WO2019167440A1 - リニアポジションセンサ - Google Patents

リニアポジションセンサ Download PDF

Info

Publication number
WO2019167440A1
WO2019167440A1 PCT/JP2019/000531 JP2019000531W WO2019167440A1 WO 2019167440 A1 WO2019167440 A1 WO 2019167440A1 JP 2019000531 W JP2019000531 W JP 2019000531W WO 2019167440 A1 WO2019167440 A1 WO 2019167440A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic pole
target
signal
detection
magnetic
Prior art date
Application number
PCT/JP2019/000531
Other languages
English (en)
French (fr)
Inventor
靖寛 北浦
篤史 小林
佑樹 松本
真宏 巻田
孝昌 金原
麻光 酒井
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018131335A external-priority patent/JP6798530B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019167440A1 publication Critical patent/WO2019167440A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train

Definitions

  • This disclosure relates to a linear position sensor.
  • Patent Document 1 an apparatus for detecting the position of a target using an optical detection element has been proposed in Patent Document 1, for example.
  • the detection element includes a light source, a fixed slit, and a light receiving unit that receives light transmitted through the fixed slit.
  • the target is provided with a pattern in which light reflecting portions and non-reflecting portions are alternately continued. For this reason, a part of the light emitted from the light source is reflected by the reflection portion to be detected and reaches the fixed slit.
  • the amount of light detected in the light receiving portion changes periodically and light and dark are repeated. By counting the number of light and dark repetitions, the amount of movement of the target can be measured.
  • a method of detecting the position of the target by a magnetic detection element is known.
  • the position of the target is detected based on a change in the magnetic field received by the detection unit from the uneven shape and the magnetic pole with respect to the target moving in the uneven shape and the magnetic pole arrangement direction. That is, the detection unit detects the position of the uneven shape and the arrangement range of the magnetic poles among the targets moving in the uneven shape and the arrangement direction of the magnetic poles.
  • This disclosure is intended to provide a linear position sensor that can detect the position of a target with a single detection unit even if the amount of movement of the target increases.
  • the linear position sensor detects the position in the moving direction of the target in which the first magnetic pole and the second magnetic pole are alternately provided, and includes the following configuration.
  • the linear position sensor includes a detection unit that generates a plurality of detection signals having different phases based on changes in magnetic fields received from the first magnetic pole and the second magnetic pole as the target moves.
  • the linear position sensor includes a signal processing unit that acquires a plurality of detection signals from the detection unit and acquires a position signal indicating the position of the target based on the plurality of detection signals.
  • the arrangement direction in which the first magnetic pole and the second magnetic pole are alternately arranged is inclined with respect to the moving direction, the first magnetic pole and the second magnetic pole are laid out obliquely with respect to the moving direction.
  • FIG. 1 is an external view of a linear position sensor according to the first embodiment.
  • FIG. 2 is an exploded perspective view of components constituting a magnetic detection method using a magnetoresistive element
  • FIG. 3 is a plan view of each component shown in FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG.
  • FIG. 5 is a cross-sectional view of a configuration in which a bias magnet is provided
  • FIG. 6 is a plan view showing components constituting a magnetic detection method using a Hall element
  • 7 is a sectional view taken along line VII-VII in FIG.
  • FIG. 1 is an external view of a linear position sensor according to the first embodiment.
  • FIG. 2 is an exploded perspective view of components constituting a magnetic detection method using a magnetoresistive element
  • FIG. 5 is a cross-sectional view of a configuration
  • FIG. 8 is a diagram showing a circuit configuration of the linear position sensor.
  • FIG. 9 is a diagram showing the contents of signal processing of the circuit configuration shown in FIG.
  • FIG. 10 is a diagram showing an example of an operation range from the pole center to the pole center.
  • FIG. 11 is a diagram illustrating an example of an operation range from the pole center to the pole center.
  • FIG. 12 is a diagram showing an example of an operation range from the center between the electrodes to the center between the electrodes.
  • FIG. 13 is a diagram showing an example of an operation range from the center between the electrodes to the center between the electrodes.
  • FIG. 14 is a perspective view showing a target composed of a plate member and a rubber magnet
  • FIG. 15 is a diagram showing a signal generated as the target moves in FIG.
  • FIG. 15 is a diagram showing a signal generated as the target moves in FIG. FIG.
  • FIG. 16 is a diagram showing a case where one surface of the sensor chip is arranged in parallel to the arrangement direction
  • FIG. 17 is a diagram showing a position signal with respect to the amount of movement of the target.
  • FIG. 18 is a diagram showing a case where the arrangement direction and the movement direction match as a comparative example
  • FIG. 19 is a diagram showing a target in which a block magnet is fixed on a plate member as a modification
  • FIG. 20 is a perspective view of a target in which a central portion of each magnetic pole is projected as a modification
  • FIG. 21 is a diagram showing a target according to the second embodiment.
  • FIG. 22 is a diagram illustrating a target according to the third embodiment.
  • FIG. 23 is a diagram showing a position signal with respect to the rotation angle of the rotating body
  • FIG. 24 is a schematic view of a shift-by-wire system according to the fourth embodiment
  • FIG. 25 is a block diagram of a shift-by-wire system
  • FIG. 26 is a plan view showing a detent
  • FIG. 27 is a diagram showing the contents for detecting the position of the detent.
  • FIG. 28 is a perspective view of a manual valve
  • FIG. 29 is a diagram showing the contents of detecting the position of the manual valve.
  • FIG. 30 is a plan view of a target according to the fifth embodiment
  • FIG. 31 is a diagram for explaining the inclination angle ⁇ 1 with respect to the arrangement direction.
  • FIG. 32 is a diagram for explaining the contents of aligning the magnetic pole width
  • FIG. 33 is a diagram for explaining the content of adjusting the boundary position of the magnetic pole
  • FIG. 34 is a diagram for explaining the contents of rotating the magnetic pole width for two poles within a rotation angle range of 45 ° around the position of the rotation center
  • FIG. 35 is a diagram for explaining the content in which each magnetic pole is laid out obliquely with respect to the rotation direction around the position of the rotation center.
  • 36A is a diagram showing a sin signal generated as the target moves in FIG.
  • FIG. 36B is a diagram showing a cos signal generated as the target moves in FIG. 30.
  • the linear position sensor according to the present embodiment is a sensor that detects a position in a moving direction of a detection target in which a first magnetic pole and a second magnetic pole are alternately provided.
  • the linear position sensor is simply referred to as a sensor.
  • the sensor 100 detects the amount of movement of a target that moves in one direction as a detection target. That is, the sensor 100 detects the current position of the target. Specifically, the sensor 100 acquires the position of the target by detecting a signal proportional to the amount of movement of the target.
  • the sensor 100 includes a case 101 formed by resin molding of a resin material such as PPS.
  • the case 101 has a tip 102 on the target side, a flange 103 fixed to the peripheral mechanism, and a connector 104 to which a harness is connected.
  • a sensing portion is provided inside the tip portion 102.
  • the senor 100 is fixed to the peripheral mechanism via the flange portion 103 so that the tip portion 102 has a predetermined gap with respect to the detection surface of the target. Accordingly, the target moves relative to the sensor 100.
  • the moving direction of the target is not limited to rectilinear movement or reciprocation, but may be rotation or reciprocation within a specific angle.
  • the sensor 100 can employ a magnetic detection method using a magnetoresistive element or a magnetic detection method using a Hall element.
  • the sensor 100 includes a mold IC unit 105 and a cap unit 106 as shown in FIG.
  • the mold IC unit 105 is inserted into the cap unit 106. These are accommodated in the tip portion 102 of the case 101.
  • the mold IC part 105 and the cap part 106 are integrated.
  • the main part of the mold IC part 105 is located in the hollow part of the cap part 106.
  • the cap unit 106 fixes the position of the mold IC unit 105.
  • the mold IC part 105 includes a lead frame 107, a processing circuit chip 108, a sensor chip 109, and a mold resin part 110.
  • the lead frame 107 has a plate-like island part 111 and a plurality of leads 112 to 115.
  • the plane part of the island part 111 is arranged in parallel to the gap direction with respect to the target.
  • the plurality of leads 112 to 115 correspond to a power supply terminal 112 to which a power supply voltage is applied, a ground terminal 113 to which a ground voltage is applied, a first output terminal 114 and a second output terminal 115 for outputting a signal. . That is, each of the leads 112 to 115 is four for power supply, ground, and signal. Terminals 116 are connected to the tips of the leads 112 to 115, respectively. The terminal 116 is located in the connector part 104 of the case 101. A terminal 116 is connected to the harness.
  • the ground lead 113 among the plurality of leads 112 to 115 is integrated with the island portion 111.
  • the island portion 111 and all the leads 112 to 115 may be completely separated.
  • the processing circuit chip 108 and the sensor chip 109 are mounted on the island portion 111 with an adhesive or the like.
  • the processing circuit chip 108 constitutes a circuit unit that processes the signal of the sensor chip 109.
  • the sensor chip 109 includes a magnetoresistive element whose resistance value changes when affected by a magnetic field from the outside.
  • the magnetoresistive element is, for example, AMR (Anisotropic Magneto Resistance; AMR), GMR (Giant Magneto Resistance; GMR), or TMR (Tunneling Magneto Resistance; TMR).
  • AMR Anaisotropic Magneto Resistance
  • GMR Gaant Magneto Resistance
  • TMR Tunnelneling Magneto Resistance
  • Each of the leads 112 to 115 and the processing circuit chip 108 are electrically connected via a wire 117.
  • the processing circuit chip 108 and the sensor chip 109 are electrically connected via a wire 118.
  • the mold resin part 110 seals the island part 111, a part of each of the leads 112 to 115, the processing circuit chip 108, and the sensor chip 109.
  • the mold resin part 110 is molded into a shape that is fixed to the hollow part of the cap part 106.
  • a bias magnet 119 may be provided on the opposite side of the island portion 111 from the sensor chip 109 side.
  • the bias magnet 119 applies a bias magnetic field to the sensor chip 109.
  • the detection signal by the magnetic detection method using the magnetoresistive element will be described.
  • the cap unit 106 is disposed with a predetermined gap with respect to the target.
  • the detection signal becomes maximum at the center in the moving direction of the target.
  • the gap increases, the amplitude of the detection signal decreases, and when the gap decreases, the amplitude of the detection signal increases. Therefore, the position of the target can be detected using the detection signal.
  • the detection signal is generated by outputs of a plurality of magnetoresistive elements.
  • the mold IC part 105 When the magnetic detection method using the Hall element is adopted, the mold IC part 105 is inserted into the cap part 106 and fixed as shown in the schematic plan view of FIG. 6 and the schematic sectional view of FIG.
  • the mold IC part 105 includes a lead frame 107, an IC chip 120, and a mold resin part 110.
  • the island part 111 of the lead frame 107 is arranged so that the plane part is parallel to the moving direction of the target.
  • the leads 112 to 115 are arranged so as to be perpendicular to the moving direction of the target.
  • a ground lead 113 is integrated with the island portion 111 at a right angle. Terminals 116 are connected to the tips of the leads 112 to 115, respectively.
  • the IC chip 120 is formed with a plurality of Hall elements and a signal processing circuit unit. That is, the magnetic detection system using the Hall element has a one-chip configuration. Each lead 112 to 115 and the IC chip 120 are electrically connected via a wire 121.
  • the mold resin part 110 is molded into a shape that is fixed to the hollow part of the cap part 106.
  • a detection signal by a magnetic detection method using a Hall element will be described.
  • each detection signal becomes maximum corresponding to the position of each Hall element.
  • the relationship between the gap and the amplitude of the detection signal is the same as in the magnetic detection method using the magnetoresistive element.
  • the position of the target can be detected by using a periodic signal corresponding to the movement of the target.
  • a magnetoresistive element that detects a magnetic vector has an advantage that an accuracy error due to a gap shift can be canceled. Further, there is a merit that the influence of the stress generated in the sensor chip 109 can be reduced or canceled. Therefore, highly accurate detection is possible.
  • the circuit configuration configured in the sensor chip 109 and the processing circuit chip 108 will be described.
  • the sensor 100 and the ECU 200 are electrically connected via a harness 300.
  • the harness 300 is constituted by four wires.
  • the ECU 200 is an electronic control device that includes a power supply unit 201, a control unit 202, and a ground unit 203.
  • the power supply unit 201 is a circuit unit that supplies a power supply voltage to the sensor 100.
  • the control unit 202 is a circuit unit that performs predetermined control according to the position signal input from the sensor 100. Note that the control unit 202 may be configured as a circuit unit corresponding to each of the output terminals 114 and 115.
  • the ground unit 203 is a circuit unit that sets the ground voltage of the sensor 100.
  • the sensor 100 includes a detection unit 122 and a signal processing unit 123.
  • the detection unit 122 is provided on the sensor chip 109.
  • the signal processing unit 123 is provided in the processing circuit chip 108.
  • the detection unit 122 and the signal processing unit 123 operate based on the power supply voltage and the ground voltage supplied from the ECU 200.
  • the detection unit 122 includes a first detection unit 124 and a second detection unit 125.
  • the first detection unit 124 is configured to output a first detection signal corresponding to the position of the target.
  • the second detection unit 125 is configured to output a second detection signal corresponding to the position of the target.
  • the detection units 124 and 125 have the same configuration and output the same detection signal.
  • each of the detection units 124 and 125 includes three of a first magnetoresistive element 126, a second magnetoresistive element 127, and a third magnetoresistive element 128 whose resistance values change as the target moves. It has two elements.
  • FIG. 9 shows one detection unit.
  • Each is arranged such that the second magnetoresistive element 127 is located between the first magnetoresistive element 126 and the third magnetoresistive element 128 in the moving direction of the target. That is, the second magnetoresistive element 127 is disposed so as to be sandwiched between the first magnetoresistive element 126 and the third magnetoresistive element 128.
  • the bias magnet 119 is provided in the mold IC unit 105, a bias magnetic field is applied to each of the magnetoresistive elements 126 to 128.
  • Each of the magnetoresistive elements 126 to 128 is configured as a half bridge circuit in which two magnetoresistors are connected in series between a power source and a ground. Each of the magnetoresistive elements 126 to 128 detects a change in resistance value when the two magnetoresistances are affected by the magnetic field as the target moves. Each of the magnetoresistive elements 126 to 128 outputs a voltage at the midpoint between the two magnetoresistors as a waveform signal based on the change in the resistance value.
  • Each detection unit 124, 125 includes first to fourth operational amplifiers in addition to the magnetoresistive elements 126-128.
  • the first operational amplifier calculates V1 ⁇ V2 and sets the calculation result as R1.
  • a differential amplifier configured to output.
  • the second operational amplifier is a differential amplifier configured to calculate V2-V3 and output the calculation result as R2.
  • the fourth operational amplifier receives the midpoint potential V1 from the first magnetoresistive element 126 and the midpoint potential V3 from the third magnetoresistive element 128, calculates V1-V3, and outputs the calculation result as S2.
  • the differential amplifier is configured as described above.
  • the signal S1 and the signal S2 are detection signals. That is, each of the detection units 124 and 125 generates a plurality of detection signals having different phases. Each of the detection units 124 and 125 outputs the signal S1 and the signal S2 to the signal processing unit 123 as a plurality of detection signals.
  • the signal processing described above is a case where three magnetoresistive elements are provided in the sensor chip 109.
  • processing according to the number of elements is performed.
  • the signal processing unit 123 in FIG. 8 is a circuit unit that processes a signal input from the detection unit 122.
  • the signal processing unit 123 includes a first processing unit 129, a second processing unit 130, and a redundancy determining unit 131.
  • the first processing unit 129 receives the first detection signal from the first detection unit 124 and acquires the position of the target based on the first detection signal.
  • the second processing unit 130 receives the second detection signal from the second detection unit 125 and acquires the position of the target based on the second detection signal.
  • the second processing unit 130 inverts and outputs the position signal. Therefore, if there is no abnormality in the detection unit 122 or the signal processing unit 123, the position signal of the first processing unit 129 and the position signal of the second processing unit 130 are added to become a constant value.
  • the first detection unit 124 and the first processing unit 129 constitute a first system.
  • the 2nd detection part 125 and the 2nd process part 130 comprise a 2nd system
  • the redundancy determining unit 131 is a circuit unit that determines whether the position acquired by the first processing unit 129 matches the position acquired by the second processing unit 130. When the two signal processing results match, the signal processing unit 123 outputs each position signal as it is. If the signal processing results of the two systems do not match, there is a possibility that an abnormality has occurred in one or both of each system. In this case, the signal processing unit 123 outputs an abnormal signal indicating abnormality to the ECU 200.
  • the signal processing is summarized as shown in FIG. 9, for example.
  • the analog process is a process for generating a plurality of detection signals.
  • the detection unit 122 may have a function of detecting temperature.
  • the temperature information Temp is used for temperature correction.
  • “Sin” and “Cos” are a sine signal and a cosine signal to be described later.
  • the analog signal subjected to analog processing is converted into a digital signal by an A / D converter (ADC) via a multiplexer (MUX).
  • ADC A / D converter
  • MUX multiplexer
  • the digital signal is processed to produce an arctangent signal.
  • adjustment values stored in the memory are used as appropriate.
  • the position signal acquired by the arithmetic processing is output to the ECU 200 according to an output format such as DAC, SENT, or PWM.
  • the arithmetic processing is performed by the signal processing unit 123. Therefore, an A / D converter (ADC) and a memory are provided in the signal processing unit 123. Analog processing may be performed by either the detection unit 122 or the signal processing unit 123.
  • ADC A / D converter
  • Analog processing may be performed by either the detection unit 122 or the signal processing unit 123.
  • the target and operating range will be described.
  • the first magnetic pole 401 and the second magnetic pole 402 are alternately provided in the moving direction.
  • the first magnetic pole 401 is an N pole.
  • the second magnetic pole 402 is the S pole.
  • the relationship of the magnetic poles may be reversed.
  • the detection unit 122 is fixed to the target 400 with a gap.
  • the target 400 moves in the movement direction with respect to the detection unit 122.
  • the detection unit 122 detects the position of the operation range from the pole center to the adjacent pole center.
  • the operating range is a moving range of the target 400.
  • FIG. 10 shows a case where the detection unit 122 detects a position from the width center in the moving direction to the width center of the adjacent second magnetic pole 402 in the second magnetic pole 402.
  • FIG. 11 shows a case where the detection unit 122 detects a position from the width center of the first magnetic pole 401 to the width center of the adjacent first magnetic pole 401.
  • the detection unit 122 detects the position of the operation range from the center between the electrodes to the adjacent center between the electrodes.
  • FIG. 12 shows a case where the detection unit 122 detects a position from the center between the second magnetic pole 402 and the first magnetic pole 401 to the adjacent center between the poles.
  • FIG. 13 shows a case where the detection unit 122 detects the position from the center between the first magnetic pole 401 and the second magnetic pole 402 to the adjacent center between the poles.
  • the target 400 is obtained by magnetizing a first magnetic pole 401 and a second magnetic pole 402 on a part of a rubber magnet 404 provided on a magnetic plate member 403.
  • the rubber magnet 404 has a surface 405 on which the first magnetic pole 401 and the second magnetic pole 402 are laid out.
  • the magnetization direction is a direction perpendicular to the plate surface of the rubber magnet 404. Note that the plate member 403 and the rubber magnet 404 of the present embodiment correspond to the main body.
  • the rubber magnet 404 is magnetized with a second magnetic pole 402, a first magnetic pole 401, and a second magnetic pole 402.
  • a direction in which the first magnetic pole 401 and the second magnetic pole 402 are alternately arranged is defined as an arrangement direction.
  • the arrangement direction is one of the directions parallel to the one surface 405 of the rubber magnet 404. Since the arrangement direction is inclined with respect to the moving direction, the first magnetic pole 401 and the second magnetic pole 402 are laid out obliquely with respect to the moving direction.
  • the first magnetic pole 401 and the second magnetic pole 402 are laid out linearly in a direction orthogonal to the arrangement direction and parallel to the one surface 405.
  • the arrangement direction is inclined with respect to the moving direction but is not orthogonal. Since the arrangement direction and the movement direction do not match, the movement amount when the target 400 moves in the movement direction becomes larger than the movement amount when the target 400 moves in the arrangement direction. That is, the amount of movement of the target 400 can be substantially increased as compared with the case where the arrangement direction and the movement direction match.
  • the magnetoresistive elements 126 to 128 are disposed on the one surface 132 of the sensor chip 109.
  • the target 400 includes the magnetic poles 401 and 402 shown in FIG.
  • the detection unit 122 crosses the other end portion of the adjacent second magnetic pole 402 from the one end portion of the second magnetic pole 402 through the center portion of the first magnetic pole 401. Thereby, the detection unit 122 generates the signal S1 and the signal S2 having different phases based on the change in the magnetic field received from the first magnetic pole 401 and the second magnetic pole 402 as the target 400 moves.
  • the signal S1 is a sine signal indicating a sine function.
  • the signal S2 is a cosine signal indicating a cosine function. That is, the signal S1 and the signal S2 have a phase difference of 1 ⁇ 4 period.
  • the detection unit 122 acquires a sine signal and a cosine signal and outputs them to the signal processing unit 123 as a plurality of detection signals.
  • the signal processing unit 123 acquires a plurality of detection signals from the detection unit 122, and acquires a position signal indicating the position of the target 400 based on the plurality of detection signals. Specifically, as shown in the middle part of FIG. 15, the signal processing unit 123 acquires a sine signal and a cosine signal corresponding to the position of the target 400. Further, the signal processing unit 123 calculates (signal value of cosine signal) / (signal value of sine signal). As a result, as shown in the lower part of FIG. 15, an arctangent signal that shows an arctangent function and whose signal value increases at a constant increase rate according to the amount of movement of the target 400 is obtained. The signal processing unit 123 acquires an arctangent signal as a position signal.
  • one surface 132 of the sensor chip 109 may be arranged in parallel to the arrangement direction of the magnetic poles 401 and 402, as shown in the upper part of FIG. In this case, it is easier to detect the magnetic field that the sensor chip 109 receives from the magnetic poles 401 and 402 than in the case shown in FIG. Therefore, the accuracy of the waveform signal, the sine signal, the cosine signal, and the arctangent signal is improved, so that the accuracy of the position of the target 400 can be improved.
  • the signal processing unit 123 outputs the first position signal (O1) and the second position signal (O2) obtained by inverting the first position signal (O1) to the ECU 200.
  • the arrangement direction of the magnetic poles 401 and 402 is inclined with respect to the moving direction of the target 400.
  • the distance from the second magnetic pole 402 to the second magnetic pole 402 can be made longer than the arrangement distance from the second magnetic pole 402 to the adjacent second magnetic pole 402 in the moving direction.
  • the distance from the first magnetic pole 401 to the adjacent first magnetic pole 401 in the moving direction can be increased. Therefore, even if the amount of movement of the target 400 increases, the position of the target 400 can be detected without the target 400 deviating from the detectable range of one detection unit 122.
  • the magnetic poles 401 and 402 are disposed obliquely with respect to the moving direction of the target 400, the restriction on the moving amount of the target 400 can be eliminated. Further, it is more preferable that the one surface 132 of the sensor chip 109 is disposed obliquely as shown in FIG. 16 in the same manner as the angle at which the target 400 is disposed obliquely.
  • the pole width of each of the magnetic poles 401 and 402 of the target 400 can be narrowed by tilting the arrangement direction with respect to the moving direction. Therefore, there is a merit that the size of the sensor chip 109 and the detection unit 122 can be reduced.
  • three or more magnetic poles 401 and 402 may be arranged.
  • the position detection range is from the pole center to the next pole center or from the center to the next pole center.
  • the magnetic field received by the detection unit 122 from the end magnetic poles 401 and 402 and the magnetic field received from the central magnetic poles 401 and 402 can be made uniform.
  • the target 400 may be one in which a block magnet 406 is pasted on a plate member 403.
  • the surface of the plate member 403 corresponds to one surface 405 on which the magnetic poles 401 and 402 are laid out.
  • the magnetization direction is a direction perpendicular to the plate surface of the plate member 403.
  • the plate member 403 of the present embodiment corresponds to the main body.
  • the target 400 may have a wave shape in which the central portion of the first magnetic pole 401 and the central portion of the second magnetic pole 402 protrude in the arrangement direction.
  • the wave shape of the target 400 is, for example, a sine function curved surface. According to this, the distortion of the magnetic field connecting the central portion of the first magnetic pole 401 and the central portion of the second magnetic pole 402 can be reduced. Thus, a sine signal indicating an ideal sine function and a cosine signal indicating an ideal cosine function are obtained. Therefore, the linearity of the arc tangent signal acquired from the sine signal and the cosine signal can be obtained, and as a result, the detection accuracy of the position of the target 400 can be improved.
  • the target 400 includes a rotating shaft 407 and a rotating plate 408.
  • the rotating plate 408 has a surface 410 that is fixed to the side surface 409 of the rotating shaft 407 and orthogonal to the central axis of the rotating shaft 407.
  • the rotating plate 408 is a fan-shaped plate member.
  • the moving direction is a rotating direction around the central axis of the rotating shaft 407.
  • the arrangement direction of each of the magnetic poles 401 and 402 is a direction orthogonal to the central axis of the rotation shaft 407 with a position 411 away from the central axis of the rotation shaft 407 in the radial direction. That is, the arrangement direction is a radial direction centered on the position 411.
  • the magnetic poles 401 and 402 are laid out in an arc shape on one surface 410 of the rotating plate 408 with a position radially away from the central axis of the rotating shaft 407 as a center.
  • the form of each of the magnetic poles 401 and 402 may be the magnetization shown in FIG. 14 or the block magnet 406 shown in FIG.
  • 21 is a locus of the detection unit 122. A wider range of positions can be detected than when the magnetic poles 401 and 402 are arranged along the moving direction.
  • the target 400 is configured as a rotating body 413 having an outer peripheral surface 412.
  • the moving direction is the rotating direction of the rotating body 413.
  • the magnetic poles 401 and 402 are laid out in a spiral shape around the rotation axis of the rotating body 413 on the outer peripheral surface 412 of the rotating body 413.
  • Each of the magnetic poles 401 and 402 may be magnetized or a block magnet. Since the magnetic poles 401 and 402 are laid out in a spiral shape, the arrangement direction also coincides with the spiral direction.
  • the position signal is a signal whose signal value increases at a constant increase rate every 90 °. That is, a signal for four times is output in one rotation.
  • the position may be detected within a range of 90 °.
  • the number of magnetic poles 401 and 402 may be set to 6 poles.
  • the position signal is a signal whose signal value increases at a constant increase rate every 120 °.
  • the number of poles is set as appropriate.
  • the target 400 according to the present embodiment is a movable part that moves in conjunction with the operation of the shift position of the vehicle. Specifically, the target 400 is applied to the shift-by-wire system 500 of the vehicle shown in FIGS.
  • the ShBWECU 501 acquires information on the shifter 502 of the vehicle and controls the actuator 503.
  • a fan-shaped detent 504 is fixed to the actuator 503.
  • a manual valve 505 and a parking rod 506 are fixed to the detent 504.
  • Manual valve 505 is connected to transmission 507.
  • the parking rod 506 is connected to the parking mechanism 508.
  • the sensor 100 is used to detect the position of the detent 504 and the position of the manual valve 505, for example.
  • the shift-by-wire system 500 includes a motor / encoder 509, a TCU 510, a solenoid 511, a pump 512, and the like.
  • the ShBWECU 501 acquires range information indicating the position from the sensor 100 and controls the motor encoder 509 and the TCU 510.
  • a TCU 510 is a transmission controller and controls the solenoid 511.
  • the detent 504 When the sensor 100 detects the position of the detent 504, the detent 504 becomes the target 400 as shown in FIG. Therefore, a magnet 414 in which the magnetic poles 401 and 402 are laid out is fixed to the detent 504.
  • the target 400 may be fixed to the detent 504.
  • the sensor 100 As shown in FIG. 27, the sensor 100 is fixed to the housing 513 so as to face the magnet 414 of the detent 504. Thus, when the detent 504 is rotated by the actuator 503, the sensor 100 detects the rotational position of the detent 504.
  • FIG. 25 can be said to show a configuration for detecting the position of the manual valve 505.
  • the position of the shift position can be detected by detecting the positions of the detent 504 and the manual valve 505 by the sensor 100.
  • the target 400 has a plate shape having one surface 416 on which the first magnetic pole 401 and the second magnetic pole 402 are laid out.
  • each boundary line 417 between the first magnetic pole 401 and the second magnetic pole 402 on the one surface 416 of the target 400 is laid out so as to form an involute curve.
  • the involute curve is a curve that represents the locus of the open end of a circle.
  • is the radius of each boundary line 417.
  • is different for each boundary line 417.
  • the arrangement direction of the magnetic poles 401 and 402 is a direction parallel to the one surface 416 with the position 418 of the rotation center as the center. Since the boundary line 417 of each of the magnetic poles 401 and 402 is defined by an involute curve, the arrangement direction is not generally determined. Looking at the radial direction parallel to one surface 416 with the rotation center position 418 as the center, the magnetic poles 401 and 402 are alternately arranged in any radial direction.
  • the moving direction of the target 400 is a direction parallel to the one surface 416 around the position 418 of the rotation center away from the target 400. That is, the moving direction of the target 400 is a rotation direction around the position 418 of the rotation center.
  • the sensor 100 detects the rotation position of the target 400 in a preset rotation angle range.
  • the movement amount becomes a linear length A1.
  • the amount of movement becomes a linear length B1 longer than the linear length A1. This is the same even when rotating around the center of rotation position 418. That is, the arc length B2 is longer than the arc length A2.
  • the arc length A2 rotates about the position 419 of the rotation center.
  • the radius of rotation of the arc length A2 and the arc length B2 is the same. Therefore, the ratio of each arc length and each straight line length matches.
  • the rotation angle range that can be measured by the arc length A2 is 22.139 °.
  • the rotation angle range is 22.139 °.
  • the magnetic pole widths of the magnetic poles 401 and 402 are made uniform.
  • the straight line length B1 is inclined with respect to the arrangement direction of the magnetic poles 401 and 402. Therefore, as shown in FIG. 32, the straight line length B1 is aligned with the straight line length A1. That is, since the magnetic pole width for one pole is 4.8 mm, the magnetic pole width for two poles is 9.6 mm. Therefore, the straight line length B1 is reduced to 9.6 mm which is the straight line length A1.
  • the magnetic pole width 420 for the two poles obtained in FIG. 33 is rotated within a rotation angle range of 45 ° centered on the position 418 of the rotation center.
  • the target 400 is designed by adding an extra magnetic pole outside the rotation angle range of 45 °.
  • the surplus magnetic pole is a magnetic pole other than the magnetic pole necessary for position detection. In the example of FIG. 30, three surplus magnetic poles are provided. Thereby, the magnetic field generated by each of the magnetic poles 401 and 402 required for position detection becomes uniform.
  • the curve drawn by the boundary becomes an involute curve.
  • the numerical values of the measurement diameter and the rotation angle range used for explaining FIGS. 31 to 34 are examples.
  • each magnetic pole 401, 402 Since the boundary line 417 of each magnetic pole 401, 402 is an involute curve, as shown in FIG. 35, each magnetic pole 401, 402 is slanted with respect to the rotation direction about the rotation center position 418. Is laid out. Further, when the target 400 moves in the rotation direction, the target 400 moves from the magnetic pole center of the second magnetic pole 402 to the magnetic pole center of the adjacent second magnetic pole 402 via the first magnetic pole 401.
  • the locus of the target 400 is such that the first magnetic pole width 421 from the magnetic pole center of the second magnetic pole 402 to the adjacent first magnetic pole 401, the second magnetic pole width 422 of the first magnetic pole 401, and the first magnetic pole 401 are adjacent. And a third magnetic pole width 423 up to the magnetic pole center of the second magnetic pole 402. Since the boundary line 417 between the magnetic poles 401 and 402 is an involute curve, the first magnetic pole width 421 and the third magnetic pole width 423 have the same length. Further, the sum of the first magnetic pole width 421 and the third magnetic pole width 423 is the same as the second magnetic pole width 422.
  • the signal processing unit 123 acquires a sine signal and a cosine signal corresponding to the rotational position of the target 400 by using the target 400 described above.
  • FIG. 36A shows a sin ⁇ signal waveform indicating a sine signal
  • FIG. 36B shows a cos ⁇ signal waveform indicating a cosine signal.
  • a sine signal indicating a sine function close to ideal and a cosine signal indicating a cosine function close to ideal are obtained.
  • the linearity of the arc tangent signal acquired from the sine signal and the cosine signal can be obtained, and as a result, the detection accuracy of the rotational position of the target 400 can be improved. Further, the amount of movement of the target 400 can be increased.
  • the rotation angle range of the target 400 is desirably 45 ° ⁇ 20 °.
  • a mechanism that can ensure only a rotation angle range of 25 ° is assumed.
  • the application of the sensor 100 is not limited to a vehicle, and can be widely used for industrial robots, manufacturing facilities, and the like as detecting the position of a movable part. Further, the sensor 100 may not have a redundant function. In this case, the number of leads 112 to 115 is three.
  • the plurality of detection signals are the signal S1 and the signal S2, that is, the sine signal and the cosine signal, but this is an example.
  • V1 to V3 of the magnetoresistive elements 126 to 128 may be a plurality of detection signals.
  • the signal processing unit 123 acquires a sine signal and a cosine signal. That is, the sine signal and the cosine signal may be acquired by the detection unit 122 or may be acquired by the signal processing unit 123.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

リニアポジションセンサは、第1磁極(401)と第2磁極(402)とが交互に設けられたターゲット(400)の移動方向における位置を検出する。リニアポジションセンサは、ターゲットの移動に伴って、第1磁極及び第2磁極から受ける磁界の変化に基づいて、位相が異なる複数の検出信号を生成する検出部(122)を含む。リニアポジションセンサは、検出部から複数の検出信号を取得し、複数の検出信号に基づいてターゲットの位置を示す位置信号を取得する信号処理部(123)を含む。第1磁極と第2磁極とが交互に配置される配置方向が移動方向に対して傾斜していることにより、第1磁極及び第2磁極は移動方向に対して斜めにレイアウトされている。

Description

リニアポジションセンサ 関連出願の相互参照
 本出願は、2018年2月28日に出願された日本特許出願2018-35818号及び2018年7月11日に出願された日本特許出願2018-131335号に基づくもので、ここにその記載内容を援用する。
 本開示は、リニアポジションセンサに関する。
 従来より、光学式の検出素子を用いてターゲットの位置を検出する装置が、例えば特許文献1で提案されている。検出素子は、光源、固定スリット、固定スリットを透過した光を受光する受光部を備えている。ターゲットには、光の反射部と非反射部とが交互に連続したパターンが設けられている。このため、光源から発せられた光の一部は、検出対象の反射部で反射し、固定スリットに達する。
 固定スリットには、ターゲットのスリットパターンと同一のピッチ距離で反射部と非反射部とが交互に連続して設けられている。したがって、固定スリットに対してターゲットが相対的に移動すると、受光部において検出される光量は、周期的に変化して明暗が繰り返される。明暗の繰り返しの回数をカウントすることにより、ターゲットの移動量の測定が可能になっている。
特開2016-205854号公報
 ここで、磁気式の検出素子によってターゲットの位置を検出する方式が知られている。この方式では、凹凸形状や磁極の配置方向に移動するターゲットに対し、検出部が凹凸形状や磁極から受ける磁界の変化に基づいてターゲットの位置を検出する。つまり、検出部は、凹凸形状や磁極の配置方向に移動するターゲットのうち、凹凸形状や磁極の配列範囲の位置を検出する。
 しかしながら、ターゲットの移動量が大きい場合、ターゲットが検出部の検出可能範囲を逸脱してしまう。言い換えると、検出部がターゲットを検出できる範囲には、限界がある。この場合、検出部はターゲットの位置を検出することが難しい。
 なお、複数の検出部を配置することで検出可能範囲を広げることが考えられる。しかし、複数の検出部を設置するスペースが必要である。また、複数の検出部を備える構成であるので、検出装置のコストが上がってしまう。
 本開示は、ターゲットの移動量が大きくなったとしても、1つの検出部によってターゲットの位置を検出することができるリニアポジションセンサを提供することを目的とする。
 本開示の一態様によると、第1磁極と第2磁極とが交互に設けられたターゲットの移動方向における位置を検出するリニアポジションセンサであって、以下の構成を含んでいる。
 リニアポジションセンサは、ターゲットの移動に伴って、第1磁極及び第2磁極から受ける磁界の変化に基づいて、位相が異なる複数の検出信号を生成する検出部を含んでいる。
 また、リニアポジションセンサは、検出部から複数の検出信号を取得し、複数の検出信号に基づいてターゲットの位置を示す位置信号を取得する信号処理部を含んでいる。
 そして、第1磁極と第2磁極とが交互に配置される配置方向が移動方向に対して傾斜していることにより、第1磁極及び第2磁極は移動方向に対して斜めにレイアウトされている。
 これによると、第1磁極と第2磁極とが交互に配置される配置方向とターゲットの移動方向とが一致する場合よりも、移動方向における第1磁極から隣の第1磁極までの距離、あるいは第2磁極から第2磁極までの距離を長くすることができる。したがって、ターゲットの移動量が大きくなったとしても、1つの検出部によってターゲットの位置を検出することができる。
 本開示についての上記及び他の目的、特徴や利点は、添付図面を参照した下記詳細な説明から、より明確になる。添付図面において、
図1は、第1実施形態に係るリニアポジションセンサの外観図であり、 図2は、磁気抵抗素子を用いた磁気検出方式を構成する部品の分解斜視図であり、 図3は、図2に示された各部品の平面図であり、 図4は、図3のIV-IV断面図であり、 図5は、バイアス磁石が設けられた構成の断面図であり、 図6は、ホール素子を用いた磁気検出方式を構成する部品を示した平面図であり、 図7は、図6のVII-VII断面図であり、 図8は、リニアポジションセンサの回路構成を示した図であり、 図9は、図8に示された回路構成の信号処理の内容を示した図であり、 図10は、極中心から極中心までの動作範囲の一例を示した図であり、 図11は、極中心から極中心までの動作範囲の一例を示した図であり、 図12は、極間中心から極間中心までの動作範囲の一例を示した図であり、 図13は、極間中心から極間中心までの動作範囲の一例を示した図であり、 図14は、板部材とゴム磁石で構成されたターゲットを示した斜視図であり、 図15は、図14のターゲットの移動に伴って生成される信号を示した図であり、 図16は、センサチップの一面を配置方向に平行に配置した場合を示した図であり、 図17は、ターゲットの移動量に対する位置信号を示した図であり、 図18は、比較例として、配置方向と移動方向とが一致する場合を示した図であり、 図19は、変形例として、板部材の上にブロック磁石が固定されたターゲットを示した図であり、 図20は、変形例として、各磁極の中央部を突出させたターゲットの斜視図であり、 図21は、第2実施形態に係るターゲットを示した図であり、 図22は、第3実施形態に係るターゲットを示した図であり、 図23は、回転体の回転角度に対する位置信号を示した図であり、 図24は、第4実施形態に係るシフトバイワイヤシステムの概略図であり、 図25は、シフトバイワイヤシステムのブロック図であり、 図26は、ディテントを示した平面図であり、 図27は、ディテントの位置を検出する内容を示した図であり、 図28は、マニュアルバルブの斜視図であり、 図29は、マニュアルバルブの位置を検出する内容を示した図であり、 図30は、第5実施形態に係るターゲットの平面図であり、 図31は、配置方向に対する傾斜角度θ1を説明するための図であり、 図32は、磁極幅を揃える内容を説明するための図であり、 図33は、磁極の境界位置を調整する内容を説明するための図であり、 図34は、2極分の磁極幅を回転中心の位置を中心として45°の回転角度範囲で回転させる内容を説明するための図であり、 図35は、回転中心の位置を中心とした回動方向に対して各磁極が斜めにレイアウトされる内容を説明するための図であり、 図36Aは、図30のターゲットの移動に伴って生成されるsin信号を示した図であり、 図36Bは、図30のターゲットの移動に伴って生成されるcos信号を示した図である。
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各実施形態において先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
 (第1実施形態)
 以下、本開示の第1実施形態について図を参照して説明する。本実施形態に係るリニアポジションセンサは、第1磁極と第2磁極とが交互に設けられた検出対象の移動方向における位置を検出するセンサである。以下、リニアポジションセンサを単にセンサと言う。
 図1に示されるように、センサ100は、検出対象として、一方向に移動するターゲットの移動量を検出する。すなわち、センサ100は、ターゲットの現在の位置を検出する。具体的には、センサ100は、ターゲットの移動量に比例する信号を検出することで、ターゲットの位置を取得する。
 センサ100は、PPS等の樹脂材料が樹脂成形されたことによって形成されたケース101を備えている。ケース101は、ターゲット側の先端部102、周辺機構に固定されるフランジ部103、ハーネスが接続されるコネクタ部104を有している。先端部102の内部にセンシング部分が設けられている。
 また、先端部102がターゲットの検出面に対して所定のギャップを持つように、センサ100がフランジ部103を介して周辺機構に固定される。したがって、ターゲットがセンサ100に対して移動する。なお、ターゲットの移動方向は直進や往復に限られず、回転や特定の角度内での往復等でも良い。
 センサ100は、磁気抵抗素子を用いた磁気検出方式、または、ホール素子を用いた磁気検出方式を採用することができる。磁気抵抗素子を用いた磁気検出方式の場合、図2に示されるように、センサ100は、モールドIC部105及びキャップ部106を備えている。モールドIC部105は、キャップ部106に差し込まれる。これらは、ケース101の先端部102に収容される。
 図3の平面模式図及び図4の断面模式図に示されるように、モールドIC部105及びキャップ部106は一体化される。モールドIC部105の主な部分は、キャップ部106の中空部に位置する。キャップ部106は、モールドIC部105の位置を固定する。
 モールドIC部105は、リードフレーム107、処理回路チップ108、センサチップ109、及びモールド樹脂部110を有している。リードフレーム107は、板状のアイランド部111及び複数のリード112~115を有している。アイランド部111の平面部は、ターゲットに対するギャップ方向に平行に配置されている。
 複数のリード112~115は、電源電圧が印加される電源端子112、グランド電圧が印加されるグランド端子113、信号を出力するための第1出力端子114及び第2出力端子115に対応している。つまり、各リード112~115は、電源用、グランド用、及び信号用の4本である。各リード112~115の先端にはターミナル116がそれぞれ接続されている。ターミナル116は、ケース101のコネクタ部104に位置する。また、ターミナル116がハーネスに接続される。
 なお、本実施形態では、複数のリード112~115のうちのグランド用のリード113はアイランド部111に一体化されている。アイランド部111と全てのリード112~115とが完全に分離されていても良い。
 処理回路チップ108及びセンサチップ109は、接着剤等によってアイランド部111に実装されている。処理回路チップ108は、センサチップ109の信号を処理する回路部が構成されている。センサチップ109は、外部から磁界の影響を受けたときに抵抗値が変化する磁気抵抗素子を含んでいる。磁気抵抗素子は、例えばAMR(Anisotropic Magneto Resistance;AMR)、GMR(Giant Magneto Resistance;GMR)、TMR(Tunneling Magneto Resistance;TMR)である。各リード112~115と処理回路チップ108とは、ワイヤ117を介して電気的に接続されている。処理回路チップ108とセンサチップ109とは、ワイヤ118を介して電気的に接続されている。
 モールド樹脂部110は、アイランド部111、各リード112~115の一部、処理回路チップ108、及びセンサチップ109を封止している。モールド樹脂部110は、キャップ部106の中空部に固定される形状に成形されている。
 なお、図5に示されるように、アイランド部111のうちセンサチップ109側とは反対側にバイアス磁石119が設けられていても良い。バイアス磁石119はセンサチップ109にバイアス磁界を印加する。
 磁気抵抗素子を用いた磁気検出方式による検出信号について説明する。キャップ部106は、ターゲットに対して所定のギャップを持って配置される。そして、キャップ部106に対してターゲットが移動すると、ターゲットの移動方向の中心で検出信号が最大となる。ギャップが大きくなると検出信号の振幅が小さくなり、ギャップが小さくなると検出信号の振幅が大きくなる。よって、検出信号を利用して、ターゲットの位置を検出することができる。なお、後述するが、検出信号は複数の磁気抵抗素子の出力によって生成される。
 ホール素子を用いた磁気検出方式を採用した場合、図6の平面模式図及び図7の断面模式図に示されるように、モールドIC部105は、キャップ部106に差し込まれて固定される。また、モールドIC部105は、リードフレーム107、ICチップ120、及びモールド樹脂部110を有している。
 リードフレーム107のアイランド部111は、平面部がターゲットの移動方向に対して平行になるように配置される。一方、各リード112~115は、ターゲットの移動方向に対して垂直になるように配置される。グランド用のリード113がアイランド部111に直角に一体化されている。各リード112~115の先端にはターミナル116がそれぞれ接続されている。
 ICチップ120は、複数のホール素子と信号処理回路部とが形成されている。つまり、ホール素子を用いた磁気検出方式では1チップ構成になっている。各リード112~115とICチップ120とは、ワイヤ121を介して電気的に接続されている。モールド樹脂部110は、キャップ部106の中空部に固定される形状に成形されている。
 ホール素子を用いた磁気検出方式による検出信号について説明する。例えば2つのホール素子がICチップ120に設けられている場合、キャップ部106に対してターゲットが移動すると、各ホール素子の位置に対応して各検出信号が最大となる。ギャップと検出信号の振幅との関係は磁気抵抗素子を用いた磁気検出方式と同じである。ターゲットの移動に応じた周期的な信号を利用して、ターゲットの位置を検出することができる。
 本実施形態では、上記の磁気検出方式のうち磁気抵抗素子を用いた方式を採用する。磁気ベクトルを検出する磁気抵抗素子は、ギャップのずれによる精度誤差をキャンセルできるメリットがある。また、センサチップ109に発生する応力の影響を低減あるいはキャンセルできるメリットがある。よって、高精度な検出が可能である。
 次に、センサチップ109及び処理回路チップ108に構成された回路構成について説明する。図8に示されるように、センサ100とECU200とがハーネス300を介して電気的に接続されている。上述のように、モールドIC部105は4本のリード112~115を有しているので、ハーネス300は4本の配線によって構成されている。
 ECU200は、電源部201、制御部202、及びグランド部203を備えた電子制御装置である。電源部201は、センサ100に電源電圧を供給する回路部である。制御部202は、センサ100から入力する位置信号に応じて予め決められた制御を行う回路部である。なお、制御部202は、各出力端子114、115に対応した回路部として構成されていても良い。グランド部203はセンサ100のグランド電圧を設定する回路部である。
 センサ100は、検出部122及び信号処理部123を備えている。検出部122は、センサチップ109に設けられている。信号処理部123は、処理回路チップ108に設けられている。検出部122及び信号処理部123は、ECU200から供給される電源電圧及びグランド電圧に基づいて動作する。
 検出部122は、第1検出部124及び第2検出部125を有している。第1検出部124は、ターゲットの位置に対応した第1検出信号を出力するように構成されている。第2検出部125は、ターゲットの位置に対応した第2検出信号を出力するように構成されている。各検出部124、125は、同じ構成であり、同じ検出信号を出力する。
 図9に示されるように、各検出部124、125は、ターゲットの移動に伴って抵抗値が変化する第1磁気抵抗素子126、第2磁気抵抗素子127、及び第3磁気抵抗素子128の3つの素子を有している。なお、図9では1つの検出部を図示している。
 ターゲットの移動方向において、第2磁気抵抗素子127が第1磁気抵抗素子126と第3磁気抵抗素子128との間に位置するように各々が配置されている。つまり、第2磁気抵抗素子127が第1磁気抵抗素子126と第3磁気抵抗素子128とに挟まれるように配置されている。なお、モールドIC部105にバイアス磁石119が設けられた構成では、各磁気抵抗素子126~128にバイアス磁界が印加される。
 各磁気抵抗素子126~128は、電源とグランドとの間に2つの磁気抵抗が直列接続されたハーフブリッジ回路として構成されている。各磁気抵抗素子126~128は、ターゲットの移動に伴って2つの磁気抵抗が磁界の影響を受けたときの抵抗値の変化を検出する。また、各磁気抵抗素子126~128は、抵抗値の変化に基づいて、2つの磁気抵抗の中点の電圧を波形信号としてそれぞれ出力する。
 また、各検出部124、125は、各磁気抵抗素子126~128の他に、第1~第4オペアンプを備えている。第1磁気抵抗素子126の中点電位をV1と定義すると共に、第2磁気抵抗素子127の中点電位をV2と定義すると、第1オペアンプは、V1-V2を演算して演算結果をR1として出力するように構成された差動増幅器である。また、第3磁気抵抗素子128の中点電位をV3と定義すると、第2オペアンプは、V2-V3を演算して演算結果をR2として出力するように構成された差動増幅器である。
 第3オペアンプは、第1オペアンプからR1(=V1-V2)を入力すると共に第2オペアンプからR2(=V2-V3)を入力し、R2-R1を演算して演算結果をS1(=(V2-V3)-(V1-V2))として出力するように構成された差動増幅器である。
 第4オペアンプは、第1磁気抵抗素子126から中点電位V1を入力すると共に、第3磁気抵抗素子128から中点電位V3を入力し、V1-V3を演算して演算結果をS2として出力するように構成された差動増幅器である。
 このように、各検出部124、125は、各磁気抵抗素子126~128の出力から信号S1(=(V2-V3)-(V1-V2))及び信号S2(=V1-V3)を生成及び取得するように構成されている。信号S1及び信号S2が検出信号となる。つまり、各検出部124、125は、位相が異なる複数の検出信号を生成する。各検出部124、125は、信号S1及び信号S2を複数の検出信号として信号処理部123に出力する。
 なお、上記の信号の処理は、磁気抵抗素子がセンサチップ109に3つ設けられた構成の場合である。磁気抵抗素子がセンサチップ109に2つや4つ以上設けられた場合には素子の数に応じた処理が行われる。
 図8の信号処理部123は、検出部122から入力される信号を処理する回路部である。信号処理部123は、第1処理部129、第2処理部130、冗長判定部131を備えている。
 第1処理部129は、第1検出部124から第1検出信号を入力し、第1検出信号に基づいてターゲットの位置を取得する。第2処理部130は、第2検出部125から第2検出信号を入力し、第2検出信号に基づいてターゲットの位置を取得する。
 第2処理部130は、位置信号を反転させて出力する。よって、検出部122や信号処理部123に異常が無ければ、第1処理部129の位置信号と第2処理部130の位置信号とを足し合わせると一定値になる。
 ここで、第1検出部124及び第1処理部129が第1系統を構成する。また、第2検出部125及び第2処理部130が第2系統を構成する。つまり、各検出部124、125及び各処理部129、130によって2重系が構成されている。
 冗長判定部131は、第1処理部129によって取得された位置と第2処理部130によって取得された位置とが一致するか否かを判定する回路部である。2系統の信号処理結果が一致する場合、信号処理部123は、各位置信号をそのまま出力する。2系統の信号処理結果が一致しない場合、各系統のいずれか一方または両方に異常が発生している可能性がある。この場合、信号処理部123は、異常を示す異常信号をECU200に出力する。
 信号処理をまとめると、例えば図9の内容となる。アナログ処理は、複数の検出信号を生成する処理である。なお、検出部122は温度を検出する機能を有していても良い。温度情報Tempは温度補正に用いられる。また、「Sin」及び「Cos」は後述する正弦信号及び余弦信号である。
 アナログ処理されたアナログ信号はマルチプレクサ(MUX)を介してA/Dコンバータ(ADC)でデジタル信号に変換される。デジタル信号は逆正接信号を生成するために演算処理される。アナログ処理及び演算処理では、メモリに記憶された調整値が適宜利用される。演算処理によって取得された位置信号は、DAC、SENT、PWM等の出力形式に従ってECU200に出力される。
 なお、演算処理は信号処理部123で行われる。よって、A/Dコンバータ(ADC)やメモリは信号処理部123に設けられている。アナログ処理は検出部122及び信号処理部123のどちらで行われても良い。以上が、本実施形態に係るセンサ100の構成である。
 次に、ターゲット及び動作範囲について説明する。図10~図13に示されるように、ターゲット400は、第1磁極401と第2磁極402とが移動方向に交互に設けられている。第1磁極401はN極である。第2磁極402はS極である。磁極の関係は逆転していても良い。検出部122はターゲット400に対してギャップを持って固定されている。ターゲット400が検出部122に対して移動方向に移動する。
 図10及び図11に示されるように、検出部122は、極中心から隣の極中心までの動作範囲の位置を検出する。動作範囲は、ターゲット400の移動範囲である。図10は、検出部122が、第2磁極402において移動方向の幅中心から隣の第2磁極402の幅中心までの位置を検出する場合を示している。図11は、検出部122が、第1磁極401の幅中心から隣の第1磁極401の幅中心までの位置を検出する場合を示している。
 図12及び図13に示されるように、検出部122は、極間中心から隣の極間中心までの動作範囲の位置を検出する。図12は、検出部122が、第2磁極402と第1磁極401との極間中心から隣の極間中心までの位置を検出する場合を示している。図13は、検出部122が、第1磁極401と第2磁極402との極間中心から隣の極間中心までの位置を検出する場合を示している。
 続いて、ターゲット400の具体的な構成について説明する。図14に示されるように、ターゲット400は、磁性体の板部材403の上に設けられたゴム磁石404の一部に第1磁極401及び第2磁極402が着磁されたものである。ゴム磁石404は、第1磁極401及び第2磁極402がレイアウトされた一面405を有する。磁化方向はゴム磁石404の板面に垂直な方向である。なお、本実施形態の板部材403及びゴム磁石404が本体部に対応する。
 ゴム磁石404には、第2磁極402、第1磁極401、及び第2磁極402の3つが着磁されている。ここで、第1磁極401と第2磁極402とが交互に配置される方向を配置方向と定義する。配置方向は、ゴム磁石404の一面405に平行な方向のうちの一方向である。そして、配置方向が移動方向に対して傾斜していることにより、第1磁極401及び第2磁極402は移動方向に対して斜めにレイアウトされている。
 第1磁極401及び第2磁極402は、配置方向に直交すると共に一面405に平行な方向に直線状にレイアウトされている。配置方向は移動方向に対して傾斜しているが、直交していない。配置方向と移動方向とが一致していないので、ターゲット400が移動方向に移動したときの移動量は、配置方向に移動したときの移動量よりも大きくなる。つまり、配置方向と移動方向とが一致する場合よりも、実質的に、ターゲット400の移動量を大きくすることができる。
 図15の上段に示されるように、センサチップ109の一面132が移動方向に対して垂直に向けられた場合について説明する。磁気抵抗素子126~128はセンサチップ109の一面132に配置される。また、ターゲット400は、図10に示された各磁極401、402を有する。
 そして、ターゲット400が移動方向に移動すると、検出部122は第2磁極402の一端部から第1磁極401の中央部を介して隣の第2磁極402の他端部を横切る。これにより、検出部122は、ターゲット400の移動に伴って、第1磁極401及び第2磁極402から受ける磁界の変化に基づいて、位相が異なる信号S1及び信号S2を生成する。
 信号S1は、正弦関数を示す正弦信号である。信号S2は、余弦関数を示す余弦信号である。つまり、信号S1と信号S2とは1/4周期の位相差がある。検出部122は、正弦信号及び余弦信号を取得し、複数の検出信号として信号処理部123に出力する。
 信号処理部123は、検出部122から複数の検出信号を取得し、複数の検出信号に基づいてターゲット400の位置を示す位置信号を取得する。具体的には、図15の中段に示されるように、信号処理部123は、ターゲット400の位置に対応した正弦信号及び余弦信号を取得する。また、信号処理部123は、(余弦信号の信号値)/(正弦信号の信号値)を演算する。これにより、図15の下段に示されるように、逆正接関数を示すと共にターゲット400の移動量に応じて信号値が一定の増加率で増加する逆正接信号が得られる。信号処理部123は、逆正接信号を位置信号として取得する。
 図16の上段に示されるように、センサチップ109の一面132を各磁極401、402の配置方向に平行に配置しても良い。この場合、図15に示された場合よりも、センサチップ109が各磁極401、402から受ける磁界を検出しやすくなる。よって、波形信号、正弦信号、余弦信号、逆正接信号の精度が良くなるので、ターゲット400の位置の正確度を向上させることができる。
 図17に示されるように、信号処理部123は第1位置信号(O1)と、第1位置信号(O1)を反転させた第2位置信号(O2)をECU200に出力する。
 比較例として、図18に示されるように、各磁極401、402の配置方向とターゲット400の移動方向とが一致する場合、第2磁極402から隣の第2磁極402までの配列距離とターゲット400の移動量とが一致する。このため、ターゲット400は配列距離を超えた移動ができないので、ターゲット400の移動量の検出は配列距離の範囲内に限定されてしまう。
 すなわち、ターゲット400の移動量に対してより直線性の高い信号を得ようとすると、磁極401、402が大きい形状でないときれいな信号が得られない。そのため、ターゲット400の移動量を大きくしたくても磁極401、402の大きさが決まってしまう。よって、図18の比較例では、ターゲット400の移動量に対して制約を設けなければならない。
 これに対し、本実施形態では、各磁極401、402の配置方向をターゲット400の移動方向に対して傾斜させている。このため、移動方向における第2磁極402から隣の第2磁極402までの配列距離よりも、第2磁極402から第2磁極402までの距離を長くすることができる。図11の例では、移動方向における第1磁極401から隣の第1磁極401までの距離を長くすることができる。したがって、ターゲット400の移動量が大きくなったとしても、ターゲット400が1つの検出部122の検出可能範囲を逸脱することなく、ターゲット400の位置を検出することができる。
 以上のように、ターゲット400の移動方向に対して各磁極401、402が斜めに配置されているので、ターゲット400の移動量の制約を無くすことができる。また、ターゲット400を斜めに配置した角度と同じように、センサチップ109の一面132も図16に示されるように斜めに配置するとなお良い。
 また、信号の差動を取る際に各磁気抵抗素子126~128の間隔を広く取る必要がある。しかしながら、配置方向を移動方向に対して傾けることにより、ターゲット400の各磁極401、402の極幅を狭めることができる。よって、センサチップ109及び検出部122の体格を小さくすることができるというメリットもある。
 変形例として、各磁極401、402は3つ以上配置されていても良い。位置の検出範囲は極中心から隣の極中心あるいは極間中心から隣の極間中心である。しかし、交互に配置される磁極401、402の数を増やすことで、検出部122が端の磁極401、402から受ける磁界と中央の磁極401、402から受ける磁界とを均一にすることができる。なお、均一とは完全に均一でなくても、均一に近づいていれば良い。
 変形例として、図19に示されるように、ターゲット400は、板部材403の上にブロック磁石406が貼り付けられたものでも良い。この場合、板部材403の表面が、各磁極401、402がレイアウトされた一面405に対応する。磁化方向は板部材403の板面に垂直な方向である。なお、本実施形態の板部材403が本体部に対応する。
 変形例として、図20に示されるように、ターゲット400は、配置方向における第1磁極401の中央部分及び第2磁極402の中央部分が突出した波形状を有していても良い。ターゲット400の波形状は、例えば正弦関数の曲面である。これによると、第1磁極401の中央部分と第2磁極402の中央部分とを繋ぐ磁界の歪みを緩和することができる。このため、理想的な正弦関数を示す正弦信号及び理想的な余弦関数を示す余弦信号が得られる。したがって、正弦信号及び余弦信号から取得される逆正接信号の直線性を得ることができ、ひいてはターゲット400の位置の検出精度を向上させることができる。
 (第2実施形態)
 本実施形態では、第1実施形態と異なる部分について説明する。図21に示されるように、ターゲット400は、回転軸407及び回転板408を備えている。回転板408は、回転軸407の側面409に固定されていると共に回転軸407の中心軸に直交する一面410を有する。回転板408は、扇形状の板部材である。
 上記の構成では、移動方向は、回転軸407の中心軸を中心とした回動方向である。また、各磁極401、402の配置方向は、回転軸407の中心軸から回転軸407の径方向に離れた位置411を中心として回転軸407の中心軸に直交する方向である。つまり、配置方向は、位置411を中心とした径方向である。
 そして、各磁極401、402は、回転軸407の中心軸から径方向に離れた位置を中心として回転板408の一面410に円弧状にレイアウトされている。各磁極401、402の形態は、図14に示された着磁でも良いし、図19に示されたブロック磁石406でも良い。
 図21の破線は、検出部122の軌跡である。各磁極401、402が移動方向に沿って配置された場合よりも広い範囲の位置を検出することができる。
 (第3実施形態)
 本実施形態では、第1、第2実施形態と異なる部分について説明する。図22に示されるように、ターゲット400は、外周面412を有する回転体413として構成されている。上記の構成では、移動方向は、回転体413の回動方向である。
 そして、各磁極401、402は、回転体413の外周面412に回転体413の回転軸を中心とした螺旋状にレイアウトされている。各磁極401、402の形態は、着磁やブロック磁石のどちらでも良い。各磁極401、402が螺旋状にレイアウトされているので、配置方向も螺旋方向に一致している。
 例えば、回転体413の外周面412に8極の磁極401、402が着磁された構成では、極中心から隣の極中心までが90°の回転角度に対応する。よって、図23に示されるように、位置信号は、90°毎に一定の増加率で信号値が増加する信号となる。つまり、1回転で4回分の信号が出力される。もちろん、1回転を検出するのではなく、90°の範囲内で位置を検出しても良い。
 変形例として、磁極401、402の数を6極に設定しても良い。この場合、位置信号は、120°毎に一定の増加率で信号値が増加する信号となる。このように、極数は適宜設定される。
 (第4実施形態)
 本実施形態では、第1~第3実施形態と異なる部分について説明する。本実施形態に係るターゲット400は、車両のシフトポジションの動作に連動して移動する可動部品である。具体的には、ターゲット400は、図24及び図25に示された車両のシフトバイワイヤシステム500に適用される。
 シフトバイワイヤシステム500では、ShBWECU501が車両のシフター502の情報を取得してアクチュエータ503を制御する。アクチュエータ503には扇形状のディテント504が固定されている。ディテント504にはマニュアルバルブ505及びパーキングロッド506が固定されている。マニュアルバルブ505はトランスミッション507に接続されている。パーキングロッド506は、パーキング機構部508に接続されている。そして、センサ100は、例えば、ディテント504の位置やマニュアルバルブ505の位置を検出するために用いられる。
 なお、シフトバイワイヤシステム500では、モータ・エンコーダ509、TCU510、ソレノイド511、ポンプ512等が備えられている。ShBWECU501は、センサ100から位置を示すレンジ情報を取得し、モータ・エンコーダ509及びTCU510を制御する。TCU510は、トランスミッションコントローラであり、ソレノイド511を制御する。
 センサ100がディテント504の位置を検出する場合、図26に示されるように、ディテント504がターゲット400となる。よって、ディテント504には各磁極401、402がレイアウトされた磁石414が固定されている。ディテント504にターゲット400が固定されていても良い。図27に示されるように、センサ100はディテント504の磁石414に対向するようにハウジング513に固定されている。これにより、ディテント504がアクチュエータ503によって回転させられた際に、センサ100はディテント504の回転位置を検出する。
 センサ100がマニュアルバルブ505の位置を検出する場合、図28に示されるように、ターゲット400はマニュアルバルブ505に固定される。ターゲット400には各磁極401、402がレイアウトされた磁石415が固定されている。また、図29に示されるように、センサ100はターゲット400の磁石415に対向するようにハウジング513に固定されている。これにより、ディテント504を介してマニュアルバルブ505が移動した際に、センサ100はマニュアルバルブ505の位置を検出する。図25は、マニュアルバルブ505の位置を検出する構成が示されていると言える。
 シフトポジションが操作された場合、センサ100によってディテント504やマニュアルバルブ505の位置を検出することで、シフトポジションの位置を検出することができる。
 (第5実施形態)
 本実施形態では、第1~第4実施形態と異なる部分について説明する。図30に示されるように、ターゲット400は第1磁極401及び第2磁極402がレイアウトされた一面416を有する板状である。また、ターゲット400の一面416における第1磁極401と第2磁極402との各境界線417は、インボリュート曲線になるようにレイアウトされている。
 インボリュート曲線は、円の開放端の軌跡を表現する曲線である。インボリュート曲線は、x=α(-sinθ+θcosθ)、y=α(cosθ+θsinθ)によって表される。αは、各境界線417の半径である。αは、境界線417毎に異なる。
 各磁極401、402の配置方向は、回転中心の位置418を中心として一面416に平行な方向である。各磁極401、402の境界線417がインボリュート曲線によって規定されるので、配置方向は一概に決まらない。回転中心の位置418を中心として一面416に平行な放射方向をみると、どの放射方向においても各磁極401、402は交互に配置されている。
 ターゲット400の移動方向は、ターゲット400から離れた回転中心の位置418を中心として一面416に平行な方向である。つまり、ターゲット400の移動方向は、回転中心の位置418を中心とした回動方向である。センサ100は予め設定されたターゲット400の回転角度範囲における回転位置を検出する。
 続いて、ターゲット400の回転位置を各磁極401、402の境界線417をインボリュート曲線とした理由について説明する。
 まず、図31に示されるように、ターゲット400がセンサチップ109に対して各磁極401、402の配置方向に移動すると、移動量は直線長さA1になる。配置方向に対して角度θ1だけ傾斜すると、移動量は直線長さA1よりも長い直線長さB1になる。これは、回転中心の位置418を中心として回転した場合でも同じである。すなわち、円弧長さB2が円弧長さA2よりも長くなる。
 ここで、円弧長さA2は、回転中心の位置419を中心として回転する。円弧長さA2と円弧長さB2との回転半径は同じである。したがって、各円弧長さと各直線長さの比は一致する。
 具体的に、測定径をφ50、各磁極401、402の磁極幅を4.8mmとすると、円弧長さA2によって測定可能な回転角度範囲は22.139°である。φ50の測定径を維持しつつ、回転角度範囲を例えば45°まで延長させることを考える。つまり、45°の回転角度で360°の電気角となるように設計することを考える。
 4.8mmの磁極幅を維持したまま、回転角度範囲を45°とするためには、45°÷22.139°=2.03の比となる。よって、直線長さA1と直線長さB1との成す角度θ1は60.488°となる。
 続いて、各磁極401、402の各磁極幅を揃えることを考える。直線長さB1は各磁極401、402の配置方向に対して傾斜している。そこで、図32に示されるように、直線長さB1を直線長さA1に揃える。つまり、1極分の磁極幅が4.8mmであるので、2極分の磁極幅は9.6mmである。よって、直線長さB1を直線長さA1である9.6mmに縮める。
 したがって、図33に示されるように、直線長さB1を直線長さA1に縮めつつ、直線長さB1における各磁極401、402の長さを縮小する。これにより、各磁極401、402の配置方向に対して角度θ1傾斜した方向に2極分の磁極幅420を割り当てる。
 そして、図34に示されるように、図33で得られた2極分の磁極幅420を、回転中心の位置418を中心とした45°の回転角度範囲で回転させる。また、45°の回転角度範囲外の余剰磁極を追加してターゲット400を設計する。余剰磁極とは、位置の検出に必要な磁極以外の磁極である。図30の例では、3つの余剰磁極が設けられている。これにより、位置の検出に必要な各磁極401、402によって発生する磁界が均一になる。
 図34に示された各磁極401、402の境界を繋ぐと、境界が描く曲線がインボリュート曲線になる。なお、図31~図34を説明するために使用した測定径や回転角度範囲の数値は一例である。
 各磁極401、402の境界線417がインボリュート曲線になっていることで、図35に示されるように、回転中心の位置418を中心とした回動方向に対して、各磁極401、402が斜めにレイアウトされる。また、ターゲット400が回動方向に移動すると、ターゲット400は、第2磁極402の磁極中心から第1磁極401を介して隣の第2磁極402の磁極中心まで移動する。
 このとき、ターゲット400の軌跡は、第2磁極402の磁極中心から隣の第1磁極401までの第1磁極幅421と、第1磁極401の第2磁極幅422と、第1磁極401から隣の第2磁極402の磁極中心までの第3磁極幅423と、に分割される。各磁極401、402の境界線417がインボリュート曲線になっていることで、第1磁極幅421と第3磁極幅423とが同じ長さになる。また、第1磁極幅421と第3磁極幅423との和が第2磁極幅422と同じになる。
 上記のターゲット400により、図36A及び図36Bに示されるように、信号処理部123は、ターゲット400の回転位置に対応した正弦信号及び余弦信号を取得する。図36Aは正弦信号を示すsinθの信号波形、図36Bは余弦信号を示すcosθの信号波形を示している。図36A及び図36Bのように、理想に近い正弦関数を示す正弦信号及び理想に近い余弦関数を示す余弦信号が得られる。
 したがって、正弦信号及び余弦信号から取得される逆正接信号の直線性を得ることができ、ひいてはターゲット400の回転位置の検出精度を向上させることができる。また、ターゲット400の移動量を大きくすることができる。
 ここで、ターゲット400の回転角度範囲は45°±20°であることが望ましい。ターゲット400が搭載されるシステムによっては、25°の回転角度範囲しか確保できない機構が想定される。また、大きな回転角度範囲である65°を確保できる機構もある。
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
 例えば、センサ100の用途は車両用に限られず、可動部品の位置を検出するものとして産業用ロボットや製造設備等にも広く利用できる。また、センサ100は冗長機能を備えていなくても良い。この場合、リード112~115は3本である。
 上記各実施形態では、複数の検出信号は、信号S1及び信号S2、すなわち正弦信号及び余弦信号であったが、これは一例である。例えば、各磁気抵抗素子126~128のV1~V3を複数の検出信号としても良い。この場合、信号処理部123が正弦信号及び余弦信号を取得する。つまり、正弦信号及び余弦信号は、検出部122で取得されても良いし、信号処理部123で取得されても良い。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (8)

  1.  第1磁極(401)と第2磁極(402)とが交互に設けられたターゲット(400)の移動方向における位置を検出するリニアポジションセンサであって、
     前記ターゲットの移動に伴って、前記第1磁極及び前記第2磁極から受ける磁界の変化に基づいて、位相が異なる複数の検出信号を生成する検出部(122)と、
     前記検出部から前記複数の検出信号を取得し、前記複数の検出信号に基づいて前記ターゲットの位置を示す位置信号を取得する信号処理部(123)と、
     を含み、
     前記第1磁極と前記第2磁極とが交互に配置される配置方向が前記移動方向に対して傾斜していることにより、前記第1磁極及び前記第2磁極は前記移動方向に対して斜めにレイアウトされているリニアポジションセンサ。
  2.  前記ターゲットは、前記第1磁極及び前記第2磁極がレイアウトされた一面(416)を有し、
     前記移動方向は、回転中心の位置(418)を中心として前記一面に平行な回動方向であり、
     前記第1磁極及び前記第2磁極は、前記一面における前記第1磁極と前記第2磁極との境界線(417)がインボリュート曲線になるようにレイアウトされている請求項1に記載のリニアポジションセンサ。
  3.  前記ターゲットは、前記第1磁極及び前記第2磁極がレイアウトされた一面(405)を有すると共に前記移動方向に移動する本体部(403、404)を含み、
     前記配置方向は、前記本体部の前記一面に平行な方向のうちの一方向であり、
     前記第1磁極及び前記第2磁極は、前記配置方向に直交すると共に前記一面に平行な方向に直線状にレイアウトされている請求項1に記載のリニアポジションセンサ。
  4.  前記ターゲットは、前記配置方向における前記第1磁極の中央部分及び前記第2磁極の中央部分が突出した波形状を有する請求項3に記載のリニアポジションセンサ。
  5.  前記ターゲットは、回転軸(407)と、前記回転軸の側面(409)に固定されていると共に前記回転軸の中心軸に直交する一面(410)を有する回転板(408)と、を含み、
     前記移動方向は、前記回転軸の中心軸を中心とした回動方向であり、
     前記配置方向は、前記回転軸の中心軸から前記回転軸の径方向に離れた位置(411)を中心として前記回転軸の中心軸に直交する方向であり、
     前記第1磁極及び前記第2磁極は、前記回転軸の中心軸から前記径方向に離れた位置を中心として前記回転板の前記一面に円弧状にレイアウトされている請求項1に記載のリニアポジションセンサ。
  6.  前記ターゲットは、外周面(412)を有する回転体(413)として構成されており、
     前記移動方向は、前記回転体の回動方向であり、
     前記第1磁極及び前記第2磁極は、前記回転体の前記外周面に前記回転体の回転軸を中心とした螺旋状にレイアウトされている請求項1に記載のリニアポジションセンサ。
  7.  前記検出部は、前記複数の検出信号として、正弦関数を示す正弦信号及び余弦関数を示す余弦信号を取得し、
     前記信号処理部は、前記検出部から前記正弦信号及び前記余弦信号を取得し、前記正弦信号及び余弦信号に基づいて逆正接関数を示すと共に前記ターゲットの移動量に応じた逆正接信号を生成し、前記逆正接信号を前記位置信号として取得する請求項1ないし6のいずれか1つに記載のリニアポジションセンサ。
  8.  前記ターゲットは、車両のシフトポジションの動作に連動して移動する可動部品である請求項1ないし7のいずれか1つに記載のリニアポジションセンサ。
PCT/JP2019/000531 2018-02-28 2019-01-10 リニアポジションセンサ WO2019167440A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-035818 2018-02-28
JP2018035818 2018-02-28
JP2018-131335 2018-07-11
JP2018131335A JP6798530B2 (ja) 2018-02-28 2018-07-11 リニアポジションセンサ

Publications (1)

Publication Number Publication Date
WO2019167440A1 true WO2019167440A1 (ja) 2019-09-06

Family

ID=67805691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000531 WO2019167440A1 (ja) 2018-02-28 2019-01-10 リニアポジションセンサ

Country Status (1)

Country Link
WO (1) WO2019167440A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158717A (ja) * 1989-11-15 1991-07-08 Tdk Corp 変位検出装置
JPH0921652A (ja) * 1995-04-28 1997-01-21 Sumitomo Metal Mining Co Ltd 磁気式エンコーダ及びその製造方法
JP2001041776A (ja) * 1999-07-27 2001-02-16 Ono Sokki Co Ltd エンコーダ
JP2010096510A (ja) * 2008-10-14 2010-04-30 Tokai Rika Co Ltd 操作位置算出装置
JP2014059297A (ja) * 2012-08-20 2014-04-03 Dmg Mori Seiki Co Ltd スケール装置、位置情報生成方法及び多軸ステージ装置
JP2014153114A (ja) * 2013-02-06 2014-08-25 Dmg Mori Seiki Co Ltd スケール及び変位検出装置
JP2016205855A (ja) * 2015-04-16 2016-12-08 株式会社小野測器 ロータリエンコーダ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158717A (ja) * 1989-11-15 1991-07-08 Tdk Corp 変位検出装置
JPH0921652A (ja) * 1995-04-28 1997-01-21 Sumitomo Metal Mining Co Ltd 磁気式エンコーダ及びその製造方法
JP2001041776A (ja) * 1999-07-27 2001-02-16 Ono Sokki Co Ltd エンコーダ
JP2010096510A (ja) * 2008-10-14 2010-04-30 Tokai Rika Co Ltd 操作位置算出装置
JP2014059297A (ja) * 2012-08-20 2014-04-03 Dmg Mori Seiki Co Ltd スケール装置、位置情報生成方法及び多軸ステージ装置
JP2014153114A (ja) * 2013-02-06 2014-08-25 Dmg Mori Seiki Co Ltd スケール及び変位検出装置
JP2016205855A (ja) * 2015-04-16 2016-12-08 株式会社小野測器 ロータリエンコーダ

Similar Documents

Publication Publication Date Title
KR101721087B1 (ko) 다중-주기 절대 위치 센서
KR101597639B1 (ko) 앱솔루트 인코더 장치 및 모터
US20100301845A1 (en) Absolute measurement steering angle sensor arrangement
JP4052798B2 (ja) 相対位置計測器
US11099034B2 (en) Position sensor
JP2008233090A (ja) 指示要素及び磁気回転角センサ
CN106959072B (zh) 角度传感器
WO2018230087A1 (ja) ポジションセンサ
WO2004081490A1 (ja) 回転角度検出装置
WO2018230243A1 (ja) ポジションセンサ
WO2018230242A1 (ja) ポジションセンサ
JP6798530B2 (ja) リニアポジションセンサ
US20080122437A1 (en) Absolute angle detecting apparatus
WO2019171763A1 (ja) リニアポジションセンサ
WO2019167449A1 (ja) リニアポジションセンサ
JP2010038765A (ja) 回転検出装置
US20230194237A1 (en) Magnetic sensor system
WO2019167440A1 (ja) リニアポジションセンサ
JP2018197738A (ja) 角度検出装置、相対角度検出装置、トルクセンサ、電動パワーステアリング装置及び車両
JP7167739B2 (ja) ポジションセンサ
US20220113164A1 (en) Sensor system, system and method for determining a position or a rotational angle
JP2008275517A (ja) 多回転絶対角検出装置
WO2019244453A1 (ja) リニアポジションセンサ
WO2019171764A1 (ja) リニアポジションセンサ
JP2010175056A (ja) 減速装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760649

Country of ref document: EP

Kind code of ref document: A1