WO2019167877A1 - 無線通信システム、無線通信方法および送信装置 - Google Patents
無線通信システム、無線通信方法および送信装置 Download PDFInfo
- Publication number
- WO2019167877A1 WO2019167877A1 PCT/JP2019/007037 JP2019007037W WO2019167877A1 WO 2019167877 A1 WO2019167877 A1 WO 2019167877A1 JP 2019007037 W JP2019007037 W JP 2019007037W WO 2019167877 A1 WO2019167877 A1 WO 2019167877A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- signal
- communication
- length
- guard interval
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/2605—Symbol extensions, e.g. Zero Tail, Unique Word [UW]
- H04L27/2607—Cyclic extensions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/2605—Symbol extensions, e.g. Zero Tail, Unique Word [UW]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/336—Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/345—Interference values
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/364—Delay profiles
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0002—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
- H04L1/0003—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0006—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
- H04L1/0007—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0009—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2626—Arrangements specific to the transmitter only
- H04L27/2627—Modulators
- H04L27/2634—Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
- H04L27/2636—Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0212—Channel estimation of impulse response
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0224—Channel estimation using sounding signals
- H04L25/0226—Channel estimation using sounding signals sounding signals per se
Definitions
- the present invention relates to a technique for improving throughput while reducing distortion due to delay waves in a radio communication system that performs symbol-blocked single carrier communication.
- GI Guardinterval
- a technique of adding a guard interval (GI: Guardinterval) before a data period in which symbol blocks are formed is used.
- a signal at the end of the data period is added as a GI on the transmitting side (cyclic prefix), and the GI is removed on the receiving side, thereby performing communication with suppressing interference between symbol blocks in a delayed wave environment that does not exceed the GI length. be able to.
- WirelessLAN Medium, Access, Control, (MAC), and Physical, Layer, (PHY), Specifications, IEEE, Std. 802.11-2012.
- the above-described prior art is intended for a multi-carrier system using a frequency domain signal and has not been considered to be applied to a single carrier system using a time domain signal. Therefore, in a radio communication system that performs symbol-blocked single carrier communication, if the received signal includes a delayed wave component that exceeds the GI length, the maximum throughput among the selectable GI length and modulation / coding schemes There is a problem that it is difficult to select a GI length and a modulation / coding method for realizing the above.
- a radio communication system and a radio communication method capable of selecting an optimum GI length and modulation / coding scheme for realizing the maximum throughput while suppressing the influence of delay waves And it aims at providing a transmitter.
- a wireless communication system includes a transmission side communication unit that performs communication using a single or a plurality of antennas, a modulation unit that generates a single carrier signal in which a data signal or a training signal is symbol-blocked, and the modulation
- a guard interval insertion unit that inserts a guard interval into a signal output from the transmission unit and transmits from the transmission side communication unit, and a signal transmitted and received by an antenna between the modulation unit and the guard interval insertion unit
- a weight multiplication unit that multiplies the weighting coefficient, and before starting communication, transmits a training signal to obtain information on the impulse response of the communication path, calculates the weighting coefficient based on the impulse response of the communication path, and Maximum through according to the SINR of a specific period calculated by changing the length of the guard interval
- a transmitter having at least a control unit that determines a modulation / coding scheme for obtaining a signal and a length of the guard interval, a receiving-side communication unit that performs communication using a single or
- the receiving device includes a guard interval removing unit that removes the guard interval of a signal received from the transmitting device, and a single output from the guard interval removing unit.
- a demodulator that demodulates a carrier signal; and a receiving-side weight multiplier that divides and multiplies all or part of the weighting coefficient multiplied by the weight multiplier between the guard interval remover and the demodulator. Furthermore, it is characterized by having.
- a third invention is a wireless communication method for performing communication between a transmission device and a reception device each having a single or a plurality of antennas, wherein the transmission device is a single symbol block of a data signal or a training signal.
- the receiving apparatus multiplies a carrier signal by a weighting coefficient for separating a signal transmitted / received by the antenna, inserts a guard interval and transmits from the antenna, and transmits a training signal before starting communication.
- Information of the impulse response of the communication channel is obtained from the channel, and the weighting coefficient is calculated based on the impulse response of the communication channel, and the maximum according to the SINR of the specific period calculated by changing the length of the guard interval. Determine the modulation and coding method and the length of the guard interval to obtain a high throughput.
- the receiving apparatus performs processing for estimating an impulse response of the communication path from a training signal transmitted from the transmitting apparatus and notifying the transmitter of information of the estimated impulse response of the communication path. .
- the receiving apparatus multiplies the weighting coefficient by which the transmitting apparatus side multiplies the signal from which the guard interval of the signal received from the transmitting apparatus is removed or the transmitting apparatus side.
- a characteristic is that a part is shared and multiplied, and a received signal is demodulated.
- a communication unit that performs communication using a single or a plurality of antennas, a modulation unit that generates a single carrier signal in which a data signal or a training signal is symbol-blocked, and a signal output from the modulation unit.
- a guard interval insertion unit that inserts a guard interval and transmits from the communication unit, and a weight multiplication that multiplies a weighting coefficient for separating a signal transmitted and received by the antenna between the modulation unit and the guard interval insertion unit
- a training signal is transmitted to acquire information on the impulse response of the communication channel from the receiving device, and the weighting coefficient is calculated based on the impulse response of the communication channel, and the guard interval Maximum throughput is obtained according to SINR for a specific period calculated by changing the length.
- a radio communication system, a radio communication method, and a transmission apparatus provide an optimum GI length and modulation / code for realizing maximum throughput while suppressing the influence of delay waves in symbol-blocked single carrier communication using a time domain signal.
- the communication method can be selected.
- the transmission device is referred to as a data transmission station
- the reception device is referred to as a data reception station.
- FIG. 1 shows an example of a wireless communication system 100 according to the present embodiment.
- Wireless communication system 100 includes a plurality: of (N t pieces N t ⁇ 1 integer) of the antenna 111 (1) and the data transmission station 101 having an antenna 111 (N t), a plurality (N r number: N r ⁇ 1 ) Antenna 112 (1) to data receiving station 102 having antenna 112 (N r ).
- N t the number of the antenna 111
- N r number N r number
- Antenna 112 (1) to data receiving station 102 having antenna 112 (N r ).
- the (number) at the end of the code is omitted and indicated as the antenna 111. Is indicated by adding (number) to the end of the code, for example, antenna 111 (1).
- the data transmitting station 101 and the data receiving station 102 perform symbol-blocked single carrier communication.
- a plurality of delay waves having different delay times, such as multipath exist between the data transmission station 101 and the data reception station 102.
- the delayed wave of the previous symbol block overlaps with the next symbol block, and distortion due to inter-symbol block interference occurs. is there.
- the occurrence of distortion due to inter-symbol block interference is reduced, but there is a problem that the throughput is reduced because redundancy is increased.
- the radio communication system 100 that performs symbol-blocked single carrier communication can select a GI length and an MCS index (Modulation and Coding Scheme: modulation) while suppressing distortion due to interference between symbol blocks in a long delay wave environment. It is possible to communicate by selecting a GI length and an MCS index that realize the maximum throughput from an index indicating a combination of a system and a coding rate.
- MCS index Modulation and Coding Scheme: modulation
- the balloon column 120 in FIG. 1 is for MIMO (Multiple-Input Multiple-Output) in which the number of antennas 111 of the data reception station 102 is N r and the number of antennas 112 of the data transmission station 101 is N t .
- An example of the channel matrix H is shown.
- the MIMO channel matrix H is represented by an N r ⁇ N t channel impulse response matrix as shown in Equation (1).
- SISO Single-Input Single-Output
- the channel matrix H shown in Equation (1) is N r N It becomes a channel impulse response matrix of s ⁇ N t N s , and each element is represented by h_n r n t shown in Equation (2).
- symbol _ is the subscript
- n r n t of example H_n r n t denotes a subscript of h. The same applies to other formulas and symbols described below.
- the wireless communication system 100 is a system that performs symbol-blocked single carrier communication in a delayed wave environment in which a plurality of delayed waves exist between the data transmitting station 101 and the data receiving station 102. is there.
- FIG. 2 shows a configuration example of the data transmitting station 101 and the data receiving station 102 of the wireless communication system 100 according to the present embodiment described in FIG.
- the data transmission station 101 includes an information bit generation unit 201, a data signal modulation unit 202, a transmission weight multiplication unit 203, a GI insertion unit 204, a transmission signal conversion unit 205, a reception signal conversion unit 206, a transmission control unit 207, and an antenna 111. .
- the data reception station 102 includes a reception signal conversion unit 301, a GI removal unit 302, a reception weight multiplication unit 303, a communication path estimation unit 304, a transmission signal conversion unit 305, a data signal demodulation unit 306, an information bit detection unit 307, and an antenna 112. Have.
- the antenna 111 includes one or a plurality of antennas 111 for transmitting and receiving from the antenna 111 (1) to the antenna 111 (N t ). Radiates into space as electromagnetic waves. Alternatively, the antenna 111 receives an electromagnetic wave in a space including a delayed wave transmitted from the data receiving station 102 and outputs a high-frequency signal.
- the information bit generation unit 201 generates data information bits to be transmitted to the data receiving station 102 according to a command from the transmission control unit 207 described later.
- the data information bit is a bit string corresponding to, for example, a data signal input from the outside (not shown), a data signal generated inside, a training signal, and the like.
- the training signal is a signal of predetermined information (for example, a specific pattern such as an alternating pattern of “01”) such as a signal detection preamble, and is used for level adjustment, frequency offset adjustment, and the like.
- the information bit generation unit 201 generates, for example, an NDP (Null Data) Packet) without a data signal as a training signal, and is used to estimate the impulse response of the communication channel on the data receiving station 102 side.
- Information on the training signal transmitted by the data transmitting station 101 is shared with the data receiving station 102 in advance.
- the information bit generation unit 201 may have an error correction encoding function or an interleaving function that generates an error correction code at a predetermined encoding rate.
- the data signal modulation unit 202 modulates a bit string output from the information bit generation unit 201 by a predetermined modulation scheme (for example, quadrature modulation (QAM), etc.) according to a command from a transmission control unit 207 described later.
- a predetermined modulation scheme for example, quadrature modulation (QAM), etc.
- information bits are generated and modulated according to a modulation scheme and a coding rate selected from a plurality of MCS indexes available on the system.
- the transmission weight multiplication unit 203 uses the transmission weight (weighting coefficient) calculated by the transmission control unit 207, which will be described later, from the impulse response of the communication path estimated by the data receiving station 102, to transmit / receive signals transmitted / received by one or more antennas. Perform weighting to separate.
- Various signal separation techniques such as weighting by ZF (Zero Forcing) and MMSE (Minimum mean squareerror) and eigenmode transmission on the transmission side may be used in combination with the reception side.
- ZF Zero Forcing
- MMSE Minimum mean squareerror
- the GI insertion unit 204 inserts a GI for reducing the influence of the delayed wave according to a command from the transmission control unit 207 described later.
- GI is a buffer period inserted between adjacent symbols, and the influence of the delayed wave can be reduced by making this period longer than the delay time of the delayed wave.
- the GI insertion unit 204 adds a signal at the end of the symbol period corresponding to the GI length to be added before the symbol period.
- the transmission signal conversion unit 205 converts the frequency of the transmission signal into which the GI has been inserted into a high-frequency signal to be transmitted from the antenna 111. For example, a baseband signal of 20 MHz band is up-converted to a high frequency signal of 5 GHz band.
- the reception signal conversion unit 206 converts the high frequency signal received by the antenna 111 into a low frequency baseband signal. For example, the reception signal conversion unit 206 down-converts a 5 GHz band high frequency signal and outputs a 20 MHz band baseband signal.
- the transmission control unit 207 calculates the transmission weight, selects the GI length and the MCS index, and controls the operation of the entire data transmission station 101. For example, the transmission control unit 207 instructs the information bit generation unit 201 and the data signal modulation unit 202 to specify the training signal, the modulation scheme, the coding rate, and the like, and instructs the GI insertion unit 204 to add the GI length. Also, transmission control section 207 outputs the calculated transmission weight to transmission weight multiplication section 203. Furthermore, before starting the main communication (data communication performed between the data transmission station 101 and the data reception station 102) with the data reception station 102, the transmission control unit 207 is more than the expected delay wave. A training signal with a long GI added thereto is transmitted.
- the data receiving station 102 can estimate the impulse response of the communication path to the end with high accuracy.
- the transmission control unit 207 receives a notification signal including communication path information such as an impulse response of the communication path transmitted from the data reception station 102 via the reception signal conversion unit 206. Then, transmission control section 207 calculates a transmission weight for separating signals transmitted / received by one or a plurality of antennas from the impulse response of the communication path estimated by data receiving station 102 and outputs the result to transmission weight multiplication section 203 To do. Further, the transmission control unit 207 calculates an instantaneous SINR from the received impulse response of the communication path.
- the instantaneous SINR is an SINR of a predetermined period that is determined in advance, and is calculated, for example, for each symbol. In practice, an average value obtained for each signal block (for example, 64 symbols) may be used. Then, the transmission control unit 207 repeatedly executes a series of processes for calculating the throughput at the MCS index selected based on the instantaneous SINR and determining whether the throughput is the maximum throughput or not while extending the GI length. Then, the transmission control unit 207 ends the process when the GI length becomes larger than the maximum delay of the delayed wave or when the selected MCS index becomes the maximum MCS index usable as the system.
- the data transmission station 101 can select the MCS index and the GI length that can obtain the maximum throughput, and can start the transmission of the data signal by setting the selected MCS index and the GI length. It can.
- the method for calculating the instantaneous SINR and transmission weight will be described in detail later.
- the transmission control unit 207 may select the MCS index and the GI length for each antenna, or may select the same MCS index and the GI length for all antennas.
- the data receiving station 102 may perform selection of an MCS index and a GI length that can obtain the maximum throughput and calculation of a transmission weight.
- the transmission control unit 207 receives the notification signal including the MCS index and the GI length that can obtain the maximum throughput from the data receiving station 102 and the transmission weight information, and performs the setting.
- the antenna 112 includes one or more antennas 112 (1) to 112 (N r ) for transmission / reception, and transmits a high-frequency signal output from a transmission signal conversion unit 305 described later. Radiates into space as electromagnetic waves. Alternatively, the antenna 112 converts the electromagnetic wave in the space including the delayed wave transmitted from the data transmission station 101 into a high frequency signal.
- the reception signal converter 301 frequency-converts the high-frequency signal received by the antenna 112 into a baseband signal, similar to the reception signal converter 206 of the data transmission station 101.
- the GI removal unit 302 removes the GI inserted on the data transmission station 101 side. Then, a data signal from which the GI has been removed (a training signal during the training period) is output.
- the reception weight multiplication unit 303 multiplies the data signal from which the GI has been removed by the GI removal unit 302 by a reception weight (weighting coefficient), and performs weighting for separating signals transmitted and received by one or more antennas.
- the reception weight is calculated from the impulse response of the communication channel estimated by the communication channel estimation unit 304 described later. Similar to the transmission weight multiplication unit 203 of the data transmission station 101, various signal separation techniques such as weighting by ZF or MMSE and eigenmode transmission may be used in combination. Further, the calculation and multiplication of the weights may be performed only on the data transmission station 101 side or only on the data reception station 102 side. Alternatively, the data transmission station 101 and the data reception station 102 may calculate and multiply the respective weights. In the wireless communication system 100 according to the present embodiment, weight calculation and multiplication are performed by both the data transmission station 101 and the data reception station 102.
- the communication path estimation unit 304 estimates an impulse response of the communication path from a predetermined known training signal output from the GI removal unit 302. In the present embodiment, as described on the data transmission station 101 side, the communication path estimation unit 304 accurately estimates the impulse response of the communication path to the end by the NDP transmitted from the data transmission station 101. Then, the communication channel estimation unit 304 generates a notification signal including information on the estimated impulse response of the communication channel, and transmits the notification signal from the transmission signal conversion unit 305 and the antenna 112 to the data transmission station 101.
- the transmission signal conversion unit 305 converts the baseband signal into a high-frequency signal and transmits it from the antenna 111, similarly to the transmission signal conversion unit 205 of the data transmission station 101.
- the data signal demodulator 306 performs demodulation for detecting a data signal modulated on the data transmission station 101 side as an information bit according to a command from the communication path estimator 304, and outputs a bit string.
- the data signal demodulating unit 306 has an error correction decoding function and a deinterleaving function according to the function on the data transmitting station 101 side.
- the data signal demodulator 306 may obtain a log-likelihood ratio (LLR) as an input value for error correction decoding based on the instantaneous SINR.
- LLR log-likelihood ratio
- the instantaneous SINR information is calculated by the communication path estimation unit 304 and output to the data signal demodulation unit 306.
- the information bit detection unit 307 detects necessary information bits from the bit string output from the data signal demodulation unit 306 according to a command from the communication path estimation unit 304. Note that an error correction decoding function and a deinterleave function may be performed on the information bit detection unit 307 side.
- the data receiving station 102 accurately estimates the impulse response of the communication channel from the training signal transmitted by the data transmitting station 101 to the end, and notifies the data transmitting station 101 of the estimated impulse response of the communication channel. To do.
- the data transmission station 101 selects the MCS index and the GI length that can obtain the maximum throughput has been described.
- the data reception station 102 may perform the selection.
- the channel estimation unit 304 calculates an instantaneous SINR or a throughput based on the estimated impulse response of the channel, selects an MCS index and a GI length that can obtain the maximum throughput, and transmits the data transmission station. 101 side is notified.
- the channel estimation unit 304 receives data such as instructions to the data signal demodulation unit 306 and the information bit detection unit 307 such as modulation scheme and coding rate, and calculation and setting of reception weights to the reception weight multiplication unit 303. Since the overall control of the station 102 is performed, the reception control unit 304 may be referred to as the transmission control unit 207 of the data transmission station 101.
- the radio communication system 100 accurately estimates the impulse response of the communication path to the end before the main communication, calculates the weight for signal separation, and performs weighting.
- the instantaneous SINR is obtained from the impulse response estimation result, and the GI length and MCS index realizing the maximum throughput are selected from the selectable combinations of GI length and MCS index.
- communication is performed by selecting a GI length and an MCS index that achieve maximum throughput while suppressing distortion due to interference between symbol blocks in a long delay wave environment. Can do.
- FIG. 3 shows an example of the GI addition / removal operation when the delay time of the delay wave is shorter than the GI length.
- a delayed wave environment that does not exceed the GI length it is possible to perform signal separation without distortion. Therefore, it is possible to perform communication in which inter-symbol block interference is suppressed.
- FIG. 3A shows a symbol-blocked single carrier frame 151, in which a GI 152 having a length of ⁇ symbols is added to the DATA field (data period).
- h 0 ,..., H L-1 are impulse responses
- x 0 , x 1 ... X N_s-1 are transmission signals, y 0 , y 1.
- Y N_s-1 indicates a received signal.
- the end portion (x N — s ... X N — s ⁇ 1 ) of the DATA field having a length corresponding to the GI length is added.
- x N — s ⁇ indicates a transmission signal located at a position of ⁇ symbols in length from the last transmission signal x N — s ⁇ 1 in the DATA field.
- FIG. 3B shows an example of a power delay profile 153 in a delayed wave environment that does not exceed the GI length, where the horizontal axis indicates the delay time t and the vertical axis indicates the gain
- the maximum delay time of the power delay profile 153 is Tm1
- the GI length of the frame 151 is ⁇ symbols
- the delay wave (the hatched portion of the GI 152 in FIG. 3A) has the GI length. Since it falls within the time of ⁇ symbol, there is no influence on the DATA field.
- FIG. 3C shows an impulse response matrix 161 of the communication path.
- the matrix after performing the GI addition / removal operation becomes a complete cyclic matrix 162, and signal separation without distortion is possible.
- FIG. 4 shows an example of a GI addition / removal operation when the delay time of the delayed wave is longer than the GI length.
- FIG. 4A shows a symbol-blocked single carrier frame 151 in which a GI 152 having a length of ⁇ symbols is added to the DATA field, as in FIG. 3A.
- 3A differs from FIG. 3A in that the delay time of the delayed wave is longer than the GI length, so that the impulse response h 0 ,..., H L ⁇ 1 exceeds the GI period of length ⁇ symbols, and DATA.
- the received signal y 0 , y 1 ... Y N_s ⁇ 1 is affected by the previous symbol block.
- FIG. 4B shows an example of a power delay profile in a delayed wave environment exceeding the GI length, where the horizontal axis indicates the delay time t and the vertical axis indicates the gain
- the maximum delay time of the power delay profile 154 is Tm2
- the GI length of the frame 151 is ⁇ symbols
- the delay wave (impulse response h 0 in FIG. 4A,... , H L ⁇ 1 )) indicated by the slanted line fits within the time of the GI length ⁇ symbol, but the part indicated by the halftone line overlaps the DATA field.
- FIG. 4C shows an impulse response matrix 171 of the channel, and the matrix after performing the GI addition / removal operation becomes an incomplete cyclic matrix 172, and the signal power decreases due to the loss of the channel matrix. Further, the interference component 173 from the previous symbol block causes distortion due to inter-symbol block interference.
- the matrix (communication channel matrix) representing the impulse response of the communication channel in the current symbol block is not a cyclic matrix, and the signal power is reduced. Arise. There is also a problem that the delayed wave component of the previous symbol block affects the next symbol block.
- GI addition operation on the data transmission station 101 side Next, an operation for adding a GI on the data transmitting station 101 side will be described.
- the frame transmitted and received between the data transmitting station 101 and the data receiving station 102 is the same as the frame 151 described with reference to FIGS. 3 and 4, but the impulse response is h 0, n_rn_t,. h L-1, n_rn_t , transmission signal block is x 0, n_t , x 1, n_t ... x N_s-1, n_t , reception signal block is y 0, n_r , y 1, n_r. -1, n_r .
- each symbol is defined as follows.
- the transmission signal block xn transmitted from the data transmission station 101 can be expressed by Expression (3).
- the GI addition operation is represented by a matrix T CP shown in Expression (4).
- the transmission signal block x n before GI addition shown in Expression (3) is transmitted from the GI addition matrix T CP shown in Expression (4) according to the transmission signal block x GI after GI addition as shown in Expression (5). 'converted to n .
- the first item is the received signal of the current symbol
- the second item is the received signal of the previous symbol
- the third item is additional noise
- Equation (7) the channel impulse response matrix H_n r n t is expressed by Equation (7).
- Equation (8) the channel impulse response matrix of the previous block h I _n r n t is expressed by Equation (8).
- a signal transmitted from the n t th transmitting antenna of the data transmitting station 101 is received by the n r th receiving antenna of the data receiving station 102.
- the received signal block y ′ n before the GI removal in Equation (6) is removed from the GI by the matrix R CP shown in Equation (9) that removes the GI having the length of ⁇ symbols, and the GI removal shown in Equation (10) is performed.
- received signal block y n after is obtained.
- the communication channel matrix H is expressed by Expression (11), when the GI addition / removal operation is performed, it is expressed by Expression (12).
- Equation (12) is a complete cyclic matrix, but the long delayed wave that exceeds the GI length.
- Equation (12) is a complete cyclic matrix, but the long delayed wave that exceeds the GI length.
- the data is transmitted from the n t -th antenna 111 (n t ) of the data transmission station 101, and the n r -th antenna 112 of the data reception station 102.
- the signal received at (n r ) will be described in detail.
- the received signal block y_n r of the antenna 112 (n r ) before performing the GI addition / removal operation is expressed by Expression (13).
- the first item of Equation (13) is the received signal of the current symbol
- the second item is the received signal of the previous symbol
- the third item is the additional noise
- the first item of Expression (14) is the received signal of the current symbol
- the second item is the received signal of the previous symbol
- the third item is additional noise.
- the received signal of the current symbol of the first item has a channel matrix that is an incomplete cyclic matrix, and a part of the received signal is lost, so that the signal power is reduced. Since the received signal of the symbol immediately before the second item includes a part of the lost channel matrix, distortion due to inter-symbol block interference occurs.
- Eigenmode transmission is one of techniques for performing signal separation by performing an operation called singular value decomposition on an impulse response matrix of a communication channel.
- the signal separation is a process of separating a signal received in a state where signals transmitted from one or a plurality of transmission antennas 111 are mixed due to influences between antennas or delayed waves.
- Expression (15) can be expressed as Expression (16).
- V and U are unitary matrices
- V H is a complex conjugate transpose matrix of V.
- ⁇ is expressed by Expression (17).
- ⁇ n ( ⁇ 1 to ⁇ N ) is instantaneous signal power.
- V corresponds to the transmission weight multiplied by the transmission weight multiplication unit 203
- U H corresponds to the reception weight multiplied by the reception weight multiplication unit 303.
- the data transmission station 101 side and the data reception station 102 multiply the weights to separate the signals, but the data reception station 102 does not multiply the reception weights and
- the transmission station 101 may multiply both the transmission weight and the reception weight.
- both the transmission weight and the reception weight may be multiplied on the data reception station 102 side.
- the singular value decomposition is performed on the communication channel matrix H of Expression (20).
- the received signal Y includes a channel matrix before the channel matrix is lost due to a delay wave longer than the GI length, a missing portion of the channel matrix, and the previous one.
- the interference component from the symbol block it is expressed by Expression (21).
- Equation (21) the first term is the channel matrix before loss
- the second term is the channel matrix of the missing portion
- the third term is the channel matrix of the interference portion from the previous symbol block.
- the fourth term is additive noise.
- the impulse response H_n r n t of the channel matrix H ⁇ before defects is represented by the formula (23).
- ⁇ is represented by Expression (25).
- the impulse response h 0 _n r n t of the channel matrix H 0 of defective portions can be expressed by equation (27).
- the length of the rear 0... 0 portion corresponds to the GI length ⁇ .
- (3) channel matrix of the interference portions from the previous symbol block then the channel matrix H I of the interference portions from the previous symbol block is represented by formula (28).
- the impulse response h I _n r n t of the channel matrix H I of the interference portions from the previous symbol block is represented by formula (29).
- the first item is the channel matrix before loss
- the second item is the channel matrix of the missing portion
- the third item is the channel matrix of the interference portion from the previous symbol block.
- the fourth item represents additional noise, respectively.
- Equation (31) xn represents the nth transmission symbol, and Xn represents a transmission symbol block.
- E [•] represents an expected value
- 2 ] represents an average energy in one symbol
- 2 ] represents an average energy in a symbol block.
- the power P a of the defective portion is represented by the formula (32)
- the power P b of the interference portions from the previous symbol block is represented by formula (33).
- the instantaneous interference power P I P a + P b .
- iSINR (n) is expressed by Expression (34).
- the instantaneous SINR can be obtained from the power of the missing portion and the power of the interference portion from the previous symbol block.
- the signal power (Pa) of the part lost due to the delayed wave the power (Pb) of the interference part of the previous symbol block, the additional noise power ( ⁇ 2), and the signal before the loss due to the delayed wave
- the instantaneous signal power obtained by subtracting the signal power lost due to the delayed wave is ⁇ ′
- the required SNR (dB) for each MCS index can be obtained by Expression (35).
- the minimum reception sensitivity (dBm) can be obtained from the value of the minimum reception sensitivity for each MCS index shown in FIG. 5, for example (see Table 22-25 of Non-Patent Document 1, for example).
- the MCS index is 9 (modulation method is 256QAM, coding rate is 5/6)
- the minimum receiving sensitivity when the bandwidth ⁇ f is 20 MHz is ⁇ 57 dBm.
- equation (35) the equivalent noise power (dBm) can be obtained from equation (36).
- Equivalent noise power 10 log 10 (KT ⁇ f ⁇ 1000) (36) (Where K: Boltzmann constant, T: absolute temperature, ⁇ f: bandwidth) As an example, assuming that the MCS index shown in FIG. 5 is 9, the bandwidth ⁇ f is 20 MHz, the room temperature is 27 degrees Celsius, and the noise figure is 6 dB, the required SNR is about 36 dB.
- FIG. 6 is an example showing a relationship among the MCS index, the GI length, and the transmission rate (see, for example, Table 22-30 of Non-Patent Document 1).
- the MCS index is 7 (modulation method is 64QAM, coding rate is 5/6) and the GI length is 800 ns, the throughput is 65 Mb / s.
- an instantaneous SINR is calculated while gradually extending the GI length with a GI length of 400 ns as a reference GI length.
- the maximum selectable MCS index is obtained by comparison with the required SNR.
- the throughput is calculated from the current MCS index and the GI length, and if it is larger than the maximum throughput up to the present, it is retained.
- Such a series of processes is repeatedly executed, and the series of processes is ended when the GI length becomes larger than the maximum delay of the delayed wave or when the MCS index becomes the maximum MCS index.
- the MCS index and the GI length that achieve the maximum throughput are selected.
- the data transmission station 101 sets an MCS index and a GI length that realize the maximum throughput, and starts transmitting a data signal.
- the transmission control unit 207 includes the information bit generation unit 201 and the data signal modulation unit 202.
- the GI insertion unit 204 is set with a coding rate of 3/4, a modulation scheme of 16QAM, and a GI length of 800 nsec, respectively, and starts data signal transmission (main communication).
- the wireless communication system 100 is configured to use the MCS for obtaining the maximum throughput based on the impulse response of the communication path estimated by the data receiving station 102 from the training signal transmitted by the data transmitting station 101. Communication can be performed by setting an index and a GI length.
- FIG. 7 shows a processing example of the wireless communication system 100 according to the present embodiment shown in FIG. 7 is executed by the data transmitting station 101 and the data receiving station 102.
- step S101 the transmission control unit 207 of the data transmission station 101 transmits a training signal (for example, NDP), and the communication path estimation unit 304 of the data reception station 102 performs a process of estimating from the beginning to the end of the impulse response of the communication path.
- a training signal for example, NDP
- the communication path estimation unit 304 of the data reception station 102 performs a process of estimating from the beginning to the end of the impulse response of the communication path.
- the GI length is set sufficiently longer than the assumed maximum delay time, and a highly accurate impulse response is acquired from the beginning to the end.
- step S102 the transmission control unit 207 sets an increment counter n ⁇ for increasing the GI length ⁇ little by little (initialization).
- step S103 the transmission control unit 207 sets the GI length ⁇ in the GI insertion unit 204 using the equation (37).
- NG is a step length for extending the GI length.
- NG is set to be one symbol long, the GI length is extended in units of one symbol.
- step S104 the transmission control unit 207 calculates an instantaneous SINR in consideration of distortion due to a delayed wave exceeding the GI length based on the impulse response estimated by the data receiving station 102, and the maximum usable in the calculated instantaneous SINR.
- step S105 the transmission control unit 207, based on the MCS index M I and GI length ⁇ of time, it calculates the throughput ⁇ a (bps).
- the calculated throughput ⁇ is larger than the maximum throughput ⁇ max up to now, the calculated throughput ⁇ is stored and held in a memory or the like as a new maximum throughput ⁇ max .
- the calculated throughput ⁇ is retained as it is as the maximum throughput ⁇ max .
- step S106 the transmission control unit 207 compares the maximum delay time L obtained from the impulse response and the like with the GI length ⁇ . If L ⁇ is satisfied, the process proceeds to step S109, and L ⁇ is not satisfied. In this case, the process proceeds to step S107.
- step S107 the transmission controller 207, MCS index M I obtained in step S104, it is determined whether or not the maximum of MCS indexes available as a system. And if MCS index M I is of maximum of MCS indexes available as a system advances to processing in step S109, if not the largest ones process proceeds to step S108.
- MCS index M I is of maximum of MCS indexes available as a system.
- the process proceeds to step S109 and is used in the calculated instantaneous SINR. If the possible MCS index is 0 to 8, the process proceeds to step S108, and the processes from step S103 to step S107 are repeatedly executed.
- step S108 the transmission controller 207 increments the incremental counter n delta for drawing GI length mu, the process returns to step S103.
- step S109 whether the set GI length ⁇ is greater than the maximum delay time of the delayed wave L, or at, if MCS index M I selected was the largest MCS index available as a system, MCS index M the modulation and coding scheme and the GI length ⁇ of I adopted as MCS index M I and GI length ⁇ achieve maximum throughput alpha max, performs the communication.
- the wireless communication system 100 can estimate the impulse response of the communication path, calculate the MCS index and the GI length that maximize the throughput, and transmit the data signal.
- FIG. 8 shows an example of information and processing transmitted / received between the data transmitting station 101 and the data receiving station 102.
- the horizontal axis indicates time, and indicates transmission signals of the data transmission station 101 and the data reception station 102.
- step S201 the data transmission station 101 transmits an NDP training signal without a DATA signal.
- the data transmission station 101 transmits a training signal with a sufficiently long GI added to an assumed delayed wave.
- the impulse response of the communication channel can be estimated with high accuracy to the end because it is not affected by a decrease in signal power due to a loss of the communication channel matrix or distortion due to inter-symbol block interference.
- step S202 the data receiving station 102 receives the NDP transmitted from the data transmitting station 101.
- step S203 the data reception station 102 estimates the impulse response of the communication path based on the NDP received from the data transmission station 101.
- step S204 the data receiving station 102 feeds back the communication path information including the estimated impulse response information to the data transmitting station 101 side.
- step S205 the data transmitting station 101 receives the communication path information including the impulse response of the communication path fed back from the data receiving station 102.
- step S206 the data transmitting station 101 calculates an instantaneous SINR from the impulse response of the communication path received from the data receiving station 102, obtains the maximum MCS index that can be used with the calculated instantaneous SINR, and calculates a throughput.
- the processing is executed while extending the GI length little by little (for example, extending by one symbol unit). Then, the data transmission station 101 selects the final MCS index and GI length that achieve the maximum throughput.
- step S207 the data transmission station 101 sets a final MCS index and a GI length that realize the maximum throughput selected in the process of step S206.
- step S208 the data transmission station 101 starts data transmission (main communication) using the MCS index and GI length that achieve the maximum throughput.
- step S209 the data receiving station 102 receives the data signal transmitted from the data transmitting station 101 with the MCS index and the GI length that realize the maximum throughput.
- the radio communication system 100 can transmit and receive data signals by setting the GI length and MCS index that maximize the throughput in a long delay wave environment.
- the wireless communication system, the wireless communication method, and the transmission apparatus according to the present invention provide the optimum GI that achieves the maximum throughput while suppressing the influence of delay waves in symbol-blocked single carrier communication.
- Communication can be performed by selecting the length and modulation / coding method.
- DESCRIPTION OF SYMBOLS 100 ... Wireless communication system; 101 ... Data transmission station; 102 ... Data reception station; 201 ... Information bit generation part; 202 ... Data signal modulation part; 204 ... GI insertion unit; 205 ... transmission signal conversion unit; 111, 112 ... antenna; 206 ... reception signal conversion unit; 207 ... transmission control unit; 301 ... reception signal conversion 302: GI elimination unit; 303 ... reception weight multiplication unit; 304 ... communication channel estimation unit; 305 ... transmission signal conversion unit; 306 ... data signal demodulation unit; Information bit detector
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Discrete Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Radio Transmission System (AREA)
Abstract
【課題】 従来、シンボルブロック化シングルキャリア通信を行う無線通信システムにおいて、最大のスループットを得る最適なGIの長さ及び変調・符号化方式の選定が難しかった。 【解決手段】 単一もしくは複数のアンテナを用いて通信を行う送信側通信部と、シンボルブロック化したシングルキャリア信号を生成する変調部と、GI挿入部と、重み付け係数を乗算するウェイト乗算部と、通信開始前に、トレーニング信号を送信して受信装置から通信路のインパルス応答の情報を取得し、重み付け係数を算出するとともに、GIの長さを変えて算出される特定期間のSINRに応じて最大のスループットが得られる変調・符号化方式とGIの長さとを決定する制御部とを有する送信装置と、送信装置から送信されるトレーニング信号により通信路のインパルス応答を推定し、推定した通信路のインパルス応答の情報を送信装置へ通知する推定部を有する受信装置とを備える。
Description
本発明は、シンボルブロック化シングルキャリア通信を行う無線通信システムにおいて、遅延波による歪を低減しつつスループットを向上する技術に関する。
従来、遅延波の影響を回避するために、シンボルブロック化したデータ期間の前にガードインターバル(GI:Guardinterval)を付加する技術が用いられている。例えば、送信側でデータ期間末尾の信号がGIとして付加され(サイクリックプレフィックス)、受信側でGIを除去することにより、GI長を超えない遅延波環境においてシンボルブロック間干渉を抑制した通信を行うことができる。
ところが、GI長を超える長遅延波成分が存在する場合、シンボルブロック間干渉による歪みが発生し、遅延波成分が大きいほど影響が大きくなる。遅延波の広がりに対して十分な長さのGIを付加することにより遅延波の影響を小さくできるが、GI長を長くし過ぎると伝送効率が低下するという問題が生じる。
そこで、周波数領域信号を用いるOFDM(Orthogonal Frequency DivisionMultiplexing)通信システムにおいて、長遅延波環境におけるGI長と変調・符号化方式とを最適化してスループットを向上する技術が検討されている(例えば特許文献1参照)。
WirelessLAN Medium Access Control (MAC) andPhysical Layer (PHY) Specifications,IEEE Std.802.11-2012.
しかしながら、上記従来技術は、周波数領域信号を用いるマルチキャリアシステムを対象とし、時間領域信号を用いるシングルキャリアシステムへの適用は考えられていなかった。このため、シンボルブロック化シングルキャリア通信を行う無線通信システムにおいて、受信信号にGI長を超える遅延波成分が含まれている場合、選択可能なGI長と変調・符号化方式の中から最大のスループットを実現するGI長と変調・符号化方式を選定することが難しいという問題があった。
本発明では、時間領域信号を用いるシンボルブロック化シングルキャリア通信において、遅延波の影響を抑えつつ最大のスループットを実現する最適なGI長と変調・符号化方式を選定できる無線通信システム、無線通信方法および送信装置を提供することを目的とする。
第1の発明の無線通信システムは、単一もしくは複数のアンテナを用いて通信を行う送信側通信部と、データ信号またはトレーニング信号をシンボルブロック化したシングルキャリア信号を生成する変調部と、前記変調部が出力する信号にガードインターバルを挿入して前記送信側通信部から送信するガードインターバル挿入部と、前記変調部と前記ガードインターバル挿入部との間にアンテナで送受信される信号を分離するための重み付け係数を乗算するウェイト乗算部と、通信開始前に、トレーニング信号を送信して通信路のインパルス応答の情報を取得し、前記通信路のインパルス応答に基づいて、前記重み付け係数を算出するとともに、前記ガードインターバルの長さを変えて算出される特定期間のSINRに応じて最大のスループットが得られる変調・符号化方式と前記ガードインターバルの長さとを決定する制御部とを少なくとも有する送信装置と、単一もしくは複数のアンテナを用いて通信を行う受信側通信部と、前記送信装置から送信されるトレーニング信号により前記通信路のインパルス応答を推定し、推定した前記通信路のインパルス応答の情報を前記受信側通信部により前記送信装置へ通知する推定部とを少なくとも有する受信装置とを備えることを特徴とする。
第2の発明は、第1の発明の無線通信システムにおいて、前記受信装置は、前記送信装置から受信する信号の前記ガードインターバルを除去するガードインターバル除去部と、前記ガードインターバル除去部が出力するシングルキャリア信号を復調する復調部と、前記ガードインターバル除去部と前記復調部との間に前記ウェイト乗算部が乗算する前記重み付け係数の全部または一部を分担して乗算する受信側ウェイト乗算部とをさらに有することを特徴とする。
第3の発明は、単一もしくは複数のアンテナをそれぞれ有する送信装置と受信装置との間で通信を行う無線通信方法であって、前記送信装置は、データ信号またはトレーニング信号をシンボルブロック化したシングルキャリア信号に前記アンテナで送受信される信号を分離するための重み付け係数を乗算し、ガードインターバルを挿入して前記アンテナから送信する処理を行い、通信開始前に、トレーニング信号を送信して前記受信装置から通信路のインパルス応答の情報を取得し、前記通信路のインパルス応答に基づいて、前記重み付け係数を算出するとともに、前記ガードインターバルの長さを変えて算出される特定期間のSINRに応じて最大のスループットが得られる変調・符号化方式と前記ガードインターバルの長さとを決定し、前記受信装置は、前記送信装置から送信されるトレーニング信号により前記通信路のインパルス応答を推定し、推定した前記通信路のインパルス応答の情報を前記送信装置へ通知する処理を行うことを特徴とする。
第4の発明は、第3の発明の無線通信方法において、前記受信装置は、前記送信装置から受信する信号の前記ガードインターバルを除去した信号に前記送信装置側で乗算する前記重み付け係数の全部または一部を分担して乗算し、受信信号を復調することを特徴とする。
第5の発明は、単一もしくは複数のアンテナを用いて通信を行う通信部と、データ信号またはトレーニング信号をシンボルブロック化したシングルキャリア信号を生成する変調部と、前記変調部が出力する信号にガードインターバルを挿入して前記通信部から送信するガードインターバル挿入部と、前記変調部と前記ガードインターバル挿入部との間に前記アンテナで送受信される信号を分離するための重み付け係数を乗算するウェイト乗算部と、通信開始前に、トレーニング信号を送信して受信装置から通信路のインパルス応答の情報を取得し、前記通信路のインパルス応答に基づいて、前記重み付け係数を算出するとともに、前記ガードインターバルの長さを変えて算出される特定期間のSINRに応じて最大のスループットが得られる変調・符号化方式と前記ガードインターバルの長さとを決定する制御部とを有することを特徴とする。
本発明に係る無線通信システム、無線通信方法および送信装置は、時間領域信号を用いるシンボルブロック化シングルキャリア通信において、遅延波の影響を抑えつつ最大のスループットを実現する最適なGI長と変調・符号化方式を選定して通信を行うことができる。
以下、図面を参照して本発明に係る無線通信システム、無線通信方法および送信装置の実施形態について説明する。なお、本実施形態では、送信装置をデータ送信局、受信装置をデータ受信局と称する。
図1は、本実施形態に係る無線通信システム100の一例を示す。無線通信システム100は、複数(Nt個:Nt≧1の整数)のアンテナ111(1)からアンテナ111(Nt)を有するデータ送信局101と、複数(Nr個:Nr≧1の整数)のアンテナ112(1)からアンテナ112(Nr)を有するデータ受信局102とを備える。ここで、以降の説明において、データ送信局101のアンテナ111(1)からアンテナ111(Nt)に共通の説明を行う場合は符号末尾の(番号)を省略してアンテナ111と表記し、特定のアンテナを指す場合は符号末尾に(番号)を付加して例えばアンテナ111(1)のように表記する。データ受信局102のアンテナ112(1)からアンテナ112(Nr)についても同様に表記する。
本実施形態に係る無線通信システム100において、データ送信局101とデータ受信局102は、シンボルブロック化シングルキャリア通信を行う。ここで、データ送信局101とデータ受信局102の間には、マルチパスなど遅延時間が異なる複数の遅延波が存在する。このような遅延波環境において、GI長を超える長遅延波成分が存在する場合、1つ前のシンボルブロックの遅延波が次のシンボルブロックに重なり、シンボルブロック間干渉による歪みが発生するという問題がある。一方、この問題を回避するために十分に長いGIを付加した場合、シンボルブロック間干渉による歪みの発生は少なくなるが、冗長が大きくなるのでスループットが低下するという問題が生じる。
そこで、シンボルブロック化シングルキャリア通信を行う本実施形態に係る無線通信システム100は、長遅延波環境におけるシンボルブロック間干渉による歪みを抑えつつ選択可能なGI長とMCSインデックス(Modulation and Coding Scheme:変調方式と符号化率の組み合わせを示す指標)の中から最大のスループットを実現するGI長とMCSインデックスを選定して通信することができる。
ここで、図1の吹き出し欄120は、データ受信局102のアンテナ111の数をNr、データ送信局101のアンテナ112の数をNtとするMIMO(Multiple-Input Multiple-Output)の場合の通信路行列Hの一例を示す。吹き出し欄120において、MIMOの通信路行列Hは、式(1)に示すようにNr×Ntの通信路インパルス応答行列により表される。なお、以降の実施形態では、複数のアンテナを用いるMIMO方式の通信を行う場合について説明するが、単数(1本)のアンテナを用いるSISO(Single-Input Single-Output)方式の通信を行う場合についても適用可能である。
ここで、シンボル間隔の遅延時間を有する複数の独立なパスがある遅延波環境において、シンボルブロック化するシンボルの長さをNsとすると、式(1)に示す通信路行列HはNrNs×NtNsの通信路インパルス応答行列となり、各要素は式(2)に示すh_nrntで表される。なお、文章中において、記号_は下付き文字であることを示し、例えばh_nrntのnrntはhの下付き文字を示す。以降で説明する他の式や記号についても同様に表記する。
このように、本実施形態に係る無線通信システム100は、データ送信局101とデータ受信局102との間に複数の遅延波が存在する遅延波環境において、シンボルブロック化シングルキャリア通信を行うシステムである。
図2は、図1で説明した本実施形態に係る無線通信システム100のデータ送信局101およびデータ受信局102の構成例を示す。
データ送信局101は、情報ビット生成部201、データ信号変調部202、送信ウェイト乗算部203、GI挿入部204、送信信号変換部205、受信信号変換部206、送信制御部207およびアンテナ111を有する。
データ受信局102は、受信信号変換部301、GI除去部302、受信ウェイト乗算部303、通信路推定部304、送信信号変換部305、データ信号復調部306、情報ビット検出部307およびアンテナ112を有する。
先ず、データ送信局101の各部について説明する。
アンテナ111は、図1で説明したように、アンテナ111(1)からアンテナ111(Nt)の単数もしくは複数の送受信用のアンテナを有し、後述する送信信号変換部205が出力する高周波信号を電磁波として空間に放射する。或いは、アンテナ111は、データ受信局102から送信された遅延波を含む空間上の電磁波を受信して高周波信号を出力する。
情報ビット生成部201は、後述する送信制御部207の指令により、データ受信局102へ送信するデータ情報ビットを生成する。データ情報ビットは、例えば外部(不図示)から入力するデータ信号、内部で生成するデータ信号およびトレーニング信号などに対応するビット列である。トレーニング信号は、信号検出用のプリアンブルなどの予め決められた情報(例えば”01”の交互パターン等の特定パターン)の信号で、レベル調整や周波数オフセット調整などに利用される。本実施形態では、情報ビット生成部201は、例えばトレーニング信号として、データ信号がないNDP(Null Data Packet)を生成し、データ受信局102側で通信路のインパルス応答を推定するために用いられる。なお、データ送信局101が送信するトレーニング信号の情報は、予めデータ受信局102との間で共有されている。ここで、情報ビット生成部201は、所定の符号化率で誤り訂正符号を生成する誤り訂正符号化機能やインターリーブ機能などを有してもよい。
データ信号変調部202は、後述する送信制御部207の指令により、情報ビット生成部201が出力するビット列を所定の変調方式(例えば直交振幅変調(QAM:Quadrature Amplitude Modulation)など)で変調する。
ここで、本実施形態に係る無線通信システム100では、システム上で利用可能な複数のMCSインデックスの中から選択された変調方式および符号化率により、情報ビットの生成や変調を行う。
送信ウェイト乗算部203は、データ受信局102で推定された通信路のインパルス応答から後述する送信制御部207により算出された送信ウェイト(重み付け係数)により、単数もしくは複数のアンテナで送受信される信号を分離するための重み付けを行う。なお、送信側でのZF(Zero Forcing)やMMSE(Minimum mean squareerror)による重みづけや固有モード伝送など、各種信号分離技術を受信側と組み合わせて用いてもよい。ここで、固有モード伝送におけるウェイトの算出例については、後で詳しく説明する。
GI挿入部204は、後述する送信制御部207の指令により、遅延波の影響を少なくするためのGIを挿入する。GIは、隣接するシンボル間に挿入される緩衝用の期間で、この期間を遅延波の遅延時間よりも長くすることにより遅延波の影響を少なくすることができる。例えば、GI挿入部204は、付加するGI長に相当するシンボル期間末尾の信号をシンボル期間の前に付加する。
送信信号変換部205は、GIが挿入された送信信号をアンテナ111から送出するための高周波信号に周波数変換する。例えば20MHz帯域のベースバンド信号が5GHz帯の高周波信号にアップコンバートされる。
受信信号変換部206は、アンテナ111により受信される高周波信号を低周波のベースバンド信号に周波数変換する。例えば、受信信号変換部206は、5GHz帯の高周波信号をダウンコンバートして20MHz帯域のベースバンド信号を出力する。
送信制御部207は、送信ウェイトの算出、GI長およびMCSインデックスの選定などを行うとともに、データ送信局101全体の動作を制御する。例えば、送信制御部207は、情報ビット生成部201およびデータ信号変調部202にトレーニング信号の指定や変調方式および符号化率などを指示し、GI挿入部204に付加するGI長を指示する。また、送信制御部207は、算出した送信ウェイトを送信ウェイト乗算部203へ出力する。さらに、送信制御部207は、データ受信局102との間で本通信(データ送信局101とデータ受信局102との間で行うデータ通信)を開始する前に、想定される遅延波よりも十分に長いGIを付加したトレーニング信号を送信する。これにより、データ受信局102は、通信路のインパルス応答を末尾まで高精度に推定することができる。また、送信制御部207は、受信信号変換部206を介してデータ受信局102から送信された通信路のインパルス応答などの通信路情報を含む通知信号を受信する。そして、送信制御部207は、データ受信局102で推定された通信路のインパルス応答から単数もしくは複数のアンテナで送受信される信号を分離するための送信ウェイトを算出して送信ウェイト乗算部203に出力する。さらに、送信制御部207は、受信した通信路のインパルス応答から瞬時SINRを算出する。ここで、瞬時SINRは、予め決められた所定期間のSINRで、例えば1シンボル毎に算出される。なお、実際には信号ブロック(例えば64シンボルなど)単位で求めた平均値を用いてもよい。そして、送信制御部207は、瞬時SINRに基づいて選択されるMCSインデックスでのスループットを算出して最大のスループットであるか否かを判別する一連の処理をGI長を延伸しながら繰り返し実行する。そして、送信制御部207は、GI長が遅延波の最大遅延より大きくなるか、または、選択されたMCSインデックスがシステムとして利用可能な最大のMCSインデックスになったときに処理を終了する。
このようにして、データ送信局101は、最大のスループットが得られるMCSインデックスおよびGI長を選定することができ、選定されたMCSインデックスおよびGI長を設定してデータ信号の送信を開始することができる。なお、瞬時SINRおよび送信ウェイトの算出方法については、後で詳しく説明する。
ここで、送信制御部207は、アンテナ毎にMCSインデックスおよびGI長を選択してもよいし、全てのアンテナで同一のMCSインデックスおよびGI長を選択してもよい。
また、最大のスループットが得られるMCSインデックスおよびGI長の選定や、送信ウェイトの算出をデータ受信局102側で行ってもよい。この場合、送信制御部207は、データ受信局102から最大のスループットが得られるMCSインデックスおよびGI長や、送信ウェイトの情報を含む通知信号を受信して設定を行う。
次に、図2に示すデータ受信局102の各部について説明する。
アンテナ112は、図1で説明したように、アンテナ112(1)からアンテナ112(Nr)の単数もしくは複数の送受信用のアンテナを有し、後述する送信信号変換部305が出力する高周波信号を電磁波として空間に放射する。或いは、アンテナ112は、データ送信局101から送信された遅延波を含む空間上の電磁波を高周波信号に変換する。
受信信号変換部301は、データ送信局101の受信信号変換部206と同様に、アンテナ112が受信する高周波信号をベースバンド信号に周波数変換する。
GI除去部302は、データ送信局101側で挿入されたGIを除去する。そして、GIが除去されたデータ信号(トレーニング期間はトレーニング信号)を出力する。
受信ウェイト乗算部303は、GI除去部302によりGIが除去されたデータ信号に受信ウェイト(重み付け係数)を乗算して、単数もしくは複数のアンテナで送受信される信号を分離するための重み付けを行う。ここで、受信ウェイトは、後述する通信路推定部304により推定された通信路のインパルス応答から算出される。なお、データ送信局101の送信ウェイト乗算部203と同様に、ZFやMMSEによる重みづけや固有モード伝送など、各種信号分離技術を組み合わせて用いてもよい。また、ウェイトの算出および乗算は、データ送信局101側だけで行ってもよいし、データ受信局102側だけで行ってもよい。或いは、データ送信局101およびデータ受信局102でそれぞれのウェイトの算出および乗算を行ってもよい。なお、本実施形態に係る無線通信システム100では、データ送信局101およびデータ受信局102の両方でウェイトの算出および乗算を行っている。
通信路推定部304は、GI除去部302が出力する予め決められた既知のトレーニング信号から通信路のインパルス応答を推定する。本実施形態では、データ送信局101側で説明したように、データ送信局101から送信されるNDPにより、通信路推定部304は、通信路のインパルス応答を末尾まで正確に推定する。そして、通信路推定部304は、推定した通信路のインパルス応答の情報を含む通知信号を生成して送信信号変換部305およびアンテナ112からデータ送信局101に送信する。
送信信号変換部305は、データ送信局101の送信信号変換部205と同様に、ベースバンド信号を高周波信号に変換してアンテナ111から送出する。
データ信号復調部306は、通信路推定部304の指令により、データ送信局101側で変調されたデータ信号を情報ビットとして検出するための復調を行い、ビット列を出力する。なお、データ信号復調部306は、データ送信局101側の機能に応じて、誤り訂正復号機能やデインターリーブ機能を備える。ここで、データ信号復調部306は、誤り訂正復号の入力値としての対数尤度比(LLR:Log-Likelihood Ratio)を瞬時SINRに基づいて求めてもよい。この場合、瞬時SINRの情報は、通信路推定部304が算出してデータ信号復調部306に出力する。
情報ビット検出部307は、通信路推定部304の指令により、データ信号復調部306が出力するビット列から必要な情報ビットを検出する。なお、誤り訂正復号機能やデインターリーブ機能を情報ビット検出部307側で行ってもよい。
このようにして、データ受信局102は、データ送信局101が送信するトレーニング信号から通信路のインパルス応答を末尾まで正確に推定して、推定された通信路のインパルス応答をデータ送信局101に通知する。
なお、本実施形態では、最大のスループットが得られるMCSインデックスおよびGI長の選定をデータ送信局101が行う場合について説明したが、データ受信局102側で行ってもよい。この場合、例えば通信路推定部304は、推定した通信路のインパルス応答に基づいて瞬時SINRの算出やスループットの算出を行い、最大のスループットが得られるMCSインデックスおよびGI長の選定し、データ送信局101側に通知する。
ここで、通信路推定部304は、データ信号復調部306および情報ビット検出部307への変調方式および符号化率などの指示、受信ウェイト乗算部303への受信ウェイトの算出や設定など、データ受信局102全体の制御を行うので、データ送信局101の送信制御部207と同様に、受信制御部304と称してもよい。
以上、図2で説明したように、本実施形態に係る無線通信システム100は、本通信前に通信路のインパルス応答を末尾まで正確に推定し、信号分離のためのウェイトを算出して重み付けを行うとともに、インパルス応答の推定結果より瞬時SINRを求めて、選択可能なGI長とMCSインデックスの組み合わせの中から最大のスループットを実現するGI長とMCSインデックスを選定する。これにより、シンボルブロック化シングルキャリア通信を行う無線通信システム100において、長遅延波環境でのシンボルブロック間干渉による歪みを抑えつつ最大のスループットを実現するGI長とMCSインデックスを選定して通信することができる。
[GI付加/除去操作]
次に、GI長を超えない遅延波環境の場合と、GI長を超える遅延波環境の場合とにおけるGI付加/除去操作について詳しく説明する。
(GI長を超えない遅延波環境の場合)
図3は、遅延波の遅延時間がGI長より短い場合のGI付加/除去操作の一例を示す。GI長を超えない遅延波環境下では、歪みのない信号分離が可能となるため、シンボルブロック間干渉を抑制した通信を行うことができる。
[GI付加/除去操作]
次に、GI長を超えない遅延波環境の場合と、GI長を超える遅延波環境の場合とにおけるGI付加/除去操作について詳しく説明する。
(GI長を超えない遅延波環境の場合)
図3は、遅延波の遅延時間がGI長より短い場合のGI付加/除去操作の一例を示す。GI長を超えない遅延波環境下では、歪みのない信号分離が可能となるため、シンボルブロック間干渉を抑制した通信を行うことができる。
図3(a)は、シンボルブロック化シングルキャリアのフレーム151を示し、DATAフィールド(データ期間)に長さμシンボルのGI152が付加されている。なお、図3(a)において、h0,・・・・,hL-1はインパルス応答、x0,x1・・・・xN_s-1は送信信号、y0,y1・・・・yN_s-1は受信信号をそれぞれ示す。ここで、GI期間にはGI長に相当する長さのDATAフィールドの末尾部分(xN_s-μ・・・xN_s-1)が付加されている。なお、xN_s-μは、DATAフィールドの最後の送信信号xN_s-1から長さμシンボルの位置にある送信信号を示す。
図3(b)は、GI長を超えない遅延波環境下における電力遅延プロファイル153の一例を示し、横軸は遅延時間t、縦軸は利得|h(t)|をそれぞれ示す。ここで、電力遅延プロファイル153の最大遅延時間がTm1、フレーム151のGI長がμシンボルとして、μ>Tm1の関係にある場合、遅延波(図3(a)のGI152の斜線部分)はGI長μシンボルの時間内に収まるのでDATAフィールドへの影響はない。
図3(c)は、通信路のインパルス応答行列161を示し、GI付加/除去操作を行った後の行列は、完全な巡回行列162となり、歪のない信号分離が可能である。
(GI長を超える遅延波環境の場合)
図4は、遅延波の遅延時間がGI長より長い場合のGI付加/除去操作の一例を示す。
(GI長を超える遅延波環境の場合)
図4は、遅延波の遅延時間がGI長より長い場合のGI付加/除去操作の一例を示す。
図4(a)は、図3(a)と同様に、DATAフィールドに長さμシンボルのGI152が付加されたシンボルブロック化シングルキャリアのフレーム151を示す。なお、図3(a)との違いは、遅延波の遅延時間がGI長より長いので、インパルス応答h0,・・・・,hL-1が長さμシンボルのGI期間を超えてDATAフィールドの期間に入っており、受信信号y0,y1・・・・yN_s-1は1つ前のシンボルブロックの影響を受ける。
図4(b)は、GI長を超える遅延波環境下における電力遅延プロファイルの一例を示し、横軸は遅延時間t、縦軸は利得|h(t)|をそれぞれ示す。ここで、電力遅延プロファイル154の最大遅延時間がTm2、フレーム151のGI長がμシンボルとして、μ<Tm2の関係にあり、遅延波(図4(a)のインパルス応答h0,・・・・,hL-1の部分)の斜線で示した部分はGI長μシンボルの時間内に収まるが、網線で示した部分はDATAフィールドに重複している。
図4(c)は、通信路のインパルス応答行列171を示し、GI付加/除去操作を行った後の行列は、不完全巡回行列172となり、通信路行列の欠損により信号電力が低下する。また、1つ前のシンボルブロックからの干渉成分173により、シンボルブロック間干渉による歪みが生じる。
このように、GI長を超える遅延波成分が存在する場合、現在のシンボルブロック内において通信路のインパルス応答を表す行列(通信路行列)が巡回行列にならず、信号電力が低下するという問題が生じる。また、1つ前のシンボルブロックの遅延波成分が次のシンボルブロックに影響を与えるという問題が生じる。
(データ送信局101側でのGI付加操作)
次に、データ送信局101側において、GIを付加する操作について説明する。ここで、説明を単純化するために、データ送信局101の第nt番目のアンテナ111から送信され、データ受信局102の第nr番目のアンテナ112で受信される信号について考える。なお、データ送信局101とデータ受信局102との間で送受信されるフレームは、図3および図4で説明したフレーム151と同じであるが、インパルス応答はh0,n_rn_t,・・・・,hL-1,n_rn_t、送信信号ブロックはx0,n_t,x1,n_t・・・・xN_s-1,n_t、受信信号ブロックはy0,n_r,y1,n_r・・・・yN_s-1,n_rのように表記される。
(データ送信局101側でのGI付加操作)
次に、データ送信局101側において、GIを付加する操作について説明する。ここで、説明を単純化するために、データ送信局101の第nt番目のアンテナ111から送信され、データ受信局102の第nr番目のアンテナ112で受信される信号について考える。なお、データ送信局101とデータ受信局102との間で送受信されるフレームは、図3および図4で説明したフレーム151と同じであるが、インパルス応答はh0,n_rn_t,・・・・,hL-1,n_rn_t、送信信号ブロックはx0,n_t,x1,n_t・・・・xN_s-1,n_t、受信信号ブロックはy0,n_r,y1,n_r・・・・yN_s-1,n_rのように表記される。
ここで、以降の説明において、下記のように各記号を定義する。
yn:受信信号ブロック
xn:送信信号ブロック
xI n:1つ前のブロック送信信号
hn:通信路インパルス応答
wn:付加雑音
x’n:GI付加後の送信信号ブロック
y’n:GI除去前の受信信号ブロック
そして、データ送信局101から送信される送信信号ブロックxnは、式(3)で表すことができる。
yn:受信信号ブロック
xn:送信信号ブロック
xI n:1つ前のブロック送信信号
hn:通信路インパルス応答
wn:付加雑音
x’n:GI付加後の送信信号ブロック
y’n:GI除去前の受信信号ブロック
そして、データ送信局101から送信される送信信号ブロックxnは、式(3)で表すことができる。
式(6)において、通信路インパルス応答行列h_nrntは式(7)で表される。
式(6)のGI除去前の受信信号ブロックy'nは、長さがμシンボルのGIを除去する式(9)に示す行列RCPによりGIが除去され、式(10)に示すGI除去後の受信信号ブロックynが得られる。
例えば、通信路行列Hは式(11)で表されるので、GI付加/除去操作を行った場合、式(12)のように表される。
このようにして、GI付加/除去操作が行われる。なお、GI長を超えない遅延波環境下でGI付加/除去操作を行った場合は、図3で説明したように、式(12)は完全巡回行列となるが、GI長を超える長遅延波環境下でGI付加/除去操作を行った場合は、図4で説明したように不完全巡回行列となる。
次に、図4で説明したGI長を超える長遅延波環境において、データ送信局101の第nt番目のアンテナ111(nt)から送信され、データ受信局102の第nr番目のアンテナ112(nr)で受信される信号について詳しく説明する。
GI付加/除去操作を行う前のアンテナ112(nr)の受信信号ブロックy_nrは、式(13)で表される。
そして、GI付加/除去操作を行った後の受信信号ブロックy_nrは、式(14)で表される。
ここで、式(14)の第1項目は現在のシンボルの受信信号、第2項目は1つ前のシンボルの受信信号、第3項目は付加雑音である。式(14)に示すように、第1項目の現在のシンボルの受信信号は、通信路行列が不完全巡回行列となり、一部が欠損しているため、信号電力が低下する。第2項目の1つ前のシンボルの受信信号には、欠損された一部の通信路行列が含まれるため、シンボルブロック間干渉による歪が生じる。
このように、GI長を超える遅延波成分が存在する場合、現在のシンボルブロックの信号電力が低下し、1つ前のシンボルブロックによる歪が生じる。
[固有モード伝送を用いる実施形態]
次に、本実施形態に係る無線通信システム100において、巡回行列化された通信路に対して固有モード伝送を用いる実施形態について説明する。
[固有モード伝送を用いる実施形態]
次に、本実施形態に係る無線通信システム100において、巡回行列化された通信路に対して固有モード伝送を用いる実施形態について説明する。
固有モード伝送とは、通信路のインパルス応答行列に対し、特異値分解という操作を行うことで、信号分離を行う手法の1つである。ここで、信号分離とは、単数もしくは複数の送信アンテナ111から送信される信号がアンテナ間や遅延波などの影響により混ざった状態で受信される信号を分離する処理である。
ここで、例えば、式(15)に示すMIMO通信の場合の通信路行列Hに対して特異値分解を行う。なお、ここでは、MIMO方式の通信を行う場合について説明するが、SISO方式の通信の場合は、式(15)をH=[h11]として適用可能である。
また、Σは、式(17)で表される。ここで、λn(λ1からλN)は瞬時信号電力である。
また、本実施形態では、データ送信局101側とデータ受信局102側とでそれぞれウェイトを乗算して信号分離を行っているが、データ受信局102側で受信ウェイトの乗算を行わずに、データ送信局101側で送信ウェイトおよび受信ウェイトの両方を乗算してもよい。逆に、データ送信局101側で送信ウェイトの乗算を行わずに、データ受信局102側で送信ウェイトおよび受信ウェイトの両方を乗算してもよい。
ここで、一般的な特異値分解は、式(19)の通信路行列Hに対して行われる。
次に、固有モード伝送の手法を用いる場合、受信信号Yは、GI長よりも長い遅延波により通信路行列が欠損する前の通信路行列と、通信路行列の欠損部分と、1つ前のシンボルブロックからの干渉成分と、を用いて式(21)で表される。
ここで、式(21)において、第1項は欠損前の通信路行列、第2項は欠損した部分の通信路行列、第3項は1つ前のシンボルブロックからの干渉部分の通信路行列、第4項は付加雑音である。
(1)欠損前の通信路行列
先ず、欠損前の通信路行列H~(~はHの上に記載されるチルド記号)は、式(22)で表される。
なお、式(27)において、後部の0…0の部分の長さはGI長μに対応する。
(3)1つ前のシンボルブロックからの干渉部分の通信路行列
次に、1つ前のシンボルブロックからの干渉部分の通信路行列HIは、式(28)で表される。
このようにして、欠損前の通信路行列H~、欠損した部分の通信路行列H0、及び1つ前のシンボルブロックからの干渉部分の通信路行列HIをそれぞれ表す。
(瞬時SINRの算出)
次に、瞬時SINRの算出方法について説明する。ここで、第n番目の受信シンボルブロックYnは、式(30)で表される。
式(30)において、欠損した部分の電力および1つ前のシンボルブロックからの干渉部分の電力の和を瞬時干渉電力PIとすると、瞬時干渉電力PIは式(31)で表される。
式(31)において、xnは第n番目の送信シンボルを表し、Xnは送信シンボルブロックを表す。また、E[・]は期待値を表し、E[|xn|2]は1シンボルにおける平均エネルギー、E[|Xn|2]はシンボルブロックにおける平均エネルギーをそれぞれ表す。
このように、瞬時干渉電力PIは、欠損した部分の信号成分の係数aの二乗和と、1つ前のシンボルブロックからの干渉成分の係数bの二乗和に相当する。
なお、欠損した部分の電力Paは式(32)で表され、1つ前のシンボルブロックからの干渉部分の電力Pbは式(33)で表される。このとき、瞬時干渉電力PI=Pa+Pbである。
ここで、上述の説明では、遅延波により欠損した部分の信号電力(Pa)、1つ前のシンボルブロックの干渉部分の電力(Pb)、付加雑音電力(σ2)、遅延波による欠損前の信号電力(λ)とした場合に、瞬時SINRをiSINR=λ/(Pa+Pb+σ2)により算出したが、遅延波により欠損した信号電力を干渉部分として計算するのではなく、瞬時信号電力から予め引いておいてもよい。この場合、遅延波により欠損した信号電力を差し引いた瞬時信号電力をλ’とすると、瞬時SINRは、iSINR=λ’/(Pb+σ2)で求めることができる。
(所要SNRの算出)
次に、MCSインデックス毎の所要SNR(dB)は、式(35)により求めることができる。
(所要SNRの算出)
次に、MCSインデックス毎の所要SNR(dB)は、式(35)により求めることができる。
所要SNR=最小受信感度-等価雑音電力+雑音指数 …(35)
式(35)において、最小受信感度(dBm)は、例えば図5に示すMCSインデックス毎の最小受信感度の値から取得できる(例えば非特許文献1のTable22-25参照)。一例として、図5において、MCSインデックスが9(変調方式が256QAM,符号化率が5/6)の場合、帯域幅Δfが20MHzのときの最小受信感度は-57dBmである。
式(35)において、最小受信感度(dBm)は、例えば図5に示すMCSインデックス毎の最小受信感度の値から取得できる(例えば非特許文献1のTable22-25参照)。一例として、図5において、MCSインデックスが9(変調方式が256QAM,符号化率が5/6)の場合、帯域幅Δfが20MHzのときの最小受信感度は-57dBmである。
また、式(35)において、等価雑音電力(dBm)は、式(36)により求めることができる。
等価雑音電力=10log10(KTΔf×1000) …(36)
(ここで、K:ボルツマン定数、T:絶対温度、Δf:帯域幅)
一例として、図5に示すMCSインデックスが9で、帯域幅Δfが20MHz、室温が摂氏27度、雑音指数6dBと仮定して、式(35)および式(36)により計算すると、所要SNRは約36dBとなる。
(ここで、K:ボルツマン定数、T:絶対温度、Δf:帯域幅)
一例として、図5に示すMCSインデックスが9で、帯域幅Δfが20MHz、室温が摂氏27度、雑音指数6dBと仮定して、式(35)および式(36)により計算すると、所要SNRは約36dBとなる。
このようにして求められた所要SNRと瞬時SINRとを比較して、使用可能なMCSインデックスを選定することができる。
(スループットの算出)
次に、スループットの算出例について説明する。
(スループットの算出)
次に、スループットの算出例について説明する。
図6は、MCSインデックスとGI長と伝送速度との関係を示す一例である(例えば非特許文献1のTable22-30参照)。例えば図6において、MCSインデックスが7(変調方式が64QAM,符号化率が5/6)、GI長が800nsの場合、スループットは65Mb/sである。
ここで、本実施形態では、最大のスループットを実現するMCSインデックスとGI長を選定するために、例えば400nsのGI長を基準GI長として、少しずつGI長を延伸しながら、瞬時SINRを算出し、所要SNRと比較して選択可能な最大のMCSインデックスを求める。そして、現時点でのMCSインデックスとGI長からスループットを算出し、現在までの最大のスループットと比較して大きければ保持する。このような一連の処理を繰り返し実行して、GI長が遅延波の最大遅延よりも大きくなるか、MCSインデックスが最大のMCSインデックスになったときに、一連の処理を終了する。このようにして、本実施形態に係る無線通信システム100では、最大のスループットを実現するMCSインデックスとGI長の選定を行う。そして、データ送信局101は、最大のスループットを実現するMCSインデックスおよびGI長を設定して、データ信号の送信を開始する。例えば、求められたGI長が800nsec、選択されたMCSが4(変調方式:16QAM、符号化率:3/4)の場合、送信制御部207は、情報ビット生成部201、データ信号変調部202およびGI挿入部204に、符号化率:3/4、変調方式:16QAMおよびGI長:800nsecをそれぞれ設定して、データ信号の送信(本通信)を開始する。
このようにして、本実施形態に係る無線通信システム100は、データ送信局101が送信するトレーニング信号によりデータ受信局102が推定した通信路のインパルス応答に基づいて、最大のスループットを得るためのMCSインデックスおよびGI長を設定して通信を行うことができる。
[無線通信システム100の処理方法]
図7は、図1に示した本実施形態に係る無線通信システム100の処理例を示す。なお、図7に示した処理は、データ送信局101およびデータ受信局102により実行される。
[無線通信システム100の処理方法]
図7は、図1に示した本実施形態に係る無線通信システム100の処理例を示す。なお、図7に示した処理は、データ送信局101およびデータ受信局102により実行される。
ステップS101において、データ送信局101の送信制御部207はトレーニング信号(例えばNDP)を送出し、データ受信局102の通信路推定部304は通信路のインパルス応答の先頭から末尾までの推定する処理を行う。ここで、GI長は、想定される最大の遅延時間よりも十分に長く設定して、先頭から末尾まで精度の高いインパルス応答を取得する。
ステップS102において、送信制御部207は、GI長μを少しずつ長くするための増分カウンタnΔを1に設定する(初期化)。
ステップS103において、送信制御部207は、GI挿入部204にGI長μを式(37)により設定する。
μ=NG×nΔ …式(37)
ここで、NGはGI長延伸の刻み長であり、例えばNGを1シンボル長時間とした場合、1シンボル単位でGI長が延伸される。
ここで、NGはGI長延伸の刻み長であり、例えばNGを1シンボル長時間とした場合、1シンボル単位でGI長が延伸される。
ステップS104において、送信制御部207は、データ受信局102が推定したインパルス応答に基づいて、GI長を超える遅延波による歪みを考慮した瞬時SINRを算出し、算出した瞬時SINRで使用可能な最大のMCSインデックス(MI)を算出する。例えば、先に説明した図5において、算出された瞬時SINRで使用可能なMCSインデックス(例えば所定の誤り率以下を確保できる所要SNRが得られるMCSインデックス)のうち最大のMCSインデックスが4の場合、送信制御部207は、MCSインデックスMI=4とする。
ステップS105において、送信制御部207は、現時点のMCSインデックスMIとGI長μとに基づいて、スループットα(bps)を算出する。そして、算出したスループットαが現在までの最大のスループットαmaxよりも大きい場合、算出したスループットαを新たな最大のスループットαmaxとしてメモリなどに記憶して保持する。なお、過去の最大のスループットαmaxが記憶されていない初回の処理では、算出したスループットαをそのまま最大のスループットαmaxとして保持する。
ステップS106において、送信制御部207は、インパルス応答などから得られる最大遅延時間LとGI長μとを比較して、L<μを満たす場合はステップS109の処理に進み、L<μを満たさない場合はステップS107の処理に進む。
ステップS107において、送信制御部207は、ステップS104で求めたMCSインデックスMIがシステムとして利用可能なMCSインデックスの最大のものであるか否かを判別する。そして、MCSインデックスMIがシステムとして利用可能なMCSインデックスの最大のものである場合はステップS109の処理に進み、最大のものではない場合はステップS108の処理に進む。例えば、先に説明した図5において、算出された瞬時SINRで使用可能なMCSインデックスが9の場合はシステムとして利用可能な最大のMCSインデックスであるからステップS109に進み、算出された瞬時SINRで使用可能なMCSインデックスが0から8の場合はステップS108に進んでステップS103からステップS107までの処理を繰り返し実行する。
ステップS108において、送信制御部207は、GI長μを延伸するための増分カウンタnΔを1つインクリメントし、ステップS103の処理に戻る。
ステップS109において、設定されたGI長μが遅延波の最大遅延時間Lより大きくなるか、または、選択されたMCSインデックスMIがシステムとして利用可能な最大のMCSインデックスとなった場合、MCSインデックスMIの変調・符号化方式およびGI長μを最大のスループットαmaxを実現するMCSインデックスMIおよびGI長μとして採用し、本通信を行う。
このようにして、本実施形態に係る無線通信システム100は、通信路のインパルス応答を推定してスループットが最大となるMCSインデックスとGI長を算出し、データ信号の送信を行うことができる。
図8は、データ送信局101とデータ受信局102との間で送受信される情報および処理の一例を示す。図8において、横軸は時間を示し、データ送信局101およびデータ受信局102の送信信号を示す。
ステップS201において、データ送信局101は、DATA信号が無いNDPのトレーニング信号を送信する。このとき、データ送信局101は、想定される遅延波に対して十分に長いGIを付加してトレーニング信号を送信する。これにより、通信路行列の欠損による信号電力の低下やシンボルブロック間干渉による歪みなどの影響を受けないので、通信路のインパルス応答を末尾まで高い精度で推定することができる。
ステップS202において、データ受信局102は、データ送信局101から送信されたNDPを受信する。
ステップS203において、データ受信局102は、データ送信局101から受信したNDPにより通信路のインパルス応答を推定する。
ステップS204において、データ受信局102は、推定したインパルス応答の情報を含む通信路情報をデータ送信局101側にフィードバックする。
ステップS205において、データ送信局101は、データ受信局102からフィードバックされた通信路のインパルス応答を含む通信路情報を受信する。
ステップS206において、データ送信局101は、データ受信局102から受信した通信路のインパルス応答から瞬時SINRを算出し、算出した瞬時SINRで使用可能な最大のMCSインデックスを求めてスループットを算出する一連の処理をGI長を少しずつ延伸(例えば1シンボル単位で延伸)しながら実行する。そして、データ送信局101は、最大のスループットを実現する最終的なMCSインデックスおよびGI長とを選定する。
ステップS207において、データ送信局101は、ステップS206の処理で選定された最大のスループットを実現する最終的なMCSインデックスおよびGI長を設定する。
ステップS208において、データ送信局101は、最大のスループットを実現するMCSインデックスおよびGI長によりデータ送信(本通信)を開始する。
ステップS209において、データ受信局102は、最大のスループットを実現するMCSインデックスおよびGI長によりデータ送信局101から送信されたデータ信号を受信する。
このようにして、本実施形態に係る無線通信システム100は、長遅延波環境においてスループットが最大となるGI長およびMCSインデックスを設定してデータ信号の送受信を行うことができる。
以上、実施形態で説明したように、本発明に係る無線通信システム、無線通信方法および送信装置は、シンボルブロック化シングルキャリア通信において、遅延波の影響を抑えつつ最大のスループットを実現する最適なGI長と変調・符号化方式を選定して通信を行うことができる。
100・・・無線通信システム;101・・・データ送信局;102・・・データ受信局;201・・・情報ビット生成部;202・・・データ信号変調部;203・・・送信ウェイト乗算部;204・・・GI挿入部;205・・・送信信号変換部;111,112・・・アンテナ;206・・・受信信号変換部;207・・・送信制御部;301・・・受信信号変換部;302・・・GI除去部;303・・・受信ウェイト乗算部;304・・・通信路推定部;305・・・送信信号変換部;306・・・データ信号復調部;307・・・情報ビット検出部
Claims (5)
- 単一もしくは複数のアンテナを用いて通信を行う送信側通信部と、
データ信号またはトレーニング信号をシンボルブロック化したシングルキャリア信号を生成する変調部と、
前記変調部が出力する信号にガードインターバルを挿入して前記送信側通信部から送信するガードインターバル挿入部と、
前記変調部と前記ガードインターバル挿入部との間にアンテナで送受信される信号を分離するための重み付け係数を乗算するウェイト乗算部と、
通信開始前に、トレーニング信号を送信して通信路のインパルス応答の情報を取得し、前記通信路のインパルス応答に基づいて、前記重み付け係数を算出するとともに、前記ガードインターバルの長さを変えて算出される特定期間のSINRに応じて最大のスループットが得られる変調・符号化方式と前記ガードインターバルの長さとを決定する制御部と
を少なくとも有する送信装置と、
単一もしくは複数のアンテナを用いて通信を行う受信側通信部と、
前記送信装置から送信されるトレーニング信号により前記通信路のインパルス応答を推定し、推定した前記通信路のインパルス応答の情報を前記受信側通信部により前記送信装置へ通知する推定部と
を少なくとも有する受信装置と
を備えることを特徴とする無線通信システム。 - 請求項1に記載の無線通信システムにおいて、
前記受信装置は、
前記送信装置から受信する信号の前記ガードインターバルを除去するガードインターバル除去部と、
前記ガードインターバル除去部が出力するシングルキャリア信号を復調する復調部と、
前記ガードインターバル除去部と前記復調部との間に前記ウェイト乗算部が乗算する前記重み付け係数の全部または一部を分担して乗算する受信側ウェイト乗算部と
をさらに有することを特徴とする無線通信システム。 - 単一もしくは複数のアンテナをそれぞれ有する送信装置と受信装置との間で通信を行う無線通信方法であって、
前記送信装置は、
データ信号またはトレーニング信号をシンボルブロック化したシングルキャリア信号に前記アンテナで送受信される信号を分離するための重み付け係数を乗算し、ガードインターバルを挿入して前記アンテナから送信する処理を行い、
通信開始前に、トレーニング信号を送信して前記受信装置から通信路のインパルス応答の情報を取得し、前記通信路のインパルス応答に基づいて、前記重み付け係数を算出するとともに、前記ガードインターバルの長さを変えて算出される特定期間のSINRに応じて最大のスループットが得られる変調・符号化方式と前記ガードインターバルの長さとを決定し、
前記受信装置は、前記送信装置から送信されるトレーニング信号により前記通信路のインパルス応答を推定し、推定した前記通信路のインパルス応答の情報を前記送信装置へ通知する処理を行う
ことを特徴とする無線通信方法。 - 請求項3に記載の無線通信方法において、
前記受信装置は、前記送信装置から受信する信号の前記ガードインターバルを除去した信号に前記送信装置側で乗算する前記重み付け係数の全部または一部を分担して乗算し、受信信号を復調する
ことを特徴とする無線通信方法。 - 単一もしくは複数のアンテナを用いて通信を行う通信部と、
データ信号またはトレーニング信号をシンボルブロック化したシングルキャリア信号を生成する変調部と、
前記変調部が出力する信号にガードインターバルを挿入して前記通信部から送信するガードインターバル挿入部と、
前記変調部と前記ガードインターバル挿入部との間に前記アンテナで送受信される信号を分離するための重み付け係数を乗算するウェイト乗算部と、
通信開始前に、トレーニング信号を送信して受信装置から通信路のインパルス応答の情報を取得し、前記通信路のインパルス応答に基づいて、前記重み付け係数を算出するとともに、前記ガードインターバルの長さを変えて算出される特定期間のSINRに応じて最大のスループットが得られる変調・符号化方式と前記ガードインターバルの長さとを決定する制御部と
を有することを特徴とする送信装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/976,327 US11303487B2 (en) | 2018-03-01 | 2019-02-25 | Wireless communication system, wireless communication method, and transmitting device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018036574A JP6969446B2 (ja) | 2018-03-01 | 2018-03-01 | 無線通信システム、無線通信方法および送信装置 |
JP2018-036574 | 2018-03-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019167877A1 true WO2019167877A1 (ja) | 2019-09-06 |
Family
ID=67804991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/007037 WO2019167877A1 (ja) | 2018-03-01 | 2019-02-25 | 無線通信システム、無線通信方法および送信装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11303487B2 (ja) |
JP (1) | JP6969446B2 (ja) |
WO (1) | WO2019167877A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009510918A (ja) * | 2005-09-29 | 2009-03-12 | インターデイジタル テクノロジー コーポレーション | Mimoビーム形成に基づくシングルキャリア周波数分割多元接続システム |
JP2011172176A (ja) * | 2010-02-22 | 2011-09-01 | Nippon Telegr & Teleph Corp <Ntt> | 無線通信方法、及び無線通信システム |
JP2017152846A (ja) * | 2016-02-23 | 2017-08-31 | 日本電信電話株式会社 | 無線通信システム、送信装置および送信方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10644916B1 (en) * | 2002-05-14 | 2020-05-05 | Genghiscomm Holdings, LLC | Spreading and precoding in OFDM |
JP4737747B2 (ja) * | 2005-04-25 | 2011-08-03 | パナソニック株式会社 | 無線通信装置および無線通信方法 |
-
2018
- 2018-03-01 JP JP2018036574A patent/JP6969446B2/ja active Active
-
2019
- 2019-02-25 US US16/976,327 patent/US11303487B2/en active Active
- 2019-02-25 WO PCT/JP2019/007037 patent/WO2019167877A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009510918A (ja) * | 2005-09-29 | 2009-03-12 | インターデイジタル テクノロジー コーポレーション | Mimoビーム形成に基づくシングルキャリア周波数分割多元接続システム |
JP2011172176A (ja) * | 2010-02-22 | 2011-09-01 | Nippon Telegr & Teleph Corp <Ntt> | 無線通信方法、及び無線通信システム |
JP2017152846A (ja) * | 2016-02-23 | 2017-08-31 | 日本電信電話株式会社 | 無線通信システム、送信装置および送信方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2019153876A (ja) | 2019-09-12 |
JP6969446B2 (ja) | 2021-11-24 |
US11303487B2 (en) | 2022-04-12 |
US20210051051A1 (en) | 2021-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101098053B1 (ko) | 무선 통신을 위한 잡음 추정 | |
CN101258701B (zh) | 自适应无线电/调制装置、接收器装置、无线通信系统和无线通信方法 | |
US7443341B2 (en) | Method for deriving weight vectors to be used at the time of transmitting signals from a plurality of antennas, and transmitting apparatus and communication system utilizing said method | |
EP2395719B1 (en) | Adaptive pilot insertion for a MIMO-OFDM system | |
CN100375408C (zh) | 在多信道接收机中选择权值的方法 | |
US8121554B2 (en) | Radio apparatus | |
US20060183504A1 (en) | Calibration method, and base station apparatus, terminal apparatus and radio apparatus utilizing the same | |
KR100973585B1 (ko) | Mimo 이동 통신 시스템에서 타이밍 에러와 주파수오프셋을 추정하는 방법 및 그 장치 | |
JP4911780B2 (ja) | 無線通信システム、受信装置及び受信方法 | |
US8250422B2 (en) | Receiving device, receiving method, program and wireless communication system | |
US8848777B2 (en) | Receiving apparatus and method for receiving signals in a wireless communication system with improved equalization performance | |
JP3910956B2 (ja) | Ofdm無線通信システムのための伝搬路推定器及びこれを用いた受信装置 | |
US7228113B1 (en) | SIMO/MISO transceiver for providing packet data communication with SISO transceiver | |
US9781611B2 (en) | Boosted, dedicated reference signal | |
CN102870347B (zh) | 用于mlse接收器的信道质量估计 | |
WO2019167877A1 (ja) | 無線通信システム、無線通信方法および送信装置 | |
EP3183852A1 (en) | Delay spread estimation and utilization | |
JP2009141740A (ja) | Ici量推定装置、推定方法、およびこれを用いた受信装置 | |
JP2004266417A (ja) | 受信装置、受信方法、ならびに、プログラム | |
JP6552981B2 (ja) | 無線通信システム、送信装置および送信方法 | |
JP2008022339A (ja) | 無線通信装置及び無線通信方法 | |
KR20120045670A (ko) | 이동 통신 시스템에서 채널 상태 지시자 결정 방법 및 장치 | |
KR100966054B1 (ko) | 다중입력 다중출력 시스템에서 부반송파별 가변 전송 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19761153 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19761153 Country of ref document: EP Kind code of ref document: A1 |