WO2019165952A1 - 激光投射模组的控制方法、控制装置和电子装置 - Google Patents

激光投射模组的控制方法、控制装置和电子装置 Download PDF

Info

Publication number
WO2019165952A1
WO2019165952A1 PCT/CN2019/076133 CN2019076133W WO2019165952A1 WO 2019165952 A1 WO2019165952 A1 WO 2019165952A1 CN 2019076133 W CN2019076133 W CN 2019076133W WO 2019165952 A1 WO2019165952 A1 WO 2019165952A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
cover
touch panel
processor
electrodes
Prior art date
Application number
PCT/CN2019/076133
Other languages
English (en)
French (fr)
Inventor
白剑
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810161923.3A external-priority patent/CN108398987A/zh
Priority claimed from CN201810161925.2A external-priority patent/CN108322729A/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2019165952A1 publication Critical patent/WO2019165952A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/254Image signal generators using stereoscopic image cameras in combination with electromagnetic radiation sources for illuminating objects

Definitions

  • the present invention relates to the field of imaging technologies, and in particular, to a control method, a control device, and an electronic device of a laser projection module.
  • the structured light camera uses a laser projection module to emit laser light, thereby assisting the infrared camera to acquire a structured light image.
  • the laser light emitted by the laser projection module is attenuated by optical elements (such as collimating elements and/or diffractive optical elements (DOE)) to avoid harm to the human body.
  • optical elements such as collimating elements and/or diffractive optical elements (DOE)
  • Embodiments of the present invention provide a control method, a control device, and an electronic device of a laser projection module.
  • the laser light emitted by the laser projection module is transmitted to the outside through a cover plate assembly, and the cover assembly includes a detecting component, and the detecting component is used to output an electrical signal after being energized.
  • the control method includes: acquiring the electrical signal; determining whether the electrical signal is within a preset range; and controlling the laser projection module to be turned off when the electrical signal is not within the preset range The laser projection module is controlled to reduce the transmission power.
  • the laser light emitted by the laser projection module is transmitted to the outside through a cover plate assembly, and the cover plate assembly includes a detecting component, and the detecting component is used to output an electrical signal after being energized.
  • the control device includes an acquisition module, a determination module, and a control module.
  • the acquiring module is configured to acquire the electrical signal.
  • the determining module is configured to determine whether the electrical signal is within a preset range.
  • the control module is configured to control the laser projection module to close or control the laser projection module to reduce transmission power when the electrical signal is not within the preset range.
  • An electronic device of an embodiment of the present invention includes a cover assembly and a processor.
  • a detecting element is formed on the cover plate assembly, and the detecting element is used to output an electrical signal after being energized.
  • the processor is coupled to the detecting component, and the processor is configured to determine whether the cover plate assembly is broken according to the electrical signal.
  • FIG. 1 is a schematic plan view of an electronic device in accordance with some embodiments of the present invention.
  • FIG. 2 is a schematic view showing the structure of a cap assembly according to some embodiments of the present invention.
  • FIG 3 is a schematic structural view of a laser projection module according to some embodiments of the present invention.
  • 4 and 5 are schematic structural views of a cover assembly of some embodiments of the present invention.
  • 6 to 13 are schematic diagrams showing the circuit of a conductive electrode of a touch panel according to some embodiments of the present invention.
  • FIG. 14 is a schematic view showing the structure of a cap assembly according to some embodiments of the present invention.
  • 15 is a schematic diagram of a circuit of a conductive electrode of a touch panel according to some embodiments of the present invention.
  • 16 is a schematic view showing the structure of a cap assembly according to some embodiments of the present invention.
  • 17 is a schematic structural view of a cover assembly of some embodiments of the present invention.
  • 18 to 21 are schematic diagrams of lines of a conductive path of a touch panel according to some embodiments of the present invention.
  • 22 is a schematic structural view of a cover assembly of some embodiments of the present invention.
  • 23 to 26 are schematic diagrams of lines of a conductive path of a touch panel according to some embodiments of the present invention.
  • Figure 27 is a schematic view showing the structure of a cap assembly according to some embodiments of the present invention.
  • FIG. 28 is a schematic diagram of a circuit of a conductive path of a touch panel according to some embodiments of the present invention.
  • 29 is a schematic structural view of a cover assembly of some embodiments of the present invention.
  • 30 and 31 are schematic views of the structure of a cover assembly of some embodiments of the present invention.
  • 32 to 39 are schematic diagrams of the wiring of the cover conductive electrode of some embodiments of the present invention.
  • FIG. 40 is a schematic structural view of a cover assembly of some embodiments of the present invention.
  • 41 is a circuit diagram of a cover conductive electrode of some embodiments of the present invention.
  • FIG. 42 is a schematic structural view of a cover assembly of some embodiments of the present invention.
  • 43 is a schematic view showing the structure of a cap assembly according to some embodiments of the present invention.
  • 44 to 47 are schematic diagrams showing the wiring of the cover conductive path of some embodiments of the present invention.
  • Figure 48 is a schematic illustration of the construction of a cover assembly in accordance with some embodiments of the present invention.
  • 49 to 52 are schematic diagrams of the wiring of the cover conductive path of some embodiments of the present invention.
  • Figure 53 is a schematic view showing the structure of a cap assembly according to some embodiments of the present invention.
  • Figure 54 is a circuit diagram of a conductive path of a cover plate in accordance with some embodiments of the present invention.
  • Figure 55 is a schematic illustration of the construction of a cover assembly in accordance with some embodiments of the present invention.
  • 56 to 58 are partial structural views of a laser projection module according to some embodiments of the present invention.
  • 59 is a flow chart showing a method of controlling a laser projection module according to some embodiments of the present invention.
  • Figure 60 is a schematic illustration of a control device for a laser projection module in accordance with some embodiments of the present invention.
  • 61 is a schematic structural view of a depth camera according to some embodiments of the present invention.
  • 62 is a flow chart showing a method of controlling a laser projection module according to some embodiments of the present invention.
  • Figure 63 is a schematic illustration of a control device for a laser projection module in accordance with some embodiments of the present invention.
  • 64 is a flow chart showing a method of controlling a laser projection module according to some embodiments of the present invention.
  • Figure 65 is a schematic illustration of a control device for a laser projection module in accordance with some embodiments of the present invention.
  • 66 is a schematic structural diagram of an electronic device according to some embodiments of the present invention.
  • 67 is a schematic structural view of a laser projection module according to some embodiments of the present invention.
  • 68 and 69 are schematic views of the structure of a cover plate according to some embodiments of the present invention.
  • 70 to 77 are schematic views showing the arrangement of conductive electrodes according to some embodiments of the present invention.
  • Figure 78 is a schematic view showing the structure of a cover plate according to some embodiments of the present invention.
  • 79 to 82 are schematic views showing the arrangement of conductive electrodes according to some embodiments of the present invention.
  • Figure 83 is a schematic view showing the structure of a cover plate according to some embodiments of the present invention.
  • 84 to 91 are schematic views showing the arrangement of conductive paths in accordance with some embodiments of the present invention.
  • Figure 92 is a schematic view showing the structure of a cover plate according to some embodiments of the present invention.
  • 93-96 are schematic views of the arrangement of conductive paths in accordance with certain embodiments of the present invention.
  • 97 is a schematic structural diagram of an electronic device according to some embodiments of the present invention.
  • FIG. 98 is a schematic structural diagram of a laser projection module according to some embodiments of the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality" is two or more unless specifically defined otherwise.
  • connection should be understood broadly, and may be fixed connection, for example, or Removable connection, or integral connection; can be mechanical connection, electrical connection or communication with each other; can be direct connection or indirect connection through intermediate medium, can be internal connection of two components or two components Interaction relationship.
  • connection should be understood broadly, and may be fixed connection, for example, or Removable connection, or integral connection; can be mechanical connection, electrical connection or communication with each other; can be direct connection or indirect connection through intermediate medium, can be internal connection of two components or two components Interaction relationship.
  • the "on" or “below” of the second feature may include direct contact of the first and second features, and may also include the first sum, unless otherwise specifically defined and defined.
  • the second feature is not in direct contact but through additional features between them.
  • the first feature “above”, “above” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature includes the first feature directly below and below the second feature, or merely indicating that the first feature level is less than the second feature.
  • the present invention provides an electronic device 1000.
  • the electronic device 1000 includes a cover assembly 300 and a processor 400.
  • a detecting element 320 is formed on the cover plate assembly 300, and the detecting element 320 is used to output an electrical signal after being energized.
  • the processor 400 is coupled to the detecting component 320, and the processor 400 is configured to determine whether the cap assembly 300 is broken according to an electrical signal.
  • the present invention provides an electronic device 1000.
  • the electronic device 1000 includes a housing 100, a laser projection module 220, a cover assembly 300, and a processor 400.
  • the laser projection module 220 is disposed within the housing 100.
  • the cover assembly 300 is disposed on the housing 100 and covers the laser projection module 220.
  • the laser light emitted by the laser projection module 220 is transmitted to the outside through the cover plate assembly 300.
  • the cover assembly 300 is formed with a detecting element 320.
  • the detecting element 320 includes a conductive member, and the detecting element 320 is used to output an electrical signal after being energized.
  • the processor 400 is coupled to the detecting component 320.
  • the processor 400 is configured to acquire an electrical signal, determine whether the electrical signal is within a preset range, and control the laser projection module 220 to turn off or control the laser projection when the electrical signal is not within the preset range. Module 220 reduces the transmit power.
  • the electronic device 1000 of the embodiment of the present invention determines whether the laser projection module 220 is abnormally operated by the electrical signal outputted by the detecting component 320 of the cover assembly 300, so that the laser projection module 220 can be controlled to be turned off when the laser projection module 220 operates abnormally or The laser projection module 220 is controlled to reduce the transmission power, thereby avoiding the danger of the laser emitted by the laser projection module 220 directly hitting the human body, and improving the safety of the laser projection module 220.
  • the laser projection module 220 includes a laser emitter 221 , a collimating element 223 , and a diffractive optical element 225 .
  • the collimating element 223 and the diffractive optical element 225 are generally made of a glass material, and are easily broken by an external force, causing the laser light emitted by the laser emitter 221 to directly hit the human body to cause a safety accident.
  • the cover plate assembly 300 is also generally a glass material and is easily broken by an external force.
  • the cover assembly 300 is disposed on the housing 100 and covers the laser projection module 220, so that the laser projection module 220 and the cover assembly 300 are easily subjected to external forces at the same time.
  • the effect is that the laser projection module 220 is also substantially broken in the event that the cover assembly 300 is broken; in the event that the laser projection module 220 is broken, the cover assembly 300 will also substantially rupture.
  • the cover plate assembly 300 is broken when the electrical signal is not within the preset range, thereby determining that the laser projection module 220 also breaks, and thus can be controlled.
  • the laser projection module 220 turns off or controls the laser projection module 220 to reduce the transmission power.
  • the cover assembly 300 includes a touch panel 340 , the touch panel 340 includes a detecting component 320 , and the detecting component 320 is a transparent conductive film 321 (light transmission can be The light transmittance is greater than 80%, the same below), the conductive film 321 of the touch panel is provided with a conductive electrode 3211 of the touch panel, and the conductive electrode 3211 of the touch panel is energized to output an electrical signal.
  • the touch panel conductive electrode 3211 on the transparent touch panel conductive film 321 can be used to determine whether the cover assembly 300 is broken.
  • the touch panel 340 is formed with a transparent touch panel conductive film 321 .
  • the touch panel 340 is in an intact state, the resistance of the transparent touch panel conductive film 321 is small, and the touch panel is given in this state.
  • the conductive electrode 3211 is energized, that is, a voltage of a certain magnitude is applied, the current output by the touch panel conductive electrode 3211 obtained by the processor 400 is large.
  • the touch panel 340 is broken, the conductive film 321 of the transparent touch panel is also broken. At this time, the resistance of the conductive film 321 of the transparent touch panel at the cracking position is close to infinity, and the touch is given in this state.
  • the control board conductive electrode 3211 is energized, and the current output by the touch panel conductive electrode 3211 obtained by the processor 400 is small. Therefore, in the first manner, whether the conductive film 321 of the transparent touch panel is broken is determined according to the difference between the electrical signal (ie, current) and the electrical signal (ie, current) detected by the touch panel 340 in an unruptured state. Further, whether the touch panel 340 is broken according to the state of the conductive film 321 of the transparent touch panel, that is, if the conductive film 321 of the transparent touch panel is broken, it indicates that the touch panel 340 is also broken; If the control board conductive film 321 is not broken, it indicates that the touch panel 340 is also not broken.
  • the second method directly determining whether the touch panel 340 is broken according to the electrical signal outputted by the touch panel conductive electrode 3211 on the touch panel 340. Specifically, when the touch panel 340 is not broken, the touch panel conductive electrode 3211 When the output electrical signal is not within the preset range, it is determined that the transparent touch panel conductive film 321 is broken, and then the touch panel 340 is also broken; if the electrical signal output by the touch panel conductive electrode 3211 is within a preset range, it is determined. The transparent touch panel conductive film 321 is not broken, and it is judged that the touch panel 340 is not broken.
  • the touchpad 340 includes opposite touchpad incident surfaces 342 and a touchpad exit surface 344.
  • the conductive film 321 of the transparent touch panel may be disposed on the incident surface 342 of the touch panel (as shown in FIG. 4 ) or on the exit surface 344 of the touch panel. On (as shown in Figure 5).
  • the touch panel conductive electrode 3211 is a single strip, and the touch panel conductive electrode 3211 includes a touch panel output end 322 and a touch panel input end 323 , and the touch panel output end The 322 and trackpad input 323 are coupled to the processor 400 to form a conductive loop.
  • the transparent touch panel conductive film 321 is a single layer, and is disposed on the touch panel incident surface 342 or the touch panel exit surface 344 of the touch panel 340.
  • the touch panel conductive electrodes 3211 are arranged in various ways: for example, the connection direction of the touch panel input end 323 and the touch panel output end 322 (ie, the extending direction of the touch panel conductive electrode 3211) is transparent.
  • the length direction of the conductive film 321 of the optical touch panel (as shown in FIG. 6), or the extending direction of the conductive electrode 3211 of the touch panel is the width direction of the conductive film 321 of the transparent touch panel (as shown in FIG.
  • the extending direction of the control board conductive electrode 3211 is the diagonal direction of the transparent touch panel conductive film 321 (as shown in FIGS. 8 and 9). Regardless of the manner in which the conductive electrodes 3211 of the touch panel are arranged, the conductive electrodes 3211 of the touch panel can span the entire conductive film 321 of the transparent touch panel, and the conductive film of the transparent touch panel can be accurately detected. Whether it is broken.
  • the touch panel conductive electrodes 3211 are multiple, and the plurality of touch panel conductive electrodes 3211 do not intersect each other, and each touch panel conductive electrode 3211 includes a touch panel output.
  • the end 322 and the touch panel input end 323, each touch panel output end 322 and each touch panel input end 323 are connected to the processor 400 to form a conductive loop, thereby touching the plurality of touch panel conductive electrodes 3211
  • the control board input terminal 323 and the touch panel output end 322 are respectively connected to the processor 400 to form a plurality of conductive loops. In this way, the accuracy of detecting whether the touch panel 340 is broken by the transparent touch panel conductive film 321 can be improved.
  • the transparent touch panel conductive film 321 is a single layer and is disposed on the touch panel incident surface 342 or the touch panel exit surface 344.
  • the plurality of touch panel conductive electrodes 3211 are arranged in a plurality of manners.
  • the extending direction of each of the touch panel conductive electrodes 3211 is the length direction of the transparent touch panel conductive film 321
  • the plurality of touch panels are electrically conductive.
  • the electrodes 3211 are arranged in parallel along the longitudinal direction of the transparent touch panel conductive film 321 (as shown in FIG.
  • the extending direction of each of the touch panel conductive electrodes 3211 is the width direction of the transparent touch panel conductive film 321
  • the plurality of touch panel conductive electrodes 3211 are arranged in parallel (as shown in FIG. 11); or, the extending direction of each of the touch panel conductive electrodes 3211 is a diagonal direction of the transparent touch panel conductive film 321
  • the touch panel conductive electrodes 3211 are arranged in parallel (as shown in FIGS. 12 and 13). Regardless of the manner in which the touch panel conductive electrodes 3211 are arranged, the plurality of touch panel conductive electrodes 3211 can occupy the transparent touch panel conductive film 321 compared to the single touch panel conductive electrodes 3211. More area, correspondingly can output more electrical signals. In this way, the processor 400 can more accurately determine whether the transparent touch panel conductive film 321 is broken according to more electrical signals, further determine whether the touch panel 340 is broken, and improve the accuracy of the touch detection of the touch panel 340.
  • the touch panel conductive electrode 3211 is a single-layer bridging structure, and includes a plurality of first touch panel conductive electrodes 3212 arranged in parallel and arranged in parallel.
  • the second touch panel conductive electrode 3213 and the plurality of touch panel bridge conductive electrodes 3214, the plurality of first touch panel conductive electrodes 3212 and the plurality of second touch panel conductive electrodes 3213 are criss-crossed, each first touch The control panel conductive electrodes 3212 are continuously uninterrupted, and each of the second touch panel conductive electrodes 3213 is disconnected from the corresponding plurality of first touch panel conductive electrodes 3212 and is connected to the plurality of first touch panel conductive electrodes 3212.
  • each touch panel bridge conductive electrode 3214 turns on the corresponding disconnection of the corresponding second touch panel conductive electrode 3213; the touch panel bridges the conductive electrode 3214 and the first touch panel conductive electrode 3212
  • the touch panel insulators 3215 are disposed at the staggered positions; the two ends of each of the first touch panel conductive electrodes 3212 are connected to the processor 400 to form a conductive loop, and the two ends of each of the second touch panel conductive electrodes 3213 and the processor 400 are disposed. Connected to form a conductive loop.
  • the two ends of the plurality of first touch panel conductive electrodes 3212 and the processor 400 are respectively connected to form a plurality of conductive loops, and the two ends of the plurality of second touch panel conductive electrodes 3213 are respectively connected to the processor 40.
  • the plurality of first touch panel conductive electrodes 3212 and the plurality of second touch panel conductive electrodes 3213 are vertically and horizontally interlaced by a plurality of first touch panel conductive electrodes 3212 and a plurality of second touch panel conductive electrodes 3213
  • the vertical staggered, that is, the angle between the first touch panel conductive electrode 3212 and the second touch panel conductive electrode 3213 is 90 degrees.
  • the plurality of first touch panel conductive electrodes 3212 and the plurality of second touch panel conductive electrodes 3213 are vertically crisscrossed, and may be a plurality of first touch panel conductive electrodes 3212 and a plurality of second touches.
  • the control board conductive electrodes 3213 are obliquely staggered with each other.
  • the processor 400 can simultaneously energize the plurality of first touch panel conductive electrodes 3212 and the plurality of second touch panel conductive electrodes 3213 to obtain a plurality of electrical signals, or the processor 400 can sequentially perform a plurality of first The touch panel conductive electrode 3212 and the plurality of second touch panel conductive electrodes 3213 are energized to obtain a plurality of electrical signals.
  • the processor 400 determines whether the transparent touch panel conductive film 321 is broken according to the electrical signal.
  • the electrical signal outputted by the first touch panel conductive electrode 3212 of the number 1 is not within the preset range, and the electrical signal output by the second touch panel conductive electrode 3213 of the number 3 is not within the preset range
  • the optical touch panel conductive film 321 is broken at the intersection of the first touch panel conductive electrode 3212 numbered 1 and the second touch panel conductive electrode 3213 of the third touch panel, and the touch panel 340 and the transparent touch panel conductive film
  • the position corresponding to the 321 rupture position is also broken. In this way, the single-layer transparent touch panel conductive film 321 of the bridge structure can more accurately detect whether the touch panel 340 is broken or the specific position of the crack.
  • the transparent touch panel conductive film 321 includes a first touch panel conductive film 3216 and a second touch panel conductive film 3218 disposed on the interlayer, and the first touch panel conductive film
  • the 3216 is provided with a plurality of parallel first touch panel conductive electrodes 3212
  • the second touch panel conductive film 3218 is provided with a plurality of parallel second touch panel conductive electrodes 3213.
  • the first touch panel conductive electrodes 3212 are The projections on the second touch panel conductive film 3218 are vertically and horizontally staggered with the second touch panel conductive electrodes 3213.
  • each of the first touch panel conductive electrodes 3212 are connected to the processor 400 to form a conductive loop
  • each second Both ends of the touch panel conductive electrode 3213 are connected to the processor 400 to form a conductive loop. Therefore, the two ends of the plurality of first touch panel conductive electrodes 3212 and the processor 400 are respectively connected to form a plurality of conductive loops, and the two ends of the plurality of second touch panel conductive electrodes 3213 are respectively connected to the processor 400. To form a plurality of conductive loops.
  • the transparent touch panel conductive film 321 includes the first touch panel conductive film 3216 and the second touch panel conductive film 3218 disposed on the first layer
  • the board conductive film 3218 can be disposed on the touch panel incident surface 342 and the touch panel exit surface 344, respectively.
  • the projection of the first touch panel conductive electrode 3212 on the second touch panel conductive film 3218 and the second touch panel conductive electrode 3213 are vertically and horizontally interlaced by a plurality of first touch panel conductive electrodes 3212 and a plurality of second contacts
  • the control panel conductive electrodes 3213 are spatially interlaced with each other, that is, the projection of the first touch panel conductive electrode 3212 on the second touch panel conductive film 3218 and the second touch panel conductive electrode 3213 are 90 degrees.
  • the projection of the plurality of first touch panel conductive electrodes 3212 on the second touch panel conductive film 3218 and the plurality of second touch panel conductive electrodes 3213 may be vertically intersected.
  • the touch panel conductive electrode 3212 and the plurality of second touch panel conductive electrodes 3213 are spatially obliquely staggered with each other.
  • the processor 400 can simultaneously energize the plurality of first touch panel conductive electrodes 3212 and the plurality of second touch panel conductive electrodes 3213 to obtain a plurality of electrical signals, or the processor 400 can sequentially perform a plurality of first The touch panel conductive electrode 3212 and the plurality of second touch panel conductive electrodes 3213 are energized to obtain a plurality of electrical signals, and then the processor 400 determines whether the transparent touch panel conductive film 321 is broken according to the electrical signal, and further determines Whether the touchpad 340 is broken. In the same manner, according to the electrical signals outputted by the plurality of first touch panel conductive electrodes 3212 and the plurality of second touch panel conductive electrodes 3213, the specific position of the touch panel 340 for cracking and cracking can be accurately detected.
  • the touch panel 340 is generally provided with a touch layer.
  • the touch layer can be regarded as the conductive film 321 of the touch panel, that is, the touch panel can be The touch layer of 340 is energized to obtain an electrical signal.
  • the detecting component 320 can also be doped with conductive particles 324 in the touch panel 340 , and the conductive particles 324 form a touch panel conductive path 325 , and the touch panel conductive path 325 is powered and output. electric signal.
  • the touch panel conductive path 325 formed by the conductive particles 324 can be utilized to determine whether the cover assembly 300 is broken.
  • the touch panel 340 when the touch panel 340 is in an intact state, the adjacent conductive particles 324 are joined. At this time, the resistance of the entire touch panel conductive path 325 is small, and the touch panel conductive path 325 is given in this state.
  • the voltage that is, a certain amount of voltage is applied, the current output by the touch panel conductive path 325 acquired by the processor 400 is large.
  • the touch panel 340 is broken, the joint between the conductive particles 324 doped in the touch panel 340 is broken. At this time, the resistance of the entire touch panel conductive path 325 is close to infinity, and in this state, The touch panel conductive path 325 is energized, and the current output by the touch panel conductive path 325 obtained by the processor 400 is small.
  • the difference between the electrical signal (ie, current) outputted by the touch panel conductive path 325 in the touch panel 340 and the electrical signal detected in the unruptured state of the touch panel 340 can be used. It is determined whether the touch panel 340 is broken.
  • the second method directly determining whether the touch panel 340 is broken according to an electrical signal outputted by the touch panel conductive path 325 in the touch panel 340. Specifically, if the touch panel is conductive When the electrical signal output by the 325 is within a preset range, it is determined that the touch panel 340 is broken. If the electrical signal output by the touch panel conductive path 325 is within a preset range, it is determined that the touch panel 340 is not broken.
  • the touch panel conductive path 325 is a single strip and includes a touch panel output end 322 and a touch panel input end 323 , a touch panel output end 322 and a touch panel input. End 323 is coupled to processor 400 to form a conductive loop. As such, fewer conductive particles 324 are required to fabricate the touchpad conductive vias 325, which can reduce the manufacturing cost of the touchpad conductive vias 325.
  • the touch panel 340 is doped with a plurality of conductive particles 324 (hereinafter, the conductive particles 324 doped in the touch panel 340 are referred to as touch panel conductive particles 3242), and the plurality of touch panel conductive particles 3242 are formed.
  • the touch panel conductive path 325 is arranged in various ways: for example, the extending direction of the touch panel conductive path 325 is the length direction of the touch panel 340 (as shown in FIG. 18); or the touch panel conductive path 325 The extending direction is the width direction of the touch panel 340 (as shown in FIG. 19); or the extending direction of the touch panel conductive path 325 is the diagonal direction of the touch panel 340 (as shown in FIG. 20 and FIG. 21). . Regardless of the manner in which the touch panel conductive vias 325 are arranged, the touchpad conductive vias 325 can span the entire touchpad 340, and the touchpad 340 can be more accurately detected.
  • the touchpad conductive vias 325 are multiple, and the plurality of touchpad conductive vias 325 do not intersect each other.
  • Each of the touchpad conductive vias 325 includes a touchpad output 322 and A touchpad input 323, each trackpad output 322 and each trackpad input 323 are coupled to the processor 400 to form a conductive loop.
  • the touch panel input end 323 and the touch panel output end 322 of the plurality of touch panel conductive paths 325 are respectively connected to the processor 400 to form a plurality of conductive loops.
  • the touch panel 340 is doped with a plurality of touch panel conductive particles 3242 , and the plurality of touch panel conductive particles 3242 form a plurality of touch panel conductive paths 325 , and multiple touches are provided.
  • the board conductive vias 325 do not intersect each other and are insulated from each other.
  • the plurality of touch panel conductive paths 325 are arranged in a plurality of ways: for example, the extending direction of each of the touch panel conductive paths 325 is the length direction of the touch panel 340 (as shown in FIG. 23), and multiple touches.
  • the control board conductive paths 325 are arranged in parallel.
  • the plurality of touch panel conductive paths 325 can also be arranged at intervals along the thickness direction of the touch panel 340 (as shown in FIG. 22). Or, the extending direction of each touch panel conductive path 325 is the width direction of the touch panel 340 (as shown in FIG. 24), and the plurality of touch panel conductive paths 325 are arranged in parallel, since the touch panel 340 has a certain Therefore, the plurality of touch panel conductive paths 325 may be disposed at intervals along the thickness direction of the touch panel 340; or, the extending direction of each of the touch panel conductive paths 325 is incident to the touch panel of the touch panel 340.
  • the diagonal direction of the surface 342 (as shown in FIG. 25 and FIG.
  • the plurality of touch panel conductive paths 325 are arranged in parallel. Since the touch panel 340 has a certain thickness, the plurality of touch panel conductive paths 325 It may also be stacked at intervals along the thickness direction of the touch panel 340. Home. Regardless of the manner in which the touchpad conductive vias 325 are arranged, the plurality of touchpad conductive vias 325 can occupy more volume of the touchpad 340 than the single touchpad conductive vias 325 are provided. Correspondingly, more electrical signals can be output. In this way, the processor 400 can more accurately determine whether the touch panel 340 is broken according to more electrical signals, and improve the accuracy of the crack detection of the touch panel 340.
  • the touch panel conductive path 325 includes a plurality of first touch panel conductive vias 3252 and a plurality of second touch panel conductive vias 3254 , and a plurality of first touch panel conductive vias 3252 is arranged in parallel, a plurality of second touch panel conductive paths 3254 are arranged in parallel, and a plurality of first touch panel conductive paths 3252 and a plurality of second touch panel conductive paths 3254 are spatially criss-crossed, each touch The board conductive path 325 includes a touch panel output end 322 and a touch panel input end 323. Each touch panel output end 322 and each touch panel input end 323 are coupled to the processor 400 to form a conductive loop.
  • the touch panel 340 is doped with a plurality of touch panel conductive particles 3242, and the plurality of touch panel conductive particles 3242 form a plurality of touch panel conductive paths 325, and each of the first touch panel conductive paths 3252 includes a first A touch panel input end 3232 and a first touch panel output end 3222, each second touch panel conductive path 3254 includes a second touch panel input end 3234 and a second touch panel output end 3224.
  • Each first touch panel input end 3232 and each first touch panel output end 3222 are coupled to the processor 400 to form a conductive loop, each second touch panel input end 3234 and each second touch panel Output 3224 is coupled to processor 400 to form a conductive loop.
  • both ends of the plurality of first touch panel conductive vias 3252 are respectively connected to the processor 400 to form a plurality of conductive loops.
  • Both ends of the plurality of second touch panel conductive paths 3254 are respectively connected to the processor 400 to form a plurality of conductive loops.
  • the plurality of first touch panel conductive paths 3252 and the plurality of second touch panel conductive paths 3254 are spatially and vertically interleaved to mean that the plurality of first touch panel conductive paths 3252 and the plurality of second touch panels are electrically conductive.
  • the vias 3254 are spatially interlaced with each other, that is, the angle between the first touch panel conductive via 3252 and the second touch panel conductive via 3254 is 90 degrees.
  • the extending direction of the plurality of first touch panel conductive paths 3252 is the length direction of the touch panel 340, and the extending direction of the plurality of second touch panel conductive paths 3254 is the width direction of the touch panel 340; or
  • the extending direction of the plurality of first touch panel conductive vias 3252 is the thickness direction of the touch panel 340
  • the extending direction of the plurality of second touch panel conductive vias 3254 is the length direction of the touch panel 340 .
  • the plurality of first touch panel conductive vias 3252 and the plurality of second touch panel conductive vias 3254 are spatially criss-crossed, and may also be a plurality of first touch panel conductive vias 3252 and multiple strips.
  • the second touch panel conductive paths 3254 are spatially obliquely staggered with each other.
  • the processor 400 can simultaneously energize the plurality of first touch panel conductive vias 3252 and the plurality of second touchpad conductive vias 3254 to obtain a plurality of electrical signals.
  • the processor 400 can sequentially energize the plurality of first touch panel conductive paths 3252 and the plurality of second touch panel conductive paths 3254 to obtain a plurality of electrical signals, and then the processor 400 determines the touch according to the electrical signals. Whether the plate 340 is broken. Referring to FIG.
  • the touch panel 340 is broken at the intersection of the first touch panel conductive path 3252 of the number 2 and the second touch panel conductive path 3254 of the fourth touch panel, and the corresponding position of the touch panel 340 is also The rupture, in this manner, can be more accurately detected by the plurality of first touch panel conductive paths 3252 and the plurality of second touch panel conductive paths 3254 in a staggered arrangement, whether the touch panel 340 is broken or broken.
  • the plurality of first touch panel conductive vias 3252 and the plurality of second touch panel conductive vias 3254 are spatially interleaved to form a After pairing the mutually staggered conductive paths, a plurality of pairs of the mutually staggered conductive path pairs may be formed in the width direction or the thickness direction of the touch panel 340.
  • the processor 400 can simultaneously energize the plurality of first touch panel conductive vias 3252 and the plurality of second touchpad conductive vias 3254 to obtain a plurality of electrical signals.
  • the processor 400 can sequentially energize the plurality of first touch panel conductive paths 3252 and the plurality of second touch panel conductive paths 3254 to obtain a plurality of electrical signals, and then the processor 400 determines the touch according to the electrical signals. Whether the plate 340 is broken and the specific location of the crack. In this way, the pair of touch panel conductive paths 325 can occupy more volume of the touch panel 340, correspondingly can output more electrical signals, and the processor 400 can more accurately determine the touch according to more electrical signals. Whether the control board 340 is broken or broken is a specific position, and the accuracy of the crack detection of the touch panel 340 is improved.
  • the cover plate assembly 300 includes a cover plate 360.
  • the cover plate 360 includes a detecting element 320.
  • the detecting element 320 is a transparent cover plate conductive film 326, and a transparent cover plate conductive film.
  • a cover conductive electrode 3261 is disposed on the 326, and the cover conductive electrode 3261 is energized to output an electrical signal. As such, the cover conductive electrode 3261 on the transparent cover conductive film 326 can be used to determine whether the cover assembly 300 is broken.
  • the transparent cover plate conductive film 326 is formed on the cover plate 360.
  • the cover plate 360 is in the intact state, the resistance of the transparent cover conductive film 326 is small, and the cover conductive electrode 3261 is energized in this state. That is, when a voltage of a certain magnitude is applied, the current output by the cover conductive electrode 3261 obtained by the processor 400 is large.
  • the cover plate 360 is broken, the transparent cover plate conductive film 326 is also broken. At this time, the resistance value of the transparent cover conductive film 326 at the fracture position is close to infinity, and the cover conductive electrode is given in this state.
  • the 3261 is energized, the current output by the cover conductive electrode 3261 obtained by the processor 400 is small.
  • the transparent cover film conductive film 326 is broken or not is determined according to the difference between the electrical signal (ie, current) and the electrical signal (ie, current) detected in the unruptured state of the cover plate 360, and further Whether the cover plate 360 is broken according to the state of the transparent cover conductive film 326, that is, if the transparent cover conductive film 326 is broken, it indicates that the cover plate 360 is also broken; if the transparent cover conductive film 326 is not broken , it indicates that the cover plate 360 is also not broken.
  • the second method directly determining whether the cover plate 360 is broken according to an electrical signal outputted by the cover plate conductive electrode 3261 after the cover plate 360 is energized.
  • the electrical signal output by the cover conductive electrode 3261 is not When the preset range is within the range, it is determined that the transparent cover film 326 is broken, and then the cover 360 is also broken; if the electrical signal output by the cover conductive electrode 3261 is within a preset range, the transparent cover conductive film 326 is determined The crack is broken, and it is judged that the cover plate 360 is not broken.
  • the processor 400 can distinguish the transparent touch.
  • the plate conductive film 321 and the transparent cover conductive film 326 can thereby distinguish that the touch panel 340 is broken, or the cover plate 360 is broken, or both the touch pad 340 and the cover plate 360 are broken.
  • the transparent touch panel conductive film 321 may be formed on the surface of the touch panel 340 by electroplating or the like, and the transparent cover conductive film 326 may also be formed on the surface of the cover 360 by electroplating or the like.
  • the material of the transparent touch panel conductive film 321 and the transparent cover conductive film 326 may be any one of Indium tin oxide (ITO), nano silver wire, and metal silver wire. Indium tin oxide, nano silver wire, and metal silver wire all have good light transmittance and electrical conductivity, and can realize electrical signal output after power-on, and will not block the light path of the touch panel 340 and the cover plate 360.
  • ITO Indium tin oxide
  • nano silver wire, and metal silver wire all have good light transmittance and electrical conductivity, and can realize electrical signal output after power-on, and will not block the light path of the touch panel 340 and the cover plate 360.
  • the cover plate 360 includes opposing cover plate entrance faces 362 and cover plate exit faces 364.
  • the transparent cover conductive film 326 may be disposed on the cover incident surface 362 (shown in FIG. 30) or on the cover exit surface 364 (as shown in the figure). 31)).
  • the cover conductive electrode 3261 is a single strip, and the cover conductive electrode 3261 includes a cover output end 327 and a cover input end 328, a cover output end 327 and a cover input. End 328 is coupled to processor 400 to form a conductive loop.
  • the arrangement of the cover conductive electrodes 3261 is the same as that of the single touch panel conductive electrodes 3211 in the single-layer touch panel conductive film 321 and will not be described herein.
  • the cover conductive electrodes 3261 are multiple, and the plurality of cover conductive electrodes 3261 do not intersect each other.
  • Each cover conductive electrode 3261 includes a cover output end 327 and a cover.
  • a board input 328, each cover output 327 and each cover input 328 are coupled to the processor 400 to form a conductive loop.
  • the cover input end 328 and the cover output end 327 of the plurality of cover conductive electrodes 3261 are respectively coupled to the processor 400 to form a plurality of conductive loops.
  • the arrangement of the cover conductive electrodes 3261 is the same as that of the plurality of touch panel conductive electrodes 3211 in the single-layer touch panel conductive film 321 , and details are not described herein again.
  • the plurality of cover conductive electrodes 3261 can occupy more area of the transparent cover conductive film 326, and correspondingly can output more electrical signals.
  • the processor 400 can more accurately determine whether the transparent cover film conductive film 326 is broken according to more electrical signals, further determine whether the cover plate 360 is broken, and improve the accuracy of the crack detection of the cover plate 360.
  • the cover conductive electrode 3261 is a single-layer bridging structure, including a plurality of first cover conductive electrodes 3262 arranged in parallel, and a plurality of parallelly disposed first
  • the two cover conductive electrodes 3263 and the plurality of cover bridge conductive electrodes 3264, the plurality of first cover conductive electrodes 3262 and the plurality of second cover conductive electrodes 3263 are criss-crossed, and each of the first cover conductive electrodes 3262 is continuous Intermittently, each of the second cover conductive electrodes 3263 is disconnected from the intersection of the corresponding plurality of first cover conductive electrodes 3262 and is not electrically connected to the plurality of first cover conductive electrodes 3262; each cover bridge is bridged
  • the conductive electrode 3264 is electrically connected to the opening of the corresponding second cover conductive electrode 3263; the staggered position of the cover bridge conductive electrode 3264 and the first cover conductive electrode 3262 is provided with a cover insul
  • both ends of the plurality of first cover conductive electrodes 3262 are respectively connected to the processor 400 to form a plurality of conductive loops
  • both ends of the plurality of second cover conductive electrodes 3263 are respectively connected to the processor 400 to form Multiple conductive loops.
  • the explanation of the plurality of first cover conductive electrodes 3262 and the plurality of second cover conductive electrodes 3263 and the plurality of first touch panel conductive electrodes 3212 and the plurality of seconds in the touch panel conductive film 321 of the single-layer bridge structure The explanation of the touch panel conductive electrode 3213 is the same and will not be described herein.
  • the processor 400 can simultaneously energize the plurality of first cover conductive electrodes 3262 and the plurality of second cover conductive electrodes 3263 to obtain a plurality of electrical signals, or the processor 400 can sequentially apply the plurality of first covers The conductive electrode 3262 and the plurality of second cover conductive electrodes 3263 are energized to obtain a plurality of electrical signals, and then the processor 400 determines whether the transparent cover conductive film 326 is broken according to the electrical signal.
  • the transparent cover is The plate conductive film 326 is broken at the intersection of the first cover conductive electrode 3262 numbered 1 and the second cover conductive electrode 3263 numbered 3, and the position corresponding to the rupture position of the cover plate 360 and the transparent cover conductive film 326 is also rupture.
  • the single-layer transparent cover conductive film 326 of the bridge structure can more accurately detect whether the cover plate 360 is broken and the specific position of the crack.
  • the transparent cover conductive film 326 includes a first cover conductive film 3266 and a second cover conductive film 3268 disposed on the first cover, and the first cover conductive film 3266 is disposed on the first cover conductive film 3266 a plurality of parallel first cover conductive electrodes 3262, a plurality of parallel second cover conductive electrodes 3263 disposed on the second cover conductive film 3268, and a first cover conductive electrode 3262 on the second cover conductive film 3268
  • the projections of the first cover conductive electrodes 3262 are connected to the processor 400 to form a conductive loop, and the two ends of each of the second cover conductive electrodes 3263 are connected to the processor. 400 connections are made to form a conductive loop.
  • both ends of the plurality of first cover conductive electrodes 3262 are respectively connected to the processor 400 to form a plurality of conductive loops
  • both ends of the plurality of second cover conductive electrodes 3263 are respectively connected to the processor 400 to form Multiple conductive loops.
  • the first cover conductive film 3266 may be disposed on the cover incident surface 362.
  • the second cover conductive film 3268 may be disposed on the cover emitting surface 364.
  • the projection of the first cover conductive electrode 3262 on the second cover conductive film 3268 and the second cover conductive electrode 3263 are vertically and horizontally interleaved to mean a plurality of first cover conductive electrodes 3262 and a plurality of second cover conductive electrodes 3263
  • the pixels of the first cover conductive electrode 3262 on the second cover conductive film 3268 and the second cover conductive electrode 3263 are at an angle of 90 degrees.
  • the projection of the plurality of first cover conductive electrodes 3262 on the second cover conductive film 3268 and the plurality of second cover conductive electrodes 3263 are also criss-crossed.
  • the electrode 3262 and the plurality of second cover conductive electrodes 3263 are spatially inclined to each other.
  • the processor 400 can simultaneously energize the plurality of first cover conductive electrodes 3262 and the plurality of second cover conductive electrodes 3263 to obtain a plurality of electrical signals, or the processor 400 can sequentially apply the plurality of first covers.
  • the conductive electrode 3262 and the plurality of second cover conductive electrodes 3263 are energized to obtain a plurality of electrical signals.
  • the processor 400 determines whether the transparent cover conductive film 326 is broken according to the electrical signal, and further determines whether the cover 360 is broken. In the same manner, according to the electrical signals outputted by the plurality of first cover conductive electrodes 3262 and the plurality of second cover conductive electrodes 3263, the specific position of the cover plate 360 for cracking and cracking can be accurately detected.
  • the detecting element 320 may also be doped with conductive particles 324 in the cover plate 360.
  • the conductive particles 324 form a cover conductive path 329, and the cover conductive path 329 is energized to output an electrical signal.
  • the cover conductive path 329 formed by the conductive particles 324 can be utilized to determine whether the cover assembly 300 is broken.
  • the cover plate 360 when the cover plate 360 is in an intact state, the adjacent conductive particles 324 are joined, and the resistance of the entire cover conductive path 329 is small, and the cover conductive path 329 is energized in this state, that is, When a certain magnitude of voltage is applied, the current output by the cover conductive path 329 obtained by the processor 400 is large.
  • the cover plate 360 is broken, the joint between the conductive particles 324 doped in the cover plate 360 is broken, and the resistance of the entire cover conductive path 329 is close to infinity, and the cover is electrically conductive in this state.
  • the path 329 is energized, and the current output by the cover conductive path 329 obtained by the processor 400 is small.
  • the cover 360 can be made according to the difference between the electrical signal (ie, current) outputted by the cover conductive path 329 in the cover 360 and the electrical signal detected in the unruptured state of the cover 360. Whether the rupture occurs; the second mode: whether the cover 360 is broken according to the electrical signal outputted by the cover conductive path 329 in the cover 360, specifically, if the electrical signal outputted by the cover conductive path 329 is not in the preset range It is determined that the cover plate 360 is broken inside, and if the electrical signal outputted by the cover conductive path 329 is within a preset range, it is determined that the cover plate 360 is not broken.
  • the touch panel 340 is doped with conductive particles 324 and the cover plate 360 is also doped with conductive particles 324.
  • the processor 400 can obtain the electrical signal outputted by the touch panel conductive path 325. And the electric signal outputted by the cover conductive path 329, so the processor 400 can determine whether the touch panel 340 is broken according to the electrical signal outputted by the touch panel conductive path 325, and determine the cover according to the electrical signal outputted by the cover conductive path 329. Whether the 360 is broken or not, the processor 400 can recognize that the touch panel 340 is broken, or the cover plate 360 is broken, or both the touch pad 340 and the cover plate 360 are broken.
  • the cover conductive path 329 is a single strip and includes a cover output end 327 and a cover input end 328, a cover output end 327 and a cover input end 328 and a processor. 400 connections are made to form a conductive loop. As such, fewer conductive particles 324 are required to fabricate the cover conductive vias 329, which can reduce the manufacturing cost of the cover conductive vias 329.
  • the cover plate 360 is doped with a plurality of conductive particles 324 (hereinafter, the conductive particles 324 doped in the cover plate 360 are referred to as cover conductive particles 3244), and the plurality of cover conductive particles 3244 form a cover plate conductive Path 329.
  • the arrangement of the cover conductive paths 329 is the same as that of the above-described touch panel conductive paths 325, and will not be described herein.
  • the cover conductive paths 329 are multiple, and the plurality of cover conductive paths 329 do not intersect each other.
  • Each cover conductive path 329 includes a cover output end 327 and a cover input end. 328, each cover output 327 and each cover input 328 are coupled to the processor 400 to form a conductive loop.
  • the cover input end 328 and the cover output end 327 of the plurality of cover conductive paths 329 are respectively coupled to the processor 400 to form a plurality of conductive loops.
  • the plurality of cover conductive paths 329 do not intersect each other and are insulated from each other.
  • the arrangement of the plurality of cover conductive paths 329 is the same as that of the above-mentioned plurality of touch-controler conductive paths 325, and details are not described herein.
  • the plurality of cover conductive paths 329 can occupy more volume of the cover plate 360 than the single cover conductive path 329, and accordingly can output more More electrical signals.
  • the processor 400 can more accurately determine whether the cover plate 360 is broken according to more electrical signals, and improve the accuracy of the detection of the crack of the cover plate 360.
  • the cover conductive path 329 includes a plurality of first cover conductive paths 3292 and a plurality of second cover conductive paths 3294.
  • the plurality of first cover conductive paths 3292 are arranged in parallel.
  • the plurality of second cover conductive paths 3294 are arranged in parallel, and the plurality of first cover conductive paths 3292 and the plurality of second cover conductive paths 3294 are spatially criss-crossed, and each cover conductive path 329 includes a cover output. End 327 and cover input 328, each cover output 327 and each cover input 328 are coupled to processor 400 to form a conductive loop.
  • the cover plate 360 is doped with a plurality of cover conductive particles 3244, and the plurality of cover conductive particles 3244 form a plurality of cover conductive paths 329, and each of the first cover conductive paths 3292 includes a first cover input end. 3282 and first cover output 3272, each second cover conductive path 3294 includes a second cover input 3284 and a second cover output 3274.
  • Each of the first cover input 3282 and each of the first cover output 3272 is coupled to the processor 400 to form a conductive loop, each of the second cover input 3284 and each of the second cover outputs 3274 and The processors 400 are connected to form a conductive loop.
  • both ends of the plurality of first cover conductive paths 3292 and the processor 400 are respectively connected to form a plurality of conductive loops
  • both ends of the plurality of second cover conductive paths 3294 are respectively connected with the processor 400 to form Multiple conductive loops.
  • the plurality of first cover conductive paths 3292 and the plurality of second cover conductive paths 3294 are spatially and vertically interleaved to mean a plurality of first cover conductive paths 3292 and a plurality of second cover conductive paths 3294 in space
  • the upper sides are vertically staggered, that is, the angle between the first cover conductive path 3292 and the second cover conductive path 3294 is 90 degrees.
  • the extending direction of the plurality of first cover conductive paths 3292 is the length direction of the cover plate 360, and the extending direction of the plurality of second cover conductive paths 3294 is the width direction of the cover plate 360; or, a plurality of first The extending direction of the cover conductive path 3292 is the thickness direction of the cover plate 360, and the extending direction of the plurality of second cover conductive paths 3294 is the longitudinal direction of the cover plate 360.
  • the plurality of first cover conductive paths 3292 and the plurality of second cover conductive paths 3294 are spatially crisscrossed and may be a plurality of first cover conductive paths 3292 and a plurality of second covers.
  • the board conductive paths 3294 are spatially obliquely staggered with each other.
  • the processor 400 can simultaneously energize the plurality of first cover conductive vias 3292 and the plurality of second cover conductive vias 3294 to obtain a plurality of electrical signals.
  • the processor 400 can sequentially energize the plurality of first cover conductive paths 3292 and the plurality of second cover conductive paths 3294 to obtain a plurality of electrical signals. Then, the processor 400 determines whether the cover 360 is based on the electrical signals. rupture. Referring to FIG.
  • the plurality of first cover conductive paths 3292 and the plurality of second cover conductive paths 3294 are spatially interlaced to form a pair of interlaced lines. After the pair of conductive paths are paired, a plurality of pairs of the mutually staggered conductive path pairs may be formed in the width direction or the thickness direction of the cover plate 360.
  • the processor 400 can simultaneously energize the plurality of first cover conductive vias 3292 and the plurality of second cover conductive vias 3294 to obtain a plurality of electrical signals.
  • the processor 400 can sequentially energize the plurality of first cover conductive paths 3292 and the plurality of second cover conductive paths 3294 to obtain a plurality of electrical signals. Then, the processor 400 determines whether the cover 360 is based on the electrical signals. The specific location of the rupture and rupture. In this way, the pairs of cover conductive paths 329 can occupy more volume of the cover plate 360, correspondingly can output more electrical signals, and the processor 400 can more accurately determine the cover plate 360 according to more electrical signals. Whether the specific position of the crack and the crack is raised, and the accuracy of the crack detection of the cover plate 360 is improved.
  • the cover assembly 300 includes a touchpad 340 and a cover plate 360. It can be understood that in other embodiments, the cover assembly 300 can include only the cover plate 360, wherein the cover plate 360 is a cover plate integrated with a touch function.
  • the laser projection module 220 includes a laser emitter 221, a collimating element 223, a diffractive optical element 225, a lens barrel 2264, a protective cover 2266, and a circuit board assembly 229.
  • Circuit board assembly 229 includes a substrate 2296 and a circuit board 2292.
  • the circuit board 2292 is disposed on the substrate 2296, and the circuit board 2292 may be a hard board, a soft board, or a soft and hard board.
  • a via hole 2294 is formed in the circuit board 2922, and the laser emitter 221 is fixed on the substrate 2296 and electrically connected to the circuit board 2292.
  • a heat dissipation hole 2298 may be disposed on the substrate 2296. The heat generated by the operation of the laser emitter 221 or the circuit board 2292 may be dissipated by the heat dissipation hole 2298.
  • the heat dissipation hole 2298 may also be filled with a thermal conductive adhesive to further improve the heat dissipation performance of the circuit board assembly 229.
  • the lens barrel 2264 is fixedly connected to the circuit board assembly 229.
  • the lens barrel 2264 is formed with a receiving cavity 2262.
  • the lens barrel 2264 includes a top wall 2264a and an annular peripheral wall 2264b extending from the top wall 2264a.
  • the peripheral wall 2264b is disposed on the circuit board assembly 229.
  • the wall 2264a is provided with a light-passing hole 2264c communicating with the receiving cavity 2262.
  • the peripheral wall 2264b can be connected to the circuit board 2292 by a glue.
  • a protective cover 2266 is disposed on the top wall 2264a.
  • the protective cover 2266 includes a baffle 2266b having a light-emitting through hole 2266a and an annular side wall 2266c extending from the baffle 2266b.
  • the laser emitter 221 and the collimating element 223 are both disposed in the receiving cavity 2262, the diffractive optical element 225 is mounted on the lens barrel 2264, and the collimating element 223 and the diffractive optical element 225 are sequentially disposed on the light emitting path of the laser emitter 221.
  • the collimating element 223 collimates the laser light emitted by the laser emitter 221, and the laser passes through the collimating element 223 and then passes through the diffractive optical element 225 to form a laser pattern.
  • the laser emitter 221 may be a Vertical Cavity Surface Emitting Laser (VCSEL) or an edge-emitting laser (EEL).
  • the laser emitter 221 is an edge emitting laser, specifically
  • the laser emitter 221 is a Distributed Feedback Laser (DFB).
  • the laser emitter 221 is used to emit laser light into the receiving cavity 2262. Referring to FIG. 56, the laser emitter 221 has a columnar shape as a whole, and the laser emitter 221 forms a light emitting surface 2211 away from one end surface of the circuit board assembly 229. The laser light is emitted from the light emitting surface 2211, and the light emitting surface 2211 faces the collimating element 223.
  • the laser emitter 221 is fixed to the circuit board assembly 229.
  • the laser emitter 221 can be bonded to the circuit board assembly 229 via a sealant 2271 (as shown in FIG. 56), such as the light emitting surface 2211 of the laser emitter 221.
  • the opposite side is bonded to the circuit board assembly 229.
  • the connecting surface 2215 of the laser emitter 221 may also be bonded to the circuit board assembly 229.
  • the sealing material 2271 encloses the surrounding connecting surface 2215, or may only bond one surface of the connecting surface 2215 with the circuit board. Assembly 229 or bonding a number of faces to circuit board assembly 229.
  • the sealant 2271 may be a thermal conductive adhesive to conduct heat generated by the operation of the laser emitter 221 to the circuit board assembly 229.
  • the diffractive optical element 225 is carried on the top wall 2264a and received within the protective cover 2266.
  • the opposite sides of the diffractive optical element 225 are respectively in contact with the protective cover 2266 and the top wall 2264a.
  • the baffle 2266b includes an abutting surface 2268 adjacent to the light passing hole 2264c, and the diffractive optical element 225 is in contact with the abutting surface 2268.
  • the diffractive optical element 225 includes opposing diffractive incident faces 2254 and diffractive exit faces 2256.
  • the diffractive optical element 225 is carried on the top wall 2264a, and the diffractive exit surface 2256 is in contact with the surface of the baffle 2266b near the light-passing hole 2264c (the abutting surface 2268), and the diffractive incident surface 2254 is in contact with the top wall 2264a.
  • the light-passing hole 2264c is aligned with the receiving cavity 2262, and the light-emitting through-hole 2266a is aligned with the light-passing hole 2264c.
  • the top wall 2264a, the annular side wall 2266c, and the baffle 2266b are in contact with the diffractive optical element 225, thereby preventing the diffractive optical element 225 from falling out of the protective cover 2266 in the light exiting direction.
  • the protective cover 2266 is adhered to the top wall 2264a by glue.
  • the laser emitter 221 of the laser projection module 220 adopts an edge-emitting laser.
  • the emission laser is smaller than the VCSEL array.
  • the edge-emitting laser is a single-point illumination structure, it is not necessary to design an array structure. The production is simple, and the light source of the laser projection module 220 is low.
  • the gain of the power is obtained through the feedback of the grating structure.
  • the side emitting laser is placed vertically, and since the edge emitting laser has a slender strip structure, the emitting laser is prone to accidents such as dropping, shifting, or shaking, and thus setting
  • the sealant 2271 can hold the edge-emitting laser to prevent accidents such as falling, displacement or shaking of the edge-emitting laser.
  • the laser emitter 221 can also be secured to the circuit board assembly 229 in a fixed manner as shown in Figure 58.
  • the laser projection module 220 includes a plurality of support members 2272.
  • the support members 2272 can be fixed on the circuit board assembly 229.
  • the plurality of support members 2272 collectively surround the laser emitter 221, and the laser emitter 221 can be directly mounted during installation. Between the plurality of supports 2272. In one example, the plurality of supports 2272 collectively clamp the laser emitter 221 to further prevent the laser emitter 221 from shaking.
  • the protective cover 2266 can be omitted.
  • the diffractive optical element 225 can be disposed in the receiving cavity 2262, and the diffraction exit surface 2256 of the diffractive optical element 225 can be opposed to the top wall 2264a, and the laser passes through the diffractive optical element 225. Then, the light passing hole 2264c is worn out. Thus, the diffractive optical element 225 is not easily peeled off.
  • the substrate 2296 can also be omitted, and the laser emitter 221 can be directly attached to the circuit board 2292 to reduce the overall thickness of the laser projection module 220.
  • the present invention further provides a method for controlling the laser projection module 220.
  • the laser projection module 220 can be the laser projection module 220 of any of the above embodiments.
  • the laser light emitted by the laser projection module 220 is transmitted to the outside through the cover plate assembly 300.
  • the cover plate assembly 300 includes a detecting component 320 for outputting an electrical signal after being energized.
  • the cover assembly 300 can be the cover assembly 300 of any of the above embodiments. Control methods include:
  • Step 02 Acquire an electrical signal
  • Step 04 Determine whether the electrical signal is within a preset range
  • Step 06 Control the laser projection module 220 to turn off or control the laser projection module 220 when the electrical signal is not within the preset range Small transmit power.
  • the present invention also provides a control device 500 for the laser projection module 220.
  • the laser light emitted by the laser projection module 220 is transmitted to the outside through the cover plate assembly 300.
  • the cover plate assembly 300 includes a detecting component 320 for outputting an electrical signal after being energized.
  • the control device 500 includes an acquisition module 520, a determination module 540, and a control module 560.
  • the acquisition module 520 is configured to acquire an electrical signal.
  • the determining module 540 is configured to determine whether the electrical signal is within a preset range.
  • the control module 560 is configured to control the laser projection module 220 to turn off or control the laser projection module 220 to reduce the transmission power when the electrical signal is not within the preset range.
  • control method of the laser projection module 220 of the embodiment of the present invention can be implemented by the control device 500 of the embodiment of the present invention.
  • the step 02 can be implemented by the obtaining module 520, and the step 04 can be implemented by the determining module 540. 06 can be implemented by control module 560.
  • the control method and the control device 500 of the laser projection module 220 determine whether the laser projection module 220 is abnormally operated by the electrical signal outputted by the detecting component 320 of the cover assembly 300, so that the laser projection module 220 can operate abnormally.
  • the laser projection module 220 is controlled to turn off or control the laser projection module 220 to reduce the transmission power, thereby avoiding the danger of the laser light emitted by the laser projection module 220 directly hitting the human body, and improving the safety of the laser projection module 220.
  • control device 500 can be referred to as an application (APP) or processor 400, and the control device 500 can be applied to the laser projection module 220 or the electronic device 1000.
  • APP application
  • processor 400 the control device 500 can be applied to the laser projection module 220 or the electronic device 1000.
  • the electronic device 1000 of the embodiment of the present invention includes a processor 400, and the processor 400 can be used to implement step 02, step 04, and step 06, that is, the control method of the laser projection module 220 according to the embodiment of the present invention can be implemented by the electronic embodiment of the present invention.
  • Device 1000 is implemented.
  • control module of the embodiment of the present invention can be used to detect whether the cover assembly 300 is broken before the laser projection module 220 is turned on, thereby determining whether the laser projection module 220 is abnormal, and thus the laser projection module. 220 achieves accurate control.
  • the processor 400 energizes the detecting component 320, acquires an electrical signal output by the detecting component 320, and determines whether the touchpad 340 and the cover plate 360 are broken according to the electrical signal. .
  • the laser projection module 220 is not turned on or the transmission power of the laser projection module 220 is reduced, thereby avoiding the energy of the laser projected by the laser projection module 220 being too high. A problem that harms the eyes of the user.
  • the electronic device 1000 of the embodiment of the present invention further includes an image collector 240 , wherein the laser projection module 220 and the image collector 240 may be integrated into the depth camera 200 .
  • the image collector 240 is configured to collect the laser pattern projected by the laser projection module 220 into the target space.
  • the processor 400 is connected to the laser projection module 220 and the image collector 240, respectively.
  • the processor 400 is configured to process the laser pattern to obtain a depth image.
  • the laser projection module 220 projects a laser pattern into the target space through the projection window 120
  • the image collector 240 collects the laser pattern modulated by the target object through the acquisition window 140.
  • the image collector 240 may be an infrared camera
  • the processor 400 calculates an offset value of each pixel point in the laser pattern and a corresponding pixel point in the reference pattern by using an image matching algorithm, and further obtains a depth image of the laser pattern according to the deviation value.
  • the image matching algorithm may be a Digital Image Correlation (DIC) algorithm. Of course, other image matching algorithms can be used instead of the DIC algorithm.
  • DIC Digital Image Correlation
  • the depth camera 200 is disposed within the housing 100, the cover assembly 300 is disposed on the housing 100 and covers the depth camera 200, and the depth camera 200 is exposed through the cover assembly 300 to obtain a depth image, ie, a depth camera
  • the light emitted and/or collected by 200 passes through the cover assembly 300.
  • the method for controlling the laser projection module 220 of the embodiment of the present invention further includes: 07: detecting a moving speed of the laser projection module 220; and 08: determining whether the moving speed is greater than a predetermined speed; And when the moving speed of the laser projection module 220 is greater than the predetermined speed, the process proceeds to step 02.
  • control device 500 includes a detection module 580.
  • the detecting module 580 is configured to detect the moving speed of the laser projection module 220.
  • the determining module 540 is configured to determine whether the moving speed is greater than the predetermined speed and proceeds to step 02 when the moving speed of the laser projection module 220 is greater than the predetermined speed. That is, step 07 can be implemented by detection module 580, which can be implemented by decision module 540.
  • steps 07 and 08 can be implemented by processor 400. That is to say, the processor 400 can also be used to detect the moving speed of the laser projection module 220, determine whether the moving speed is greater than a predetermined speed, and when the moving speed of the laser projection module 220 is greater than the predetermined speed, perform step 02.
  • the speed sensor can be used to detect the moving speed of the laser projection module 220.
  • the speed sensor can be installed in the laser projection module 220, or can be installed in the electronic device 1000 together with the laser projection module 220.
  • the speed sensor detects the electronic device 1000.
  • the speed of movement further increases the speed of movement of the laser projection module 220.
  • the processor 400 energizes the detecting component 320 and acquires an electrical signal output by the detecting component 320. And determining whether the cover plate 360 and the touchpad 340 are broken according to the electrical signal. Upon detecting the breakage of the cover 360 and/or the touchpad 340, it is determined that the laser projection module 220 is broken. In this way, it is not necessary to perform the detection of the crack of the laser projection module 220 every time the laser projection module 220 is used, and the power consumption of the laser projection module 220 can be reduced.
  • control method includes:
  • Step 09 Prompt the user.
  • the control device includes a prompting module 590.
  • the prompt module 590 is used to prompt the user. That is, step 09 can be implemented by prompting module 590.
  • step 09 can be implemented by processor 400. That is, the processor 400 can also be used to prompt the user. In this way, the user may be prompted to have an abnormality in the laser projection module 220.
  • the electronic device 1000 includes at least one of a display screen, an electroacoustic element (such as a horn), and a vibration motor.
  • the control device 500 or the processor 400 can prompt the user by controlling at least one of a display screen, an electroacoustic component, and a vibration motor, wherein the display screen can display images and text information, the electroacoustic component can emit sound information, and the vibration motor can pass The vibration information prompts the user.
  • the control device 500 or the processor 400 may prompt the user through the display screen, or prompt the user through the electro-acoustic component, or prompt the user through the vibration motor, or prompt the user through the display screen and the electro-acoustic component, or prompt the user through the display screen and the vibration motor.
  • the user is prompted by the electro-acoustic component and the vibration motor, or the user is prompted by the display screen, the electro-acoustic component and the vibration motor, and is not specifically limited herein.
  • the electronic device 1000 includes a mobile phone, a tablet computer, a notebook computer, a smart bracelet, a smart watch, a smart helmet, smart glasses, and the like.
  • the present invention provides an electronic device 1000.
  • the electronic device 1000 includes a display screen 600, a cover plate 360, and a processor 400.
  • a cover plate 360 is disposed on the display screen 600 to protect the display screen 600.
  • the cover plate 360 is provided with a detecting element.
  • the detection element is coupled to the processor 400.
  • the detection component can be powered to output an electrical signal.
  • the detecting component transmits an electrical signal to the processor 400, and the processor 400 determines whether the cover plate 360 is broken based on the electrical signal.
  • the electronic device 1000 also includes a laser projection module 220.
  • the laser projection module 220 is used to project a laser pattern.
  • the display screen 600 includes a display area and a non-display area.
  • the cover plate 360 includes a first area corresponding to the display area and a second area corresponding to the non-display area.
  • the position of the laser projection module 220 corresponds to the second zone. That is to say, the laser light emitted by the laser projection module 220 sequentially passes through the non-display area of the display screen 600 and the second area of the cover plate 360, and then exits into the target space.
  • the processor 400 determines whether the cover plate 360 is broken according to the electrical signal, specifically determining whether the electrical signal is within a preset range, and determining that the cover plate 360 is broken when the electrical signal is not within the preset range.
  • the laser projection module 220 includes a laser emitter 221, a collimating element 223, and a diffractive optical element 225.
  • the collimating element 223 and the diffractive optical element 225 are generally made of a glass material and are easily broken by an external force.
  • the cover plate 360 is also generally a glass material. It is also easily broken by external forces. It can be understood that, since the laser projection module 220 and the cover plate 360 are easily affected by the external force at the same time, that is, in the case that the cover plate 360 is broken, the laser projection module 220 is also basically broken, and the laser projection module 220 is broken. Underneath, the cover plate 360 will also substantially rupture.
  • the laser light emitted by the laser emitter 221 is sequentially emitted through the collimating element 223, the diffractive optical element 225, and the cover plate 360.
  • the collimating element 223 and the diffractive optical element 225 The cover plate 360 has a certain energy attenuation capability for the laser, thereby ensuring that the energy of the emitted laser light is not excessively large, thereby avoiding harm to the user's eyes.
  • the cover plate 360 when the cover plate 360 is broken, the laser projection module 220 is generally broken, and the energy attenuation capability of the laser beam by the collimating element 223, the diffractive optical element 225, and the cover plate 360 is weakened, and thus the laser energy emitted may be excessively large. Harmful to the user's eyes.
  • the electronic device 1000 of the embodiment of the present invention can detect whether the cover plate 360 is broken by setting a detecting component on the cover plate 360, and can determine whether the laser projection module 220 is broken or not, and the cover plate 360 is broken.
  • the laser emitter 221 is turned off or the emission power of the laser emitter 221 is turned off in time, the risk of the laser light emitted by the laser emitter 221 being directly directed to the human eye can be avoided, and the safety of the laser projection module 220 can be improved.
  • the detecting element may be a light-transmitting conductive film 730.
  • a conductive electrode 740 is disposed on the light-transmitting conductive film 730.
  • the cover plate 360 includes a light-emitting surface 364 (cover surface 364) and a light-incident surface 362 (cover surface 362), and the light-transmitting conductive film 730 is disposed on the light-incident surface 362 or the light-emitting surface 364.
  • Conductive electrode 740 includes an input end 741 and an output end 742. Both input 741 and output 742 are coupled to processor 400, i.e., input 741, output 742, and processor 400 form a conductive loop.
  • the cover plate 360 when the cover plate 360 is in an intact state, the resistance of the light-transmitting conductive film 730 is small, and the conductive electrode 740 is energized in this state, that is, a voltage of a certain magnitude is applied, and the conductive electrode acquired by the processor 400 at this time is obtained.
  • the output current of the 740 is large.
  • the cover plate 360 is broken, the light-transmitting conductive film 730 is also broken. At this time, the resistance value of the light-transmitting conductive film 730 at the rupture position is close to infinity, and the conductive electrode 740 is energized in this state, and the processor 400 acquires The current output from the conductive electrode 740 is small.
  • the transparent conductive film 730 is broken or not can be determined according to the difference between the electrical signal (ie, current) and the electrical signal (ie, current) detected in the unruptured state of the cover plate 360, that is, if When the light-transmitting conductive film 730 is broken, it indicates that the cover plate 360 is also broken, and if the light-transmitting conductive film 730 is not broken, the cover plate 360 is also not broken.
  • the second method is: determining whether the cover plate 360 is broken according to the electrical signal outputted by the conductive electrode 740. Specifically, when the electrical signal output by the conductive electrode 740 is not within the preset range, the transparent conductive film 730 is determined to be broken.
  • the conductive electrode 740 on the transparent conductive film 730 may be a strip, and the conductive electrode 740 includes an input end 741 and an output end 742.
  • An input terminal 741 and an output terminal 742 are both coupled to the processor 400, that is, an input terminal 741, an output terminal 742, and the processor 400 form a conductive loop.
  • a conductive electrode 740 is arranged in a plurality of directions: for example, a conductive electrode 740 may extend in a longitudinal direction of the light-transmitting conductive film 730 (as shown in FIG. 70); or a conductive electrode 740 may extend in a direction. The width direction of the light-transmitting conductive film 730 (as shown in FIG.
  • the conductive electrodes 740 can span the entire cover plate 360, and it is possible to more accurately detect whether the cover plate 360 is broken.
  • the number of the conductive electrodes 740 on the light-transmitting conductive film 730 may also be plural, and the plurality of conductive electrodes 740 are parallel to each other.
  • Each of the conductive electrodes 740 includes an input end 741 and an output end 742.
  • An input end 741 and an output end 742 of each conductive electrode 740 are connected to the processor 400, that is, an input end 741, an output end 742, and the processor 400 form a conductive loop.
  • the plurality of conductive electrodes 740 form a plurality of conductive loops with the processor 400, respectively.
  • the plurality of conductive electrodes 740 are arranged in a plurality of ways: for example, each of the conductive electrodes 740 extends in the longitudinal direction of the light-transmitting conductive film 730, and the plurality of conductive electrodes 740 are arranged in parallel (as shown in FIG. 74); or The extending direction of each of the conductive electrodes 740 is the width direction of the transparent conductive film 730, and the plurality of conductive electrodes 740 are arranged in parallel (as shown in FIG. 75); or, the extending direction of each of the conductive electrodes 740 is a transparent conductive film. In the diagonal direction of 730, a plurality of conductive electrodes 740 are arranged in parallel (as shown in FIGS.
  • the processor 400 can more accurately determine whether the cover plate 360 is broken according to more electrical signals, and improve the accuracy of the detection of the crack of the cover plate 360.
  • the detecting element may be a light-transmitting conductive film 730, and the light-transmitting conductive film 730 includes a first light-transmitting conductive film 731 and a second light-transmitting conductive film 732.
  • a first conductive electrode 7401 is disposed on the first transparent conductive film 731, and a second conductive electrode 7402 is disposed on the second transparent conductive film 732.
  • the cover plate 360 includes a light incident surface 362 and a light exit surface 364.
  • the first light-transmitting conductive film 731 is disposed on the light-incident surface 362, and the second light-transmitting conductive film 732 is disposed on the light-emitting surface 364.
  • the first conductive electrode 7401 and the second conductive electrode 7402 are parallel to each other.
  • the first conductive electrode 7401 and the second conductive electrode 7402 are both connected to the processor 400, that is, the first conductive electrode 7401, the second conductive electrode 7402, and the processor 400 form a conductive loop.
  • the first conductive electrode 7401 and the second conductive electrode 7402 are respectively disposed on opposite surfaces of the cover plate 360, and the first conductive electrode 7401 and the second conductive electrode 7402 form a capacitor.
  • the cover plate 360 When the cover plate 360 is not broken, the distance between the first conductive electrode 7401 and the second conductive electrode 7402 does not change, and therefore, the electrical signal acquired by the processor 400 (indicating the first conductive electrode 7401 and the second conductive electrode 7402) The capacitance value of the composed capacitor is fixed. When the cover plate 360 is broken, the distance between the first conductive electrode 7401 and the second conductive electrode 7402 may change. At this time, the electrical signals acquired by the processor 400 (ie, the first conductive electrode 7401 and the second conductive electrode 7402) The capacitance value of the constituent capacitors also changes.
  • the light-transmitting conductive film 730 is broken according to the difference between the electrical signal and the electrical signal detected in the unruptured state of the cover plate 360, that is, if the light-transmitting conductive film 730 is broken, It is indicated that the cover plate 360 is also broken, and if the light-transmitting conductive film 730 is not broken, the cover plate 360 is also not broken.
  • the second mode the electrical signal outputted by the first conductive electrode 7401 and the second conductive electrode 740 can be directly determined whether the cover 360 is broken.
  • the first conductive electrode 7401 on the first transparent conductive film 731 may be one, and the second conductive electrode 7402 on the corresponding second transparent conductive film 732 is also one.
  • a first conductive electrode 7401 and a second conductive electrode 7402 are parallel to each other, and a projection of the first conductive electrode 7401 on the second transparent conductive film 732 coincides with the second conductive electrode 7402.
  • a first conductive electrode 7401 and a second conductive electrode 7402 are both connected to the processor 400, that is, a first conductive electrode 7401, a second conductive electrode 7402, and the processor 400 form a conductive loop, and the first conductive electrode 7401 and A capacitor is formed between the second conductive electrodes 7402.
  • the conductive electrode 740 is arranged in a plurality of ways: for example, a first conductive electrode 7401 extends in a longitudinal direction of the first transparent conductive film 731, and a second conductive electrode 7402 extends in a second transparent conductive film.
  • the length direction of the first conductive electrode 7401 is the width direction of the first transparent conductive film 731, and the extending direction of the second conductive electrode 7402 is the second transparent conductive film 732. Width direction (not shown); or, a first conductive electrode 7401 extends in a diagonal direction of the first light-transmissive conductive film 731, and a second conductive electrode 7402 extends in a second transparent conductive film Diagonal direction of 732 (not shown).
  • the first conductive electrode 7401 and the second conductive electrode 7402 can span the entire cover plate 360, and the cover plate 360 can be detected more accurately. Whether it is broken.
  • first conductive electrodes 7401 on the first light-transmissive conductive film 731, and a plurality of second conductive electrodes 7402 on the corresponding second light-transmissive conductive film 732.
  • the plurality of first conductive electrodes 7401 are parallel to each other, and the plurality of second conductive electrodes 7402 are parallel to each other.
  • Each of the first conductive electrodes 7401 and the corresponding second conductive electrodes 7402 are parallel to each other, and a projection of the first conductive electrodes 7401 on the second transparent conductive film 732 coincides with the second conductive electrodes 7402.
  • Each of the first conductive electrodes 7401 and the second conductive electrodes 7402 corresponding to the first conductive electrodes 7401 are connected to the processor 400, that is, each of the first conductive electrodes 7401 and the first conductive electrodes 7401
  • the two conductive electrodes 7402 and the processor 400 form a conductive loop
  • each of the first conductive electrodes 7401 and the corresponding second conductive electrode 7402 form a capacitor.
  • the plurality of first conductive electrodes 7401 and the plurality of second conductive electrodes 7402 are respectively connected to the processor 400 to form a plurality of conductive loops
  • the plurality of first conductive electrodes 7401 and the corresponding second conductive electrodes 7402 form a plurality of capacitors. .
  • the plurality of conductive electrodes 740 can be arranged in a plurality of ways: for example, the extending direction of each of the first conductive electrodes 7401 is the length direction of the first light-transmitting conductive film 731, and the extending direction of each of the second conductive electrodes 7402 is In the longitudinal direction of the two transparent conductive films 732, a plurality of first conductive electrodes 7401 are arranged in parallel, and a plurality of second conductive electrodes 7402 are arranged in parallel (as shown in FIG.
  • each of the first conductive electrodes 7401 The direction is the width direction of the first transparent conductive film 731, and the extending direction of each of the second conductive electrodes 7402 is the width direction of the second transparent conductive film 732, and the plurality of first conductive electrodes 7401 are arranged in parallel, and the plurality of second The conductive electrodes 7402 are arranged in parallel at intervals (as shown in FIG.
  • the extending direction of each of the first conductive electrodes 7401 is a diagonal direction of the first light-transmitting conductive film 731, and the extending direction of each of the second conductive electrodes 7402
  • a diagonal direction of the second light-transmitting conductive film 732 a plurality of first conductive electrodes 7401 are arranged in parallel, and a plurality of second conductive electrodes 7402 are arranged in parallel (as shown in FIGS. 81 and 82).
  • the plurality of conductive electrodes 740 can occupy more area of the light-transmitting conductive film 730 than the single conductive electrodes 740, and correspondingly can output more The electrical signal, as such, the processor 400 can more accurately determine whether the cover plate 360 is broken according to more electrical signals, and improve the accuracy of the detection of the crack of the cover plate 360.
  • the sensing element includes conductive particles 750 doped in the cover plate 360.
  • Conductive particles 750 form a conductive via 760.
  • Conductive path 760 includes an input 761 and an output 762. Both input 761 and output 762 are coupled to processor 400, i.e., input 761, output 762, and processor 400 form a conductive loop.
  • processor 400 i.e., input 761, output 762, and processor 400 form a conductive loop.
  • the cover plate 360 When the cover plate 360 is broken, the joint between the conductive particles 750 doped in the cover plate 360 is broken, and the resistance of the entire conductive path 760 is close to infinity, and the conductive path 760 is energized in this state.
  • the current output by the conductive path 760 obtained by the processor 400 is small. Therefore, in the first mode, whether or not the cover plate 360 is broken can be judged based on the difference between the electrical signal (i.e., current) and the electrical signal (i.e., current) detected in the unruptured state of the cover plate 360.
  • the conductive path 760 formed by the conductive particles 750 may be a strip, and the conductive path 760 includes an input end 761 and an output end 762.
  • An input terminal 761 and an output terminal 762 are both coupled to the processor 400, that is, an input terminal 761, an output terminal 762, and the processor 400 form a conductive loop.
  • a conductive path 760 is arranged in a plurality of directions: for example, a conductive path 760 may extend in the longitudinal direction of the cover plate 360 (as shown in FIG. 84); or a conductive path 760 may extend in the direction of the cover.
  • the width direction of the plate 360 (as shown in FIG.
  • a conductive path 760 may extend in the diagonal direction of the cover plate 360 (as shown in FIGS. 86 and 87). Regardless of the manner in which the conductive electrodes 740 are arranged in any of the above manners, the conductive vias 760 can span the entire cover plate 360, and it is possible to more accurately detect whether the cover plate 360 is broken.
  • the conductive vias 760 formed by the conductive particles 750 may also be plural, and the plurality of conductive vias 760 are parallel to each other.
  • Each of the conductive vias 760 includes an input 761 and an output 762.
  • An input terminal 761 and an output terminal 762 of each of the conductive paths 760 are connected to the processor 400, that is, an input terminal 761, an output terminal 762, and the processor 400 form a conductive loop.
  • the plurality of conductive vias 760 form a plurality of conductive loops with the processor 400, respectively.
  • the plurality of conductive vias 760 are arranged in a plurality of ways: for example, each of the conductive vias 760 extends in the length direction of the cap plate 360, and the plurality of conductive vias 760 are arranged in parallel (as shown in FIG. 88); or, each The extending direction of the strip conductive path 760 is the width direction of the cover plate 360, and the plurality of conductive paths 760 are arranged in parallel (as shown in FIG. 89); or, the extending direction of each of the conductive paths 760 is the diagonal direction of the cover plate 360.
  • a plurality of conductive vias 760 are arranged in parallel (as shown in FIGS. 90 and 91).
  • the plurality of conductive vias 760 can occupy more area of the cap plate 360 than the single conductive vias 760, and correspondingly output more electrical signals.
  • the processor 400 can more accurately determine whether the cover plate 360 is broken according to more electrical signals, and improve the accuracy of the detection of the crack of the cover plate 360.
  • the sensing element includes conductive particles 750 doped in the cover plate 360.
  • Conductive particles 750 form a conductive via 760.
  • the conductive via 760 includes a first conductive via 7601 and a second conductive via 7602.
  • the first conductive via 7601 and the second conductive via 7602 are parallel to each other.
  • the first conductive via 7601 and the second conductive via 7602 are both connected to the processor 400, that is, the first conductive via 7601, the second conductive via 7602, and the processor 400 form a conductive loop.
  • the first conductive via 7601 and the second conductive via 7602 form a capacitor.
  • the cover plate 360 When the cover plate 360 is not broken, the distance between the first conductive path 7601 and the second conductive path 7602 does not change, and therefore, the electrical signal acquired by the processor 400 (indicating the first conductive path 7601 and the second conductive path 7602) The capacitance value of the composed capacitor is fixed. When the cover plate 360 is broken, the distance between the first conductive path 7601 and the second conductive path 7602 may change. At this time, the electrical signals acquired by the processor 400 (ie, the first conductive path 7601 and the second conductive path 7602) The capacitance value of the constituent capacitors also changes.
  • the electrical signal outputted by the first conductive path 7601 and the second conductive path 760 can be directly determined whether the cover 360 is broken. Specifically, when the electrical signal acquired by the processor 400 is not within the preset range, It is determined that the cover plate 360 is broken; when the electrical signal acquired by the processor 400 is within a preset range, it is determined that the cover plate 360 is not broken.
  • the first conductive path 7601 can be one, and the corresponding second conductive path 7602 is also one.
  • a first conductive via 7601 and a second conductive via 7602 are parallel to each other.
  • a first conductive via 7601 and a second conductive via 7602 are both connected to the processor 400, that is, a first conductive via 7601, a second conductive via 7602, and a processor 400 form a conductive loop, and the first conductive via 7601 and A capacitance is formed between the second conductive vias 7602.
  • the conductive path 760 is arranged in various ways.
  • the extending direction of one first conductive path 7601 is the length direction of the cover plate 360, and the extending direction of one second conductive path 7602 is also the length direction of the cover plate 360 (not shown)
  • a first conductive via 7601 extends in the width direction of the cover 360
  • a second conductive via 7602 extends in the width direction of the cover 360 (not shown); or
  • a first The extending direction of the conductive path 7601 is the diagonal direction of the cover plate 360
  • the extending direction of the second conductive path 7602 is also the diagonal direction of the cover plate 360 (not shown).
  • the first conductive vias 7601 and the second conductive vias 7602 can span the entire cover 360, and the cover 360 can be detected more accurately. Whether it is broken.
  • first conductive vias 7601 There may also be a plurality of first conductive vias 7601, and a plurality of corresponding second conductive vias 7602.
  • the plurality of first conductive vias 7601 are parallel to each other, and the plurality of second conductive vias 7602 are parallel to each other.
  • Each of the first conductive vias 7601 is parallel to the second conductive vias 7602 corresponding thereto.
  • Each of the first conductive vias 7601 and the second conductive vias 7602 corresponding to the first conductive vias 7601 are connected to the processor 400, that is, each of the first conductive vias 7601 and the first conductive vias 7601
  • the two conductive vias 7602 and the processor 400 form a conductive loop, and each of the first conductive vias 7601 and the corresponding second conductive vias 7602 form a capacitor.
  • the plurality of first conductive vias 7601 and the plurality of second conductive vias 7602 are respectively connected to the processor 400 to form a plurality of conductive loops, and the plurality of first conductive vias 7601 and the corresponding second conductive vias 7602 form a plurality of capacitors.
  • the plurality of conductive vias 760 can be arranged in a plurality of ways: for example, the extending direction of each of the first conductive vias 7601 is the length direction of the cap plate 360, and the extending direction of each of the second conductive vias 7602 is also the cover plate 360.
  • a plurality of first conductive vias 7601 are arranged in parallel, and a plurality of second conductive vias 7602 are arranged in parallel (as shown in FIG. 93); or, each of the first conductive vias 7601 extends in a width of the cover 360.
  • the direction of the second conductive path 7602 is also the width direction of the cover plate 360, the plurality of first conductive paths 7601 are arranged in parallel, and the plurality of second conductive paths 7602 are arranged in parallel (as shown in FIG.
  • each of the first conductive vias 7601 is a diagonal direction of the cover plate 360
  • the extending direction of each of the second conductive vias 7602 is also a diagonal direction of the cover plate 360
  • the plurality of first conductive vias 7601 Parallelly spaced, a plurality of second conductive vias 7602 are arranged in parallel (as shown in FIGS. 95 and 96).
  • the plurality of conductive vias 760 can occupy more area of the cap plate 360 than the single conductive vias 760, and correspondingly output more electrical signals.
  • the processor 400 can more accurately determine whether the cover plate 360 is broken according to more electrical signals, and improve the accuracy of the detection of the crack of the cover plate 360.
  • the detecting elements are only distributed in the second region of the cover plate 360 and corresponding to the laser projection module 220. That is to say, the rupture position of the cover plate 360 detectable by the detecting element includes only the second region of the cover plate 360 and the position corresponding to the laser projection module 220. In this way, only a small number of detecting elements need to be disposed, which can save the manufacturing cost of the electronic device 1000, and can also detect the intact state of the position corresponding to the laser projection module 220 on the cover plate 360, thereby improving the safety of the use of the electronic device 1000.
  • the sensing elements are distributed throughout the second zone and cover the laser projection module 220.
  • the detecting component can cover a larger area of the cover plate 360, and improve the accuracy of the crack detection of the cover plate 360.
  • the sensing elements can also be distributed over the entire cover plate 360, ie, covering the first zone and the second zone.
  • the detecting elements are distributed only at any corner or any of a plurality of corners of the second region.
  • the detecting elements may be distributed in the corners.
  • A, corner B can also be distributed at corner A and corner B at the same time.
  • the laser projection module 220 in the electronic device 1000 of the embodiment of the present invention includes a laser emitter 221, a collimating element 223, a diffractive optical element 225, a lens barrel 2264, and a circuit board assembly. 229.
  • the circuit board assembly 229 includes a substrate 2296 and a circuit board 2292 disposed on the substrate 2296.
  • the circuit board 2292 can be a hard board, a soft board, or a soft and hard board.
  • a via 2294 is formed in the circuit board 2292.
  • the laser emitter 221 is fixed to the substrate 2296 and connected to the circuit board 2292.
  • a heat dissipation hole 2298 may be formed in the substrate 2296, and heat generated by the operation of the laser emitter 221 or the circuit board 2292 may be dissipated by the heat dissipation hole 2298.
  • the heat dissipation holes 2298 may also be filled with a thermal conductive adhesive to further improve the heat dissipation performance of the circuit board assembly 229.
  • the lens barrel 2264 is fixedly coupled to the circuit board assembly 229.
  • the lens barrel 2264 and the circuit board assembly 229 are surrounded by a receiving cavity 2263.
  • the laser emitter 221, the collimating element 223, and the diffractive optical element 225 are all housed in the receiving cavity 2263.
  • the collimating element 223 and the diffractive optical element 225 are along the laser emitter.
  • the light-emitting directions of 221 are sequentially set.
  • the side wall 2265a of the lens barrel 2264 extends to the center of the receiving cavity 2263 with a carrier 2265b.
  • the diffractive optical element 225 is carried on a carrier 2265b.
  • the collimating element 223 collimates the laser light emitted by the laser emitter 221, and the laser passes through the collimating element 223 and then passes through the diffractive optical element 225 to form a laser pattern.
  • the laser emitter 221 may be a vertical cavity surface emitting laser or an edge emitting laser.
  • the laser emitter 221 is an edge emitting laser.
  • the laser emitter 221 is a distributed feedback laser.
  • the laser emitter 221 is for emitting laser light into the receiving chamber 2263. Referring to FIG. 56, the laser emitter 221 has a columnar shape as a whole, and the laser emitter 221 forms a light emitting surface 2211 away from one end surface of the circuit board assembly 229. The laser light is emitted from the light emitting surface 2211, and the light emitting surface 2211 faces the collimating element 223.
  • the laser emitter 221 is attached to the circuit board assembly 229.
  • the laser emitter 221 can be bonded to the circuit board assembly 229 by a sealant 2271, such as the side of the laser emitter 221 opposite the light emitting face 2211 that is bonded to the circuit board assembly 229.
  • a sealant 2271 such as the side of the laser emitter 221 opposite the light emitting face 2211 that is bonded to the circuit board assembly 229.
  • the connecting surface 2215 of the laser emitter 221 can also be bonded to the circuit board assembly 229.
  • the sealing material 2271 encloses the surrounding connecting surface 2215, and can also bond one surface of the connecting surface 2215 with the circuit board assembly. 229 or bonding a few faces to the board assembly 229.
  • the sealant 2271 may be a thermal conductive adhesive to transfer the heat generated by the operation of the laser emitter 221 to the circuit board assembly 229.
  • the laser emitter 221 of the laser projection module 220 adopts an edge-emitting laser.
  • the emission laser is smaller than the VCSEL array.
  • the edge-emitting laser is a single-point illumination structure, it is not necessary to design an array structure. The fabrication is simple, and the cost of the light source of the laser projection module 220 is low.
  • the gain of the power is obtained through the feedback of the grating structure.
  • To increase the power of the distributed feedback laser it is necessary to increase the injection current and/or increase the length of the distributed feedback laser due to the increased injection.
  • the current will increase the power consumption of the distributed feedback laser and cause serious heat generation. Therefore, in order to ensure the distributed feedback laser can work normally, it is necessary to increase the length of the distributed feedback laser, resulting in a distributed feedback laser generally slender. Results.
  • the light emitting surface 2211 of the edge emitting laser faces the collimating element 223, the side emitting laser is placed vertically. Due to the elongated strip structure of the side emitting laser, the emitting laser is prone to accidents such as dropping, shifting or shaking.
  • the laser emitter 221 can also be fixed to the circuit board assembly 229 in a fixed manner as shown in FIG. 58, specifically, the laser projection module 220 includes a plurality of elastic The support member 2272, the support member 2272 can be fixed on the circuit board assembly 229, and the plurality of support members 2272 together form a receiving space 160.
  • the laser emitter 221 is received in the receiving space 160 and supported by the plurality of supporting members 2272.
  • the laser emitter 221 can be mounted directly between the plurality of supports 2272 during installation. In one example, the plurality of supports 2272 collectively clamp the laser emitter 221 to further prevent the laser emitter 221 from shaking.
  • the substrate 2296 can also be omitted.
  • the laser emitter 221 can be directly attached to the circuit board 2292 to reduce the overall thickness of the laser projection module 220.
  • the electronic device 1000 of the embodiment of the present invention further includes an image collector 240 and a housing 100.
  • the processor 400, the image collector 240 and the laser projection module 220 constitute a depth camera 200, and the image collector 240 and the laser projection module 220 are disposed in the housing 100 and exposed from the housing 100 to obtain a depth image, the cover 360 and The display screens 600 are each housed in the housing 100.
  • the image collector 240 is configured to collect the laser pattern projected by the laser projection module 220 into the target space, and the processor 400 is connected to the laser projection module 220 and the image collector 240, respectively.
  • the processor 400 can also be used to process a laser pattern to obtain a depth image.
  • the laser projection module 220 projects the laser pattern into the target space through the projection window 120.
  • the image collector 240 collects the laser pattern modulated by the target object through the acquisition window 140.
  • the image collector 240 may be an infrared camera, and the processor 400 calculates an offset value of each pixel point in the laser pattern and a corresponding pixel point in the reference pattern by using an image matching algorithm, and further obtains a depth image of the laser pattern according to the deviation value.
  • the image matching algorithm may be a Digital Image Correlation (DIC) algorithm. Of course, other image matching algorithms can be used instead of the DIC algorithm.
  • DIC Digital Image Correlation
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (IPM overcurrent protection circuits) with one or more wires, portable computer disk cartridges (magnetic devices), random access memories (RAM), read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the embodiments of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种激光投射模组(220)的控制方法、激光投射模组(220)的控制装置(500)和电子装置(1000)。激光投射模组(220)发射的激光经过盖板组件(300)传输至外界,盖板组件(300)包括用于通电后输出电信号的检测元件(320)。控制方法包括获取电信号(02);判断电信号是否处于预设范围内(04);和在电信号不处于预设范围内时,控制激光投射模组(220)关闭或控制激光投射模组(220)减小发射功率(06)。

Description

激光投射模组的控制方法、控制装置和电子装置
优先权信息
本申请请求2018年2月27日向中国国家知识产权局提交的、专利申请号为201810161923.3、201810161925.2的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本发明涉及成像技术领域,特别涉及一种激光投射模组的控制方法、控制装置和电子装置。
背景技术
结构光摄像头利用激光投射模组发射激光,从而辅助红外摄像头获取结构光图像。激光投射模组发射的激光通过光学元件(例如准直元件和/或衍射光学元件(diffractive optical elements,DOE))后能量衰减,从而避免对人体造成伤害。
发明内容
本发明的实施例提供了一种激光投射模组的控制方法、控制装置和电子装置。
本发明实施方式的激光投射模组的控制方法,所述激光投射模组发射的激光经过盖板组件传输至外界,所述盖板组件包括检测元件,所述检测元件用于通电后输出电信号,所述控制方法包括:获取所述电信号;判断所述电信号是否处于预设范围内;和在所述电信号不处于所述预设范围内时,控制所述激光投射模组关闭或控制所述激光投射模组减小发射功率。
本发明实施方式的激光投射模组的控制装置,所述激光投射模组发射的激光经过盖板组件传输至外界,所述盖板组件包括检测元件,所述检测元件用于通电后输出电信号,所述控制装置包括获取模块、判断模块和控制模块。所述获取模块用于获取所述电信号。所述判断模块用于判断所述电信号是否处于预设范围内。所述控制模块用于在所述电信号不处于所述预设范围内时,控制所述激光投射模组关闭或控制所述激光投射模组减小发射功率。
本发明实施方式的电子装置包括盖板组件和处理器。所述盖板组件上形成有检测元件,所述检测元件用于通电后输出电信号。所述处理器与所述检测元件连接,所述处理器用于根据所述电信号判断所述盖板组件是否破裂。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点可以从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明某些实施方式的电子装置的平面示意图。
图2是本发明某些实施方式的盖板组件的结构示意图。
图3是本发明某些实施方式的激光投射模组的结构示意图。
图4和图5是本发明某些实施方式的盖板组件的结构示意图。
图6至图13是本发明某些实施方式的触控板导电电极的线路示意图。
图14是本发明某些实施方式的盖板组件的结构示意图。
图15是本发明某些实施方式的触控板导电电极的线路示意图。
图16是本发明某些实施方式的盖板组件的结构示意图。
图17是本发明某些实施方式的盖板组件的结构示意图。
图18至图21是本发明某些实施方式的触控板导电通路的线路示意图。
图22是本发明某些实施方式的盖板组件的结构示意图。
图23至图26是本发明某些实施方式的触控板导电通路的线路示意图。
图27是本发明某些实施方式的盖板组件的结构示意图。
图28是本发明某些实施方式的触控板导电通路的线路示意图。
图29是本发明某些实施方式的盖板组件的结构示意图。
图30和图31是本发明某些实施方式的盖板组件的结构示意图。
图32至图39是本发明某些实施方式的盖板导电电极的线路示意图。
图40是本发明某些实施方式的盖板组件的结构示意图。
图41是本发明某些实施方式的盖板导电电极的线路示意图。
图42是本发明某些实施方式的盖板组件的结构示意图。
图43是本发明某些实施方式的盖板组件的结构示意图。
图44至图47是本发明某些实施方式的盖板导电通路的线路示意图。
图48是本发明某些实施方式的盖板组件的结构示意图。
图49至图52是本发明某些实施方式的盖板导电通路的线路示意图。
图53是本发明某些实施方式的盖板组件的结构示意图。
图54是本发明某些实施方式的盖板导电通路的线路示意图。
图55是本发明某些实施方式的盖板组件的结构示意图。
图56至图58是本发明某些实施方式的激光投射模组的部分结构示意图。
图59是本发明某些实施方式的激光投射模组的控制方法的流程示意图。
图60是本发明某些实施方式的激光投射模组的控制装置的示意图。
图61是本发明某些实施方式的深度相机的结构示意图。
图62是本发明某些实施方式的激光投射模组的控制方法的流程示意图。
图63是本发明某些实施方式的激光投射模组的控制装置的示意图。
图64是本发明某些实施方式的激光投射模组的控制方法的流程示意图。
图65是本发明某些实施方式的激光投射模组的控制装置的示意图。
图66是本发明某些实施方式的电子装置的结构示意图。
图67是本发明某些实施方式的激光投射模组的结构示意图。
图68和图69是本发明某些实施方式的盖板的结构示意图。
图70至图77是本发明某些实施方式的导电电极的排布示意图。
图78是本发明某些实施方式的盖板的结构示意图。
图79至图82是本发明某些实施方式的导电电极的排布示意图。
图83是本发明某些实施方式的盖板的结构示意图。
图84至图91是本发明某些实施方式的导电通路的排布示意图。
图92是本发明某些实施方式的盖板的结构示意图。
图93至图96是本发明某些实施方式的导电通路的排布示意图。
图97是本发明某些实施方式的电子装置的结构示意图。
图98是本发明某些实施方式的激光投射模组的结构示意图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中,相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明的实施方式,而不能理解为对本发明的实施方式的限制。
在本发明的实施方式的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明的实施方式和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的实施方式的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的实施方式的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的实施方式的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接连接,也可以通过中间媒介间接连接,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明的实施方式中的具体含义。
在本发明的实施方式中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之 下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的实施方式的不同结构。为了简化本发明的实施方式的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明的实施方式可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明的实施方式提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
本发明提供一种电子装置1000。电子装置1000包括盖板组件300和处理器400。盖板组件300上形成有检测元件320,检测元件320用于通电后输出电信号。处理器400与检测元件320连接,处理器400用于根据电信号判断盖板组件300是否破裂。
请参阅图1和图2,本发明提供一种电子装置1000。电子装置1000包括壳体100、激光投射模组220、盖板组件300和处理器400。激光投射模组220设置在壳体100内。盖板组件300设置在壳体100上并覆盖激光投射模组220。激光投射模组220发射的激光经过盖板组件300传输至外界,盖板组件300上形成有检测元件320,检测元件320包括导电部件,检测元件320用于通电后输出电信号。处理器400与检测元件320连接,处理器400用于获取电信号、判断电信号是否处于预设范围内、以及在电信号不处于预设范围内时控制激光投射模组220关闭或控制激光投射模组220减小发射功率。
由于激光投射模组220的光学元件比较容易破碎,如此可能使得红外激光发射器发射的激光直射人体,尤其是在进行面部解锁时会直射人的眼睛,对用户造成极大的伤害。本发明实施方式的电子装置1000通过盖板组件300的检测元件320输出的电信号判断激光投射模组220是否工作异常,从而可以在激光投射模组220工作异常时控制激光投射模组220关闭或控制激光投射模组220减小发射功率,进而可以避免激光投射模组220发射的激光直射人体的危险,提高激光投射模组220的安全性。
请参阅图3,在某些实施方式中,激光投射模组220包括激光发射器221、准直元件223和衍射光学元件225。其中,准直元件223和衍射光学元件225一般为玻璃材料,受到外力作用容易破裂,造成激光发射器221发射的激光直射人体而产生安全事故。盖板组件300一般也为玻璃材料,受到外力作用也容易破裂。可以理解,由于激光投射模组220设置在壳体100内,盖板组件300设置在壳体100上并覆盖激光投射模组220,因此激光投射模组220和盖板组件300容易同时受到外力的影响,即在盖板组件300破裂的情况下,激光投射模组220基本也会破裂;在激光投射模组220破裂的情况下,盖板组件300基本也会破裂。
因此,可以通过判断检测元件320的电信号是否处于预设范围内,在电信号不处于预设范围内时确定盖板组件300发生破碎,从而确定激光投射模组220也发生破裂,进而可以控制激光投射模组220关闭或控制激光投射模组220减小发射功率。
请参阅图4和图5,在某些实施方式中,盖板组件300包括触控板340,触控板340包括检测元件320,检测元件320为透光触控板导电膜321(透光可以是指透光率大于80%,下同),透光触控板导电膜321上设有触控板导电电极3211,触控板导电电极3211通电后输出电信号。如此,可以利用透光触控板导电膜321上的触控板导电电极3211来判断盖板组件300是否破碎。
具体地,触控板340上形成有透光触控板导电膜321,当触控板340处于完好状态时,透光触控板导电膜321的电阻较小,在此状态下给触控板导电电极3211通电,即施加一定大小的电压,则此时处理器400获取到的触控板导电电极3211输出的电流较大。而当触控板340破裂时,透光触控板导电膜321也会碎裂,此时碎裂位置处的透光触控板导电膜321的电阻阻值接近无穷大,在此状态下给触控板导电电极3211通电,处理器400获取到的触控板导电电极3211输出的电流较小。因此,第一种方式:可以根据电信号(即电流)与触控板340未破裂状态下检测到的电信号(即电流)之间差异大小来判断透光触控板导电膜321是否破裂,进一步地,可根据透光触控板导电膜321的状态来判断触控板340是否破裂,即,若透光触控板导电膜321破裂,则表明触控板340也破裂;若透光触控板导电膜321未破裂,则表明触控板340也未破裂。第二种方式:可根据触控板340上触控板导电电极3211通电后输出的电信号直接判断触控板340是否破裂,具体地,触控板340未破裂时,触控板导电电极3211输出的电信号不在预设范围内时就确定透光触控板导电膜321破裂,进而判断触控板340也破裂;若触控板导电电极3211输出的电信号在预设范围内时就确定透光触控板导电膜321未破裂,进而判断触控板340也未破裂。
请参阅图4和图5,在某些实施方式中,触控板340包括相背的触控板入射面342和触控板 出射面344。当透光触控板导电膜321为单层时,透光触控板导电膜321可以设置在触控板入射面342(如图4所示)上,也可以设置在触控板出射面344上(如图5所示)。
请参阅图6至图9,在某些实施方式中,触控板导电电极3211为单条,触控板导电电极3211包括触控板输出端322及触控板输入端323,触控板输出端322及触控板输入端323与处理器400连接以形成导电回路。
具体地,透光触控板导电膜321为单层,设置在触控板340的触控板入射面342或触控板出射面344上。其中,触控板导电电极3211的排布方式有多种:例如,触控板输入端323和触控板输出端322的连线方向(即为触控板导电电极3211的延伸方向)为透光触控板导电膜321的长度方向(如图6所示),或者触控板导电电极3211的延伸方向为透光触控板导电膜321的宽度方向(如图7所示),或者触控板导电电极3211的延伸方向为透光触控板导电膜321的对角线方向(如图8和图9所示)。无论触控板导电电极3211的排布方式是上述的哪种方式,触控板导电电极3211都能跨越整个透光触控板导电膜321,可以较为准确地检测透光触控板导电膜321是否破裂。
请参阅图10至图13,在某些实施方式中,触控板导电电极3211为多条,多条触控板导电电极3211互不相交,每条触控板导电电极3211包括触控板输出端322及触控板输入端323,每个触控板输出端322及每个触控板输入端323与处理器400连接以形成导电回路,由此,多条触控板导电电极3211的触控板输入端323及触控板输出端322分别与处理器400连接以形成多条导电回路。如此,可以提高透光触控板导电膜321检测触控板340是否破碎的准确性。
具体地,透光触控板导电膜321为单层,设置在触控板入射面342或触控板出射面344上。其中,多条触控板导电电极3211的排布方式有多种:例如,每条触控板导电电极3211的延伸方向为透光触控板导电膜321的长度方向,多条触控板导电电极3211沿透光触控板导电膜321的长度方向平行间隔设置(如图10所示);或者,每条触控板导电电极3211的延伸方向为透光触控板导电膜321的宽度方向,多条触控板导电电极3211平行间隔设置(如图11所示);或者,每条触控板导电电极3211的延伸方向为透光触控板导电膜321的对角线方向,多条触控板导电电极3211平行间隔设置(如图12和图13所示)。无论触控板导电电极3211的排布方式是上述的哪种方式,相较于设置单条触控板导电电极3211而言,多条触控板导电电极3211能够占据透光触控板导电膜321较多的面积,相应地可以输出更多的电信号。如此,处理器400可根据较多的电信号更为精确地判断透光触控板导电膜321是否破裂,进一步地判断触控板340是否破裂,提升触控板340破裂检测的准确性。
请一并参阅图14和图15,在某些实施方式中,触控板导电电极3211为单层的架桥结构,包括多条平行设置的第一触控板导电电极3212、多条平行设置的第二触控板导电电极3213和多条触控板架桥导电电极3214,多条第一触控板导电电极3212与多条第二触控板导电电极3213纵横交错,每条第一触控板导电电极3212连续不间断,每条第二触控板导电电极3213在与对应的多条第一触控板导电电极3212的交错处断开并与多条第一触控板导电电极3212不导通;每条触控板架桥导电电极3214将对应的第二触控板导电电极3213的断开处导通;触控板架桥导电电极3214与第一触控板导电电极3212的交错位置设置有触控板绝缘体3215;每条第一触控板导电电极3212的两端与处理器400连接以形成导电回路,每条第二触控板导电电极3213的两端与处理器400连接以形成导电回路。由此,多条第一触控板导电电极3212的两端与处理器400均分别连接以形成多条导电回路,多条第二触控板导电电极3213的两端与处理器均分别40连接以形成多条导电回路。其中,多条第一触控板导电电极3212与多条第二触控板导电电极3213纵横交错指的是多条第一触控板导电电极3212与多条第二触控板导电电极3213相互垂直交错,即第一触控板导电电极3212与第二触控板导电电极3213的夹角为90度。当然,在其他实施方式中,多条第一触控板导电电极3212与多条第二触控板导电电极3213纵横交错还可以是多条第一触控板导电电极3212与多条第二触控板导电电极3213相互倾斜交错。使用时,处理器400可以同时对多条第一触控板导电电极3212和多条第二触控板导电电极3213通电以得到多个电信号,或者,处理器400可依次对多条第一触控板导电电极3212和多条第二触控板导电电极3213通电以得到多个电信号,随后,处理器400再根据电信号来判断透光触控板导电膜321是否破裂。当检测到编号为①的第一触控板导电电极3212输出的电信号不在预设范围内,编号为③的第二触控板导电电极3213输出的电信号不在预设范围内时,说明透光触控板导电膜321在编号为①的第一触控板导电电极3212与编号为③的第二触控板导电电极3213交错处破裂,则触控板340与透光触控板导电膜321破裂位置对应的位置也破裂。如此,通过架桥结构的单层的透光触控板导电膜321可以更为精确地检测触控板340是否破裂以及破裂的具体位置。
请参阅图16,在某些实施方式中,透光触控板导电膜321包括隔层设置的第一触控板导电膜3216和第二触控板导电膜3218,第一触控板导电膜3216上设置有多条平行的第一触控板导电电极3212,第二触控板导电膜3218上设置有多条平行的第二触控板导电电极3213,第一触控板导电电极3212在第二触控板导电膜3218上的投影与第二触控板导电电极3213纵横交错,每条第一触控板导电电极3212的两端与处理器400连接以形成导电回路,每条第二触控板导电电极3213的两端与处理器400连接以形成导电回路。由此,多条第一触控板导电电极3212的两端与处理器400均分别连接以形成多条导电回路,多条第二触控板导电电极3213的两端与处理器400均分别连接以形成多条导电回路。
请结合图15,透光触控板导电膜321包括隔层设置的第一触控板导电膜3216和第二触控板导电膜3218时,第一触控板导电膜3216与第二触控板导电膜3218可分别设置在触控板入射面342及触控板出射面344上。第一触控板导电电极3212在第二触控板导电膜3218上的投影与第二触控板导电电极3213纵横交错指的是多条第一触控板导电电极3212与多条第二触控板导电电极3213在空间上相互垂直交错,即第一触控板导电电极3212在第二触控板导电膜3218上的投影与第二触控板导电电极3213的夹角为90度。当然,在其他实施方式中,多条第一触控板导电电极3212在第二触控板导电膜3218上的投影与多条第二触控板导电电极3213纵横交错还可以是多条第一触控板导电电极3212与多条第二触控板导电电极3213在空间上相互倾斜交错。使用时,处理器400可以同时对多条第一触控板导电电极3212和多条第二触控板导电电极3213通电以得到多个电信号,或者,处理器400可依次对多条第一触控板导电电极3212和多条第二触控板导电电极3213通电以得到多个电信号,随后,处理器400再根据电信号来判断透光触控板导电膜321是否破裂,进一步地判断触控板340是否破裂。同上,根据多条第一触控板导电电极3212及多条第二触控板导电电极3213输出的电信号即可精确地检测触控板340是否破裂以及破裂的具体位置。
为了实现触控板340的触控功能,触控板340上一般设置有触控层,在某些实施方式中,触控层可视作触控板导电膜321,即可以通过对触控板340的触控层进行通电以获取电信号。
请参阅图17,在某些实施方式中,检测元件320还可以为掺杂在触控板340中导电粒子324,导电粒子324形成触控板导电通路325,触控板导电通路325通电后输出电信号。
如此,可以利用导电粒子324形成的触控板导电通路325来判断盖板组件300是否破碎。
具体地,当触控板340处于完好状态时,相邻的导电粒子324之间是接合的,此时整个触控板导电通路325的电阻较小,在此状态下给触控板导电通路325通电,即施加一定大小的电压,则此时处理器400获取到的触控板导电通路325输出的电流较大。而当触控板340破裂时,掺杂在触控板340中的导电粒子324之间的接合点断开,此时整个触控板导电通路325的电阻阻值接近无穷大,在此状态下给触控板导电通路325通电,处理器400获取到的触控板导电通路325输出的电流较小。因此,第一种方式:可以根据触控板340中触控板导电通路325通电后输出的电信号(即电流)与触控板340未破裂状态下检测到的电信号之间的差异大小来判断触控板340是否破裂;第二种方式:可根据触控板340中触控板导电通路325通电后输出的电信号直接判断触控板340是否破裂,具体地,若触控板导电通路325输出的电信号在不预设范围内时就确定触控板340破裂,若触控板导电通路325输出的电信号在预设范围内时就确定触控板340未破裂。
请参阅图18至图21,在某些实施方式中,触控板导电通路325为单条并包括触控板输出端322及触控板输入端323,触控板输出端322及触控板输入端323与处理器400连接以形成导电回路。如此,制造触控板导电通路325所需的导电粒子324较少,可以降低触控板导电通路325的制造成本。
具体地,触控板340中掺杂了多个导电粒子324(下文将掺杂在触控板340中的导电粒子324称为触控板导电粒子3242),多个触控板导电粒子3242形成一条触控板导电通路325。其中,触控板导电通路325的排布方式有多种:例如,触控板导电通路325的延伸方向为触控板340的长度方向(如图18所示);或者触控板导电通路325的延伸方向为触控板340的宽度方向(如图19所示);或者,触控板导电通路325的延伸方向为触控板340的对角线方向(如图20和图21所示)。无论触控板导电通路325的排布方式是上述的哪种方式,触控板导电通路325都能跨越整个触控板340,可以较为准确地检测触控板340是否破裂。
请参阅图22,在某些实施方式中,触控板导电通路325为多条,多条触控板导电通路325互不相交,每条触控板导电通路325包括触控板输出端322及触控板输入端323,每个触控板输出端322及每个触控板输入端323与处理器400连接以形成导电回路。由此,多条触控板导电通路325的触控板输入端323及触控板输出端322分别与处理器400连接以形成多条导电回路。
请参阅图23至图26,具体地,触控板340中掺杂了多个触控板导电粒子3242,多个触控板导电粒子3242形成多条触控板导电通路325,多条触控板导电通路325互不相交且相互绝缘。其中,多条触控板导电通路325的排布方式有多种:例如,每条触控板导电通路325的延伸方向为触控板340的长度方向(如图23所示),多条触控板导电通路325平行间隔设置,由于触控板340具有一定的厚度,因此,多条触控板导电通路325还可以沿触控板340的厚度方向呈层叠间隔设置(如图22所示);或者,每条触控板导电通路325的延伸方向为触控板340的宽度方向(如图24所示),多条触控板导电通路325平行间隔设置,由于触控板340具有一定的厚度,因此,多条触控板导电通路325还可以沿触控板340的厚度方向呈层叠间隔设置;或者,每条触控板导电通路325的延伸方向为触控板340的触控板入射面342的对角线方向(如图25和图26所示),多条触控板导电通路325平行间隔设置,由于触控板340具有一定的厚度,因此,多条触控板导电通路325还可沿触控板340的厚度方向呈层叠间隔设置。无论触控板导电通路325的排布方式是上述的哪种方式,相较于设置单条触控板导电通路325而言,多条触控板导电通路325能够占据触控板340较多的体积,相应地可以输出更多的电信号。如此,处理器400可根据较多的电信号更为精确地判断触控板340是否破裂,提升触控板340破裂检测的准确性。
请参阅图27,在某些实施方式中,触控板导电通路325包括多条第一触控板导电通路3252和多条第二触控板导电通路3254,多条第一触控板导电通路3252平行间隔设置,多条第二触控板导电通路3254平行间隔设置,多条第一触控板导电通路3252和多条第二触控板导电通路3254在空间上纵横交错,每条触控板导电通路325包括触控板输出端322及触控板输入端323,每个触控板输出端322及每个触控板输入端323与处理器400连接以形成导电回路。
具体地,触控板340中掺杂了多个触控板导电粒子3242,多个触控板导电粒子3242形成多条触控板导电通路325,每条第一触控板导电通路3252包括第一触控板输入端3232和第一触控板输出端3222,每条第二触控板导电通路3254包括第二触控板输入端3234和第二触控板输出端3224。每个第一触控板输入端3232及每个第一触控板输出端3222与处理器400连接以形成一条导电回路,每个第二触控板输入端3234及每个第二触控板输出端3224与处理器400连接以形成一条导电回路。由此,多条第一触控板导电通路3252的两端均与处理器400分别连接以形成多条导电回路。多条第二触控板导电通路3254的两端均与处理器400分别连接以形成多条导电回路。其中,多条第一触控板导电通路3252与多条第二触控板导电通路3254在空间上纵横交错指的是多条第一触控板导电通路3252与多条第二触控板导电通路3254在空间上相互垂直交错,即第一触控板导电通路3252与第二触控板导电通路3254的夹角为90度。此时,多条第一触控板导电通路3252的延伸方向为触控板340的长度方向,且多条第二触控板导电通路3254的延伸方向为触控板340的宽度方向;或者,多条第一触控板导电通路3252的延伸方向为触控板340的厚度方向,且多条第二触控板导电通路3254的延伸方向为触控板340的长度方向。当然,在其他实施方式中,多条第一触控板导电通路3252与多条第二触控板导电通路3254在空间上纵横交错还可以是多条第一触控板导电通路3252与多条第二触控板导电通路3254在空间上相互倾斜交错。使用时,处理器400可以同时对多条第一触控板导电通路3252和多条第二触控板导电通路3254通电以得到多个电信号。或者,处理器400可依次对多条第一触控板导电通路3252和多条第二触控板导电通路3254通电以得到多个电信号,随后,处理器400再根据电信号来判断触控板340是否破裂。请结合图28,当检测到编号为②的第一触控板导电通路3252输出的电信号不在预设范围内,且编号为④的第二触控板导电通路3254输出的电信号也不在预设范围内时,说明触控板340在编号为②的第一触控板导电通路3252和编号为④的第二触控板导电通路3254的交错处破裂,则触控板340对应的位置也破裂,如此,通过多条第一触控板导电通路3252和多条第二触控板导电通路3254纵横交错排布的方式可以更为精确地检测触控板340是否破裂以及破裂的具体位置。
此外,请参阅图29,由于触控板340具有一定的宽度和厚度,因此,在多条第一触控板导电通路3252和多条第二触控板导电通路3254在空间上相互交错形成一对相互交错的导电通路对后,还可以在触控板340的宽度方向或厚度方向形成多对上述相互交错的导电通路对。同样地,使用时,处理器400可以同时对多条第一触控板导电通路3252和多条第二触控板导电通路3254通电以得到多个电信号。或者,处理器400可依次对多条第一触控板导电通路3252和多条第二触控板导电通路3254通电以得到多个电信号,随后,处理器400再根据电信号来判断触控板340是否破裂以及破裂的具体位置。如此,多对的触控板导电通路325对可以占据触控板340更多的体积,相对应地可以输出更多的电信号,处理器400可根据较多的电信号更为精确地判断触控板340是否破裂及破裂的具体位置,提升触控板340破裂检测的准确性。
请参阅图30和图31,在某些实施方式中,盖板组件300包括盖板360,盖板360包括检测元件320,检测元件320为透光盖板导电膜326,透光盖板导电膜326上设有盖板导电电极3261,盖板导电电极3261通电后输出电信号。如此,可以利用透光盖板导电膜326上的盖板导电电极3261来判断盖板组件300是否破碎。
具体地,盖板360上形成有透光盖板导电膜326,当盖板360处于完好状态时,透光盖板导电膜326的电阻较小,在此状态下给盖板导电电极3261通电,即施加一定大小的电压,则此时处理器400获取到的盖板导电电极3261输出的电流较大。而当盖板360破裂时,透光盖板导电膜326也会碎裂,此时碎裂位置处的透光盖板导电膜326的电阻阻值接近无穷大,在此状态下给盖板导电电极3261通电,处理器400获取到的盖板导电电极3261输出的电流较小。因此,第一种方式:可以根据电信号(即电流)与盖板360未破裂状态下检测到的电信号(即电流)之间差异大小来判断透光盖板导电膜326是否破裂,进一步地,可根据透光盖板导电膜326的状态来判盖板360是否破裂,即,若透光盖板导电膜326破裂,则表明盖板360也破裂;若透光盖板导电膜326未破裂,则表明盖板360也未破裂。第二种方式:可根据盖板360上盖板导电电极3261通电后输出的电信号直接判断盖板360是否破裂,具体地,盖板360未破裂时,盖板导电电极3261输出的电信号不在预设范围内时就确定透光盖板导电膜326破裂,进而判断盖板360也破裂;若盖板导电电极3261输出的电信号在预设范围内时就确定透光盖板导电膜326未破裂,进而判断盖板360也未破裂。
在某些实施方式中,当触控板340上形成有透光触控板导电膜321,同时盖板360上形成有透光盖板导电膜326时,处理器400能够区分出透光触控板导电膜321与透光盖板导电膜326,由此能够分辨出是触控板340破裂、或者是盖板360破裂、或者是触控板340与盖板360均破裂。
在某些实施方式中,透光触控板导电膜321可以通过电镀等方式形成在触控板340的表面,透光盖板导电膜326也可以通过电镀等方式形成在盖板360的表面。透光触控板导电膜321、透光盖板导电膜326的材质可以是氧化铟锡(Indium tin oxide,ITO)、纳米银丝、金属银线中的任意一种。氧化铟锡、纳米银丝、金属银线均具有良好的透光率及导电性能,可实现通电后的电信号输出,同时不会对触控板340和盖板360的出光光路产生遮挡。
请参阅图30和图31,在某些实施方式中,盖板360包括相背的盖板入射面362和盖板出射面364。当透光盖板导电膜326为单层时,透光盖板导电膜326可以设置在盖板入射面362(如图30所示)上,也可以设置在盖板出射面364上(如图31所示)。
请参阅图32至图35,在某些实施方式中,盖板导电电极3261为单条,盖板导电电极3261包括盖板输出端327及盖板输入端328,盖板输出端327及盖板输入端328与处理器400连接以形成导电回路。盖板导电电极3261的排布方式与前述的单层触控板导电膜321中单条触控板导电电极3211的排布方式相同,在此不再赘述。
请参阅图36至图39,在某些实施方式中,盖板导电电极3261为多条,多条盖板导电电极3261互不相交,每条盖板导电电极3261包括盖板输出端327及盖板输入端328,每个盖板输出端327及每个盖板输入端328与处理器400连接以形成导电回路。由此,多条盖板导电电极3261的盖板输入端328及盖板输出端327分别与处理器400连接以形成多条导电回路。
盖板导电电极3261的排布方式与前述的单层触控板导电膜321中多条触控板导电电极3211的排布方式相同,在此不再赘述。相较于设置单条盖板导电电极3261而言,多条盖板导电电极3261能够占据透光盖板导电膜326较多的面积,相对应地可以输出更多的电信号。如此,处理器400可根据较多的电信号更为精确地判断透光盖板导电膜326是否破裂,进一步地判断盖板360是否破裂,提升盖板360破裂检测的准确性。
请一并参阅图40和图41,在某些实施方式中,盖板导电电极3261为单层的架桥结构,包括多条平行设置的第一盖板导电电极3262、多条平行设置的第二盖板导电电极3263和多条盖板架桥导电电极3264,多条第一盖板导电电极3262与多条第二盖板导电电极3263纵横交错,每条第一盖板导电电极3262连续不间断,每条第二盖板导电电极3263在与对应的多条第一盖板导电电极3262的交错处断开并与多条第一盖板导电电极3262不导通;每条盖板架桥导电电极3264将对应的第二盖板导电电极3263的断开处导通;盖板架桥导电电极3264与第一盖板导电电极3262的交错位置设置有盖板绝缘体3265;每条第一盖板导电电极3262的两端与处理器400连接以形成导电回路,每条第二盖板导电电极3263的两端与处理器400连接以形成导电回路。由此,多条第一盖板导电电极3262的两端与处理器400均分别连接以形成多条导电回路,多条第二盖板导电电极3263的两端与处理器400均分别连接以形成多条导电回路。
多条第一盖板导电电极3262与多条第二盖板导电电极3263的解释与前述单层架桥结构的触 摸板导电膜321中多条第一触控板导电电极3212与多条第二触控板导电电极3213的解释相同,在此不再赘述。使用时,处理器400可以同时对多条第一盖板导电电极3262和多条第二盖板导电电极3263通电以得到多个电信号,或者,处理器400可依次对多条第一盖板导电电极3262和多条第二盖板导电电极3263通电以得到多个电信号,随后,处理器400再根据电信号来判断透光盖板导电膜326是否破裂。当检测到编号为①的第一盖板导电电极3262输出的电信号不在预设范围内,编号为③的第二盖板导电电极3263输出的电信号不在预设范围内时,说明透光盖板导电膜326在编号为①的第一盖板导电电极3262与编号为③的第二盖板导电电极3263交错处破裂,则盖板360与透光盖板导电膜326破裂位置对应的位置也破裂。如此,通过架桥结构的单层的透光盖板导电膜326可以更为精确地检测盖板360是否破裂以及破裂的具体位置。
请参阅图42,在某些实施方式中,透光盖板导电膜326包括隔层设置的第一盖板导电膜3266和第二盖板导电膜3268,第一盖板导电膜3266上设置有多条平行的第一盖板导电电极3262,第二盖板导电膜3268上设置有多条平行的第二盖板导电电极3263,第一盖板导电电极3262在第二盖板导电膜3268上的投影与第二盖板导电电极3263纵横交错,每条第一盖板导电电极3262的两端与处理器400连接以形成导电回路,每条第二盖板导电电极3263的两端与处理器400连接以形成导电回路。由此,多条第一盖板导电电极3262的两端与处理器400均分别连接以形成多条导电回路,多条第二盖板导电电极3263的两端与处理器400均分别连接以形成多条导电回路。
请结合图41,透光盖板导电膜326包括隔层设置的第一盖板导电膜3266和第二盖板导电膜3268时,第一盖板导电膜3266可以设置在盖板入射面362上,第二盖板导电膜3268可以设置在盖板出射面364上。第一盖板导电电极3262在第二盖板导电膜3268上的投影与第二盖板导电电极3263纵横交错指的是多条第一盖板导电电极3262与多条第二盖板导电电极3263在空间上相互垂直交错,即第一盖板导电电极3262在第二盖板导电膜3268上的投影与第二盖板导电电极3263的夹角为90度。当然,在其他实施方式中,多条第一盖板导电电极3262在第二盖板导电膜3268上的投影与多条第二盖板导电电极3263纵横交错还可以是多条第一盖板导电电极3262与多条第二盖板导电电极3263在空间上相互倾斜交错。使用时,处理器400可以同时对多条第一盖板导电电极3262和多条第二盖板导电电极3263通电以得到多个电信号,或者,处理器400可依次对多条第一盖板导电电极3262和多条第二盖板导电电极3263通电以得到多个电信号,随后,处理器400再根据电信号来判断透光盖板导电膜326是否破裂,进一步判断盖板360是否破裂。同上,根据多条第一盖板导电电极3262及多条第二盖板导电电极3263输出的电信号即可精确地检测盖板360是否破裂以及破裂的具体位置。
请参阅图43,在某些实施方式中,检测元件320还可以为掺杂在盖板360中导电粒子324,导电粒子324形成盖板导电通路329,盖板导电通路329通电后输出电信号。如此,可以利用导电粒子324形成的盖板导电通路329来判断盖板组件300是否破碎。
具体地,当盖板360处于完好状态时,相邻的导电粒子324之间是接合的,此时整个盖板导电通路329的电阻较小,在此状态下给盖板导电通路329通电,即施加一定大小的电压,则此时处理器400获取到的盖板导电通路329输出的电流较大。而当盖板360破裂时,掺杂在盖板360中的导电粒子324之间的接合点断开,此时整个盖板导电通路329的电阻阻值接近无穷大,在此状态下给盖板导电通路329通电,处理器400获取到的盖板导电通路329输出的电流较小。因此,第一种方式:可以根据盖板360中盖板导电通路329通电后输出的电信号(即电流)与盖板360未破裂状态下检测到的电信号之间的差异大小来盖板360是否破裂;第二种方式:可根据盖板360中盖板导电通路329通电后输出的电信号直接判断盖板360是否破裂,具体地,若盖板导电通路329输出的电信号不在预设范围内时就确定盖板360破裂,若盖板导电通路329输出的电信号在预设范围内时则确定盖板360未破裂。
在某些实施方式中,触控板340中掺杂了导电粒子324且盖板360中也掺杂了导电粒子324,此时,处理器400能够获取到触控板导电通路325输出的电信号和盖板导电通路329输出的电信号,因此处理器400可根据触控板导电通路325输出的电信号来判断触控板340是否破裂,根据盖板导电通路329输出的电信号来判断盖板360是否破裂,由此,处理器400能够分辨出是触控板340破裂、或者是盖板360破裂、或者是触控板340与盖板360均破裂。
请参阅图44至图47,在某些实施方式中,盖板导电通路329为单条并包括盖板输出端327及盖板输入端328,盖板输出端327及盖板输入端328与处理器400连接以形成导电回路。如此,制造盖板导电通路329所需的导电粒子324较少,可以降低盖板导电通路329的制造成本。
具体地,盖板360中掺杂了多个导电粒子324(下文将掺杂在盖板360中的导电粒子324称为盖板导电粒子3244),多个盖板导电粒子3244形成一条盖板导电通路329。其中,盖板导电 通路329的排布方式与前述的触控板导电通路325为单条时的排列方式相同,在此不再赘述。
请参阅图48,在某些实施方式中,盖板导电通路329为多条,多条盖板导电通路329互不相交,每条盖板导电通路329包括盖板输出端327及盖板输入端328,每个盖板输出端327及每个盖板输入端328与处理器400连接以形成导电回路。由此,多条盖板导电通路329的盖板输入端328及盖板输出端327分别与处理器400连接以形成多条导电回路。
请参阅图49至图52,具体地,多条盖板导电通路329互不相交也互相绝缘。其中,多条盖板导电通路329的排布方式与前述的触控板导电通路325为多条时的排列方式相同,在此不再赘述。无论盖板导电通路329的排布方式是哪种方式,相较于设置单条盖板导电通路329而言,多条盖板导电通路329能够占据盖板360较多的体积,相应地可以输出更多的电信号。如此,处理器400可根据较多的电信号更为精确地判断盖板360是否破裂,提升盖板360破裂检测的准确性。
请参阅图53,在某些实施方式中,盖板导电通路329包括多条第一盖板导电通路3292和多条第二盖板导电通路3294,多条第一盖板导电通路3292平行间隔设置,多条第二盖板导电通路3294平行间隔设置,多条第一盖板导电通路3292和多条第二盖板导电通路3294在空间上纵横交错,每条盖板导电通路329包括盖板输出端327及盖板输入端328,每个盖板输出端327及每个盖板输入端328与处理器400连接以形成导电回路。
具体地,盖板360中掺杂了多个盖板导电粒子3244,多个盖板导电粒子3244形成多条盖板导电通路329,每条第一盖板导电通路3292包括第一盖板输入端3282和第一盖板输出端3272,每条第二盖板导电通路3294包括第二盖板输入端3284和第二盖板输出端3274。每个第一盖板输入端3282及每个第一盖板输出端3272与处理器400连接以形成一条导电回路,每个第二盖板输入端3284及每个第二盖板输出端3274与处理器400连接以形成一条导电回路。由此,多条第一盖板导电通路3292的两端与处理器400均分别连接以形成多条导电回路,多条第二盖板导电通路3294的两端均与处理器400分别连接以形成多条导电回路。其中,多条第一盖板导电通路3292与多条第二盖板导电通路3294在空间上纵横交错指的是多条第一盖板导电通路3292与多条第二盖板导电通路3294在空间上相互垂直交错,即第一盖板导电通路3292与第二盖板导电通路3294的夹角为90度。此时,多条第一盖板导电通路3292的延伸方向为盖板360的长度方向,且多条第二盖板导电通路3294的延伸方向为盖板360的宽度方向;或者,多条第一盖板导电通路3292的延伸方向为盖板360的厚度方向,且多条第二盖板导电通路3294的延伸方向为盖板360的长度方向。当然,在其他实施方式中,多条第一盖板导电通路3292与多条第二盖板导电通路3294在空间上纵横交错还可以是多条第一盖板导电通路3292与多条第二盖板导电通路3294在空间上相互倾斜交错。使用时,处理器400可以同时对多条第一盖板导电通路3292和多条第二盖板导电通路3294通电以得到多个电信号。或者,处理器400可依次对多条第一盖板导电通路3292和多条第二盖板导电通路3294通电以得到多个电信号,随后,处理器400再根据电信号来判断盖板360是否破裂。请结合图54,当检测到编号为②的第一盖板导电通路3292输出的电信号不在预设范围内,且编号为④的第二盖板导电通路3294输出的电信号也不在预设范围内时,说明盖板360在编号为②的第一盖板导电通路3292和编号为④的第二盖板导电通路3294的交错处破裂,则盖板360对应的位置也破裂,如此,通过多条第一盖板导电通路3292和多条第二盖板导电通路3294纵横交错排布的方式可以更为精确地检测盖板360是否破裂以及破裂的具体位置。
此外,请参阅图55,由于盖板360具有一定的宽度和厚度,因此,在多条第一盖板导电通路3292和多条第二盖板导电通路3294在空间上相互交错形成一对相互交错的导电通路对后,还可以在盖板360的宽度方向或厚度方向形成多对上述相互交错的导电通路对。同样地,使用时,处理器400可以同时对多条第一盖板导电通路3292和多条第二盖板导电通路3294通电以得到多个电信号。或者,处理器400可依次对多条第一盖板导电通路3292和多条第二盖板导电通路3294通电以得到多个电信号,随后,处理器400再根据电信号来判断盖板360是否破裂以及破裂的具体位置。如此,多对的盖板导电通路329对可以占据盖板360更多的体积,相对应地可以输出更多的电信号,处理器400可根据较多的电信号更为精确地判断盖板360是否破裂及破裂的具体位置,提升盖板360破裂检测的准确性。
在某些实施方式中,盖板组件300包括触控板340和盖板360。可以理解,在其他实施方式中,盖板组件300可仅包括盖板360,其中盖板360为集成了触控功能的盖板。
请再参阅图3,在某些实施方式中,激光投射模组220包括激光发射器221、准直元件223、衍射光学元件225、镜筒2264、保护罩2266、及电路板组件229。
电路板组件229包括基板2296和电路板2292。电路板2292设置在基板2296上,电路板2292可以是硬板、软板或软硬结合板。电路板2292上开设有过孔2294,激光发射器221固定在基板 2296上并与电路板2292电连接。基板2296上可以开设有散热孔2298,激光发射器221或电路板2292工作产生的热量可由散热孔2298散出,散热孔2298内还可填充导热胶,以进一步提高电路板组件229的散热性能。
镜筒2264与电路板组件229固定连接,镜筒2264形成有收容腔2262,镜筒2264包括顶壁2264a及自顶壁2264a延伸的环形的周壁2264b,周壁2264b设置在电路板组件229上,顶壁2264a开设有与收容腔2262连通的通光孔2264c。周壁2264b可以与电路板2292通过粘胶连接。
保护罩2266设置在顶壁2264a上。保护罩2266包括开设有出光通孔2266a的挡板2266b及自挡板2266b延伸的环形侧壁2266c。
激光发射器221与准直元件223均设置在收容腔2262内,衍射光学元件225安装在镜筒2264上,准直元件223与衍射光学元件225依次设置在激光发射器221的发光光路上。准直元件223对激光发射器221发出的激光进行准直,激光穿过准直元件223后再穿过衍射光学元件225以形成激光图案。
激光发射器221可以是垂直腔面发射激光器(Vertical Cavity Surface Emitting Laser,VCSEL)或者边发射激光器(edge-emitting laser,EEL),在本实施例中,激光发射器221为边发射激光器,具体地,激光发射器221为分布反馈式激光器(Distributed Feedback Laser,DFB)。激光发射器221用于向收容腔2262内发射激光。请结合图56,激光发射器221整体呈柱状,激光发射器221远离电路板组件229的一个端面形成发光面2211,激光从发光面2211发出,发光面2211朝向准直元件223。激光发射器221固定在电路板组件229上,具体地,激光发射器221可以通过封胶2271粘结在电路板组件229上(如图56所示),例如激光发射器221的与发光面2211相背的一面粘接在电路板组件229上。请结合图57,激光发射器221的连接面2215也可以粘接在电路板组件229上,封胶2271包裹住四周的连接面2215,也可以仅粘结连接面2215的某一个面与电路板组件229或粘结某几个面与电路板组件229。此时封胶2271可以为导热胶,以将激光发射器221工作产生的热量传导至电路板组件229中。
请继续参阅图3,衍射光学元件225承载在顶壁2264a上并收容在保护罩2266内。衍射光学元件225的相背两侧分别与保护罩2266及顶壁2264a抵触,挡板2266b包括靠近通光孔2264c的抵触面2268,衍射光学元件225与抵触面2268抵触。
具体地,衍射光学元件225包括相背的衍射入射面2254和衍射出射面2256。衍射光学元件225承载在顶壁2264a上,衍射出射面2256与挡板2266b的靠近通光孔2264c的表面(抵触面2268)抵触,衍射入射面2254与顶壁2264a抵触。通光孔2264c与收容腔2262对准,出光通孔2266a与通光孔2264c对准。顶壁2264a、环形侧壁2266c及挡板2266b与衍射光学元件225抵触,从而防止衍射光学元件225沿出光方向从保护罩2266内脱落。在某些实施方式中,保护罩2266通过胶水粘贴在顶壁2264a上。
上述的激光投射模组220的激光发射器221采用边发射激光器,一方面边发射激光器较VCSEL阵列的温飘较小,另一方面,由于边发射激光器为单点发光结构,无需设计阵列结构,制作简单,激光投射模组220的光源成本较低。
分布反馈式激光器的激光在传播时,经过光栅结构的反馈获得功率的增益。要提高分布反馈式激光器的功率,需要通过增大注入电流和/或增加分布反馈式激光器的长度,由于增大注入电流会使得分布反馈式激光器的功耗增大并且出现发热严重的问题,因此,为了保证分布反馈式激光器能够正常工作,需要增加分布反馈式激光器的长度,导致分布反馈式激光器一般呈细长条结构。当边发射激光器的发光面2211朝向准直元件223时,边发射激光器呈竖直放置,由于边发射激光器呈细长条结构,边发射激光器容易出现跌落、移位或晃动等意外,因此通过设置封胶2271能够将边发射激光器固定住,防止边发射激光器发生跌落、位移或晃动等意外。
请参阅图3和图58,在某些实施方式中,激光发射器221也可以采用如图58所示的固定方式固定在电路板组件229上。具体地,激光投射模组220包括多个支撑件2272,支撑件2272可以固定在电路板组件229上,多个支撑件2272共同包围激光发射器221,在安装时可以将激光发射器221直接安装在多个支撑件2272之间。在一个例子中,多个支撑件2272共同夹持激光发射器221,以进一步防止激光发射器221发生晃动。
在某些实施方式中,保护罩2266可以省略,此时衍射光学元件225可以设置在收容腔2262内,衍射光学元件225的衍射出射面2256可以与顶壁2264a相抵,激光穿过衍射光学元件225后再穿出通光孔2264c。如此,衍射光学元件225不易脱落。
基板2296也可以省去,激光发射器221可以直接固定在电路板2292上以减小激光投射模组220的整体厚度。
请参阅图59,本发明还提供了一种激光投射模组220的控制方法,激光投射模组220可以是上述任意一种实施方式的激光投射模组220。激光投射模组220发射的激光经过盖板组件300传输至外界,盖板组件300包括检测元件320,检测元件320用于通电后输出电信号。其中,盖板组件300可以是上述任意一种实施方式的盖板组件300。控制方法包括:
步骤02:获取电信号;步骤04:判断电信号是否处于预设范围内;和步骤06:在电信号不处于预设范围内时,控制激光投射模组220关闭或控制激光投射模组220减小发射功率。
请参阅图60,本发明还提供了一种激光投射模组220的控制装置500。激光投射模组220发射的激光经过盖板组件300传输至外界,盖板组件300包括检测元件320,检测元件320用于通电后输出电信号。控制装置500包括获取模块520、判断模块540和控制模块560。获取模块520用于获取电信号。判断模块540用于判断电信号是否处于预设范围内。控制模块560用于在电信号不处于预设范围内时,控制激光投射模组220关闭或控制激光投射模组220减小发射功率。
也即是说,本发明实施方式的激光投射模组220的控制方法可以由本发明实施方式的控制装置500实现,其中,步骤02可以由获取模块520实现,步骤04可以由判断模块540实现,步骤06可以由控制模块560实现。
本发明实施方式的激光投射模组220的控制方法和控制装置500通过盖板组件300的检测元件320输出的电信号判断激光投射模组220是否工作异常,从而可以在激光投射模组220工作异常时控制激光投射模组220关闭或控制激光投射模组220减小发射功率,进而可以避免激光投射模组220发射的激光直射人体的危险,提高激光投射模组220的安全性。
在某些实施方式中,控制装置500可以是指应用程序(APP)或处理器400,控制装置500可以应用于激光投射模组220或电子装置1000中。
本发明实施方式的电子装置1000包括处理器400,处理器400可以用于实现步骤02、步骤04和步骤06,即本发明实施方式的激光投射模组220的控制方法可以由本发明实施方式的电子装置1000实现。
在某些实施方式中,可以在激光投射模组220开启前利用本发明实施方式的控制方法检测盖板组件300是否破碎,从而确定激光投射模组220是否工作异常,进而可以对激光投射模组220实现准确地控制。
具体地,每次激光投射模组220开启前,处理器400均会对检测元件320进行通电,并获取检测元件320输出的电信号,再根据电信号判断触控板340和盖板360是否破裂。在检测到盖板360和/或触控板340破裂时,均不开启激光投射模组220或降低激光投射模组220的发射功率,从而避免激光投射模组220投射的激光的能量过高,危害用户眼睛的问题。
请参阅图61,在某些实施方式中,本发明实施方式的电子装置1000还包括图像采集器240,其中,激光投射模组220和图像采集器240可以集成为深度相机200。
图像采集器240用于采集激光投射模组220向目标空间中投射的激光图案。处理器400分别与激光投射模组220及图像采集器240连接。处理器400用于处理激光图案以获取深度图像。
具体地,激光投射模组220通过投射窗口120向目标空间中投射激光图案,图像采集器240通过采集窗口140采集被目标物体调制后的激光图案。图像采集器240可为红外相机,处理器400采用图像匹配算法计算出该激光图案中各像素点与参考图案中的对应各个像素点的偏离值,再根据偏离值进一步获得该激光图案的深度图像。其中,图像匹配算法可为数字图像相关(Digital Image Correlation,DIC)算法。当然,也可以采用其它图像匹配算法代替DIC算法。
在某些实施方式中,深度相机200设置在壳体100内,盖板组件300设置在壳体100上并覆盖深度相机200,深度相机200经过盖板组件300暴露以获取深度图像,即深度相机200发射及/或采集的光线经过盖板组件300。
请参阅图62,在某些实施方式中,本发明实施方式的激光投射模组220的控制方法还包括:07:检测激光投射模组220的运动速度;08:判断运动速度是否大于预定速度;和在激光投射模组220的运动速度大于预定速度时,进入步骤02。
请参阅图63,在某些实施方式中,控制装置500包括检测模块580。检测模块580用于检测激光投射模组220的运动速度。判断模块540用于判断运动速度是否大于预定速度和在激光投射模组220的运动速度大于预定速度时进入步骤02。也即是说,步骤07可以由检测模块580实现,步骤08可以由判断模块540实现。
在某些实施方式中,步骤07和步骤08可以由处理器400实现。也即是说,处理器400还可用于检测激光投射模组220的运动速度,判断运动速度是否大于预定速度,以及在激光投射模组220的运动速度大于预定速度时,执行步骤02。
其中可采用速度传感器检测激光投射模组220的运动速度,速度传感器可装在激光投射模组220中,也可以是与激光投射模组220一起安装在电子装置1000中,速度传感器检测电子装置1000的运动速度,进一步可得到激光投射模组220的运动速度。当激光投射模组220的运动速度较大时,表明此时激光投射模组220可能出现摔落的情况,此时,处理器400对检测元件320进行通电,并获取检测元件320输出的电信号,再根据电信号判断盖板360和触控板340是否破裂。在检测到盖板360和/或触控板340破裂时,就确定激光投射模组220破裂。如此,无需在每一次使用激光投射模组220时均进行激光投射模组220破裂的检测,可以减小激光投射模组220的功耗。
请参阅图64,在某些实施方式中,控制方法包括:
步骤09:提示用户。
请参阅图65,在某些实施方式中,控制装置包括提示模块590。提示模块590用于提示用户。也即是说,步骤09可以由提示模块590实现。
在某些实施方式中,步骤09可由处理器400实现。即,处理器400还可用于提示用户。如此,可以提示用户激光投射模组220出现异常。
具体地,电子装置1000包括显示屏、电声元件(如喇叭)和振动电机中的至少一种。控制装置500或处理器400可以通过控制显示屏、电声元件和振动电机中的至少一种来提示用户,其中显示屏可以显示图像、文字信息,电声元件可以发出声音信息,振动电机可以通过振动信息提示用户。控制装置500或处理器400可以通过显示屏提示用户,或通过电声元件提示用户,或通过振动电机提示用户,或通过显示屏和电声元件提示用户,或通过显示屏和振动电机提示用户,或通过电声元件和振动电机提示用户,或通过显示屏、电声元件和振动电机提示用户,在此不做具体限定。
在某些实施方式中,电子装置1000包括手机、平板电脑、笔记本电脑、智能手环、智能手表、智能头盔、智能眼镜等。
请一并参阅图66至图68,本发明提供一种电子装置1000。电子装置1000包括显示屏600、盖板360及处理器400。盖板360设置在显示屏600上以保护显示屏600。盖板360设置有检测元件。检测元件与处理器400连接。检测元件通电后可输出电信号。检测元件将电信号发送给处理器400,处理器400根据该电信号判断盖板360是否破裂。
电子装置1000还包括激光投射模组220。激光投射模组220用于投射激光图案。显示屏600包括显示区和非显示区。盖板360包括与显示区对应的第一区和与非显示区对应的第二区。激光投射模组220的位置与第二区对应。也即是说,激光投射模组220发射的激光依次经过显示屏600的非显示区及盖板360的第二区后出射到目标空间中。
其中,处理器400根据电信号判断盖板360是否破裂具体为判断电信号是否处于预设范围内,以及在电信号不处于预设范围内时确定盖板360破裂。
激光投射模组220包括激光发射器221、准直元件223和衍射光学元件225。其中,准直元件223和衍射光学元件225一般为玻璃材料,受到外力作用容易破裂。盖板360一般也为玻璃材料。受到外力作用也容易破裂。可以理解,由于激光投射模组220和盖板360容易同时收到外力的影响,即在盖板360破裂的情况下,激光投射模组220基本也会破裂,在激光投射模组220破裂的情况下,盖板360基本也会破裂。而由于在激光投射模组220和盖板360均未破裂时,激光发射器221发射的激光依次经过准直元件223、衍射光学元件225、盖板360出射,准直元件223、衍射光学元件225及盖板360对激光具有一定的能量衰减能力,从而可以确保出射的激光的能量不会过大,避免对用户的眼睛产生危害。但当盖板360破裂时,激光投射模组220一般也会破裂,准直元件223、衍射光学元件225、盖板360对激光的能量衰减能力减弱,如此,可能导致出射的激光能量过大而对用户的眼睛产生危害。
本发明实施方式的电子装置1000通过在盖板360上设置检测元件,检测元件输出的电信号可用于判断盖板360是否破裂,进而可以判断激光投射模组220是否破裂,并在盖板360破裂时及时关闭激光发射器221或减小激光发射器221的发射功率,进而可以避免激光发射器221发射的激光直射人眼的危险,提高激光投射模组220使用的安全性。
请一并参阅图68和图69,在某些实施方式中,检测元件可以是透光导电膜730。透光导电膜730上设有导电电极740。盖板360包括出光面364(盖板出射面364)和入光面362(盖板入射面362),透光导电膜730设置在入光面362或出光面364上。导电电极740包括输入端741和输出端742。输入端741和输出端742均与处理器400连接,即输入端741、输出端742、及处理器400形成导电回路。具体地,当盖板360处于完好状态时,透光导电膜730的电阻较小,在 此状态下给导电电极740通电,即施加一定大小的电压,则此时处理器400获取到的导电电极740的输出电流较大。而当盖板360破裂时,透光导电膜730也会碎裂,此时破裂位置处的透光导电膜730的电阻阻值接近无穷大,在此状态下给导电电极740通电,处理器400获取到的导电电极740输出的电流较小。因此,第一种方式:可以根据电信号(即电流)与盖板360未破裂状态下检测到的电信号(即电流)之间的差异大小来判断透光导电膜730是否破裂,即,若透光导电膜730破裂,则表明盖板360也破裂,若透光导电膜730未破裂,则盖板360也未破裂。第二种方式:可根据导电电极740通电后输出的电信号直接判断盖板360是否破裂,具体地,导电电极740输出的电信号不在预设范围内时就确定透光导电膜730破裂,进而确定盖板360也破裂;导电电极740输出的电信号在预设范围内时就确定透光导电膜730未破裂,进而确定盖板360也未破裂。
其中,透光导电膜730上的导电电极740可为一条,该条导电电极740包括一个输入端741和一个输出端742。一个输入端741和一个输出端742均与处理器400连接,即一个输入端741、一个输出端742、及处理器400形成一条导电回路。一条导电电极740的排布方向有多种:例如,一条导电电极740的延伸方向可为透光导电膜730的长度方向(如图70所示);或者,一条导电电极740的延伸方向也可为透光导电膜730的宽度方向(如图71所示);或者,一条导电电极740的延伸方向也可为透光导电膜730的对角线方向(如图72和图73所示)。无论导电电极740的排布方式是上述的哪种方式,导电电极740都能跨越整个盖板360,可以较为准确地检测盖板360是否破裂。
透光导电膜730上的导电电极740也可为多条,多条导电电极740互相平行。每条导电电极740包括一个输入端741和一个输出端742。每条导电电极740的一个输入端741和一个输出端742均与处理器400连接,即一个输入端741、一个输出端742、及处理器400形成一条导电回路。由此,多条导电电极740分别与处理器400形成多条导电回路。多条导电电极740的排布方式有多种:例如,每条导电电极740的延伸方向为透光导电膜730的长度方向,多条导电电极740平行间隔设置(如图74所示);或者,每条导电电极740的延伸方向为透光导电膜730的宽度方向,多条导电电极740平行间隔设置(如图75所示);或者,每条导电电极740的延伸方向为透光导电膜730的对角线方向的,多条导电电极740平行间隔设置(如图76和图77所示)。无论导电电极740的排布方式是上述的哪种方式,相较于设置单条导电电极740而言,多条导电电极740能够占据透光导电膜730更多的面积,相应地可以输出更多的电信号,如此,处理器400可根据较多的电信号更为精确地判断盖板360是否破裂,提升盖板360破裂检测的准确性。
请参阅图78,在某些实施方式中,检测元件可以是透光导电膜730,此时透光导电膜730包括第一透光导电膜731和第二透光导电膜732。第一透光导电膜731上设有第一导电电极7401,第二透光导电膜732上设有第二导电电极7402。盖板360包括入光面362和出光面364。第一透光导电膜731设置在入光面362上,第二透光导电膜732设置在出光面364上。第一导电电极7401和第二导电电极7402互相平行。第一导电电极7401及第二导电电极7402均与处理器400连接,即,第一导电电极7401、第二导电电极7402、及处理器400形成导电回路。具体地,第一导电电极7401和第二导电电极7402分别设置在盖板360的相背的两个表面,第一导电电极7401和第二导电电极7402形成一个电容。当盖板360未破裂时,第一导电电极7401和第二导电电极7402之间的距离不会变化,因此,处理器400获取到的电信号(指示第一导电电极7401和第二导电电极7402组成的电容的电容值)是一定的。而当盖板360破裂时,第一导电电极7401和第二导电电极7402之间的距离会产生变化,此时处理器400获取到的电信号(即第一导电电极7401和第二导电电极7402组成的电容的电容值)也会发生变化。因此,第一种方式:可以根据电信号与盖板360未破裂状态下检测到的电信号之间的差异大小来判断透光导电膜730是否破裂,即,若透光导电膜730破裂,则表明盖板360也破裂,若透光导电膜730未破裂,则盖板360也未破裂。第二种方式:可根据第一导电电极7401和第二到导电电极740通电后输出的电信号直接判断盖板360是否破裂,具体地,处理器400获取的电信号不在预设范围内时就确定透光导电膜730破裂,进而确定盖板360也破裂;处理器400获取的电信号在预设范围内时就确定透光导电膜730未破裂,进而确定盖板360也未破裂。
其中,第一透光导电膜731上的第一导电电极7401可为一条,对应的第二透光导电膜732上的第二导电电极7402也为一条。一条第一导电电极7401与一条第二导电电极7402互相平行,且该条第一导电电极7401在第二透光导电膜732上的投影与该条第二导电电极7402重合。一条第一导电电极7401及一条第二导电电极7402均与处理器400连接,即一条第一导电电极7401、一条第二导电电极7402、及处理器400形成一条导电回路,第一导电电极7401与第二导电电极7402之间形成一个电容。导电电极740的排布方式有多种:例如,一条第一导电电极7401的延 伸方向为第一透光导电膜731的长度方向,一条第二导电电极7402的延伸方向为第二透光导电膜732的长度方向(图未示);或者,一条第一导电电极7401的延伸方向为第一透光导电膜731的宽度方向,一条第二导电电极7402的延伸方向为第二透光导电膜732的宽度方向(图未示);或者,一条第一导电电极7401的延伸方向为第一透光导电膜731的对角线方向,一条第二导电电极7402的延伸方向为第二透光导电膜732的对角方向(图未示)。无论第一导电电极7401和第二导电电极7402的排布方式是上述的哪种方式,第一导电电极7401和第二导电电极7402都能跨越整个盖板360,可以较为准确地检测盖板360是否破裂。
第一透光导电膜731上的第一导电电极7401也可为多条,对应的第二透光导电膜732上的第二导电电极7402也为多条。多条第一导电电极7401互相平行,多条第二导电电极7402互相平行。每条第一导电电极7401跟与其对应的第二导电电极7402互相平行,且该条第一导电电极7401在第二透光导电膜732上的投影与该条第二导电电极7402重合。每条第一导电电极7401及与该条第一导电电极7401对应的第二导电电极7402均与处理器400连接,即每条第一导电电极7401、与该条第一导电电极7401对应的第二导电电极7402、及处理器400形成一条导电回路,每条第一导电电极7401与对应的第二导电电极7402形成一个电容。由此,多条第一导电电极7401及多条第二导电电极7402分别与处理器400连接以形成多条导电回路,多条第一导电电极7401与对应的第二导电电极7402形成多个电容。多条导电电极740的排布方式可以有多种:例如,每条第一导电电极7401的延伸方向为第一透光导电膜731的长度方向,每条第二导电电极7402的延伸方向为第二透光导电膜732的长度方向,多条第一导电电极7401平行间隔设置,多条第二导电电极7402平行间隔设置(如图79所示);或者,每条第一导电电极7401的延伸方向为第一透光导电膜731的宽度方向,每条第二导电电极7402的延伸方向为第二透光导电膜732的宽度方向,多条第一导电电极7401平行间隔设置,多条第二导电电极7402平行间隔设置(如图80所示);或者,每条第一导电电极7401的延伸方向为第一透光导电膜731的对角线方向,每条第二导电电极7402的延伸方向为第二透光导电膜732的对角线方向,多条第一导电电极7401平行间隔设置,多条第二导电电极7402平行间隔设置(如图81和图82所示)。无论导电电极740的排布方式是上述的哪种方式,相较于设置单条导电电极740而言,多条导电电极740能够占据透光导电膜730更多的面积,相应地可以输出更多的电信号,如此,处理器400可根据较多的电信号更为精确地判断盖板360是否破裂,提升盖板360破裂检测的准确性。
请参阅图83及图84,在某些实施方式中,检测元件包括掺杂在盖板360中的导电粒子750。导电粒子750形成导电通路760。导电通路760包括输入端761和输出端762。输入端761和输出端762均与处理器400连接,即,输入端761、输出端762、及处理器400形成导电回路。具体地,当盖板360处于完好状态时,相邻的导电粒子750之间是接合的,此时整个盖板360的电阻较小,在此状态下给导电通路760通电,即施加一定大小的电压,则此时处理器400获取到的导电通路760输出的电流较大。而当盖板360破裂时,掺杂在盖板360中的导电粒子750之间的接合点断开,此时整个导电通路760的电阻阻值接近无穷大,在此状态下给导电通路760通电,处理器400获取到的导电通路760输出的电流较小。因此,第一种方式:可以根据电信号(即电流)与盖板360未破裂状态下检测到的电信号(即电流)之间的差异大小来判断盖板360是否破裂。第二种方式:可根据导电通路760通电后输出的电信号直接判断盖板360是否破裂,具体地,导电通路760输出的电信号不在预设范围内时就确定盖板360破裂;导电通路760输出的电信号在预设范围内时就确定盖板360未破裂。
其中,导电粒子750形成的导电通路760可为一条,该条导电通路760包括一个输入端761和一个输出端762。一个输入端761和一个输出端762均与处理器400连接,即一个输入端761、一个输出端762、及处理器400形成一条导电回路。一条导电通路760的排布方向有多种:例如,一条导电通路760的延伸方向可为盖板360的长度方向(如图84所示);或者,一条导电通路760的延伸方向也可为盖板360的宽度方向(如图85所示);或者,一条导电通路760的延伸方向也可为盖板360的对角线方向(如图86和图87所示)。无论导电电极740的排布方式是上述的哪种方式,导电通路760都能跨越整个盖板360,可以较为准确地检测盖板360是否破裂。
导电粒子750形成的导电通路760也可为多条,多条导电通路760互相平行。每条导电通路760包括一个输入端761和一个输出端762。每条导电通路760的一个输入端761和一个输出端762均与处理器400连接,即一个输入端761、一个输出端762、及处理器400形成一条导电回路。由此,多条导电通路760分别与处理器400形成多条导电回路。多条导电通路760的排布方式有多种:例如,每条导电通路760的延伸方向为盖板360的长度方向,多条导电通路760平行间隔设置(如图88所示);或者,每条导电通路760的延伸方向为盖板360的宽度方向,多条导电 通路760平行间隔设置(如图89所示);或者,每条导电通路760的延伸方向为盖板360的对角线方向,多条导电通路760平行间隔设置(如图90和图91所示)。无论导电通路760的排布方式是上述的哪种方式,相较于设置单条导电通路760而言,多条导电通路760能够占据盖板360更多的面积,相应地可以输出更多的电信号,如此,处理器400可根据较多的电信号更为精确地判断盖板360是否破裂,提升盖板360破裂检测的准确性。
请参阅图92,在某些实施方式中,检测元件包括掺杂在盖板360中的导电粒子750。导电粒子750形成导电通路760。此时导电通路760包括第一导电通路7601和第二导电通路7602。第一导电通路7601和第二导电通路7602互相平行。第一导电通路7601及第二导电通路7602均与处理器400连接,即,第一导电通路7601、第二导电通路7602、及处理器400形成导电回路。具体地,第一导电通路7601和第二导电通路7602形成一个电容。当盖板360未破裂时,第一导电通路7601和第二导电通路7602之间的距离不会变化,因此,处理器400获取到的电信号(指示第一导电通路7601和第二导电通路7602组成的电容的电容值)是一定的。而当盖板360破裂时,第一导电通路7601和第二导电通路7602之间的距离会产生变化,此时处理器400获取到的电信号(即第一导电通路7601和第二导电通路7602组成的电容的电容值)也会发生变化。因此,第一种方式:可以根据电信号与盖板360未破裂状态下检测到的电信号之间的差异大小来判断盖板360是否破裂。第二种方式:可根据第一导电通路7601和第二到导电通路760通电后输出的电信号直接判断盖板360是否破裂,具体地,处理器400获取的电信号不在预设范围内时就确定盖板360破裂;处理器400获取的电信号在预设范围内时就确定盖板360未破裂。
其中,第一导电通路7601可为一条,对应的第二导电通路7602也为一条。一条第一导电通路7601与一条第二导电通路7602互相平行。一条第一导电通路7601及一条第二导电通路7602均与处理器400连接,即一条第一导电通路7601、一条第二导电通路7602、及处理器400形成一条导电回路,第一导电通路7601与第二导电通路7602之间形成一个电容。导电通路760的排布方式有多种:例如,一条第一导电通路7601的延伸方向为盖板360的长度方向,一条第二导电通路7602的延伸方向也为盖板360的长度方向(图未示);或者,一条第一导电通路7601的延伸方向为盖板360的宽度方向,一条第二导电通路7602的延伸方向也为盖板360的宽度方向(图未示);或者,一条第一导电通路7601的延伸方向为盖板360的对角线方向,一条第二导电通路7602的延伸方向也为盖板360的对角方向(图未示)。无论第一导电通路7601和第二导电通路7602的排布方式是上述的哪种方式,第一导电通路7601和第二导电通路7602都能跨越整个盖板360,可以较为准确地检测盖板360是否破裂。
第一导电通路7601也可为多条,对应的第二导电通路7602也为多条。多条第一导电通路7601互相平行,多条第二导电通路7602互相平行。每条第一导电通路7601跟与其对应的第二导电通路7602互相平行。每条第一导电通路7601及与该条第一导电通路7601对应的第二导电通路7602均与处理器400连接,即每条第一导电通路7601、与该条第一导电通路7601对应的第二导电通路7602、及处理器400形成一条导电回路,每条第一导电通路7601与对应的第二导电通路7602形成一个电容。由此,多条第一导电通路7601及多条第二导电通路7602分别与处理器400连接以形成多条导电回路,多条第一导电通路7601与对应的第二导电通路7602形成多个电容。多条导电通路760的排布方式可以有多种:例如,每条第一导电通路7601的延伸方向为盖板360的长度方向,每条第二导电通路7602的延伸方向也为盖板360的长度方向,多条第一导电通路7601平行间隔设置,多条第二导电通路7602平行间隔设置(如图93所示);或者,每条第一导电通路7601的延伸方向为盖板360的宽度方向,每条第二导电通路7602的延伸方向也为盖板360的宽度方向,多条第一导电通路7601平行间隔设置,多条第二导电通路7602平行间隔设置(如图94所示);或者,每条第一导电通路7601的延伸方向为盖板360的对角线方向,每条第二导电通路7602的延伸方向也为盖板360的对角线方向,多条第一导电通路7601平行间隔设置,多条第二导电通路7602平行间隔设置(如图95和图96所示)。无论导电通路760的排布方式是上述的哪种方式,相较于设置单条导电通路760而言,多条导电通路760能够占据盖板360更多的面积,相应地可以输出更多的电信号,如此,处理器400可根据较多的电信号更为精确地判断盖板360是否破裂,提升盖板360破裂检测的准确性。
请再参阅图66,在某些实施方式中,检测元件仅分布在盖板360的第二区并与激光投射模组220对应的位置。也即是说,检测元件能够检测到的盖板360的破裂位置仅包括盖板360的第二区且与激光投射模组220对应的位置。如此,仅需设置较少的检测元件,可以节约电子装置1000的制造成本,同时也可检测盖板360上与激光投射模组220对应的位置的完好状态,提升电子装置1000使用的安全性。
请再参阅图66,在某些实施方式中,检测元件分布在整个第二区并覆盖激光投射模组220。如此,检测元件可覆盖盖板360较多的面积,提升盖板360破裂检测的准确性。
当然,在某些实施方式中,检测元件还可以分布在整个盖板360上,即覆盖第一区及第二区。
请一并参阅图66和图97,在某些实施方式中,检测元件仅分布在第二区的任意一个角落或任意多个角落处,例如,如图97所示,检测元件可分布在角落A处、角落B处,也可同时分布在角落A和角落B处。可以理解,电子装置1000摔落时,往往盖板360的边缘最先破裂,因此,若检测到盖板360的边缘位置已经破裂,则可进一步判断激光投射模组220也破裂,此时,处理器400需及时关闭激光发射器221或减小激光发射器221的发射功率,从而避免出射的激光能量过大而危害人眼的问题。
请参阅图98,在某些实施方式中,本发明实施方式的电子装置1000中的激光投射模组220包括激光发射器221、准直元件223、衍射光学元件225、镜筒2264和电路板组件229。电路板组件229包括基板2296和设置在基板2296上的电路板2292。电路板2292可以是硬板、软板或软硬结合板。电路板2292上开设有过孔2294。激光发射器221固定在基板2296上并与电路板2292连接。基板2296上可以开设有散热孔2298,激光发射器221或电路板2292工作产生的热量可以由散热孔2298散出。散热孔2298还可以填充有导热胶,以进一步提高电路板组件229的散热性能。
镜筒2264与电路板组件229固定连接。镜筒2264与电路板组件229围成有收容腔2263,激光发射器221、准直元件223、衍射光学元件225均收容在收容腔2263中,准直元件223、衍射光学元件225沿激光发射器221的发光方向依次设置。在某些实施方式中,镜筒2264的侧壁2265a向收容腔2263的中心延伸有承载台2265b。衍射光学元件225承载在承载台2265b上。准直元件223对激光发射器221发出的激光进行准直,激光穿过准直元件223后再穿过衍射光学元件225以形成激光图案。
激光发射器221可以是垂直腔面发射激光器或者边发射激光器,在本实施例中,激光发射器221为边发射激光器。具体地,激光发射器221为分布反馈式激光器。激光发射器221用于向收容腔2263内发射激光。请结合图56,激光发射器221整体呈柱状,激光发射器221远离电路板组件229的一个端面形成发光面2211,激光从发光面2211发出,发光面2211朝向准直元件223。激光发射器221固定在电路板组件229上。具体地,激光发射器221可以通过封胶2271粘结在电路板组件229上,例如激光发射器221的与发光面2211相背的一面粘结在电路板组件229上。请结合图57,激光发射器221的连接面2215也可以粘结在电路板组件229上,封胶2271包裹住四周的连接面2215,也可以粘结连接面2215的某一个面与电路板组件229或粘结某几个面与电路板组件229。此时,封胶2271可以为导热胶,以将激光发射器221工作产生的热量传导致电路板组件229上。
上述的激光投射模组220的激光发射器221采用边发射激光器,一方面边发射激光器较VCSEL阵列的温飘较小,另一方面,由于边发射激光器为单点发光结构,无需设计阵列结构,制作简单,激光投射模组220的光源的成本较低。
分布反馈式激光器的激光在传播时,经过光栅结构的反馈获得功率的增益,要提高分布反馈式激光器的功率,需要通过增大注入电流和/或增加分布反馈式激光器的长度,由于增大注入式电流会使得分布式反馈激光器的功耗增大并且出现发热严重的问题,因此,为了保证分布反馈式激光器能够正常工作,需要增加分布反馈式激光器的长度,导致分布反馈式激光器一般呈细长条结果。当边发射激光器的发光面2211朝向准直元件223时,边发射激光器呈竖直放置,由于边发射激光器的细长条结构,边发射激光器容易出现跌落、移位或晃动等意外。
请参阅图58和图98,在某些实施方式中,激光发射器221也可以采用如图58所示的固定方式固定在电路板组件229上,具体地,激光投射模组220包括多个弹性的支撑件2272,支撑件2272可以固定在电路板组件229上,多个支撑件2272共同围成收容空间160,激光发射器221收容在收容空间160内并被多个支撑件2272支撑住,在安装时可以将激光发射器221直接安装在多个支撑件2272之间。在一个例子中,多个支撑件2272共同夹持激光发射器221以进一步防止激光发射器221发生晃动。
在某些实施方式中,基板2296也可以省去,激光发射器221可以直接固定在电路板2292上以减小激光投射模组220的整体厚度。
请一并参阅图61和图66,本发明实施方式的电子装置1000还包括图像采集器240和壳体100。处理器400、图像采集器240和激光投射模组220组成深度相机200,图像采集器240和激光投射模组220设置在壳体100内并从壳体100暴露以获取深度图像,盖板360和显示屏600均 收容在壳体100中。图像采集器240用于采集激光投射模组220向目标空间中投射的激光图案,处理器400分别与激光投射模组220和图像采集器240连接。处理器400还可用于处理激光图案以获取深度图像。
具体地,激光投射模组220通过投射窗口120向目标空间中投射激光图案。图像采集器240通过采集窗口140采集被目标物体调制后的激光图案。图像采集器240可为红外相机,处理器400采用图像匹配算法计算出该激光图案中各像素点与参考图案中的对应各个像素点的偏离值,再根据偏离值进一步获得该激光图案的深度图像。其中,图像匹配算法可为数字图像相关(Digital Image Correlation,DIC)算法。当然,也可以采用其它图像匹配算法代替DIC算法。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理模块的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(IPM过流保护电路),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的实施方式的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明的各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
尽管上面已经示出和描述了本发明的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施方式进行变化、修改、替换和变型。

Claims (33)

  1. 一种激光投射模组的控制方法,其特征在于,所述激光投射模组发射的激光经过盖板组件传输至外界,所述盖板组件包括检测元件,所述检测元件用于通电后输出电信号,所述控制方法包括:
    获取所述电信号;
    判断所述电信号是否处于预设范围内;和
    在所述电信号不处于所述预设范围内时,控制所述激光投射模组关闭或控制所述激光投射模组减小发射功率。
  2. 一种激光投射模组的控制装置,其特征在于,所述激光投射模组发射的激光经过盖板组件传输至外界,所述盖板组件包括检测元件,所述检测元件用于通电后输出电信号,所述控制装置包括:
    获取模块,所述获取模块用于获取所述电信号;
    判断模块,所述判断模块用于判断所述电信号是否处于预设范围内;和
    控制模块,所述控制模块用于在所述电信号不处于所述预设范围内时,控制所述激光投射模组关闭或控制所述激光投射模组减小发射功率。
  3. 一种电子装置,其特征在于,包括:
    盖板组件,所述盖板组件上形成有检测元件,所述检测元件用于通电后输出电信号;和
    与所述检测元件连接的处理器,所述处理器用于根据所述电信号判断所述盖板组件是否破裂。
  4. 根据权利要求3所述的电子装置,其特征在于,所述电子装置还包括壳体和设置在所述壳体内的激光投射模组,所述盖板组件设置在所述壳体上并覆盖所述激光投射模组,所述激光投射模组发射的激光经过所述盖板组件传输至外界,所述处理器用于获取所述电信号、判断所述电信号是否处于预设范围内、以及在所述电信号不处于所述预设范围内时控制所述激光投射模组关闭或控制所述激光投射模组减小发射功率。
  5. 根据权利要求4所述的电子装置,其特征在于,所述盖板组件包括触控板,所述触控板包括所述检测元件,所述检测元件为透光触控板导电膜,所述透光触控板导电膜上设有触控板导电电极,所述触控板导电电极通电后输出所述电信号。
  6. 根据权利要求5所述的电子装置,其特征在于,所述触控板导电电极为单条,所述触控板导电电极包括触控板输出端及触控板输入端,所述触控板输出端及所述触控板输入端与所述处理器连接以形成导电回路。
  7. 根据权利要求5所述的电子装置,其特征在于,所述触控板导电电极为多条,多条所述触控板导电电极互不相交,每条所述触控板导电电极包括触控板输出端及触控板输入端,每个所述触控板输出端及每个所述触控板输入端与所述处理器连接以形成导电回路。
  8. 根据权利要求5所述的电子装置,其特征在于,所述触控板导电电极包括多条平行设置的第一触控板导电电极、多条平行设置的第二触控板导电电极和多条触控板架桥导电电极,多条所述第一触控板导电电极与多条所述第二触控板导电电极纵横交错,每条所述第一触控板导电电极连续不间断,每条所述第二触控板导电电极在与对应的多条所述第一触控板导电电极的交错处断开并与多条所述第一触控板导电电极不导通;每条所述触控板架桥导电电极将对应的所述第二触控板导电电极的断开处导通;所述触控板架桥导电电极与所述第一触控板导电电极的交错位置设置有触控板绝缘体;每条所述第一触控板导电电极的两端与所述处理器连接以形成导电回路,每条所述第二触控板导电电极的两端与所述处理器连接以形成导电回路。
  9. 根据权利要求5所述的电子装置,其特征在于,所述透光触控板导电膜包括隔层设置的第一触控板导电膜和第二触控板导电膜,所述第一触控板导电膜上设置有多条平行的第一触控板导电电极,所述第二触控板导电膜上设置有多条平行的第二触控板导电电极,所述第一触控板导电电极在所述第二触控板导电膜上的投影与所述第二触控板导电电极纵横交错,每条所述第一触控板导电电极的两端与所述处理器连接以形成导电回路,每条所述第二触控板导电电极的两端与所述处理器连接以形成导电回路。
  10. 根据权利要求4所述的电子装置,其特征在于,所述盖板组件包括触控板,所述触控板包括所述检测元件,所述检测元件为导电粒子,所述导电粒子掺杂在所述触控板中,所述导电粒子形成触控板导电通路,所述触控板导电通路通电后输出所述电信号。
  11. 根据权利要求10所述的电子装置,其特征在于,所述触控板导电通路为单条,所述触控板导电通路包括触控板输出端及触控板输入端,所述触控板输出端及所述触控板输入端与所述处理器连接以形成导电回路。
  12. 根据权利要求10所述的电子装置,其特征在于,所述触控板导电通路为多条,多条所述触控板导电通路互不相交,每条所述触控板导电通路包括触控板输出端及触控板输入端,每个所述触控板输出端及每个所述触控板输入端与所述处理器连接以形成导电回路。
  13. 根据权利要求10所述的电子装置,其特征在于,所述触控板导电通路包括多条第一触控板导电通路和多条第二触控板导电通路,多条所述第一触控板导电通路平行间隔设置,多条所述第二触控板导电通路平行间隔设置,多条所述第一触控板导电通路和多条所述第二触控板导电通路在空间上纵横交错,每条所述触控板导电通路包括触控板输出端及触控板输入端,每个所述触控板输出端及每个所述触控板输入端与所述处理器连接以形成导电回路。
  14. 根据权利要求4所述的电子装置,其特征在于,所述盖板组件包括盖板,所述盖板包括所述检测元件,所述检测元件为透光盖板导电膜,所述透光盖板导电膜上设有盖板导电电极,所述盖板导电电极通电后输出所述电信号。
  15. 根据权利要求14所述的电子装置,其特征在于,所述盖板导电电极为单条,所述盖板导电电极包括盖板输出端及盖板输入端,所述盖板输出端及所述盖板输入端与所述处理器连接以形成导电回路。
  16. 根据权利要求14所述的电子装置,其特征在于,所述盖板导电电极为多条,多条所述盖板导电电极互不相交,每条所述盖板导电电极包括盖板输出端及盖板输入端,每个所述盖板输出端及每个所述盖板输入端与所述处理器连接以形成导电回路。
  17. 根据权利要求14所述的电子装置,其特征在于,所述盖板导电电极包括多条平行设置的第一盖板导电电极、多条平行设置的第二盖板导电电极和多条盖板架桥导电电极,多条所述第一盖板导电电极与多条所述第二盖板导电电极纵横交错,每条所述第一盖板导电电极连续不间断,每条所述第二盖板导电电极在与对应的多条所述第一盖板导电电极的交错处断开并与多条所述第一盖板导电电极不导通;每条所述盖板架桥导电电极将对应的所述第二盖板导电电极的断开处导通;所述盖板架桥导电电极与所述第一盖板导电电极的交错位置设置有盖板绝缘体;每条所述第一盖板导电电极的两端与所述处理器连接以形成导电回路,每条所述第二盖板导电电极的两端与所述处理器连接以形成导电回路。
  18. 根据权利要求14所述的电子装置,其特征在于,所述透光盖板导电膜包括隔层设置的第一盖板导电膜和第二盖板导电膜,所述第一盖板导电膜上设置有多条平行的第一盖板导电电极,所述第二盖板导电膜上设置有多条平行的第二盖板导电电极,所述第一盖板导电电极在所述第二盖板导电膜上的投影与所述第二盖板导电电极纵横交错,每条所述第一盖板导电电极的两端与所述处理器连接以形成导电回路,每条所述第二盖板导电电极的两端与所述处理器连接以形成导电回路。
  19. 根据权利要求4所述的电子装置,其特征在于,所述盖板组件包括盖板,所述盖板包括所述检测元件,所述检测元件为导电粒子,所述导电粒子掺杂在所述盖板中,所述导电粒子形成盖板导电通路,所述盖板导电通路通电后输出所述电信号。
  20. 根据权利要求19所述的电子装置,其特征在于,所述盖板导电通路为单条,所述盖板导电通路包括盖板输出端及盖板输入端,所述盖板输出端及所述盖板输入端与所述处理器连接以形成导电回路。
  21. 根据权利要求19所述的电子装置,其特征在于,所述盖板导电通路为多条,多条所述盖板导电通路互不相交,每条所述盖板导电通路包括盖板输出端及盖板输入端,每个所述盖板输出端及每个所述盖板输入端与所述处理器连接以形成导电回路。
  22. 根据权利要求19所述的电子装置,其特征在于,所述盖板导电通路包括多条第一盖板导电通路和多条第二盖板导电通路,多条所述第一盖板导电通路平行间隔设置,多条所述第二盖板导电通路平行间隔设置,多条所述第一盖板导电通路和多条所述第二盖板导电通路在空间上纵横交错,每条所述盖板导电通路包括盖板输出端及盖板输入端,每个所述盖板输出端及每个所述盖板输入端与所述处理器连接以形成导电回路。
  23. 根据权利要求3所述的电子装置,其特征在于,所述电子装置还包括显示屏,所述盖板组件包括设置在所述显示屏上的盖板,所述盖板设置有所述检测元件,所述处理器用于根据所述电信号判断所述盖板是否破裂。
  24. 根据权利要求23所述的电子装置,其特征在于,所述检测元件包括透光导电膜,所述透光导电膜上设有导电电极,所述盖板包括入光面和出光面,所述透光导电膜设置在所述入光面或所述出光面上,所述导电电极包括输入端和输出端,所述输入端和所述输出端均与所述处理器连接,所述输入端、所述输出端、及所述处理器形成导电回路。
  25. 根据权利要求24所述的电子装置,其特征在于,所述导电电极为多条,多条所述导电电极互相平行,每条所述导电电极的所述输入端和所述输出端均与所述处理器连接以形成导电回路。
  26. 根据权利要求23所述的电子装置,其特征在于,所述检测元件包括第一透光导电膜和第二透光导电膜,所述第一透光导电膜上设有第一导电电极,所述第二透光导电膜上设有第二导电电极,所述盖板包括入光面和出光面,所述第一透光导电膜设置在所述入光面上,所述第二透光导电膜设置在所述出光面上;所述第一导电电极及所述第二导电电极均与所述处理器连接,所述第一导电电极、所述第二导电电极、及所述处理器形成导电回路,所述第一导电电极与所述第二导电电极互相平行以形成电容。
  27. 根据权利要求26所述的电子装置,其特征在于,所述第一导电电极为多条,多条所述第一导电电极互相平行,所述第二导电电极为多条,多条所述第二导电电极互相平行,多条所述第一导电电极和多条所述第二导电电极一一对应,相对应的所述第一导电电极和所述第二导电电极互相平行以形成电容。
  28. 根据权利要求23所述的电子装置,其特征在于,所述检测元件包括掺杂在所述盖板中的导电粒子,所述导电粒子形成导电通路,所述导电通路包括输入端和输出端,所述输入端和所述输出端均与所述处理器连接,所述输入端、所述输出端、及所述处理器形成导电回路。
  29. 根据权利要求28所述的电子装置,其特征在于,所述导电通路包为多条,多条所述导电通路互相平行,每条导电通路的输入端和输出端均与所述处理器连接以形成导电回路。
  30. 根据权利要求23所述的电子装置,其特征在于,所述检测元件包括掺杂在所述盖板中的导电粒子,所述导电粒子形成导电通路,所述导电通路包括第一导电通路和第二导电通路,所述第一导电通路及所述第二导电通路均与所述处理器连接,所述第一导电通路、所述第二导电通路、及所述处理器形成导电回路,所述第一导电通路和所述第二导电通路互相平行以形成电容。
  31. 根据权利要求30所述的电子装置,其特征在于,所述第一导电通路为多条,所述第二导电通路为多条,多条所述第一导电通路互相平行的,多条所述第二导电通路互相平行,多条所述第一导电通路和多条所述第二导电通路一一对应,相对应的所述第一导电通路和所述第二导电通路互相平行以形成电容。
  32. 根据权利要求23所述的电子装置,其特征在于,所述电子装置还包括激光投射模组,所述盖板置于所述激光投射模组的发光方向上,所述激光投射模组发射的激光经由所述盖板后出射;所述盖板包括与所述显示屏的显示区对应的第一区及与所述显示屏的非显示区对应的第二区,所述激光投射模组与所述第二区对应;
    所述检测元件仅分布在所述第二区并与所述激光投射模组对应的位置;或
    所述检测元件分布在整个所述的第二区并覆盖所述激光投射模组。
  33. 根据权利要求23所述的电子装置,其特征在于,所述电子装置还包括激光投射模组,所述盖板置于所述激光投射模组的发光方向上,所述激光投射模组发射的激光经由所述盖板后出射;所述盖板包括与所述显示屏的显示区对应的第一区及与所述显示屏的非显示区对应的第二区,所述激光投射模组与所述第二区对应;所述检测元件仅分布在所述第二区的任意一个或多个角落处。
PCT/CN2019/076133 2018-02-27 2019-02-26 激光投射模组的控制方法、控制装置和电子装置 WO2019165952A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810161923.3 2018-02-27
CN201810161923.3A CN108398987A (zh) 2018-02-27 2018-02-27 电子装置
CN201810161925.2 2018-02-27
CN201810161925.2A CN108322729A (zh) 2018-02-27 2018-02-27 激光投射模组的控制方法、控制装置和电子装置

Publications (1)

Publication Number Publication Date
WO2019165952A1 true WO2019165952A1 (zh) 2019-09-06

Family

ID=67805611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076133 WO2019165952A1 (zh) 2018-02-27 2019-02-26 激光投射模组的控制方法、控制装置和电子装置

Country Status (1)

Country Link
WO (1) WO2019165952A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112995618A (zh) * 2019-12-02 2021-06-18 海信视像科技股份有限公司 激光投影设备和控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102193286A (zh) * 2010-03-19 2011-09-21 富港电子(东莞)有限公司 投影系统及其投影方法
US20170194768A1 (en) * 2016-01-04 2017-07-06 Occipital, Inc. Apparatus and methods for three-dimensional sensing
CN107608167A (zh) * 2017-10-11 2018-01-19 深圳奥比中光科技有限公司 激光投影装置及其安全控制方法
CN108322729A (zh) * 2018-02-27 2018-07-24 广东欧珀移动通信有限公司 激光投射模组的控制方法、控制装置和电子装置
CN108398987A (zh) * 2018-02-27 2018-08-14 广东欧珀移动通信有限公司 电子装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102193286A (zh) * 2010-03-19 2011-09-21 富港电子(东莞)有限公司 投影系统及其投影方法
US20170194768A1 (en) * 2016-01-04 2017-07-06 Occipital, Inc. Apparatus and methods for three-dimensional sensing
CN107608167A (zh) * 2017-10-11 2018-01-19 深圳奥比中光科技有限公司 激光投影装置及其安全控制方法
CN108322729A (zh) * 2018-02-27 2018-07-24 广东欧珀移动通信有限公司 激光投射模组的控制方法、控制装置和电子装置
CN108398987A (zh) * 2018-02-27 2018-08-14 广东欧珀移动通信有限公司 电子装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112995618A (zh) * 2019-12-02 2021-06-18 海信视像科技股份有限公司 激光投影设备和控制方法

Similar Documents

Publication Publication Date Title
CN108388063B (zh) 激光投射模组、深度相机和电子装置
US11450277B2 (en) Display device
KR102204384B1 (ko) 표시 장치
US9703325B2 (en) Coverglass fracture detection
WO2020038067A1 (zh) 激光投射模组及控制方法、深度图像获取设备和电子装置
CN112611546A (zh) 激光投射模组、深度相机和电子装置
CN108322729A (zh) 激光投射模组的控制方法、控制装置和电子装置
CN108388072B (zh) 激光投射模组、深度相机和电子装置
KR102497438B1 (ko) 전자 패널 및 이를 포함하는 전자 장치
TWI697729B (zh) 鐳射投射模組、深度相機和電子裝置
TWI696000B (zh) 鐳射投射模組及其破裂的檢測方法、深度相機和電子裝置
US20210384703A1 (en) Light emitting module including enhanced eye-safety feature
WO2019165952A1 (zh) 激光投射模组的控制方法、控制装置和电子装置
JP5481290B2 (ja) 焦電型赤外線センサ
WO2020263184A1 (en) Light emitting module combining enhanced safety features and thermal management
CN108594563A (zh) 结构光投射模组、图像撷取装置及电子设备
CN108398987A (zh) 电子装置
CN114128065A (zh) 包括增强的安全特征的发光模块
WO2019174455A1 (zh) 激光投射模组及其检测方法与装置、深度摄像模组和电子装置
KR101351420B1 (ko) 광학 센싱 프레임을 갖는 표시 장치
KR102610816B1 (ko) 전자 기기
WO2019223451A1 (zh) 激光投射模组、深度相机和电子装置
US20130161491A1 (en) Optical touch control module
US11867650B2 (en) Enclosure detection for reliable optical failsafe
KR20230012787A (ko) 쉴드 캔이 내장된 적외선 광원 모듈 및 그를 포함하는 전자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19761564

Country of ref document: EP

Kind code of ref document: A1