WO2019165878A1 - 一种电-气复合驱动柔性手指的仿鹰爪物流包装机械手 - Google Patents

一种电-气复合驱动柔性手指的仿鹰爪物流包装机械手 Download PDF

Info

Publication number
WO2019165878A1
WO2019165878A1 PCT/CN2019/073908 CN2019073908W WO2019165878A1 WO 2019165878 A1 WO2019165878 A1 WO 2019165878A1 CN 2019073908 W CN2019073908 W CN 2019073908W WO 2019165878 A1 WO2019165878 A1 WO 2019165878A1
Authority
WO
WIPO (PCT)
Prior art keywords
finger
plate
seat
fixed
push
Prior art date
Application number
PCT/CN2019/073908
Other languages
English (en)
French (fr)
Inventor
章军
王强
史晓斐
周浪
唐正宁
吕兵
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Priority to JP2019559816A priority Critical patent/JP6831136B2/ja
Publication of WO2019165878A1 publication Critical patent/WO2019165878A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0009Gripping heads and other end effectors comprising multi-articulated fingers, e.g. resembling a human hand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/02Gripping heads and other end effectors servo-actuated
    • B25J15/0206Gripping heads and other end effectors servo-actuated comprising articulated grippers
    • B25J15/022Gripping heads and other end effectors servo-actuated comprising articulated grippers actuated by articulated links
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/02Gripping heads and other end effectors servo-actuated
    • B25J15/0206Gripping heads and other end effectors servo-actuated comprising articulated grippers
    • B25J15/024Gripping heads and other end effectors servo-actuated comprising articulated grippers having fingers directly connected to actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members
    • B25J15/10Gripping heads and other end effectors having finger members with three or more finger members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members
    • B25J15/10Gripping heads and other end effectors having finger members with three or more finger members
    • B25J15/106Gripping heads and other end effectors having finger members with three or more finger members moving in parallel relationship
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members
    • B25J15/12Gripping heads and other end effectors having finger members with flexible finger members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/14Programme-controlled manipulators characterised by positioning means for manipulator elements fluid
    • B25J9/142Programme-controlled manipulators characterised by positioning means for manipulator elements fluid comprising inflatable bodies

Definitions

  • the invention relates to an imitation talon logistics packaging robot with an electric-gas composite driving flexible finger.
  • the robot of the invention belongs to the field of application technology of robot and electromechanical integration, and is connected with the robot body, and is especially suitable for grasping food, agricultural products and light industrial products. , sorting and other fields of production and logistics.
  • the finger portion of the underactuated manipulator is a rigid variable constraining structure with three degrees of freedom for each finger.
  • the trajectory of any point of the finger is fixed when the object is not touched, and it will interfere with the support surface of the small object to be grasped (such as the conveyor belt).
  • the action point and the magnitude of the force cannot be changed. It can not meet the inconsistency of the shape and size of the above-mentioned grasped complex object, and can not meet the special requirements of the contact force without damage and reliably grasping the complex object, and at the same time, it will have a greater impact on the grasped complex object. Therefore, the underactuated robot of the rigid structure is not adaptable and cannot effectively grasp the aforementioned complex object.
  • the motor converts the rotary motion into a linear motion through the screw nut mechanism, and simultaneously pushes the finger root section of the four finger parts to rotate, adjusts the root section potential, and installs
  • the pneumatic bellows muscles on the root and fingertips drive the grasping object, and also the finger roots are indexed by the pneumatic bellows muscles, adapted to vertically grasp cylindrical, square, spherical, ellipsoidal objects, or horizontally grasping Take a cylindrical, square object.
  • the grasping attitude is adjustable, and the action point of the contact force is adjustable. Therefore, when grasping complex objects, the grabbing range is wider; the pneumatic bellows muscle reaction speed is fast, and Flexible Adaptive Effects Type the technical problem description paragraph here.
  • an electric-gas composite driving flexible finger-like eagle claw logistics packaging manipulator including a screw shaft motor, an upper seat plate, a guide coupling rod, a screw nut seat, a linear bearing, Drive plate, push plate, push rod, fixed finger seat, connecting rod, base plate, short finger, long finger, single-head corrugated muscle, ridge push plate, pull spring, small support, rotary drive plate, round pressure plate, a sealing head, a sleeve, a rotating finger seat, and a small seat bearing, wherein the screw shaft motor is mounted on the upper seat plate, and the upper seat plate and the base plate are fixed integrally by two guiding connecting rods, and two of the two guiding connecting rods are The end of the cylindrical section is respectively matched with the hole of the upper seat plate and the base plate, and the screw nut seat driven by the screw shaft motor is fixed on the driving plate, and the driving plate is provided with two linear bearings, two The linear bearing is guided by the
  • the upper ends of the two short fingers of the right outer side are hingedly connected with the rotating finger holder, and the two short fingers on the outer side of the right side are rotated coaxially and integrally with the rotating finger base and the rotating driving plate.
  • the shaft section of the upper part of the rotating finger seat is sleeved into the sleeve, the sleeve is placed against the rotating inner ring of the small-seat bearing, and the threaded part of the shaft section of the upper part of the rotating finger holder is The nut is screwed tightly, and the rotating finger seat is axially fixed on the small seat bearing.
  • the small seat bearing is fixed to the base plate by screws.
  • the single-head corrugated muscle is fixed to the wave-shaped bayonet of the sealing head by the clamp.
  • the sealing head with the air pipe joint is fixed on the small support
  • the small support is fixed on the rotating driving plate
  • one end of the two pulling springs is hooked into the hole on the back ridge with the ridge push plate, and the other end is hooked into a hole in the small support
  • a push rod is mounted on an outer side of the rotary drive plate, the push rod is hingedly connected to one end of the link, and the other end of the link is connected to the hinge seat on the short finger by a hinge;
  • the short finger includes a root knuckle, a hinge seat, a large seat, a thick sealing head, a gas pipe joint, a double-headed bellows muscle, a thin sealing head, a thick torsion spring, a middle knuckle, a thin torsion spring, a fingertip, and a curved shape.
  • the hinge seat is fixed on the root canal
  • the upper end of the double-headed bellows muscle is fixed to the corrugated bayonet of the thick sealing head by a clamp
  • the air pipe joint is screwed on the thick sealing head
  • the lower end of the double-headed bellows muscle is fixed to the corrugated bayonet of the thin sealing head by a clamp
  • the thick sealing head and the thin sealing head are fixed on the large support, one large support is fixed on the root canal, and the other is fixed
  • the large support is fixed on the fingertip joint
  • the finger root joint is hingedly connected with the middle finger joint
  • the hinge mandrel is sleeved with a thick torsion spring
  • the middle knuckle is hingedly connected with the fingertip joint
  • the hinge mandrel is sleeved with a fine twist
  • the spring strips are respectively attached to the gripping contact faces of the inner side of the finger root section, the middle phalanx section and the fingertip section.
  • the driving board drives the linear motion of the push plate.
  • the push plate drives the push rod and the connecting rod to adjust the angle between the adjusting finger root and the base plate.
  • the ridge push plate drives the push rod and the connecting rod to adjust the angle between the finger root and the base plate.
  • the thickness of the two rotating driving plates is matched with the width of the guiding groove on the outer side of the driving plate, and is rotated by the cylindrical pin hinge connection.
  • the termination planes of the two guide grooves are parallel, and the two short fingers on the outer side of the right side are ensured to be parallel with the long fingers and the short fingers on the left side under the action of the two tension springs.
  • the flat end of the two-headed bellows muscle of the two rubber materials is clamped and fixed to the ridge of the ridge push plate with a hexagon socket screw and a nut, and two circular pressure plates, and the seal can be maintained.
  • the inflated single-headed bellows muscle expands, driving the small support and the short finger on the outer side of the right side to rotate, thereby realizing finger indexing.
  • the driving plate drives the rotary drive to drive the plate to move linearly, and the driving plate drives the push rod and the connecting rod to adjust the angle between the finger root and the base plate.
  • the free-standing single-head bellows muscle is a longitudinal section of the U-shaped bellows, and the initial state after installation is compressed by the tension spring into a longitudinal section of the ⁇ -shaped bellows.
  • the robot of the present invention has four fingers, the angle between the finger roots of the four fingers and the base plate is equal, one finger on the left side, three fingers on the right side, and the left and right fingers are symmetrically mounted on the outer side.
  • the structure and size of the two fingers are exactly the same, both are short fingers; after the fingertips of the two short fingers on the outer side of the right side are reversed, the finger roots of the two short fingers and the left short finger can form a distribution on the concentric circle.
  • each finger bends in the direction of the center of the concentric circle;
  • the long finger is the middle finger of the three fingers on the right side, the left short finger and the right long finger are symmetrically mounted, the long finger and the short finger are the same structure, but the long finger is three
  • the length of the knuckles is longer than the three knuckles of the short fingers, forming a talon-like shape, and the long fingers are hooked to the bottom of the object for a firm grip.
  • the pneumatic system of the present invention is composed of six identical pneumatic units.
  • the intake air passes through the parallel gas path, and the front end of the parallel gas path is a series of normally open switching valves Q2 and an adjustable flow valve Q3.
  • the other way is a series of normally open high-speed on-off valve Q1, a small orifice throttle valve Q4 with a hole diameter ranging from 0.1 to 1 mm, and a rear end of the parallel gas path connecting the single-head corrugated tube muscle or the double-headed bellows muscle; Tube muscle or double-head corrugated tube muscle inlet, connected with exhaust switch valve Q5, exhaust switch valve Q5 followed by muffler Q6, pressure on the single-head corrugated muscle or double-head corrugated muscle inlet Transmitter Q7.
  • the angle between the root knuckle and the object to be grasped can be adjusted, the position of the contact point can be adjusted, and the position of the contact point of the object to be grasped can be adjusted according to the situation, and the action point of the contact force can be selected according to the situation.
  • the direction of the force makes the grasping process not cause deformation and damage to the object, and the grasping is more accurate and reliable.
  • adjusting the angle of the root knuckle and the object to be grasped can adapt to the large change of the size of the grasping object.
  • the pneumatic single-head bellows muscle driving pressure is precisely controlled, and the finger root indexing angle is precisely controlled, thereby achieving precise control of the finger indexing angle, and satisfying the vertical grasping of the cylindrical, square, spherical, An ellipsoidal object, or horizontally grabbing a spherical, cylindrical, or square object, adapted to the shape of the grasping object, and the vertical and horizontal changes.
  • the pneumatic pressure of the pneumatic double-headed bellows can be accurately controlled to achieve precise control of the gripping force; at the same time, the double-headed bellows muscle is installed on the root and fingertips of the finger to overcome the root and middle fingers.
  • the two springs of the thick spring, the middle knuckle and the thin spring on the hinge of the root hinge are used to grasp the object, and the parameters of the thick spring and the thin spring are optimized.
  • the point and size of the gripping force are flexible and adaptive.
  • the pneumatic system has large gain, the pneumatic bellows muscle is light, and there is no seal friction damping of the piston and the cylinder tube, the piston rod and the cylinder head on the cylinder, so that the reaction is quick and the cushioning property is good.
  • FIG. 1 is a front cross-sectional view of the A-A cross-sectional view of an imitation talon flow packaging robot with an electro-pneumatic composite driving flexible finger;
  • FIG. 2 is a B-B cross-sectional view showing the counter-clockwise rotation of the eagle-claw logistics packaging robot of the electric-gas composite driving flexible finger;
  • FIG. 3 is a C-C cross-sectional plan view of a counter-clockwise rotation of a eagle-claw logistics packaging robot of an electro-pneumatic composite driving flexible finger;
  • Figure 5 is a partial cross-sectional view of the E-E of the eagle-claw logistics packaging robot of the electro-pneumatic composite driving flexible finger;
  • FIG. 6 is an enlarged partial cross-sectional view of the E-E of the imitation talon logistics packaging robot of the electric-gas composite driving flexible finger;
  • Figure 7 is a front cross-sectional view showing the short finger member of the eagle-claw logistics packaging robot of the electric-gas composite driving flexible finger;
  • Figure 8 is a diagram showing a single-head corrugated muscle part of an electric-pneumatic composite driven flexible finger-like eagle-claw logistics packaging manipulator
  • FIG. 9 is a state diagram of a horizontal position of a finger of an imitation talon logistics packaging robot with an electro-pneumatic composite driving flexible finger;
  • Figure 10 is a front elevational view of the ridged pusher plate member of the eagle-claw logistics packaging robot of the electro-pneumatic composite driving flexible finger;
  • Figure 11 is a top plan view of a ridged pusher plate member of an electric-pneumatic composite driven flexible finger-like eagle-claw logistics packaging manipulator;
  • FIG. 12 is a schematic diagram of a high-speed on-off valve control pneumatic control of an electric-pneumatic composite driven flexible finger-like eagle-claw logistics packaging manipulator;
  • An electric-gas composite driving flexible finger-like eagle claw logistics packaging manipulator comprising a screw shaft motor 1, an upper seat plate 2, a guide coupling rod 3, a screw nut holder 4, a linear bearing 5, a driving plate 6, a push plate 7 , push rod 8, fixed finger holder 9, connecting rod 10, base plate 12, short finger 13, long finger 14, single-head corrugated muscle 15, ridge push plate 16, pull spring 17, small support 18, rotational drive
  • the plate 19 the circular pressing plate 20, the sealing head 21, the sleeve 22, the rotating finger holder 23, the small seat bearing 24, the screw shaft motor 1 are mounted on the upper seat plate 2, and the upper seat plate 2 and the base plate 12 are supported by two guiding links 3 is fixed as a whole, the two ends of the two guiding connecting rods 3 have cylindrical sections respectively matched with the holes on the upper seat plate 2 and the base plate 12, and the screw nut holder 4 driven by the screw shaft motor 1 is fixed on the driving plate 6
  • the driving plate 6 is mounted with two linear bearings 5, and the two linear bearings 5 are guided
  • a push rod 8 is mounted on the outer side of the push plate 7 , and the push rod 8 is hingedly connected to one end of the link 10 , and the other end of the link 10 is connected with the hinge seat 13 b on the short finger 13 by a hinge, and the long finger 14 in the middle of the right side
  • the upper end of the finger base is hingedly connected with the fixed finger seat 9, and the ridge push plate 16 is fixed on the driving plate 6.
  • the push rod 8 is mounted on the outer side of the ridge push plate 16, and the push rod 8 is hingedly connected with one end of the connecting rod 10, and the connecting rod The other end of the 10 is connected to the hinge seat 13b of the long finger 14 by a hinge, and the driving plate 6 drives the belt push plate 16 to move up and down linearly;
  • the upper ends of the finger root segments 13a of the two outer short fingers 13 are hingedly connected to the rotating finger holder 23, and the two short fingers 13 on the outer side of the right side are coaxial with the rotary driving plate 19 with the rotating finger holder 23 Rotating integrally, driving the muscles 15 from the two single-head bellows, the shaft section rotating the upper part of the finger holder 23 is sleeved into the sleeve 22, and the sleeve 22 is pressed against the rotating inner ring of the small-seat bearing 24, and the upper part of the finger holder 23 is rotated.
  • the threaded portion of the shaft section is screwed with a nut, and the rotating finger base 23 is axially fixed to the small seat bearing 24, and the small seat bearing 24 is fixed to the base plate 12 by screws, and the single-head bellows muscle 15 is fixed by the clamp.
  • the sealing head 21 with the air pipe joint is fixed on the small abutment 18, the small abutment 18 is fixed on the rotating driving plate 19, and one end of the two pulling springs 17 is hooked into the ridge pushing plate.
  • the other end of the hole in the back ridge of the 16 is hooked into the hole in the small support 18, and the push rod 8 is mounted on the outer side of the rotary drive plate 19.
  • the push rod 8 is hingedly connected to one end of the link 10, and the other end of the link 10 One end is connected to the hinge seat 13b on the short finger 13 by a hinge;
  • the short finger 13 includes a finger root node 13a, a hinge seat 13b, a large seat 13c, a thick sealing head 13d, a gas pipe joint 13e, a double-headed bellows muscle 13f, a thin sealing head 13g, a thick torsion spring 13h, a middle knuckle 13i, and a fine twist
  • the spring 13j, the fingertip section 13k, the curved strip 13l, the hinge seat 13b are fixed on the finger root section 13a, and the upper end of the double-head bellows muscle 13f is fixed to the corrugated bayonet of the thick sealing head 13d by the clamp, and the air pipe joint 13e is screwed on the thick sealing head 13d, and the lower end of the double-headed bellows muscle 13f is fixed to the corrugated bayonet of the thin sealing head 13g by the clamp, and the thick sealing head 13d and the thin sealing head 13g are both fixed to the large seat 13c, one The large seat 13c is fixed on the finger root section
  • the driving plate 6 drives the push plate 7 to move up and down linearly.
  • the push plate 7 drives the push rod 8 and the connecting rod 10 to adjust the angle between the adjustment finger root and the base plate 12.
  • the ridge push plate 16 drives the push rod 8 and the connecting rod 10 to adjust the angle between the finger root and the base plate 12.
  • the thickness of the two rotating driving plates 19 is matched with the width of the guide grooves on the outer side of the driving plate 6, and is rotated by the cylindrical pin hinge connection.
  • the end planes of the two guide grooves are parallel, and the two short fingers 13 on the outer side of the right side are ensured to be parallel with the long finger 14 and the short finger 13 on the left side under the action of the two tension springs 17.
  • the flat end of the single-head bellows muscle 15 of two rubber materials is clamped and fixed to the back ridge of the ridge push plate 16 by using a hexagon socket screw and a nut, and two circular pressure plates 20, and can also be kept sealed. .
  • the inflated single-head bellows muscle 15 is inflated, and the small abutment 13 driving the small abutment 18 and the outer right side is rotated to realize finger indexing.
  • the driving plate 6 drives the rotating driving plate 19 to move up and down linearly, and the rotating driving plate 19 drives the push rod 8 and the connecting rod 10, thereby adjusting the angle between the finger root and the base plate 12.
  • the single-head bellows muscle 15 in the free state is a longitudinal section of the U-shaped bellows, and the initial state after installation is compressed by the tension spring 17 into a longitudinal section of the ⁇ -shaped bellows.
  • the working principle and the use flow of the invention after optimizing and calculating the specific captured object, the grasping posture and the contact point position corresponding to the required grasping force can be calculated, and the grasping posture and the contact point position are rotated by the motor And precise coordinated control of the internal pressure of each bellows muscle.
  • 1 When grasping the same kind of (such as apple) and complex objects with inconsistent shape and shape, it can achieve the flexibility of adaptability, non-destruction and reliable grasp by selecting appropriate torsion spring parameters and finger structure size.
  • Holding complex objects of this kind 2 grasping the same shape (such as apples, oranges, oranges, etc., or squares such as square boxes), and complex objects of the same shape with large changes in shape and size, by selecting appropriate torsion springs Parameters and finger structure size, to achieve the flexibility of adaptability, and can not damage and reliably grasp the same shape of complex objects; 3 simultaneously grab different shapes (such as apples, oranges, oranges and other squares and small boxes)
  • the torque can be adjusted by appropriately selecting the torsion spring parameter and the finger structure size, and the internal pressure of the accurate single-head corrugated muscle 15 and the tension of the tension spring 17 to adjust the finger position. It is freely adaptable, and it can reliably grasp complex objects of different shapes without destroying and reliably.
  • the imitation eagle claw logistics packaging manipulator can accurately grasp cylindrical, square, spherical, ellipsoidal objects or horizontally grasp spherical, cylindrical and square objects by precise control of the finger indexing angle, thereby adapting Grab the shape of the object and meet the changing requirements of vertical and horizontal placement.
  • the various configuration states of the robot finger are simulated by ADAMS software to determine the adaptive shape and size range of each configuration and to be undamaged and reliably grasped ( The adaptation conditions of the non-shedding) are determined, and the final gripping configuration, the position of the contact point and the contact force are determined.
  • the state of the robot has: 1 no-load movement of the finger in the case of no contact; 2 the contact force is zero after the contact; 3 the object does not move after the contact, but the contact force increases, the contact point of the contact force, contact The force direction changes; 4 the object does not move after contact, the maximum contact force state; 5 the grasping movement of the acceleration displacement of the object and the robot at the same time, the position, size and direction of the contact point of the contact force; 6 the simultaneous displacement of the object and the robot at the same time Movement, position, size, and direction of the contact force; 7 grasping movement of the object and the manipulator at the same time, the position, size, and direction of the contact force; 8 the hovering state of the object and the robot.

Abstract

一种电‑气复合驱动柔性手指的仿鹰爪物流包装机械手,由驱动部件、四个相同手指部件组成,包括丝杠轴电机(1)、上座板(2)、导向联结杆(3)、丝杠螺母座(4)、直线轴承(5)、驱动板(6)、推板(7)、推杆(8)、固定手指座(9)、连杆(10)、底座板(12)、短手指(13)、长手指(14)、单头波纹管肌肉(15)、带脊推板(16)、拉弹簧(17)、小支座(18)、转动驱动板(19)、圆压板(20)、密封头(21)、轴套(22)、转动手指座(23)、小带座轴承(24),手指部件由指根节(13a)、中指节(13i)和指尖节(13k)组成。上述包装机械手可以根据情况选择接触力的作用点,以及作用力的方向,使抓取过程不对物体造成形变以及损伤,抓取更精确可靠;同时,调整根指节与被抓物体的角度,可以适应抓取物体尺寸的较大变化,适应抓取物体形状、竖横放置的变化,抓取力作用点和大小有柔性自适应形,反应敏捷、缓冲性好。

Description

一种电-气复合驱动柔性手指的仿鹰爪物流包装机械手 技术领域
本发明涉及电-气复合驱动柔性手指的仿鹰爪物流包装机械手,本发明机械手属于机器人、机电一体化的应用技术领域,与机器人本体联接,尤其适用于食品、农产品、轻工产品的抓取、分拣等生产和物流领域。
背景技术
针对轻工和食品行业的大规模生产状况,为满足形状复杂、物性多样的原材料、半成品、成品的物流和包装的需要,为解决简单劳动的用工成本高、劳动条件差等问题,需要物流抓取的末端抓持器。就抓取的复杂对象的种类:①形状不规则的、大小差别大的物体(瓜果、蔬菜);②易碎的脆性物体(禽蛋、玻璃陶瓷制品);③易变形的软性物体(面包、软包装物品);④异形的、位置状态混乱且难理顺的物体(酒瓶、化妆品瓶);从上可见,复杂对象的材料性质、形状尺寸及位置状态的差别较大。传统工业机械手(末端抓持器)为夹钳式或平行移动式结构,只能抓取形状大小相同、位置状态一致、不会破损的刚性工件。仿人灵巧手需要感知复杂对象的空间位置和形状,需要精确控制运动和抓取力,否则会损坏复杂对象或不能可靠抓取,但目前仿人灵巧手尚处在实验室研究阶段。
技术问题
目前,欠驱动机械手的手指部分为刚性变约束结构,每根手指共三个自由度。在单电机驱动下,未接触被抓取物体时手指任意点的运动轨迹是固定不变的、会对小的被抓取物体的支撑面(如输送带)产生干涉。接触被抓取物体时需要克服两个扭弹簧作用,其作用点、作用力的大小方向不可改变。既不能适应前述被抓持复杂对象的形状、尺寸不一致,又不能满足接触力不损坏且可靠抓持复杂对象的特殊性要求,同时还会对被抓持复杂对象产生较大冲击。因此,刚性结构的欠驱动机械手适应性不好,不能有效地抓持前述的复杂对象。
着重针对上述复杂抓持对象,本发明克服了上述缺陷,电机通过丝杆螺母机构将旋转运动转化为直线运动,再同时推动四个手指部件的指根节转动、调节指根节位势,安装在指根节和指尖节上的气动波纹管肌肉驱动抓取物体,也通过气动波纹管肌肉使指根节转位,适应垂直抓取圆柱形、方形、球形、椭球形物体,或水平抓取圆柱形、方形物体。通过带角位移反馈编码器的电机角位移控制,抓取姿态可调、接触力的作用点可调,因此抓取复杂对象时,抓取范围更广;气动波纹管肌肉反应速度快,并有柔性自适应效果在此处键入技术问题描述段落。
技术解决方案
本发明的目的在于提供一种电-气复合驱动柔性手指的仿鹰爪物流包装机械手,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种电-气复合驱动柔性手指的仿鹰爪物流包装机械手,包括丝杠轴电机、上座板、导向联结杆、丝杠螺母座、直线轴承、驱动板、推板、推杆、固定手指座、连杆、底座板、短手指、长手指、单头波纹管肌肉、带脊推板、拉弹簧、小支座、转动驱动板、圆压板、密封头、轴套、转动手指座、小带座轴承,所述丝杠轴电机安装在上座板,所述上座板和底座板靠两根导向联结杆固定成整体,两根导向联结杆的两端均有圆柱段分别与上座板和底座板上的孔间隙配合,所述丝杠轴电机带动的丝杠螺母座固定在驱动板上,所述驱动板上安装有两个直线轴承,两个直线轴承靠对应的导向联结杆导向,驱动板上下直线运动;左边的短手指的指根节的上端与固定手指座铰链连接,所述固定手指座通过螺钉安装在底座板上,所述推板固定在驱动板上,所述推板外侧安装有推杆,所述推杆与连杆的一端铰链连接,所述连杆的另一端与短手指上的铰链座通过铰链连接,右边中间的长手指的指根上端与固定手指座铰链连接,所述带脊推板固定在驱动板上,所述带脊推板外侧安装有推杆,所述推杆与连杆的一端铰链连接,所述连杆的另一端与长手指上的铰链座通过铰链连接,所述驱动板带动带脊推板上下直线运动;
右边的外侧的两个短手指的指根节的上端均与转动手指座铰链连接,右边的外侧的两个短手指随转动手指座与转动驱动板是同轴心线地、整体地转动,驱动来自两个单头波纹管肌肉,所述转动手指座上部的轴段套进轴套,所述轴套顶住小带座轴承的转动内圈,所述转动手指座上部的轴段的螺纹部分用螺母旋紧,将转动手指座轴向固定在小带座轴承上,所述小带座轴承通过螺钉固定在底座板,所述单头波纹管肌肉靠卡箍固定在密封头的波状卡口上,带气管接头的密封头固定在小支座上,所述小支座固定在转动驱动板上,两根拉弹簧的一端钩进带脊推板的背脊上的孔中,另一端钩进小支座上的孔中,所述转动驱动板的外侧安装有推杆,所述推杆与连杆的一端铰链连接,所述连杆的另一端与短手指上的铰链座通过铰链连接;
所述短手指包括指根节、铰链座、大支座、厚密封头、气管接头、双头波纹管肌肉、薄密封头、粗扭簧、中指节、细扭簧、指尖节、弧形胶条,所述铰链座固定在指根节上,所述双头波纹管肌肉的上端靠卡箍固定在厚密封头的波状卡口上,所述气管接头旋在厚密封头上,所述双头波纹管肌肉的下端靠卡箍固定在薄密封头的波状卡口上,所述厚密封头、薄密封头均固定在大支座,一个大支座固定在指根节上,另一个大支座固定在指尖节上,所述指根节与中指节铰链连接,铰链芯轴上套有粗扭簧,所述中指节与指尖节铰链连接,铰链芯轴上套有细扭簧,所述弧形胶条分别粘贴在指根节、中指节、指尖节的内侧的抓持接触面上。
优选的,所述驱动板带动推板上下直线运动。
优选的,所述推板驱动推杆、连杆,调节调节指根与底座板间的夹角。
优选的,所述带脊推板驱动推杆、连杆,调节指根与底座板间的夹角。
优选的,两块转动驱动板的厚度与驱动板外侧的导槽的宽度间隙配合,靠圆柱销铰链连接而转动。
优选的,两个导槽的终止平面平行,在两个拉弹簧作用下保证右边的外侧的两个短手指与长手指、左边的短手指平行。
优选的,用内六角螺钉和螺母、两个圆压板,将两个橡胶材料的单头波纹管肌肉的平面端夹紧固定在带脊推板的背脊上,也能保持密封。
优选的,充气的单头波纹管肌肉膨胀,驱动小支座、右边的外侧的短手指转动,实现手指转位。
优选的,所述驱动板带动转动驱动板上下直线运动,转动驱动板驱动推杆、连杆,从而调节指根与底座板间的夹角。
优选的,自由状态的单头波纹管肌肉是U形波纹管纵截面,安装后初始状态被拉弹簧压缩成Ω形波纹管纵截面。
优选的,本发明机械手有四个手指,四个手指的指根与底座板间的夹角相等,左边一个手指,右边三个手指,左边手指与右边三个手指中前后对称安装的、外侧的两个手指结构和尺寸完全相同,均为短手指;右边的外侧的两个短手指的指根反向转位后,这两个短手指和左边短手指的指根可以形成同心圆上分布位置、且每个手指弯曲方向均朝这个同心圆圆心;长手指为右边三个手指中中间的手指,左边短手指与右边长手指左右对称安装,长手指与短手指结构相同,但长手指的三个指节的长度均长于短手指的三个指节,形成鹰爪状,长手指钩到物体底部、起到牢固抓握作用。
优选的,本发明气动系统由六个相同的气动单元的组成,每个气动单元中,进气通过并联气路,并联气路前端一路是串联的常开式开关阀Q2、可调节流阀Q3,另一路是串联的常开式高速开关阀Q1、孔径范围在0.1-1mm的小孔节流阀Q4,并联气路后端连接单头波纹管肌肉或双头波纹管肌肉;在单头波纹管肌肉或双头波纹管肌肉进气口,接有排气开关阀Q5,排气开关阀Q5之后接有消声器Q6,在单头波纹管肌肉或双头波纹管肌肉进气口还接有压力变送器Q7。
有益效果
(1)通过电机的控制,可以调整根指节与被抓物体的角度,实现了接触点位置的调整,对被抓物体接触点位置的调整,可以根据情况选择接触力的作用点,以及作用力的方向,使抓取过程不对物体造成形变以及损伤,抓取更精确可靠;同时,调整根指节与被抓物体的角度,可以适应抓取物体尺寸的较大变化。
(2)通过高速开关阀控制,精确控制气动单头波纹管肌肉驱动压强,精确控制指根转位角度,从而实现了手指转位角度的精确控制,满足垂直抓取圆柱形、方形、球形、椭球形物体,或水平抓取球形、圆柱形、方形物体,适应抓取物体形状、竖横放置的变化。
(3)通过高速开关阀控制,精确控制气动双头波纹管肌肉驱动压强,实现抓取力的精确控制;同时双头波纹管肌肉安装在指根节和指尖节,克服指根节与中指节铰链上粗弹簧、中指节与指根节铰链上细弹簧的二个扭矩,来抓取物体,提高粗弹簧、细弹簧的参数优化,抓取力作用点和大小有柔性自适应形。
(4)气动系统增益大,气动波纹管肌肉轻巧、无气缸上活塞与缸筒、活塞杆与缸盖的密封摩擦阻尼,从而反应敏捷、缓冲性好。
附图说明
图1为电-气复合驱动柔性手指的仿鹰爪物流包装机械手的A-A剖主视图;
图2为电-气复合驱动柔性手指的仿鹰爪物流包装机械手的逆时针转动90度的B-B剖仰视图;
图3为电-气复合驱动柔性手指的仿鹰爪物流包装机械手的逆时针转动90度的C-C剖俯视图;
图4为电-气复合驱动柔性手指的仿鹰爪物流包装机械手的D-D剖左视图;
图5为电-气复合驱动柔性手指的仿鹰爪物流包装机械手的E-E局部剖视图;
图6为电-气复合驱动柔性手指的仿鹰爪物流包装机械手的E-E局部剖视放大图;
图7为电-气复合驱动柔性手指的仿鹰爪物流包装机械手的短手指部件主剖视图;
图8为电-气复合驱动柔性手指的仿鹰爪物流包装机械手的单头波纹管肌肉零件图;
图9为电-气复合驱动柔性手指的仿鹰爪物流包装机械手的手指水平位置状态图;
图10为电-气复合驱动柔性手指的仿鹰爪物流包装机械手的带脊推板零件主视图;
图11为电-气复合驱动柔性手指的仿鹰爪物流包装机械手的带脊推板零件俯视图;
图12为电-气复合驱动柔性手指的仿鹰爪物流包装机械手的高速开关阀控制气动原理图;
图中:1、丝杠轴电机;2、上座板;3、导向联结杆;4、丝杠螺母座;5、直线轴承;6、驱动板;7、推板;8、推杆;9、固定手指座;10、连杆;11、大带座轴承;12、底座板;13、短手指;13a、指根节;13b、铰链座;13c、大支座;13d、厚密封头;13e、气管接头;13f、双头波纹管肌肉;13g、薄密封头;13h、粗扭簧;13i、中指节;13j、细扭簧;13k、指尖节;13l、弧形胶条;14、长手指;15、单头波纹管肌肉;16、带脊推板;17、拉弹簧;18、小支座;19、转动驱动板;20、圆压板;21、密封头;22、轴套;23、转动手指座;24、小带座轴承。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种电-气复合驱动柔性手指的仿鹰爪物流包装机械手,包括丝杠轴电机1、上座板2、导向联结杆3、丝杠螺母座4、直线轴承5、驱动板6、推板7、推杆8、固定手指座9、连杆10、底座板12、短手指13、长手指14、单头波纹管肌肉15、带脊推板16、拉弹簧17、小支座18、转动驱动板19、圆压板20、密封头21、轴套22、转动手指座23、小带座轴承24,丝杠轴电机1安装在上座板2,上座板2和底座板12靠两根导向联结杆3固定成整体,两根导向联结杆3的两端均有圆柱段分别与上座板2和底座板12上的孔间隙配合,丝杠轴电机1带动的丝杠螺母座4固定在驱动板6上,驱动板6上安装有两个直线轴承5,两个直线轴承5靠对应的导向联结杆3导向,驱动板6上下直线运动;左边的短手指13的指根节13a的上端与固定手指座9铰链连接,固定手指座9通过螺钉安装在底座板12上,推板7固定在驱动板6上,推板7外侧安装有推杆8,推杆8与连杆10的一端铰链连接,连杆10的另一端与短手指13上的铰链座13b通过铰链连接,右边中间的长手指14的指根上端与固定手指座9铰链连接,带脊推板16固定在驱动板6上,带脊推板16外侧安装有推杆8,推杆8与连杆10的一端铰链连接,连杆10的另一端与长手指14上的铰链座13b通过铰链连接,驱动板6带动带脊推板16上下直线运动;
右边的外侧的两个短手指13的指根节13a的上端均与转动手指座23铰链连接,右边的外侧的两个短手指13随转动手指座23与转动驱动板19是同轴心线地、整体地转动,驱动来自两个单头波纹管肌肉15,转动手指座23上部的轴段套进轴套22,轴套22顶住小带座轴承24的转动内圈,转动手指座23上部的轴段的螺纹部分用螺母旋紧,将转动手指座23轴向固定在小带座轴承24上,小带座轴承24通过螺钉固定在底座板12,单头波纹管肌肉15靠卡箍固定在密封头21的波状卡口上,带气管接头的密封头21固定在小支座18上,小支座18固定在转动驱动板19上,两根拉弹簧17的一端钩进带脊推板16的背脊上的孔中,另一端钩进小支座18上的孔中,转动驱动板19的外侧安装有推杆8,推杆8与连杆10的一端铰链连接,连杆10的另一端与短手指13上的铰链座13b通过铰链连接;
短手指13包括指根节13a、铰链座13b、大支座13c、厚密封头13d、气管接头13e、双头波纹管肌肉13f、薄密封头13g、粗扭簧13h、中指节13i、细扭簧13j、指尖节13k、弧形胶条13l,铰链座13b固定在指根节13a上,双头波纹管肌肉13f的上端靠卡箍固定在厚密封头13d的波状卡口上,气管接头13e旋在厚密封头13d上,双头波纹管肌肉13f的下端靠卡箍固定在薄密封头13g的波状卡口上,厚密封头13d、薄密封头13g均固定在大支座13c,一个大支座13c固定在指根节13a上,另一个大支座13c固定在指尖节13k上,指根节13a与中指节13i铰链连接,铰链芯轴上套有粗扭簧13h,中指节13i与指尖节13k铰链连接,铰链芯轴上套有细扭簧13j,弧形胶条13l分别粘贴在指根节13a、中指节13i、指尖节13k的内侧的抓持接触面上。
本实施例中,驱动板6带动推板7上下直线运动。
本实施例中,推板7驱动推杆8、连杆10,调节调节指根与底座板12间的夹角。
本实施例中,带脊推板16驱动推杆8、连杆10,调节指根与底座板12间的夹角。
本实施例中,两块转动驱动板19的厚度与驱动板6外侧的导槽的宽度间隙配合,靠圆柱销铰链连接而转动。
本实施例中,两个导槽的终止平面平行,在两个拉弹簧17作用下保证右边的外侧的两个短手指13与长手指14、左边的短手指13平行。
本实施例中,用内六角螺钉和螺母、两个圆压板20,将两个橡胶材料的单头波纹管肌肉15的平面端夹紧固定在带脊推板16的背脊上,也能保持密封。
本实施例中,充气的单头波纹管肌肉15膨胀,驱动小支座18、右边的外侧的短手指13转动,实现手指转位。
本实施例中,驱动板6带动转动驱动板19上下直线运动,转动驱动板19驱动推杆8、连杆10,从而调节指根与底座板12间的夹角。
本实施例中,自由状态的单头波纹管肌肉15是U形波纹管纵截面,安装后初始状态被拉弹簧17压缩成Ω形波纹管纵截面。
抓取物体时,开始大流量模式通气,先控制常开式开关阀Q2通电通气,经可调节流阀Q3进入单头波纹管肌肉15或双头波纹管肌肉13f内腔,接近目标压力时,根据压力变送器Q7的反馈信号,使常开式开关阀Q2断电截止;然后微流量模式通气,根据压力变送器Q7的反馈信号,通过常开式高速开关阀Q1的高速开、闭作用,以及小孔节流阀Q4的微流量通流作用,精确控制单头波纹管肌肉15或双头波纹管肌肉13f内腔气体压力,从而精确保持抓取的接触力和手指指根的转动角度;释放物体时,根据压力变送器Q7的反馈信号,常开式排气开关阀Q5通电开通排气,并及时截止排气,以保证有一定的背压,使空载的机械手手指具有一定的刚性。
本发明的工作原理及使用流程:针对具体被抓取对象进行优化计算后,可以计算出所需抓取力所对应的抓取姿态和接触点位置,抓取姿态和接触点位置由电机转动角度和各波纹管肌肉内部压力的精确协同控制。具体是:①抓取同种类的(如苹果)、形状尺寸不一致的复杂对象时,能够通过选择适当的扭弹簧参数和手指结构尺寸,实现既能自由度适应性、又能不破坏且可靠抓持此种类的复杂对象;②抓取同形状的(如苹果、橙子、橘子等球形,或大小方盒等四方体)、形状尺寸变化大的同形状复杂对象时,能够通过选择适当的扭弹簧参数和手指结构尺寸,实现既能自由度适应性、又能不破坏且可靠抓持同形状的复杂对象;③同时抓取不同形状的(如苹果、橙子、橘子等球形和小方盒等四方体)、形状尺寸不相同的复杂对象时,能够通过适当选择扭弹簧参数和手指结构尺寸,和精确单头波纹管肌肉15的内部压力、克服拉弹簧17的拉力调节手指转位后,实现既能自由度适应性、又能不破坏且可靠抓持不同形状的复杂对象。
本发明仿鹰爪物流包装机械手,通过手指转位角度的精确控制,可垂直地抓取圆柱形、方形、球形、椭球形物体,或水平地抓取球形、圆柱形、方形物体,从而既适应抓取物体形状、又满足竖横放置变化的需求。
根据对象形状(如圆柱形、长方形等)尺寸和材料物理特性,通过ADAMS软件对机械手手指的各种构形状态进行了仿真,确定各构形的适应形状尺寸范围和不损坏且可靠抓持(不脱落)的适应条件,确定仿鹰爪物流包装机械手最终抓持构型、接触点位置和接触力的大小、方向。
由于柔性手指结构,机械手状态有:①未接触情况下手指的空载运动;②接触后接触力为零状态;③接触后物体未运动,但接触力增大,接触力的作用点位置、接触力方向变化;④接触后物体未运动,接触力最大状态;⑤物体与机械手同时加速度位移的抓持运动,接触力的作用点位置、大小、方向变化;⑥物体与机械手同时匀速位移的抓持运动,接触力的作用点位置、大小、方向变化;⑦物体与机械手同时减速度位移的抓持运动,接触力的作用点位置、大小、方向变化;⑧物体与机械手静止的悬停状态。
动态控制时,①在未接触情况下手指的空载运动时,确定避免与输送带或操作台桌面干涉的手指尖的路径规划,形成电机转动和波纹管肌肉压力驱动的动态控制策略;②接触后物体未运动、接触力最大状态时,物体被提起瞬间,接触力发生突变,可以通过压力变送器和高速开关阀控制,调整各个波纹管肌肉内部压力;③在物体与机械手同时加速度位移或减速度位移时,可以适应性调节各个波纹管肌肉内部压力。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

  1. 一种电-气复合驱动柔性手指的仿鹰爪物流包装机械手,包括丝杠轴电机(1)、上座板(2)、导向联结杆(3)、丝杠螺母座(4)、直线轴承(5)、驱动板(6)、推板(7)、推杆(8)、固定手指座(9)、连杆(10)、底座板(12)、短手指(13)、长手指(14)、单头波纹管肌肉(15)、带脊推板(16)、拉弹簧(17)、小支座(18)、转动驱动板(19)、圆压板(20)、密封头(21)、轴套(22)、转动手指座(23)、小带座轴承(24),其特征在于:所述丝杠轴电机(1)安装在上座板(2),所述上座板(2)和底座板(12)靠两根导向联结杆(3)固定成整体,两根导向联结杆(3)的两端均有圆柱段分别与上座板(2)和底座板(12)上的孔间隙配合,所述丝杠轴电机(1)带动的丝杠螺母座(4)固定在驱动板(6)上,所述驱动板(6)上安装有两个直线轴承(5),两个直线轴承5靠对应的导向联结杆(3)导向,驱动板(6)上下直线运动;左边的短手指(13)的指根节(13a)的上端与固定手指座(9)铰链连接,所述固定手指座(9)通过螺钉安装在底座板(12)上,所述推板(7)固定在驱动板(6)上,所述推板(7)外侧安装有推杆(8),所述推杆(8)与连杆(10)的一端铰链连接,所述连杆(10)的另一端与短手指(13)上的铰链座(13b)通过铰链连接,右边中间的长手指(14)的指根上端与固定手指座(9)铰链连接,所述带脊推板(16)固定在驱动板(6)上,所述带脊推板(16)外侧安装有推杆(8),所述推杆(8)与连杆(10)的一端铰链连接,所述连杆(10)的另一端与长手指(14)上的铰链座(13b)通过铰链连接,所述驱动板(6)带动带脊推板(16)上下直线运动;
    右边的外侧的两个短手指(13)的指根节(13a)的上端均与转动手指座(23)铰链连接,右边的外侧的两个短手指(13)随转动手指座(23)与转动驱动板(19)是同轴心线地、整体地转动,驱动来自两个单头波纹管肌肉(15),所述转动手指座(23)上部的轴段套进轴套(22),所述轴套(22)顶住小带座轴承(24)的转动内圈,所述转动手指座(23)上部的轴段的螺纹部分用螺母旋紧,将转动手指座(23)轴向固定在小带座轴承(24)上,所述小带座轴承(24)通过螺钉固定在底座板(12),所述单头波纹管肌肉(15)靠卡箍固定在密封头(21)的波状卡口上,带气管接头的密封头(21)固定在小支座(18)上,所述小支座(18)固定在转动驱动板(19)上,两根拉弹簧(17)的一端钩进带脊推板(16)的背脊上的孔中,另一端钩进小支座(18)上的孔中,所述转动驱动板(19)的外侧安装有推杆(8),所述推杆(8)与连杆(10)的一端铰链连接,所述连杆(10)的另一端与短手指(13)上的铰链座(13b)通过铰链连接。
  2. 根据权利要求1所述的一种电-气复合驱动柔性手指的仿鹰爪物流包装机械手,其特征在于:
    所述短手指(13)包括指根节(13a)、铰链座(13b)、大支座(13c)、厚密封头(13d)、气管接头(13e)、双头波纹管肌肉(13f)、薄密封头(13g)、粗扭簧(13h)、中指节(13i)、细扭簧(13j)、指尖节(13k)、弧形胶条(13l),所述铰链座(13b)固定在指根节(13a)上,所述双头波纹管肌肉(13f)的上端靠卡箍固定在厚密封头(13d)的波状卡口上,所述气管接头(13e)旋在厚密封头(13d)上,所述双头波纹管肌肉(13f)的下端靠卡箍固定在薄密封头(13g)的波状卡口上,所述厚密封头(13d)、薄密封头(13g)均固定在大支座(13c),一个大支座(13c)固定在指根节(13a)上,另一个大支座(13c)固定在指尖节(13k)上,所述指根节(13a)与中指节(13i)铰链连接,铰链芯轴上套有粗扭簧(13h),所述中指节(13i)与指尖节(13k)铰链连接,铰链芯轴上套有细扭簧(13j),所述弧形胶条(13l)分别粘贴在指根节(13a)、中指节(13i)、指尖节(13k)的内侧的抓持接触面上。
  3. 根据权利要求1所述的一种电-气复合驱动柔性手指的仿鹰爪物流包装机械手,其特征在于:所述驱动板(6)带动推板(7)上下直线运动;所述推板(7)驱动推杆(8)、连杆(10),调节调节指根与底座板(12)间的夹角。
  4. 根据权利要求1所述的一种电-气复合驱动柔性手指的仿鹰爪物流包装机械手,其特征在于:所述带脊推板(16)驱动推杆(8)、连杆(10),调节指根与底座板(12)间的夹角。
  5. 根据权利要求1所述的一种电-气复合驱动柔性手指的仿鹰爪物流包装机械手,其特征在于:两块转动驱动板(19)的厚度与驱动板6外侧的导槽的宽度间隙配合,靠圆柱销铰链连接而转动。
  6. 根据权利要求1所述的一种电-气复合驱动柔性手指的仿鹰爪物流包装机械手,其特征在于:两个导槽的终止平面平行,在两个拉弹簧(17)作用下保证右边的外侧的两个短手指(13)与长手指(14)、左边的短手指(13)平行。
  7. 根据权利要求1所述的一种电-气复合驱动柔性手指的仿鹰爪物流包装机械手,其特征在于:用内六角螺钉和螺母、两个圆压板(20),将两个橡胶材料的单头波纹管肌肉(15)的平面端夹紧固定在带脊推板(16)的背脊上,也能保持密封。
  8. 根据权利要求1所述的一种电-气复合驱动柔性手指的仿鹰爪物流包装机械手,其特征在于:充气的单头波纹管肌肉(15)膨胀,驱动小支座(18)、右边的外侧的短手指(13)转动,实现手指转位。
  9. 根据权利要求1所述的一种电-气复合驱动柔性手指的仿鹰爪物流包装机械手,其特征在于:所述驱动板(6)带动转动驱动板(19)上下直线运动,转动驱动板(19)驱动推杆(8)、连杆(10),从而调节指根与底座板(12)间的夹角。
  10. 根据权利要求1所述的一种电-气复合驱动柔性手指的仿鹰爪物流包装机械手,其特征在于:自由状态的单头波纹管肌肉(15)是U形波纹管纵截面,安装后初始状态被拉弹簧(17)压缩成Ω形波纹管纵截面。
PCT/CN2019/073908 2018-02-27 2019-01-30 一种电-气复合驱动柔性手指的仿鹰爪物流包装机械手 WO2019165878A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019559816A JP6831136B2 (ja) 2018-02-27 2019-01-30 電気−空気圧複合駆動柔軟指のイーグルクローを模擬した物流梱包用ロボットハンド

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810163952.3A CN108436952B (zh) 2018-02-27 2018-02-27 一种电-气复合驱动柔性手指的仿鹰爪物流包装机械手
CN201810163952.3 2018-02-27

Publications (1)

Publication Number Publication Date
WO2019165878A1 true WO2019165878A1 (zh) 2019-09-06

Family

ID=63192614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073908 WO2019165878A1 (zh) 2018-02-27 2019-01-30 一种电-气复合驱动柔性手指的仿鹰爪物流包装机械手

Country Status (3)

Country Link
JP (1) JP6831136B2 (zh)
CN (1) CN108436952B (zh)
WO (1) WO2019165878A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112157644A (zh) * 2020-10-10 2021-01-01 西南科技大学 一种堆外核探测器辅助安装机器人系统
CN112249717A (zh) * 2020-10-16 2021-01-22 淮北职业技术学院 一种用于汽车电池的自动化码垛装置
CN112314542A (zh) * 2020-08-06 2021-02-05 北京工业大学 海洋生物捕捞多面体手爪
CN114800583A (zh) * 2022-04-18 2022-07-29 浙江大学 一种两相驱动柔性手爪
CN116652999A (zh) * 2023-07-26 2023-08-29 中国科学院自动化研究所 软体机械手和机器人

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108436952B (zh) * 2018-02-27 2019-07-23 江南大学 一种电-气复合驱动柔性手指的仿鹰爪物流包装机械手
CN108858271B (zh) * 2018-09-07 2020-10-30 江南大学 双驱动异形超柔弹性骨架的机械手
CN108994825A (zh) * 2018-09-19 2018-12-14 河北卓秋实业有限公司 悬臂式双轴联动仿生机械手铺装机
CN109262646B (zh) * 2018-09-29 2020-10-20 江南大学 一种链板式柔性手指
CN109910039B (zh) * 2019-04-29 2020-11-17 江南大学 气动手指夹持与指根转位及电动指根转动的敏捷机械手
CN110014445B (zh) * 2019-05-08 2021-04-06 河北省科学院应用数学研究所 一种初始抓取角度可调节的柔性仿生机械手
CN111152254B (zh) * 2020-01-09 2021-04-20 江南大学 一种软轴传动的刚柔耦合手指四指欠驱动机械手
CN111360865B (zh) * 2020-04-03 2021-04-20 江南大学 指根软轴传递转动又偏心转位的快换手指变掌机械手
CN111409094B (zh) * 2020-04-14 2021-08-24 江南大学 捏取与软轴传动卷筒张紧带裹包抓取的复合机械手及方法
CN114012766B (zh) * 2021-11-10 2023-06-27 江南大学 多自由度仿生手及其电动定位与气动夹持的操作方法
CN114750187B (zh) * 2022-03-30 2022-12-02 江南大学 采用径向花边形弹性波纹管的人工肌肉、气缸及控制方法
CN115056259A (zh) * 2022-08-16 2022-09-16 太仓奥林吉汽车零部件有限公司 一种非金属零部件转移用新型柔性抓手

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101422906A (zh) * 2008-12-12 2009-05-06 清华大学 基于柔性件的变位欠驱动两关节机器人手指装置
GB2496335A (en) * 2009-07-22 2013-05-08 Shadow Robot Company Ltd Finger digit for robotic hand
CN203380902U (zh) * 2013-07-22 2014-01-08 江南大学 电动推杆驱动控制的串联柔性铰链骨架手爪
JP5660364B2 (ja) * 2010-05-25 2015-01-28 国立大学法人 東京大学 ロボットハンド及びロボットシステム
CN104875202A (zh) * 2015-06-17 2015-09-02 燕山大学 一种万向型气动柔性机器人装置
CN204725505U (zh) * 2015-05-12 2015-10-28 江南大学 弹性波纹管单作用气缸驱动串联活页铰链骨架机械手
CN108436952A (zh) * 2018-02-27 2018-08-24 江南大学 一种电-气复合驱动柔性手指的仿鹰爪物流包装机械手

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053495U (ja) * 1983-09-22 1985-04-15 東芝精機株式会社 把持装置
JP2747715B2 (ja) * 1989-01-24 1998-05-06 株式会社日平トヤマ 把握装置
IT229775Y1 (it) * 1993-04-05 1999-02-05 Univer Spa Dispositivo meccanico di presa a comando pneumatico
JP2006102920A (ja) * 2004-10-08 2006-04-20 Fanuc Ltd 把握型ハンド
US7296835B2 (en) * 2005-08-11 2007-11-20 Anybots, Inc. Robotic hand and arm apparatus
JP6111589B2 (ja) * 2012-10-11 2017-04-12 セイコーエプソン株式会社 ロボットハンド、ロボット装置及びロボットハンドの製造方法
CN105643649A (zh) * 2014-11-15 2016-06-08 张桂春 六关节三指苹果抓取机械手
CN104802178B (zh) * 2015-05-12 2017-05-10 江南大学 弹性波纹管单作用气缸驱动串联活页铰链骨架机械手
CN204725498U (zh) * 2015-05-12 2015-10-28 江南大学 弹性波纹管单作用气缸驱动串联柔性铰链骨架机械手
CN205928654U (zh) * 2016-04-26 2017-02-08 江南大学 双电机驱动协同控制的欠驱动机械手
CN206154333U (zh) * 2016-10-21 2017-05-10 合肥工业大学 仿人手机械手爪

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101422906A (zh) * 2008-12-12 2009-05-06 清华大学 基于柔性件的变位欠驱动两关节机器人手指装置
GB2496335A (en) * 2009-07-22 2013-05-08 Shadow Robot Company Ltd Finger digit for robotic hand
JP5660364B2 (ja) * 2010-05-25 2015-01-28 国立大学法人 東京大学 ロボットハンド及びロボットシステム
CN203380902U (zh) * 2013-07-22 2014-01-08 江南大学 电动推杆驱动控制的串联柔性铰链骨架手爪
CN204725505U (zh) * 2015-05-12 2015-10-28 江南大学 弹性波纹管单作用气缸驱动串联活页铰链骨架机械手
CN104875202A (zh) * 2015-06-17 2015-09-02 燕山大学 一种万向型气动柔性机器人装置
CN108436952A (zh) * 2018-02-27 2018-08-24 江南大学 一种电-气复合驱动柔性手指的仿鹰爪物流包装机械手

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112314542A (zh) * 2020-08-06 2021-02-05 北京工业大学 海洋生物捕捞多面体手爪
CN112157644A (zh) * 2020-10-10 2021-01-01 西南科技大学 一种堆外核探测器辅助安装机器人系统
CN112249717A (zh) * 2020-10-16 2021-01-22 淮北职业技术学院 一种用于汽车电池的自动化码垛装置
CN112249717B (zh) * 2020-10-16 2021-11-26 淮北职业技术学院 一种用于汽车电池的自动化码垛装置
CN114800583A (zh) * 2022-04-18 2022-07-29 浙江大学 一种两相驱动柔性手爪
CN114800583B (zh) * 2022-04-18 2023-09-26 浙江大学 一种两相驱动柔性手爪
CN116652999A (zh) * 2023-07-26 2023-08-29 中国科学院自动化研究所 软体机械手和机器人
CN116652999B (zh) * 2023-07-26 2023-11-24 中国科学院自动化研究所 一种水下软体机械手

Also Published As

Publication number Publication date
JP6831136B2 (ja) 2021-02-17
JP2020518480A (ja) 2020-06-25
CN108436952B (zh) 2019-07-23
CN108436952A (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
WO2019165878A1 (zh) 一种电-气复合驱动柔性手指的仿鹰爪物流包装机械手
WO2019210761A1 (zh) 一种电气复合驱动厚度异形板弹簧骨架柔性机械手
CN109262646B (zh) 一种链板式柔性手指
WO2016180337A1 (zh) 弹性波纹管单作用气缸驱动串联活页铰链骨架机械手
US8240726B2 (en) End effector with multiple pick-up members
CN111230920B (zh) 一种气动软体夹持装置
WO2016179793A1 (zh) 弹性波纹管单作用气缸驱动串联板弹簧骨架机械手
WO2021197319A1 (zh) 指根软轴传递转动又偏心转位的快换手指变掌机械手
CN108858271B (zh) 双驱动异形超柔弹性骨架的机械手
WO2016180338A1 (zh) 弹性波纹管单作用气缸驱动串联柔性铰链骨架机械手
CN109910039B (zh) 气动手指夹持与指根转位及电动指根转动的敏捷机械手
CN109079833B (zh) 双驱动串联变宽度柔性铰链骨架的机械手
CN111844119A (zh) 一种可变行程软体气动夹持装置及其工作方法
CN111300473B (zh) 可转位可调刚度板弹簧骨架手指的电-气驱动柔顺爪
CN110614648A (zh) 一种欠驱动自适应两指夹爪
CN108673542B (zh) 一种电-气复合驱动串联柔性铰链骨架柔性机械手
CN111216155A (zh) 简易型双臂协同机械手
CN109605404B (zh) 滑槽并联连杆直线平夹自适应机器人手指装置
CN212421348U (zh) 一种可变行程软体气动夹持装置
CN210084462U (zh) 一种多自由度堆垛机械手
CN111390946B (zh) 摩擦副传动多根软轴传递仿节肢动物手指的敏捷灵巧爪
CN104802179A (zh) 弹性波纹管单作用气缸驱动串联板弹簧骨架机械手
CN211761616U (zh) 简易型双臂协同机械手
WO2022189456A1 (en) Robotic gripper
CN109500835A (zh) 一种tpu气动3d打印机械手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760605

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559816

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760605

Country of ref document: EP

Kind code of ref document: A1