WO2019168010A1 - 繊維強化熱可塑性樹脂の成形物及びその製造方法 - Google Patents

繊維強化熱可塑性樹脂の成形物及びその製造方法 Download PDF

Info

Publication number
WO2019168010A1
WO2019168010A1 PCT/JP2019/007510 JP2019007510W WO2019168010A1 WO 2019168010 A1 WO2019168010 A1 WO 2019168010A1 JP 2019007510 W JP2019007510 W JP 2019007510W WO 2019168010 A1 WO2019168010 A1 WO 2019168010A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
reinforced thermoplastic
fiber
fiber reinforced
molded product
Prior art date
Application number
PCT/JP2019/007510
Other languages
English (en)
French (fr)
Inventor
石川 隆司
誠 市来
Original Assignee
国立大学法人名古屋大学
共和工業株式会社
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019021861A external-priority patent/JP7198454B2/ja
Application filed by 国立大学法人名古屋大学, 共和工業株式会社, 帝人株式会社 filed Critical 国立大学法人名古屋大学
Priority to CN201980015568.1A priority Critical patent/CN112243406A/zh
Priority to US16/975,904 priority patent/US20210001569A1/en
Priority to EP19761611.3A priority patent/EP3760416A4/en
Publication of WO2019168010A1 publication Critical patent/WO2019168010A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material

Definitions

  • the present disclosure relates to a molding technique of a fiber reinforced thermoplastic resin, and particularly relates to a molded article of a fiber reinforced thermoplastic resin and a manufacturing method thereof.
  • Fiber reinforced plastics with improved strength using carbon fiber or glass fiber have been developed. Fiber reinforced plastics are lightweight and high in strength, are inexpensive and have excellent durability, and are expected to be applied in various fields.
  • One such field is the manufacture of moving objects such as automobiles.
  • the body By manufacturing structural parts of moving bodies such as automobiles with fiber reinforced plastics, the body can be reduced in weight while maintaining the required strength, greatly reducing environmental issues such as reducing carbon dioxide emissions. Can contribute.
  • the present disclosure has been made in view of such problems, and an object thereof is to provide a technique for producing a molded product of a fiber reinforced thermoplastic resin having good physical characteristics.
  • a method for producing a molded product of a fiber reinforced thermoplastic resin is a first fiber reinforced thermoplastic produced by melt kneading and extruding a thermoplastic resin and a fiber.
  • the average value of the length of the fibers contained in the second fiber-reinforced thermoplastic resin material is longer than the average value of the lengths of the fibers contained in the first fiber-reinforced thermoplastic resin material.
  • a molded article of a fiber reinforced thermoplastic resin according to another aspect of the present disclosure is a molded article of a fiber reinforced thermoplastic resin including fibers and a thermoplastic resin, and is a fiber reinforced thermoplastic resin constituting a surface layer of the molded article.
  • the average value of the length of the contained fiber is longer than the average value of the length of the fiber contained in the fiber reinforced thermoplastic resin constituting the inside of the molded product.
  • a method for manufacturing a molded product of a fiber reinforced thermoplastic resin includes: a first fiber reinforced thermoplastic resin material manufactured by melt kneading and extruding a thermoplastic resin and fibers; Mixing the second fiber reinforced thermoplastic resin material produced by impregnating the fiber with the resin, heating the mixed first and second fiber reinforced thermoplastic resin materials, and heating Forming first and second fiber reinforced thermoplastic resin materials.
  • the average value of the length of the fiber contained in the 2nd fiber reinforced thermoplastic resin material is longer than the average value of the length of the fiber contained in the 1st fiber reinforced thermoplastic resin material.
  • the fiber used as the reinforcing material may be carbon fiber, glass fiber, boron fiber, aramid fiber, polyethylene fiber, metal fiber, vegetable fiber, etc., but in the following embodiment, carbon fiber is used as the reinforcing material.
  • carbon fiber is used as the reinforcing material. The example used as will be described.
  • FIG. 1 is a diagram for explaining a related technique of a method for producing a molded article of a carbon fiber reinforced thermoplastic resin according to an embodiment.
  • FIG. 1 schematically shows a method for producing a molded product of carbon fiber reinforced thermoplastic resin, called LFT-D (Long Fiber Thermoplastics Direct) method.
  • LFT-D Long Fiber Thermoplastics Direct
  • a thermoplastic resin pellet produced by melt-kneading a thermoplastic resin raw material and an additive and a carbon fiber supplied from a carbon fiber roving are kneaded by a twin screw extruder. And pushed out.
  • the extruded LFT-D extruded material is kept at an appropriate temperature in a heat-retaining / heating furnace until it is supplied to a high-speed press molding apparatus.
  • the LFT-D extruded material in the heat-retaining / heating furnace is supplied to a high-speed press forming apparatus by a robot arm and formed into a desired shape.
  • the present inventors conducted an experiment for molding a chassis member of an automobile by the manufacturing method shown in FIG. 1, and succeeded in completing the molding in about 1 minute, which is much faster than before.
  • thermoplastic resin that can be fused
  • the inventors In order to further promote the application of carbon fiber reinforced thermoplastic resin to structural members such as automobiles, the inventors have studied a technique for further improving the physical characteristics of a molded product, and applied the embodiment of the present disclosure. The inventors have come up with a method for producing a molded product of such a carbon fiber reinforced thermoplastic resin.
  • FIG. 2 is a diagram schematically showing a method for producing a molded article of a carbon fiber reinforced thermoplastic resin according to the embodiment.
  • carbon fibers supplied from carbon fiber roving and thermoplastic resin pellets are supplied as raw materials to a twin screw extruder, and these are melt-kneaded.
  • first material a first fiber-reinforced thermoplastic resin material
  • second material a second fiber thermoplastic resin material manufactured by a manufacturing method other than kneading is mixed with the first material.
  • the second material is, for example, flakes (short pieces) of a unidirectional carbon fiber reinforced thermoplastic resin.
  • the mixed first material and second material are heated to a temperature at which the fluidity becomes sufficiently high, introduced into a high-speed press molding apparatus, and press molded to produce a molded product having a desired shape.
  • the first material is manufactured by melt-kneading extrusion, the fluidity is high, and a molded product can be manufactured easily and at high speed by press molding.
  • carbon fibers are cut when kneaded in a twin screw extruder. Therefore, there is a certain limit in improving physical properties such as the elastic modulus and strength of the molded product by increasing the length of the carbon fiber. Also, if the fiber volume content (Vf) of the carbon fiber is too high, kneading and extruding with a twin screw extruder becomes difficult, so physical properties can be improved by increasing the amount of carbon fiber. There is a limit.
  • the average value of the length of the carbon fiber contained in a 2nd raw material may become longer than the average value of the length of the carbon fiber contained in a 1st raw material.
  • the average value of the lengths of the carbon fibers contained in the first material and the second material is the length of each carbon fiber present per unit area (1 mm 2 ) in the central part of each material and in any part of the four sides. It can be calculated as an average value when measured by an image measuring device.
  • fluidity and workability for enabling high-speed press molding are mainly realized by the first material, and further improvement of physical properties such as elastic modulus and strength of the molding is mainly second.
  • the viscosity of the first material when melted is higher than the viscosity of the second material when melted.
  • the viscosity at the time of melting can be measured by melt flow rate (MFR: Melt Mass-Flow Rate).
  • MFR Melt Mass-Flow Rate
  • the fiber volume content of the second material is higher than the fiber volume content of the first material.
  • the fiber volume content can be measured by Japanese Industrial Standard JIS K 7075-1991 “Testing method for fiber content and void ratio of carbon fiber reinforced plastic”.
  • the mixing ratio of the first material and the second material may be adjusted according to the complexity of the shape of the workpiece, the specifications required for the product, and the like. In general, the higher the mixing ratio of the second material, the higher the physical properties such as the modulus of elasticity and strength, but the processability of the mixture is considered to decrease, so depending on the complexity of the shape of the work piece,
  • the mixing ratio of the first material and the second material may be adjusted so as to obtain appropriate physical characteristics according to the specifications required for the product, taking into account the viscosity, fluidity, and workability. For example, if the molded product is required to have high strength and high rigidity and has a relatively simple shape, the ratio of the second material may be increased. In addition, if the molded product has a relatively complicated shape, high fluidity is required during press molding, so the ratio of the first material may be increased.
  • the length of the carbon fiber contained in the second material and the fiber volume content of the carbon fiber in the second material is the longer the carbon fiber contained in the second material and the higher the fiber volume content of the carbon fiber in the second material. Since the processability is expected to be low, depending on the complexity of the shape of the work piece, considering the viscosity, fluidity, and workability of the mixture, the appropriate physical properties can be obtained according to the specifications required for the product. As obtained, the length of the carbon fiber contained in the second material and the fiber volume content of the carbon fiber in the second material may be adjusted.
  • the second material is manufactured by any manufacturing method as long as the average value of the lengths of the carbon fibers included is longer than the average value of the lengths of the carbon fibers included in the first material.
  • a carbon fiber reinforced thermoplastic resin produced by impregnating the carbon fiber with a thermoplastic resin is used as the second material. Is preferred.
  • a bundle of carbon fibers or a sheet aligned in one direction is impregnated with a thermoplastic resin.
  • thermoplastic resin produced by the above process, or a flake obtained by cutting a prepreg obtained by impregnating a thermoplastic fiber into a sheet woven with carbon fiber into a predetermined length.
  • the second material a large number of flakes having a uniform length may be used. Further, a plurality of types of flakes having different lengths may be used, or a large number of flakes having lengths distributed in a predetermined range may be used. Even in this case, the average value of the lengths of the carbon fibers contained in the second material is made longer than the average value of the lengths of the carbon fibers contained in the first material. The average value of the lengths of the carbon fibers contained in the second material may be, for example, 5 to 10 mm.
  • a large number of flakes having a uniform fiber volume content of carbon fibers may be used, or a plurality of types of flakes having a fiber volume content of different carbon fibers may be used.
  • a large number of flakes in which the fiber volume content of carbon fibers is distributed in a predetermined range may be used.
  • the second material may have a needle shape, flake shape, strip shape, line shape, rod shape, or any other two-dimensional shape or three-dimensional shape.
  • thermoplastic resin used as the base material of the first material and the second material is, for example, polyamide 6, polyethylene such as polyamide 6, polyamide 11, polyamide 12, polyamide 66, polyamide 610, polyamide 6T, polyamide 6I, polyamide 9T, polyamide M5T, or the like.
  • thermoplastic resin that is the base material of the first material and the thermoplastic resin that is the base material of the second material are the same kind of thermoplastic resin.
  • the entire molded product can be formed of a carbon fiber reinforced thermoplastic resin having the same kind of thermoplastic resin as a base material, so that it can be broken or warped from the boundary surface between the first material and the second material. Can be prevented, and physical properties such as strength and rigidity of the molded product can be improved.
  • thermoplastic resins Even if different types of thermoplastic resins are used, the combination of thermoplastic resins with similar physical properties such as melting point and thermal expansion coefficient, compatible thermoplastic resins, The first material and the second material having a base material of a combination of thermoplastic resins having good adhesiveness may be mixed.
  • the first material and the second material may each be a polymer blend containing a plurality of types of thermoplastic resins as a base material. Also in this case, it is preferable that each of them contains the same kind of thermoplastic resin as a base material, and it is preferable that the composition ratio of the polymer blend is approximately the same.
  • the first method is a method in which the second material is applied to the surface of the first material.
  • the second material may be sprayed from above the first material.
  • the first material may be rotated to make another surface the upper surface, and the second material may be sprayed from above.
  • the second material may be sprayed from the back surface or the side surface of the first material.
  • the product may be applied to the surface of the first material so that the longitudinal directions of many second materials are aligned, or may be applied to the surface of the first material so as to be in a random direction.
  • the first method since the layer of the second material can be formed on the surface of the first material, physical characteristics such as strength and rigidity of the surface layer of the molded product can be improved. Moreover, since a 2nd raw material can be mixed with a 1st raw material by a simple method, the cost of an installation can be held down.
  • the second method is a method of forming a sheet with the second material and covering the formed material with the first material.
  • the sheet of the second material may be formed, for example, by spraying the second material on a flat surface and heating and pressing.
  • the sheet of the second material may be covered so as to cover the entire surface of the first material, may be covered so as to cover the upper surface and the back surface, or may be covered so as to cover only a part of the surface. .
  • the sheet may be formed so that the longitudinal directions of a large number of second materials are aligned, or the sheet may be formed so as to be in a random direction. According to the second method, since a uniform second material layer can be formed on the surface of the first material, uneven distribution of the second material is prevented, and a molded product having good physical characteristics is manufactured. be able to.
  • the third method is a method of injecting the second material into the first material.
  • a large number of second materials may be accumulated to form a continuous flow, which may be injected before or after the first material is discharged.
  • strength inside a molded object can also be improved.
  • the surface layer of the molded product is mainly formed by the second material, and the inside of the molded product is mainly formed by the first material. Therefore, the average value of the length of the fibers contained in the fiber reinforced thermoplastic resin constituting the surface layer of the molded product is the length of the fibers contained in the fiber reinforced thermoplastic resin constituting the inside of the molded product. It becomes longer than the average value. Thereby, physical characteristics, such as an elasticity modulus and intensity
  • FIG. 3 is a diagram schematically showing another example of a method for producing a molded article of carbon fiber reinforced thermoplastic resin according to the embodiment.
  • the second material is purchased as a product and mixed with the first material.
  • the first material and the second material are mixed in parallel. Manufacture and mix both.
  • carbon fiber supplied from carbon fiber roving is impregnated with a thermoplastic resin and cut into a predetermined length to manufacture a second material.
  • a thermoplastic resin monomer is impregnated with a thermoplastic resin monomer and then heated and polymerized, unlike the case where carbon fiber is impregnated with polymer, it is not particularly necessary to generate high temperature and high pressure for impregnation. It is.
  • polyamide having ⁇ -caprolactam as a monomer. Since the melting point of ⁇ -caprolactam is as low as 69 ° C., and the viscosity of the melted liquid is sufficiently low, carbon fiber can be easily impregnated. In addition, since the temperature required for the polymerization reaction is relatively low and the time required for the polymerization reaction is extremely short, the second material can be efficiently manufactured by continuously impregnating, polymerizing, and cutting in the flake manufacturing apparatus.
  • the carbon fiber supplied from the carbon fiber roving can be used as the raw material of the first material as well as the raw material of the second material, thereby realizing a manufacturing method with very little waste material. be able to. Further, since the first material and the second material are manufactured in parallel at the same time, the manufactured first material and the second material can be immediately mixed at a high temperature and introduced into a high-speed press molding apparatus for molding. Therefore, an energy-saving and space-saving production line can be realized. Also in these points, the industrial significance of the technology of the present disclosure is extremely high.
  • a method for producing a molded article of a fiber reinforced thermoplastic resin includes a first fiber reinforced thermoplastic resin material produced by melt kneading and extruding a thermoplastic resin and a fiber, and a thermoplastic resin. Mixing a second fiber reinforced thermoplastic material produced by impregnating the fibers, heating the mixed first and second fiber reinforced thermoplastic materials, and a heated first Forming first and second fiber-reinforced thermoplastic resin materials. The average value of the length of the fibers contained in the second fiber-reinforced thermoplastic resin material is longer than the average value of the lengths of the fibers contained in the first fiber-reinforced thermoplastic resin material.
  • the second fiber reinforced thermoplastic resin material is a unidirectional fiber reinforced thermoplastic resin in which a plurality of fibers aligned in one direction are impregnated with a thermoplastic resin. It may be flakes cut to a predetermined length. According to this aspect, it becomes easy to adjust the length of the carbon fiber contained in the second fiber-reinforced thermoplastic resin material in order to obtain a molded product having physical characteristics according to the use of the product.
  • thermoplastic resin that is a base material of a first fiber reinforced thermoplastic resin material and a thermoplastic resin that is a base material of a second fiber reinforced thermoplastic resin material May be the same kind of thermoplastic resin. According to this aspect, since the entire molded product can be formed of a carbon fiber reinforced thermoplastic resin having the same kind of thermoplastic resin as a base material, it can be broken from the interface between the first material and the second material, Warpage can be prevented, and physical properties such as strength and rigidity of the molded product can be improved.
  • thermoplastic resin that is a base material of a first fiber reinforced thermoplastic resin material and a thermoplastic resin that is a base material of a second fiber reinforced thermoplastic resin material May be polyamide 6. According to this aspect, it is possible to realize a production line in which the first fiber-reinforced thermoplastic resin material and the second fiber-reinforced thermoplastic resin material are manufactured in parallel at the same time, and both are mixed and molded on the spot. .
  • the viscosity at the time of melting of the first fiber reinforced thermoplastic resin material may be higher than the viscosity at the time of melting of the second fiber reinforced thermoplastic resin material. According to this aspect, high moldability can be obtained by the first fiber-reinforced thermoplastic resin material.
  • the fiber volume content of the second fiber reinforced thermoplastic resin material may be higher than the fiber volume content of the first fiber reinforced thermoplastic resin material. According to this aspect, good physical characteristics can be obtained by the second fiber-reinforced thermoplastic resin material.
  • the mixing step may include a step of spraying the second fiber reinforced thermoplastic resin material on the surface of the first fiber reinforced thermoplastic resin material.
  • the second fiber-reinforced thermoplastic resin material layer can be formed on the surface of the first fiber-reinforced thermoplastic resin material, physical properties such as strength and rigidity of the surface layer of the molded product Can be improved.
  • the 2nd fiber reinforced thermoplastic resin material can be mixed with the 1st fiber reinforced thermoplastic resin material by a simple method, the cost of an installation can be held down.
  • the mixing step includes the steps of molding the second fiber reinforced thermoplastic resin material into a sheet shape and the surface of the first fiber reinforced thermoplastic resin material. And 2 covering the sheet of fiber reinforced thermoplastic resin material.
  • the mixing step may include a step of injecting a second fiber reinforced thermoplastic resin material into the first fiber reinforced thermoplastic resin material.
  • the elastic modulus and strength inside the molded product can also be improved.
  • a fiber reinforced thermoplastic resin molded product is a fiber reinforced thermoplastic resin molded product including fibers and a thermoplastic resin, and is included in the fiber reinforced thermoplastic resin constituting the surface layer of the molded product.
  • the average fiber length is longer than the average fiber length contained in the fiber-reinforced thermoplastic resin constituting the interior of the molded product.
  • the surface layer formed by the fiber reinforced thermoplastic resin containing longer fibers, while being a molded product manufactured by a highly fluid fiber reinforced thermoplastic resin material, has a high elastic modulus, strength, etc. Can be obtained.
  • the thermoplastic resin may be polyamide 6.
  • the first fiber reinforced thermoplastic resin material forming the inside of the molded product and the second fiber reinforced thermoplastic resin material forming the surface layer of the molded product are simultaneously manufactured in parallel.
  • a molded product can be produced by a production line in which both are molded.
  • the present disclosure can be used for a molded product of a fiber reinforced thermoplastic resin and a manufacturing method thereof.

Abstract

繊維強化熱可塑性樹脂の成形物の製造方法は、熱可塑性樹脂及び繊維を溶融混練して押し出すことにより製造された第1の繊維強化熱可塑性樹脂素材と、熱可塑性樹脂を繊維に含浸させることにより製造された第2の繊維強化熱可塑性樹脂素材とを混合するステップと、混合された第1及び第2の繊維強化熱可塑性樹脂素材を加熱するステップと、加熱された第1及び第2の繊維強化熱可塑性樹脂素材を成形するステップと、を備える。第2の繊維強化熱可塑性樹脂素材に含まれる繊維の長さの平均値は、第1の繊維強化熱可塑性樹脂素材に含まれる繊維の長さの平均値よりも長い。

Description

繊維強化熱可塑性樹脂の成形物及びその製造方法
 本開示は、繊維強化熱可塑性樹脂の成形技術に関し、とくに、繊維強化熱可塑性樹脂の成形物及びその製造方法に関する。
 炭素繊維やガラス繊維などにより強度を向上させた繊維強化プラスチックが開発されている。繊維強化プラスチックは、軽量で強度が高い上に、安価で耐久性にも優れていることから、様々な分野での応用が期待されている。
 そのような分野の一つとして、自動車などの移動体の製造がある。自動車などの移動体の構造部品を繊維強化プラスチックで製造することにより、必要な強度を維持しつつ車体を軽量化することができるので、二酸化炭素排出量の削減など、環境問題の解決にも大きく貢献することができる。
特開2010-173646号公報
 移動体などの分野に繊維強化プラスチックを応用するためには、製品の仕様に応じた良好な物理的特性を有する繊維強化プラスチックの成形物を製造するための製造技術が不可欠である。
 本開示は、このような課題に鑑みてなされ、その目的は、良好な物理的特性を有する繊維強化熱可塑性樹脂の成形物を製造するための技術を提供することである。
 上記課題を解決するために、本開示のある態様の繊維強化熱可塑性樹脂の成形物の製造方法は、熱可塑性樹脂及び繊維を溶融混練して押し出すことにより製造された第1の繊維強化熱可塑性樹脂素材と、熱可塑性樹脂を繊維に含浸させることにより製造された第2の繊維強化熱可塑性樹脂素材とを混合するステップと、混合された第1及び第2の繊維強化熱可塑性樹脂素材を加熱するステップと、加熱された第1及び第2の繊維強化熱可塑性樹脂素材を成形するステップと、を備える。第2の繊維強化熱可塑性樹脂素材に含まれる繊維の長さの平均値は、第1の繊維強化熱可塑性樹脂素材に含まれる繊維の長さの平均値よりも長い。
 本開示の別の態様の繊維強化熱可塑性樹脂の成形物は、繊維及び熱可塑性樹脂を含む繊維強化熱可塑性樹脂の成形物であって、成形物の表面層を構成する繊維強化熱可塑性樹脂に含まれる繊維の長さの平均値は、成形物の内部を構成する繊維強化熱可塑性樹脂に含まれる繊維の長さの平均値よりも長い。
 本開示によれば、良好な物理的特性を有する繊維強化熱可塑性樹脂の成形物を製造するための技術を提供することができる。
実施の形態に係る炭素繊維強化熱可塑性樹脂の成形物の製造方法の関連技術について説明するための図である。 実施の形態に係る炭素繊維強化熱可塑性樹脂の成形物の製造方法を模式的に示す図である。 実施の形態に係る炭素繊維強化熱可塑性樹脂の成形物の製造方法の別の例を模式的に示す図である。
 本開示の実施の形態に係る繊維強化熱可塑性樹脂の成形物の製造方法は、熱可塑性樹脂及び繊維を溶融混練して押し出すことにより製造された第1の繊維強化熱可塑性樹脂素材と、熱可塑性樹脂を繊維に含浸させることにより製造された第2の繊維強化熱可塑性樹脂素材とを混合するステップと、混合された第1及び第2の繊維強化熱可塑性樹脂素材を加熱するステップと、加熱された第1及び第2の繊維強化熱可塑性樹脂素材を成形するステップとを備える。ここで、第2の繊維強化熱可塑性樹脂素材に含まれる繊維の長さの平均値は、第1の繊維強化熱可塑性樹脂素材に含まれる繊維の長さの平均値よりも長い。
 高い流動性を有する第1の繊維強化熱可塑性樹脂素材に、弾性率や強度などの物理的特性を付与することが可能な第2の繊維強化熱可塑性樹脂素材を適当量混合することにより、プレス成形による高速な成形物の製造を可能とする高い加工性を維持しつつ、製品に要求される仕様に応じた良好な物理的特性を有する成形物を製造することができる。このような製造方法によれば、所望の物理的特性を有する成形物を短時間で量産することが可能となるので、本開示の技術の工業的意義は極めて高い。
 強化材として使用される繊維は、炭素繊維、ガラス繊維、ボロン繊維、アラミド繊維、ポリエチレン繊維、金属繊維、植物繊維などであってもよいが、以下の実施の形態においては、炭素繊維を強化材として使用した例について説明する。
 図1は、実施の形態に係る炭素繊維強化熱可塑性樹脂の成形物の製造方法の関連技術について説明するための図である。図1は、LFT-D(Long Fiber Thermoplastics Direct)工法と呼ばれる炭素繊維強化熱可塑性樹脂の成形物の製造方法を模式的に示す。LFT-D工法においては、まず、熱可塑性樹脂原料と添加材を溶融混練することにより製造された熱可塑性樹脂ペレットと、炭素繊維ロービングから供給される炭素繊維とが、二軸スクリュー押出機で混練され、押し出される。押し出されたLFT-D押出素材は、高速プレス成形装置に供給されるまでの間、保温・昇温炉において適温に保たれる。保温・昇温炉内のLFT-D押出素材は、ロボットアームにより高速プレス成形装置に供給され、所望の形状に成形される。このように、LFT-D工法によれば、熱可塑性樹脂ペレットと炭素繊維を連続的に供給して最終製品を成形するまでの一貫した自動製造システムを構築することが可能となる。また、熱可塑性樹脂を原料としたLFT-D押出素材は、流動性及び成形性が高いので、高速プレス成形装置により短時間に所望の形状の最終製品を成形することが可能となる。
 本発明者らは、図1に示した製造方法により自動車のシャシー部材を成形する実験を行い、従前よりも圧倒的に速い1分程度の時間で成形を完了させることに成功した。また、融着が可能である熱可塑性樹脂の利点を生かし、超音波融着法を用いてシャシー部材を接合することにより、炭素繊維強化熱可塑性樹脂のみによる自動車用シャシーの製作に世界で初めて成功した。
 本発明者らは、炭素繊維強化熱可塑性樹脂の自動車などの構造部材への応用を更に促進させるために、成形物の物理的特性を更に向上させる技術を検討し、本開示の実施の形態に係る炭素繊維強化熱可塑性樹脂の成形物の製造方法に想到した。
 図2は、実施の形態に係る炭素繊維強化熱可塑性樹脂の成形物の製造方法を模式的に示す図である。まず、図1に示したLFT-D工法と同様に、二軸スクリュー押出機に、炭素繊維ロービングから供給される炭素繊維と、熱可塑性樹脂のペレットとを原料として供給し、これらを溶融混練して押し出すことにより、第1の繊維強化熱可塑性樹脂素材(以下、単に「第1素材」ともいう)を製造する。つづいて、混練以外の製造方法により製造された第2の繊維熱可塑性樹脂素材(以下、単に「第2素材」ともいう)を、第1素材に混合する。後述するように、第2素材は、例えば、一方向炭素繊維強化熱可塑性樹脂のフレーク(短片)である。混合された第1素材及び第2素材を、流動性が十分に高くなるような温度に加熱し、高速プレス成形装置に導入してプレス成形することにより、所望の形状の成形物を製造する。
 第1素材は、溶融混練押出しにより製造されるので流動性が高く、プレス成形により容易かつ高速に成形物を製造することができる反面、二軸スクリュー押出機において混練される際に炭素繊維が切断されるので、炭素繊維の長さを長くすることにより成形物の弾性率や強度などの物理的特性を向上させるのには一定の限界がある。また、炭素繊維の繊維体積含有率(Vf)を高くし過ぎると、二軸スクリュー押出機による混練及び押出しが困難になるので、炭素繊維の量を多くすることにより物理的特性を向上させるのにも限界がある。したがって、本実施の形態では、第1素材に含まれる炭素繊維の長さの平均値よりも、第2素材に含まれる炭素繊維の長さの平均値の方が長くなるように調整された第2素材を第1素材に混合することにより、成形物の弾性率や強度などの物理的特性を向上させる。第1素材及び第2素材に含まれる炭素繊維の長さの平均値は、各素材の中心部及び四方の任意の箇所において単位面積(1mm)当たりに存在する炭素繊維のそれぞれの長さを、画像測定装置で測定したときの平均値として算出することができる。
 このように、高速なプレス成形を可能とするための流動性及び加工性は主に第1素材により実現され、成形物の弾性率や強度などの物理的特性の更なる向上は主に第2素材により実現される。したがって、本実施の形態の繊維強化熱可塑性樹脂の成形物の製造方法において、第1素材の溶融時の粘度は、第2素材の溶融時の粘度よりも高い。溶融時の粘度は、メルトフローレイト(MFR:Melt Mass-Flow Rate)により測定することができる。また、本実施の形態の繊維強化熱可塑性樹脂の成形物の製造方法において、第2素材の繊維体積含有率は、第1素材の繊維体積含有率よりも高い。繊維体積含有率は、日本工業規格JIS K 7075-1991「炭素繊維強化プラスチックの繊維含有率及び空洞率試験方法」により測定することができる。
 第1素材と第2素材の混合比率は、加工物の形状の複雑さや、製品に要求される仕様などに応じて調整されればよい。一般に、第2素材の混合比率が高くなるほど、弾性率や強度などの物理的特性は高くなるが、混合物の加工性は低くなると考えられるので、加工物の形状の複雑さに応じて、混合物の粘度、流動性、加工性を勘案しつつ、製品に要求される仕様に応じて、適切な物理的特性が得られるように、第1素材と第2素材の混合比率を調整してもよい。例えば、高強度・高剛性が要求され、かつ、形状が比較的単純な成形物であれば、第2素材の割合を高くすればよい。また、形状が比較的複雑な成形物であれば、プレス成形の際に高い流動性が要求されるので、第1素材の割合を高くすればよい。
 第2素材に含まれる炭素繊維の長さや、第2素材における炭素繊維の繊維体積含有率についても同様である。一般に、第2素材に含まれる炭素繊維の長さが長いほど、また、第2素材における炭素繊維の繊維体積含有率が高いほど、弾性率や強度などの物理的特性は高くなるが、混合物の加工性は低くなると考えられるので、加工物の形状の複雑さに応じて、混合物の粘度、流動性、加工性を勘案しつつ、製品に要求される仕様に応じて、適切な物理的特性が得られるように、第2素材に含まれる炭素繊維の長さや、第2素材における炭素繊維の繊維体積含有率を調整してもよい。
 第2素材は、含まれる炭素繊維の長さの平均値が、第1素材に含まれる炭素繊維の長さの平均値よりも長くなるような製造方法であれば、任意の製造方法により製造されてもよいが、第2素材における炭素繊維の繊維体積含有率を高くするためには、炭素繊維に熱可塑性樹脂を含浸させることにより製造された炭素繊維強化熱可塑性樹脂を第2素材として使用するのが好適である。また、製品に要求される仕様に応じて、第2素材に含まれる炭素繊維の長さを調整可能とするためには、一方向に引き揃えた炭素繊維の束又はシートに熱可塑性樹脂を含浸させることにより製造された炭素繊維強化熱可塑性樹脂、又は、炭素繊維を織ったシートに熱可塑性樹脂を含浸させたプリプレグを所定長に切断したフレークを第2素材として使用するのがとくに好適である。
 第2素材として、均一な長さを有する多数のフレークが使用されてもよい。また、異なる長さを有する複数種類のフレークが使用されてもよいし、長さが所定の範囲に分布した多数のフレークが使用されてもよい。この場合であっても、第2素材に含まれる炭素繊維の長さの平均値は、第1素材に含まれる炭素繊維の長さの平均値よりは長くなるようにする。第2素材に含まれる炭素繊維の長さの平均値は、例えば、5~10mmであってもよい。
 また、第2素材として、均一な炭素繊維の繊維体積含有率を有する多数のフレークが使用されてもよいし、異なる炭素繊維の繊維体積含有率を有する複数種類のフレークが使用されてもよいし、炭素繊維の繊維体積含有率が所定の範囲に分布した多数のフレークが使用されてもよい。
 第2素材は、針状、フレーク状、短冊状、線状、棒状の形状を有していてもよいし、その他の任意の二次元形状又は三次元形状を有していてもよい。
 第1素材及び第2素材の母材となる熱可塑性樹脂は、例えば、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド66、ポリアミド610、ポリアミド6T、ポリアミド6I、ポリアミド9T、ポリアミドM5Tなどのポリアミド、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、ポリウレタン、ポリテトラフルオロエチレン、アクリロニトリルブタジエンスチレン、アクリル樹脂、ポリアセタール、ポリカーボネート、ポリフェニレンエーテル、変性ポリフェニレンエーテル、ポリエステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、環状ポリオレフィン、ポリフェニレンスルファイド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリイミド、ポリアミドイミドなどであってもよい。
 第1素材の母材となる熱可塑性樹脂と、第2素材の母材となる熱可塑性樹脂は、同種の熱可塑性樹脂であることが好ましい。これにより、成形物の全体を同種の熱可塑性樹脂を母材とする炭素繊維強化熱可塑性樹脂により形成することができるので、第1素材と第2素材との境界面から破断したり、反りが生じたりするのを防ぐことができ、成形物の強度や剛性などの物理的特性を向上させることができる。異種の熱可塑性樹脂であっても、融点や熱膨張率などの物理的性質が類似する熱可塑性樹脂の組合せや、相溶性を有する熱可塑性樹脂の組合せや、境界面が生じたとしても境界面における接着性が良好である熱可塑性樹脂の組合せなどを母材とする第1素材と第2素材が混合されてもよい。
 第1素材及び第2素材は、それぞれ、複数の種類の熱可塑性樹脂を母材として含むポリマーブレンドであってもよい。この場合も、それぞれが同種の熱可塑性樹脂を母材として含んでいるのが好ましく、また、ポリマーブレンドの組成比が同程度であることが好ましい。
 第1素材と第2素材を混合する方法として、例えば、以下の第1~3の方法が考えられる。第1の方法は、第2素材を第1素材の表面にまぶす方法である。第1素材の上方から第2素材を散布してもよい。第1素材の上面だけでなく、裏面や側面にも第2素材をまぶす場合には、第1素材を回転させて別の面を上面とし、上方から第2素材を散布してもよいし、第1素材の裏面又は側面から第2素材を吹き付けてもよい。製品に要求される仕様に応じて、多数の第2素材の長手方向が揃うように第1素材の表面にまぶしてもよいし、ランダムな方向になるように第1素材の表面にまぶしてもよい。第1の方法によれば、第1素材の表面に第2素材の層を形成することができるので、成形物の表面層の強度や剛性などの物理的特性を向上させることができる。また、簡易な方法で第1素材に第2素材を混合することができるので、設備のコストを抑えることができる。
 第2の方法は、第2素材によりシートを成形し、成形したシートを第1素材に被せる方法である。第2素材のシートは、例えば、第2素材を平面上に散布して加熱及び加圧することにより成形されてもよい。第2素材のシートを、第1素材の表面の全てを覆うように被せてもよいし、上面と裏面を覆うように被せてもよいし、一部の表面のみを覆うように被せてもよい。この場合も、製品に要求される仕様に応じて、多数の第2素材の長手方向が揃うようにシートを成形してもよいし、ランダムな方向になるようにシートを成形してもよい。第2の方法によれば、第1素材の表面に均一な第2素材の層を形成することができるので、第2素材の分布ムラを防ぎ、良好な物理的特性を有する成形物を製造することができる。
 第3の方法は、第1素材の内部に第2素材を注入する方法である。多数の第2素材を集積して連続的な流れとし、これを第1素材が排出される前又は後に注入してもよい。第3の方法によれば、成形物の内部の弾性率や強度も向上させることができる。
 第1及び第2の方法で第1素材と第2素材を混合する場合は、成形物の表面層は主に第2素材により形成され、成形物の内部は主に第1素材により形成されることになるので、成形物の表面層を構成する繊維強化熱可塑性樹脂に含まれる繊維の長さの平均値は、成形物の内部を構成する繊維強化熱可塑性樹脂に含まれる繊維の長さの平均値よりも長くなる。これにより、成形物の表面層の弾性率や強度などの物理的特性を向上させることができる。
 図3は、実施の形態に係る炭素繊維強化熱可塑性樹脂の成形物の製造方法の別の例を模式的に示す図である。図2に示した例では、第2素材を製品として購入し、第1素材に混合することを想定していたが、図3に示した例では、第1素材と第2素材を並行して製造し、両者を混合する。
 フレーク製造装置において、炭素繊維ロービングから供給される炭素繊維に熱可塑性樹脂を含浸させ、所定長に切断することにより、第2素材を製造する。熱可塑性樹脂のモノマーを炭素繊維に含浸させた後、加熱して重合させれば、ポリマーを炭素繊維に含浸させる場合と異なり、含浸のために高温及び高圧を発生させる必要がないので、とくに好適である。
 このような現場重合型の炭素繊維強化熱可塑性樹脂の製造においては、ε-カプロラクタムをモノマーとするポリアミドを使用するのがとくに好適である。ε-カプロラクタムの融点は69℃と低く、融解させた液体の粘度も十分に低いので、炭素繊維に容易に含浸させることができる。また、重合反応に要する温度が比較的低く、重合反応に要する時間も極めて短いので、フレーク製造装置において連続的に含浸、重合、切断を行い、効率良く第2素材を製造することができる。
 図3の例によれば、炭素繊維ロービングから供給される炭素繊維を、第1素材の原料としても、第2素材の原料としても使用することができるので、廃材が極めて少ない製造方法を実現することができる。また、第1素材と第2素材を同時に並行して製造するので、製造した第1素材と第2素材を高温のまますぐに混合し、高速プレス成形装置に導入して成形することができる。したがって、省エネルギーかつ省スペースの製造ラインを実現することができる。これらの点においても、本開示の技術の工業的意義は極めて高い。
 以上、本開示を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。
 本開示の一態様の概要は、次の通りである。本開示のある態様の繊維強化熱可塑性樹脂の成形物の製造方法は、熱可塑性樹脂及び繊維を溶融混練して押し出すことにより製造された第1の繊維強化熱可塑性樹脂素材と、熱可塑性樹脂を繊維に含浸させることにより製造された第2の繊維強化熱可塑性樹脂素材とを混合するステップと、混合された第1及び第2の繊維強化熱可塑性樹脂素材を加熱するステップと、加熱された第1及び第2の繊維強化熱可塑性樹脂素材を成形するステップと、を備える。第2の繊維強化熱可塑性樹脂素材に含まれる繊維の長さの平均値は、第1の繊維強化熱可塑性樹脂素材に含まれる繊維の長さの平均値よりも長い。
 この態様によると、流動性の高い第1の繊維強化熱可塑性樹脂素材による高い加工性を維持しつつ、第2の繊維強化熱可塑性樹脂素材により所望の物理的特性を成形物に付与することができるので、製品の仕様に応じた良好な物理的特性を有する成形物を製造することができる。
 この繊維強化熱可塑性樹脂の成形物の製造方法において、第2の繊維強化熱可塑性樹脂素材は、一方向に引き揃えた複数の繊維に熱可塑性樹脂を含浸させた一方向繊維強化熱可塑性樹脂を所定長に切断したフレークであってもよい。この態様によると、製品の使用に応じた物理的特性を有する成形物を得るために、第2の繊維強化熱可塑性樹脂素材に含まれる炭素繊維の長さを調整するのが容易となる。
 この繊維強化熱可塑性樹脂の成形物の製造方法において、第1の繊維強化熱可塑性樹脂素材の母材となる熱可塑性樹脂と、第2の繊維強化熱可塑性樹脂素材の母材となる熱可塑性樹脂は、同種の熱可塑性樹脂であってもよい。この態様によると、成形物の全体を同種の熱可塑性樹脂を母材とする炭素繊維強化熱可塑性樹脂により形成することができるので、第1素材と第2素材との境界面から破断したり、反りが生じたりするのを防ぐことができ、成形物の強度や剛性などの物理的特性を向上させることができる。
 この繊維強化熱可塑性樹脂の成形物の製造方法において、第1の繊維強化熱可塑性樹脂素材の母材となる熱可塑性樹脂と、第2の繊維強化熱可塑性樹脂素材の母材となる熱可塑性樹脂は、ポリアミド6であってもよい。この態様によると、第1の繊維強化熱可塑性樹脂素材と第2の繊維強化熱可塑性樹脂素材を同時に並行して製造し、その場で両者を混合して成形する製造ラインを実現することができる。
 この繊維強化熱可塑性樹脂の成形物の製造方法において、第1の繊維強化熱可塑性樹脂素材の溶融時の粘度は、第2の繊維強化熱可塑性樹脂素材の溶融時の粘度よりも高くてもよい。この態様によると、第1の繊維強化熱可塑性樹脂素材により高い成形性を得ることができる。
 この繊維強化熱可塑性樹脂の成形物の製造方法において、第2の繊維強化熱可塑性樹脂素材の繊維体積含有率は、第1の繊維強化熱可塑性樹脂素材の繊維体積含有率よりも高くてもよい。この態様によると、第2の繊維強化熱可塑性樹脂素材により良好な物理的特性を得ることができる。
 この繊維強化熱可塑性樹脂の成形物の製造方法において、混合するステップは、第1の繊維強化熱可塑性樹脂素材の表面に第2の繊維強化熱可塑性樹脂素材を散布するステップを含んでもよい。この態様によると、第1の繊維強化熱可塑性樹脂素材の表面に第2の繊維強化熱可塑性樹脂素材の層を形成することができるので、成形物の表面層の強度や剛性などの物理的特性を向上させることができる。また、簡易な方法で第1の繊維強化熱可塑性樹脂素材に第2の繊維強化熱可塑性樹脂素材を混合することができるので、設備のコストを抑えることができる。
 この繊維強化熱可塑性樹脂の成形物の製造方法において、混合するステップは、第2の繊維強化熱可塑性樹脂素材をシート状に成形するステップと、第1の繊維強化熱可塑性樹脂素材の表面に第2の繊維強化熱可塑性樹脂素材のシートを被せるステップと、を含んでもよい。この態様によると、第1の繊維強化熱可塑性樹脂素材の表面に均一な第2の繊維強化熱可塑性樹脂素材の層を形成することができるので、第2の繊維強化熱可塑性樹脂素材の分布ムラを防ぎ、良好な物理的特性を有する成形物を製造することができる。
 この繊維強化熱可塑性樹脂の成形物の製造方法において、混合するステップは、第1の繊維強化熱可塑性樹脂素材の内部に第2の繊維強化熱可塑性樹脂素材を注入するステップを含んでもよい。この態様によると、成形物の内部の弾性率や強度も向上させることができる。
 本開示のある態様の繊維強化熱可塑性樹脂の成形物は、繊維及び熱可塑性樹脂を含む繊維強化熱可塑性樹脂の成形物であって、成形物の表面層を構成する繊維強化熱可塑性樹脂に含まれる繊維の長さの平均値は、成形物の内部を構成する繊維強化熱可塑性樹脂に含まれる繊維の長さの平均値よりも長い。
 この態様によると、流動性の高い繊維強化熱可塑性樹脂素材によって製造された成形物でありながら、より長い繊維を含有する繊維強化熱可塑性樹脂によって形成された表面層により、高い弾性率や強度などの物理的特性を得ることができる。
 この繊維強化熱可塑性樹脂の成形物において、熱可塑性樹脂はポリアミド6であってもよい。この態様によると、成形物の内部を形成する第1の繊維強化熱可塑性樹脂素材と、成形物の表面層を形成する第2の繊維強化熱可塑性樹脂素材を同時に並行して製造し、その場で両者を混合して成形する製造ラインにより成形物を製造することができる。
 本開示は、繊維強化熱可塑性樹脂の成形物及びその製造方法に利用可能である。

Claims (11)

  1.  熱可塑性樹脂及び繊維を溶融混練して押し出すことにより製造された第1の繊維強化熱可塑性樹脂素材と、熱可塑性樹脂を繊維に含浸させることにより製造された第2の繊維強化熱可塑性樹脂素材とを混合するステップと、
     混合された第1及び第2の繊維強化熱可塑性樹脂素材を加熱するステップと、
     加熱された第1及び第2の繊維強化熱可塑性樹脂素材を成形するステップと、
    を備え、
     前記第2の繊維強化熱可塑性樹脂素材に含まれる繊維の長さの平均値は、前記第1の繊維強化熱可塑性樹脂素材に含まれる繊維の長さの平均値よりも長いことを特徴とする繊維強化熱可塑性樹脂の成形物の製造方法。
  2.  前記第2の繊維強化熱可塑性樹脂素材は、一方向に引き揃えた複数の繊維に熱可塑性樹脂を含浸させた一方向繊維強化熱可塑性樹脂を所定長に切断したフレークであることを特徴とする請求項1に記載の繊維強化熱可塑性樹脂の成形物の製造方法。
  3.  前記第1の繊維強化熱可塑性樹脂素材の母材となる熱可塑性樹脂と、前記第2の繊維強化熱可塑性樹脂素材の母材となる熱可塑性樹脂は、同種の熱可塑性樹脂であることを特徴とする請求項1又は2に記載の繊維強化熱可塑性樹脂の成形物の製造方法。
  4.  前記第1の繊維強化熱可塑性樹脂素材の母材となる熱可塑性樹脂と、前記第2の繊維強化熱可塑性樹脂素材の母材となる熱可塑性樹脂は、ポリアミド6であることを特徴とする請求項3に記載の繊維強化熱可塑性樹脂の成形物の製造方法。
  5.  前記第1の繊維強化熱可塑性樹脂素材の溶融時の粘度は、前記第2の繊維強化熱可塑性樹脂素材の溶融時の粘度よりも高いことを特徴とする請求項1から4のいずれかに記載の繊維強化熱可塑性樹脂の成形物の製造方法。
  6.  前記第2の繊維強化熱可塑性樹脂素材の繊維体積含有率は、前記第1の繊維強化熱可塑性樹脂素材の繊維体積含有率よりも高いことを特徴とする請求項1から5のいずれかに記載の繊維強化熱可塑性樹脂の成形物の製造方法。
  7.  前記混合するステップは、前記第1の繊維強化熱可塑性樹脂素材の表面に前記第2の繊維強化熱可塑性樹脂素材を散布するステップを含むことを特徴とする請求項1から6のいずれかに記載の繊維強化熱可塑性樹脂の成形物の製造方法。
  8.  前記混合するステップは、
     前記第2の繊維強化熱可塑性樹脂素材をシート状に成形するステップと、
     前記第1の繊維強化熱可塑性樹脂素材の表面に前記第2の繊維強化熱可塑性樹脂素材のシートを被せるステップと、
    を含むことを特徴とする請求項1から7のいずれかに記載の繊維強化熱可塑性樹脂の成形物の製造方法。
  9.  前記混合するステップは、前記第1の繊維強化熱可塑性樹脂素材の内部に前記第2の繊維強化熱可塑性樹脂素材を注入するステップを含むことを特徴とする請求項1から8のいずれかに記載の繊維強化熱可塑性樹脂の成形物の製造方法。
  10.  繊維及び熱可塑性樹脂を含む繊維強化熱可塑性樹脂の成形物であって、
     前記成形物の表面層を構成する繊維強化熱可塑性樹脂に含まれる繊維の長さの平均値は、前記成形物の内部を構成する繊維強化熱可塑性樹脂に含まれる繊維の長さの平均値よりも長いことを特徴とする繊維強化熱可塑性樹脂の成形物。
  11.  前記熱可塑性樹脂はポリアミド6であることを特徴とする請求項10に記載の繊維強化熱可塑性樹脂の成形物。
PCT/JP2019/007510 2018-02-27 2019-02-27 繊維強化熱可塑性樹脂の成形物及びその製造方法 WO2019168010A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980015568.1A CN112243406A (zh) 2018-02-27 2019-02-27 纤维强化热塑性树脂的成型物及其制造方法
US16/975,904 US20210001569A1 (en) 2018-02-27 2019-02-27 Fiber-reinforced thermoplastic resin molded article and production method therefor
EP19761611.3A EP3760416A4 (en) 2018-02-27 2019-02-27 FIBER REINFORCED THERMOPLASTIC RESIN MOLDED BODY AND MANUFACTURING METHOD FOR IT

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-033705 2018-02-27
JP2018033705 2018-02-27
JP2019-021861 2019-02-08
JP2019021861A JP7198454B2 (ja) 2018-02-27 2019-02-08 繊維強化熱可塑性樹脂の成形物の製造方法

Publications (1)

Publication Number Publication Date
WO2019168010A1 true WO2019168010A1 (ja) 2019-09-06

Family

ID=67805383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007510 WO2019168010A1 (ja) 2018-02-27 2019-02-27 繊維強化熱可塑性樹脂の成形物及びその製造方法

Country Status (1)

Country Link
WO (1) WO2019168010A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112549397A (zh) * 2019-09-26 2021-03-26 科思创德国股份有限公司 用于结构部件的制造方法和结构部件
WO2021058677A1 (en) * 2019-09-26 2021-04-01 Covestro Intellectual Property Gmbh & Co. Kg Manufacturing method for structural components and structural component

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09109310A (ja) * 1995-10-20 1997-04-28 Ykk Corp 成形シート材料の製造方法、その方法によって製造される繊維強化成形シート材料およびそれを用いた安全靴の先芯
KR20090099215A (ko) * 2008-03-17 2009-09-22 (주)엘지하우시스 연속섬유가 보강된 고강도 열가소성 복합재의 제조공정
JP2010173646A (ja) 2010-05-17 2010-08-12 Japan Aerospace Exploration Agency 飛行体用翼、飛行体用翼複合材およびその製造方法
JP2011025466A (ja) * 2009-07-23 2011-02-10 Toyota Motor Corp 繊維強化樹脂製歯車の製造方法
JP2012125948A (ja) * 2010-12-13 2012-07-05 Mitsubishi Rayon Co Ltd 繊維強化熱可塑性樹脂成形品とその製造方法
JP2012148443A (ja) * 2011-01-18 2012-08-09 Toyota Motor Corp リブ付き構造の繊維強化樹脂材とその製造方法
JP2014205833A (ja) * 2013-04-10 2014-10-30 ザ・ボーイング・カンパニーTheBoeing Company 熱可塑性安定化材料を有する広幅物のリサイクリング

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09109310A (ja) * 1995-10-20 1997-04-28 Ykk Corp 成形シート材料の製造方法、その方法によって製造される繊維強化成形シート材料およびそれを用いた安全靴の先芯
KR20090099215A (ko) * 2008-03-17 2009-09-22 (주)엘지하우시스 연속섬유가 보강된 고강도 열가소성 복합재의 제조공정
JP2011025466A (ja) * 2009-07-23 2011-02-10 Toyota Motor Corp 繊維強化樹脂製歯車の製造方法
JP2010173646A (ja) 2010-05-17 2010-08-12 Japan Aerospace Exploration Agency 飛行体用翼、飛行体用翼複合材およびその製造方法
JP2012125948A (ja) * 2010-12-13 2012-07-05 Mitsubishi Rayon Co Ltd 繊維強化熱可塑性樹脂成形品とその製造方法
JP2012148443A (ja) * 2011-01-18 2012-08-09 Toyota Motor Corp リブ付き構造の繊維強化樹脂材とその製造方法
JP2014205833A (ja) * 2013-04-10 2014-10-30 ザ・ボーイング・カンパニーTheBoeing Company 熱可塑性安定化材料を有する広幅物のリサイクリング

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3760416A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112549397A (zh) * 2019-09-26 2021-03-26 科思创德国股份有限公司 用于结构部件的制造方法和结构部件
WO2021058677A1 (en) * 2019-09-26 2021-04-01 Covestro Intellectual Property Gmbh & Co. Kg Manufacturing method for structural components and structural component

Similar Documents

Publication Publication Date Title
Zhao et al. Study on the preparation of bamboo plastic composite intend for additive manufacturing
Ko et al. Improving the filament weld-strength of fused filament fabrication products through improved interdiffusion
Chanda et al. Plastics fabrication and recycling
CN104650587B (zh) 一种适用于3d打印的改性聚苯硫醚树脂材料及其制备方法和应用
CN101935420B (zh) 一种lft-d材料的汽车底部导流板及其制造方法
CN103073782A (zh) 一种汽车仪表板骨架材料及其制造方法
WO2019168010A1 (ja) 繊維強化熱可塑性樹脂の成形物及びその製造方法
US20190030790A1 (en) Method for producing three-dimensional shaped article, and filament for producing three-dimensional shaped article
CN105524398A (zh) 一种用于3d打印的abs快速成型材料及其制备方法
Subramanian Basics of polymers: fabrication and processing technology
JP2018123263A (ja) 立体造形用樹脂組成物、立体造形物の製造方法、立体造形用フィラメント並びに立体造形物の製造装置
CN109456565A (zh) 一种智能高分子材料、其制备方法及其利用方法
CN109575557B (zh) 用于三维打印的pc/abs混合料及其制备方法和直接打印方法
CN107686627A (zh) 3d打印用组合物和3d打印用材料及其制备方法和应用
Edebali Methods of engineering of biopolymers and biocomposites
CN104861257A (zh) 一种阻燃塑料中空板及其制备方法
JP6426460B2 (ja) 溶融成形用ペレット混合物およびこれを用いて製造された成形品
JP7198454B2 (ja) 繊維強化熱可塑性樹脂の成形物の製造方法
CN104530739A (zh) 一种热致性高分子液晶增强增韧聚烯烃基木塑复合材料及其制备方法
WO2019168011A1 (ja) 繊維強化熱可塑性樹脂の製造方法及び製造装置
JP2019147945A (ja) 繊維強化熱可塑性樹脂の製造方法及び製造装置
Masri et al. Review of Manufacturing Process of Natural Fiber Reinforced Polymer Composites
CN102145514B (zh) 生产单聚合物复合材料制品的准熔融静态混合方法
EP1424190B1 (de) Spritzguss- oder extrudiertes Formteil und Verfahren zu dessen Herstellung
CN110271208A (zh) 一种热塑性3d编织连续长纤维增强拉挤型材成型方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019761611

Country of ref document: EP

Effective date: 20200928