WO2019167292A1 - Molding of polybutylene terephthalate resin composition - Google Patents

Molding of polybutylene terephthalate resin composition Download PDF

Info

Publication number
WO2019167292A1
WO2019167292A1 PCT/JP2018/016019 JP2018016019W WO2019167292A1 WO 2019167292 A1 WO2019167292 A1 WO 2019167292A1 JP 2018016019 W JP2018016019 W JP 2018016019W WO 2019167292 A1 WO2019167292 A1 WO 2019167292A1
Authority
WO
WIPO (PCT)
Prior art keywords
polybutylene terephthalate
mass
terephthalate resin
parts
resin composition
Prior art date
Application number
PCT/JP2018/016019
Other languages
French (fr)
Japanese (ja)
Inventor
創貴 吉田
山中 康史
Original Assignee
三菱エンジニアリングプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱エンジニアリングプラスチックス株式会社 filed Critical 三菱エンジニアリングプラスチックス株式会社
Priority to CN201880090406.XA priority Critical patent/CN111788257B/en
Publication of WO2019167292A1 publication Critical patent/WO2019167292A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/02Polymerisation in bulk
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a molded article of a polybutylene terephthalate resin composition, and more particularly, to a molded article of a polybutylene terephthalate resin composition having low warpage and low specific gravity, a small amount of gas generation, and excellent mechanical properties at high temperatures.
  • Polybutylene terephthalate resin has excellent mechanical and electrical properties, as well as excellent chemical resistance and heat resistance. Injection molded products are used for various electrical and electronic equipment parts and automobiles. It is widely used as an interior part for vehicles and other general industrial products.
  • polybutylene terephthalate resin is a crystalline resin
  • shrinkage occurs due to crystallization of the resin in the process of cooling and solidifying in the mold, and thus molding shrinkage tends to occur. Since the degree of the molding shrinkage differs for each part of the molded product, the molded product is warped.
  • An object (issue) of the present invention is to provide a polybutylene terephthalate resin composition molded article having low warpage and low specific gravity, a small amount of gas generation, and excellent mechanical properties at high temperatures.
  • the inventors of the present invention contain a specific amount of acrylonitrile-styrene copolymer relative to the polybutylene terephthalate resin, and the domain of the acrylonitrile-styrene copolymer Has found that a polybutylene terephthalate resin composition molded article having a sea-island structure dispersed in islands in a specific shape and having a specific TVOC amount can solve the problems described above.
  • the present invention relates to the following polybutylene terephthalate resin composition molded article.
  • [1] Acrylonitrile-styrene copolymer (B1) and / or epoxy-modified acrylonitrile-styrene copolymer as styrene copolymer (B) with respect to 100 parts by mass of polybutylene terephthalate resin (A)
  • a molded body comprising a polybutylene terephthalate resin composition containing 45 to 100 parts by mass of (B2), having a sea-island structure, and having a minimum thickness of more than 1 mm,
  • the polybutylene terephthalate resin (A) forms a continuous phase
  • the domain containing the styrene copolymer (B) is dispersed in an island shape in the continuous phase of the polybutylene terephthalate resin (A), and at least a part of the domain is in the island-shaped portion.
  • the phase of A) exists as a lake, and has a morphology in which the maximum width of the island-shaped part measured by the following method is 6 ⁇ m or less,
  • the amount of volatile organic compounds (TVOC) detected when a gas generated by heat-treating the molded body at 120 ° C. for 5 hours is analyzed by gas chromatography is 30 ⁇ g C / g or less.
  • a molded article of polybutylene terephthalate resin composition characterized by the above. How to measure the maximum width of islands: The maximum value of the width of the island portion is measured from the SEM image (magnification is 3000 times) in the cross section including the center point in the thickness direction of the portion where the thickness of the molded body is maximum.
  • the polybutylene terephthalate resin composition comprises 45 to 100 parts by mass of an acrylonitrile-styrene copolymer (B1) with respect to 100 parts by mass of the polybutylene terephthalate resin (A), and an epoxy-modified acrylic polymer (C).
  • the polybutylene terephthalate resin composition is a total of acrylonitrile-styrene copolymer (B1) and epoxy-modified acrylonitrile-styrene copolymer (B2) with respect to 100 parts by mass of the polybutylene terephthalate resin (A).
  • the content ratio of (B1) and (B2) is 6 or less, and the glass fiber (D) is contained in an amount of 10 to 100 parts by mass.
  • the molded article of the polybutylene terephthalate resin composition of the present invention has less warpage, less gas generation, can meet VOC regulations, has low specific gravity, and has mechanical properties such as mechanical strength in an environment that assumes high temperature inside the vehicle. In particular, it can be suitably used as a vehicle interior part.
  • 2 is a SEM image of the molded body of Example 1 using a scanning electron microscope.
  • 3 is a SEM image of the molded product of Example 2 using a scanning electron microscope.
  • 3 is a SEM image of the molded product of Example 3 using a scanning electron microscope.
  • 6 is a SEM image of the molded product of Example 4 using a scanning electron microscope.
  • 6 is a SEM image of the molded product of Example 7 using a scanning electron microscope.
  • 10 is a SEM image of the molded product of Example 9 using a scanning electron microscope.
  • 4 is a SEM image of the molded product of Example 11 using a scanning electron microscope.
  • 2 is a SEM image of a molded article of Comparative Example 1 using a scanning electron microscope.
  • the molded article of the polybutylene terephthalate resin composition according to the first invention of the present application is an acrylonitrile-styrene copolymer (B1) and / or an epoxy-modified acrylonitrile-styrene copolymer as the styrene copolymer (B).
  • a molded article comprising a polybutylene terephthalate resin composition containing 45 to 100 parts by mass of the polymer (B2), having a sea-island structure, and having a minimum thickness of more than 1 mm,
  • the polybutylene terephthalate resin (A) forms a continuous phase
  • the domain containing the styrene copolymer (B) is dispersed in an island shape in the continuous phase of the polybutylene terephthalate resin (A), and at least a part of the domain is in the island-shaped portion.
  • the phase of A) exists as a lake, and has a morphology in which the maximum width of the island-shaped part measured by the following method is 6 ⁇ m or less, A volatile organic compound amount (TVOC) detected when a gas generated by heat-treating the molded body at 120 ° C. for 5 hours is analyzed by gas chromatography is 30 ⁇ g C / g or less.
  • TVOC volatile organic compound amount
  • the molded product of the present invention has a minimum thickness of more than 1 mm, but the minimum thickness is preferably 1.2 mm or more, more preferably 1.5 mm or more, further preferably 1.8 mm or more, and particularly 2.0 mm or more. Preferably there is.
  • the maximum thickness of the molded body is not limited, but is preferably 10.0 mm or less, more preferably 8.0 mm or less, and even more preferably 6.0 mm or less.
  • a sample for SEM observation having a cross section including the center point in the thickness direction of the cut surface is cut out from the cut surface with a diamond knife to obtain a block-shaped sample having an observation surface of 500 ⁇ m in length ⁇ 500 ⁇ m in width and about 1 cm in thickness.
  • an SEM image is obtained using a scanning electron microscope under the condition of an acceleration voltage of 1 kV.
  • the SEM image used for observation has a field of view of 3000 times magnification, and when there are glass fibers in the resin composition in the field of view, an image is selected such that the cross-sectional area of the glass fibers is 10% or less of the field of view. Details of a specific analysis method are as described in detail in the examples.
  • FIG. 1 to FIG. 7 are SEM images (magnification: 3000 times) of the compacts obtained in the examples of the present application, using a scanning electron microscope.
  • the black-gray part (the part with the lowest brightness) is the phase of the polybutylene terephthalate resin (A), and forms the sea as a continuous phase.
  • the light gray part (part having a higher brightness than the polybutylene terephthalate resin phase) is a domain containing the styrene copolymer (B), and the islands are located in the continuous sea of polybutylene terephthalate resin (A).
  • phase of polybutylene terephthalate resin (A) exists as a lake (pond) in the island in the island-shaped part of the styrene copolymer (B). And the island-shaped part is characterized by not having an excessively large width and a maximum value of 6 ⁇ m or less.
  • a large circular or semicircular portion having a color tone between the lightest portion and the light gray portion is a glass fiber.
  • FIGS. 8 to 9 are SEM images (magnification 3000 times) of the molded body obtained in the comparative example of the present application, and the width of the island-shaped portion is FIG. 8 (Comparative Example 1). 9 (Comparative Example 2) is very large. Further, in FIG. 10 of Comparative Example 4 of the present application, the islands containing the styrene-based copolymer (B) are uniformly finely dispersed in the continuous phase of the polybutylene terephthalate resin (A). It can be seen that there is no lake (pond) of polybutylene terephthalate resin (A).
  • FIG. 11 is a schematic diagram for explaining the sea-island structure of the present invention.
  • reference numeral 1 denotes an island-like part, which is present in the continuous phase (sea) of the black-gray polybutylene terephthalate resin (A).
  • a polybutylene terephthalate resin (A) is present as a lake 2 as indicated by 2 in the figure in the island-shaped portion 1 of the styrene copolymer (B).
  • the island-shaped part 1 is a shape which has the branch part 3 as shown to 3 in FIG. It is also preferable that the plurality of branch portions 3 are coupled to each other.
  • the island-shaped portion 1 has a polybutylene terephthalate resin (A) phase as a lake (pond) 2 in the island, and the island-shaped portion 1 has a maximum width d of 6 ⁇ m.
  • the width d of the island-shaped portion is defined as a width length d orthogonal to the width center line L of the island-shaped portion as shown by a broken line in FIG.
  • the width center line L of the island-shaped portion is the width center lines L ′ and L between the lake and the outer edge of the island in the portion where the lake phase of the polybutylene terephthalate resin (A) is present (between points pp in the figure).
  • the width d of the island-shaped portion is the width d orthogonal to L ′ and L ′′.
  • the island portion has a maximum width d of 6 ⁇ m or less, preferably 5 ⁇ m or less, more preferably 4 ⁇ m or less, preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more.
  • the maximum value of the width d of the island-shaped portion exceeds 6 ⁇ m, the mechanical strength (particularly bending strength and tensile strength retention) at high temperatures, which is a feature of the sea-island structure of the present invention, is deteriorated.
  • the warpage of the molded body which is a feature of the sea-island structure of the present invention, is deteriorated.
  • the proportion of the island-like portion where the lake of the polybutylene terephthalate resin (A) is present is expressed as [area of all island-like portions (however, this area includes the area of the lake).
  • the “island-like portion where the lake exists” is defined as an island-like portion having a lake having a major axis of 1 ⁇ m or more in the field of view of the SEM image (magnification 3000 times).
  • the amount of volatile organic compounds (TVOC amount) of the molded body of the polybutylene terephthalate resin composition of the present invention is 30 ⁇ g C / g or less.
  • the specific measuring method of the amount of volatile organic compounds (TVOC) of a polybutylene terephthalate resin composition molded body is as detailed in the examples.
  • the molded article of the present invention comprises a composition containing at least a polybutylene terephthalate resin (A) and a styrene copolymer (B) in a predetermined amount.
  • A polybutylene terephthalate resin
  • B styrene copolymer
  • the polybutylene terephthalate resin (A) used in the polybutylene terephthalate resin composition is a polyester resin having a structure in which a terephthalic acid unit and a 1,4-butanediol unit are ester-bonded, and is a polybutylene terephthalate resin (homopolymer).
  • a polybutylene terephthalate copolymer containing other copolymerization components other than terephthalic acid units and 1,4-butanediol units, and a mixture of a homopolymer and the copolymer are included.
  • the polybutylene terephthalate resin (A) may contain dicarboxylic acid units other than terephthalic acid.
  • dicarboxylic acids include isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,5 -Naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, biphenyl-2,2'-dicarboxylic acid, biphenyl-3,3'-dicarboxylic acid, biphenyl-4,4'-dicarboxylic acid, bis (4,4'- Carboxyphenyl) methane, anthracene dicarboxylic acid, aromatic dicarboxylic acids such as 4,4′-diphenyl ether dicarboxylic acid, alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, 4,4′-dicyclohexyl dicarboxylic acid, And aliphatic such as adip
  • the diol unit may contain other diol units in addition to 1,4-butanediol.
  • the other diol units include aliphatic or alicyclic diols having 2 to 20 carbon atoms. Bisphenol derivatives and the like. Specific examples include ethylene glycol, propylene glycol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, decamethylene glycol, cyclohexanedimethanol, 4,4′-dicyclohexylhydroxymethane, 4 4,4'-dicyclohexylhydroxypropane, ethylene oxide addition diol of bisphenol A, and the like.
  • trifunctional monomers such as trimellitic acid, trimesic acid, pyromellitic acid, pentaerythritol, and trimethylolpropane are introduced to introduce a branched structure, and fatty acids are used for molecular weight control.
  • a small amount of a monofunctional compound can be used in combination.
  • the polybutylene terephthalate resin (A) is preferably a polybutylene terephthalate homopolymer obtained by polycondensation of terephthalic acid and 1,4-butanediol, but the carboxylic acid unit may be other than the above terephthalic acid. It may be a polybutylene terephthalate copolymer containing one or more dicarboxylic acids and / or one or more diols other than the 1,4-butanediol as the diol unit, and the polybutylene terephthalate resin (A) is a co-polymer.
  • polybutylene terephthalate resin modified by polymerization specific preferred copolymers thereof include polyalkylene glycols, particularly polyester ether resins copolymerized with polytetramethylene glycol, and dimer acid copolymerized polybutylene terephthalate. Resin, isophthal Copolymerized polybutylene terephthalate resin. Among these, it is preferable to use a polyester ether resin copolymerized with polytetramethylene glycol. These copolymers are those having a copolymerization amount of 1 mol% or more and less than 50 mol% in all segments of the polybutylene terephthalate resin.
  • the copolymerization amount is preferably 2 mol% or more and less than 50 mol%, more preferably 3 to 40 mol%, particularly preferably 5 to 20 mol%.
  • the copolymerization ratio it exists in the tendency for fluidity
  • the amount of terminal carboxyl groups may be appropriately selected and determined, but is usually 60 eq / ton or less, preferably 50 eq / ton or less, and preferably 30 eq / ton or less. More preferably. If it exceeds 50 eq / ton, gas tends to be generated during melt molding of the resin composition. Although the lower limit of the amount of terminal carboxyl groups is not particularly defined, it is usually 10 eq / ton in consideration of the productivity of production of polybutylene terephthalate resin.
  • the amount of terminal carboxyl groups of the polybutylene terephthalate resin is a value measured by titration using a 0.01 mol / l benzyl alcohol solution of sodium hydroxide by dissolving 0.5 g of the polyalkylene terephthalate resin in 25 mL of benzyl alcohol. is there.
  • a method for adjusting the amount of terminal carboxyl groups a conventionally known arbitrary method such as a method for adjusting polymerization conditions such as a raw material charge ratio during polymerization, a polymerization temperature, a pressure reduction method, a method for reacting a terminal blocking agent, etc. Just do it.
  • the intrinsic viscosity of the polybutylene terephthalate resin (A) is preferably 0.5 to 2 dl / g. From the viewpoint of moldability and mechanical properties, those having an intrinsic viscosity in the range of 0.6 to 1.5 dl / g are more preferable. If the intrinsic viscosity is lower than 0.5 dl / g, the resulting resin composition tends to have a low mechanical strength. On the other hand, if it is higher than 2 dl / g, the fluidity of the resin composition may deteriorate and the moldability may deteriorate.
  • the intrinsic viscosity of the polybutylene terephthalate resin (A) is a value measured at 30 ° C. in a 1: 1 (mass ratio) mixed solvent of tetrachloroethane and phenol.
  • the polybutylene terephthalate resin (A) is obtained by melt polymerization of a dicarboxylic acid component having terephthalic acid as a main component or an ester derivative thereof and a diol component having 1,4-butanediol as a main component in a batch or continuous manner. Can be manufactured. Further, after the low molecular weight polybutylene terephthalate resin is produced by melt polymerization, the degree of polymerization (or molecular weight) can be increased to a desired value by further solid-phase polymerization under a nitrogen stream or under reduced pressure.
  • the polybutylene terephthalate resin (A) is obtained by a production method in which a dicarboxylic acid component mainly composed of terephthalic acid and a diol component mainly composed of 1,4-butanediol are melt polycondensed in a continuous manner. Is preferred.
  • the catalyst used when performing the esterification reaction may be a conventionally known catalyst, and examples thereof include a titanium compound, a tin compound, a magnesium compound, and a calcium compound. Of these, titanium compounds are particularly preferred.
  • Specific examples of the titanium compound as the esterification catalyst include titanium alcoholates such as tetramethyl titanate, tetraisopropyl titanate, and tetrabutyl titanate, and titanium phenolates such as tetraphenyl titanate.
  • the styrene copolymer (B) used in the polybutylene terephthalate resin composition is an acrylonitrile-styrene copolymer (B1) and / or an epoxy-modified acrylonitrile-styrene copolymer (B2).
  • the acrylonitrile-styrene copolymer (B1) is a copolymer of acrylonitrile and a styrene monomer, and may be a copolymer obtained by copolymerizing another copolymerizable monomer.
  • Examples of the styrene monomer constituting the acrylonitrile-styrene copolymer (B1) include styrene, ⁇ -methyl styrene, p-methyl styrene, vinyl xylene, ethyl styrene, dimethyl styrene, p-tert-butyl styrene, vinyl. Naphthalene, methoxystyrene, monobromostyrene, dibromostyrene, fluorostyrene, tribromostyrene and the like can be mentioned. Styrene and ⁇ -methylstyrene are more preferable, and styrene is particularly preferable.
  • copolymerizable monomers other than styrene monomers and acrylonitrile include (meth) acrylic acid ester monomers and maleimide monomers such as maleimide, N-methylmaleimide and N-phenylmaleimide , ⁇ , ⁇ -unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, phthalic acid, itaconic acid and their anhydrides, but containing epoxy groups such as glycidyl (meth) acrylate Polymerizable unsaturated compounds are excluded.
  • (meth) acrylic acid ester monomers are preferably exemplified.
  • Examples include benzyl (meth) acrylate, and particularly methyl methacrylate.
  • the notation of (meth) acrylate indicates that both methacrylate and acrylate are included, and the notation of (meth) acrylic acid ester indicates that both methacrylic acid ester and acrylic acid ester are included.
  • the acrylonitrile-styrene copolymer (B1) is preferably an acrylonitrile-styrene copolymer (AS resin) or an acrylonitrile-styrene-acrylic rubber copolymer (ASA resin), particularly an acrylonitrile-styrene copolymer (AS). Resin).
  • AS resin acrylonitrile-styrene copolymer
  • AS resin acrylonitrile-styrene-acrylic rubber copolymer
  • AS acrylonitrile-styrene copolymer
  • the unit derived from the acrylonitrile monomer in the acrylonitrile-styrene copolymer (B1) is preferably 5 to 50% by mass, more preferably 8 to 35% by mass.
  • the content of units derived from the styrene monomer is preferably 50 to 95% by mass, more preferably 65 to 92% by mass.
  • the amount of acrylonitrile in the acrylonitrile-styrene copolymer (B1) is measured by the Kjeldahl method.
  • acrylonitrile - as a melt volume rate of the styrene copolymer (B1) (MVR), 220 °C, is preferably in the range of 5 ⁇ 100cm 3/10 min under a load 10kg, 10 ⁇ 80cm 3/10 minutes Is more preferable.
  • the mass average molecular weight (Mw) of the acrylonitrile-styrene copolymer (B1) is preferably in the range of 60,000 to 220,000, and more preferably 80,000 to 200,000. In the present invention, the mass average molecular weight (Mw) of the acrylonitrile-styrene copolymer (B1) is measured by GPC (gel permeation chromatography) method.
  • the method for producing the acrylonitrile-styrene copolymer (B1) is not limited, and a known method can be employed. For example, bulk polymerization, emulsion polymerization, solution polymerization, suspension polymerization and the like can be used. Among them, the bulk polymerization is preferable because it does not use a solvent or an emulsifier and has few impurities.
  • the acrylonitrile-styrene copolymer (B1) is commercially available, and bulk polymerized products, emulsion polymerized products, solution polymerized products, suspension polymerized products, etc. are commercially available. Since no emulsifier or emulsifier is used, the amount of gas generated from the molded product of the polybutylene terephthalate resin composition of the present invention is small, which is preferable.
  • Epoxy-modified acrylonitrile-styrene copolymer (B2) is not particularly limited, but a copolymer of an unsaturated glycidyl compound, acrylonitrile, and a styrene monomer is preferable, and other copolymerizable monomers.
  • the styrene monomer constituting the epoxy-modified acrylonitrile-styrene copolymer (B2) includes styrene, ⁇ -methyl styrene, p-methyl styrene, vinyl xylene, ethyl styrene, dimethyl styrene, p-tert-butyl styrene. Vinyl naphthalene, methoxystyrene, monobromostyrene, dibromostyrene, fluorostyrene, tribromostyrene, and the like. Styrene and ⁇ -methylstyrene are more preferable, and styrene is particularly preferable.
  • the unsaturated glycidyl compound constituting the epoxy-modified acrylonitrile-styrene copolymer (B2) is preferably an epoxy group-containing polymerizable unsaturated compound, and unsaturated glycidyl esters such as glycidyl (meth) acrylate and glycidyl itaconate.
  • unsaturated glycidyl ethers such as vinyl glycidyl ether, allyl glycidyl ether, 2-methylallyl glycidyl ether, styrene-p-glycidyl ether and the like are preferable.
  • unsaturated glycidyl esters particularly epoxy group-containing (meth) acrylic acid esters are preferable, more preferably glycidyl (meth) acrylate, that is, glycidyl acrylate, glycidyl methacrylate (GMA), particularly glycidyl methacrylate (GMA).
  • glycidyl (meth) acrylate that is, glycidyl acrylate, glycidyl methacrylate (GMA), particularly glycidyl methacrylate (GMA).
  • the epoxy-modified acrylonitrile-styrene copolymer (B2) may be copolymerized with another monomer, but the other monomer is an epoxy-modified acrylonitrile-styrene copolymer. It can be included in an amount up to less than 50% by weight, preferably less than 30% by weight, more preferably less than 10% by weight of the combined (B2).
  • the epoxy-modified acrylonitrile-styrene copolymer (B2) is preferably a glycidyl methacrylate (GMA) -modified acrylonitrile-styrene copolymer.
  • GMA glycidyl methacrylate
  • the epoxy equivalent of the epoxy-modified acrylonitrile-styrene copolymer (B2) is preferably 2000 to 30000 g / mol, more preferably 4000 to 28000 g / mol.
  • the epoxy equivalent exceeds 30000 g / mol, the dispersion of the epoxy-modified acrylonitrile-styrene copolymer in the composition may be insufficient.
  • the epoxy equivalent is less than 2000 g / mol, the viscosity is remarkably increased and the moldability is increased. It may be damaged.
  • the content of units derived from the acrylonitrile compound in the epoxy-modified acrylonitrile-styrene copolymer (B2) is usually 2 to 50% by mass, preferably 20 to 30% by mass, based on 100% by mass of the entire polymer (B2).
  • the content of units derived from styrenic monomers is usually 50 to 98% by mass, preferably 70 to 80% by mass, and the content of units derived from unsaturated glycidyl compounds is usually 0.1 to 1.0% by mass. %, Preferably 0.2 to 0.8% by mass.
  • the amount of acrylonitrile in the epoxy-modified acrylonitrile-styrene copolymer (B2) is measured by the Kjeldahl method.
  • the measurement of unsaturated glycidyl compounds is based on JIS. The measurement is performed in accordance with K7236.
  • Epoxy-modified acrylonitrile - MVR styrene copolymer (B2) is 220 ° C., under a load 10 kg, preferably 5 ⁇ 100cm 3 / 10min, a weight-average molecular weight (Mw), preferably at 60,000 to 220,000 More preferably, it is 70,000 to 200,000.
  • Mw weight-average molecular weight
  • the mass average molecular weight (Mw) is measured by GPC (gel permeation chromatography) method.
  • the method for producing the epoxy-modified acrylonitrile-styrene copolymer (B2) is not limited, and a known method can be adopted.
  • bulk polymerization, emulsion polymerization, solution polymerization, suspension polymerization and the like can be used.
  • the bulk polymerization is preferable because it does not use a solvent or an emulsifier and has few impurities.
  • Epoxy-modified acrylonitrile-styrene copolymer (B2) is commercially available, and bulk polymer products, emulsion polymer products, solution polymer products, suspension polymer products, etc. are commercially available.
  • a solvent and an emulsifier are not used, there are few impurities and it is preferable.
  • the amount of styrene monomer and the amount of ethylbenzene are measured by analyzing the gas generated by heat treatment at 270 ° C. for 10 minutes by gas chromatography.
  • a styrene monomer whose amount is 600 (mass) ppm or less.
  • the amount of styrene monomer gas is 600 ppm or less, the amount of gas generated at the time of molding is reduced, and the amount of gas generated from the molded body is small.
  • the appearance of the molded body is improved because of a small amount of gas during molding.
  • the amount of the styrenic monomer is more preferably 550 ppm or less, further preferably 300 ppm or less, particularly preferably 200 ppm or less, and the lower limit thereof is usually 50 ppm.
  • the styrene copolymer (B) When the styrene copolymer (B) is used in combination with an acrylonitrile-styrene copolymer (B1) and / or an epoxy-modified acrylonitrile-styrene copolymer (B2), the respective polymers This is the total amount calculated from the amount of the styrene monomer gas and the respective mass ratios to be used, and is also calculated in the same manner when a plurality of types are used from (B1) and / or (B2). Means the amount.
  • the amount of styrene in the raw material styrene-based copolymer (B) or the raw material polybutylene terephthalate resin composition is the amount obtained by analyzing a gas generated by heat treatment at 270 ° C. for 10 minutes by gas chromatography. It is the amount (unit: mass ppm) converted into a value per copolymer or resin composition amount. The details of the specific measurement method are as described in the examples.
  • the total of the styrene monomer and ethylbenzene when the gas generated by heat treatment at 270 ° C. for 10 minutes of the raw styrene copolymer (B) is analyzed by gas chromatography is 650 (mass) ppm or less. Is preferred. Since the total gas amount of both is 650 ppm or less, the amount of gas generated at the time of molding is reduced, and the amount of gas generated from the molded body when formed into a molded body is small. The problem of VOC is solved, and the appearance of the molded body is improved because of less gas during molding.
  • the total gas amount of both is more preferably 500 ppm or less, still more preferably 400 ppm or less, and its lower limit is usually 150 ppm. If it is less than 150 ppm, it is not preferable because it requires refining so as not to be economical.
  • acrylonitrile-styrene copolymer (B1) and / or epoxy-modified acrylonitrile-styrene copolymer (B2) is used in combination as styrene copolymer (B)
  • the total amount calculated from the amount of styrene monomer and ethylbenzene generated from each polymer and the respective mass ratio used, and a plurality of types are used from (B1) and / or (B2) It also means the total amount calculated in the same way.
  • the configuration of the devolatilization step after the polymerization of the styrene copolymer And by strengthening the operating conditions of the devolatilization process.
  • the copolymer latex obtained at an appropriate temperature and vacuum is stripped, coagulated with high-temperature steam, or stripped under reduced pressure using high-temperature steam. And the coagulated copolymer is washed with hot water and further dried under vacuum.
  • the total of the acrylonitrile-styrene copolymer (B1) and / or the epoxy-modified acrylonitrile-styrene copolymer (B2), that is, the content of the styrene copolymer (B) is the polybutylene terephthalate resin (A ) 45 to 100 parts by mass with respect to 100 parts by mass. If the content is less than 45 parts by mass, the ratio of the amorphous resin is low and the shrinkage ratio is large, which causes warping of the molded product. If the content exceeds 100 parts by mass, the ratio of the amorphous resin is high and the heat resistance is high. In addition to the decrease, the 85 ° C. atmosphere bending strength and weld strength decrease.
  • the content of the styrenic copolymer (B) is preferably 50 parts by mass or more, more preferably 55 parts by mass or more, still more preferably 60 parts by mass or more, and particularly preferably more than 65 parts by mass, preferably 95 parts by mass.
  • the amount is at most 90 parts by mass, more preferably at most 90 parts by mass.
  • epoxy-modified acrylic polymer (C) It is preferable that the polybutylene terephthalate resin composition further contains an epoxy-modified acrylic polymer (C).
  • the epoxy-modified acrylic polymer (C) is not particularly limited, but an acrylic polymer composed of a (meth) acrylic acid alkyl ester and an unsaturated glycidyl compound is preferable.
  • (meth) acrylic acid alkyl esters examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, and (meth) acrylic acid.
  • Alkyl esters are more preferred, such as methyl (meth) acrylate, ethyl (meth) acrylate, (meth ) Acrylate, propyl (meth) acrylate, butyl 2-ethylhexyl (meth) acrylic acid.
  • (meth) acryl means “acryl” and / or “methacryl”.
  • an epoxy group-containing polymerizable unsaturated compound is preferable, unsaturated glycidyl ester such as glycidyl (meth) acrylate and glycidyl itaconate, or vinyl glycidyl ether, allyl glycidyl ether, 2-methyl
  • unsaturated glycidyl ethers such as allyl glycidyl ether and styrene-p-glycidyl ether.
  • unsaturated glycidyl esters particularly epoxy group-containing (meth) acrylic acid esters are preferable, more preferably glycidyl (meth) acrylate, that is, glycidyl acrylate, glycidyl methacrylate (GMA), particularly glycidyl methacrylate (GMA).
  • glycidyl (meth) acrylate that is, glycidyl acrylate, glycidyl methacrylate (GMA), particularly glycidyl methacrylate (GMA).
  • the epoxy-modified acrylic polymer (C) is preferably a copolymer obtained by copolymerizing another monomer other than those described above, and is particularly preferably a copolymer obtained by copolymerizing a styrene monomer.
  • Styrene monomers include styrene, ⁇ -methyl styrene, p-methyl styrene, vinyl xylene, ethyl styrene, dimethyl styrene, p-tert-butyl styrene, vinyl naphthalene, methoxy styrene, monobromo styrene, dibromo styrene, Examples thereof include fluorostyrene and tribromostyrene, and styrene and ⁇ -methylstyrene are more preferable, and styrene is particularly preferable.
  • the epoxy-modified acrylic polymer (C) is a structural unit derived from a (meth) acrylic acid alkyl ester (C1), an epoxy group-containing (meth) acrylic acid ester (C2), or a styrene monomer (C3).
  • the preferred content of each constituent unit is such that the C1 component is preferably 50 to 99% by mass, more preferably 55 to 95% when the mass of the epoxy-modified acrylic polymer (C) is 100% by mass.
  • the C2 component is preferably 0.05 to 20% by mass, more preferably 0.1 to 18% by mass
  • the C3 component is preferably 0 to 49.5% by mass, more preferably 0 to 45%.
  • the mass is preferably 5% by mass, more preferably 5 to 45% by mass.
  • the epoxy equivalent of the epoxy-modified acrylic polymer (C) is preferably 100 to 1000 g / mol, more preferably 200 to 800 g / mol.
  • the epoxy equivalent exceeds 1000 g / mol, the dispersion of the acrylonitrile-styrene copolymer in the composition may be insufficient.
  • the epoxy equivalent is less than 100 g / mol, the viscosity is remarkably increased and the moldability is impaired. There is a case.
  • the weight average molecular weight (Mw) of the epoxy-modified acrylic polymer (C) is preferably 4000 to 13000, more preferably 5000 to 12000.
  • the preferable content of the epoxy-modified acrylic polymer (C) is 0.2 to 3 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin (A). If the amount is less than 0.2 parts by mass, the cross-linkage between the polybutylene terephthalate molecules becomes insufficient, and the mechanical strength tends to decrease. It rises remarkably and the moldability tends to be impaired.
  • the preferable content of the polymer (C) is preferably 0.25 parts by mass or more, preferably 2.8 parts by mass or less, more preferably 2.0 parts by mass with respect to 100 parts by mass of the thermoplastic polyester resin (A). Part or less, more preferably 1.0 part by weight or less.
  • the polybutylene terephthalate resin composition preferably contains glass fibers (D), and the amount thereof is preferably 10 to 100 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin (A).
  • the preferable content of the glass fiber (D) is 45 parts by mass or more, more preferably 55 parts by mass or more, further preferably 65 parts by mass or more, particularly 100 parts by mass of the polybutylene terephthalate resin (A).
  • 70 parts by mass or more is preferable, preferably 95 parts by mass or less, and more preferably 90 parts by mass or less.
  • strength, rigidity, and dimensional stability of the molded object of this invention can be improved.
  • the type of glass fiber (D) is not particularly limited, and examples thereof include glass fibers such as E glass, C glass, A glass, and S glass. Among these, E glass fibers are preferred in that they do not adversely affect the thermal stability of the polybutylene terephthalate resin.
  • the average fiber diameter of the glass fiber (D) is not particularly limited, but is preferably selected in the range of 1 to 100 ⁇ m, more preferably 2 to 50 ⁇ m, still more preferably 3 to 30 ⁇ m, and particularly preferably 5 to 20 ⁇ m. Glass fibers having an average fiber diameter of less than 1 ⁇ m are not easy to produce and may increase costs, whereas if they exceed 100 ⁇ m, the tensile strength of the glass fibers may decrease.
  • the fiber cross section may be circular or flat.
  • the glass fiber (D) may be a round fiber or a flat fiber cross section, but the cross section of the fiber cross section (major axis / minor axis) is a glass fiber having a substantially circular cross section of 1 to 1.5. Preferably there is.
  • the flatness is preferably 1 to 1.4, more preferably 1 to 1.2, and particularly preferably 1 to 1.1.
  • the flatness value is determined by an image analyzer from an image obtained by observing 2000 glass fibers of filler residue collected by processing such as high-temperature ashing of a molded product, dissolution with a solvent, and decomposition with a chemical with an optical microscope. It is a calculated average value.
  • the average fiber length of the glass fiber (D) is not particularly limited, but is preferably, for example, 1 to 10 mm, more preferably 1.5 to 6 mm, and further preferably 2 to 5 mm. If the average fiber length of the glass fiber (D) is less than 1 mm, the reinforcing effect may not be sufficiently exhibited, and if it exceeds 10 mm, it may be difficult to mold the resulting resin composition.
  • the average fiber length is determined by using an image analyzer from an image obtained by observing 2000 glass fibers of a filler residue collected by processing such as high-temperature ashing of a molded product, dissolution with a solvent, and decomposition with a chemical using an optical microscope. It is a value of the calculated number average fiber length. Further, when calculating such a value, the fiber diameter is used as a guide and the length is less than that.
  • the glass fiber (D) used in the present invention can be surface-treated with a coupling agent such as aminosilane or epoxysilane for the purpose of improving the adhesion with the polybutylene terephthalate resin (A).
  • a coupling agent such as aminosilane or epoxysilane
  • the coupling agent include chlorosilane compounds such as vinyltrichlorosilane and methylvinyldichlorosilane, alkoxysilane compounds such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, and ⁇ -methacryloxypropyltrimethoxysilane.
  • epoxy silane compounds such as ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, acrylic compounds, isocyanate compounds, titanate compounds, epoxy compounds, etc. Can be mentioned.
  • the glass fiber (D) used in the present invention is usually preferably used as a chopped strand (chopped glass fiber) obtained by cutting a number of these fibers into a predetermined length. It is preferable to add a sizing agent to the fiber. By blending the sizing agent, good mechanical properties can be obtained in addition to the advantage that the production stability of the polybutylene terephthalate resin composition and the molded body is increased.
  • the sizing agent for glass fiber (D) is not particularly limited, and examples thereof include resin emulsions such as vinyl acetate resin, ethylene-vinyl acetate copolymer, acrylic resin, epoxy resin, polyurethane resin, and polyester resin. Preferably, acrylic resin, epoxy resin, and polyurethane resin are used.
  • the composition constituting the molded article of the present invention may be composed of a composition containing at least a predetermined amount of polybutylene terephthalate resin (A) and styrene copolymer (B) as described above.
  • Preferred composition (1) 45-100 parts by mass of acrylonitrile-styrene copolymer (B1), 0.2-3 parts by mass of epoxy-modified acrylic polymer (C), and glass fiber with respect to 100 parts by mass of polybutylene terephthalate resin (A)
  • D A polybutylene terephthalate resin composition containing 10 to 100 parts by mass.
  • Preferred composition (2) Polybutylene terephthalate containing acrylonitrile-styrene copolymer (B1), epoxy-modified acrylonitrile-styrene copolymer (B2), and glass fiber (D) with respect to 100 parts by mass of polybutylene terephthalate resin (A) Resin composition.
  • the contents of the acrylonitrile-styrene copolymer (B1) and the epoxy-modified acrylonitrile-styrene copolymer (B2) are the sum of both, and the polybutylene terephthalate resin (A) It is preferably 45 to 100 parts by mass with respect to 100 parts by mass, and the mass ratio (B1) / (B2) of the content of (B1) to the content of (B2) is preferably 6 or less.
  • the content of (D) is preferably 10 to 100 mass.
  • the ratio of the amorphous resin is low, so the shrinkage ratio is increased, and the molded product is warped.
  • the total content of (B1) and (B2) is more preferably 50 parts by mass or more, still more preferably 55 parts by mass or more, particularly preferably 60 parts by mass or more, and most preferably more than 65 parts by mass.
  • (B1) / (B2) is more preferably 5 or less, further preferably 4 or less, especially 3 or less, particularly 2 or less, and the lower limit thereof is preferably 0.5.
  • the content of the acrylonitrile-styrene copolymer (B1) alone is preferably 5 with respect to 100 parts by mass of the polybutylene terephthalate resin (A) on condition that the mass ratio (B1) / (B2) is satisfied. It is preferably selected from the range of ⁇ 85 parts by mass.
  • the content of the epoxy-modified acrylonitrile-styrene copolymer (B2) alone is preferably based on 100 parts by mass of the polybutylene terephthalate resin (A) on condition that the above mass ratio (B1) / (B2) is satisfied. Is preferably selected from the range of 5 to 90 parts by mass.
  • the second invention of the present application is based on 100 parts by mass of the polybutylene terephthalate resin (A), 45-100 parts by mass of the acrylonitrile-styrene copolymer (B1), 0.2% of the epoxy-modified acrylic polymer (C).
  • a polybutylene terephthalate resin composition comprising ⁇ 3 parts by mass and 10 to 100 parts by mass of glass fiber (D).
  • the polybutylene terephthalate resin (A), the acrylonitrile-styrene copolymer (B1), the epoxy-modified acrylic polymer (C), and the glass fiber (D) are as described above.
  • the content of the acrylonitrile-styrene copolymer (B1) is 45 to 100 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin (A), but the content is less than 45 parts by mass. Then, since the proportion of the amorphous resin is low and the shrinkage rate is large, the molded product is warped. When the amount exceeds 100 parts by mass, the proportion of the amorphous resin is high and the heat resistance is lowered. Decrease in bending strength and weld strength at °C atmosphere.
  • the content of the acrylonitrile-styrene copolymer (B1) is preferably 50 parts by mass or more, more preferably 55 parts by mass or more, further preferably 60 parts by mass or more, and particularly preferably 65 parts by mass or more. Is 95 parts by mass or less, more preferably 90 parts by mass or less.
  • the acrylonitrile-styrene copolymer (B1) is obtained by analyzing the gas generated by heat treatment at 270 ° C. for 10 minutes by gas chromatography, thereby determining the amount of styrene monomer and the amount of ethylbenzene.
  • a styrene monomer having an amount of 600 ppm by mass or less it is preferable to use a styrene monomer having an amount of 600 ppm by mass or less.
  • the amount of styrene-based monomer gas is 600 ppm or less, the amount of gas generated during molding is reduced, and the amount of gas generated from the molded body when molded is small.
  • the VOC problem is solved, and the appearance of the molded body is improved because of a small amount of gas during molding.
  • the amount of the styrenic monomer is more preferably 550 ppm or less, further preferably 300 ppm or less, particularly preferably 200 ppm or less, and the lower limit thereof is usually 50 ppm. If it is less than 50 ppm, it is not preferable because it requires refining so as not to be economical.
  • the acrylonitrile-styrene copolymer (B1) the total amount calculated from the amount of styrene monomer gas from each polymer and the respective mass ratios used. is there.
  • the amount of the styrene monomer can be obtained by analyzing the gas generated by heat treatment at 270 ° C. for 10 minutes by gas chromatography, but the measured value is converted into a value per mass of the copolymer.
  • the amount to be obtained (unit: mass ppm), and the specific conditions are as detailed in the examples.
  • the total of the styrene monomer and ethylbenzene when the gas generated by heat treatment at 270 ° C. for 10 minutes is analyzed by gas chromatography is preferably 650 (mass) ppm or less. Since the total gas amount of both is 650 ppm or less, the amount of gas generated at the time of molding is reduced, and the amount of gas generated from the molded body when formed into a molded body is small. The problem of VOC is solved, and the appearance of the molded body is improved because of less gas during molding.
  • the total gas amount of both is more preferably 500 ppm or less, still more preferably 400 ppm or less, and its lower limit is usually 150 ppm.
  • the amount of styrene monomer and ethylbenzene generated from each polymer and the mass ratio used are the same as above. Is the total amount calculated.
  • a devolatilization step after the polymerization of the styrene copolymer is performed. This can be achieved by strengthening the configuration and operating conditions of the devolatilization process.
  • the copolymer latex obtained at an appropriate temperature and vacuum is stripped, coagulated with high-temperature steam, or stripped under reduced pressure using high-temperature steam. And the coagulated copolymer is washed with hot water and further dried under vacuum.
  • the content of the epoxy-modified acrylic polymer (C) is 0.2 to 3 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin (A). Crosslinks between butylene terephthalate molecules become insufficient and mechanical strength tends to decrease. When the amount exceeds 3 parts by mass, the crosslinks between polybutylene terephthalate molecules excessively increase, resulting in a marked increase in viscosity and impaired moldability. It will be.
  • the preferable content of the polymer (C) is preferably 0.25 parts by mass or more, preferably 2.8 parts by mass or less, more preferably 2.10 parts by mass with respect to 100 parts by mass of the thermoplastic polyester resin (A). 0 parts by mass or less, more preferably 1.0 parts by mass or less.
  • the content of the glass fiber (D) is 10 to 100 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin (A), but if the content is less than 10 parts by mass, the reinforcing effect may not be sufficient. In addition, when it exceeds 100 parts by mass, the appearance and impact resistance may be inferior, and the fluidity may not be sufficient.
  • the preferable content of the glass fiber (D) is 45 parts by mass or more, more preferably 55 parts by mass or more, further preferably 65 parts by mass or more, particularly 100 parts by mass of the polybutylene terephthalate resin (A). 70 parts by mass or more is preferable, preferably 95 parts by mass or less, and more preferably 90 parts by mass or less.
  • the third invention of the present application is based on 100 parts by mass of the polybutylene terephthalate resin (A), and the total amount of the acrylonitrile-styrene copolymer (B1) and the epoxy-modified acrylonitrile-styrene copolymer (B2). 45 to 100 parts by mass, the mass ratio (B1) / (B2) of the contents of (B1) and (B2) is 6 or less, and further contains 10 to 100 parts by mass of glass fiber (D). It is a polybutylene terephthalate resin composition characterized.
  • the polybutylene terephthalate resin (A), the acrylonitrile-styrene copolymer (B1), the epoxy-modified acrylonitrile-styrene copolymer (B2), and the glass fiber (D) are as described above.
  • the acrylonitrile-styrene copolymer (B1) is defined as not containing the epoxy-modified acrylonitrile-styrene copolymer (B2).
  • the total content of the acrylonitrile-styrene copolymer (B1) and the epoxy-modified acrylonitrile-styrene copolymer (B2) is 100 parts by mass of the polybutylene terephthalate resin (A).
  • the mass ratio (B1) / (B2) between the content of (B1) and the content of (B2) is 45 or less, and the sum of (B1) and (B2). If the content of is less than 45 parts by mass, the proportion of the amorphous resin is low, so the shrinkage rate is increased, resulting in warping of the molded product, and if it exceeds 100 parts by mass, the proportion of the amorphous resin is high.
  • the total content of (B1) and (B2) is preferably 50 parts by mass or more, more preferably 55 parts by mass or more, still more preferably 60 parts by mass or more, particularly preferably more than 65 parts by mass, preferably It is 95 mass parts or less, More preferably, it is 90 mass parts or less.
  • the mass ratio (B1) / (B2) exceeds 6, the dispersion of the epoxy-modified acrylonitrile-styrene copolymer becomes insufficient, and the mechanical properties in a high temperature environment are deteriorated.
  • (B1) / (B2) is preferably 5 or less, more preferably 4 or less, especially 3 or less, particularly 2 or less, and its lower limit is preferably 0.5.
  • the content of the acrylonitrile-styrene copolymer (B1) alone satisfies the above mass ratio (B1) / (B2), and 100 parts by mass of the polybutylene terephthalate resin (A).
  • it is preferably selected from the range of 5 to 85 parts by mass.
  • the content of the epoxy-modified acrylonitrile-styrene copolymer (B2) alone is preferably based on 100 parts by mass of the polybutylene terephthalate resin (A) on condition that the above mass ratio (B1) / (B2) is satisfied. Is preferably selected from the range of 5 to 90 parts by mass.
  • acrylonitrile-styrene copolymer (B1) and / or epoxy-modified acrylonitrile-styrene copolymer (B2) is analyzed by gas chromatograph for gas generated by heat treatment at 270 ° C. for 10 minutes.
  • a styrenic monomer having an amount of 600 (mass) ppm or less.
  • the total of the styrene monomers from (B1) and (B2) is more preferably 600 (mass) ppm or less.
  • the amount of styrenic monomer gas is 600 ppm or less, the amount of gas generated during molding is reduced, and the amount of gas generated from the molded body when molded is small.
  • the problem of VOC is solved, and the appearance of the molded body is improved because of a small amount of gas during molding.
  • the amount of the styrenic monomer is more preferably 550 ppm or less, further preferably 300 ppm or less, particularly preferably 200 ppm or less, and the lower limit thereof is usually 50 ppm. If it is less than 50 ppm, it is not preferable because it requires refining so as not to be economical.
  • styrene polymer from each polymer is used. This is the total amount calculated from the amount of monomer gas and the respective mass ratios used.
  • the amount of the styrene monomer and the amount of ethylbenzene described later can be obtained by analyzing a gas generated by heat treatment at 270 ° C. for 10 minutes by gas chromatography. The amount (unit: ppm by mass) obtained by converting to the value of, and the specific conditions are as detailed in the examples.
  • the total of the styrene monomer and ethylbenzene when the gas generated by heat treatment at 270 ° C. for 10 minutes is analyzed by gas chromatography is preferably 650 (mass) ppm or less. Since the total gas amount of both is 650 ppm or less, the amount of gas generated at the time of molding is reduced, and the amount of gas generated from the molded body when formed into a molded body is small. The problem of VOC is solved, and the appearance of the molded body is improved because of less gas during molding.
  • the total gas amount of both is more preferably 500 ppm or less, still more preferably 400 ppm or less, and its lower limit is usually 150 ppm. If it is less than 150 ppm, it is not preferable because it requires refining so as not to be economical.
  • the copolymer latex obtained at an appropriate temperature and vacuum is stripped, coagulated with high-temperature steam, or stripped under reduced pressure using high-temperature steam.
  • the coagulated copolymer is washed with hot water and further dried under vacuum.
  • the content of the glass fiber (D) is 10 to 100 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin (A).
  • the preferable content of the glass fiber (D) is 45 parts by mass or more, more preferably 55 parts by mass or more, further preferably 65 parts by mass or more, particularly 100 parts by mass of the polybutylene terephthalate resin (A).
  • 70 parts by mass or more is preferable, preferably 95 parts by mass or less, and more preferably 90 parts by mass or less.
  • the polybutylene terephthalate resin composition described above preferably used in the resin composition molded article of the present invention, or the polybutylene terephthalate resin composition of the second and third inventions described above is a thermoplastic resin other than essential components, It can contain in the range which does not impair the effect of this invention.
  • thermoplastic resins specifically, for example, polyethylene terephthalate resin, polycarbonate resin, polyacetal resin, polyamide resin, polyphenylene oxide resin, polyphenylene sulfide resin, polysulfone resin, polyethersulfone resin, polyetherimide resin, Examples include polyether ketone resins and polyolefin resins.
  • the content is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and even more preferably 5 parts with respect to 100 parts by mass of the polybutylene terephthalate resin (A). It is preferable that the amount be 3 parts by mass or less, particularly 3 parts by mass or less.
  • additives other than those described above may be contained.
  • additives include stabilizers, carbon black, mold release agents, flame retardants, flame retardant aids, anti-dripping agents, and ultraviolet absorption.
  • Agents antistatic agents, antifogging agents, antiblocking agents, plasticizers, dispersants, antibacterial agents, colorants and the like.
  • the polybutylene terephthalate resin composition contains a stabilizer because it has effects of improving thermal stability and preventing deterioration of mechanical strength and hue.
  • a stabilizer a phosphorus stabilizer, a sulfur stabilizer, and a phenol stabilizer are preferable, and a phenol stabilizer is particularly preferable.
  • Phosphorous stabilizers include phosphorous acid, phosphoric acid, phosphite ester (phosphite), trivalent phosphate ester (phosphonite), and pentavalent phosphate ester (phosphate). Phyto, phosphonite and phosphate compounds are preferred.
  • the organic phosphate compound is preferably the following general formula: (R 1 O) 3-n P ( ⁇ O) OH n (Wherein R 1 is an alkyl group or an aryl group, and may be the same or different. N represents an integer of 0 to 2) It is a compound represented by these. More preferably, R 1 is a long-chain alkyl acid phosphate compound having 8 to 30 carbon atoms.
  • alkyl group having 8 to 30 carbon atoms include octyl group, 2-ethylhexyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, dodecyl group, tridecyl group, isotridecyl group, tetradecyl group, A hexadecyl group, an octadecyl group, an eicosyl group, a triacontyl group, etc. are mentioned.
  • Examples of the long-chain alkyl acid phosphate include octyl acid phosphate, 2-ethylhexyl acid phosphate, decyl acid phosphate, lauryl acid phosphate, octadecyl acid phosphate, oleyl acid phosphate, behenyl acid phosphate, phenyl acid cyclophosphate, nonyl phenyl cyclo acid phosphate Acid phosphate, phenoxyethyl acid phosphate, alkoxy polyethylene glycol acid phosphate, bisphenol A acid phosphate, dimethyl acid phosphate, diethyl acid phosphate, dipropyl acid phosphate, diisopropyl acid phosphate, dibutyl acid phosphate, di Chi le acid phosphate, di-2-ethylhexyl acid phosphate, dioctyl acid phosphate, dilauryl acid phosphate, distearyl acid phosphate, diphenyl acid
  • organic phosphite compound preferably, the following general formula: R 2 O—P (OR 3 ) (OR 4 ) (Wherein R 2 , R 3 and R 4 are each a hydrogen atom, an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, and among R 2 , R 3 and R 4 , At least one of them is an aryl group having 6 to 30 carbon atoms.)
  • R 2 O—P OR 3
  • R 4 are each a hydrogen atom, an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, and among R 2 , R 3 and R 4 , At least one of them is an aryl group having 6 to 30 carbon atoms.
  • organic phosphite compound examples include triphenyl phosphite, tris (nonylphenyl) phosphite, dilauryl hydrogen phosphite, triethyl phosphite, tridecyl phosphite, tris (2-ethylhexyl) phosphite, tris (tridecyl).
  • the organic phosphonite compound is preferably the following general formula: R 5 -P (OR 6 ) (OR 7 ) (Wherein R 5 , R 6 and R 7 are each a hydrogen atom, an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, and among R 5 , R 6 and R 7 , At least one of them is an aryl group having 6 to 30 carbon atoms.)
  • R 5 -P OR 6
  • R 7 are each a hydrogen atom, an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, and among R 5 , R 6 and R 7 , At least one of them is an aryl group having 6 to 30 carbon atoms.
  • organic phosphonite compound examples include tetrakis (2,4-di-iso-propylphenyl) -4,4′-biphenylenediphosphonite, tetrakis (2,4-di-n-butylphenyl) -4,4′-biphenyl.
  • any conventionally known sulfur atom-containing compound can be used, and among these, thioethers are preferred.
  • pentaerythritol tetrakis (3-dodecylthiopropionate) is preferable
  • phenol-based stabilizer examples include pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4 -Hydroxyphenyl) propionate, thiodiethylenebis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate), pentaerythritol tetrakis (3- (3,5-di-neopentyl-4-hydroxyphenyl) ) Propionate) and the like.
  • pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate]
  • octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) ) Propionate is preferred.
  • a hindered phenol stabilizer having a melting point of 150 ° C. or higher.
  • the melting point is 150 ° C. or higher, the thermal stability of the stabilizer itself is increased, so that the stabilizer is altered and loses its stabilizing effect, or during the production of a resin composition such as melt kneading or in a high temperature environment such as injection molding. But it becomes difficult to produce gas.
  • the melting point is more preferably 180 ° C. or higher, further preferably 200 ° C. or higher, and particularly preferably 220 ° C. or higher.
  • the upper limit of the melting point is usually 350 ° C. or lower, preferably 300 ° C. or lower, more preferably 280 ° C. or lower.
  • the content of the stabilizer is preferably 0.001 to 1.5 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin (A).
  • the content of the stabilizer is more preferably 0.005 to 1.2 parts by mass, still more preferably 0.01 to 1.0 parts by mass.
  • the polybutylene terephthalate resin composition contains carbon black.
  • carbon black By containing carbon black, the weather resistance and appearance of the molded body are improved.
  • the number average particle diameter is not particularly limited, but is preferably 5 to 60 nm.
  • the number average particle size was determined by obtaining an enlarged aggregate image according to the procedure described in the ASTM D3849 standard (standard test method for carbon black—morphological characterization by electron microscopy). 3,000 particle diameters can be measured and arithmetically averaged.
  • the nitrogen adsorption specific surface area (unit: m 2 / g) of carbon black is usually preferably less than 1,000 m 2 / g, and more preferably 50 to 400 m 2 / g. Setting the nitrogen adsorption specific surface area to less than 1,000 m 2 / g is preferable because the fluidity of the polybutylene terephthalate resin composition and the appearance of the molded body tend to be improved.
  • the nitrogen adsorption specific surface area can be measured according to JIS K6217.
  • the carbon black DBP (dibutyl phthalate) absorption is preferably less than 300 cm 3/100 g, is preferably Among them, 30 ⁇ 200cm 3 / 100g.
  • DBP absorption (unit: cm 3 / 100g) can be measured according to JIS K6217.
  • the carbon black to be used is not particularly limited in pH, but is usually 2 to 10, preferably 3 to 9, and more preferably 4 to 8.
  • Carbon black can be used alone or in combination of two or more. Furthermore, carbon black can be granulated using a binder, and can also be used in a masterbatch that is melt-kneaded at a high concentration in another resin. By using the melt-kneaded master batch, the handling property during extrusion and the dispersibility improvement in the resin composition can be achieved.
  • the resin include polystyrene resin, polyester resin, and acrylic resin.
  • the content of carbon black in the master batch is preferably 10 to 80% by mass, more preferably 20 to 70% by mass, and further preferably 30 to 60% by mass.
  • the content of carbon black is preferably 0.01 to 5 parts by mass, more preferably 0.05 parts by mass or more, and still more preferably 0.08 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin (A). As mentioned above, it is 0.1 mass part or more especially, More preferably, it is 2 mass parts or less, More preferably, it is 1.5 mass parts or less, Most preferably, it is 1.0 mass part or less.
  • the content is less than 0.01 parts by mass, the weather resistance may be insufficient.
  • the content exceeds 5 parts by mass, mechanical properties such as moldability and impact resistance tend to be deteriorated.
  • the polybutylene terephthalate resin composition preferably contains a release agent.
  • the release agent include aliphatic carboxylic acids, esters of aliphatic carboxylic acids and alcohols, aliphatic hydrocarbon compounds, polysiloxane silicone oils, and the like.
  • the aliphatic carboxylic acid examples include saturated or unsaturated aliphatic monovalent, divalent, or trivalent carboxylic acids.
  • the aliphatic carboxylic acid includes alicyclic carboxylic acid.
  • preferred aliphatic carboxylic acids are monovalent or divalent carboxylic acids having 6 to 36 carbon atoms, and aliphatic saturated monovalent carboxylic acids having 6 to 36 carbon atoms are more preferred.
  • aliphatic carboxylic acids include palmitic acid, stearic acid, caproic acid, capric acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, mellicic acid, tetrariacontanoic acid, montanic acid, adipine Examples include acids and azelaic acid.
  • an aliphatic carboxylic acid in the ester of an aliphatic carboxylic acid and an alcohol for example, the same one as the aliphatic carboxylic acid can be used.
  • the alcohol include saturated or unsaturated monohydric or polyhydric alcohols. These alcohols may have a substituent such as a fluorine atom or an aryl group. Among these, monovalent or polyvalent saturated alcohols having 30 or less carbon atoms are preferable, and aliphatic saturated monohydric alcohols or aliphatic saturated polyhydric alcohols having 30 or less carbon atoms are more preferable.
  • an aliphatic includes an alicyclic compound here.
  • alcohols include octanol, decanol, dodecanol, stearyl alcohol, behenyl alcohol, ethylene glycol, diethylene glycol, glycerin, pentaerythritol, 2,2-dihydroxyperfluoropropanol, neopentylene glycol, ditrimethylolpropane, dipentaerythritol, and the like. Is mentioned.
  • said ester may contain aliphatic carboxylic acid and / or alcohol as an impurity.
  • said ester may be a pure substance, it may be a mixture of a plurality of compounds.
  • the aliphatic carboxylic acid and alcohol which combine to form one ester may be used alone or in combination of two or more in any combination and ratio.
  • esters of aliphatic carboxylic acids and alcohols include montanic acid ester wax, beeswax (mixture based on myricyl palmitate), stearyl stearate, behenyl behenate, stearyl behenate, glycerin monopalmi Tate, glycerol monostearate, glycerol distearate, glycerol tristearate, pentaerythritol monopalmitate, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, pentaerythritol tetrastearate, etc. .
  • the aliphatic hydrocarbon compound examples include liquid wax, paraffin wax, microcrystalline wax, polyolefin wax such as polyethylene wax, Fischer-Tropsch wax, ⁇ -olefin oligomer having 3 to 12 carbon atoms, and the like.
  • the aliphatic hydrocarbon includes alicyclic hydrocarbons. Further, these hydrocarbons may be partially oxidized.
  • the number average molecular weight is preferably 200 to 30000, more preferably 1000 to 15000, still more preferably 1500 to 10,000, and particularly preferably 2000 to 5000.
  • the aliphatic hydrocarbon compound may be a single substance, but even a mixture of various constituent components and molecular weights can be used as long as the main component is within the above range.
  • the release agent is preferably a polyolefin wax from the viewpoint of heat resistance.
  • the polyolefin wax any conventionally known wax can be used.
  • the polyolefin wax preferably has 2 to 30 carbon atoms, more preferably 2 to 12 carbon atoms, and further preferably 2 to 10 carbon atoms.
  • (Co) polymers meaning polymerization or copolymerization; the same shall apply hereinafter) containing at least species.
  • Examples of the olefin having 2 to 30 carbon atoms include ethylene, propylene, ⁇ -olefin having 4 to 30 carbon atoms (preferably 4 to 12, more preferably 4 to 10), and 4 to 30 carbon atoms (preferably 4). -18, more preferably 4-8) dienes.
  • Examples of the ⁇ -olefin include 1-butene, 4-methyl-1-pentene, 1-pentene, 1-octene, 1-decene and 1-dodecene.
  • Examples of the diene include butadiene, isoprene, cyclopentadiene, 11-dodecadiene, and the like.
  • polyethylene wax is preferable from the viewpoint of releasability and heat resistance.
  • the manufacturing method of polyethylene wax is arbitrary, for example, can be manufactured by polymerization of ethylene or thermal decomposition of polyethylene.
  • the mold release agent those having an acid value of 10 to 40 mgKOH / g are preferred from the viewpoint that the mold release resistance is small, the effect of improving the mold release property is remarkable, and the volatile content is small.
  • the acid value is more preferably 11 to 35 mgKOH / g, still more preferably 12 to 32 mgKOH / g. If the acid value is in the range of 10 to 40 mgKOH / g, those having an acid value of less than 10 mgKOH / g and those having an acid value of more than 40 mgKOH / g may be used in combination. It may be 10 to 40 mg KOH / g.
  • the release agent having an acid value of 10 to 40 mgKOH / g, an ester of the above aliphatic carboxylic acid and alcohol having an acid value of 10 to 40 mgKOH / g, the above-mentioned aliphatic hydrocarbon compound Represents a carboxyl group (a carboxylic acid (anhydride) group, that is, a carboxylic acid group and / or a carboxylic anhydride group), a haloformyl group, an ester group, a carboxylic acid metal base, a hydroxyl group, and an alcohol.
  • a modified polyolefin wax provided with a functional group having an affinity for a polyester resin such as a group, an epoxy group, an amino group, or an amide group is preferred.
  • Examples of the carboxyl group used for modifying the polyolefin wax include low molecular weight compounds containing carboxylic acid groups such as maleic acid, maleic anhydride, acrylic acid, and methacrylic acid, low molecular weight compounds containing sulfo groups such as sulfonic acid, and phosphones. Examples thereof include a low molecular weight compound containing a phospho group such as an acid. Among these, low molecular weight compounds containing a carboxylic acid group are preferable, and maleic acid, maleic anhydride, acrylic acid, methacrylic acid, and the like are particularly preferable. These carboxylic acids may be used alone or in combination of two or more in any proportion.
  • the amount of acid added to the modified polyolefin wax is usually 0.01 to 10% by mass, preferably 0.05 to 5% by mass, based on the modified polyolefin wax.
  • haloformyl group examples include a chloroformyl group and a bromoformyl group.
  • Means for imparting these functional groups to the polyolefin wax may be any conventionally known method. Specifically, for example, copolymerization with a compound having a functional group, post-processing such as oxidation, etc. The method may be used.
  • the type of functional group is preferably a carboxyl group because it has a moderate affinity with the polyester resin.
  • the concentration of the carboxyl group in the modified polyolefin wax may be appropriately selected and determined, but if it is too low, the affinity with the polyester resin is small, the effect of suppressing volatile matter is reduced, and the mold release effect is reduced. There is. On the other hand, if the concentration is too high, for example, the polymer main chain constituting the polyolefin wax is excessively cleaved during modification, and the molecular weight of the modified polyolefin wax is excessively reduced, resulting in increased generation of volatile matter, and polyester resin. Cloudiness may occur on the surface of the molded body.
  • As the modified polyolefin wax an oxidized polyethylene wax is preferable.
  • 1 type may contain the mold release agent and 2 or more types may contain it by arbitrary combinations and a ratio.
  • the content of the release agent is usually 0.001 parts by mass or more, preferably 0.01 parts by mass or more, and usually 2 parts by mass or less, preferably 100 parts by mass of the polybutylene terephthalate resin (A). 1.5 parts by mass or less.
  • the content of the release agent is less than the lower limit of the above range, the effect of releasability may not be sufficient, and when the content of the release agent exceeds the upper limit of the above range, hydrolysis resistance And mold contamination during injection molding may occur.
  • a method for producing a polybutylene terephthalate resin composition it can be carried out according to a conventional method for preparing a polybutylene terephthalate resin composition. That is, polybutylene terephthalate resin (A), acrylonitrile-styrene copolymer (B1), epoxy-modified acrylonitrile-styrene copolymer (B2), or epoxy-modified acrylic polymer (C), and optionally Other resin components to be added and various additives are mixed together and then melt-kneaded in a single or twin screw extruder.
  • the glass fiber (D) is preferably side fed.
  • a part of which is made into a master batch may be blended and melt-kneaded. Furthermore, it is also possible to produce various molded products by supplying a mixture obtained by mixing each component in advance to a molding machine such as an injection molding machine without melt-kneading.
  • the heating temperature at the time of melt kneading can be appropriately selected from the range of usually 220 to 300 ° C. If the temperature is too high, decomposition gas is likely to be generated, which may cause poor appearance. Therefore, it is desirable to select a screw configuration in consideration of shear heat generation. In order to suppress decomposition during kneading or molding in the subsequent process, it is desirable to use an antioxidant or a heat stabilizer.
  • the raw polybutylene terephthalate resin composition has a styrene monomer content of 45 (mass) ppm or less detected when a gas generated by heat treatment at 270 ° C. for 10 minutes is analyzed by gas chromatography. preferable.
  • the amount of the styrene monomer gas in the resin composition is 45 ppm or less, the VOC problem is solved even when used as a vehicle interior part, and the appearance at the time of molding is also improved.
  • it exceeds 45 ppm cleanliness as an interior part for a vehicle is deteriorated, it becomes difficult to solve the VOC problem, and the appearance at the time of molding tends to be poor.
  • the amount of the styrene monomer gas in the resin composition is preferably 30 ppm or less, more preferably 20 ppm or less, and the lower limit thereof is usually 2 ppm.
  • the amount of the styrenic monomer gas in the resin composition can be obtained by analyzing a gas generated by heat treatment at 270 ° C. for 10 minutes using a gas chromatograph. The amount (unit: ppm by mass) obtained by converting to the value of, and the specific conditions are as detailed in the examples.
  • the raw polybutylene terephthalate resin composition is preferably 3 (mass) ppm or less in the amount of ethylbenzene detected when a gas generated by heat treatment at 270 ° C. for 10 minutes is analyzed by gas chromatography. preferable. By doing so, the VOC problem is solved even when the molded product is used as a vehicle interior part, and the appearance of the molded product is also improved.
  • the amount of styrene and ethylbenzene in the resin composition is the amount obtained by analyzing the gas generated by heat treatment at 270 ° C. for 10 minutes by gas chromatography as described above. It is the amount (unit: mass ppm) converted to a value per substance amount.
  • the specific assumption method and conditions are as detailed in the examples.
  • the polybutylene terephthalate resin composition has a total amount of styrene monomer and ethylbenzene detected when a gas generated by heat treatment at 270 ° C. for 10 minutes is analyzed by gas chromatography is 45 (mass) ppm or less. It is preferable that By doing in this way, the VOC problem is solved even when used as a vehicle interior part, and the appearance at the time of molding is also improved.
  • the total amount of the styrene monomer and ethylbenzene in the resin composition is preferably 30 ppm or less, more preferably 20 ppm or less, and the lower limit is usually 3 ppm.
  • styrene copolymer (B) used to have a styrene monomer gas amount of 600 ppm or less, preferably 550 ppm or less? Furthermore, it is possible by blending the above-described phosphite stabilizer, hindered phenol stabilizer and the like. The amount of ethylbenzene gas in the resin composition can be reduced to 3 ppm or less by, for example, blending the above-described phosphite stabilizer, hindered phenol stabilizer, or the like.
  • the method for producing a molded body using the polybutylene terephthalate resin composition described above is not particularly limited, and any molding method generally employed for the polybutylene terephthalate resin composition can be arbitrarily adopted.
  • the molded body of the present invention has a sea-island structure, and the polybutylene terephthalate resin (A) forms a continuous phase.
  • the domain containing the styrene copolymer (B) is dispersed in islands in the continuous phase of the polybutylene terephthalate resin (A), and the phase of the polybutylene terephthalate resin (A) is in the islands.
  • such a molded article having a morphology for example, it contains 45 to 100 parts by mass of a styrene copolymer (B) with respect to 100 parts by mass of a polybutylene terephthalate resin (A), and more preferably May be injection-molded using a resin composition in which the epoxy-modified acrylic polymer (C) is blended.
  • the epoxy-modified acrylic polymer (C) By using the epoxy-modified acrylic polymer (C), the familiarity of the styrene copolymer (B) with the polybutylene terephthalate resin (A) is improved, so that a high degree of dispersion proceeds and the morphology of the present invention. It can be.
  • the blending composition of the polybutylene terephthalate resin composition is particularly preferably 45 to 100 parts by mass of the acrylonitrile-styrene copolymer (B1) with respect to 100 parts by mass of the polybutylene terephthalate resin (A).
  • the epoxy-modified acrylic polymer (C) is 0.2 to 3 parts by mass
  • the glass fiber (D) is 10 to 100 parts by mass.
  • acrylonitrile-styrene copolymer (B1) and epoxy-modified acrylonitrile-styrene copolymer can be used with respect to 100 parts by mass of polybutylene terephthalate resin (A).
  • Injection molding may be performed using a resin composition in which the combined (B2) is added in a total amount of 45 to 100 parts by mass and the mass ratio (B1) / (B2) of the content of (B1) and (B2) is 6 or less. Can be mentioned.
  • the epoxy-modified acrylonitrile-styrene copolymer (B2) By using the epoxy-modified acrylonitrile-styrene copolymer (B2), the familiarity of the acrylonitrile-styrene copolymer (B1) with the polybutylene terephthalate resin (A) is improved. The morphology of the present invention can be obtained.
  • the injection molding conditions are preferably that the pellets of the polybutylene terephthalate resin composition are sufficiently dried by increasing the drying temperature or extending the drying time, the cylinder temperature is about 250 to 270 ° C., the mold temperature It is preferable that the temperature is 70 to 90 ° C., the cooling time is 15 to 25 seconds, the filling time is 0.5 to 1.5 seconds, and the pressure holding value is about 40 to 80% of the injection peak pressure.
  • the TVOC amount of the molded article of the present invention is 30 ⁇ g C / g or less, more preferably 20 ⁇ g C / g or less.
  • the above-mentioned styrene copolymer (B) is one having a styrene monomer gas amount of 600 ppm or less, preferably 550 ppm or less, or a phosphor. It is possible by blending a phyto-based stabilizer or a hindered phenol-based stabilizer.
  • the specific measuring method of the TVOC amount of a molded object is as describing in detail in the Example.
  • the shape of the molded body is not particularly limited and can be appropriately selected according to the use and purpose of the molded product.
  • a plate shape, a plate shape, a rod shape, a sheet shape, a film shape, a cylindrical shape, an annular shape examples include a circular shape, an elliptical shape, a polygonal shape, an irregular shape, a hollow shape, a frame shape, a box shape, and a panel shape.
  • the molded article of the present invention has low warpage, a small amount of gas generation, excellent mechanical properties at high temperatures, and low specific gravity, it can be particularly suitably used as a vehicle interior part that requires these characteristics.
  • interior parts interior parts for vehicles such as automobiles, trains, trains, etc., for example, inner mirror stays, wave louvers for air conditioners, door handles, handles, doors, sunroofs, seat belts, register blades, Preferred examples include a washer lever, a window regulator handle, a knob of the window regulator handle, a passing light lever, a sun visor bracket, various housings, a switch, and a clip.
  • This raw material solution was introduced into a first reactor controlled at 130 ° C. at 6.0 kg per hour.
  • the reaction solution was continuously extracted from the first reactor and introduced into the second reactor.
  • it was introduced into the first devolatilization tank reduced to 65 kPa, and further heated to 220 ° C. with a preheater and then introduced into the second devolatilization tank reduced to 1.0 kPa. Residual monomer and solvent were removed. This was extruded and cut into strands to obtain pellet-shaped acrylonitrile-styrene copolymer (B1-1).
  • the composition of copolymer (B1-1) mass ratio of monomer units
  • Mw mass average molecular weight
  • PAN ratio acrylonitrile copolymerization amount of the acrylonitrile-styrene copolymer in Table 1 above were measured by the methods described above.
  • MVR was measured using a melt indexer manufactured by Takara Industries Co., Ltd., and the melt flow volume MVR per unit time (unit: cm 3 / unit) measured on the pellets obtained above at 220 ° C. under a load of 2.16 kgf. 10 min).
  • Measuring instrument GCMS-QP2010 (manufactured by Shimadzu Corporation) Column: UA-1701 ID 0.25mm Carrier gas: He Pressure: 80kPa Column flow rate: 1.4 mL / min Column oven temperature: 50 ° C Vaporization chamber temperature: 25 ° C Detector: Secondary electron multiplier with conversion dynode Ion source temperature: 250 ° C
  • Examples 1 to 12, Comparative Examples 1 to 5 After uniformly mixing the components shown in Table 1 above in the proportions (all parts by mass) shown in Table 2 using a tumbler mixer, a twin screw extruder (“TEX30 ⁇ ” manufactured by Nippon Steel Works) was used, The resin composition melt-kneaded under conditions of a cylinder set temperature of 260 ° C. and a screw rotation speed of 200 rpm was rapidly cooled in a water tank and pelletized using a pelletizer to obtain pellets of a polybutylene terephthalate resin composition. Next, the pellets of the obtained polybutylene terephthalate resin composition were dried at 120 ° C.
  • TEX30 ⁇ manufactured by Nippon Steel Works
  • the observation surface of the obtained sample was stained with ruthenium tetroxide for 120 minutes in the gas phase at room temperature, and then using a scanning electron microscope (manufactured by Hitachi High-Tech, “SU8020”), acceleration voltage 1 kV, signal LA100 (U), An SEM image with a magnification of 3000 times was obtained under the conditions of an emission current of 10 ⁇ A and a probe current of Normal. From the obtained SEM image, for the island-shaped portion containing the styrene copolymer (B), the presence or absence of a lake of polybutylene terephthalate resin, whether the island-shaped portion has a plurality of branches, The maximum width of the island portion was measured by the method described above.
  • the [(A) phase exists as a lake with respect to [the total area of all islands (this area does not include the area of the lake)]. Area ratio (the total of this area does not include the area of the lake)].
  • an island having a lake having a major axis of 1 ⁇ m or more in the island-like portion was adopted in the field of view of the SEM image (magnification 3000 times).
  • the SEM image used for the analysis had a field of view of 3000 times magnification, and when the glass fiber in the resin composition was in the field of view, an image was selected such that the cross-sectional area of the glass fiber was 10% or less of the field of view.
  • FIGS. 1 to 7. 8 to 10 show SEM images (magnification 3000 times) of the molded bodies of Comparative Examples 1, 2, and 4 using a scanning electron microscope.
  • Measuring instrument GCMS-QP2010 (manufactured by Shimadzu Corporation) Column: UA-1701 ID 0.25mm Carrier gas: He Pressure: 80kPa Column flow rate: 1.4 mL / min Column oven temperature: 50 ° C Vaporization chamber temperature: 25 ° C Detector: Secondary electron multiplier with conversion dynode Ion source temperature: 250 ° C
  • the molded article of the polybutylene terephthalate resin composition of the present invention is less warped, has less gas generation, can satisfy VOC regulations, and has excellent bending strength at high temperatures, so it can be used for various molded products, especially automobiles. It can use suitably as interior parts for vehicles, such as.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

This molding has a minimum thickness of more than 1 mm, has a sea-island structure, and is formed of a polybutylene terephthalate resin composition containing, as a styrene copolymer (B), a total amount of 45-100 parts by mass of an acrylonitrile-styrene copolymer (B1) and/or an epoxy-modified acrylonitrile-styrene copolymer (B2) with respect to 100 parts by mass of a polybutylene terephthalate resin (A). The molding is characterized in that: the polybutylene terephthalate resin (A) forms a continuous phase; the molding has a morphology in which domains including the styrene copolymer (B) are dispersed as island-like parts within the continuous phase of the polybutylene terephthalate resin (A), at least a portion of the island-like parts include the phase of the polybutylene terephthalate resin (A) in a lake-like manner, and the maximum value of the width of the island-like parts is at most 6 μm; and a total volatile organic compound (TVOC) amount of at most 30 μgC/g is detected when a gas generated by heat-treating the molding at 120°C for 5 hours is analyzed by gas chromatography.

Description

ポリブチレンテレフタレート樹脂組成物成形体Polybutylene terephthalate resin composition molded article
 本発明は、ポリブチレンテレフタレート樹脂組成物成形体に関し、詳しくは、低ソリ性かつ低比重で、ガス発生量が少なく、高温時の機械物性に優れるポリブチレンテレフタレート樹脂組成物成形体に関する。 The present invention relates to a molded article of a polybutylene terephthalate resin composition, and more particularly, to a molded article of a polybutylene terephthalate resin composition having low warpage and low specific gravity, a small amount of gas generation, and excellent mechanical properties at high temperatures.
 ポリブチレンテレフタレート樹脂は、機械的特性、電気特性等が優れているほか、耐薬品性、耐熱性等も優れているので、これを射出成形した成形品は、各種の電気電子機器部品、および自動車などの車両用内装部品、その他の一般工業製品製造用材料として広く使用されている。 Polybutylene terephthalate resin has excellent mechanical and electrical properties, as well as excellent chemical resistance and heat resistance. Injection molded products are used for various electrical and electronic equipment parts and automobiles. It is widely used as an interior part for vehicles and other general industrial products.
 しかし、ポリブチレンテレフタレート樹脂は結晶性樹脂であるため、その射出成形においては、金型内での冷却固化の過程で樹脂の結晶化による収縮が起きるため、成形収縮を生じやすい。その成形収縮の程度は、成形品の部位ごとに異なるため、成形品に反りが発生することになる。 However, since polybutylene terephthalate resin is a crystalline resin, in its injection molding, shrinkage occurs due to crystallization of the resin in the process of cooling and solidifying in the mold, and thus molding shrinkage tends to occur. Since the degree of the molding shrinkage differs for each part of the molded product, the molded product is warped.
 成形収縮を抑制するためには、ポリブチレンテレフタレート樹脂の結晶化による分子配向を抑えるため、非晶性樹脂を配合することが知られており、非晶性樹脂として、アクリロニトリル-スチレン共重合体を用いることが提案されている(特許文献1~3参照)。 In order to suppress molding shrinkage, it is known to incorporate an amorphous resin in order to suppress molecular orientation due to crystallization of polybutylene terephthalate resin. As the amorphous resin, acrylonitrile-styrene copolymer is used. It has been proposed to use (see Patent Documents 1 to 3).
特開平09-12849号公報Japanese Patent Laid-Open No. 09-12849 特開2006-16558号公報JP 2006-16558 A 国際公開第2016/190311号International Publication No. 2016/190311
 しかしながら、これらの発明でも十分な低ソリ性を達成することは決して容易ではない。
 さらに、ポリブチレンテレフタレート樹脂材料を自動車の内室における使用の場合、放出される有機物についての厳しいガイドラインであるTVOC(total volatile organic compounds)排出量の規制があり、車両内装部品にはこれをクリアーすることが強く求められつつある。
 本発明の目的(課題)は、低ソリ性かつ低比重で、ガス発生量が少なく、高温時の機械物性に優れるポリブチレンテレフタレート樹脂組成物成形体を提供することにある。
However, even with these inventions, it is not easy to achieve a sufficiently low warpage.
In addition, when polybutylene terephthalate resin material is used in the interior of an automobile, there is a regulation on TVOC (total volatile organic compounds), which is a strict guideline for the organic matter to be released. There is a strong demand for this.
An object (issue) of the present invention is to provide a polybutylene terephthalate resin composition molded article having low warpage and low specific gravity, a small amount of gas generation, and excellent mechanical properties at high temperatures.
 本発明者らは、上記した課題を解決するために鋭意検討した結果、ポリブチレンテレフタレート樹脂に対してアクリロニトリル-スチレン系共重合体を特定の量で含有し、アクリロニトリル-スチレン系共重合体のドメインが特定の形状で島状に分散した海島構造のモルフォロジーを有し、TVOC量が特定量であるポリブチレンテレフタレート樹脂組成物成形体が上記した問題を解決できることを見出し、本発明に到達した。
 本発明は、以下のポリブチレンテレフタレート樹脂組成物成形体に関する。
As a result of diligent studies to solve the above-mentioned problems, the inventors of the present invention contain a specific amount of acrylonitrile-styrene copolymer relative to the polybutylene terephthalate resin, and the domain of the acrylonitrile-styrene copolymer Has found that a polybutylene terephthalate resin composition molded article having a sea-island structure dispersed in islands in a specific shape and having a specific TVOC amount can solve the problems described above.
The present invention relates to the following polybutylene terephthalate resin composition molded article.
[1]ポリブチレンテレフタレート樹脂(A)100質量部に対し、スチレン系共重合体(B)として、アクリロニトリル-スチレン系共重合体(B1)及び/又はエポキシ変性されたアクリロニトリル-スチレン系共重合体(B2)を合計で45~100質量部含有するポリブチレンテレフタレート樹脂組成物からなり、海島構造を有する、最少厚みが1mm超である成形体であって、
 ポリブチレンテレフタレート樹脂(A)が連続相を形成し、
 スチレン系共重合体(B)を含むドメインが、ポリブチレンテレフタレート樹脂(A)の連続相中に島状に分散しており、その少なくとも一部は前記島状部の中にポリブチレンテレフタレート樹脂(A)の相が湖として存在しており、以下の方法で測定した島状部の巾の最大値が6μm以下であるモルフォロジーを有しており、
 成形体を120℃で5時間熱処理して発生するガスをガスクロマトグラフで分析した際に検出される揮発性有機化合物量(TVOC)が30μgC/g以下である、
 ことを特徴とするポリブチレンテレフタレート樹脂組成物成形体。
 島状部の巾の最大値の測定方法:
 成形体の厚みが最大である部分の厚み方向の中心点を含む断面におけるSEM画像(倍率は3000倍)から、島状部の巾の最大値を測定する。
[2]ポリブチレンテレフタレート樹脂(A)の前記島状部は、その少なくとも一部が、分岐部を有する形状の島状部である上記[1]に記載のポリブチレンテレフタレート樹脂組成物成形体。
[3]成形体からのTVOC量が20μgC/g以下である上記[1]又は[2]に記載のポリブチレンテレフタレート樹脂組成物成形体。
[4]ポリブチレンテレフタレート樹脂組成物を、270℃で10分間熱処理して発生するガスをガスクロマトグラフで分析した際に検出されるスチレン系単量体の量が45質量ppm以下である上記[1]~[3]のいずれかに記載のポリブチレンテレフタレート樹脂組成物成形体。
[5]ポリブチレンテレフタレート樹脂組成物が、さらにエポキシ変性アクリル系重合体(C)を含有する上記[1]~[4]のいずれかに記載のポリブチレンテレフタレート樹脂組成物成形体。
[6]ポリブチレンテレフタレート樹脂組成物が、ポリブチレンテレフタレート樹脂(A)100質量部に対して、アクリロニトリル-スチレン系共重合体(B1)45~100質量部、エポキシ変性アクリル系重合体(C)0.2~3質量部、及びガラス繊維(D)10~100質量部を含有する上記[1]~[5]のいずれかに記載のポリブチレンテレフタレート樹脂組成物成形体。
[7]ポリブチレンテレフタレート樹脂組成物が、ポリブチレンテレフタレート樹脂(A)100質量部に対して、アクリロニトリル-スチレン系共重合体(B1)及びエポキシ変性アクリロニトリル-スチレン系共重合体(B2)を合計で45~100質量部含有し、(B1)と(B2)の含有量の質量比(B1)/(B2)は6以下であり、さらにガラス繊維(D)を10~100質量部含有する上記[1]~[4]のいずれかに記載のポリブチレンテレフタレート樹脂組成物成形体。
[8]車両内装部品である上記[1]~[7]のいずれかに記載の成形体。
[1] Acrylonitrile-styrene copolymer (B1) and / or epoxy-modified acrylonitrile-styrene copolymer as styrene copolymer (B) with respect to 100 parts by mass of polybutylene terephthalate resin (A) A molded body comprising a polybutylene terephthalate resin composition containing 45 to 100 parts by mass of (B2), having a sea-island structure, and having a minimum thickness of more than 1 mm,
The polybutylene terephthalate resin (A) forms a continuous phase,
The domain containing the styrene copolymer (B) is dispersed in an island shape in the continuous phase of the polybutylene terephthalate resin (A), and at least a part of the domain is in the island-shaped portion. The phase of A) exists as a lake, and has a morphology in which the maximum width of the island-shaped part measured by the following method is 6 μm or less,
The amount of volatile organic compounds (TVOC) detected when a gas generated by heat-treating the molded body at 120 ° C. for 5 hours is analyzed by gas chromatography is 30 μg C / g or less.
A molded article of polybutylene terephthalate resin composition characterized by the above.
How to measure the maximum width of islands:
The maximum value of the width of the island portion is measured from the SEM image (magnification is 3000 times) in the cross section including the center point in the thickness direction of the portion where the thickness of the molded body is maximum.
[2] The polybutylene terephthalate resin composition molded article according to the above [1], wherein at least a part of the island-shaped portion of the polybutylene terephthalate resin (A) is an island-shaped portion having a branched portion.
[3] The polybutylene terephthalate resin composition molded article according to the above [1] or [2], wherein the TVOC amount from the molded article is 20 μg C / g or less.
[4] The amount of the styrene monomer detected when a gas generated by heat-treating the polybutylene terephthalate resin composition at 270 ° C. for 10 minutes is analyzed by gas chromatography is 45 ppm by mass or less. ] A molded article of the polybutylene terephthalate resin composition according to any one of [3] to [3].
[5] The polybutylene terephthalate resin composition molded article according to any one of the above [1] to [4], wherein the polybutylene terephthalate resin composition further contains an epoxy-modified acrylic polymer (C).
[6] The polybutylene terephthalate resin composition comprises 45 to 100 parts by mass of an acrylonitrile-styrene copolymer (B1) with respect to 100 parts by mass of the polybutylene terephthalate resin (A), and an epoxy-modified acrylic polymer (C). The polybutylene terephthalate resin composition molded article according to any one of the above [1] to [5], comprising 0.2 to 3 parts by mass and glass fiber (D) 10 to 100 parts by mass.
[7] The polybutylene terephthalate resin composition is a total of acrylonitrile-styrene copolymer (B1) and epoxy-modified acrylonitrile-styrene copolymer (B2) with respect to 100 parts by mass of the polybutylene terephthalate resin (A). The content ratio of (B1) and (B2) is 6 or less, and the glass fiber (D) is contained in an amount of 10 to 100 parts by mass. [1] A molded article of the polybutylene terephthalate resin composition according to any one of [4].
[8] The molded body according to any one of [1] to [7], which is a vehicle interior part.
[9]ポリブチレンテレフタレート樹脂(A)100質量部に対して、アクリロニトリル-スチレン系共重合体(B1)45~100質量部、エポキシ変性アクリル系重合体(C)0.2~3質量部、及びガラス繊維(D)10~100質量部を含有することを特徴とするポリブチレンテレフタレート樹脂組成物。
[10]ポリブチレンテレフタレート樹脂組成物を、270℃で10分間熱処理して発生するガスをガスクロマトグラフで分析した際に検出されるスチレン系単量体の量が45ppm以下である上記[9]に記載のポリブチレンテレフタレート樹脂組成物。
[11]アクリロニトリル-スチレン系共重合体(B1)が塊状重合品である上記[9]または[10]に記載のポリブチレンテレフタレート樹脂組成物。
[12]ポリブチレンテレフタレート樹脂(A)100質量部に対して、アクリロニトリル-スチレン系共重合体(B1)及びエポキシ変性アクリロニトリル-スチレン系共重合体(B2)を合計で45~100質量部含有し、(B1)と(B2)の含有量の質量比(B1)/(B2)は6以下であり、さらにガラス繊維(D)を10~100質量部含有することを特徴とするポリブチレンテレフタレート樹脂組成物。
[13](B1)と(B2)の含有量の質量比(B1)/(B2)が0.5~6である上記[12]に記載のポリブチレンテレフタレート樹脂組成物。
[14]ポリブチレンテレフタレート樹脂組成物を、270℃で10分間熱処理して発生するガスをガスクロマトグラフで分析した際に検出されるスチレン系単量体の量が45ppm以下である上記[12]または[13]に記載のポリブチレンテレフタレート樹脂組成物。
[15]アクリロニトリル-スチレン系共重合体(B1)が塊状重合品である上記[12]~[14]のいずれかに記載のポリブチレンテレフタレート樹脂組成物。
[9] With respect to 100 parts by mass of the polybutylene terephthalate resin (A), 45 to 100 parts by mass of the acrylonitrile-styrene copolymer (B1), 0.2 to 3 parts by mass of the epoxy-modified acrylic polymer (C), And a polybutylene terephthalate resin composition comprising 10 to 100 parts by mass of glass fiber (D).
[10] In the above [9], the amount of the styrene monomer detected when the gas generated by heat-treating the polybutylene terephthalate resin composition at 270 ° C. for 10 minutes is analyzed by gas chromatography is 45 ppm or less. The polybutylene terephthalate resin composition described.
[11] The polybutylene terephthalate resin composition according to the above [9] or [10], wherein the acrylonitrile-styrene copolymer (B1) is a bulk polymer.
[12] Containing 45 to 100 parts by mass of acrylonitrile-styrene copolymer (B1) and epoxy-modified acrylonitrile-styrene copolymer (B2) with respect to 100 parts by mass of polybutylene terephthalate resin (A). , (B1) and (B2) content mass ratio (B1) / (B2) is 6 or less, and further contains 10 to 100 parts by mass of glass fiber (D), polybutylene terephthalate resin Composition.
[13] The polybutylene terephthalate resin composition according to the above [12], wherein the mass ratio (B1) / (B2) of the contents of (B1) and (B2) is 0.5 to 6.
[14] The above [12], wherein the amount of styrene monomer detected when a gas generated by heat treatment of the polybutylene terephthalate resin composition at 270 ° C. for 10 minutes is analyzed by gas chromatography is 45 ppm or less The polybutylene terephthalate resin composition according to [13].
[15] The polybutylene terephthalate resin composition according to any one of [12] to [14] above, wherein the acrylonitrile-styrene copolymer (B1) is a bulk polymer.
 本発明のポリブチレンテレフタレート樹脂組成物成形体は、ソリが少なく、ガス発生量が少なく、VOC規制をクリアーでき、低比重で、さらに車内の高温を想定した環境での機械的強度等の機械物性に優れるので、特に車両内装部品として好適に使用できる。 The molded article of the polybutylene terephthalate resin composition of the present invention has less warpage, less gas generation, can meet VOC regulations, has low specific gravity, and has mechanical properties such as mechanical strength in an environment that assumes high temperature inside the vehicle. In particular, it can be suitably used as a vehicle interior part.
実施例1の成形体の走査電子顕微鏡によるSEM画像である。2 is a SEM image of the molded body of Example 1 using a scanning electron microscope. 実施例2の成形体の走査電子顕微鏡によるSEM画像である。3 is a SEM image of the molded product of Example 2 using a scanning electron microscope. 実施例3の成形体の走査電子顕微鏡によるSEM画像である。3 is a SEM image of the molded product of Example 3 using a scanning electron microscope. 実施例4の成形体の走査電子顕微鏡によるSEM画像である。6 is a SEM image of the molded product of Example 4 using a scanning electron microscope. 実施例7の成形体の走査電子顕微鏡によるSEM画像である。6 is a SEM image of the molded product of Example 7 using a scanning electron microscope. 実施例9の成形体の走査電子顕微鏡によるSEM画像である。10 is a SEM image of the molded product of Example 9 using a scanning electron microscope. 実施例11の成形体の走査電子顕微鏡によるSEM画像である。4 is a SEM image of the molded product of Example 11 using a scanning electron microscope. 比較例1の成形体の走査電子顕微鏡によるSEM画像である。2 is a SEM image of a molded article of Comparative Example 1 using a scanning electron microscope. 比較例2の成形体の走査電子顕微鏡によるSEM画像である。4 is a SEM image of a molded article of Comparative Example 2 using a scanning electron microscope. 比較例4の成形体の走査電子顕微鏡によるSEM画像である。6 is an SEM image of a molded article of Comparative Example 4 using a scanning electron microscope. 本発明の海島構造の島状部の巾を示すための模式図である。It is a schematic diagram for showing the width | variety of the island-shaped part of the sea island structure of this invention.
 以下、本発明の実施の形態について詳細に説明する。以下に記載する説明は実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定して解釈されるものではない。
 なお、本明細書において、「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
Hereinafter, embodiments of the present invention will be described in detail. The following description may be made based on embodiments and specific examples, but the present invention is not construed as being limited to such embodiments and specific examples.
In the present specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 本願の第1の発明であるポリブチレンテレフタレート樹脂組成物成形体は、スチレン系共重合体(B)として、アクリロニトリル-スチレン系共重合体(B1)及び/又はエポキシ変性されたアクリロニトリル-スチレン系共重合体(B2)を合計で45~100質量部を含有するポリブチレンテレフタレート樹脂組成物からなり、海島構造を有する、最少厚みが1mm超である成形体であって、
 ポリブチレンテレフタレート樹脂(A)が連続相を形成し、
 スチレン系共重合体(B)を含むドメインが、ポリブチレンテレフタレート樹脂(A)の連続相中に島状に分散しており、その少なくとも一部は前記島状部の中にポリブチレンテレフタレート樹脂(A)の相が湖として存在しており、以下の方法で測定した島状部の巾の最大値が6μm以下であるモルフォロジーを有しており、
 成形体を120℃で5時間熱処理して発生するガスをガスクロマトグラフで分析した際に検出される揮発性有機化合物量(TVOC)が30μgC/g以下であることを特徴とする。
 島状部の巾の最大値の測定方法:
 成形体の厚みが最大である部分の厚み方向の中心点を含む断面におけるSEM画像(倍率は3000倍)から、島状部の巾の最大値を測定する。
The molded article of the polybutylene terephthalate resin composition according to the first invention of the present application is an acrylonitrile-styrene copolymer (B1) and / or an epoxy-modified acrylonitrile-styrene copolymer as the styrene copolymer (B). A molded article comprising a polybutylene terephthalate resin composition containing 45 to 100 parts by mass of the polymer (B2), having a sea-island structure, and having a minimum thickness of more than 1 mm,
The polybutylene terephthalate resin (A) forms a continuous phase,
The domain containing the styrene copolymer (B) is dispersed in an island shape in the continuous phase of the polybutylene terephthalate resin (A), and at least a part of the domain is in the island-shaped portion. The phase of A) exists as a lake, and has a morphology in which the maximum width of the island-shaped part measured by the following method is 6 μm or less,
A volatile organic compound amount (TVOC) detected when a gas generated by heat-treating the molded body at 120 ° C. for 5 hours is analyzed by gas chromatography is 30 μg C / g or less.
How to measure the maximum width of islands:
The maximum value of the width of the island portion is measured from the SEM image (magnification is 3000 times) in the cross section including the center point in the thickness direction of the portion where the thickness of the molded body is maximum.
 本発明の成形体はその最少厚みが1mm超であるが、最小厚みは、好ましくは1.2mm以上、より好ましくは1.5mm以上、さらに好ましくは1.8mm以上、特には2.0mm以上であることが好ましい。成形体の最大厚みは、制限はないが、好ましくは10.0mm以下、より好ましくは8.0mm以下、さらに好ましくは6.0mm以下である。 The molded product of the present invention has a minimum thickness of more than 1 mm, but the minimum thickness is preferably 1.2 mm or more, more preferably 1.5 mm or more, further preferably 1.8 mm or more, and particularly 2.0 mm or more. Preferably there is. The maximum thickness of the molded body is not limited, but is preferably 10.0 mm or less, more preferably 8.0 mm or less, and even more preferably 6.0 mm or less.
[モルフォロジー]
 走査電子顕微鏡による成形体モルフォロジーの観察は、成形体の最も厚い部分(最大厚み部)であって、その厚み方向の中心点を含む断面を走査電子顕微鏡にて得られたSEM画像を用いて行う。
 すなわち、先ず、成形体の最大厚み部において、厚み方向に切断する。この際の成形体の最大厚み部としては、成形時の射出ゲート部は除外される。また、成形体中に最大厚み部が複数個所ある場合には、いずれか任意の一か所から、厚みが均一な成形体の場合には、射出ゲート部と樹脂の流動末端部との長さ方向の中央部付近で切断する。
 切断面から、ダイヤモンドナイフにて、切断面の厚み方向の中心点を含む断面のSEM観察用試料を切り出し、観察面が縦500μm×横500μm、厚み約1cmのブロック形状の試料を得る。得られた試料の観察面を四酸化ルテニウムで染色後、走査電子顕微鏡を用い、加速電圧1kVの条件で、SEM画像を取得する。
 観察に用いるSEM画像は倍率3000倍の視野とし、視野内に樹脂組成物中のガラス繊維がある場合は、ガラス繊維の断面積が視野面積の10%以下となるような画像を選択する。
 具体的な解析方法の詳細は、実施例で詳記する通りである。
[Morphology]
The observation of the molded body morphology with a scanning electron microscope is performed using the SEM image obtained by the scanning electron microscope at the cross section including the center point in the thickness direction of the molded body, which is the thickest part (maximum thickness part). .
That is, first, in the maximum thickness part of a molded object, it cut | disconnects in the thickness direction. At this time, the injection gate portion at the time of molding is excluded as the maximum thickness portion of the molded body. In addition, when there are a plurality of maximum thickness portions in the molded body, from any one place, in the case of a molded body having a uniform thickness, the length of the injection gate portion and the flow end portion of the resin Cut near the center of the direction.
A sample for SEM observation having a cross section including the center point in the thickness direction of the cut surface is cut out from the cut surface with a diamond knife to obtain a block-shaped sample having an observation surface of 500 μm in length × 500 μm in width and about 1 cm in thickness. After observing the observation surface of the obtained sample with ruthenium tetroxide, an SEM image is obtained using a scanning electron microscope under the condition of an acceleration voltage of 1 kV.
The SEM image used for observation has a field of view of 3000 times magnification, and when there are glass fibers in the resin composition in the field of view, an image is selected such that the cross-sectional area of the glass fibers is 10% or less of the field of view.
Details of a specific analysis method are as described in detail in the examples.
 図1~図7は、本願の実施例で得られた成形体の走査電子顕微鏡によるSEM画像(倍率3000倍)である。
 図中、黒灰色の部分(最も明度が低い部分)がポリブチレンテレフタレート樹脂(A)の相であって、連続相として海を形成している。図中、薄灰色の部分(ポリブチレンテレフタレート樹脂相より明度が高い部分)がスチレン系共重合体(B)を含むドメインであって、ポリブチレンテレフタレート樹脂(A)の連続した海の中に島状に分散しており、かつ、スチレン系共重合体(B)の島状部の中にはポリブチレンテレフタレート樹脂(A)の相が島の中の湖(池)として存在している。そして、島状部はその巾が過度に大きくならず、その最大値が6μm以下であることを特徴としている。尚、図中、最も明度が低い部分と、薄灰色の部分との間の色調を有する大き目の円形又は半円形状の部分は、ガラス繊維である。
FIG. 1 to FIG. 7 are SEM images (magnification: 3000 times) of the compacts obtained in the examples of the present application, using a scanning electron microscope.
In the figure, the black-gray part (the part with the lowest brightness) is the phase of the polybutylene terephthalate resin (A), and forms the sea as a continuous phase. In the figure, the light gray part (part having a higher brightness than the polybutylene terephthalate resin phase) is a domain containing the styrene copolymer (B), and the islands are located in the continuous sea of polybutylene terephthalate resin (A). The phase of polybutylene terephthalate resin (A) exists as a lake (pond) in the island in the island-shaped part of the styrene copolymer (B). And the island-shaped part is characterized by not having an excessively large width and a maximum value of 6 μm or less. In the drawing, a large circular or semicircular portion having a color tone between the lightest portion and the light gray portion is a glass fiber.
 一方、図8~図9は本願の比較例で得られた成形体の走査電子顕微鏡によるSEM画像(倍率3000倍)であるが、島状部はその巾が図8(比較例1)、図9(比較例2)では非常に大きくなっている。また、本願の比較例4の図10では、スチレン系共重合体(B)を含む島が、ポリブチレンテレフタレート樹脂(A)の連続相中に均一に微分散しており、島状部の中にはポリブチレンテレフタレート樹脂(A)の湖(池)の存在はみられないことが分かる。 On the other hand, FIGS. 8 to 9 are SEM images (magnification 3000 times) of the molded body obtained in the comparative example of the present application, and the width of the island-shaped portion is FIG. 8 (Comparative Example 1). 9 (Comparative Example 2) is very large. Further, in FIG. 10 of Comparative Example 4 of the present application, the islands containing the styrene-based copolymer (B) are uniformly finely dispersed in the continuous phase of the polybutylene terephthalate resin (A). It can be seen that there is no lake (pond) of polybutylene terephthalate resin (A).
 図11は、本発明の海島構造を説明するための模式図である。図中、1は島状部であり、黒灰色のポリブチレンテレフタレート樹脂(A)の相の連続相(海)の中に存在している。スチレン系共重合体(B)の島状部1の中には、ポリブチレンテレフタレート樹脂(A)が、図中、2で示すように湖2として存在している。本発明において、島状部1は、図11中、3に示すような、分岐部3を有する形状であることが好ましい。複数の分岐部3は互いに結合していることも好ましい。 FIG. 11 is a schematic diagram for explaining the sea-island structure of the present invention. In the figure, reference numeral 1 denotes an island-like part, which is present in the continuous phase (sea) of the black-gray polybutylene terephthalate resin (A). A polybutylene terephthalate resin (A) is present as a lake 2 as indicated by 2 in the figure in the island-shaped portion 1 of the styrene copolymer (B). In this invention, it is preferable that the island-shaped part 1 is a shape which has the branch part 3 as shown to 3 in FIG. It is also preferable that the plurality of branch portions 3 are coupled to each other.
 上記した通り、島状部1は、ポリブチレンテレフタレート樹脂(A)の相が島の中の湖(池)2として存在しており、そして、島状部1はその巾dの最大値が6μm以下である。
 島状部の巾dは、図11中、破線で示されるような、島状部の巾中心線Lに対して直交する巾長さdとして定義される。そして、島状部の巾中心線Lは、ポリブチレンテレフタレート樹脂(A)の湖相がある部分(図中p-p点の間)では、湖と島外縁との巾中心線L’、L’’であり、島状部の巾dはこのL’、L’’に直交する巾dである。
As described above, the island-shaped portion 1 has a polybutylene terephthalate resin (A) phase as a lake (pond) 2 in the island, and the island-shaped portion 1 has a maximum width d of 6 μm. It is as follows.
The width d of the island-shaped portion is defined as a width length d orthogonal to the width center line L of the island-shaped portion as shown by a broken line in FIG. The width center line L of the island-shaped portion is the width center lines L ′ and L between the lake and the outer edge of the island in the portion where the lake phase of the polybutylene terephthalate resin (A) is present (between points pp in the figure). ″, And the width d of the island-shaped portion is the width d orthogonal to L ′ and L ″.
 島状部はその巾dの最大値は6μm以下であるが、好ましくは5μm以下、より好ましくは4μm以下であり、好ましくは2μm以上、より好ましくは3μm以上である。
 島状部はその巾dの最大値が6μmを超えると、本発明の海島構造の特徴である、高温での機械強度(特に曲げ強度、引張強度保持率)が悪くなる。
The island portion has a maximum width d of 6 μm or less, preferably 5 μm or less, more preferably 4 μm or less, preferably 2 μm or more, more preferably 3 μm or more.
When the maximum value of the width d of the island-shaped portion exceeds 6 μm, the mechanical strength (particularly bending strength and tensile strength retention) at high temperatures, which is a feature of the sea-island structure of the present invention, is deteriorated.
 また、島状部の中に、ポリブチレンテレフタレート樹脂(A)の湖が存在しない島状部しかない場合には、本発明の海島構造の特徴である、成形体の反りが悪くなる。
 本発明において、ポリブチレンテレフタレート樹脂(A)の湖が存在する島状部が存在している割合は、それを、[全ての島状部の面積(ただし、この面積には湖の面積は含まない。)の合計]に対する、[(A)の相が湖として存在している島状部の面積(ただし、この面積には湖の面積は含まない。)の合計]の割合(%)で示すと、好ましくは、10%以上、より好ましくは20%以上、さらに好ましくは25%以上、中でも30%以上、とりわけ40%以上、特に60%以上が好ましい。
 なお、ここで「湖が存在している島状部」は、SEM画像(倍率3000倍)の視野内において、長径が1μm以上の湖を有する島状部として定義される。
In addition, when the island-shaped portion has only an island-shaped portion in which the lake of the polybutylene terephthalate resin (A) does not exist, the warpage of the molded body, which is a feature of the sea-island structure of the present invention, is deteriorated.
In the present invention, the proportion of the island-like portion where the lake of the polybutylene terephthalate resin (A) is present is expressed as [area of all island-like portions (however, this area includes the area of the lake). % Of the total area of the islands where the phase (A) exists as a lake (however, this area does not include the area of the lake)] When it shows, Preferably it is 10% or more, More preferably, it is 20% or more, More preferably, it is 25% or more, Especially 30% or more, Especially 40% or more, Especially 60% or more is preferable.
Here, the “island-like portion where the lake exists” is defined as an island-like portion having a lake having a major axis of 1 μm or more in the field of view of the SEM image (magnification 3000 times).
[TOVC量]
 また、本発明のポリブチレンテレフタレート樹脂組成物成形体の揮発性有機化合物量(TVOC量)は、30μgC/g以下であることを特徴とする。
 なお、ポリブチレンテレフタレート樹脂組成物成形体の揮発性有機化合物量(TVOC)の具体的測定方法は、実施例に詳記する通りである。
[TOVC amount]
Moreover, the amount of volatile organic compounds (TVOC amount) of the molded body of the polybutylene terephthalate resin composition of the present invention is 30 μg C / g or less.
In addition, the specific measuring method of the amount of volatile organic compounds (TVOC) of a polybutylene terephthalate resin composition molded body is as detailed in the examples.
 本発明の成形体は、少なくともポリブチレンテレフタレート樹脂(A)及びスチレン系共重合体(B)を所定量で含有する組成物からなることを必須とする。
 本発明の樹脂組成物成形体に用いるポリブチレンテレフタレート樹脂組成物を構成する各成分について、以下説明する。
It is essential that the molded article of the present invention comprises a composition containing at least a polybutylene terephthalate resin (A) and a styrene copolymer (B) in a predetermined amount.
Each component which comprises the polybutylene terephthalate resin composition used for the resin composition molded object of this invention is demonstrated below.
[ポリブチレンテレフタレート樹脂(A)]
 ポリブチレンテレフタレート樹脂組成物に用いるポリブチレンテレフタレート樹脂(A)は、テレフタル酸単位及び1,4-ブタンジオール単位がエステル結合した構造を有するポリエステル樹脂であって、ポリブチレンテレフタレート樹脂(ホモポリマー)の他に、テレフタル酸単位及び1,4-ブタンジオール単位以外の、他の共重合成分を含むポリブチレンテレフタレート共重合体や、ホモポリマーと当該共重合体との混合物を含む。
[Polybutylene terephthalate resin (A)]
The polybutylene terephthalate resin (A) used in the polybutylene terephthalate resin composition is a polyester resin having a structure in which a terephthalic acid unit and a 1,4-butanediol unit are ester-bonded, and is a polybutylene terephthalate resin (homopolymer). In addition, a polybutylene terephthalate copolymer containing other copolymerization components other than terephthalic acid units and 1,4-butanediol units, and a mixture of a homopolymer and the copolymer are included.
 ポリブチレンテレフタレート樹脂(A)は、テレフタル酸以外のジカルボン酸単位を含んでいてもよく、他のジカルボン酸の具体例としては、イソフタル酸、オルトフタル酸、1,5-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ビフェニル-2,2’-ジカルボン酸、ビフェニル-3,3’-ジカルボン酸、ビフェニル-4,4’-ジカルボン酸、ビス(4,4’-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸等の芳香族ジカルボン酸類、1,4-シクロへキサンジカルボン酸、4,4’-ジシクロヘキシルジカルボン酸等の脂環族ジカルボン酸類、および、アジピン酸、セバシン酸、アゼライン酸、ダイマー酸等の脂肪族ジカルボン酸類等が挙げられる。 The polybutylene terephthalate resin (A) may contain dicarboxylic acid units other than terephthalic acid. Specific examples of other dicarboxylic acids include isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,5 -Naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, biphenyl-2,2'-dicarboxylic acid, biphenyl-3,3'-dicarboxylic acid, biphenyl-4,4'-dicarboxylic acid, bis (4,4'- Carboxyphenyl) methane, anthracene dicarboxylic acid, aromatic dicarboxylic acids such as 4,4′-diphenyl ether dicarboxylic acid, alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, 4,4′-dicyclohexyl dicarboxylic acid, And aliphatic such as adipic acid, sebacic acid, azelaic acid, dimer acid, etc. Carboxylic acids, and the like.
 ジオール単位としては、1,4-ブタンジオールの外に他のジオール単位を含んでいてもよく、他のジオール単位の具体例としては、炭素原子数2~20の脂肪族又は脂環族ジオール類、ビスフェノール誘導体類等が挙げられる。具体例としては、エチレングリコール、プロピレングリコール、1,5-ペンタンジオール、1,6-へキサンジオール、ネオペンチルグリコール、デカメチレングリコール、シクロヘキサンジメタノ一ル、4,4’-ジシクロヘキシルヒドロキシメタン、4,4’-ジシクロヘキシルヒドロキシプロパン、ビスフェノ一ルAのエチレンオキシド付加ジオール等が挙げられる。また、上記のような二官能性モノマー以外に、分岐構造を導入するためトリメリット酸、トリメシン酸、ピロメリット酸、ペンタエリスリトール、トリメチロールプロパン等の三官能性モノマーや分子量調節のため脂肪酸等の単官能性化合物を少量併用することもできる。 The diol unit may contain other diol units in addition to 1,4-butanediol. Specific examples of the other diol units include aliphatic or alicyclic diols having 2 to 20 carbon atoms. Bisphenol derivatives and the like. Specific examples include ethylene glycol, propylene glycol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, decamethylene glycol, cyclohexanedimethanol, 4,4′-dicyclohexylhydroxymethane, 4 4,4'-dicyclohexylhydroxypropane, ethylene oxide addition diol of bisphenol A, and the like. In addition to the above-mentioned bifunctional monomers, trifunctional monomers such as trimellitic acid, trimesic acid, pyromellitic acid, pentaerythritol, and trimethylolpropane are introduced to introduce a branched structure, and fatty acids are used for molecular weight control. A small amount of a monofunctional compound can be used in combination.
 ポリブチレンテレフタレート樹脂(A)は、上記した通り、テレフタル酸と1,4-ブタンジオールとを重縮合させたポリブチレンテレフタレート単独重合体が好ましいが、また、カルボン酸単位として、前記のテレフタル酸以外のジカルボン酸1種以上および/又はジオール単位として、前記1,4-ブタンジオール以外のジオール1種以上を含むポリブチレンテレフタレート共重合体であってもよく、ポリブチレンテレフタレート樹脂(A)が、共重合により変性したポリブチレンテレフタレート樹脂である場合、その具体的な好ましい共重合体としては、ポリアルキレングリコール類、特にはポリテトラメチレングリコールを共重合したポリエステルエーテル樹脂や、ダイマー酸共重合ポリブチレンテレフタレート樹脂、イソフタル酸共重合ポリブチレンテレフタレート樹脂が挙げられる。中でも、ポリテトラメチレングリコールを共重合したポリエステルエーテル樹脂を用いることが好ましい。なお、これらの共重合体は、共重合量が、ポリブチレンテレフタレート樹脂全セグメント中の1モル%以上、50モル%未満のものをいう。中でも、共重合量が好ましくは2モル%以上50モル%未満、より好ましくは3~40モル%、特に好ましくは5~20モル%である。このような共重合割合とすることにより、流動性、靱性、耐トラッキング性が向上しやすい傾向にあり、好ましい。 As described above, the polybutylene terephthalate resin (A) is preferably a polybutylene terephthalate homopolymer obtained by polycondensation of terephthalic acid and 1,4-butanediol, but the carboxylic acid unit may be other than the above terephthalic acid. It may be a polybutylene terephthalate copolymer containing one or more dicarboxylic acids and / or one or more diols other than the 1,4-butanediol as the diol unit, and the polybutylene terephthalate resin (A) is a co-polymer. In the case of a polybutylene terephthalate resin modified by polymerization, specific preferred copolymers thereof include polyalkylene glycols, particularly polyester ether resins copolymerized with polytetramethylene glycol, and dimer acid copolymerized polybutylene terephthalate. Resin, isophthal Copolymerized polybutylene terephthalate resin. Among these, it is preferable to use a polyester ether resin copolymerized with polytetramethylene glycol. These copolymers are those having a copolymerization amount of 1 mol% or more and less than 50 mol% in all segments of the polybutylene terephthalate resin. Among them, the copolymerization amount is preferably 2 mol% or more and less than 50 mol%, more preferably 3 to 40 mol%, particularly preferably 5 to 20 mol%. By setting it as such a copolymerization ratio, it exists in the tendency for fluidity | liquidity, toughness, and tracking resistance to improve easily, and is preferable.
 ポリブチレンテレフタレート樹脂(A)は、末端カルボキシル基量は、適宜選択して決定すればよいが、通常、60eq/ton以下であり、50eq/ton以下であることが好ましく、30eq/ton以下であることがさらに好ましい。50eq/tonを超えると、樹脂組成物の溶融成形時にガスが発生しやすくなる。末端カルボキシル基量の下限値は特に定めるものではないが、ポリブチレンテレフタレート樹脂の製造の生産性を考慮し、通常、10eq/tonである。 In the polybutylene terephthalate resin (A), the amount of terminal carboxyl groups may be appropriately selected and determined, but is usually 60 eq / ton or less, preferably 50 eq / ton or less, and preferably 30 eq / ton or less. More preferably. If it exceeds 50 eq / ton, gas tends to be generated during melt molding of the resin composition. Although the lower limit of the amount of terminal carboxyl groups is not particularly defined, it is usually 10 eq / ton in consideration of the productivity of production of polybutylene terephthalate resin.
 なお、ポリブチレンテレフタレート樹脂の末端カルボキシル基量は、ベンジルアルコール25mLにポリアルキレンテレフタレート樹脂0.5gを溶解し、水酸化ナトリウムの0.01モル/lベンジルアルコール溶液を用いて滴定により測定する値である。末端カルボキシル基量を調整する方法としては、重合時の原料仕込み比、重合温度、減圧方法などの重合条件を調整する方法や、末端封鎖剤を反応させる方法等、従来公知の任意の方法により行えばよい。 The amount of terminal carboxyl groups of the polybutylene terephthalate resin is a value measured by titration using a 0.01 mol / l benzyl alcohol solution of sodium hydroxide by dissolving 0.5 g of the polyalkylene terephthalate resin in 25 mL of benzyl alcohol. is there. As a method for adjusting the amount of terminal carboxyl groups, a conventionally known arbitrary method such as a method for adjusting polymerization conditions such as a raw material charge ratio during polymerization, a polymerization temperature, a pressure reduction method, a method for reacting a terminal blocking agent, etc. Just do it.
 ポリブチレンテレフタレート樹脂(A)の固有粘度は、0.5~2dl/gであるのが好ましい。成形性及び機械的特性の点からして、0.6~1.5dl/gの範囲の固有粘度を有するものがより好ましい。固有粘度が0.5dl/gより低いものを用いると、得られる樹脂組成物が機械強度の低いものとなりやすい。また2dl/gより高いものでは、樹脂組成物の流動性が悪くなり成形性が悪化する場合がある。
 なお、ポリブチレンテレフタレート樹脂(A)の固有粘度は、テトラクロロエタンとフェノールとの1:1(質量比)の混合溶媒中、30℃で測定する値である。
The intrinsic viscosity of the polybutylene terephthalate resin (A) is preferably 0.5 to 2 dl / g. From the viewpoint of moldability and mechanical properties, those having an intrinsic viscosity in the range of 0.6 to 1.5 dl / g are more preferable. If the intrinsic viscosity is lower than 0.5 dl / g, the resulting resin composition tends to have a low mechanical strength. On the other hand, if it is higher than 2 dl / g, the fluidity of the resin composition may deteriorate and the moldability may deteriorate.
The intrinsic viscosity of the polybutylene terephthalate resin (A) is a value measured at 30 ° C. in a 1: 1 (mass ratio) mixed solvent of tetrachloroethane and phenol.
 ポリブチレンテレフタレート樹脂(A)は、テレフタル酸を主成分とするジカルボン酸成分又はこれらのエステル誘導体と、1,4-ブタンジオールを主成分とするジオール成分を、回分式又は連続式で溶融重合させて製造することができる。また、溶融重合で低分子量のポリブチレンテレクタレート樹脂を製造した後、さらに窒素気流下又は減圧下固相重合させることにより、重合度(又は分子量)を所望の値まで高めることもできる。
 ポリブチレンテレフタレート樹脂(A)は、テレフタル酸を主成分とするジカルボン酸成分と1,4-ブタンジオールを主成分とするジオール成分とを、連続式で溶融重縮合する製造法で得られたものが好ましい。
The polybutylene terephthalate resin (A) is obtained by melt polymerization of a dicarboxylic acid component having terephthalic acid as a main component or an ester derivative thereof and a diol component having 1,4-butanediol as a main component in a batch or continuous manner. Can be manufactured. Further, after the low molecular weight polybutylene terephthalate resin is produced by melt polymerization, the degree of polymerization (or molecular weight) can be increased to a desired value by further solid-phase polymerization under a nitrogen stream or under reduced pressure.
The polybutylene terephthalate resin (A) is obtained by a production method in which a dicarboxylic acid component mainly composed of terephthalic acid and a diol component mainly composed of 1,4-butanediol are melt polycondensed in a continuous manner. Is preferred.
 エステル化反応を遂行する際に使用される触媒は、従来から知られているものであってよく、例えば、チタン化合物、錫化合物、マグネシウム化合物、カルシウム化合物等を挙げることができる。これらの中で特に好適なものは、チタン化合物である。エステル化触媒としてのチタン化合物の具体例としては、例えば、テトラメチルチタネート、テトライソプロピルチタネート、テトラブチルチタネート等のチタンアルコラート、テトラフェニルチタネート等のチタンフェノラート等を挙げることができる。 The catalyst used when performing the esterification reaction may be a conventionally known catalyst, and examples thereof include a titanium compound, a tin compound, a magnesium compound, and a calcium compound. Of these, titanium compounds are particularly preferred. Specific examples of the titanium compound as the esterification catalyst include titanium alcoholates such as tetramethyl titanate, tetraisopropyl titanate, and tetrabutyl titanate, and titanium phenolates such as tetraphenyl titanate.
[スチレン系共重合体(B)]
 ポリブチレンテレフタレート樹脂組成物に用いるスチレン系共重合体(B)は、アクリロニトリル-スチレン系共重合体(B1)及び/又はエポキシ変性されたアクリロニトリル-スチレン系共重合体(B2)である。
[Styrene copolymer (B)]
The styrene copolymer (B) used in the polybutylene terephthalate resin composition is an acrylonitrile-styrene copolymer (B1) and / or an epoxy-modified acrylonitrile-styrene copolymer (B2).
<アクリロニトリル-スチレン系共重合体(B1)>
 アクリロニトリル-スチレン系共重合体(B1)は、アクリロニトリルとスチレン系単量体との共重合体であり、さらに他の共重合可能な単量体を共重合した共重合体であってもよい。アクリロニトリル-スチレン系共重合体(B1)を構成するスチレン系単量体としては、スチレン、α-メチルスチレン、p-メチルスチレン、ビニルキシレン、エチルスチレン、ジメチルスチレン、p-tert-ブチルスチレン、ビニルナフタレン、メトキシスチレン、モノブロムスチレン、ジブロムスチレン、フルオロスチレン、トリブロムスチレンなどが挙げられ、スチレン、α-メチルスチレンがより好ましく、特にスチレンが好ましい。
<Acrylonitrile-styrene copolymer (B1)>
The acrylonitrile-styrene copolymer (B1) is a copolymer of acrylonitrile and a styrene monomer, and may be a copolymer obtained by copolymerizing another copolymerizable monomer. Examples of the styrene monomer constituting the acrylonitrile-styrene copolymer (B1) include styrene, α-methyl styrene, p-methyl styrene, vinyl xylene, ethyl styrene, dimethyl styrene, p-tert-butyl styrene, vinyl. Naphthalene, methoxystyrene, monobromostyrene, dibromostyrene, fluorostyrene, tribromostyrene and the like can be mentioned. Styrene and α-methylstyrene are more preferable, and styrene is particularly preferable.
 スチレン系単量体とアクリロニトリル以外の他の共重合可能な単量体としては、(メタ)アクリル酸エステル系単量体や、マレイミド、N-メチルマレイミド、N-フェニルマレイミドなどのマレイミド系単量体、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フタル酸、イタコン酸などのα,β-不飽和カルボン酸およびその無水物が挙げられるが、(メタ)アクリル酸グリシジル等のエポキシ基含有重合性不飽和化合物は除外される。
 これらの中では(メタ)アクリル酸エステル系単量体が好ましく挙げられ、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、アミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート等を挙げることができ、特にメチルメタアクリレートを挙げることができる。
 なお、(メタ)アクリレートの表記はメタクリレートおよびアクリレートのいずれをも含むことを示し、(メタ)アクリル酸エステルの表記はメタクリル酸エステルおよびアクリル酸エステルのいずれをも含むことを示す。
Other copolymerizable monomers other than styrene monomers and acrylonitrile include (meth) acrylic acid ester monomers and maleimide monomers such as maleimide, N-methylmaleimide and N-phenylmaleimide , Α, β-unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, phthalic acid, itaconic acid and their anhydrides, but containing epoxy groups such as glycidyl (meth) acrylate Polymerizable unsaturated compounds are excluded.
Among these, (meth) acrylic acid ester monomers are preferably exemplified. For example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, Amyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, dodecyl (meth) acrylate, octadecyl (meth) acrylate, phenyl (meth) acrylate, Examples include benzyl (meth) acrylate, and particularly methyl methacrylate.
The notation of (meth) acrylate indicates that both methacrylate and acrylate are included, and the notation of (meth) acrylic acid ester indicates that both methacrylic acid ester and acrylic acid ester are included.
 アクリロニトリル-スチレン系共重合体(B1)は、好ましくはアクリロニトリル-スチレン共重合体(AS樹脂)、アクリロニトリル-スチレン-アクリルゴム共重合体(ASA樹脂)であり、特にアクリロニトリル-スチレン共重合体(AS樹脂)が好ましい。 The acrylonitrile-styrene copolymer (B1) is preferably an acrylonitrile-styrene copolymer (AS resin) or an acrylonitrile-styrene-acrylic rubber copolymer (ASA resin), particularly an acrylonitrile-styrene copolymer (AS). Resin).
 アクリロニトリル-スチレン系共重合体(B1)中のアクリロニトリル単量体に由来する単位は、5~50質量%が好ましく、8~35質量%がより好ましい。また、スチレン系単量体に由来する単位の含有率は、50~95質量%が好ましく、65~92質量%がより好ましい。
 なお、本発明において、アクリロニトリル-スチレン系共重合体(B1)中のアクリロニトリル量の測定は、ケルダール法によって行われる。
The unit derived from the acrylonitrile monomer in the acrylonitrile-styrene copolymer (B1) is preferably 5 to 50% by mass, more preferably 8 to 35% by mass. The content of units derived from the styrene monomer is preferably 50 to 95% by mass, more preferably 65 to 92% by mass.
In the present invention, the amount of acrylonitrile in the acrylonitrile-styrene copolymer (B1) is measured by the Kjeldahl method.
 また、アクリロニトリル-スチレン系共重合体(B1)のメルトボリュームレート(MVR)としては、220℃、荷重10kgで5~100cm/10分の範囲にあることが好ましく、10~80cm/10分がより好ましい。
 また、アクリロニトリル-スチレン系共重合体(B1)の質量平均分子量(Mw)は、6万~22万の範囲にあることが好ましく、8万~20万であることがより好ましい。
 なお、本発明において、アクリロニトリル-スチレン系共重合体(B1)の質量平均分子量(Mw)の測定は、GPC(ゲル浸透クロマトグラフィー)法によって行われる。
Further, acrylonitrile - as a melt volume rate of the styrene copolymer (B1) (MVR), 220 ℃, is preferably in the range of 5 ~ 100cm 3/10 min under a load 10kg, 10 ~ 80cm 3/10 minutes Is more preferable.
The mass average molecular weight (Mw) of the acrylonitrile-styrene copolymer (B1) is preferably in the range of 60,000 to 220,000, and more preferably 80,000 to 200,000.
In the present invention, the mass average molecular weight (Mw) of the acrylonitrile-styrene copolymer (B1) is measured by GPC (gel permeation chromatography) method.
 アクリロニトリル-スチレン系共重合体(B1)を製造する方法は、制限はなく公知の方法が採用でき、例えば、塊状重合、乳化重合、溶液重合、懸濁重合等の方法が用いられるが、これらの中でも、塊状重合によるものが溶媒や乳化剤を使用しないため不純物が少ないことから好ましい。
 アクリロニトリル-スチレン系共重合体(B1)は、市販されており、塊状重合品、乳化重合品、溶液重合品、懸濁重合品等が市販されているが、これらの中でも、塊状重合品が溶媒や乳化剤を使用しないため不純物が少なく本発明のポリブチレンテレフタレート樹脂組成物成形体からの発生ガス量が少なくなることから好ましい。
The method for producing the acrylonitrile-styrene copolymer (B1) is not limited, and a known method can be employed. For example, bulk polymerization, emulsion polymerization, solution polymerization, suspension polymerization and the like can be used. Among them, the bulk polymerization is preferable because it does not use a solvent or an emulsifier and has few impurities.
The acrylonitrile-styrene copolymer (B1) is commercially available, and bulk polymerized products, emulsion polymerized products, solution polymerized products, suspension polymerized products, etc. are commercially available. Since no emulsifier or emulsifier is used, the amount of gas generated from the molded product of the polybutylene terephthalate resin composition of the present invention is small, which is preferable.
<エポキシ変性アクリロニトリル-スチレン系共重合体(B2)>
 エポキシ変性アクリロニトリル-スチレン系共重合体(B2)としては、特に限定されないが、不飽和グリシジル化合物とアクリロニトリルとスチレン系単量体との共重合体が好ましく、さらに他の共重合可能な単量体を共重合した共重合体であってもよい。
<Epoxy-modified acrylonitrile-styrene copolymer (B2)>
The epoxy-modified acrylonitrile-styrene copolymer (B2) is not particularly limited, but a copolymer of an unsaturated glycidyl compound, acrylonitrile, and a styrene monomer is preferable, and other copolymerizable monomers. A copolymer obtained by copolymerization of
 エポキシ変性アクリロニトリル-スチレン系共重合体(B2)を構成するスチレン系単量体としては、スチレン、α-メチルスチレン、p-メチルスチレン、ビニルキシレン、エチルスチレン、ジメチルスチレン、p-tert-ブチルスチレン、ビニルナフタレン、メトキシスチレン、モノブロムスチレン、ジブロムスチレン、フルオロスチレン、トリブロムスチレンなどが挙げられ、スチレン、α-メチルスチレンがより好ましく、特にスチレンが好ましい。 The styrene monomer constituting the epoxy-modified acrylonitrile-styrene copolymer (B2) includes styrene, α-methyl styrene, p-methyl styrene, vinyl xylene, ethyl styrene, dimethyl styrene, p-tert-butyl styrene. Vinyl naphthalene, methoxystyrene, monobromostyrene, dibromostyrene, fluorostyrene, tribromostyrene, and the like. Styrene and α-methylstyrene are more preferable, and styrene is particularly preferable.
 エポキシ変性アクリロニトリル-スチレン系共重合体(B2)を構成する不飽和グリシジル化合物としては、エポキシ基含有重合性不飽和化合物が好ましく、(メタ)アクリル酸グリシジル、イタコン酸グリシジルエステル等の不飽和グリシジルエステル、あるいは、例えばビニルグリシジルエーテル、アリルグリシジルエーテル、2-メチルアリルグリシジルエーテル、スチレン-p-グリシジルエーテル等の不飽和グリシジルエーテル等が好ましく挙げられる。中でも不飽和グリシジルエステル類、特にエポキシ基含有(メタ)アクリル酸エステルが好ましく、より好ましくは(メタ)アクリル酸グリシジル、すなわちグリシジルアクリレート、グリシジルメタクリレート(GMA)が挙げられ、特にグリシジルメタクリレート(GMA)が好ましい。 The unsaturated glycidyl compound constituting the epoxy-modified acrylonitrile-styrene copolymer (B2) is preferably an epoxy group-containing polymerizable unsaturated compound, and unsaturated glycidyl esters such as glycidyl (meth) acrylate and glycidyl itaconate. Alternatively, unsaturated glycidyl ethers such as vinyl glycidyl ether, allyl glycidyl ether, 2-methylallyl glycidyl ether, styrene-p-glycidyl ether and the like are preferable. Among them, unsaturated glycidyl esters, particularly epoxy group-containing (meth) acrylic acid esters are preferable, more preferably glycidyl (meth) acrylate, that is, glycidyl acrylate, glycidyl methacrylate (GMA), particularly glycidyl methacrylate (GMA). preferable.
 また、エポキシ変性アクリロニトリル-スチレン系共重合体(B2)は、上記以外にさらに他の単量体を共重合していてもよいが、他の単量体は、エポキシ変性アクリロニトリル-スチレン系共重合体(B2)全体の50質量%未満まで、好ましくは30質量%未満、より好ましくは10質量%未満までの量で含むことができる。 In addition to the above, the epoxy-modified acrylonitrile-styrene copolymer (B2) may be copolymerized with another monomer, but the other monomer is an epoxy-modified acrylonitrile-styrene copolymer. It can be included in an amount up to less than 50% by weight, preferably less than 30% by weight, more preferably less than 10% by weight of the combined (B2).
 エポキシ変性アクリロニトリル-スチレン系共重合体(B2)は、好ましくはグリシジルメタクリレート(GMA)変性アクリロニトリル-スチレン共重合体である。 The epoxy-modified acrylonitrile-styrene copolymer (B2) is preferably a glycidyl methacrylate (GMA) -modified acrylonitrile-styrene copolymer.
 エポキシ変性アクリロニトリル-スチレン系共重合体(B2)のエポキシ当量は、2000~30000g/molが好ましく、より好ましくは4000~28000g/molである。エポキシ当量が30000g/molを超えると、組成物中のエポキシ変性アクリロニトリル-スチレン系共重合体の分散が不十分となる場合があり、一方、2000g/mol未満では粘度が著しく上昇し、成形性が損なわれる場合がある。 The epoxy equivalent of the epoxy-modified acrylonitrile-styrene copolymer (B2) is preferably 2000 to 30000 g / mol, more preferably 4000 to 28000 g / mol. When the epoxy equivalent exceeds 30000 g / mol, the dispersion of the epoxy-modified acrylonitrile-styrene copolymer in the composition may be insufficient. On the other hand, when the epoxy equivalent is less than 2000 g / mol, the viscosity is remarkably increased and the moldability is increased. It may be damaged.
 エポキシ変性アクリロニトリル-スチレン系共重合体(B2)におけるアクリロニトリル化合物に由来する単位の含量は、重合体(B2)全体を100質量%として、通常2~50質量%、好ましくは20~30質量%であり、スチレン系単量体に由来する単位の含量は、通常50~98質量%、好ましくは70~80質量%、不飽和グリシジル化合物に由来する単位の含量は通常0.1~1.0質量%、好ましくは0.2~0.8質量%である。なお、本発明において、エポキシ変性アクリロニトリル-スチレン系共重合体(B2)中のアクリロニトリル量の測定は、ケルダール法によって行われる。また、不飽和グリシジル化合物の測定は、JIS
K7236に準拠する測定によって行われる。
The content of units derived from the acrylonitrile compound in the epoxy-modified acrylonitrile-styrene copolymer (B2) is usually 2 to 50% by mass, preferably 20 to 30% by mass, based on 100% by mass of the entire polymer (B2). The content of units derived from styrenic monomers is usually 50 to 98% by mass, preferably 70 to 80% by mass, and the content of units derived from unsaturated glycidyl compounds is usually 0.1 to 1.0% by mass. %, Preferably 0.2 to 0.8% by mass. In the present invention, the amount of acrylonitrile in the epoxy-modified acrylonitrile-styrene copolymer (B2) is measured by the Kjeldahl method. In addition, the measurement of unsaturated glycidyl compounds is based on JIS.
The measurement is performed in accordance with K7236.
 エポキシ変性アクリロニトリル-スチレン系共重合体(B2)のMVRは、220℃、荷重10kgで、5~100cm/10minが好ましく、また、重量平均分子量(Mw)は、好ましくは6万~22万であり、より好ましくは7万~20万である。質量平均分子量(Mw)の測定は、GPC(ゲル浸透クロマトグラフィー)法によって行われる。 Epoxy-modified acrylonitrile - MVR styrene copolymer (B2) is 220 ° C., under a load 10 kg, preferably 5 ~ 100cm 3 / 10min, a weight-average molecular weight (Mw), preferably at 60,000 to 220,000 More preferably, it is 70,000 to 200,000. The mass average molecular weight (Mw) is measured by GPC (gel permeation chromatography) method.
 エポキシ変性アクリロニトリル-スチレン系共重合体(B2)を製造する方法は、制限はなく公知の方法が採用でき、例えば、塊状重合、乳化重合、溶液重合、懸濁重合等の方法が用いられるが、これらの中でも、塊状重合によるものが溶媒や乳化剤を使用しないため不純物が少ないことから好ましい。
 エポキシ変性アクリロニトリル-スチレン系共重合体(B2)は、市販されており、塊状重合品、乳化重合品、溶液重合品、懸濁重合品等が市販されているが、これらの中でも、塊状重合品が溶媒や乳化剤を使用しないため不純物が少ないことから好ましい。
The method for producing the epoxy-modified acrylonitrile-styrene copolymer (B2) is not limited, and a known method can be adopted. For example, bulk polymerization, emulsion polymerization, solution polymerization, suspension polymerization and the like can be used. Among these, the bulk polymerization is preferable because it does not use a solvent or an emulsifier and has few impurities.
Epoxy-modified acrylonitrile-styrene copolymer (B2) is commercially available, and bulk polymer products, emulsion polymer products, solution polymer products, suspension polymer products, etc. are commercially available. However, since a solvent and an emulsifier are not used, there are few impurities and it is preferable.
 本発明において、スチレン系共重合体(B)としては、270℃で10分間熱処理して発生するガスをガスクロマトグラフで分析することにより、スチレン系単量体の量とエチルベンゼンの量を測定することができるが、そのスチレン系単量体の量が600(質量)ppm以下であるものを用いることが好ましい。スチレン系単量体ガス量が600ppm以下であることで、成形時のガス発生量が少なくなり、成形体からのガス発生量が小さいので、例えば車両内装部品とした際のVOCの問題が解決され、また成形時にガスが少ないため成形体の外観も改善される。一方、600ppmを超えると、車両用内装部品とした場合のVOC問題の解決が難しくなり、また外観も悪いものとなりやすい。スチレン系単量体の量はより好ましくは550ppm以下、さらに好ましくは300ppm以下、特に好ましくは200ppm以下であり、また、その下限としては通常50ppmである。スチレン系共重合体(B)として、アクリロニトリル-スチレン系共重合体(B1)及び/又はエポキシ変性されたアクリロニトリル-スチレン系共重合体(B2)を併用する場合には、そのそれぞれの重合体からのスチレン系単量体ガス量と、使用するそれぞれの質量比とから、計算される合計の量であり、(B1)及び/又は(B2)から複数種用いる場合にも同様に計算される合計の量を意味する。
 なお、原料スチレン系共重合体(B)あるいは原料ポリブチレンテレフタレート樹脂組成物のスチレンの量は、270℃で10分間熱処理して発生するガスをガスクロマトグラフで分析することにより得られた量を、共重合体あるいは樹脂組成物質量あたりの値に換算した量(単位:質量ppm)である。その具体的な測定方法の詳細は、実施例に記載される通りである。
In the present invention, as the styrene copolymer (B), the amount of styrene monomer and the amount of ethylbenzene are measured by analyzing the gas generated by heat treatment at 270 ° C. for 10 minutes by gas chromatography. However, it is preferable to use a styrene monomer whose amount is 600 (mass) ppm or less. When the amount of styrene monomer gas is 600 ppm or less, the amount of gas generated at the time of molding is reduced, and the amount of gas generated from the molded body is small. In addition, the appearance of the molded body is improved because of a small amount of gas during molding. On the other hand, when it exceeds 600 ppm, it becomes difficult to solve the VOC problem in the case of an interior part for a vehicle, and the appearance tends to be poor. The amount of the styrenic monomer is more preferably 550 ppm or less, further preferably 300 ppm or less, particularly preferably 200 ppm or less, and the lower limit thereof is usually 50 ppm. When the styrene copolymer (B) is used in combination with an acrylonitrile-styrene copolymer (B1) and / or an epoxy-modified acrylonitrile-styrene copolymer (B2), the respective polymers This is the total amount calculated from the amount of the styrene monomer gas and the respective mass ratios to be used, and is also calculated in the same manner when a plurality of types are used from (B1) and / or (B2). Means the amount.
The amount of styrene in the raw material styrene-based copolymer (B) or the raw material polybutylene terephthalate resin composition is the amount obtained by analyzing a gas generated by heat treatment at 270 ° C. for 10 minutes by gas chromatography. It is the amount (unit: mass ppm) converted into a value per copolymer or resin composition amount. The details of the specific measurement method are as described in the examples.
 また、原料スチレン系共重合体(B)の270℃で10分間熱処理して発生するガスをガスクロマトグラフで分析した際のスチレン系単量体及びエチルベンゼンの合計は650(質量)ppm以下であることが好ましい。両者の合計のガス量が650ppm以下であることで、成形時のガス発生量が少なくなり、また成形体としたときの成形体からのガス発生量が小さいので、例えば車両内装部品とした際のVOCの問題が解決され、また成形時のガスが少ないため成形体の外観も改善される。両者の合計のガス量はより好ましくは500ppm以下、さらに好ましくは400ppm以下であり、また、その下限としては通常150ppmである。150ppm未満にするには経済性を度外視するような精製を要するので、好ましくない。
 なお、スチレン系共重合体(B)として、アクリロニトリル-スチレン系共重合体(B1)及び/又はエポキシ変性されたアクリロニトリル-スチレン系共重合体(B2)を併用する場合には、上記と同様、そのそれぞれの重合体からのスチレン系単量体及びエチルベンゼンの発生量と、使用するそれぞれの質量比とから、計算される合計の量であり、(B1)及び/又は(B2)から複数種用いる場合にも同様に計算される合計の量を意味する。
The total of the styrene monomer and ethylbenzene when the gas generated by heat treatment at 270 ° C. for 10 minutes of the raw styrene copolymer (B) is analyzed by gas chromatography is 650 (mass) ppm or less. Is preferred. Since the total gas amount of both is 650 ppm or less, the amount of gas generated at the time of molding is reduced, and the amount of gas generated from the molded body when formed into a molded body is small. The problem of VOC is solved, and the appearance of the molded body is improved because of less gas during molding. The total gas amount of both is more preferably 500 ppm or less, still more preferably 400 ppm or less, and its lower limit is usually 150 ppm. If it is less than 150 ppm, it is not preferable because it requires refining so as not to be economical.
In the case where acrylonitrile-styrene copolymer (B1) and / or epoxy-modified acrylonitrile-styrene copolymer (B2) is used in combination as styrene copolymer (B), The total amount calculated from the amount of styrene monomer and ethylbenzene generated from each polymer and the respective mass ratio used, and a plurality of types are used from (B1) and / or (B2) It also means the total amount calculated in the same way.
 スチレン系共重合体(B)中のスチレン系単量体や、スチレン系単量体とエチルベンゼンとの合計量を上記範囲にするには、スチレン系共重合体の重合後の脱揮工程の構成や脱揮工程の運転条件を強化することにより可能となる。懸濁重合等の場合には、適当な温度及び真空中において得られた共重合体ラテックスのストリッピングを行うか、または高温水蒸気で凝固を行うか、あるいは高温水蒸気を用いて減圧状態でストリッピングを行うとか、また、その凝固した共重合体を高温の水で洗浄して更に真空下において乾燥する等の方法が挙げられる。また、塊状重合では真空脱揮装置における真空度、供給速度または加熱温度を調整することにより可能となる。
 また、市販品の中から条件を満たすものを選択するか、あるいは市販品をさらに乾燥して所望のスチレン系単量体やエチルベンゼンの量とすることでも可能である。
In order to make the total amount of the styrene monomer in the styrene copolymer (B) and the styrene monomer and ethylbenzene within the above range, the configuration of the devolatilization step after the polymerization of the styrene copolymer And by strengthening the operating conditions of the devolatilization process. In the case of suspension polymerization, the copolymer latex obtained at an appropriate temperature and vacuum is stripped, coagulated with high-temperature steam, or stripped under reduced pressure using high-temperature steam. And the coagulated copolymer is washed with hot water and further dried under vacuum. In bulk polymerization, it is possible to adjust the degree of vacuum, supply speed or heating temperature in a vacuum devolatilizer.
It is also possible to select a commercially available product satisfying the conditions or to further dry the commercially available product to obtain the desired amount of styrene monomer or ethylbenzene.
 アクリロニトリル-スチレン系共重合体(B1)及び/又はエポキシ変性されたアクリロニトリル-スチレン系共重合体(B2)の合計、即ちスチレン系共重合体(B)の含有量は、ポリブチレンテレフタレート樹脂(A)100質量部に対し、45~100質量部である。含有量が45質量部未満では非晶性樹脂の割合が低く収縮率が大きくなることで、成形品に反りを生じることとなり、100質量部を超えると非晶性樹脂の割合が高く耐熱性が低下することに加え、85℃雰囲気曲げ強度や、ウェルド強度が低下する。スチレン系共重合体(B)の含有量は、好ましくは50質量部以上、より好ましくは55質量部以上、さらに好ましくは60質量部以上、特に65質量部超であることが好ましく、好ましくは95質量部以下であり、より好ましくは90質量部以下である。 The total of the acrylonitrile-styrene copolymer (B1) and / or the epoxy-modified acrylonitrile-styrene copolymer (B2), that is, the content of the styrene copolymer (B) is the polybutylene terephthalate resin (A ) 45 to 100 parts by mass with respect to 100 parts by mass. If the content is less than 45 parts by mass, the ratio of the amorphous resin is low and the shrinkage ratio is large, which causes warping of the molded product. If the content exceeds 100 parts by mass, the ratio of the amorphous resin is high and the heat resistance is high. In addition to the decrease, the 85 ° C. atmosphere bending strength and weld strength decrease. The content of the styrenic copolymer (B) is preferably 50 parts by mass or more, more preferably 55 parts by mass or more, still more preferably 60 parts by mass or more, and particularly preferably more than 65 parts by mass, preferably 95 parts by mass. The amount is at most 90 parts by mass, more preferably at most 90 parts by mass.
[エポキシ変性アクリル系重合体(C)]
 ポリブチレンテレフタレート樹脂組成物は、さらに、エポキシ変性アクリル系重合体(C)を含有することが好ましい。エポキシ変性アクリル系重合体(C)は、特に限定されないが、(メタ)アクリル酸アルキルエステルおよび不飽和グリシジル化合物から構成されるアクリル系重合体が好ましい。
[Epoxy-modified acrylic polymer (C)]
It is preferable that the polybutylene terephthalate resin composition further contains an epoxy-modified acrylic polymer (C). The epoxy-modified acrylic polymer (C) is not particularly limited, but an acrylic polymer composed of a (meth) acrylic acid alkyl ester and an unsaturated glycidyl compound is preferable.
 (メタ)アクリル酸アルキルエステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル等の直鎖又は分岐鎖状のアルキル基を有する(メタ)アクリル酸アルキルエステルが好ましく、なかでも(メタ)アクリル酸の炭素数1~12のアルキルエステルがより好ましく、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシルが好ましい。
 なお、本明細書中、「(メタ)アクリル」とは「アクリル」及び/又は「メタクリル」を意味する。
Examples of (meth) acrylic acid alkyl esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, and (meth) acrylic acid. Isobutyl, s-butyl (meth) acrylate, t-butyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isononyl (meth) acrylate, (Meth) acrylic acid alkyl ester having a linear or branched alkyl group such as (meth) acrylic acid decyl and (meth) acrylic acid dodecyl is preferable, and (meth) acrylic acid having 1 to 12 carbon atoms is preferred. Alkyl esters are more preferred, such as methyl (meth) acrylate, ethyl (meth) acrylate, (meth ) Acrylate, propyl (meth) acrylate, butyl 2-ethylhexyl (meth) acrylic acid.
In the present specification, “(meth) acryl” means “acryl” and / or “methacryl”.
 不飽和グリシジル化合物としては、エポキシ基含有重合性不飽和化合物が好ましく、(メタ)アクリル酸グリシジル、イタコン酸グリシジルエステル等の不飽和グリシジルエステル、あるいは、例えばビニルグリシジルエーテル、アリルグリシジルエーテル、2-メチルアリルグリシジルエーテル、スチレン-p-グリシジルエーテル等の不飽和グリシジルエーテル等が好ましく挙げられる。中でも不飽和グリシジルエステル類、特にエポキシ基含有(メタ)アクリル酸エステルが好ましく、より好ましくは(メタ)アクリル酸グリシジル、すなわちグリシジルアクリレート、グリシジルメタクリレート(GMA)が挙げられ、特にグリシジルメタクリレート(GMA)が好ましい。 As the unsaturated glycidyl compound, an epoxy group-containing polymerizable unsaturated compound is preferable, unsaturated glycidyl ester such as glycidyl (meth) acrylate and glycidyl itaconate, or vinyl glycidyl ether, allyl glycidyl ether, 2-methyl Preferable examples include unsaturated glycidyl ethers such as allyl glycidyl ether and styrene-p-glycidyl ether. Among them, unsaturated glycidyl esters, particularly epoxy group-containing (meth) acrylic acid esters are preferable, more preferably glycidyl (meth) acrylate, that is, glycidyl acrylate, glycidyl methacrylate (GMA), particularly glycidyl methacrylate (GMA). preferable.
 また、エポキシ変性アクリル系重合体(C)は、上記以外にさらに他の単量体を共重合したものも好ましく、特にスチレン系単量体を共重合した共重合体であることも好ましい。
 スチレン系単量体としては、スチレン、α-メチルスチレン、p-メチルスチレン、ビニルキシレン、エチルスチレン、ジメチルスチレン、p-tert-ブチルスチレン、ビニルナフタレン、メトキシスチレン、モノブロムスチレン、ジブロムスチレン、フルオロスチレン、トリブロムスチレンなどが挙げられ、スチレン、α-メチルスチレンがより好ましく、特にスチレンが好ましい。
The epoxy-modified acrylic polymer (C) is preferably a copolymer obtained by copolymerizing another monomer other than those described above, and is particularly preferably a copolymer obtained by copolymerizing a styrene monomer.
Styrene monomers include styrene, α-methyl styrene, p-methyl styrene, vinyl xylene, ethyl styrene, dimethyl styrene, p-tert-butyl styrene, vinyl naphthalene, methoxy styrene, monobromo styrene, dibromo styrene, Examples thereof include fluorostyrene and tribromostyrene, and styrene and α-methylstyrene are more preferable, and styrene is particularly preferable.
 エポキシ変性アクリル系重合体(C)が、(メタ)アクリル酸アルキルエステル(C1)、エポキシ基含有(メタ)アクリル酸エステル(C2)、あるいはさらにスチレン系単量体(C3)由来の構成単位を含有する場合、各構成単位の好ましい含有量は、エポキシ変性アクリル系重合体(C)の質量を100質量%としたときに、C1成分が好ましくは50~99質量%、より好ましくは55~95質量%であり、C2成分は好ましくは0.05~20質量%、より好ましくは0.1~18質量%であり、C3成分が好ましくは0~49.5質量%、より好ましくは0~45質量%、さらには5~45質量%であることが好ましい。 The epoxy-modified acrylic polymer (C) is a structural unit derived from a (meth) acrylic acid alkyl ester (C1), an epoxy group-containing (meth) acrylic acid ester (C2), or a styrene monomer (C3). When it is contained, the preferred content of each constituent unit is such that the C1 component is preferably 50 to 99% by mass, more preferably 55 to 95% when the mass of the epoxy-modified acrylic polymer (C) is 100% by mass. The C2 component is preferably 0.05 to 20% by mass, more preferably 0.1 to 18% by mass, and the C3 component is preferably 0 to 49.5% by mass, more preferably 0 to 45%. The mass is preferably 5% by mass, more preferably 5 to 45% by mass.
 エポキシ変性アクリル系重合体(C)のエポキシ当量は、100~1000g/molが好ましく、より好ましくは200~800g/molである。エポキシ当量が1000g/molを超えると、組成物中のアクリロニトリル-スチレン系共重合体の分散が不十分となる場合があり、一方、100g/mol未満では粘度が著しく上昇し、成形性が損なわれる場合がある。 The epoxy equivalent of the epoxy-modified acrylic polymer (C) is preferably 100 to 1000 g / mol, more preferably 200 to 800 g / mol. When the epoxy equivalent exceeds 1000 g / mol, the dispersion of the acrylonitrile-styrene copolymer in the composition may be insufficient. On the other hand, when the epoxy equivalent is less than 100 g / mol, the viscosity is remarkably increased and the moldability is impaired. There is a case.
 エポキシ変性アクリル系重合体(C)の重量平均分子量(Mw)は、4000~13000が好ましく、より好ましくは5000~12000である。 The weight average molecular weight (Mw) of the epoxy-modified acrylic polymer (C) is preferably 4000 to 13000, more preferably 5000 to 12000.
 エポキシ変性アクリル系重合体(C)の好ましい含有量は、ポリブチレンテレフタレート樹脂(A)100質量部に対して、0.2~3質量部である。0.2質量部を下回るとポリブチレンテレフタレートの分子間の架橋が不十分となり機械的強度が低下しやすく、3質量部を超えるとポリブチレンテレフタレートの分子間の架橋が過度に進むことで粘度が著しく上昇し、成形性が損なわれることになりやすい。重合体(C)の好ましい含有量は、熱可塑性ポリエステル樹脂(A)100質量部に対して、好ましく0.25質量部以上であり、好ましく2.8質量部以下、より好ましくは2.0質量部以下、さらに好ましくは1.0質量部以下である。 The preferable content of the epoxy-modified acrylic polymer (C) is 0.2 to 3 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin (A). If the amount is less than 0.2 parts by mass, the cross-linkage between the polybutylene terephthalate molecules becomes insufficient, and the mechanical strength tends to decrease. It rises remarkably and the moldability tends to be impaired. The preferable content of the polymer (C) is preferably 0.25 parts by mass or more, preferably 2.8 parts by mass or less, more preferably 2.0 parts by mass with respect to 100 parts by mass of the thermoplastic polyester resin (A). Part or less, more preferably 1.0 part by weight or less.
[ガラス繊維(D)]
 ポリブチレンテレフタレート樹脂組成物は、ガラス繊維(D)を含有することが好ましく、その量は、ポリブチレンテレフタレート樹脂(A)100質量部に対して、10~100質量部であることが好ましい。含有量が10質量部未満の場合は補強効果が十分でない場合があり、また100質量部を超える場合は、外観や耐衝撃性が劣り、流動性が十分でない場合がある。ガラス繊維(D)の好ましい含有量は、ポリブチレンテレフタレート樹脂(A)100質量部に対して、45質量部以上であり、より好ましくは55質量部以上、さらに好ましくは65質量部以上、特には70質量部以上が好ましく、また、好ましくは95質量部以下であり、より好ましくは90質量部以下である。このようにガラス繊維(D)を含有することで、本発明の成形体の強度、剛性、寸法安定性を向上させることができる。
[Glass fiber (D)]
The polybutylene terephthalate resin composition preferably contains glass fibers (D), and the amount thereof is preferably 10 to 100 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin (A). When the content is less than 10 parts by mass, the reinforcing effect may not be sufficient, and when it exceeds 100 parts by mass, the appearance and impact resistance may be inferior and the fluidity may not be sufficient. The preferable content of the glass fiber (D) is 45 parts by mass or more, more preferably 55 parts by mass or more, further preferably 65 parts by mass or more, particularly 100 parts by mass of the polybutylene terephthalate resin (A). 70 parts by mass or more is preferable, preferably 95 parts by mass or less, and more preferably 90 parts by mass or less. Thus, by containing glass fiber (D), the intensity | strength, rigidity, and dimensional stability of the molded object of this invention can be improved.
 ガラス繊維(D)の種類は、特に制限はなく、例えばEガラス、Cガラス、Aガラス、Sガラス等のガラス繊維を挙げることができる。これらの中で、Eガラスの繊維がポリブチレンテレフタレート樹脂の熱安定性に悪影響を及ぼさない点で好ましい。 The type of glass fiber (D) is not particularly limited, and examples thereof include glass fibers such as E glass, C glass, A glass, and S glass. Among these, E glass fibers are preferred in that they do not adversely affect the thermal stability of the polybutylene terephthalate resin.
 ガラス繊維(D)の平均繊維径は特に制限されないが、1~100μmの範囲で選ぶことが好ましく、より好ましくは2~50μm、更に好ましくは3~30μm、特に好ましくは5~20μmである。平均繊維径が1μm未満のガラス繊維は、製造が容易でなく、コスト高になる恐れがあり、一方100μmを超えると、ガラス繊維の引張強度が低下する恐れがある。なお、繊維断面は円形であっても扁平状であっても構わない。 The average fiber diameter of the glass fiber (D) is not particularly limited, but is preferably selected in the range of 1 to 100 μm, more preferably 2 to 50 μm, still more preferably 3 to 30 μm, and particularly preferably 5 to 20 μm. Glass fibers having an average fiber diameter of less than 1 μm are not easy to produce and may increase costs, whereas if they exceed 100 μm, the tensile strength of the glass fibers may decrease. The fiber cross section may be circular or flat.
 ガラス繊維(D)は、繊維断面が真円形であっても扁平であってもよいが、繊維断面の扁平率(長径/短径)が1~1.5の断面がほぼ円形のガラス繊維であることが好ましい。この扁平率は1~1.4が好ましく、1~1.2がより好ましく、1~1.1が特に好ましい。
 なお扁平率の値は、成形品の高温灰化、溶剤による溶解、並びに薬品による分解等の処理で採取される充填剤残渣のガラス繊維2000本を光学顕微鏡にて観察した画像から画像解析装置によって算出される平均値である。
The glass fiber (D) may be a round fiber or a flat fiber cross section, but the cross section of the fiber cross section (major axis / minor axis) is a glass fiber having a substantially circular cross section of 1 to 1.5. Preferably there is. The flatness is preferably 1 to 1.4, more preferably 1 to 1.2, and particularly preferably 1 to 1.1.
The flatness value is determined by an image analyzer from an image obtained by observing 2000 glass fibers of filler residue collected by processing such as high-temperature ashing of a molded product, dissolution with a solvent, and decomposition with a chemical with an optical microscope. It is a calculated average value.
 ガラス繊維(D)の平均繊維長は、特に限定されないが、例えば1~10mmであることが好ましく、1.5~6mmであることがより好ましく、2~5mmであることがさらに好ましい。ガラス繊維(D)の平均繊維長が1mm未満であると、補強効果が十分に発現しない恐れがあり、10mmを超えると、得られる樹脂組成物の成形が困難になる恐れがある。
 なお、平均繊維長は、成形品の高温灰化、溶剤による溶解、並びに薬品による分解等の処理で採取される充填材残渣のガラス繊維2000本を光学顕微鏡にて観察した画像から画像解析装置によって算出される数平均繊維長の値である。また、かかる値の算出に際しては繊維径を目安にそれ以下の長さのものはカウントしない方法による値である。
The average fiber length of the glass fiber (D) is not particularly limited, but is preferably, for example, 1 to 10 mm, more preferably 1.5 to 6 mm, and further preferably 2 to 5 mm. If the average fiber length of the glass fiber (D) is less than 1 mm, the reinforcing effect may not be sufficiently exhibited, and if it exceeds 10 mm, it may be difficult to mold the resulting resin composition.
The average fiber length is determined by using an image analyzer from an image obtained by observing 2000 glass fibers of a filler residue collected by processing such as high-temperature ashing of a molded product, dissolution with a solvent, and decomposition with a chemical using an optical microscope. It is a value of the calculated number average fiber length. Further, when calculating such a value, the fiber diameter is used as a guide and the length is less than that.
 本発明で使用するガラス繊維(D)は、ポリブチレンテレフタレート樹脂(A)との密着性を向上させる目的で、アミノシラン、エポキシシラン等のカップリング剤などにより表面処理を行うことができる。
 カップリング剤としては、例えば、ビニルトリクロロシラン、メチルビニルジクロロシラン等のクロロシラン系化合物、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン等のアルコキシシラン系化合物、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン等のエポキシシラン系化合物や、アクリル系化合物、イソシアネート系化合物、チタネート系化合物、エポキシ系化合物などを挙げることができる。
The glass fiber (D) used in the present invention can be surface-treated with a coupling agent such as aminosilane or epoxysilane for the purpose of improving the adhesion with the polybutylene terephthalate resin (A).
Examples of the coupling agent include chlorosilane compounds such as vinyltrichlorosilane and methylvinyldichlorosilane, alkoxysilane compounds such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, and γ-methacryloxypropyltrimethoxysilane. Compounds, epoxy silane compounds such as β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, acrylic compounds, isocyanate compounds, titanate compounds, epoxy compounds, etc. Can be mentioned.
 また、本発明に使用するガラス繊維(D)は、通常はこれらの繊維を多数本集束したものを、所定の長さに切断したチョップドストランド(チョップドガラス繊維)として用いることが好ましく、このときガラス繊維には収束剤を配合することが好ましい。収束剤を配合することで、ポリブチレンテレフタレート樹脂組成物並びに成形体の生産安定性が高まる利点に加え、良好な機械物性を得ることができる。
 ガラス繊維(D)の集束剤としては特に制限はなく、例えば、酢酸ビニル樹脂、エチレン-酢酸ビニル共重合体、アクリル樹脂、エポキシ樹脂、ポリウレタン樹脂、ポリエステル樹脂などの樹脂エマルジョン等を挙げることができ、好ましくはアクリル樹脂、エポキシ樹脂、ポリウレタン樹脂である。
In addition, the glass fiber (D) used in the present invention is usually preferably used as a chopped strand (chopped glass fiber) obtained by cutting a number of these fibers into a predetermined length. It is preferable to add a sizing agent to the fiber. By blending the sizing agent, good mechanical properties can be obtained in addition to the advantage that the production stability of the polybutylene terephthalate resin composition and the molded body is increased.
The sizing agent for glass fiber (D) is not particularly limited, and examples thereof include resin emulsions such as vinyl acetate resin, ethylene-vinyl acetate copolymer, acrylic resin, epoxy resin, polyurethane resin, and polyester resin. Preferably, acrylic resin, epoxy resin, and polyurethane resin are used.
 本発明の成形体を構成する組成物としては、上記した通り、少なくともポリブチレンテレフタレート樹脂(A)及びスチレン系共重合体(B)を所定量で含有する組成物からなればよいが、上記したその他の成分を用いて、例えば、次のような組成物からなるのがより好ましい。
 好ましい組成物(1):
 ポリブチレンテレフタレート樹脂(A)100質量部に対して、アクリロニトリル-スチレン系共重合体(B1)45~100質量部、エポキシ変性アクリル系重合体(C)0.2~3質量部、及びガラス繊維(D)10~100質量部を含有するポリブチレンテレフタレート樹脂組成物。
 好ましい組成物(2):
 ポリブチレンテレフタレート樹脂(A)100質量部に対して、アクリロニトリル-スチレン系共重合体(B1)、エポキシ変性アクリロニトリル-スチレン系共重合体(B2)、及びガラス繊維(D)を含有するポリブチレンテレフタレート樹脂組成物。
The composition constituting the molded article of the present invention may be composed of a composition containing at least a predetermined amount of polybutylene terephthalate resin (A) and styrene copolymer (B) as described above. For example, it is more preferable to use other components, for example, the following composition.
Preferred composition (1):
45-100 parts by mass of acrylonitrile-styrene copolymer (B1), 0.2-3 parts by mass of epoxy-modified acrylic polymer (C), and glass fiber with respect to 100 parts by mass of polybutylene terephthalate resin (A) (D) A polybutylene terephthalate resin composition containing 10 to 100 parts by mass.
Preferred composition (2):
Polybutylene terephthalate containing acrylonitrile-styrene copolymer (B1), epoxy-modified acrylonitrile-styrene copolymer (B2), and glass fiber (D) with respect to 100 parts by mass of polybutylene terephthalate resin (A) Resin composition.
 上記した好ましい組成物(2)において、アクリロニトリル-スチレン系共重合体(B1)及びエポキシ変性アクリロニトリル-スチレン系共重合体(B2)の含有量は、両者の合計で、ポリブチレンテレフタレート樹脂(A)100質量部に対し、好ましくは45~100質量部であり、かつ(B1)の含有量と(B2)の含有量の質量比(B1)/(B2)は好ましくは6以下であり、ガラス繊維(D)の含有量は、好ましくは10~100質量である。 In the preferable composition (2), the contents of the acrylonitrile-styrene copolymer (B1) and the epoxy-modified acrylonitrile-styrene copolymer (B2) are the sum of both, and the polybutylene terephthalate resin (A) It is preferably 45 to 100 parts by mass with respect to 100 parts by mass, and the mass ratio (B1) / (B2) of the content of (B1) to the content of (B2) is preferably 6 or less. The content of (D) is preferably 10 to 100 mass.
 上記した好ましい組成物(2)において、(B1)と(B2)の合計の含有量が45質量部未満では非晶性樹脂の割合が低いため収縮率が大きくなることで、成形品に反りを生じやすくなり、100質量部を超えると非晶性樹脂の割合が高いため耐熱性が低下しやすくなることに加え、85℃雰囲気曲げ強度や、ウェルド強度が低下しやすい。(B1)と(B2)の合計の含有量は、より好ましくは50質量部以上、さらに好ましくは55質量部以上、特に好ましくは60質量部以上、65質量部超であることが最も好ましく、より好ましくは95質量部以下であり、さらに好ましくは90質量部以下である。また、質量比(B1)/(B2)が6を超えると、エポキシ変性アクリロニトリル-スチレン系共重合体の分散が不十分となり、高い温度環境での機械特性が低下しやすい。(B1)/(B2)は、より好ましくは5以下、さらに好ましくは4以下、中でも3以下、特に2以下が好ましく、その下限は好ましくは0.5である。 In the preferable composition (2) described above, if the total content of (B1) and (B2) is less than 45 parts by mass, the ratio of the amorphous resin is low, so the shrinkage ratio is increased, and the molded product is warped. When the amount exceeds 100 parts by mass, the ratio of the amorphous resin is high, so that the heat resistance tends to be lowered, and the 85 ° C. atmosphere bending strength and the weld strength are likely to be lowered. The total content of (B1) and (B2) is more preferably 50 parts by mass or more, still more preferably 55 parts by mass or more, particularly preferably 60 parts by mass or more, and most preferably more than 65 parts by mass. Preferably it is 95 mass parts or less, More preferably, it is 90 mass parts or less. On the other hand, when the mass ratio (B1) / (B2) exceeds 6, the dispersion of the epoxy-modified acrylonitrile-styrene copolymer becomes insufficient, and the mechanical properties in a high temperature environment are likely to deteriorate. (B1) / (B2) is more preferably 5 or less, further preferably 4 or less, especially 3 or less, particularly 2 or less, and the lower limit thereof is preferably 0.5.
 アクリロニトリル-スチレン系共重合体(B1)単独での含有量は、上記質量比(B1)/(B2)を満たすことを条件に、ポリブチレンテレフタレート樹脂(A)100質量部に対し、好ましくは5~85質量部の範囲から選択されることが好ましい。
 エポキシ変性アクリロニトリル-スチレン系共重合体(B2)単独での含有量は、上記質量比(B1)/(B2)を満たすことを条件に、ポリブチレンテレフタレート樹脂(A)100質量部に対し、好ましくは5~90質量部の範囲から選択されることが好ましい。
The content of the acrylonitrile-styrene copolymer (B1) alone is preferably 5 with respect to 100 parts by mass of the polybutylene terephthalate resin (A) on condition that the mass ratio (B1) / (B2) is satisfied. It is preferably selected from the range of ~ 85 parts by mass.
The content of the epoxy-modified acrylonitrile-styrene copolymer (B2) alone is preferably based on 100 parts by mass of the polybutylene terephthalate resin (A) on condition that the above mass ratio (B1) / (B2) is satisfied. Is preferably selected from the range of 5 to 90 parts by mass.
 本願の第2の発明は、ポリブチレンテレフタレート樹脂(A)100質量部に対して、アクリロニトリル-スチレン系共重合体(B1)45~100質量部、エポキシ変性アクリル系重合体(C)0.2~3質量部、及びガラス繊維(D)10~100質量部を含有することを特徴とするポリブチレンテレフタレート樹脂組成物である。 The second invention of the present application is based on 100 parts by mass of the polybutylene terephthalate resin (A), 45-100 parts by mass of the acrylonitrile-styrene copolymer (B1), 0.2% of the epoxy-modified acrylic polymer (C). A polybutylene terephthalate resin composition comprising ˜3 parts by mass and 10 to 100 parts by mass of glass fiber (D).
 第2の発明において、ポリブチレンテレフタレート樹脂(A)、アクリロニトリル-スチレン系共重合体(B1)、エポキシ変性アクリル系重合体(C)、ガラス繊維(D)は、前述した通りである。 In the second invention, the polybutylene terephthalate resin (A), the acrylonitrile-styrene copolymer (B1), the epoxy-modified acrylic polymer (C), and the glass fiber (D) are as described above.
 第2の発明において、アクリロニトリル-スチレン系共重合体(B1)の含有量は、ポリブチレンテレフタレート樹脂(A)100質量部に対し、45~100質量部であるが、含有量が45質量部未満では非晶性樹脂の割合が低く収縮率が大きくなることで、成形品に反りを生じることとなり、100質量部を超えると非晶性樹脂の割合が高く耐熱性が低下することに加え、85℃雰囲気曲げ強度や、ウェルド強度が低下する。アクリロニトリル-スチレン系共重合体(B1)の含有量は、好ましくは50質量部以上、より好ましくは55質量部以上、さらに好ましくは60質量部以上、特に65質量部以上であることが好ましく、好ましくは95質量部以下であり、より好ましくは90質量部以下である。 In the second invention, the content of the acrylonitrile-styrene copolymer (B1) is 45 to 100 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin (A), but the content is less than 45 parts by mass. Then, since the proportion of the amorphous resin is low and the shrinkage rate is large, the molded product is warped. When the amount exceeds 100 parts by mass, the proportion of the amorphous resin is high and the heat resistance is lowered. Decrease in bending strength and weld strength at ℃ atmosphere. The content of the acrylonitrile-styrene copolymer (B1) is preferably 50 parts by mass or more, more preferably 55 parts by mass or more, further preferably 60 parts by mass or more, and particularly preferably 65 parts by mass or more. Is 95 parts by mass or less, more preferably 90 parts by mass or less.
 第2の発明において、アクリロニトリル-スチレン系共重合体(B1)としては、270℃で10分間熱処理して発生するガスをガスクロマトグラフで分析することにより、スチレン系単量体の量とエチルベンゼンの量を測定することができるが、そのスチレン系単量体の量が600(質量)ppm以下であるものを用いることが好ましい。スチレン系単量体ガス量が600ppm以下であることで、成形時のガス発生量が少なくなり、また成形体としたときの成形体からのガス発生量が小さいので、例えば車両内装部品とした際のVOCの問題が解決され、また成形時にガスが少ないため成形体の外観も改善される。一方、600ppmを超えると、車両用内装部品とした場合のVOC問題の解決が難しくなり、また外観も悪いものとなりやすい。スチレン系単量体の量はより好ましくは550ppm以下、さらに好ましくは300ppm以下、特に好ましくは200ppm以下であり、また、その下限としては通常50ppmである。50ppm未満にするには経済性を度外視するような精製を要するので、好ましくない。アクリロニトリル-スチレン系共重合体(B1)として複数種用いる場合には、そのそれぞれの重合体からのスチレン系単量体ガス量と、使用するそれぞれの質量比とから、計算される合計の量である。
 なお、スチレン系単量体の量は、270℃で10分間熱処理して発生するガスをガスクロマトグラフで分析することにより求められるが、測定値を、共重合体の質量あたりの値に換算して求める量(単位:質量ppm)であり、その具体的な条件は、実施例に詳記される通りである。
In the second invention, the acrylonitrile-styrene copolymer (B1) is obtained by analyzing the gas generated by heat treatment at 270 ° C. for 10 minutes by gas chromatography, thereby determining the amount of styrene monomer and the amount of ethylbenzene. However, it is preferable to use a styrene monomer having an amount of 600 ppm by mass or less. When the amount of styrene-based monomer gas is 600 ppm or less, the amount of gas generated during molding is reduced, and the amount of gas generated from the molded body when molded is small. The VOC problem is solved, and the appearance of the molded body is improved because of a small amount of gas during molding. On the other hand, when it exceeds 600 ppm, it becomes difficult to solve the VOC problem in the case of an interior part for a vehicle, and the appearance tends to be poor. The amount of the styrenic monomer is more preferably 550 ppm or less, further preferably 300 ppm or less, particularly preferably 200 ppm or less, and the lower limit thereof is usually 50 ppm. If it is less than 50 ppm, it is not preferable because it requires refining so as not to be economical. When a plurality of types are used as the acrylonitrile-styrene copolymer (B1), the total amount calculated from the amount of styrene monomer gas from each polymer and the respective mass ratios used. is there.
The amount of the styrene monomer can be obtained by analyzing the gas generated by heat treatment at 270 ° C. for 10 minutes by gas chromatography, but the measured value is converted into a value per mass of the copolymer. The amount to be obtained (unit: mass ppm), and the specific conditions are as detailed in the examples.
 また、270℃で10分間熱処理して発生するガスをガスクロマトグラフで分析した際のスチレン系単量体及びエチルベンゼンの合計は650(質量)ppm以下であることが好ましい。両者の合計のガス量が650ppm以下であることで、成形時のガス発生量が少なくなり、また成形体としたときの成形体からのガス発生量が小さいので、例えば車両内装部品とした際のVOCの問題が解決され、また成形時のガスが少ないため成形体の外観も改善される。両者の合計のガス量はより好ましくは500ppm以下、さらに好ましくは400ppm以下であり、また、その下限としては通常150ppmである。150ppm未満にするには経済性を度外視するような精製を要するので、好ましくない。
 なお、アクリロニトリル-スチレン系共重合体(B1)として複数種用いる場合には、上記と同様、そのそれぞれの重合体からのスチレン系単量体及びエチルベンゼンの発生量と、使用するそれぞれの質量比とから、計算される合計の量である。
The total of the styrene monomer and ethylbenzene when the gas generated by heat treatment at 270 ° C. for 10 minutes is analyzed by gas chromatography is preferably 650 (mass) ppm or less. Since the total gas amount of both is 650 ppm or less, the amount of gas generated at the time of molding is reduced, and the amount of gas generated from the molded body when formed into a molded body is small. The problem of VOC is solved, and the appearance of the molded body is improved because of less gas during molding. The total gas amount of both is more preferably 500 ppm or less, still more preferably 400 ppm or less, and its lower limit is usually 150 ppm. If it is less than 150 ppm, it is not preferable because it requires refining so as not to be economical.
When a plurality of types are used as the acrylonitrile-styrene copolymer (B1), the amount of styrene monomer and ethylbenzene generated from each polymer and the mass ratio used are the same as above. Is the total amount calculated.
 アクリロニトリル-スチレン系共重合体(B1)中のスチレン系単量体や、スチレン系単量体とエチルベンゼンとの合計量を上記範囲にするには、スチレン系共重合体の重合後の脱揮工程の構成や脱揮工程の運転条件を強化することにより可能となる。懸濁重合等の場合には、適当な温度及び真空中において得られた共重合体ラテックスのストリッピングを行うか、または高温水蒸気で凝固を行うか、あるいは高温水蒸気を用いて減圧状態でストリッピングを行うとか、また、その凝固した共重合体を高温の水で洗浄して更に真空下において乾燥する等の方法が挙げられる。また、塊状重合では真空脱揮装置における真空度、供給速度または加熱温度を調整することにより可能となる。
 また、市販品の中から条件を満たすものを選択するか、あるいは市販品をさらに乾燥して所望のスチレン系単量体やエチルベンゼンの量とすることでも可能である。
In order to make the total amount of the styrene monomer and the styrene monomer and ethylbenzene in the acrylonitrile-styrene copolymer (B1) within the above range, a devolatilization step after the polymerization of the styrene copolymer is performed. This can be achieved by strengthening the configuration and operating conditions of the devolatilization process. In the case of suspension polymerization, the copolymer latex obtained at an appropriate temperature and vacuum is stripped, coagulated with high-temperature steam, or stripped under reduced pressure using high-temperature steam. And the coagulated copolymer is washed with hot water and further dried under vacuum. In bulk polymerization, it is possible to adjust the degree of vacuum, supply speed or heating temperature in a vacuum devolatilizer.
It is also possible to select a commercially available product satisfying the conditions or to further dry the commercially available product to obtain the desired amount of styrene monomer or ethylbenzene.
 また、エポキシ変性アクリル系重合体(C)の含有量は、ポリブチレンテレフタレート樹脂(A)100質量部に対して、0.2~3質量部であるが、0.2質量部を下回るとポリブチレンテレフタレートの分子間の架橋が不十分となり機械的強度が低下しやすく、3質量部を超えるとポリブチレンテレフタレートの分子間の架橋が過度に進むことで粘度が著しく上昇し、成形性が損なわれることとなる。重合体(C)の好ましい含有量は、熱可塑性ポリエステル樹脂(A)100質量部に対して、好ましくは0.25質量部以上であり、好ましくは2.8質量部以下、より好ましくは2.0質量部以下、さらに好ましくは1.0質量部以下である。 The content of the epoxy-modified acrylic polymer (C) is 0.2 to 3 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin (A). Crosslinks between butylene terephthalate molecules become insufficient and mechanical strength tends to decrease. When the amount exceeds 3 parts by mass, the crosslinks between polybutylene terephthalate molecules excessively increase, resulting in a marked increase in viscosity and impaired moldability. It will be. The preferable content of the polymer (C) is preferably 0.25 parts by mass or more, preferably 2.8 parts by mass or less, more preferably 2.10 parts by mass with respect to 100 parts by mass of the thermoplastic polyester resin (A). 0 parts by mass or less, more preferably 1.0 parts by mass or less.
 ガラス繊維(D)の含有量は、ポリブチレンテレフタレート樹脂(A)100質量部に対して、10~100質量部であるが、含有量が10質量部未満の場合は補強効果が十分でない場合があり、また100質量部を超える場合は、外観や耐衝撃性が劣り、流動性が十分でない場合がある。ガラス繊維(D)の好ましい含有量は、ポリブチレンテレフタレート樹脂(A)100質量部に対して、45質量部以上であり、より好ましくは55質量部以上、さらに好ましくは65質量部以上、特には70質量部以上が好ましく、また、好ましくは95質量部以下であり、より好ましくは90質量部以下である。このようにガラス繊維(D)を含有することで、ポリブチレンテレフタレート樹脂組成物の強度、剛性、寸法安定性を向上させることができる。 The content of the glass fiber (D) is 10 to 100 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin (A), but if the content is less than 10 parts by mass, the reinforcing effect may not be sufficient. In addition, when it exceeds 100 parts by mass, the appearance and impact resistance may be inferior, and the fluidity may not be sufficient. The preferable content of the glass fiber (D) is 45 parts by mass or more, more preferably 55 parts by mass or more, further preferably 65 parts by mass or more, particularly 100 parts by mass of the polybutylene terephthalate resin (A). 70 parts by mass or more is preferable, preferably 95 parts by mass or less, and more preferably 90 parts by mass or less. Thus, by containing glass fiber (D), the strength, rigidity, and dimensional stability of the polybutylene terephthalate resin composition can be improved.
 また、本願の第3の発明は、ポリブチレンテレフタレート樹脂(A)100質量部に対して、アクリロニトリル-スチレン系共重合体(B1)及びエポキシ変性アクリロニトリル-スチレン系共重合体(B2)を合計で45~100質量部含有し、(B1)と(B2)の含有量の質量比(B1)/(B2)は6以下であり、さらにガラス繊維(D)を10~100質量部含有することを特徴とするポリブチレンテレフタレート樹脂組成物である。 The third invention of the present application is based on 100 parts by mass of the polybutylene terephthalate resin (A), and the total amount of the acrylonitrile-styrene copolymer (B1) and the epoxy-modified acrylonitrile-styrene copolymer (B2). 45 to 100 parts by mass, the mass ratio (B1) / (B2) of the contents of (B1) and (B2) is 6 or less, and further contains 10 to 100 parts by mass of glass fiber (D). It is a polybutylene terephthalate resin composition characterized.
 第3の発明において、ポリブチレンテレフタレート樹脂(A)、アクリロニトリル-スチレン系共重合体(B1)、エポキシ変性アクリロニトリル-スチレン系共重合体(B2)、ガラス繊維(D)は、前述した通りである。ここで、アクリロニトリル-スチレン系共重合体(B1)は、エポキシ変性アクリロニトリル-スチレン系共重合体(B2)を含まないものとして定義される。 In the third invention, the polybutylene terephthalate resin (A), the acrylonitrile-styrene copolymer (B1), the epoxy-modified acrylonitrile-styrene copolymer (B2), and the glass fiber (D) are as described above. . Here, the acrylonitrile-styrene copolymer (B1) is defined as not containing the epoxy-modified acrylonitrile-styrene copolymer (B2).
 第3の発明において、アクリロニトリル-スチレン系共重合体(B1)及びエポキシ変性アクリロニトリル-スチレン系共重合体(B2)の含有量は、両者の合計で、ポリブチレンテレフタレート樹脂(A)100質量部に対し、45~100質量部であり、かつ(B1)の含有量と(B2)の含有量の質量比(B1)/(B2)は6以下であるが、(B1)と(B2)の合計の含有量が45質量部未満では非晶性樹脂の割合が低いため収縮率が大きくなることで、成形品に反りを生じることとなり、100質量部を超えると非晶性樹脂の割合が高いため耐熱性が低下することに加え、85℃雰囲気曲げ強度や、ウェルド強度が低下する。(B1)と(B2)の合計の含有量は、好ましくは50質量部以上、より好ましくは55質量部以上、さらに好ましくは60質量部以上、特に65質量部超であることが好ましく、好ましくは95質量部以下であり、より好ましくは90質量部以下である。また、質量比(B1)/(B2)が6を超えると、エポキシ変性アクリロニトリル-スチレン系共重合体の分散が不十分となり高い温度環境での機械特性が低下する。(B1)/(B2)は、好ましくは5以下、より好ましくは4以下、中でも3以下、特に2以下が好ましく、その下限は好ましくは0.5である。 In the third invention, the total content of the acrylonitrile-styrene copolymer (B1) and the epoxy-modified acrylonitrile-styrene copolymer (B2) is 100 parts by mass of the polybutylene terephthalate resin (A). On the other hand, the mass ratio (B1) / (B2) between the content of (B1) and the content of (B2) is 45 or less, and the sum of (B1) and (B2). If the content of is less than 45 parts by mass, the proportion of the amorphous resin is low, so the shrinkage rate is increased, resulting in warping of the molded product, and if it exceeds 100 parts by mass, the proportion of the amorphous resin is high. In addition to the reduction in heat resistance, the 85 ° C. atmosphere bending strength and weld strength are reduced. The total content of (B1) and (B2) is preferably 50 parts by mass or more, more preferably 55 parts by mass or more, still more preferably 60 parts by mass or more, particularly preferably more than 65 parts by mass, preferably It is 95 mass parts or less, More preferably, it is 90 mass parts or less. On the other hand, when the mass ratio (B1) / (B2) exceeds 6, the dispersion of the epoxy-modified acrylonitrile-styrene copolymer becomes insufficient, and the mechanical properties in a high temperature environment are deteriorated. (B1) / (B2) is preferably 5 or less, more preferably 4 or less, especially 3 or less, particularly 2 or less, and its lower limit is preferably 0.5.
 第3の発明において、アクリロニトリル-スチレン系共重合体(B1)単独での含有量は、上記質量比(B1)/(B2)を満たすことを条件に、ポリブチレンテレフタレート樹脂(A)100質量部に対し、好ましくは5~85質量部の範囲から選択されることが好ましい。
 エポキシ変性アクリロニトリル-スチレン系共重合体(B2)単独での含有量は、上記質量比(B1)/(B2)を満たすことを条件に、ポリブチレンテレフタレート樹脂(A)100質量部に対し、好ましくは5~90質量部の範囲から選択されることが好ましい。
In the third invention, the content of the acrylonitrile-styrene copolymer (B1) alone satisfies the above mass ratio (B1) / (B2), and 100 parts by mass of the polybutylene terephthalate resin (A). On the other hand, it is preferably selected from the range of 5 to 85 parts by mass.
The content of the epoxy-modified acrylonitrile-styrene copolymer (B2) alone is preferably based on 100 parts by mass of the polybutylene terephthalate resin (A) on condition that the above mass ratio (B1) / (B2) is satisfied. Is preferably selected from the range of 5 to 90 parts by mass.
 第3の発明において、アクリロニトリル-スチレン系共重合体(B1)及び/又はエポキシ変性アクリロニトリル-スチレン系共重合体(B2)としては、270℃で10分間熱処理して発生するガスをガスクロマトグラフで分析した際、前記したスチレン系単量体の量が600(質量)ppm以下であるものを用いることが好ましい。また、(B1)及び(B2)からのスチレン系単量体の合計も、600(質量)ppm以下であることがより好ましい。
 スチレン系単量体ガス量が600ppm以下であることで、成形時のガス発生量が少なくなり、また成形体としたときの成形体からのガス発生量が小さいので、例えば車両内装部品として際のVOCの問題が解決され、また成形時にガスが少ないため成形体の外観も改善される。一方、600ppmを超えると、車両用内装部品とした場合のVOC問題の解決が難しくなり、また外観も悪いものとなりやすい。スチレン系単量体の量はより好ましくは550ppm以下、さらに好ましくは300ppm以下、特に好ましくは200ppm以下であり、また、その下限としては通常50ppmである。50ppm未満にするには経済性を度外視するような精製を要するので、好ましくない。
 アクリロニトリル-スチレン系共重合体(B1)又はエポキシ変性アクリロニトリル-スチレン系共重合体(B2)として、(B1)または(B2)の一方又はそれぞれを複数種用いる場合、それぞれの重合体からのスチレン系単量体ガス量と、使用するそれぞれの質量比とから、計算される合計の量である。
 なお、スチレン系単量体の量及び後述するエチルベンゼンの量は、270℃で10分間熱処理して発生するガスをガスクロマトグラフで分析することにより求められるが、測定値を、共重合体の質量あたりの値に換算して求める量(単位:質量ppm)であり、その具体的な条件は、実施例に詳記される通りである。
In the third invention, acrylonitrile-styrene copolymer (B1) and / or epoxy-modified acrylonitrile-styrene copolymer (B2) is analyzed by gas chromatograph for gas generated by heat treatment at 270 ° C. for 10 minutes. In this case, it is preferable to use a styrenic monomer having an amount of 600 (mass) ppm or less. The total of the styrene monomers from (B1) and (B2) is more preferably 600 (mass) ppm or less.
When the amount of styrenic monomer gas is 600 ppm or less, the amount of gas generated during molding is reduced, and the amount of gas generated from the molded body when molded is small. The problem of VOC is solved, and the appearance of the molded body is improved because of a small amount of gas during molding. On the other hand, when it exceeds 600 ppm, it becomes difficult to solve the VOC problem in the case of an interior part for a vehicle, and the appearance tends to be poor. The amount of the styrenic monomer is more preferably 550 ppm or less, further preferably 300 ppm or less, particularly preferably 200 ppm or less, and the lower limit thereof is usually 50 ppm. If it is less than 50 ppm, it is not preferable because it requires refining so as not to be economical.
When one or each of (B1) and (B2) is used as the acrylonitrile-styrene copolymer (B1) or the epoxy-modified acrylonitrile-styrene copolymer (B2), a styrene polymer from each polymer is used. This is the total amount calculated from the amount of monomer gas and the respective mass ratios used.
The amount of the styrene monomer and the amount of ethylbenzene described later can be obtained by analyzing a gas generated by heat treatment at 270 ° C. for 10 minutes by gas chromatography. The amount (unit: ppm by mass) obtained by converting to the value of, and the specific conditions are as detailed in the examples.
 また、270℃で10分間熱処理して発生するガスをガスクロマトグラフで分析した際のスチレン系単量体及びエチルベンゼンの合計は650(質量)ppm以下であることが好ましい。両者の合計のガス量が650ppm以下であることで、成形時のガス発生量が少なくなり、また成形体としたときの成形体からのガス発生量が小さいので、例えば車両内装部品とした際のVOCの問題が解決され、また成形時のガスが少ないため成形体の外観も改善される。両者の合計のガス量はより好ましくは500ppm以下、さらに好ましくは400ppm以下であり、また、その下限としては通常150ppmである。150ppm未満にするには経済性を度外視するような精製を要するので、好ましくない。 Further, the total of the styrene monomer and ethylbenzene when the gas generated by heat treatment at 270 ° C. for 10 minutes is analyzed by gas chromatography is preferably 650 (mass) ppm or less. Since the total gas amount of both is 650 ppm or less, the amount of gas generated at the time of molding is reduced, and the amount of gas generated from the molded body when formed into a molded body is small. The problem of VOC is solved, and the appearance of the molded body is improved because of less gas during molding. The total gas amount of both is more preferably 500 ppm or less, still more preferably 400 ppm or less, and its lower limit is usually 150 ppm. If it is less than 150 ppm, it is not preferable because it requires refining so as not to be economical.
 アクリロニトリル-スチレン系共重合体(B1)及び/又はエポキシ変性アクリロニトリル-スチレン系共重合体中のスチレン系単量体や、スチレン系単量体とエチルベンゼンとの合計量を上記範囲にするには、アクリロニトリル-スチレン系共重合体の重合後の脱揮工程の構成や脱揮工程の運転条件を強化することにより可能となる。懸濁重合等の場合には、適当な温度及び真空中において得られた共重合体ラテックスのストリッピングを行うか、または高温水蒸気で凝固を行うか、あるいは高温水蒸気を用いて減圧状態でストリッピングを行うとか、また、その凝固した共重合体を高温の水で洗浄して更に真空下において乾燥する等の方法が挙げられる。また、塊状重合では真空脱揮装置における真空度、供給速度または加熱温度を調整することにより可能となる。
 また、市販品の中から条件を満たすものを選択するか、あるいは市販品をさらに乾燥して所望のスチレン系単量体やエチルベンゼンの量とすることでも可能である。
To bring the total amount of the styrene monomer in the acrylonitrile-styrene copolymer (B1) and / or the epoxy-modified acrylonitrile-styrene copolymer, and the total amount of the styrene monomer and ethylbenzene into the above range, This can be achieved by strengthening the configuration of the devolatilization step after the polymerization of the acrylonitrile-styrene copolymer and the operating conditions of the devolatilization step. In the case of suspension polymerization, the copolymer latex obtained at an appropriate temperature and vacuum is stripped, coagulated with high-temperature steam, or stripped under reduced pressure using high-temperature steam. And the coagulated copolymer is washed with hot water and further dried under vacuum. In bulk polymerization, it is possible to adjust the degree of vacuum, supply speed or heating temperature in a vacuum devolatilizer.
It is also possible to select a commercially available product satisfying the conditions or to further dry the commercially available product to obtain the desired amount of styrene monomer or ethylbenzene.
 第3の発明において、ガラス繊維(D)の含有量は、ポリブチレンテレフタレート樹脂(A)100質量部に対して、10~100質量部である。含有量が10質量部未満の場合は補強効果が十分でない場合があり、また100質量部を超える場合は、外観や耐衝撃性が劣り、流動性が十分でない場合がある。ガラス繊維(D)の好ましい含有量は、ポリブチレンテレフタレート樹脂(A)100質量部に対して、45質量部以上であり、より好ましくは55質量部以上、さらに好ましくは65質量部以上、特には70質量部以上が好ましく、また、好ましくは95質量部以下であり、より好ましくは90質量部以下である。このようにガラス繊維(D)を含有することで、ポリブチレンテレフタレート樹脂組成物の強度、剛性、寸法安定性を向上させることができる。 In the third invention, the content of the glass fiber (D) is 10 to 100 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin (A). When the content is less than 10 parts by mass, the reinforcing effect may not be sufficient, and when it exceeds 100 parts by mass, the appearance and impact resistance may be inferior and the fluidity may not be sufficient. The preferable content of the glass fiber (D) is 45 parts by mass or more, more preferably 55 parts by mass or more, further preferably 65 parts by mass or more, particularly 100 parts by mass of the polybutylene terephthalate resin (A). 70 parts by mass or more is preferable, preferably 95 parts by mass or less, and more preferably 90 parts by mass or less. Thus, by containing glass fiber (D), the strength, rigidity, and dimensional stability of the polybutylene terephthalate resin composition can be improved.
[その他含有成分]
 本発明の樹脂組成物成形体に好ましく用いる上記したポリブチレンテレフタレート樹脂組成物、あるいは上記した第2及び第3の発明のポリブチレンテレフタレート樹脂組成物は、必須成分以外の他の熱可塑性樹脂を、本発明の効果を損わない範囲で含有することができる。その他の熱可塑性樹脂としては、具体的には、例えば、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、ポリフェニレンサルファイド樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、ポリオレフィン樹脂等が挙げられる。
 ただし、必須成分以外の樹脂を含有する場合の含有量は、ポリブチレンテレフタレート樹脂(A)100質量部に対し、20質量部以下とすることが好ましく、より好ましくは10質量部以下、さらには5質量部以下、特には3質量部以下とすることが好ましい。
[Other ingredients]
The polybutylene terephthalate resin composition described above preferably used in the resin composition molded article of the present invention, or the polybutylene terephthalate resin composition of the second and third inventions described above is a thermoplastic resin other than essential components, It can contain in the range which does not impair the effect of this invention. As other thermoplastic resins, specifically, for example, polyethylene terephthalate resin, polycarbonate resin, polyacetal resin, polyamide resin, polyphenylene oxide resin, polyphenylene sulfide resin, polysulfone resin, polyethersulfone resin, polyetherimide resin, Examples include polyether ketone resins and polyolefin resins.
However, when the resin other than the essential components is contained, the content is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and even more preferably 5 parts with respect to 100 parts by mass of the polybutylene terephthalate resin (A). It is preferable that the amount be 3 parts by mass or less, particularly 3 parts by mass or less.
 また、上記した以外の種々の添加剤を含有していてもよく、このような添加剤としては、安定剤、カーボンブラック、離型剤、難燃剤、難燃助剤、滴下防止剤、紫外線吸収剤、帯電防止剤、防曇剤、アンチブロッキング剤、可塑剤、分散剤、抗菌剤、着色剤等が挙げられる。 In addition, various additives other than those described above may be contained. Examples of such additives include stabilizers, carbon black, mold release agents, flame retardants, flame retardant aids, anti-dripping agents, and ultraviolet absorption. Agents, antistatic agents, antifogging agents, antiblocking agents, plasticizers, dispersants, antibacterial agents, colorants and the like.
[安定剤]
 ポリブチレンテレフタレート樹脂組成物は、安定剤を含有することが、熱安定性改良や、機械的強度、色相の悪化を防止する効果を有するという点で好ましい。安定剤としては、リン系安定剤、イオウ系安定剤およびフェノール系安定剤が好ましく、特に好ましいのは、フェノール系安定剤である。
[Stabilizer]
It is preferable that the polybutylene terephthalate resin composition contains a stabilizer because it has effects of improving thermal stability and preventing deterioration of mechanical strength and hue. As the stabilizer, a phosphorus stabilizer, a sulfur stabilizer, and a phenol stabilizer are preferable, and a phenol stabilizer is particularly preferable.
 リン系安定剤としては、亜リン酸、リン酸、亜リン酸エステル(ホスファイト)、3価のリン酸エステル(ホスホナイト)、5価のリン酸エステル(ホスフェート)等が挙げられ、中でも有機ホスファイト、ホスホナイト、ホスフェート化合物が好ましい。 Phosphorous stabilizers include phosphorous acid, phosphoric acid, phosphite ester (phosphite), trivalent phosphate ester (phosphonite), and pentavalent phosphate ester (phosphate). Phyto, phosphonite and phosphate compounds are preferred.
 有機ホスフェート化合物としては、好ましくは、下記一般式:
  (RO)3-nP(=O)OH
(式中、Rは、アルキル基またはアリール基であり、それぞれ同一であっても異なっていてもよい。nは0~2の整数を示す。)
で表される化合物である。より好ましくは、Rが炭素原子数8~30の長鎖アルキルアシッドホスフェート化合物が挙げられる。炭素原子数8~30のアルキル基の具体例としては、オクチル基、2-エチルヘキシル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ドデシル基、トリデシル基、イソトリデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、エイコシル基、トリアコンチル基等が挙げられる。
The organic phosphate compound is preferably the following general formula:
(R 1 O) 3-n P (═O) OH n
(Wherein R 1 is an alkyl group or an aryl group, and may be the same or different. N represents an integer of 0 to 2)
It is a compound represented by these. More preferably, R 1 is a long-chain alkyl acid phosphate compound having 8 to 30 carbon atoms. Specific examples of the alkyl group having 8 to 30 carbon atoms include octyl group, 2-ethylhexyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, dodecyl group, tridecyl group, isotridecyl group, tetradecyl group, A hexadecyl group, an octadecyl group, an eicosyl group, a triacontyl group, etc. are mentioned.
 長鎖アルキルアシッドホスフェートとしては、例えば、オクチルアシッドホスフェート、2-エチルヘキシルアシッドホスフェート、デシルアシッドホスフェート、ラウリルアシッドホスフェート、オクタデシルアシッドホスフェート、オレイルアシッドホスフェート、ベヘニルアシッドホスフェート、フェニルアシッドホスフェート、ノニルフェニルアシッドホスフェート、シクロヘキシルアシッドホスフェート、フェノキシエチルアシッドホスフェート、アルコキシポリエチレングリコールアシッドホスフェート、ビスフェノールAアシッドホスフェート、ジメチルアシッドホスフェート、ジエチルアシッドホスフェート、ジプロピルアシッドホスフェート、ジイソプロピルアシッドホスフェート、ジブチルアシッドホスフェート、ジオクチルアシッドホスフェート、ジ-2-エチルヘキシルアシッドホスフェート、ジオクチルアシッドホスフェート、ジラウリルアシッドホスフェート、ジステアリルアシッドホスフェート、ジフェニルアシッドホスフェート、ビスノニルフェニルアシッドホスフェート等が挙げられる。これらの中でも、オクタデシルアシッドホスフェートが好ましく、このものはADEKA社の商品名「アデカスタブ AX-71」として、市販されている。 Examples of the long-chain alkyl acid phosphate include octyl acid phosphate, 2-ethylhexyl acid phosphate, decyl acid phosphate, lauryl acid phosphate, octadecyl acid phosphate, oleyl acid phosphate, behenyl acid phosphate, phenyl acid cyclophosphate, nonyl phenyl cyclo acid phosphate Acid phosphate, phenoxyethyl acid phosphate, alkoxy polyethylene glycol acid phosphate, bisphenol A acid phosphate, dimethyl acid phosphate, diethyl acid phosphate, dipropyl acid phosphate, diisopropyl acid phosphate, dibutyl acid phosphate, di Chi le acid phosphate, di-2-ethylhexyl acid phosphate, dioctyl acid phosphate, dilauryl acid phosphate, distearyl acid phosphate, diphenyl acid phosphate, and a bis-nonylphenyl acid phosphate, or the like. Among these, octadecyl acid phosphate is preferable, and this is commercially available under the trade name “ADEKA STAB AX-71” of ADEKA.
 有機ホスファイト化合物としては、好ましくは、下記一般式:
  RO-P(OR)(OR
(式中、R、R及びRは、それぞれ水素原子、炭素原子数1~30のアルキル基または炭素原子数6~30のアリール基であり、R、R及びRのうちの少なくとも1つは炭素原子数6~30のアリール基である。)
で表される化合物が挙げられる。
As the organic phosphite compound, preferably, the following general formula:
R 2 O—P (OR 3 ) (OR 4 )
(Wherein R 2 , R 3 and R 4 are each a hydrogen atom, an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, and among R 2 , R 3 and R 4 , At least one of them is an aryl group having 6 to 30 carbon atoms.)
The compound represented by these is mentioned.
 有機ホスファイト化合物としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、ジラウリルハイドロジェンホスファイト、トリエチルホスファイト、トリデシルホスファイト、トリス(2-エチルヘキシル)ホスファイト、トリス(トリデシル)ホスファイト、トリステアリルホスファイト、ジフェニルモノデシルホスファイト、モノフェニルジデシルホスファイト、ジフェニルモノ(トリデシル)ホスファイト、テトラフェニルジプロピレングリコールジホスファイト、テトラフェニルテトラ(トリデシル)ペンタエリスリトールテトラホスファイト、水添ビスフェノールAフェノールホスファイトポリマー、ジフェニルハイドロジェンホスファイト、4,4’-ブチリデン-ビス(3-メチル-6-tert-ブチルフェニルジ(トリデシル)ホスファイト)、テトラ(トリデシル)4,4’-イソプロピリデンジフェニルジホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ジラウリルペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリス(4-tert-ブチルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、水添ビスフェノールAペンタエリスリトールホスファイトポリマー、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト等が挙げられる。これらの中でも、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイトが好ましい。 Examples of the organic phosphite compound include triphenyl phosphite, tris (nonylphenyl) phosphite, dilauryl hydrogen phosphite, triethyl phosphite, tridecyl phosphite, tris (2-ethylhexyl) phosphite, tris (tridecyl). ) Phosphite, tristearyl phosphite, diphenyl monodecyl phosphite, monophenyl didecyl phosphite, diphenyl mono (tridecyl) phosphite, tetraphenyldipropylene glycol diphosphite, tetraphenyltetra (tridecyl) pentaerythritol tetraphosphite Hydrogenated bisphenol A phenol phosphite polymer, diphenyl hydrogen phosphite, 4,4'-butylidene-bis (3-methyl-6- ert-butylphenyldi (tridecyl) phosphite), tetra (tridecyl) 4,4′-isopropylidenediphenyldiphosphite, bis (tridecyl) pentaerythritol diphosphite, bis (nonylphenyl) pentaerythritol diphosphite, di Lauryl pentaerythritol diphosphite, distearyl pentaerythritol diphosphite, tris (4-tert-butylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, hydrogenated bisphenol A pentaerythritol phosphite Phytopolymer, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite Sufaito, 2,2'-methylenebis (4,6-di -tert- butylphenyl) octyl phosphite, bis (2,4-dicumylphenyl) pentaerythritol diphosphite and the like. Among these, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite is preferable.
 有機ホスホナイト化合物としては、好ましくは、下記一般式:
  R-P(OR)(OR
 (式中、R、R及びRは、それぞれ水素原子、炭素原子数1~30のアルキル基又は炭素原子数6~30のアリール基であり、R、R及びRのうちの少なくとも1つは炭素原子数6~30のアリール基である。)
で表される化合物が挙げられる。
The organic phosphonite compound is preferably the following general formula:
R 5 -P (OR 6 ) (OR 7 )
(Wherein R 5 , R 6 and R 7 are each a hydrogen atom, an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, and among R 5 , R 6 and R 7 , At least one of them is an aryl group having 6 to 30 carbon atoms.)
The compound represented by these is mentioned.
 有機ホスホナイト化合物としては、テトラキス(2,4-ジ-iso-プロピルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-n-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-iso-プロピルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-n-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、およびテトラキス(2,6-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト等が挙げられる。 Examples of the organic phosphonite compound include tetrakis (2,4-di-iso-propylphenyl) -4,4′-biphenylenediphosphonite, tetrakis (2,4-di-n-butylphenyl) -4,4′-biphenyl. Range phosphonite, tetrakis (2,4-di-tert-butylphenyl) -4,4'-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -4,3'-biphenylenediphospho Knight, tetrakis (2,4-di-tert-butylphenyl) -3,3′-biphenylenediphosphonite, tetrakis (2,6-di-iso-propylphenyl) -4,4′-biphenylenediphosphonite, Tetrakis (2,6-di-n-butylphenyl) -4,4′-biphenylenediphosphonite, tetrakis (2 6-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,3′-biphenylenediphosphonite, and tetrakis (2,6 -Di-tert-butylphenyl) -3,3'-biphenylenediphosphonite and the like.
 イオウ系安定剤としては、従来公知の任意のイオウ原子含有化合物を用いることが出来、中でもチオエーテル類が好ましい。具体的には例えば、ジドデシルチオジプロピオネート、ジテトラデシルチオジプロピオネート、ジオクタデシルチオジプロピオネート、ペンタエリスリトールテトラキス(3-ドデシルチオプロピオネート)、チオビス(N-フェニル-β-ナフチルアミン)、2-メルカプトベンゾチアゾール、2-メルカプトベンゾイミダゾール、テトラメチルチウラムモノサルファイド、テトラメチルチウラムジサルファイド、ニッケルジブチルジチオカルバメート、ニッケルイソプロピルキサンテート、トリラウリルトリチオホスファイトが挙げられる。これらの中でも、ペンタエリスリトールテトラキス(3-ドデシルチオプロピオネート)が好ましい。 As the sulfur stabilizer, any conventionally known sulfur atom-containing compound can be used, and among these, thioethers are preferred. Specifically, for example, didodecylthiodipropionate, ditetradecylthiodipropionate, dioctadecylthiodipropionate, pentaerythritol tetrakis (3-dodecylthiopropionate), thiobis (N-phenyl-β-naphthylamine) ), 2-mercaptobenzothiazole, 2-mercaptobenzimidazole, tetramethylthiuram monosulfide, tetramethylthiuram disulfide, nickel dibutyldithiocarbamate, nickel isopropylxanthate, trilauryltrithiophosphite. Among these, pentaerythritol tetrakis (3-dodecylthiopropionate) is preferable.
 フェノール系安定剤としては、例えば、ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、チオジエチレンビス(3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート)、ペンタエリスリトールテトラキス(3-(3,5-ジ-ネオペンチル-4-ヒドロキシフェニル)プロピオネート)等が挙げられる。これらの中でも、ペンタエリスリト-ルテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートが好ましい。 Examples of the phenol-based stabilizer include pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4 -Hydroxyphenyl) propionate, thiodiethylenebis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate), pentaerythritol tetrakis (3- (3,5-di-neopentyl-4-hydroxyphenyl) ) Propionate) and the like. Among these, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) ) Propionate is preferred.
 中でも、融点が150℃以上のヒンダードフェノール系安定剤を用いることが好ましい。融点が150℃以上であると、安定剤自身の熱安定性が高くなるため、変質して安定化の効果を失ったり、溶融混練等の樹脂組成物製造時や射出成形等の高温度環境下でもガスが生成しにくくなる。融点は、より好ましくは180℃以上であり、さらに好ましくは200℃以上であり、特に好ましくは220℃以上である。融点の上限は通常350℃以下であり、好ましくは300℃以下であり、より好ましくは280℃以下である。 Among them, it is preferable to use a hindered phenol stabilizer having a melting point of 150 ° C. or higher. When the melting point is 150 ° C. or higher, the thermal stability of the stabilizer itself is increased, so that the stabilizer is altered and loses its stabilizing effect, or during the production of a resin composition such as melt kneading or in a high temperature environment such as injection molding. But it becomes difficult to produce gas. The melting point is more preferably 180 ° C. or higher, further preferably 200 ° C. or higher, and particularly preferably 220 ° C. or higher. The upper limit of the melting point is usually 350 ° C. or lower, preferably 300 ° C. or lower, more preferably 280 ° C. or lower.
 安定剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
 安定剤の含有量は、ポリブチレンテレフタレート樹脂(A)100質量部に対し、好ましくは0.001~1.5質量部である。安定剤の含有量が0.001質量部未満であると、樹脂組成物の熱安定性や相溶性の改良が期待しにくく、成形時の分子量の低下や色相悪化が起こりやすく、1.5質量部を超えると、過剰量となりシルバーストリークの発生や、色相悪化が更に起こりやすくなる傾向がある。安定剤の含有量は、より好ましくは0.005~1.2質量部であり、更に好ましくは、0.01~1.0質量部である。
One type of stabilizer may be contained, or two or more types may be contained in any combination and ratio.
The content of the stabilizer is preferably 0.001 to 1.5 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin (A). When the content of the stabilizer is less than 0.001 part by mass, it is difficult to expect an improvement in the thermal stability and compatibility of the resin composition, and a decrease in molecular weight and hue deterioration during molding are likely to occur. When it exceeds the part, it becomes an excessive amount, and there is a tendency that silver streak and hue deterioration are more likely to occur. The content of the stabilizer is more preferably 0.005 to 1.2 parts by mass, still more preferably 0.01 to 1.0 parts by mass.
[カーボンブラック]
 ポリブチレンテレフタレート樹脂組成物は、カーボンブラックを含有することも好ましい。カーボンブラックを含有することで、成形体の耐侯性や外観等が向上する。
 カーボンブラックは、その種類、原料種、製造方法に制限はなく、ファーネスブラック、チャンネルブラック、アセチレンブラック、ケッチェンブラック等のいずれをも使用することができる。その数平均粒子径には特に制限はないが、5~60nmであることが好ましい。このように数平均粒子径が所定の範囲にあるカーボンブラックを用いることにより、高温下でブリスターが発生し難い組成物を得ることができる。
 なお、数平均粒子径は、ASTM D3849規格(カーボンブラックの標準試験法-電子顕微鏡法による形態的特徴付け)に記載の手順によりアグリゲート拡大画像を取得し、このアグリゲート画像から単位構成粒子として3,000個の粒子径を測定し、算術平均して求めることができる。
[Carbon black]
It is also preferable that the polybutylene terephthalate resin composition contains carbon black. By containing carbon black, the weather resistance and appearance of the molded body are improved.
There are no restrictions on the type, raw material type, and manufacturing method of carbon black, and any of furnace black, channel black, acetylene black, ketjen black, and the like can be used. The number average particle diameter is not particularly limited, but is preferably 5 to 60 nm. As described above, by using carbon black having a number average particle diameter in a predetermined range, a composition in which blisters are hardly generated at a high temperature can be obtained.
The number average particle size was determined by obtaining an enlarged aggregate image according to the procedure described in the ASTM D3849 standard (standard test method for carbon black—morphological characterization by electron microscopy). 3,000 particle diameters can be measured and arithmetically averaged.
 カーボンブラックの窒素吸着比表面積(単位:m/g)は、通常1,000m/g未満が好ましく、中でも50~400m/gであることが好ましい。窒素吸着比表面積を1,000m/g未満にすることで、ポリブチレンテレフタレート樹脂組成物の流動性や成形体の外観が向上する傾向にあり好ましい。なお、窒素吸着比表面積はJIS K6217に準拠して測定することができる。 The nitrogen adsorption specific surface area (unit: m 2 / g) of carbon black is usually preferably less than 1,000 m 2 / g, and more preferably 50 to 400 m 2 / g. Setting the nitrogen adsorption specific surface area to less than 1,000 m 2 / g is preferable because the fluidity of the polybutylene terephthalate resin composition and the appearance of the molded body tend to be improved. The nitrogen adsorption specific surface area can be measured according to JIS K6217.
 また、カーボンブラックのDBP(ジブチルフタレート)吸収量は、300cm/100g未満であることが好ましく、中でも30~200cm/100gであることが好ましい。DBP吸収量を300cm/100g未満にすることで、ポリブチレンテレフタレート樹脂組成物の流動性や成形体の外観が向上する傾向にあり好ましい。なお、DBP吸収量(単位:cm/100g)はJIS K6217に準拠して測定することができる。
 また使用するカーボンブラックは、そのpHについても特に制限はないが、通常、2~10であり、3~9であることが好ましく、4~8であることがさらに好ましい。
Further, the carbon black DBP (dibutyl phthalate) absorption is preferably less than 300 cm 3/100 g, is preferably Among them, 30 ~ 200cm 3 / 100g. The DBP absorption amount by less than 300 cm 3/100 g, there is a tendency that appearance of fluidity and molding of polybutylene terephthalate resin composition is improved preferably. Incidentally, DBP absorption (unit: cm 3 / 100g) can be measured according to JIS K6217.
The carbon black to be used is not particularly limited in pH, but is usually 2 to 10, preferably 3 to 9, and more preferably 4 to 8.
 カーボンブラックは、一種を単独でまた2種以上併用して使用することができる。更にカーボンブラックは、バインダーを用いて顆粒化することも可能であり、他の樹脂中に高濃度で溶融混練したマスターバッチでの使用も可能である。溶融混練したマスターバッチを使用することによって、押出時のハンドリング性改良、樹脂組成物中への分散性改良が達成できる。上記樹脂としては、ポリスチレン系樹脂、ポリエステル系樹脂、アクリル系樹脂等が挙げられる。
 マスターバッチ中のカーボンブラックの含有量は10~80質量%であることが好ましく、20~70質量%がより好ましく、30~60質量%がさらに好ましい。
Carbon black can be used alone or in combination of two or more. Furthermore, carbon black can be granulated using a binder, and can also be used in a masterbatch that is melt-kneaded at a high concentration in another resin. By using the melt-kneaded master batch, the handling property during extrusion and the dispersibility improvement in the resin composition can be achieved. Examples of the resin include polystyrene resin, polyester resin, and acrylic resin.
The content of carbon black in the master batch is preferably 10 to 80% by mass, more preferably 20 to 70% by mass, and further preferably 30 to 60% by mass.
 カーボンブラックの含有量は、ポリブチレンテレフタレート樹脂(A)100質量部に対し、好ましくは0.01~5質量部であり、より好ましくは0.05質量部以上、さらに好ましくは0.08質量部以上、特に0.1質量部以上であり、また、より好ましくは2質量部以下、さらに好ましくは1.5質量部以下、特に好ましくは1.0質量部以下である。含有量が0.01質量部未満であると耐候性が不十分となる場合があり、5質量部を超えると、成形性、耐衝撃性等の機械的特性が低下しやすい傾向にある。 The content of carbon black is preferably 0.01 to 5 parts by mass, more preferably 0.05 parts by mass or more, and still more preferably 0.08 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin (A). As mentioned above, it is 0.1 mass part or more especially, More preferably, it is 2 mass parts or less, More preferably, it is 1.5 mass parts or less, Most preferably, it is 1.0 mass part or less. When the content is less than 0.01 parts by mass, the weather resistance may be insufficient. When the content exceeds 5 parts by mass, mechanical properties such as moldability and impact resistance tend to be deteriorated.
[離型剤]
 ポリブチレンテレフタレート樹脂組成物は離型剤を含有することが好ましい。
 離型剤としては、例えば、脂肪族カルボン酸、脂肪族カルボン酸とアルコールとのエステル、脂肪族炭化水素化合物、ポリシロキサン系シリコーンオイルなどが挙げられる。
[Release agent]
The polybutylene terephthalate resin composition preferably contains a release agent.
Examples of the release agent include aliphatic carboxylic acids, esters of aliphatic carboxylic acids and alcohols, aliphatic hydrocarbon compounds, polysiloxane silicone oils, and the like.
 脂肪族カルボン酸としては、例えば、飽和または不飽和の脂肪族一価、二価または三価カルボン酸を挙げることができる。ここで脂肪族カルボン酸とは、脂環式のカルボン酸も包含する。これらの中で好ましい脂肪族カルボン酸は炭素数6~36の一価または二価カルボン酸であり、炭素数6~36の脂肪族飽和一価カルボン酸がさらに好ましい。かかる脂肪族カルボン酸の具体例としては、パルミチン酸、ステアリン酸、カプロン酸、カプリン酸、ラウリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、メリシン酸、テトラリアコンタン酸、モンタン酸、アジピン酸、アゼライン酸などが挙げられる。 Examples of the aliphatic carboxylic acid include saturated or unsaturated aliphatic monovalent, divalent, or trivalent carboxylic acids. Here, the aliphatic carboxylic acid includes alicyclic carboxylic acid. Among these, preferred aliphatic carboxylic acids are monovalent or divalent carboxylic acids having 6 to 36 carbon atoms, and aliphatic saturated monovalent carboxylic acids having 6 to 36 carbon atoms are more preferred. Specific examples of such aliphatic carboxylic acids include palmitic acid, stearic acid, caproic acid, capric acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, mellicic acid, tetrariacontanoic acid, montanic acid, adipine Examples include acids and azelaic acid.
 脂肪族カルボン酸とアルコールとのエステルにおける脂肪族カルボン酸としては、例えば、前記脂肪族カルボン酸と同じものが使用できる。一方、アルコールとしては、例えば、飽和または不飽和の一価または多価アルコールが挙げられる。これらのアルコールは、フッ素原子、アリール基などの置換基を有していてもよい。これらの中では、炭素数30以下の一価または多価の飽和アルコールが好ましく、炭素数30以下の脂肪族飽和一価アルコールまたは脂肪族飽和多価アルコールがさらに好ましい。なお、ここで脂肪族とは、脂環式化合物も含有する。 As the aliphatic carboxylic acid in the ester of an aliphatic carboxylic acid and an alcohol, for example, the same one as the aliphatic carboxylic acid can be used. On the other hand, examples of the alcohol include saturated or unsaturated monohydric or polyhydric alcohols. These alcohols may have a substituent such as a fluorine atom or an aryl group. Among these, monovalent or polyvalent saturated alcohols having 30 or less carbon atoms are preferable, and aliphatic saturated monohydric alcohols or aliphatic saturated polyhydric alcohols having 30 or less carbon atoms are more preferable. In addition, an aliphatic includes an alicyclic compound here.
 かかるアルコールの具体例としては、オクタノール、デカノール、ドデカノール、ステアリルアルコール、ベヘニルアルコール、エチレングリコール、ジエチレングリコール、グリセリン、ペンタエリスリトール、2,2-ジヒドロキシペルフルオロプロパノール、ネオペンチレングリコール、ジトリメチロールプロパン、ジペンタエリスリトール等が挙げられる。 Specific examples of such alcohols include octanol, decanol, dodecanol, stearyl alcohol, behenyl alcohol, ethylene glycol, diethylene glycol, glycerin, pentaerythritol, 2,2-dihydroxyperfluoropropanol, neopentylene glycol, ditrimethylolpropane, dipentaerythritol, and the like. Is mentioned.
 なお、上記のエステルは、不純物として脂肪族カルボン酸及び/またはアルコールを含有していてもよい。また、上記のエステルは、純物質であってもよいが、複数の化合物の混合物であってもよい。さらに、結合して一つのエステルを構成する脂肪族カルボン酸及びアルコールは、それぞれ、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。 In addition, said ester may contain aliphatic carboxylic acid and / or alcohol as an impurity. Moreover, although said ester may be a pure substance, it may be a mixture of a plurality of compounds. Furthermore, the aliphatic carboxylic acid and alcohol which combine to form one ester may be used alone or in combination of two or more in any combination and ratio.
 脂肪族カルボン酸とアルコールとのエステルの具体例としては、モンタン酸エステルワックス、蜜ロウ(ミリシルパルミテートを主成分とする混合物)、ステアリン酸ステアリル、ベヘン酸ベヘニル、ベヘン酸ステアリル、グリセリンモノパルミテート、グリセリンモノステアレート、グリセリンジステアレート、グリセリントリステアレート、ペンタエリスリトールモノパルミテート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ペンタエリスリトールテトラステアレート等が挙げられる。 Specific examples of esters of aliphatic carboxylic acids and alcohols include montanic acid ester wax, beeswax (mixture based on myricyl palmitate), stearyl stearate, behenyl behenate, stearyl behenate, glycerin monopalmi Tate, glycerol monostearate, glycerol distearate, glycerol tristearate, pentaerythritol monopalmitate, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, pentaerythritol tetrastearate, etc. .
 脂肪族炭化水素化合物としては、例えば、流動パラフィン、パラフィンワックス、マイクロクリスタリンワックス、ポリエチレンワックス等のポリオレフィンワックス、フィッシャ-トロプシュワックス、炭素数3~12のα-オレフィンオリゴマー等が挙げられる。なお、ここで脂肪族炭化水素としては、脂環式炭化水素も含まれる。また、これらの炭化水素は部分酸化されていてもよい。また、数平均分子量は、好ましくは200~30000であり、より好ましくは1000~15000であり、さらに好ましくは1500~10000であり、特に好ましくは2000~5000である。脂肪族炭化水素化合物は単一物質であってもよいが、構成成分や分子量が様々なものの混合物であっても、主成分が上記の範囲内であれば使用できる。 Examples of the aliphatic hydrocarbon compound include liquid wax, paraffin wax, microcrystalline wax, polyolefin wax such as polyethylene wax, Fischer-Tropsch wax, α-olefin oligomer having 3 to 12 carbon atoms, and the like. Here, the aliphatic hydrocarbon includes alicyclic hydrocarbons. Further, these hydrocarbons may be partially oxidized. The number average molecular weight is preferably 200 to 30000, more preferably 1000 to 15000, still more preferably 1500 to 10,000, and particularly preferably 2000 to 5000. The aliphatic hydrocarbon compound may be a single substance, but even a mixture of various constituent components and molecular weights can be used as long as the main component is within the above range.
 本発明において、離型剤としては、耐熱性の観点からポリオレフィンワックスが好ましい。ポリオレフィンワックスとしては、従来公知の任意のものを使用でき、例えば、好ましくは炭素数2~30、より好ましくは2~12、さらに好ましくは2~10の、オレフィンの一種、または任意の割合の二種以上を含む(共)重合体(重合または共重合を意味する。以下同様。)が挙げられる。 In the present invention, the release agent is preferably a polyolefin wax from the viewpoint of heat resistance. As the polyolefin wax, any conventionally known wax can be used. For example, the polyolefin wax preferably has 2 to 30 carbon atoms, more preferably 2 to 12 carbon atoms, and further preferably 2 to 10 carbon atoms. (Co) polymers (meaning polymerization or copolymerization; the same shall apply hereinafter) containing at least species.
 炭素数2~30のオレフィンとしては、例えば、エチレン、プロピレン、炭素数4~30(好ましくは4~12、さらに好ましくは4~10)のα-オレフィン、および炭素数4~30(好ましくは4~18、さらに好ましくは4~8)のジエンが挙げられる。α-オレフィンとしては、例えば1-ブテン、4-メチル-1-ペンテン、1-ペンテン、1-オクテン、1-デセンおよび1-ドデセンが挙げられる。ジエンとしては、例えば、ブタジエン、イソプレン、シクロペンタジエン、11-ドデカジエン等が挙げられる。 Examples of the olefin having 2 to 30 carbon atoms include ethylene, propylene, α-olefin having 4 to 30 carbon atoms (preferably 4 to 12, more preferably 4 to 10), and 4 to 30 carbon atoms (preferably 4). -18, more preferably 4-8) dienes. Examples of the α-olefin include 1-butene, 4-methyl-1-pentene, 1-pentene, 1-octene, 1-decene and 1-dodecene. Examples of the diene include butadiene, isoprene, cyclopentadiene, 11-dodecadiene, and the like.
 ポリオレフィンワックスとしては、離型性と耐熱性の点から、ポリエチレンワックスが好ましい。
 ポリエチレンワックスの製造方法は任意であり、例えば、エチレンの重合やポリエチレンの熱分解により製造することができる。
As the polyolefin wax, polyethylene wax is preferable from the viewpoint of releasability and heat resistance.
The manufacturing method of polyethylene wax is arbitrary, for example, can be manufactured by polymerization of ethylene or thermal decomposition of polyethylene.
 離型剤としては、酸価が10~40mgKOH/gのものが、離型抵抗が小さく離型性の改良効果が著しく、揮発分が少ない点から好ましい。酸価は、より好ましくは11~35mgKOH/g、さらに好ましくは12~32mgKOH/gである。酸価が10~40mgKOH/gの範囲となれば、酸価が10mgKOH/g未満のものと40mgKOH/gを超えるものを併用してもよく、複数種類の離型剤全体としての酸価が、10~40mgKOH/gとなればよい。 As the mold release agent, those having an acid value of 10 to 40 mgKOH / g are preferred from the viewpoint that the mold release resistance is small, the effect of improving the mold release property is remarkable, and the volatile content is small. The acid value is more preferably 11 to 35 mgKOH / g, still more preferably 12 to 32 mgKOH / g. If the acid value is in the range of 10 to 40 mgKOH / g, those having an acid value of less than 10 mgKOH / g and those having an acid value of more than 40 mgKOH / g may be used in combination. It may be 10 to 40 mg KOH / g.
 酸価が10~40mgKOH/gの離型剤としては、上記した脂肪族カルボン酸とアルコールとのエステルであって酸価が10~40mgKOH/gのものや、上記した脂肪族炭化水素化合物、好ましくはポリオレフィンワックスに、カルボキシル基(カルボン酸(無水物)基、即ちカルボン酸基および/またはカルボン酸無水物基を表す。以下同様。)、ハロホルミル基、エステル基、カルボン酸金属塩基、水酸基、アルコシル基、エポキシ基、アミノ基、アミド基等の、ポリエステル樹脂と親和性のある官能基を付与した変性ポリオレフィンワックスが好ましい。 As the release agent having an acid value of 10 to 40 mgKOH / g, an ester of the above aliphatic carboxylic acid and alcohol having an acid value of 10 to 40 mgKOH / g, the above-mentioned aliphatic hydrocarbon compound, Represents a carboxyl group (a carboxylic acid (anhydride) group, that is, a carboxylic acid group and / or a carboxylic anhydride group), a haloformyl group, an ester group, a carboxylic acid metal base, a hydroxyl group, and an alcohol. A modified polyolefin wax provided with a functional group having an affinity for a polyester resin such as a group, an epoxy group, an amino group, or an amide group is preferred.
 ポリオレフィンワックスの変性に用いるカルボキシル基としては、マレイン酸、無水マレイン酸、アクリル酸、およびメタクリル酸などのカルボン酸基を含有する低分子量化合物、スルホン酸などのスルホ基を含有する低分子量化合物、ホスホン酸などのホスホ基を含有する低分子量化合物などを挙げることができる。これらの中でもカルボン酸基を含有する低分子量化合物が好ましく、特にマレイン酸、無水マレイン酸、アクリル酸、およびメタクリル酸などが好ましい。これらのカルボン酸は、一種または任意の割合で二種以上を併用してもよい。
 変性ポリオレフィンワックスにおける酸の付加量としては、変性ポリオレフィンワックスに対して、通常、0.01~10質量%、好ましくは0.05~5質量%である。
Examples of the carboxyl group used for modifying the polyolefin wax include low molecular weight compounds containing carboxylic acid groups such as maleic acid, maleic anhydride, acrylic acid, and methacrylic acid, low molecular weight compounds containing sulfo groups such as sulfonic acid, and phosphones. Examples thereof include a low molecular weight compound containing a phospho group such as an acid. Among these, low molecular weight compounds containing a carboxylic acid group are preferable, and maleic acid, maleic anhydride, acrylic acid, methacrylic acid, and the like are particularly preferable. These carboxylic acids may be used alone or in combination of two or more in any proportion.
The amount of acid added to the modified polyolefin wax is usually 0.01 to 10% by mass, preferably 0.05 to 5% by mass, based on the modified polyolefin wax.
 ハロホルミル基としては具体的には例えば、クロロホルミル基、ブロモホルミル基等が挙げられる。これらの官能基を、ポリオレフィンワックスに付与する手段は、従来公知の任意の方法によれば良く、具体的には例えば、官能基を有する化合物との共重合や、酸化などの後加工など、いずれの方法でもよい。 Specific examples of the haloformyl group include a chloroformyl group and a bromoformyl group. Means for imparting these functional groups to the polyolefin wax may be any conventionally known method. Specifically, for example, copolymerization with a compound having a functional group, post-processing such as oxidation, etc. The method may be used.
 官能基の種類としては、ポリエステル樹脂と適度な親和性があることから、カルボキシル基であることが好ましい。変性ポリオレフィンワックスにおけるカルボキシル基の濃度としては、適宜選択して決定すればよいが、低すぎるとポリエステル樹脂との親和性が小さく、揮発分の抑制効果が小さくなり、また離型効果が低下する場合がある。逆に濃度が高すぎると、例えば、変性の際にポリオレフィンワックスを構成する高分子主鎖が過度に切断さて、変性ポリオレフィンワックスの分子量が低下し過ぎることで揮発分の発生が多くなり、ポリエステル樹脂成形体表面に曇りが発生する場合がある。
 変性ポリオレフィンワックスとしては、酸化ポリエチレンワックスが好ましい。
The type of functional group is preferably a carboxyl group because it has a moderate affinity with the polyester resin. The concentration of the carboxyl group in the modified polyolefin wax may be appropriately selected and determined, but if it is too low, the affinity with the polyester resin is small, the effect of suppressing volatile matter is reduced, and the mold release effect is reduced. There is. On the other hand, if the concentration is too high, for example, the polymer main chain constituting the polyolefin wax is excessively cleaved during modification, and the molecular weight of the modified polyolefin wax is excessively reduced, resulting in increased generation of volatile matter, and polyester resin. Cloudiness may occur on the surface of the molded body.
As the modified polyolefin wax, an oxidized polyethylene wax is preferable.
 なお、離型剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
 離型剤の含有量は、ポリブチレンテレフタレート樹脂(A)100質量部に対し、通常0.001質量部以上、好ましくは0.01質量部以上であり、また、通常2質量部以下、好ましくは1.5質量部以下である。離型剤の含有量が上記範囲の下限値未満の場合は、離型性の効果が十分でない場合があり、離型剤の含有量が上記範囲の上限値を超える場合は、耐加水分解性の低下、射出成形時の金型汚染などが生じる可能性がある。
In addition, 1 type may contain the mold release agent and 2 or more types may contain it by arbitrary combinations and a ratio.
The content of the release agent is usually 0.001 parts by mass or more, preferably 0.01 parts by mass or more, and usually 2 parts by mass or less, preferably 100 parts by mass of the polybutylene terephthalate resin (A). 1.5 parts by mass or less. When the content of the release agent is less than the lower limit of the above range, the effect of releasability may not be sufficient, and when the content of the release agent exceeds the upper limit of the above range, hydrolysis resistance And mold contamination during injection molding may occur.
[樹脂組成物の製造方法]
 ポリブチレンテレフタレート樹脂組成物を製造する方法としては、ポリブチレンテレフタレート樹脂組成物調製の常法に従って行うことができる。すなわち、ポリブチレンテレフタレート樹脂(A)、アクリロニトリル-スチレン系共重合体(B1)、エポキシ変性されたアクリロニトリル-スチレン系共重合体(B2)、あるいはエポキシ変性アクリル系重合体(C)、及び所望により添加されるその他樹脂成分及び種々の添加剤を、一緒にしてよく混合し、次いで一軸又は二軸押出機で溶融混練する。ガラス繊維(D)はサイドフィードすることが好ましい。また、一部をマスターバッチ化したものを配合して溶融混練してもよい。さらには、予め各成分を混合した混合物を、溶融混練することなく、そのまま射出成形機等の成形機に供給し、各種成形品を製造することも可能である。
[Method for Producing Resin Composition]
As a method for producing a polybutylene terephthalate resin composition, it can be carried out according to a conventional method for preparing a polybutylene terephthalate resin composition. That is, polybutylene terephthalate resin (A), acrylonitrile-styrene copolymer (B1), epoxy-modified acrylonitrile-styrene copolymer (B2), or epoxy-modified acrylic polymer (C), and optionally Other resin components to be added and various additives are mixed together and then melt-kneaded in a single or twin screw extruder. The glass fiber (D) is preferably side fed. Further, a part of which is made into a master batch may be blended and melt-kneaded. Furthermore, it is also possible to produce various molded products by supplying a mixture obtained by mixing each component in advance to a molding machine such as an injection molding machine without melt-kneading.
 溶融混練に際しての加熱温度は、通常220~300℃の範囲から適宜選ぶことができる。温度が高すぎると分解ガスが発生しやすく、外観不良の原因になる場合がある。それ故、剪断発熱等に考慮したスクリュー構成の選定が望ましい。混練時や、後行程の成形時の分解を抑制する為、酸化防止剤や熱安定剤の使用が望ましい。 The heating temperature at the time of melt kneading can be appropriately selected from the range of usually 220 to 300 ° C. If the temperature is too high, decomposition gas is likely to be generated, which may cause poor appearance. Therefore, it is desirable to select a screw configuration in consideration of shear heat generation. In order to suppress decomposition during kneading or molding in the subsequent process, it is desirable to use an antioxidant or a heat stabilizer.
 原料のポリブチレンテレフタレート樹脂組成物は、270℃で10分間熱処理して発生するガスをガスクロマトグラフで分析した際に検出されるスチレン系単量体の量が45(質量)ppm以下であることが好ましい。樹脂組成物のスチレン系単量体ガス量が45ppm以下であることで、車両内装部品として使用した場合等にもVOCの問題が解決され、また成形時の外観も改善される。一方、45ppmを超えると、車両用内装部品としてのクリーン性が悪化しVOC問題の解決が難しくなり、また成形時の外観も悪いものとなりやすい。樹脂組成物中のスチレン系単量体ガスの量は好ましくは30ppm以下、より好ましくは20ppm以下であり、また、その下限としては通常2ppmである。
 なお、樹脂組成物中のスチレン系単量体ガスの量は、270℃、10分間熱処理して発生するガスをガスクロマトグラフで分析することにより求められるが、測定値を、樹脂組成物の質量あたりの値に換算して求める量(単位:質量ppm)であり、その具体的な条件は、実施例に詳記される通りである。
The raw polybutylene terephthalate resin composition has a styrene monomer content of 45 (mass) ppm or less detected when a gas generated by heat treatment at 270 ° C. for 10 minutes is analyzed by gas chromatography. preferable. When the amount of the styrene monomer gas in the resin composition is 45 ppm or less, the VOC problem is solved even when used as a vehicle interior part, and the appearance at the time of molding is also improved. On the other hand, if it exceeds 45 ppm, cleanliness as an interior part for a vehicle is deteriorated, it becomes difficult to solve the VOC problem, and the appearance at the time of molding tends to be poor. The amount of the styrene monomer gas in the resin composition is preferably 30 ppm or less, more preferably 20 ppm or less, and the lower limit thereof is usually 2 ppm.
The amount of the styrenic monomer gas in the resin composition can be obtained by analyzing a gas generated by heat treatment at 270 ° C. for 10 minutes using a gas chromatograph. The amount (unit: ppm by mass) obtained by converting to the value of, and the specific conditions are as detailed in the examples.
 また、原料のポリブチレンテレフタレート樹脂組成物は、270℃で10分間熱処理して発生するガスをガスクロマトグラフで分析した際に検出されるエチルベンゼンの量が好ましくは3(質量)ppm以下であることが好ましい。このようにすることで、成形品を車両内装部品として使用した場合等にもVOCの問題が解決され、また成形品の外観も改善される。
 なお、樹脂組成物中のスチレン及びエチルベンゼンの量は、前記したように、270℃で10分間熱処理して発生するガスをガスクロマトグラフで分析することにより得られた量を、共重合体あるいは樹脂組成物質量あたりの値に換算した量(単位:質量ppm)である。その具体的な想定方法や条件は、実施例に詳記される通りである。
The raw polybutylene terephthalate resin composition is preferably 3 (mass) ppm or less in the amount of ethylbenzene detected when a gas generated by heat treatment at 270 ° C. for 10 minutes is analyzed by gas chromatography. preferable. By doing so, the VOC problem is solved even when the molded product is used as a vehicle interior part, and the appearance of the molded product is also improved.
The amount of styrene and ethylbenzene in the resin composition is the amount obtained by analyzing the gas generated by heat treatment at 270 ° C. for 10 minutes by gas chromatography as described above. It is the amount (unit: mass ppm) converted to a value per substance amount. The specific assumption method and conditions are as detailed in the examples.
 また、ポリブチレンテレフタレート樹脂組成物は、270℃で10分間熱処理して発生するガスをガスクロマトグラフで分析した際に検出されるスチレン系単量体とエチルベンゼンの合計量が、45(質量)ppm以下であることが好ましい。このようにすることで、車両内装部品として使用した場合等にもVOCの問題が解決され、また成形時の外観も改善される。樹脂組成物中のスチレン系単量体とエチルベンゼンの合計量は好ましくは30ppm以下、より好ましくは20ppm以下であり、また、その下限としては通常3ppmである。 In addition, the polybutylene terephthalate resin composition has a total amount of styrene monomer and ethylbenzene detected when a gas generated by heat treatment at 270 ° C. for 10 minutes is analyzed by gas chromatography is 45 (mass) ppm or less. It is preferable that By doing in this way, the VOC problem is solved even when used as a vehicle interior part, and the appearance at the time of molding is also improved. The total amount of the styrene monomer and ethylbenzene in the resin composition is preferably 30 ppm or less, more preferably 20 ppm or less, and the lower limit is usually 3 ppm.
 樹脂組成物のスチレン系単量体ガス量を45ppm以下にするには、上記したスチレン系共重合体(B)としてスチレン系単量体ガス量が600ppm以下、好ましくは550ppm以下のものを用いるか、さらには上記したホスファイト系安定剤やヒンダードフェノール系安定剤等を配合する等により可能である。
 また、樹脂組成物のエチルベンゼンガス量を3ppm以下にするには、例えば、上記したホスファイト系安定剤やヒンダードフェノール系安定剤等を配合する等により可能である。
In order to reduce the amount of styrene monomer gas in the resin composition to 45 ppm or less, is the above styrene copolymer (B) used to have a styrene monomer gas amount of 600 ppm or less, preferably 550 ppm or less? Furthermore, it is possible by blending the above-described phosphite stabilizer, hindered phenol stabilizer and the like.
The amount of ethylbenzene gas in the resin composition can be reduced to 3 ppm or less by, for example, blending the above-described phosphite stabilizer, hindered phenol stabilizer, or the like.
[成形体]
 上記したポリブチレンテレフタレート樹脂組成物を用いて成形体を製造する方法は、特に限定されず、ポリブチレンテレフタレート樹脂組成物について一般に採用されている成形法を任意に採用でき、射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法、ブロー成形法等が挙げられるが、射出成形法が好ましい。
[Molded body]
The method for producing a molded body using the polybutylene terephthalate resin composition described above is not particularly limited, and any molding method generally employed for the polybutylene terephthalate resin composition can be arbitrarily adopted. Injection molding method, injection compression molding method, two-color molding method, hollow molding method such as gas assist, molding method using heat insulating mold, molding method using rapid heating mold, foam molding (including supercritical fluid) , Insert molding, IMC (in-mold coating molding) molding method, extrusion molding method, sheet molding method, thermoforming method, rotational molding method, laminate molding method, press molding method, blow molding method, etc., injection molding method Is preferred.
 本発明の成形体は、前述の通り、海島構造を有し、ポリブチレンテレフタレート樹脂(A)が連続相を形成し、
 スチレン系共重合体(B)を含むドメインが、ポリブチレンテレフタレート樹脂(A)の連続相中に島状に分散しており、前記島状部の中にはポリブチレンテレフタレート樹脂(A)の相が湖として存在しており、島状部の巾の最大値が6μm以下であるモルフォロジーを有する。
As described above, the molded body of the present invention has a sea-island structure, and the polybutylene terephthalate resin (A) forms a continuous phase.
The domain containing the styrene copolymer (B) is dispersed in islands in the continuous phase of the polybutylene terephthalate resin (A), and the phase of the polybutylene terephthalate resin (A) is in the islands. Exists as a lake, and has a morphology in which the maximum width of the island-shaped part is 6 μm or less.
 このようなモルフォロジーの成形体を製造する好ましい方法としては、例えば、ポリブチレンテレフタレート樹脂(A)100質量部に対し、スチレン系共重合体(B)45~100質量部を含有し、さらに、好ましくはこれらにエポキシ変性アクリル系重合体(C)を配合した樹脂組成物を用いて射出成形することが挙げられる。エポキシ変性アクリル系重合体(C)を用いることで、スチレン系共重合体(B)のポリブチレンテレフタレート樹脂(A)への馴染みが良くなるため、高度の分散が進行して、本発明のモルフォロジーとすることができる。 As a preferred method for producing such a molded article having a morphology, for example, it contains 45 to 100 parts by mass of a styrene copolymer (B) with respect to 100 parts by mass of a polybutylene terephthalate resin (A), and more preferably May be injection-molded using a resin composition in which the epoxy-modified acrylic polymer (C) is blended. By using the epoxy-modified acrylic polymer (C), the familiarity of the styrene copolymer (B) with the polybutylene terephthalate resin (A) is improved, so that a high degree of dispersion proceeds and the morphology of the present invention. It can be.
 上記モルフォロジーとするために、特に好ましいポリブチレンテレフタレート樹脂組成物の配合組成は、ポリブチレンテレフタレート樹脂(A)100質量部に対して、アクリロニトリル-スチレン系共重合体(B1)45~100質量部、エポキシ変性アクリル系重合体(C)0.2~3質量部、及びガラス繊維(D)10~100質量部である。 In order to achieve the above morphology, the blending composition of the polybutylene terephthalate resin composition is particularly preferably 45 to 100 parts by mass of the acrylonitrile-styrene copolymer (B1) with respect to 100 parts by mass of the polybutylene terephthalate resin (A). The epoxy-modified acrylic polymer (C) is 0.2 to 3 parts by mass, and the glass fiber (D) is 10 to 100 parts by mass.
 また、上記モルフォロジーの成形体を製造する好ましい他の方法としては、ポリブチレンテレフタレート樹脂(A)100質量部に対して、アクリロニトリル-スチレン系共重合体(B1)及びエポキシ変性アクリロニトリル-スチレン系共重合体(B2)を合計で45~100質量部、(B1)と(B2)の含有量の質量比(B1)/(B2)を6以下で配合した樹脂組成物を用いて射出成形することが挙げられる。エポキシ変性アクリロニトリル-スチレン系共重合体(B2)を用いることで、アクリロニトリル-スチレン系共重合体(B1)のポリブチレンテレフタレート樹脂(A)への馴染みが良くなるため、高度の分散が進行して、本発明のモルフォロジーとすることができる。 Further, as another preferable method for producing a molded article having the above morphology, acrylonitrile-styrene copolymer (B1) and epoxy-modified acrylonitrile-styrene copolymer can be used with respect to 100 parts by mass of polybutylene terephthalate resin (A). Injection molding may be performed using a resin composition in which the combined (B2) is added in a total amount of 45 to 100 parts by mass and the mass ratio (B1) / (B2) of the content of (B1) and (B2) is 6 or less. Can be mentioned. By using the epoxy-modified acrylonitrile-styrene copolymer (B2), the familiarity of the acrylonitrile-styrene copolymer (B1) with the polybutylene terephthalate resin (A) is improved. The morphology of the present invention can be obtained.
 また、射出成形の条件は、ポリブチレンテレフタレート樹脂組成物のペレットを、乾燥温度を高くしたり、乾燥時間を長くして十分乾燥させることが好ましく、シリンダー温度は250~270℃程度、金型温度70~90℃、冷却時間15~25秒、充填時間0.5~1.5秒、保圧値は射出ピーク圧の4~8割程度とすることが好ましい。 The injection molding conditions are preferably that the pellets of the polybutylene terephthalate resin composition are sufficiently dried by increasing the drying temperature or extending the drying time, the cylinder temperature is about 250 to 270 ° C., the mold temperature It is preferable that the temperature is 70 to 90 ° C., the cooling time is 15 to 25 seconds, the filling time is 0.5 to 1.5 seconds, and the pressure holding value is about 40 to 80% of the injection peak pressure.
 本発明の成形体のTVOC量は、30μgC/g以下であり、より好ましくは20μgC/g以下である。
 成形体のTVOC量を上記のようにするには、上記したスチレン系共重合体(B)として、スチレン系単量体ガス量が600ppm以下、好ましくは550ppm以下のものを用いるか、さらにはホスファイト系安定剤やヒンダードフェノール系安定剤等を配合する等により可能である。
 なお、成形体のTVOC量の具体的測定方法は、実施例に詳記する通りである。
The TVOC amount of the molded article of the present invention is 30 μg C / g or less, more preferably 20 μg C / g or less.
In order to make the TVOC amount of the molded body as described above, the above-mentioned styrene copolymer (B) is one having a styrene monomer gas amount of 600 ppm or less, preferably 550 ppm or less, or a phosphor. It is possible by blending a phyto-based stabilizer or a hindered phenol-based stabilizer.
In addition, the specific measuring method of the TVOC amount of a molded object is as describing in detail in the Example.
 成形体の形状としては、特に制限はなく、成形品の用途、目的に応じて適宜選択することができ、例えば、板状、プレート状、ロッド状、シート状、フィルム状、円筒状、環状、円形状、楕円形状、多角形形状、異形品、中空品、枠状、箱状、パネル状のもの等が挙げられる。 The shape of the molded body is not particularly limited and can be appropriately selected according to the use and purpose of the molded product. For example, a plate shape, a plate shape, a rod shape, a sheet shape, a film shape, a cylindrical shape, an annular shape, Examples include a circular shape, an elliptical shape, a polygonal shape, an irregular shape, a hollow shape, a frame shape, a box shape, and a panel shape.
 本発明の成形体は、低ソリ性で、ガス発生量が少なく、高温時の機械物性に優れ、また低比重であるので、これらの特性が厳しく求められる車両内装部品として特に好適に使用できる。 Since the molded article of the present invention has low warpage, a small amount of gas generation, excellent mechanical properties at high temperatures, and low specific gravity, it can be particularly suitably used as a vehicle interior part that requires these characteristics.
 車両内装部品としては、自動車、列車、電車などの車両用の内装部品であり、車両室内の例えば、インナーミラーステイ、エアコン用ウェーブルーバー、ドアハンドル、取っ手、ドア、サンルーフ、シートベルト、レジスターブレード、ウオッシャーレバー、ウインドレギュレーターハンドル、ウインドレギュレーターハンドルのノブ、パッシングライトレバー、サンバイザーブラケット、各種ハウジング、スイッチ、クリップ等が好ましく挙げられる。 As vehicle interior parts, interior parts for vehicles such as automobiles, trains, trains, etc., for example, inner mirror stays, wave louvers for air conditioners, door handles, handles, doors, sunroofs, seat belts, register blades, Preferred examples include a washer lever, a window regulator handle, a knob of the window regulator handle, a passing light lever, a sun visor bracket, various housings, a switch, and a clip.
 以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定して解釈されるものではない。
 以下の実施例および比較例において、使用した成分は、以下の表1の通りである。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not construed as being limited to the following examples.
In the following Examples and Comparative Examples, the components used are as shown in Table 1 below.
[アクリロニトリル-スチレン共重合体(B1-1)の製造例]
 完全混合型攪拌槽である第一反応器と攪拌機付塔式プラグフロー型反応器である第二反応器を直列に接続し、さらに予熱器を付した脱揮槽を2基直列に接続して構成した。アクリロニトリル30質量%、スチレン70質量%を含有するモノマー溶液85質量部に対し、エチルベンゼン15質量部、t-ブチルパーオキシイソプロピルモノカーボネート0.01質量部、t-ドデシルメルカプタン0.25質量部を混合し原料溶液とした。この原料溶液を毎時6.0kgで130℃に制御した第一反応器に導入した。第一反応器より連続的に反応液を抜き出し、第二反応器に導入した。次に予熱器で160℃に加温した後65kPaに減圧した第一脱揮槽に導入し、さらに予熱器で220℃に加温した後1.0kPaに減圧した第二脱揮槽に導入し残存モノマーと溶剤を除去した。これをストランド状に押出し切断することによりペレット形状のアクリロニトリル-スチレン共重合体(B1-1)を得た。共重合体(B1-1)の組成(モノマー単位の質量比)は、表1に記載の通り、アクリロニトリル単位30質量%、スチレン単位70質量%であった。
[Production Example of Acrylonitrile-Styrene Copolymer (B1-1)]
Connect the first reactor, which is a complete mixing tank, and the second reactor, which is a tower-type plug flow reactor with a stirrer, and connect two devolatilizer tanks with preheaters in series. Configured. To 85 parts by mass of a monomer solution containing 30% by mass of acrylonitrile and 70% by mass of styrene, 15 parts by mass of ethylbenzene, 0.01 parts by mass of t-butylperoxyisopropyl monocarbonate and 0.25 parts by mass of t-dodecyl mercaptan are mixed. A raw material solution was prepared. This raw material solution was introduced into a first reactor controlled at 130 ° C. at 6.0 kg per hour. The reaction solution was continuously extracted from the first reactor and introduced into the second reactor. Next, after heating to 160 ° C. with a preheater, it was introduced into the first devolatilization tank reduced to 65 kPa, and further heated to 220 ° C. with a preheater and then introduced into the second devolatilization tank reduced to 1.0 kPa. Residual monomer and solvent were removed. This was extruded and cut into strands to obtain pellet-shaped acrylonitrile-styrene copolymer (B1-1). As shown in Table 1, the composition of copolymer (B1-1) (mass ratio of monomer units) was 30% by mass of acrylonitrile units and 70% by mass of styrene units.
[エポキシ変性アクリロニトリル-スチレン共重合体(B2)の製造例]
 アクリロニトリルとスチレンおよびグリシジルメタクリレートを懸濁重合し、ビーズ状のグリシジルメタクリレート変性アクリロニトリル-スチレン共重合体(B2)を調製した。この共重合体の各成分の割合は、アクリロニトリル/スチレン/グリシジルメタクリレートの質量比で25/75/0.4質量%であった。
[Production Example of Epoxy-Modified Acrylonitrile-Styrene Copolymer (B2)]
Acrylonitrile, styrene and glycidyl methacrylate were subjected to suspension polymerization to prepare a bead-like glycidyl methacrylate-modified acrylonitrile-styrene copolymer (B2). The ratio of each component of this copolymer was 25/75 / 0.4 mass% in mass ratio of acrylonitrile / styrene / glycidyl methacrylate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1におけるアクリロニトリル-スチレン共重合体の質量平均分子量(Mw)、アクリロニトリル共重合量(質量%、「PAN比率」)は、前述した通りの方法で測定した。また、MVRはタカラ工業(株)製メルトインデクサーを用いて、上記で得られたペレットを220℃、荷重2.16kgfの条件で測定した単位時間当たりの溶融流動体積MVR(単位:cm/10min)を測定した。 The mass average molecular weight (Mw) and acrylonitrile copolymerization amount (mass%, “PAN ratio”) of the acrylonitrile-styrene copolymer in Table 1 above were measured by the methods described above. MVR was measured using a melt indexer manufactured by Takara Industries Co., Ltd., and the melt flow volume MVR per unit time (unit: cm 3 / unit) measured on the pellets obtained above at 220 ° C. under a load of 2.16 kgf. 10 min).
[スチレン量及びエチルベンゼン量の測定]
 使用したアクリロニトリル-スチレン共重合体のスチレン量およびエチルベンゼン量の測定は、試料0.002gを外径6.35mm、長さ90mmのガラス製捕集管に収容し、270℃で10分間熱処理(Thermal Desorption法)して発生するガスを、以下のクロマトグラフにより行った。
  測定機器:GCMS-QP2010(島津製作所社製)
  カラム:UA-1701 内径0.25mm
  キャリアガス:He
  圧力:80kPa
  カラム流量:1.4mL/min
  カラムオーブン温度:50℃
  気化室温度:25℃
  検出器:コンバージョン・ダイノード付二次電子倍増管
  イオン源温度:250℃
[Measurement of styrene content and ethylbenzene content]
The amount of styrene and the amount of ethylbenzene in the acrylonitrile-styrene copolymer used were measured by placing 0.002 g of a sample in a glass collecting tube having an outer diameter of 6.35 mm and a length of 90 mm and heat-treating at 270 ° C. for 10 minutes (Thermal The gas generated by the Desorption method was performed by the following chromatograph.
Measuring instrument: GCMS-QP2010 (manufactured by Shimadzu Corporation)
Column: UA-1701 ID 0.25mm
Carrier gas: He
Pressure: 80kPa
Column flow rate: 1.4 mL / min
Column oven temperature: 50 ° C
Vaporization chamber temperature: 25 ° C
Detector: Secondary electron multiplier with conversion dynode Ion source temperature: 250 ° C
(実施例1~12、比較例1~5)
 上記表1に示した各成分を表2以下に示す割合(全て質量部)にて、タンブラーミキサーで均一に混合した後、二軸押出機(日本製鋼所社製「TEX30α」)を使用し、シリンダー設定温度260℃、スクリュー回転数200rpmの条件で溶融混練した樹脂組成物を、水槽にて急冷し、ペレタイザーを用いてペレット化し、ポリブチレンテレフタレート樹脂組成物のペレットを得た。
 次いで得られたポリブチレンテレフタレート樹脂組成物のペレットを、熱風乾燥機を使用して120℃で8時間乾燥させ、縦100mm×横100mm×厚さ3mmの平板を、射出成形機(日精樹脂工業社製「NEX80」)にて、フィルムゲート金型を用い、シリンダー温度260℃、金型温度80℃、冷却時間20秒、充填時間1.0秒、射出ピーク圧の5割の値を保圧値とする条件で、射出成形した。
 尚、比較例3は粘度が高すぎたため成形ができなかった。
(Examples 1 to 12, Comparative Examples 1 to 5)
After uniformly mixing the components shown in Table 1 above in the proportions (all parts by mass) shown in Table 2 using a tumbler mixer, a twin screw extruder (“TEX30α” manufactured by Nippon Steel Works) was used, The resin composition melt-kneaded under conditions of a cylinder set temperature of 260 ° C. and a screw rotation speed of 200 rpm was rapidly cooled in a water tank and pelletized using a pelletizer to obtain pellets of a polybutylene terephthalate resin composition.
Next, the pellets of the obtained polybutylene terephthalate resin composition were dried at 120 ° C. for 8 hours using a hot air dryer, and a flat plate having a length of 100 mm × width of 100 mm × thickness of 3 mm was formed by an injection molding machine (Nissei Plastic Industrial Co., Ltd.). "NEX80"), using a film gate mold, cylinder temperature 260 ° C, mold temperature 80 ° C, cooling time 20 seconds, filling time 1.0 seconds, 50% of injection peak pressure The injection molding was performed under the following conditions.
Note that Comparative Example 3 could not be molded because the viscosity was too high.
[モルフォロジー観察]
 上記で得られた平板の縦50mm、横50mmの位置にあって、厚さが1.5mmである中心点を含む、成形時の流動方向に平行な断面から、Leica社製「UC7」を用い、ダイヤモンドナイフにて、観察面が縦500μm×横500μm、厚み約1cmのブロック形状の試料を切り出した。得られた試料の観察面を四酸化ルテニウムで、気相、室温にて120分染色後、走査電子顕微鏡(日立ハイテク社製、「SU8020」)を用い、加速電圧1kV、信号LA100(U)、エミッション電流10μA、プローブ電流:Normalの条件で、倍率3000倍のSEM画像を取得した。
 得られたSEM画像から、スチレン系共重合体(B)を含む島状部について、ポリブチレンテレフタレート樹脂の湖の有無、島状部が複数の分岐部を有しているかを観察し、さらに、島状部の巾の最大値を前記した方法で測定した。
 また、得られたSEM画像から、[全ての島状部の面積(この面積には湖の面積は含まない。)の合計]に対する、[(A)の相が湖として存在している島状部の面積(この面積には湖の面積は含まない。)の合計]の割合(%)を求めた。前述の通り、「湖が存在している島状部」としては、SEM画像(倍率3000倍)の視野内において、島状部内に長径が1μm以上の湖を有するものを採用した。
 解析に用いるSEM画像は倍率3000倍の視野とし、視野内に樹脂組成物中のガラス繊維がある場合は、ガラス繊維の断面積が視野面積の10%以下となるような画像を選択した。
[Morphological observation]
From the cross section parallel to the flow direction at the time of molding including the center point of 50 mm in length and 50 mm in width of the flat plate obtained above and having a thickness of 1.5 mm, “UC7” manufactured by Leica was used. Using a diamond knife, a block-shaped sample having an observation surface length of 500 μm × width of 500 μm and a thickness of about 1 cm was cut out. The observation surface of the obtained sample was stained with ruthenium tetroxide for 120 minutes in the gas phase at room temperature, and then using a scanning electron microscope (manufactured by Hitachi High-Tech, “SU8020”), acceleration voltage 1 kV, signal LA100 (U), An SEM image with a magnification of 3000 times was obtained under the conditions of an emission current of 10 μA and a probe current of Normal.
From the obtained SEM image, for the island-shaped portion containing the styrene copolymer (B), the presence or absence of a lake of polybutylene terephthalate resin, whether the island-shaped portion has a plurality of branches, The maximum width of the island portion was measured by the method described above.
Further, from the obtained SEM image, the [(A) phase exists as a lake with respect to [the total area of all islands (this area does not include the area of the lake)]. Area ratio (the total of this area does not include the area of the lake)]. As described above, as the “island-like portion where the lake exists”, an island having a lake having a major axis of 1 μm or more in the island-like portion was adopted in the field of view of the SEM image (magnification 3000 times).
The SEM image used for the analysis had a field of view of 3000 times magnification, and when the glass fiber in the resin composition was in the field of view, an image was selected such that the cross-sectional area of the glass fiber was 10% or less of the field of view.
 実施例1~4、7、9及び11の成形体の走査電子顕微鏡によるSEM画像(倍率3000倍)を、図1~7に示す。
 また、比較例1、2及び4の成形体の走査電子顕微鏡によるSEM画像(倍率3000倍)を、図8~10に示した。
SEM images (magnification 3000 times) of the molded products of Examples 1 to 4, 7, 9, and 11 are shown in FIGS. 1 to 7.
8 to 10 show SEM images (magnification 3000 times) of the molded bodies of Comparative Examples 1, 2, and 4 using a scanning electron microscope.
[成形体のTVOCの測定]
 上記で得られた成形体を10~25mgに切断し、そのサンプル約2gをそれぞれ22mlのバイアル瓶に入れ、密封してHS-GC(ヘッドスペースガスクロマトグラフ質量分析装置)で、120℃、5時間加熱処理を行った。そして、ガスクロマトグラフで検出された揮発有機物成分のピーク積分面積を算出し、アセトンを標準に重量換算し、成形体1gあたりのTVOC(単位:μgC/g)を求めた。
[Measurement of TVOC of molded body]
The molded body obtained above is cut into 10 to 25 mg, and about 2 g of each sample is put in a 22 ml vial, sealed, and HS-GC (head space gas chromatograph mass spectrometer) at 120 ° C. for 5 hours. Heat treatment was performed. And the peak integration area of the volatile organic substance component detected with the gas chromatograph was calculated, weight-converted into acetone as a standard, and TVOC (unit: microgram C / g) per 1g of compacts was calculated.
<樹脂組成物の評価>
[スチレン量及びエチルベンゼン量の測定]
 得られたポリブチレンテレフタレート樹脂組成物のスチレン量およびエチルベンゼン量の測定は、試料0.02gを外径6.35mm、長さ90mmのガラス製捕集管に収容し、270℃、10分間熱処理(Thermal Desorption法)して発生するガスを、以下のクロマトグラフにより測定した。測定値を、共重合体あるいは樹脂組成物質量あたりの値に換算して、スチレンおよびエチルベンゼンの発生量(単位:質量ppm)とした。
  測定機器:GCMS-QP2010(島津製作所社製)
  カラム:UA-1701 内径0.25mm
  キャリアガス:He
  圧力:80kPa
  カラム流量:1.4mL/min
  カラムオーブン温度:50℃
  気化室温度:25℃
  検出器:コンバージョン・ダイノード付二次電子倍増管
  イオン源温度:250℃
<Evaluation of resin composition>
[Measurement of styrene content and ethylbenzene content]
Measurement of the amount of styrene and the amount of ethylbenzene in the obtained polybutylene terephthalate resin composition was carried out by placing 0.02 g of a sample in a glass collecting tube having an outer diameter of 6.35 mm and a length of 90 mm, and heat treatment at 270 ° C. for 10 minutes ( The gas generated by the Thermal Desorption method was measured by the following chromatograph. The measured value was converted to a value per copolymer or resin composition substance amount, and the amount of styrene and ethylbenzene generated (unit: mass ppm) was used.
Measuring instrument: GCMS-QP2010 (manufactured by Shimadzu Corporation)
Column: UA-1701 ID 0.25mm
Carrier gas: He
Pressure: 80kPa
Column flow rate: 1.4 mL / min
Column oven temperature: 50 ° C
Vaporization chamber temperature: 25 ° C
Detector: Secondary electron multiplier with conversion dynode Ion source temperature: 250 ° C
[滞留増粘性(滞留ストランドの外観評価)]
 キャピログラフ(東洋精機社製キャピログラフ1C)により、測定温度270℃、1φ×30mmのフラットなキャピラリーを用いて、上記で得られたペレットを投入後、30分滞留させ、せん断速度91.2sec-1で押出して製造したストランド(滞留ストランド)を得、その外観の良否を以下のA-Dの4段階で判断した。
  A:ストランド表面につやが認められ、外観良好
  B:ストランド表面に少しつやが認められ、外観はやや不良
  C:ストランド表面のつやが全く認められず、外観不良
  D:ストランドが作製できず、外観評価不能
[Retention thickening (appearance evaluation of staying strand)]
Using a capillograph (Capillograph 1C manufactured by Toyo Seiki Co., Ltd.), using a flat capillary with a measurement temperature of 270 ° C. and 1φ × 30 mm, the pellets obtained above were charged and retained for 30 minutes at a shear rate of 91.2 sec −1 . Strands produced by extrusion (retaining strands) were obtained, and the quality of the appearance was judged in the following four stages AD.
A: Gloss is observed on the strand surface and appearance is good B: Gloss is slightly observed on the strand surface and appearance is slightly poor C: No gloss is found on the strand surface and appearance is poor D: Strand cannot be produced and appearance Impossible to evaluate
<成形体の評価>
[85℃雰囲気曲げ強度]
 上記にて得られたペレットを、120℃で5時間乾燥した後、射出成形機(日精樹脂工業社製「NEX80」)にて、シリンダー温度250℃、金型温度80℃の条件でISO多目的試験片(4mm厚)を射出成形した。
 ISO多目的試験片(4mm厚)を用い、ISO178に準拠して、85℃の温度で、曲げ強度(最大曲げ応力、単位:MPa)を測定した。
<Evaluation of molded body>
[85 ℃ ambient bending strength]
The pellets obtained above are dried at 120 ° C. for 5 hours, and then subjected to an ISO multipurpose test using an injection molding machine (“NEX80” manufactured by Nissei Plastic Industry Co., Ltd.) under conditions of a cylinder temperature of 250 ° C. and a mold temperature of 80 ° C. A piece (4 mm thick) was injection molded.
The bending strength (maximum bending stress, unit: MPa) was measured at a temperature of 85 ° C. in accordance with ISO 178 using an ISO multipurpose test piece (4 mm thickness).
[反り量]
 射出成形機(日精樹脂工業社製「NEX80」)にて、シリンダー温度260℃、金型温度80℃の条件で、直径100mm、厚み1.6mmの円板をサイドゲート金型により成形し、円板の反り量(単位:mm)を求めた。
[Warpage amount]
Using an injection molding machine (“NEX80” manufactured by Nissei Plastic Industry Co., Ltd.), a circular plate having a diameter of 100 mm and a thickness of 1.6 mm was molded with a side gate mold under conditions of a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C. The amount of warpage (unit: mm) of the plate was determined.
[総合評価]
 以下の基準で総合評価を判断する。
 A:成形体の評価の「反り量が5.0mm以下」、「85℃雰囲気曲げ強度が120MPa以上」、樹脂組成物の評価の「スチレン、エチルベンゼンの発生量55ppm以下」、「滞留増粘性がA又はB」の全ての条件を満たす。
 B:上記A及び下記Cのいずれでもない。
 C:成形体の評価の「反り量が6.0mm以上」、「85℃雰囲気曲げ強度が120MPa未満」、樹脂組成物の評価の「スチレン、エチルベンゼンの発生量55ppm超」、「滞留増粘性がD」のいずれかに該当する。
 以上の評価結果を、以下の表に示す。
[Comprehensive evaluation]
Comprehensive evaluation is judged by the following criteria
A: Evaluation of molded product “warping amount is 5.0 mm or less”, “85 ° C. atmosphere bending strength is 120 MPa or more”, evaluation of resin composition “generation amount of styrene and ethylbenzene is 55 ppm or less”, “residual thickening is All conditions of “A or B” are satisfied.
B: None of A and C below.
C: Evaluation of molded product “warping amount is 6.0 mm or more”, “85 ° C. atmosphere bending strength is less than 120 MPa”, evaluation of resin composition “generation amount of styrene and ethylbenzene exceeds 55 ppm”, “retention thickening is D ”.
The above evaluation results are shown in the following table.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(第2の発明に関する実施例13~24、比較例6~12)
 前記表1に示した各成分を以下の表4-5に示す割合で用いた以外は、上記と同様にして行った。
 結果を以下に示す。
(Examples 13 to 24 relating to the second invention, Comparative Examples 6 to 12)
The same procedure as described above was conducted except that the components shown in Table 1 were used in the proportions shown in Table 4-5 below.
The results are shown below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(第3の発明に関する実施例25~35、比較例13~16)
 前記表1に示した各成分を以下の表4-5に示す割合で用いた以外は、上記と同様にして行った。
 結果を以下に示す。
(Examples 25 to 35 relating to the third invention, Comparative Examples 13 to 16)
The same procedure as described above was conducted except that the components shown in Table 1 were used in the proportions shown in Table 4-5 below.
The results are shown below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本発明のポリブチレンテレフタレート樹脂組成物成形体は、ソリが少なく、ガス発生量が少なく、VOC規制をクリアーでき、また、高温での曲げ強度に優れるので、各種の成形品に使用でき、特に自動車等の車両用内装部品として好適に使用できる。 The molded article of the polybutylene terephthalate resin composition of the present invention is less warped, has less gas generation, can satisfy VOC regulations, and has excellent bending strength at high temperatures, so it can be used for various molded products, especially automobiles. It can use suitably as interior parts for vehicles, such as.

Claims (15)

  1.  ポリブチレンテレフタレート樹脂(A)100質量部に対し、スチレン系共重合体(B)として、アクリロニトリル-スチレン系共重合体(B1)及び/又はエポキシ変性されたアクリロニトリル-スチレン系共重合体(B2)を合計で45~100質量部含有するポリブチレンテレフタレート樹脂組成物からなり、海島構造を有する、最少厚みが1mm超である成形体であって、
     ポリブチレンテレフタレート樹脂(A)が連続相を形成し、
     スチレン系共重合体(B)を含むドメインが、ポリブチレンテレフタレート樹脂(A)の連続相中に島状に分散しており、その少なくとも一部は前記島状部の中にポリブチレンテレフタレート樹脂(A)の相が湖として存在しており、以下の方法で測定した島状部の巾の最大値が6μm以下であるモルフォロジーを有しており、
     成形体を120℃で5時間熱処理して発生するガスをガスクロマトグラフで分析した際に検出される揮発性有機化合物量(TVOC)が30μgC/g以下である、
     ことを特徴とするポリブチレンテレフタレート樹脂組成物成形体。
     島状部の巾の最大値の測定方法:
     成形体の厚みが最大である部分の厚み方向の中心点を含む断面におけるSEM画像(倍率は3000倍)から、島状部の巾の最大値を測定する。
    Acrylonitrile-styrene copolymer (B1) and / or epoxy-modified acrylonitrile-styrene copolymer (B2) as styrene copolymer (B) with respect to 100 parts by mass of polybutylene terephthalate resin (A) A molded body having a sea-island structure and a minimum thickness of more than 1 mm, comprising a polybutylene terephthalate resin composition containing a total of 45 to 100 parts by mass of
    The polybutylene terephthalate resin (A) forms a continuous phase,
    The domain containing the styrene copolymer (B) is dispersed in an island shape in the continuous phase of the polybutylene terephthalate resin (A), and at least a part of the domain is in the island-shaped portion. The phase of A) exists as a lake, and has a morphology in which the maximum width of the island-shaped part measured by the following method is 6 μm or less,
    The amount of volatile organic compounds (TVOC) detected when a gas generated by heat-treating the molded body at 120 ° C. for 5 hours is analyzed by gas chromatography is 30 μg C / g or less.
    A molded article of polybutylene terephthalate resin composition characterized by the above.
    How to measure the maximum width of islands:
    The maximum value of the width of the island portion is measured from the SEM image (magnification is 3000 times) in the cross section including the center point in the thickness direction of the portion where the thickness of the molded body is maximum.
  2.  ポリブチレンテレフタレート樹脂(A)の前記島状部は、その少なくとも一部が、分岐部を有する形状の島状部である請求項1に記載のポリブチレンテレフタレート樹脂組成物成形体。 The polybutylene terephthalate resin composition molded body according to claim 1, wherein at least a part of the island-shaped portion of the polybutylene terephthalate resin (A) is an island-shaped portion having a branched portion.
  3.  成形体からのTVOC量が20μgC/g以下である請求項1又は2に記載のポリブチレンテレフタレート樹脂組成物成形体。 3. The polybutylene terephthalate resin composition molded body according to claim 1, wherein the TVOC amount from the molded body is 20 μg C / g or less.
  4.  ポリブチレンテレフタレート樹脂組成物を、270℃で10分間熱処理して発生するガスをガスクロマトグラフで分析した際に検出されるスチレン系単量体の量が45質量ppm以下である請求項1~3のいずれかに記載のポリブチレンテレフタレート樹脂組成物成形体。 The amount of a styrene monomer detected when a gas generated by heat-treating a polybutylene terephthalate resin composition at 270 ° C for 10 minutes is analyzed by gas chromatography is 45 ppm by mass or less. The polybutylene terephthalate resin composition molded article according to any one of the above.
  5.  ポリブチレンテレフタレート樹脂組成物が、さらにエポキシ変性アクリル系重合体(C)を含有する請求項1~4のいずれかに記載のポリブチレンテレフタレート樹脂組成物成形体。 The polybutylene terephthalate resin composition molded article according to any one of claims 1 to 4, wherein the polybutylene terephthalate resin composition further contains an epoxy-modified acrylic polymer (C).
  6.  ポリブチレンテレフタレート樹脂組成物が、ポリブチレンテレフタレート樹脂(A)100質量部に対して、アクリロニトリル-スチレン系共重合体(B1)45~100質量部、エポキシ変性アクリル系重合体(C)0.2~3質量部、及びガラス繊維(D)10~100質量部を含有する請求項1~5のいずれかに記載のポリブチレンテレフタレート樹脂組成物成形体。 The polybutylene terephthalate resin composition is used in an amount of 45 to 100 parts by mass of the acrylonitrile-styrene copolymer (B1), 100 parts by mass of the polybutylene terephthalate resin (A), 0.2% of the epoxy-modified acrylic polymer (C). The molded product of polybutylene terephthalate resin composition according to any one of claims 1 to 5, which contains 3 to 3 parts by mass and 10 to 100 parts by mass of glass fiber (D).
  7.  ポリブチレンテレフタレート樹脂組成物が、ポリブチレンテレフタレート樹脂(A)100質量部に対して、アクリロニトリル-スチレン系共重合体(B1)及びエポキシ変性アクリロニトリル-スチレン系共重合体(B2)を合計で45~100質量部含有し、(B1)と(B2)の含有量の質量比(B1)/(B2)は6以下であり、さらにガラス繊維(D)を10~100質量部含有する請求項1~4のいずれかに記載のポリブチレンテレフタレート樹脂組成物成形体。 The polybutylene terephthalate resin composition comprises 45 to 45 total parts of the acrylonitrile-styrene copolymer (B1) and the epoxy-modified acrylonitrile-styrene copolymer (B2) with respect to 100 parts by mass of the polybutylene terephthalate resin (A). 100 parts by mass, the mass ratio (B1) / (B2) of the contents of (B1) and (B2) is 6 or less, and further contains 10 to 100 parts by mass of glass fiber (D). 5. A molded article of the polybutylene terephthalate resin composition according to any one of 4 above.
  8.  車両内装部品である請求項1~7のいずれかに記載の成形体。 The molded body according to any one of claims 1 to 7, which is a vehicle interior part.
  9.  ポリブチレンテレフタレート樹脂(A)100質量部に対して、アクリロニトリル-スチレン系共重合体(B1)45~100質量部、エポキシ変性アクリル系重合体(C)0.2~3質量部、及びガラス繊維(D)10~100質量部を含有することを特徴とするポリブチレンテレフタレート樹脂組成物。 45-100 parts by mass of acrylonitrile-styrene copolymer (B1), 0.2-3 parts by mass of epoxy-modified acrylic polymer (C), and glass fiber with respect to 100 parts by mass of polybutylene terephthalate resin (A) (D) A polybutylene terephthalate resin composition containing 10 to 100 parts by mass.
  10.  ポリブチレンテレフタレート樹脂組成物を、270℃で10分間熱処理して発生するガスをガスクロマトグラフで分析した際に検出されるスチレン系単量体の量が45ppm以下である請求項9に記載のポリブチレンテレフタレート樹脂組成物。 10. The polybutylene according to claim 9, wherein the amount of styrene monomer detected when a gas generated by heat-treating the polybutylene terephthalate resin composition at 270 ° C. for 10 minutes is analyzed by gas chromatography is 45 ppm or less. A terephthalate resin composition.
  11.  アクリロニトリル-スチレン系共重合体(B1)が塊状重合品である請求項9または請求項10に記載のポリブチレンテレフタレート樹脂組成物。 The polybutylene terephthalate resin composition according to claim 9 or 10, wherein the acrylonitrile-styrene copolymer (B1) is a bulk polymer.
  12.  ポリブチレンテレフタレート樹脂(A)100質量部に対して、アクリロニトリル-スチレン系共重合体(B1)及びエポキシ変性アクリロニトリル-スチレン系共重合体(B2)を合計で45~100質量部含有し、(B1)と(B2)の含有量の質量比(B1)/(B2)は6以下であり、さらにガラス繊維(D)を10~100質量部含有することを特徴とするポリブチレンテレフタレート樹脂組成物。 Containing 45 to 100 parts by mass of the total of acrylonitrile-styrene copolymer (B1) and epoxy-modified acrylonitrile-styrene copolymer (B2) with respect to 100 parts by mass of polybutylene terephthalate resin (A), (B1 ) And (B2) content ratio (B1) / (B2) is 6 or less, and further contains 10 to 100 parts by mass of glass fiber (D), a polybutylene terephthalate resin composition.
  13.  (B1)と(B2)の含有量の質量比(B1)/(B2)が0.5~6である請求項12に記載のポリブチレンテレフタレート樹脂組成物。 The polybutylene terephthalate resin composition according to claim 12, wherein the mass ratio (B1) / (B2) of the contents of (B1) and (B2) is 0.5 to 6.
  14.  ポリブチレンテレフタレート樹脂組成物を、270℃で10分間熱処理して発生するガスをガスクロマトグラフで分析した際に検出されるスチレン系単量体の量が45ppm以下である請求項12または請求項13に記載のポリブチレンテレフタレート樹脂組成物。 The amount of the styrene monomer detected when the gas generated by heat-treating the polybutylene terephthalate resin composition at 270 ° C for 10 minutes is analyzed by gas chromatography is 45 ppm or less. The polybutylene terephthalate resin composition described.
  15.  アクリロニトリル-スチレン系共重合体(B1)が塊状重合品である請求項12~14のいずれかに記載のポリブチレンテレフタレート樹脂組成物。 The polybutylene terephthalate resin composition according to any one of claims 12 to 14, wherein the acrylonitrile-styrene copolymer (B1) is a bulk polymer.
PCT/JP2018/016019 2018-03-01 2018-04-18 Molding of polybutylene terephthalate resin composition WO2019167292A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880090406.XA CN111788257B (en) 2018-03-01 2018-04-18 Polybutylene terephthalate resin composition molded article

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018036549 2018-03-01
JP2018-036550 2018-03-01
JP2018036548 2018-03-01
JP2018-036549 2018-03-01
JP2018036550 2018-03-01
JP2018-036548 2018-03-01

Publications (1)

Publication Number Publication Date
WO2019167292A1 true WO2019167292A1 (en) 2019-09-06

Family

ID=67805244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016019 WO2019167292A1 (en) 2018-03-01 2018-04-18 Molding of polybutylene terephthalate resin composition

Country Status (2)

Country Link
CN (1) CN111788257B (en)
WO (1) WO2019167292A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114369213B (en) * 2022-01-14 2023-07-14 河北明润复合材料科技有限公司 PET tackifier, PET foaming material and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128470A (en) * 1992-10-20 1994-05-10 Toray Ind Inc Resin composition for connector
JPH06163104A (en) * 1992-11-24 1994-06-10 Yazaki Corp Connector
JP2006182840A (en) * 2004-12-27 2006-07-13 Sumitomo Dow Ltd Styrene resin composition and molded product using the same
JP2010100795A (en) * 2008-09-29 2010-05-06 Toray Ind Inc Thermoplastic resin composition and molded product therefrom
WO2016190311A1 (en) * 2015-05-28 2016-12-01 ウィンテックポリマー株式会社 Thermoplastic polyester resin composition and molded article
WO2017014239A1 (en) * 2015-07-22 2017-01-26 ウィンテックポリマー株式会社 Method for manufacturing polybutylene terephthalate resin composition and method for manufacturing polybutylene terephthalate resin molded article
CN106589844A (en) * 2016-12-01 2017-04-26 广州科苑新型材料有限公司 PBT/ASA alloy material and preparing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023551A (en) * 2011-07-20 2013-02-04 Wintech Polymer Ltd Resin molded article and automobile interior component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128470A (en) * 1992-10-20 1994-05-10 Toray Ind Inc Resin composition for connector
JPH06163104A (en) * 1992-11-24 1994-06-10 Yazaki Corp Connector
JP2006182840A (en) * 2004-12-27 2006-07-13 Sumitomo Dow Ltd Styrene resin composition and molded product using the same
JP2010100795A (en) * 2008-09-29 2010-05-06 Toray Ind Inc Thermoplastic resin composition and molded product therefrom
WO2016190311A1 (en) * 2015-05-28 2016-12-01 ウィンテックポリマー株式会社 Thermoplastic polyester resin composition and molded article
WO2017014239A1 (en) * 2015-07-22 2017-01-26 ウィンテックポリマー株式会社 Method for manufacturing polybutylene terephthalate resin composition and method for manufacturing polybutylene terephthalate resin molded article
CN106589844A (en) * 2016-12-01 2017-04-26 广州科苑新型材料有限公司 PBT/ASA alloy material and preparing method thereof

Also Published As

Publication number Publication date
CN111788257A (en) 2020-10-16
CN111788257B (en) 2024-04-26

Similar Documents

Publication Publication Date Title
JP6741554B2 (en) Polybutylene terephthalate resin composition for vehicle interior parts
US10501621B2 (en) Polyester resin composition, injection molded article, light-reflecting base body, and light-reflecting body
JP5569131B2 (en) Polycarbonate resin composition and injection molded body thereof
JP6810572B2 (en) Polybutylene terephthalate resin composition
JP7288773B2 (en) Thermoplastic resin composition and molded article
WO2019167292A1 (en) Molding of polybutylene terephthalate resin composition
JP7357507B2 (en) Thermoplastic resin composition and molded body
JP6869640B2 (en) Polyester resin composition
JP7288752B2 (en) Thermoplastic resin composition and molded article
JP7111499B2 (en) Polybutylene terephthalate resin composition molded article
JP7096057B2 (en) Polybutylene terephthalate resin composition
JP7065680B2 (en) Polybutylene terephthalate resin composition
JP7075450B2 (en) Polybutylene terephthalate resin composition for vehicle interior parts
CN113166490B (en) Thermoplastic resin composition and molded article
JP7288789B2 (en) Thermoplastic resin composition and molded article
JP7262282B2 (en) Thermoplastic resin composition and molded article
JP2012077240A (en) Melt tension improvement agent, polycarbonate-polyester composite resin composition, and molding
JP7484659B2 (en) Thermoplastic resin composition
JP7313187B2 (en) Thermoplastic resin composition and molded article
JP2019156954A (en) Polybutylene terephthalate resin composition and molding
JP2019077778A (en) Polyester resin composition and part for vehicle lighting body
JP7288751B2 (en) Thermoplastic resin composition and molded article
JP2022092143A (en) Thermoplastic resin composition
WO2023171754A1 (en) Polyethylene terephthalate resin composition and molded article
WO2023074796A1 (en) Thermoplastic resin composition pellets and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907513

Country of ref document: EP

Kind code of ref document: A1