌트 소결체 제조 방법 및 이에 의해 제조된 소결체를 포함하는 세라믹 히터 제조 방법
WO2017135706A2 (ko) * 2016-02-02 2017-08-10 동아하이테크 주식회사 히터 및 이의 제조 방법

Also Published As

Publication number Publication date
KR102582111B1 (ko) 2023-09-25
KR20190103800A (ko) 2019-09-05

Similar Documents

Publication Publication Date Title
US5663865A (en) Ceramic electrostatic chuck with built-in heater
EP1316110B1 (en) Electrostatic chuck with porous regions
KR100420456B1 (ko) 반도체 제조 장치용 웨이퍼 지지체와 그 제조 방법 및반도체 제조 장치
JP5524213B2 (ja) 調整可能な電気抵抗率を有するウェーハ処理装置
US7275309B2 (en) Method of manufacturing electrical resistance heating element
WO2009091214A2 (ko) 기판 지지 장치 및 이를 갖는 기판 처리 장치
JP2000012195A (ja) セラミックヒータ
JP2004296254A (ja) セラミックスヒータおよびそれを搭載した半導体あるいは液晶製造装置
KR20020081142A (ko) 저항 발열체의 회로 패턴 및 그 패턴을 포함한 기판 처리장치
WO2019168270A1 (ko) 세라믹 히터 및 그 제조 방법
US20230140614A1 (en) Multi-layer composite ceramic plate and manufacturing method thereof
WO2019168271A1 (ko) 정전척 히터 및 그 제조 방법
JP6389802B2 (ja) 加熱装置及びその製造方法
US10615060B2 (en) Heating device
WO2022055008A1 (ko) 서셉터 및 그 제조 방법
JP4031419B2 (ja) 静電チャック及びその製造方法
JP6438352B2 (ja) 加熱装置
US20170057880A1 (en) Method for manufacturing large ceramic co-fired articles
JP2001118915A (ja) 内蔵チャンネルを有する多層セラミック静電チャック
US20050167422A1 (en) Ceramics heater for semiconductor production system
US20060177697A1 (en) Ceramic susceptor for semiconductor manufacturing equipment
WO2019004561A1 (ko) 고방열 박막 및 그 제조 방법
WO2022270832A1 (ko) 전극 패턴이 내장된 고정밀 소결체 및 그 제조 방법
WO2018221868A1 (ko) 세라믹 히터의 제조 방법
JP2000012194A (ja) セラミックヒータの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19761446

Country of ref document: EP

Kind code of ref document: A1