JP2006182840A - Styrene resin composition and molded product using the same - Google Patents

Styrene resin composition and molded product using the same Download PDF

Info

Publication number
JP2006182840A
JP2006182840A JP2004375823A JP2004375823A JP2006182840A JP 2006182840 A JP2006182840 A JP 2006182840A JP 2004375823 A JP2004375823 A JP 2004375823A JP 2004375823 A JP2004375823 A JP 2004375823A JP 2006182840 A JP2006182840 A JP 2006182840A
Authority
JP
Japan
Prior art keywords
styrene
resin composition
voc
styrene resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004375823A
Other languages
Japanese (ja)
Inventor
Ichiro Sato
佐藤  一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumika Polycarbonate Ltd
Original Assignee
Sumitomo Dow Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Dow Ltd filed Critical Sumitomo Dow Ltd
Priority to JP2004375823A priority Critical patent/JP2006182840A/en
Publication of JP2006182840A publication Critical patent/JP2006182840A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a styrene resin composition that can give molded products occurring an extremely reduced amount of VOC without large adverse effects to the excellent moldability, physical and mechanical properties characteristic in styrene resin. <P>SOLUTION: The styrene resin composition comprises (A) 100 pts.wt. of a styrene resin and (B) 0.1 to 10 pts.wt. of a hydrophobic zeolite. The resin composition is molded to give molded products. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、スチレン系樹脂組成物及びそれを成形してなる成形品に関する。さらに詳しくは、スチレン系樹脂組成物の成形性や物理、機械特性を大きく損なうことなく、またこれよりなる成形品から発生する揮発性有機ガス(以下、VOC(Volatile Organic Chemicals)と略記する。)が極めて低いスチレン系樹脂組成物に関する。   The present invention relates to a styrenic resin composition and a molded product formed by molding the same. More specifically, a volatile organic gas (hereinafter abbreviated as VOC (Volatile Organic Chemicals)) generated from a molded article made of the styrenic resin composition without significantly impairing the moldability, physical properties and mechanical properties of the styrene resin composition. Relates to a styrene-based resin composition having a very low value.

スチレン系樹脂は、成形性、機械物性、熱安定性などに優れていることから、汎用プラスチックとして、自動車、事務機器、電気・電子機器など様々な分野において幅広く利用されている。   Styrene resins are widely used in various fields such as automobiles, office equipment, and electrical / electronic equipment as general-purpose plastics because they are excellent in moldability, mechanical properties, thermal stability, and the like.

特に自動車分野においては、スチレン系樹脂は自動車の内装部品に使用されることが多いが、当該内装部品から発せられるVOC(なかでも、スチレン、トルエン、ベンゼン等の化合物)が、人体に対して影響を与える可能性があることが指摘されており、当該VOCを低減するためのさまざまな対策が講じられつつある。 Particularly in the automotive field, styrene resins are often used in automobile interior parts, but VOCs (particularly compounds such as styrene, toluene, and benzene) emitted from the interior parts have an effect on the human body. It is pointed out that there is a possibility of giving a VOC, and various measures are being taken to reduce the VOC.

また、事務機器、電気・電子機器などの分野においては、これらスチレン系樹脂はコンピューター、プリンター、コピー機、ファックス等の筐体や内外装パーツ用の材料として、近年盛んに使用されている。 In the fields of office equipment, electrical / electronic equipment, etc., these styrene resins have been actively used in recent years as materials for housings and interior / exterior parts of computers, printers, copiers, fax machines and the like.

しかしながら、これら事務機器、電気・電子機器等の急速な普及に伴い、これらの機器を構成するプラスチック材料から発せられるVOCが、人体に影響を与える恐れがあると言われており、その対策が急がれている。 However, with the rapid spread of these office equipment, electrical / electronic equipment, etc., it is said that VOCs emitted from the plastic materials that make up these equipment may affect the human body, and countermeasures are suddenly taken. It is peeling.

一方、臭気成分の除去という観点からゼオライトが脱臭剤として使用されている。(特許文献1および2)しかしながら、自動車、事務機器、電気・電子機器などの用途における成形品から発生するVOC(なかでも、スチレン、トルエン、ベンゼン等の化合物)の除去については何ら開示もしくは示唆されてはおらない。
特開平07−227940号公報 特開平07−316342号公報
On the other hand, zeolite is used as a deodorant from the viewpoint of removing odor components. (Patent Documents 1 and 2) However, there is no disclosure or suggestion about removal of VOCs (particularly compounds such as styrene, toluene, benzene) generated from molded articles in applications such as automobiles, office equipment, and electrical / electronic equipment. It is not.
Japanese Patent Application Laid-Open No. 07-227940 JP 07-316342 A

本発明は、スチレン系樹脂組成物の特徴である成形性や物理、機械物性等を大きく損なうことなく、またこれよりなる成形品から発生するVOCが極めて低いことを特徴とするスチレン系樹脂組成物を提供するものである。   The present invention provides a styrenic resin composition characterized in that the VOC generated from a molded product comprising the styrenic resin composition is extremely low without significantly degrading the moldability, physical properties, mechanical properties and the like that are characteristic of the styrenic resin composition. Is to provide.

本発明者は、かかる課題を解決するために鋭意研究を重ねた結果、スチレン系樹脂に特定のゼオライトを特定量配合したスチレン系樹脂組成物を用いることにより、当該組成物を成形してなる成形品からの発生VOCが極めて低いレベルに抑制されることを見出し、本発明を完成するに至った。   As a result of intensive research in order to solve such problems, the present inventor has formed a composition obtained by molding the composition by using a styrene resin composition in which a specific amount of a specific zeolite is blended with a styrene resin. It was found that VOC generated from the product was suppressed to a very low level, and the present invention was completed.

すなわち、本発明は、スチレン系樹脂(A)100重量部および疎水性ゼオライト(B)0.1〜10重量部からなるスチレン系樹脂組成物、およびこれを成形してなる成形品を提供するものである。   That is, the present invention provides a styrene resin composition comprising 100 parts by weight of a styrene resin (A) and 0.1 to 10 parts by weight of a hydrophobic zeolite (B), and a molded product formed by molding the same. It is.

本発明のスチレン系樹脂組成物は、VOCの発生が極めて少なく、かつ成形性、機械特性等のバランスにも優れており、自動車の内装パーツや事務機器、電気・電子機器などの内外装パーツ用の材料として好適に使用することが可能であり、工業的利用価値が極めて高い。   The styrenic resin composition of the present invention generates very little VOC and has an excellent balance of moldability, mechanical properties, etc., and is suitable for interior and exterior parts of automobile interior parts, office equipment, electrical / electronic equipment, etc. It can be suitably used as a material of the present invention, and the industrial utility value is extremely high.

本発明にて使用されるスチレン系樹脂(A)としては、スチレン、α−メチルスチレンなどのモノビニル芳香族系単量体20〜100重量%、アクリロニトリル、メタクリロニトリルなどのシアン化ビニル系単量体0〜60重量%、およびこれらと共重合可能なマレイミド、(メタ)アクリル酸メチルなどの他のビニル系単量体0〜50重量%からなる単量体または単量体混合物を重合して得られる重合体があげられる。これらの重合体としては、ポリスチレン(PS)、アクリロニトリル・スチレン共重合体(AS樹脂)などが挙げられる。   The styrene resin (A) used in the present invention includes 20 to 100% by weight of a monovinyl aromatic monomer such as styrene and α-methylstyrene, and a vinyl cyanide monomer such as acrylonitrile and methacrylonitrile. A monomer or a monomer mixture comprising 0 to 60% by weight of a polymer, and 0 to 50% by weight of other vinyl monomers such as maleimide and methyl (meth) acrylate copolymerizable therewith. Examples of the resulting polymer are listed. Examples of these polymers include polystyrene (PS) and acrylonitrile / styrene copolymer (AS resin).

また、スチレン系樹脂(A)は、ゴムで変性されていてもよい。このゴム変性スチレン系樹脂としては、たとえば、ポリブタジエンなどのゴムにスチレンが重合した耐衝撃性ポリスチレン(HIPS)、ポリブタジエンにアクリロニトリルとスチレンとが重合したABS樹脂、ポリブタジエンにメタクリル酸メチルとスチレンが重合したMBS樹脂などが挙げられる。これらは、一種もしくは二種以上を併用して使用することができる。また、前記のゴム未変性であるスチレン系樹脂と混合して使用してもよい。   The styrene resin (A) may be modified with rubber. Examples of the rubber-modified styrene resin include high impact polystyrene (HIPS) in which styrene is polymerized on rubber such as polybutadiene, ABS resin in which acrylonitrile and styrene are polymerized on polybutadiene, and methyl methacrylate and styrene are polymerized on polybutadiene. MBS resin etc. are mentioned. These can be used alone or in combination of two or more. Moreover, you may use it, mixing with the styrene resin which is the said rubber | gum unmodified | denatured.

ゴム変性スチレン系樹脂中のゴムの含有量は、例えば2〜50重量%、好ましくは5〜30重量%、さらに好ましくは5〜15重量%である。ゴムの割合が2重量%未満であると、耐衝撃性が不十分となり、また、50重量%を超えると熱安定性の低下、溶融流動性の低下、ゲルの発生、着色などの問題が生じる場合がある。   The rubber content in the rubber-modified styrenic resin is, for example, 2 to 50% by weight, preferably 5 to 30% by weight, and more preferably 5 to 15% by weight. If the rubber ratio is less than 2% by weight, the impact resistance becomes insufficient, and if it exceeds 50% by weight, problems such as a decrease in thermal stability, a decrease in melt fluidity, generation of gel, and coloring occur. There is a case.

上記ゴムの具体例としては、ポリブタジエン、アクリレートおよび/またはメタクリレートを含有するゴム質重合体、スチレン・ブタジエン・スチレンゴム(SBS)、スチレン・ブタジエンゴム(SBR)、ブタジエン・アクリルゴム、イソプレンゴム、イソプレン・スチレンゴム、イソプレン・アクリルゴム、エチレン・プロピレンゴム等が挙げられる。これらのうち、ポリブタジエンが好適に使用できる。また、ポリブタジエンは、低シス・ポリブタジエン(例えば1,2−ビニル結合を1〜30モル%、1,4−シス結合を30〜42モル%含有するもの)、高シス・ポリブタジエン(例えば1,2−ビニル結合を20モル%以下、1,4−シス結合を78モル%以上含有するもの)のいずれを用いてもよく、これらの混合物であってもよい。 Specific examples of the rubber include a rubbery polymer containing polybutadiene, acrylate and / or methacrylate, styrene / butadiene / styrene rubber (SBS), styrene / butadiene rubber (SBR), butadiene / acrylic rubber, isoprene rubber, isoprene. -Styrene rubber, isoprene / acrylic rubber, ethylene / propylene rubber and the like. Of these, polybutadiene can be suitably used. The polybutadiene is a low cis polybutadiene (for example, containing 1 to 30 mol% of 1,2-vinyl bonds and 30 to 42 mol% of 1,4-cis bonds), or high cis polybutadiene (for example, 1, 2 vinyl bonds). Any of those having a vinyl bond of 20 mol% or less and 1,4-cis bond of 78 mol% or more may be used, or a mixture thereof.

また、スチレン系樹脂(A)としては、JIS K7210に準拠し、温度200℃、荷重5kgの条件で測定されるメルトインデックス(MI)が、通常1〜40g/10分、好ましくは、2〜20g/10分のものを使用することができる。   The styrene resin (A) has a melt index (MI) measured in accordance with JIS K7210 under the conditions of a temperature of 200 ° C. and a load of 5 kg, usually from 1 to 40 g / 10 minutes, preferably from 2 to 20 g. / 10 minutes can be used.

さらに、スチレン系樹脂(A)にあっては、ポリカーボネート樹脂(PC)と前述のゴム未変性および/またはゴム変性スチレン系樹脂とのアロイを用いることも可能である。かかるアロイの例としては、例えばPC/PS、PC/AS、PC/ABSなどが挙げられる。   Further, in the styrene resin (A), it is also possible to use an alloy of a polycarbonate resin (PC) and the above-mentioned rubber unmodified and / or rubber modified styrene resin. Examples of such alloys include PC / PS, PC / AS, PC / ABS, and the like.

本発明にて用いられる疎水性ゼオライト(B)としては、SiO2 /Al23 モル比が40以上であるハイシリカゼオライトが好適に使用される。より好適な、SiO2 /Al23 モル比は、100〜1000の範囲である。これは通常の、SiO2 /Al23 モル比が1〜10前後である親水性ゼオライトとは異なり、SiO2 成分が多いため、結晶の組成や構造の微妙な変化が生じ疎水性となる。その結果、水分子が吸着されにくくなり、逆に有機物との親和性が増す。かくして、疎水性ゼオライトは水と有機物の混合系内で、気相でも液相でも有機物に対し、選択的な吸着力を示す。疎水性ゼオライトとしては、米国UOP社製の「アブセンツ」、スウェーデン・エカ ノーベル アクチェボラーグ社の「ZSM−5」、東ソー社製の「HSZシリーズ」等が市販されており、容易に入手可能である。疎水性ゼオライトの最大細孔径は、5〜8Å程度が好ましい。5Å未満では目的とするVOCの分子径より小さいので、これらが有効に吸着されず、また8Åを越えると、これら物質が脱着され易くなる場合がある。 As the hydrophobic zeolite (B) used in the present invention, high silica zeolite having a SiO 2 / Al 2 O 3 molar ratio of 40 or more is preferably used. A more preferred SiO 2 / Al 2 O 3 molar ratio is in the range of 100 to 1000. This is different from the usual hydrophilic zeolite having a SiO 2 / Al 2 O 3 molar ratio of around 1 to 10, and since it has a large amount of SiO 2 component, it causes a slight change in the composition and structure of the crystal and becomes hydrophobic. . As a result, water molecules are less likely to be adsorbed, and conversely, the affinity with organic substances increases. Thus, the hydrophobic zeolite exhibits a selective adsorption power for the organic matter in the gas phase and the liquid phase in the mixed system of water and the organic matter. As the hydrophobic zeolite, “Absents” manufactured by UOP in the United States, “ZSM-5” manufactured by Eka Nobel Acteborag, Sweden, “HSZ series” manufactured by Tosoh Corporation, and the like are commercially available. The maximum pore diameter of the hydrophobic zeolite is preferably about 5 to 8 mm. If it is less than 5 mm, it is smaller than the molecular diameter of the target VOC, so that they are not effectively adsorbed, and if it exceeds 8 cm, these substances may be easily desorbed.

疎水性ゼオライト(B)の配合量は、スチレン系樹脂(A)100重量部に対して、0.1〜10重量部である。配合量が0.1重量部未満の場合には、VOCの吸着・除去効果に乏しくなるので好ましくない。また、配合量が10重量部を超えると、スチレン系樹脂組成物の衝撃強度が低下するばかりでなく、コスト的にも不利になり、経済性が大きく損なわれる。より好適には、0.5〜7.0重量部、さらに好適には1.0〜3.0重量部の範囲である。   The compounding quantity of hydrophobic zeolite (B) is 0.1-10 weight part with respect to 100 weight part of styrene resin (A). If the blending amount is less than 0.1 parts by weight, the VOC adsorption / removal effect is poor, which is not preferable. Moreover, when a compounding quantity exceeds 10 weight part, not only the impact strength of a styrene-type resin composition will fall, but it will become disadvantageous also in cost, and economical efficiency will be impaired significantly. More preferably, it is in the range of 0.5 to 7.0 parts by weight, and more preferably 1.0 to 3.0 parts by weight.

スチレン系樹脂(A)ならびに疎水性ゼオライト(B)を混合する方法には、特に制限はなく、任意の混合機、例えばタンブラー、リボンブレンダー、高速ミキサー等で混合し、通常の一軸またはニ軸押出機等で容易に溶融混練することができる。   The method for mixing the styrenic resin (A) and the hydrophobic zeolite (B) is not particularly limited, and is mixed with an optional mixer such as a tumbler, ribbon blender, high-speed mixer, etc. It can be easily melt-kneaded with a machine or the like.

なお、混合時、必要に応じて公知の添加剤、例えば離型剤、熱安定剤(抗酸化防止剤)、光安定剤、紫外線吸収剤、展着剤(エポキシ化大豆油、流動パラフィン等)、難燃剤、難燃助剤、各種ゴム状弾性体、充填剤、帯電防止剤、染顔料、他の熱可塑性樹脂、例えば、ポリエチレンテレフターレート、ポリブチレンテレフターレート、非晶性ポリエステル、ポリフェニレンエーテル、ポリメチルメタアクリレート等の樹脂を必要に応じて配合することができる。   When mixing, known additives, such as mold release agents, heat stabilizers (antioxidants), light stabilizers, UV absorbers, spreading agents (epoxidized soybean oil, liquid paraffin, etc.) as necessary Flame retardants, flame retardant aids, various elastic elastomers, fillers, antistatic agents, dyes and pigments, other thermoplastic resins such as polyethylene terephthalate, polybutylene terephthalate, amorphous polyester, polyphenylene Resins such as ether and polymethyl methacrylate can be blended as necessary.

充填剤としては、例えばガラス繊維、ガラスビーズ、ガラスフレーク、炭素繊維、タルク、クレー、マイカ、チタン酸カリウムウィスカー、ホウ酸アルミウィスカー、ワラストナイト、シリカ等が挙げられる。   Examples of the filler include glass fiber, glass bead, glass flake, carbon fiber, talc, clay, mica, potassium titanate whisker, aluminum borate whisker, wollastonite, silica and the like.

以下に本発明を実施例により具体的に説明するが、本発明はこれら実施例により何ら制限されるものではない。なお、特に断りのない限り「部」及び「%」は重量基準に基づく。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. Unless otherwise specified, “parts” and “%” are based on weight.

使用された配合成分の詳細は、以下のとおりである。
(A)ゴム強化スチレン系樹脂
日本A&L社製サンタックAT07(塊状重合品)(以下、ABSと略記)
(B)疎水性ゼオライト
UOP社製疎水性ゼオライト・アブセンツ3000(吸着孔径:6Å)
(以下、ZEOと略記)
The details of the compounding components used are as follows.
(A) Rubber reinforced styrene resin
Santac AT07 (bulk polymerized product) manufactured by A & L Japan (hereinafter abbreviated as ABS)
(B) Hydrophobic zeolite Hydrophobic zeolite manufactured by UOP, Inc. 3000 (adsorption pore diameter: 6 mm)
(Hereafter abbreviated as ZEO)

また、VOC低減率は、単位時間におけるVOC放出量のデータからスチレンガス低減率およびスチレン換算全VOC低減率の二種類をそれぞれ求めた。単位時間におけるVOC放出量の測定方法は下記のとおり。   Further, two types of VOC reduction rates were obtained from the data on the amount of VOC released per unit time: a styrene gas reduction rate and a styrene equivalent total VOC reduction rate. The measuring method of the amount of VOC emission per unit time is as follows.

(VOC放出量)
樹脂組成物のペレット0.1gを不活性ガス気流中で80℃で1時間加熱し、ペレット試料から発生したアウト・ガスを吸着剤にて捕集濃縮した後、GC−MSにて1時間あたりのVOC放出量を求めた。
使用した加熱導入装置やGC−MSは、下記のとおりである。
加熱導入装置:
Perkin Elmer社製TurboMatrix ATD
GC−MS:
Agilent Technologies社製
HP5973N/GC6890
吸着剤:
クロマトリサーチ社製テナックスGR
定量限界:
10ng/g・hr
(VOC emission)
After 0.1 g of pellets of the resin composition were heated at 80 ° C. for 1 hour in an inert gas stream, the out gas generated from the pellet samples was collected and concentrated with an adsorbent, and then per hour by GC-MS. The amount of VOC released was determined.
The used heat introduction apparatus and GC-MS are as follows.
Heating introduction device:
TurboMatrix ATD made by Perkin Elmer
GC-MS:
Made by Agilent Technologies
HP5973N / GC6890
Adsorbent:
Tenax GR manufactured by Chromatography Research
Quantitation limit:
10ng / g · hr

なお、単位時間あたりのVOC放出量は、次の二種類に分けて算出した。
スチレンガス放出量(ng/g・hr):
得られたアウトガスのデータから、VOCとしてスチレンだけに着目して
求めた放出量。
スチレン換算全VOC放出量(ng/g・hr):
得られたアウトガスのデータから、全ての成分の放出量をスチレン換算に
より求めた放出量。
The amount of VOC released per unit time was calculated by dividing into the following two types.
Styrene gas release (ng / g · hr):
From the obtained outgas data, paying attention only to styrene as VOC
The amount released.
Styrene conversion total VOC release (ng / g · hr):
From the obtained outgas data, the release amount of all components was converted to styrene.
More calculated amount of release.

(VOC低減率の算出方法と評価基準)
スチレンガス低減率:
樹脂組成物のそれぞれにおいて、疎水性ゼオライトを配合した場合、および
配合しない場合におけるペレット試料を用いて、スチレンガス放出量を求め
、下記式によりスチレンガス低減率を求めた。尚、スチレンガス低減率が、
20%以上を合格とした。
スチレンガス低減率(%)= (STY2−STY1)x100/STY2
STY1: 疎水性ゼオライトを配合した試料のスチレンガス放出量
STY2: 疎水性ゼオライトを配合しない試料のスチレンガス放出量
スチレン換算全VOC低減率:
樹脂組成物のそれぞれにおいて、疎水性ゼオライトを配合した場合、および
配合しない場合におけるペレット試料を用いて、スチレン換算全VOC放出
量を求め、下記式によりスチレン換算全VOC低減率を求めた。尚、スチレ
ン換算全VOC低減率が、30%以上を合格とした。
スチレン換算全VOC低減率(%)
=(ALL2−ALL1)x100/ALL2
ALL1:
疎水性ゼオライトを配合した試料のスチレン換算全VOC放出量
ALL2:
疎水性ゼオライトを配合しない試料のスチレン換算全VOC放出量
(VOC reduction rate calculation method and evaluation criteria)
Styrene gas reduction rate:
In each of the resin compositions, when a hydrophobic zeolite is blended, and
Using the pellet sample when not blended, determine the amount of styrene gas released
The styrene gas reduction rate was obtained from the following formula. The styrene gas reduction rate is
20% or more was accepted.
Styrene gas reduction rate (%) = (STY2-STY1) × 100 / STY2
STY1: Amount of styrene gas released from a sample containing hydrophobic zeolite
STY2: Styrene gas release amount of sample not containing hydrophobic zeolite Reduction rate of total VOC in terms of styrene:
In each of the resin compositions, when a hydrophobic zeolite is blended, and
Styrene conversion total VOC release using pellet sample when not blended
The amount was determined, and the total VOC reduction rate in terms of styrene was determined by the following formula. Still
The total VOC reduction rate converted to 30% or more was regarded as acceptable.
Reduction rate of total VOC in styrene (%)
= (ALL2-ALL1) x100 / ALL2
ALL1:
Total VOC release from styrene in samples containing hydrophobic zeolite
ALL2:
Total amount of VOC emission in styrene conversion of samples not containing hydrophobic zeolite

(ノッチ付きアイゾット衝撃強度)
表1に示す各種樹脂組成物のペレットを用いて、日本製鋼所社製J100E−C5射出成形機を用い、溶融温度230℃の条件下、3.2mm厚みのアイゾット衝撃強度試験片を作成した。ASTM D256に準拠し、測定温度23℃にてノッチ付きアイゾット衝撃強度を測定した。衝撃値が6Kg・cm/cm以上を合格とした。結果を表1に示す。
(Izod impact strength with notch)
Using pellets of various resin compositions shown in Table 1, a 3.2 mm thick Izod impact strength test piece was prepared under the condition of a melting temperature of 230 ° C. using a J100E-C5 injection molding machine manufactured by Nippon Steel Works. The notched Izod impact strength was measured at a measurement temperature of 23 ° C. in accordance with ASTM D256. An impact value of 6 kg / cm / cm or more was considered acceptable. The results are shown in Table 1.

(実施例1)
ABS100部およびZEO2部を、一括してタンブラーに投入し、10分間乾式混合した後、二軸押出機(神戸製鋼製KTX37)を用いて、溶融温度210℃にて混練し、樹脂組成物のペレット(実施例1)を得た。得られたペレットを用いて、VOC放出量も求めたところ、スチレンガス放出量およびスチレン換算全VOC放出量はそれぞれ210ng/g・hrおよび1300ng/g・hrであった。
Example 1
100 parts of ABS and 2 parts of ZEO are put into a tumbler at once, dry mixed for 10 minutes, and then kneaded at a melting temperature of 210 ° C. using a twin screw extruder (Kobe Steel KTX37), and pellets of the resin composition (Example 1) was obtained. When the VOC emission amount was also determined using the obtained pellets, the styrene gas emission amount and the styrene equivalent total VOC emission amount were 210 ng / g · hr and 1300 ng / g · hr, respectively.

(比較例1)
ZEOの配合を行わないこと以外は、実施例1と全て同じ操作を行い、ペレット試料(比較例1)を得た。得られたペレットを用いて、VOC放出量も求めたところ、スチレンガス放出量およびスチレン換算全VOC放出量はそれぞれ280ng/g・hrおよび2000ng/g・hrであった。当該データを用いて、実施例1〜3および比較例2および3の各種樹脂組成物のVOC低減率(スチレンガス低減率およびスチレン換算全VOC低減率)を算出した。結果を表1に示した。
(Comparative Example 1)
A pellet sample (Comparative Example 1) was obtained in the same manner as in Example 1 except that ZEO was not blended. When the obtained pellets were used to determine the VOC release amount, the styrene gas release amount and the styrene equivalent total VOC release amount were 280 ng / g · hr and 2000 ng / g · hr, respectively. Using the data, VOC reduction rates (styrene gas reduction rate and styrene equivalent total VOC reduction rate) of various resin compositions of Examples 1 to 3 and Comparative Examples 2 and 3 were calculated. The results are shown in Table 1.

(実施例2および3、比較例2および3)
ZEOの配合量を表1に示す量に変更する以外は全て実施例1と同じ操作を行い、各種ペレットを得た。得られたペレットを用いて、VOC放出量も求めたところ、スチレンガス放出量およびスチレン換算全VOC放出量はそれぞれ次のとおりであった。
スチレンガス放出量 スチレン換算全VOC放出量
実施例2: 140ng/g・hr 780ng/g・hr
実施例3: 98ng/g・hr 500ng/g・hr
比較例2: 276ng/g・hr 1940ng/g・hr
比較例3: 56ng/g・hr 240ng/g・hr
上記データを用いて、各種樹脂組成物のVOC低減率(スチレンガス低減率およびスチレン換算全VOC低減率)を算出した。結果を表1に示した。
(Examples 2 and 3, Comparative Examples 2 and 3)
Except changing the compounding quantity of ZEO to the quantity shown in Table 1, all the same operations as Example 1 were performed, and various pellets were obtained. When the VOC emission amount was also determined using the obtained pellets, the styrene gas emission amount and the styrene equivalent total VOC emission amount were as follows.
Styrene gas release amount Total VOC release amount in terms of styrene Example 2: 140 ng / g · hr 780 ng / g · hr
Example 3: 98 ng / g · hr 500 ng / g · hr
Comparative Example 2: 276 ng / g · hr 1940 ng / g · hr
Comparative Example 3: 56 ng / g · hr 240 ng / g · hr
Using the above data, VOC reduction rates (styrene gas reduction rate and styrene equivalent total VOC reduction rate) of various resin compositions were calculated. The results are shown in Table 1.

表1 各種樹脂組成物の配合比率と評価結果 Table 1 Composition ratios and evaluation results of various resin compositions

Figure 2006182840
判定: ○ 合格 × 不合格
Figure 2006182840
Judgment: ○ Pass × Fail

表1のとおり、本発明の構成要件を満足する場合(実施例1〜3)にあっては、全ての評価項目にわたりその規格を満足していた。   As shown in Table 1, when the structural requirements of the present invention were satisfied (Examples 1 to 3), the standards were satisfied over all evaluation items.

一方、本発明の構成要件を満足しない場合においては、いずれの場合も何らかの欠点を有していた。
比較例2は、本発明の疎水性ゼオライト(B)成分が規定範囲の下限よりさらに少ないため、スチレンガス低減率およびスチレン換算全VOC低減率の何れのVOC低減率においても規格を満足しなかった。
比較例3においては、本発明の疎水性ゼオライト(B)成分が規定範囲の上限を超えているため、スチレンガス低減率およびスチレン換算全VOC低減率は規格を満足するものの、衝撃強度が規格を満足しなかった。



On the other hand, in the case where the constituent requirements of the present invention are not satisfied, each case has some drawbacks.
In Comparative Example 2, since the hydrophobic zeolite (B) component of the present invention was further less than the lower limit of the specified range, the VOC reduction rate of either the styrene gas reduction rate or the styrene conversion total VOC reduction rate did not satisfy the standard. .
In Comparative Example 3, since the hydrophobic zeolite (B) component of the present invention exceeds the upper limit of the specified range, the styrene gas reduction rate and the styrene equivalent total VOC reduction rate satisfy the standard, but the impact strength is the standard. I was not satisfied.



Claims (4)

スチレン系樹脂(A)100重量部および疎水性ゼオライト(B)0.1〜10重量部からなるスチレン系樹脂組成物。   A styrene resin composition comprising 100 parts by weight of a styrene resin (A) and 0.1 to 10 parts by weight of a hydrophobic zeolite (B). スチレン系樹脂が、アクリロニトリル・ブタジエン・スチレン共重合体(ABS樹脂)、ポリスチレン(PS)、アクリロニトリル・スチレン共重合体(AS樹脂)から選択される一種もしくは二種以上であることを特徴とする請求項1記載のスチレン系樹脂組成物。 The styrene resin is one or more selected from acrylonitrile / butadiene / styrene copolymer (ABS resin), polystyrene (PS), and acrylonitrile / styrene copolymer (AS resin). Item 5. A styrene resin composition according to Item 1. 疎水性ゼオライト(B)の配合量が、スチレン系樹脂(A)100重量部あたり1.0〜3.0重量部であることを特徴とする請求項1記載のスチレン系樹脂組成物。   The styrene resin composition according to claim 1, wherein the amount of the hydrophobic zeolite (B) is 1.0 to 3.0 parts by weight per 100 parts by weight of the styrene resin (A). 請求項1〜請求項3の何れか一項に記載のスチレン系樹脂組成物を成形してなる成形品。



The molded article formed by shape | molding the styrenic resin composition as described in any one of Claims 1-3.



JP2004375823A 2004-12-27 2004-12-27 Styrene resin composition and molded product using the same Pending JP2006182840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004375823A JP2006182840A (en) 2004-12-27 2004-12-27 Styrene resin composition and molded product using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004375823A JP2006182840A (en) 2004-12-27 2004-12-27 Styrene resin composition and molded product using the same

Publications (1)

Publication Number Publication Date
JP2006182840A true JP2006182840A (en) 2006-07-13

Family

ID=36736196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004375823A Pending JP2006182840A (en) 2004-12-27 2004-12-27 Styrene resin composition and molded product using the same

Country Status (1)

Country Link
JP (1) JP2006182840A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063569A (en) * 2006-08-08 2008-03-21 Mitsubishi Engineering Plastics Corp Conductive resin composition and molded article obtained by molding the same
WO2008065098A1 (en) * 2006-12-01 2008-06-05 Basf Se Styrene-containing polymers containing a zeolite of the mfi type
JP2009544779A (en) * 2006-07-26 2009-12-17 トタル ペトロケミカルス フランス Method for reducing the content of residues in vinyl aromatic polymers
WO2019167292A1 (en) * 2018-03-01 2019-09-06 三菱エンジニアリングプラスチックス株式会社 Molding of polybutylene terephthalate resin composition
JP2019151811A (en) * 2018-03-01 2019-09-12 三菱エンジニアリングプラスチックス株式会社 Polybutylene terephthalate resin composition molding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138466A (en) * 1993-11-15 1995-05-30 Mitsui Toatsu Chem Inc Polyphenylene ether resin composition having improved odor
JPH07227940A (en) * 1994-02-16 1995-08-29 Goyo Paper Working Co Ltd Sheet base material for food container
JPH07316342A (en) * 1994-05-26 1995-12-05 Goyo Paper Working Co Ltd Synthetic resin composition containing photocatalyst and laminate containing the composition layer
JP2001329128A (en) * 2000-05-22 2001-11-27 Kanegafuchi Chem Ind Co Ltd Zeolite compound-containing polystyrene resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138466A (en) * 1993-11-15 1995-05-30 Mitsui Toatsu Chem Inc Polyphenylene ether resin composition having improved odor
JPH07227940A (en) * 1994-02-16 1995-08-29 Goyo Paper Working Co Ltd Sheet base material for food container
JPH07316342A (en) * 1994-05-26 1995-12-05 Goyo Paper Working Co Ltd Synthetic resin composition containing photocatalyst and laminate containing the composition layer
JP2001329128A (en) * 2000-05-22 2001-11-27 Kanegafuchi Chem Ind Co Ltd Zeolite compound-containing polystyrene resin composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544779A (en) * 2006-07-26 2009-12-17 トタル ペトロケミカルス フランス Method for reducing the content of residues in vinyl aromatic polymers
US8541542B2 (en) 2006-07-26 2013-09-24 Total Research & Technology Feluy Process for reducing residuals content in vinyl aromatic polymers
KR101448554B1 (en) * 2006-07-26 2014-10-10 토탈 페트로케미컬스 프랑스 Process for reducing residuals content in vinyl aromatic polymers
JP2008063569A (en) * 2006-08-08 2008-03-21 Mitsubishi Engineering Plastics Corp Conductive resin composition and molded article obtained by molding the same
WO2008065098A1 (en) * 2006-12-01 2008-06-05 Basf Se Styrene-containing polymers containing a zeolite of the mfi type
US20100029824A1 (en) * 2006-12-01 2010-02-04 BASF SE Patents, Trademark and Licenses Styrene-containing polymers containing a zeolite of the mfi type
WO2019167292A1 (en) * 2018-03-01 2019-09-06 三菱エンジニアリングプラスチックス株式会社 Molding of polybutylene terephthalate resin composition
JP2019151811A (en) * 2018-03-01 2019-09-12 三菱エンジニアリングプラスチックス株式会社 Polybutylene terephthalate resin composition molding
JP7111499B2 (en) 2018-03-01 2022-08-02 三菱エンジニアリングプラスチックス株式会社 Polybutylene terephthalate resin composition molded article

Similar Documents

Publication Publication Date Title
US5352727A (en) Syndiotactic polystyrene composition
CN111032778B (en) Resin composition
JPH03205411A (en) Thermoplastic copolymer, its production and thermoplastic resin composition containing same
KR100665804B1 (en) High Heat ABS Resin Composition Having Improved Crack and Chemical Resistance
KR100778012B1 (en) Thermoplastic resin composition having good brake oil resistance
JP3562849B2 (en) Compatibilizer for polymer alloy and thermoplastic resin composition containing the same
JP2006182840A (en) Styrene resin composition and molded product using the same
JP4216581B2 (en) Aromatic polycarbonate resin composition and molded article thereof
JP3512039B2 (en) Antistatic resin composition
JP2006045337A (en) Thermoplastic resin composition and its molded product
KR20130068871A (en) Heat-resistant abs resin composition with excellent processability and resistance for discoloration at high temperature and method for preparing the same
JP2001172501A (en) Thermoplastic resin composition
JP4994660B2 (en) Recycling reinforcements and products
JPH07109396A (en) Conductive amorphous polyolefin resin composition
US20080081137A1 (en) Polymer blend composition and articles thereof
KR101515259B1 (en) Polycarbonate/ABS blend resin composition having excellent impact strength
JP2001152011A (en) Thermoplastic resin composition
JPH0995587A (en) Rubber-modified styrene resin composition and its molded item
JP2005298774A (en) Resin composition and heat-resistant resin composition using the same
JPH08120153A (en) Thermoplastic resin composition
JPS6011979B2 (en) Heat-resistant and impact-resistant resin composition
KR20240120485A (en) Thermoplastic resin composition and molded article using the same
JPH06299024A (en) Thermoplastic resin composition
JPH0987462A (en) Rubber-reinforced styrenic resin composition and molded product therefrom
JPH0971702A (en) Heat-resistant thermoplastic resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070614

A977 Report on retrieval

Effective date: 20101201

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20101209

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426