WO2019165696A1 - 一种深海多功能长期原位观测系统 - Google Patents

一种深海多功能长期原位观测系统 Download PDF

Info

Publication number
WO2019165696A1
WO2019165696A1 PCT/CN2018/084567 CN2018084567W WO2019165696A1 WO 2019165696 A1 WO2019165696 A1 WO 2019165696A1 CN 2018084567 W CN2018084567 W CN 2018084567W WO 2019165696 A1 WO2019165696 A1 WO 2019165696A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
instrument
fixedly connected
unit
situ
Prior art date
Application number
PCT/CN2018/084567
Other languages
English (en)
French (fr)
Inventor
翟京生
田文杰
齐占峰
杨君
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2019165696A1 publication Critical patent/WO2019165696A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B17/00Vessels parts, details, or accessories, not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C13/00Surveying specially adapted to open water, e.g. sea, lake, river or canal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2211/00Applications
    • B63B2211/02Oceanography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/005Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned remotely controlled
    • B63G2008/007Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned remotely controlled by means of a physical link to a base, e.g. wire, cable or umbilical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/008Docking stations for unmanned underwater vessels, or the like

Definitions

  • the invention belongs to the technical field of marine monitoring, and particularly relates to a deep sea multifunctional long-term in situ observation system.
  • the seabed base is a bottom-mounted ocean observation system. It can detect the marine environment in the seabed and the offshore area by carrying different instruments and equipment. It can perform long-term fixed-point observation and has good concealment. With the continuous development of the marine industry, higher and higher requirements have been put forward for the monitoring of the marine environment. There are two outstanding problems in the application of the seabed foundation. First, the seabed base cannot achieve long-term in-situ monitoring. At present, the seabed-based platform is subject to the restriction of carrying energy. It can only be monitored for a limited time at the deployment point, and must be recycled before the energy is exhausted.
  • the object of the present invention is to overcome the deficiencies in the prior art and provide a deep sea multi-functional long-term in-situ observation system, which can realize long-term and in-situ fixed-point continuous monitoring operations of different parameters of the deep seabed by carrying different sensors.
  • the technical solution adopted by the present invention is: a deep sea multifunctional long-term in-situ observation system, including a mother ship, a lifting unit, an instrument unit, and an in-situ base; the mother ship passes the armored cable of the winch and the hanging unit The armored cable hoisting adapter is connected; the hanging butt skirt of the hoisting unit can be docked with the top of the instrument unit, and the gripping unit of the hoisting unit can grasp and release the top of the instrument unit The docking pin realizes the grasping and releasing of the instrument unit by the lifting unit; the bottom sliding docking member of the instrument unit can be docked with the base docking skirt of the in-situ base to realize the in-situ observation base of the instrument unit Charging is used for data acquisition, storage and transmission.
  • one end of the armored cable is connected to the control system of the mother ship, and the other end is connected with the armored cable lifting adapter of the lifting unit to realize power supply and data connection;
  • the middle portion is wound on the winch, and the winch is connected with the control system of the mother ship through a signal line to realize the control of the winch retracting, and the armored cable is driven by the winch to further drive the lifting unit to move up and down.
  • the lifting unit comprises a hanging main frame, an armored cable lifting adapter, a horizontal thruster, a vertical thruster, a hanging acoustic positioning beacon, a visual positioning component, a hanging controller, and a docking Lifting the docking skirt and the gripping assembly of the instrument unit;
  • the top end of the armored cable lifting adapter is fixedly connected with the armor cable of the mother ship, the bottom end of the armored cable lifting adapter and the main frame of the hanging
  • the top end is rotatably connected by a hinge;
  • the gripping assembly is fixedly connected to the upper end of the hanging main frame by bolts;
  • the hanging butt skirt is fixedly connected with the lower end of the hanging main frame by bolts;
  • the horizontal pusher is bolted and suspended
  • the main frame is fixedly connected;
  • the vertical thruster is fixedly connected to the hanging main frame by bolts;
  • the hanging acoustic positioning beacon, the visual positioning component and the hanging controller are fixedly connected with the hanging main frame by
  • the visual positioning component comprises an underwater camera and a searchlight disposed on both sides of the underwater camera, the underwater camera and the searchlight are fixedly connected to the hanging main frame through the mounting seat; the underwater camera and the searchlight are both suspended The controller is connected.
  • the gripping assembly comprises a locking mechanism and a motor connected to the locking mechanism to drive the locking mechanism to realize a locking and relaxing action; the motor is connected to the hanging controller.
  • the instrument unit comprises an instrument mounting bracket, a top docking pin for docking the lifting unit, a bottom sliding docking member for docking the in-situ base, a sensor component, an instrument battery pack, an instrument control cabin, An in-situ pedestal charging instrument power transmission interface;
  • the top docking pin is fixedly connected to an upper end of the instrument mounting bracket by a bolt;
  • the bottom sliding docking member is fixedly connected to a lower end of the instrument mounting bracket by a bolt;
  • the sensor component passes the bolt Fixedly connected with the instrument mounting bracket;
  • the instrument battery pack and the instrument control cabin are fixedly connected with the instrument mounting bracket;
  • the instrument power transmission interface is fixedly connected with the lower end of the bottom sliding docking member; the sensor component, the instrument battery pack, and the instrument power The transmission interface is connected to the instrument control compartment via a watertight connector.
  • the magnetic component of the sensor assembly and the gravimeter are included, and the geomagnetic daily change station and the gravimeter are connected to the instrument control cabin.
  • the sensor component, the instrument battery pack, the instrument control cabin, and the instrument power transmission interface all adopt independent pressure sealing structure; the sensor component, the instrument battery pack, and the instrument power transmission interface are controlled by a watertight cable and a watertight connector and an instrument.
  • the tanks are connected for electrical connection.
  • the in-situ base includes a base frame, a base upper cover, a base docking skirt for docking the instrument unit, a lifting ring, a support leg, a hydraulic support leg assembly, a base battery pack, and a base a control cabin, a base power transmitter, a base acoustic positioning assembly;
  • the lifting ring is fixedly connected to the base frame by bolts;
  • the base upper cover is fixedly connected with the base frame by bolts;
  • the port is fixedly connected to the base frame by bolts;
  • the support leg is fixedly connected with the connecting flange at the bottom of the base frame;
  • the hydraulic support leg assembly is fixedly connected with the connecting flange of the side of the base frame;
  • the base battery pack Fixedly connected to the base frame by bolts;
  • the base control cabin is fixedly connected to the base frame by bolts;
  • the base power transmitter is fixedly connected to the lower end of the base docking skirt by bolts;
  • the hydraulic support leg assembly hydraulic cylinder, the leg, the anti-sinking seat and the hinge; one end of the hydraulic cylinder is rotatably connected to the base frame through the flange, and the other end is rotatably connected to the leg through the flange; the leg One end is fixedly connected to the hinge through a flange, and the other end is fixedly connected to the anti-seismic seat through a flange; the end of the hinge away from the leg is fixedly connected to the base frame through a flange; the hydraulic cylinder passes through a watertight cable and a watertight connector. It is connected with the base control cabin to realize the base control cabin to control the expansion and contraction of the hydraulic support leg assembly.
  • the pedestal acoustic positioning component comprises an acoustic communication cat, an acoustic communication bottom plate, an acoustic communication pressing cover, a hexagon socket head cap screw and an acoustic communication mounting plate; the acoustic communication bottom plate and the acoustic communication pressing cover pass through the hexagon socket
  • the head screw is fixedly connected, and the acoustic communication cat is fixed between the acoustic communication bottom plate and the acoustic communication pressing cover through the upper and lower bosses;
  • the acoustic communication mounting plate is fixedly connected with the acoustic communication bottom plate, and the other surface is connected by the bolt and the base.
  • the seat frame is fixedly connected; the acoustic communication cat is connected to the base control cabin through a watertight cable and a watertight connector.
  • the pedestal control compartment, the pedestal power transmitter and the pedestal battery pack each adopt an independent pressure sealing structure; the pedestal power transmitter and the pedestal battery pack are controlled by a watertight cable and a watertight connector and a pedestal The tanks are connected for electrical connection.
  • the sensor unit of the instrument unit is reconfigurable. Without changing the overall structure of the instrument unit, the sensor components of the instrument unit can be redesigned according to different monitoring requirements, and the monitoring function of multi-functional long-term in-situ observation can be quickly realized.
  • the in-situ base When the hydraulic leg assembly is in a contracted state, the in-situ base has a small structural size for transportation and offshore operations; when the hydraulic leg assembly is opened, the in-situ base has a larger contact area and grip with the sea floor, Conducive to the horizontal position and vertical position of the in-situ base.
  • the in-situ base has horizontal position and vertical position retention capability, enabling deep sea in-situ fixed point observation.
  • the base battery of the in-situ base is powered by the instrument battery pack, and the system can be continuously observed for a long time by repeating the recycling process and the laying process.
  • the instrument unit and the lifting assembly Through the cooperation of the in-situ base, the instrument unit and the lifting assembly, the deep sea submarine long-term in-situ observation capability of the deep sea can be realized.
  • Figure 1 is an exploded perspective view of a deep sea multi-functional long-term in situ observation system
  • Figure 2 is a schematic view of the lifting unit 3D
  • FIG. 3 is a schematic view of the instrument unit 3D
  • Figure 4 is a schematic view of the in-situ base 3D
  • Figure 5 is a schematic view showing the state of contraction of the hydraulic leg assembly of the in-situ base
  • Figure 6 is a schematic view of the docking of the docking skirt and the top docking
  • Figure 7 is a schematic view of the docking of the bottom sliding butt joint with the base docking skirt
  • Figure 8 is a schematic view showing the connection between the mother ship and the hanging unit
  • Figure 9 is a schematic view of a visual positioning assembly of the lifting unit
  • Figure 10 is a schematic view of the hydraulic support leg assembly of the in-situ base
  • Figure 11 is a schematic view of a base acoustic positioning assembly of an in-situ base
  • a deep sea multifunctional long-term in-situ observation system includes a mother ship 27, a lifting unit, an instrument unit, and an in-situ base; the mother ship 27 passes the armored cable of the winch and the The armored cable lifting adapter 2 of the lifting unit is connected; the hanging butt skirt 7 of the lifting unit can be docked with the top docking pin 10 of the instrument unit, and the gripping assembly 8 of the lifting unit can grasp The top docking pin 10 of the instrument unit is taken and released to realize the grasping and releasing of the instrument unit by the lifting unit; the bottom sliding docking member 11 of the instrument unit can be docked with the base docking skirt 18 of the in-situ base The instrument unit is used to charge the in-situ observation base for data acquisition, storage and transmission.
  • One end of the armored cable is connected to the control system of the mother ship 27, and the other end is connected to the armored cable lifting adapter 2 of the lifting unit to realize power supply and data connection;
  • the middle portion is wound on the winch, and the winch is connected to the control system of the mother ship 27 through a signal line to realize control of the winch retracting, and the armored cable is driven by the winch to further drive the lifting unit to move up and down.
  • the lifting unit comprises a hanging main frame 1, an armored cable lifting adapter 2, a horizontal thruster 3, a vertical thruster 4, a hanging acoustic positioning beacon 5, a visual positioning component 6, and a hanging controller 9 a docking skirt 7 for gripping the instrument unit, and a gripping assembly 8;
  • the top end of the armored cable lifting adapter 2 is fixedly connected with the armor cable of the mother ship 27, and the armored cable lifting adapter 2
  • the bottom end is rotatably connected to the top end of the hanging main frame 1 by a hinge 204;
  • the gripping assembly 8 is fixedly connected to the upper end of the hanging main frame 1 by bolts;
  • the hanging butt skirt 7 is bolted and the main frame is suspended a lower end fixed connection;
  • the horizontal pusher 3 is fixedly connected to the hanging main frame 1 by bolts;
  • the vertical pusher 4 is fixedly connected with the hanging main frame 1 by bolts;
  • the visual positioning component 6 includes an underwater camera 61 and a searchlight 62 disposed on both sides of the underwater camera 61.
  • the underwater camera 61 and the searchlight 62 pass through the mounting base and the main frame 1 is suspended.
  • the underwater camera 61 and the searchlight 62 are both connected to the ceiling controller 9.
  • the gripping assembly 8 comprises a locking mechanism and a motor connected to the locking mechanism to drive the locking mechanism to realize locking and loosening action; the motor is connected to the hanging controller 9.
  • the instrument unit includes an instrument mounting bracket 16, a top docking pin 10 for docking the lifting unit, a bottom sliding docking member 11 for docking the in-situ base, a sensor assembly 12, an instrument battery pack 13, an instrument control cabin 14, An instrument power transmission interface 15 for charging the in-situ base;
  • the top docking pin 10 is fixedly coupled to the upper end of the instrument mounting bracket 16 by bolts;
  • the bottom sliding docking member 11 is fixed to the lower end of the instrument mounting bracket 16 by bolts
  • the sensor assembly 12 is fixedly coupled to the instrument mounting bracket 16 by bolts;
  • the instrument battery pack 13 and the instrument control compartment 14 are fixedly coupled to the instrument mounting bracket 16;
  • the instrument power transmission interface 15 and the bottom sliding docking member 11 are connected;
  • the lower end is fixedly connected;
  • the sensor assembly 12, the instrument battery pack 13, and the instrument power transmission interface 15 are connected to the instrument control compartment 14 via a watertight connector.
  • the magnetic component change station and the gravimeter of the sensor assembly 12 are included, and the geomagnetic daily change station and the gravimeter are connected to the instrument control cabin 14.
  • the in-situ base includes a base frame 25, a base upper cover plate 17, a base docking skirt 18 for docking the instrument unit, a lifting ring 19, a support leg 26, a hydraulic support leg assembly 20, and a base battery pack 21, a base control cabin 22, a base power transmitter 23, a base acoustic positioning assembly 24;
  • the lifting ring 19 is fixedly coupled to the base frame 25 by bolts;
  • the base upper cover 17 is bolted to the base
  • the frame 25 is fixedly connected;
  • the base butt skirt 18 is fixedly connected to the base frame 25 by bolts;
  • the support legs 26 are fixedly connected with the connecting flange at the bottom of the base frame 25;
  • the connecting flange on the side of the seat frame 25 is fixedly connected;
  • the base battery pack 21 is fixedly connected to the base frame 25 by bolts;
  • the base control cabin 22 is fixedly connected to the base frame 25 by bolts;
  • the transmitter 23 is fixedly connected to the
  • the hydraulic support leg assembly 20 includes a hydraulic cylinder 201, a leg 202, a sun block 203 and a hinge 204; one end of the hydraulic cylinder 201 is rotatably connected to the base frame 25 through a flange, and One end is rotatably connected to the leg 202 through a flange; one end of the leg 202 is fixedly connected to the hinge 204 through a flange, and the other end is fixedly connected to the anti-seismic seat 203 through a flange; the end of the hinge 204 is away from the end of the leg 202
  • the flange is fixedly coupled to the base frame 25; the hydraulic cylinder 201 is coupled to the base control compartment 22 by a watertight cable and a watertight connector to enable the base control compartment 22 to control the expansion and contraction of the hydraulic support leg assembly 20.
  • the base acoustic positioning assembly 24 includes an acoustic communication cat 241, an acoustic communication bottom plate 242, an acoustic communication pressing cover 243, a hexagon socket head cap screw 244, and an acoustic communication mounting plate 245;
  • the communication bottom plate 242 and the acoustic communication pressing cover 243 are fixedly connected by the hexagon socket head cap screw 244, and the acoustic communication cat 241 is fixed between the acoustic communication bottom plate 242 and the acoustic communication pressing cover 243 through the upper and lower bosses;
  • the acoustic communication mounting plate 245 is fixedly connected to the acoustic communication base plate 242 on one side, and is fixedly connected to the base frame 25 by bolts on the other side;
  • the acoustic communication cat 241 is connected to the base control cabin 22 through a watertight cable and a watertight connector.
  • the pressure resistance means that the maximum pressure that each component can withstand in the deep sea is 30 MPa; the sensor component 12, the instrument battery pack 13, the instrument power transmission interface 15 are connected by watertight cable and watertight
  • the plug-in is coupled to the instrument control compartment 14 for electrical connection; the pedestal control compartment 22, the pedestal power transmitter 23, and the pedestal battery pack 21 each employ an independent pressure sealed structure; the pedestal power transmitter 23
  • the base battery pack 21 is connected to the base control cabin 22 through a watertight cable and a watertight connector to achieve electrical connection.
  • the independent sealing structure of each component can ensure the pressure resistance of the deep sea multi-functional long-term in-situ observation system and improve the reliability of the system.
  • the working process of the deep sea multifunctional long-term in-situ observation system of the invention comprises three working processes of in-situ pedestal lifting, instrument unit deployment and instrument unit recycling, and the specific working process is as follows.
  • In-situ pedestal lifting process the mother ship 27 hoisting the in-situ base to the sea floor; when the in-situ pedestal reaches the sea floor, the pedestal control cabin 22 controls the hydraulic support leg assembly 20 to change from the contracted state to the support state; The battery pack 21 provides electrical energy and the base control compartment 22 controls the base acoustic positioning assembly 24 to be activated.
  • the unit is laid out: the hanging butt skirt 7 of the lifting unit is docked with the top docking pin 10 of the instrument unit, and the gripping assembly 8 of the lifting unit grasps the upper end of the docking pin 10 of the instrument unit; the mother ship 27 will be docked
  • the unit and the instrument unit are suspended in water; the accommodating acoustic positioning beacon 5 of the hoisting unit and the pedestal acoustic positioning assembly 24 of the in-situ pedestal are used for low-precision positioning, and then the horizontal thruster 3 and vertical of the hoisting unit are utilized.
  • the straight pusher 4 drives the docking unit and the instrument unit to move to the vicinity of the in-situ base; the high-precision positioning of the in-situ base is performed by the visual positioning component 6 of the lifting unit, and then the horizontal thruster of the lifting unit is utilized 3 and the vertical thruster 4 drives the docking unit and the instrument unit to move over the in-situ base; the lifting unit and the instrument unit move downward, and the bottom of the instrument unit slides the docking member 11 and the base of the in-situ base
  • the docking skirt 18 is docked; the instrument battery pack 13 of the instrument unit is charged by the instrument power transmission interface 15 and the pedestal power transmitter 23 under the control of the instrument control cabin 14; The gripping assembly 8 of the unit is released, and the lifting unit is raised;
  • Instrument unit recovery process the mother ship 27 hoisting the lifting unit into the water; using the hoisting acoustic positioning beacon 5 of the hoisting unit and the pedestal acoustic positioning assembly 24 of the in-situ pedestal for low-precision positioning, and then using the hoisting unit
  • the horizontal thruster 3 and the vertical thruster 4 drive the lifting unit to move near the in-situ base; the high-precision positioning of the in-situ base is performed by the visual positioning component 6 of the lifting unit, and then the horizontal thruster of the lifting unit is utilized 3 and the vertical pusher 4 drives the lifting unit to move above the in-situ base; the lifting unit moves downward, and the hanging butt skirt 7 of the lifting unit is docked with the top docking pin 10 of the instrument unit, and the lifting unit is
  • the gripping assembly 8 grasps the upper end of the top docking pin 10 of the instrument unit; the mother ship 27 lifts the docked lifting unit and the instrument unit instrument, and the instrument unit is disengaged from the in-sit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Hydrology & Water Resources (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

一种深海多功能长期原位观测系统,包括母船(27)、吊放单元、仪器单元、原位基座;母船(27)通过绞车的铠装缆与所述吊放单元的铠装缆起吊转接件(2)连接;吊放单元的吊放对接裙口(7)能与仪器单元的顶部对接针(10)对接,吊放单元的抓紧组件(8)能抓取和释放仪器单元的顶部对接针(10),实现吊放单元对仪器单元的抓取和释放;仪器单元的底部滑动对接件(11)能与原位基座的基座对接裙口(18)对接,实现仪器单元为原位观测基座充电用于数据采集、存储与传输。该系统可通过搭载不同传感器实现深海海底不同参数长时间、原位定点连续监测作业。

Description

一种深海多功能长期原位观测系统 技术领域
本发明属于海洋监测技术领域,具体涉及一种深海多功能长期原位观测系统。
背景技术
海床基是一种坐底型海洋观测系统,通过搭载不同仪器设备对海底及近海底范围内的海洋环境进行探测,它能够进行较长期定点观测同时具有良好的隐蔽性。伴随海洋事业的不断发展,对海洋环境监测提出了越来越高的要求,海床基在应用过程中有两个突出问题亟待解决。第一,海床基不能实现长时间原位监测功能。目前海床基平台受制于携带能源的限制在布放点只能进行有限时间的监测作业,在携带能源耗尽之前必须进行回收作业。当海床基再次布放时不能到达上次布放的位置,即不能实现原位置的观测作业;第二,国内现有的海床基的功能较为单一,大多针对特定厂家的仪器设备设计,不具备良好的扩展性和适应性。
发明内容
本发明的目的是克服现有技术中的不足,提供一种深海多功能长期原位观测系统,可通过搭载不同传感器实现深海海底不同参数长时间、原位定点连续监测作业。
本发明所采用的技术方案是:一种深海多功能长期原位观测系统,包括母船、吊放单元、仪器单元、原位基座;所述母船通过绞车的铠装缆与所述吊放单元的铠装缆起吊转接件连接;所述吊放单元的吊放对接裙口能与所述仪器单元的顶部对接针对接,所述吊放单元的抓紧组件能抓取和释放仪器单元的顶部对接针,实现吊放单元对仪器单元的抓取和释放;所述仪器单元的底部滑动对接件能与所述原位基座的基座对接裙口对接,实现仪器单元为原位观测基座充电用于数据采集、存储与传输。
进一步的,所述铠装缆的一端与所述母船的控制系统相连接,另一端与所述吊放单元的铠装缆起吊转接件连接,实现电能供给和数据连接;所述铠装缆的中间部分缠绕在所述绞车上,所述绞车通过信号线与所述母船的控制系统相连接, 实现控制绞车收放,通过绞车带动铠装缆进一步带动吊放单元上下运动。
进一步的,所述吊放单元包括吊放主框架、铠装缆起吊转接件、水平推进器、竖直推进器、吊放声学定位信标、视觉定位组件、吊放控制器、用于对接仪器单元的吊放对接裙口、抓紧组件;所述铠装缆起吊转接件的顶端与母船的铠装缆固定连接,所述铠装缆起吊转接件的底端与吊放主框架的顶端通过铰链转动连接;所述抓紧组件通过螺栓与吊放主框架的上端固定连接;所述吊放对接裙口通过螺栓与吊放主框架下端固定连接;所述水平推进器通过螺栓与吊放主框架定连接;所述竖直推进器通过螺栓与吊放主框架固定连接;所述吊放声学定位信标、视觉定位组件、吊放控制器均通过螺栓与吊放主框架固定连接;所述水平推进器、竖直推进器、吊放声学定位信标、视觉定位组件、抓紧组件均与吊放控制器相连接,所述吊放控制器通过铠装缆与母船的控制系统相连接。
其中,所述视觉定位组件包括水下摄像机和设置在水下摄像机两侧的探照灯,所述水下摄像机和探照灯通过安装座与吊放主框架固定连接;所述水下摄像机和探照灯均与吊放控制器相连接。
其中,所述抓紧组件包括锁紧机构和与所述锁紧机构相连接、驱动所述锁紧机构运动实现锁紧和放松动作的电机;所述电机与吊放控制器相连接。
进一步的,所述仪器单元包括仪器安装架、用于对接吊放单元的顶部对接针、用于对接原位基座的底部滑动对接件、传感器组件、仪器电池组、仪器控制舱、用于为原位基座充电的仪器电能传输接口;所述顶部对接针通过螺栓与仪器安装架的上端固定连接;所述底部滑动对接件通过螺栓与仪器安装架的下端固定连接;所述传感器组件通过螺栓与仪器安装架固定连接;所述仪器电池组和仪器控制舱与仪器安装架固定连接;所述仪器电能传输接口与底部滑动对接件的下端固定连接;所述传感器组件、仪器电池组、仪器电能传输接口通过水密接插件与仪器控制舱相连接。
其中,包括所述传感器组件地磁日变站和重力仪,所述地磁日变站和重力仪与仪器控制舱相连接。
其中,所述传感器组件、仪器电池组、仪器控制舱、仪器电能传输接口均采用独立耐压密封结构;所述传感器组件、仪器电池组、仪器电能传输接口通过水密电缆及水密接插件与仪器控制舱相连接,以实现电气连接。
进一步的,所述原位基座包括基座框架、基座上盖板、用于对接仪器单元的基座对接裙口、起吊环、支撑腿、液压支撑腿组件、基座电池组、基座控制舱、基座电能传输器、基座声学定位组件;所述起吊环通过螺栓与基座框架固定连接;所述基座上盖板通过螺栓与基座框架固定连接;所述基座对接裙口通过螺栓与基座框架固定连接;所述支撑腿与基座框架底部的连接法兰固定连接;所述液压支撑腿组件与基座框架侧面的连接法兰固定连接;所述基座电池组通过螺栓与基座框架固定连接;所述基座控制舱通过螺栓与基座框架固定连接;所述基座电能传输器通过螺栓与基座对接裙口的下端固定连接;所述基座声学定位组件通过螺栓与基座框架固定连接;所述基座电池组、基座电能传输器、基座声学定位组件通过水密接插件与基座控制舱相连接。
其中,所述液压支撑腿组件液压缸、支腿、防沉座和铰链;所述液压缸一端通过法兰与基座框架转动连接,另一端通过法兰与支腿转动连接;所述支腿一端通过法兰与铰链固定连接,另一端通过法兰与防沉座固定连接;所述铰链远离支腿的一端通过法兰与基座框架固定连接;所述液压缸通过水密电缆及水密接插件与基座控制舱相连接,以实现基座控制舱控制液压支撑腿组件伸缩。
其中,所述基座声学定位组件包括声通讯猫、声通讯底板、声通讯压紧盖、内六角圆柱头螺钉和声通讯安装板;所述声通讯底板与声通讯压紧盖通过内六角圆柱头螺钉固定连接,并将声通讯猫通过上下两个凸台固定在声通讯底板与声通讯压紧盖之间;所述声通讯安装板一面与声通讯底板固定连接,另一面通过螺栓与基座框架固定连接;所述声通讯猫通过水密电缆及水密接插件与基座控制舱相连接。
其中,所述基座控制舱、基座电能传输器以及基座电池组均采用独立耐压密封结构;所述基座电能传输器、基座电池组通过水密电缆及水密接插件与基座控制舱相连接,以实现电气连接。
本发明的有益效果是:
仪器单元的传感器组件采用可重构式设计。在不改变仪器单元总体结构下,仪器单元的传感器组件能够根据不同监测需求进行重新设计,可以快速实现多功能长期原位观测的监测功能拓展。
可收放的液压支撑腿组件。液压支腿组件收缩状态时,原位基座具有较小的 结构尺寸,便于运输和海上作业;液压支腿组件打开状态时,原位基座具有与海底更大的接触面积和抓地力,有利于原位基座的水平位置和竖直位置保持。
原位基座具有水平位置和竖直位置保持能力,能够实现深海原位定点观测。原位基座的基座电池组电能来源于仪器电池组,通过仪器单元重复回收过程与布放过程可实现系统长时间的连续观测。通过原位基座、仪器单元和吊放组件的配合,可实现深海多功能长期原位观测系统的深海海底长时间原位定点观测能力。
附图说明
图1是深海多功能长期原位观测系统的分解示意图;
图2是吊放单元3D示意图;
图3是仪器单元3D示意图;
图4是原位基座3D示意图;
图5是原位基座的液压支腿组件收缩状态示意图;
图6是吊放对接裙口与顶部对接针对接示意图;
图7是底部滑动对接件与基座对接裙口对接示意图;
图8是母船与吊放单元连接示意图;
图9是吊放单元的视觉定位组件示意图;
图10是原位基座的液压支撑腿组件示意图;
图11是原位基座的基座声学定位组件示意图;
附图标注:1-吊放主框架、2-铠装缆起吊转接件、3-水平推进器、4-竖直推进器、5-吊放声学定位信标、6-视觉定位组件、7-吊放对接裙口、8-抓紧组件、9-吊放控制器、10-顶部对接针、11-底部滑动对接件、12-传感器组件、13-仪器电池组、14-仪器控制舱、15-仪器电能传输接口、16-仪器安装架、17-基座上盖板、18-基座对接裙口、19-起吊环、20-液压支撑腿组件、21-基座电池组、22-基座控制舱、23-基座电能传输器、24-基座声学定位组件、25-基座框架、26-支撑腿、27-母船、61-水下摄像机、62-探照灯、201-液压缸、202-支腿、203-防沉座、204-铰链、241-声通讯猫、242-声通讯底板、243-声通讯压紧盖、244-内六角圆柱头螺钉、245-声通讯安装板。
具体实施方式
为能进一步了解本实用新型的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下:
如附图1至图8所示,一种深海多功能长期原位观测系统,包括母船27、吊放单元、仪器单元、原位基座;所述母船27通过绞车的铠装缆与所述吊放单元的铠装缆起吊转接件2连接;所述吊放单元的吊放对接裙口7能与所述仪器单元的顶部对接针10对接,所述吊放单元的抓紧组件8能抓取和释放仪器单元的顶部对接针10,实现吊放单元对仪器单元的抓取和释放;所述仪器单元的底部滑动对接件11能与所述原位基座的基座对接裙口18对接,实现仪器单元为原位观测基座充电用于数据采集、存储与传输。
所述铠装缆的一端与所述母船27的控制系统相连接,另一端与所述吊放单元的铠装缆起吊转接件2连接,实现电能供给和数据连接;所述铠装缆的中间部分缠绕在所述绞车上,所述绞车通过信号线与所述母船27的控制系统相连接,实现控制绞车收放,通过绞车带动铠装缆进一步带动吊放单元上下运动。
所述吊放单元包括吊放主框架1、铠装缆起吊转接件2、水平推进器3、竖直推进器4、吊放声学定位信标5、视觉定位组件6、吊放控制器9、用于对接仪器单元的吊放对接裙口7、抓紧组件8;所述铠装缆起吊转接件2的顶端与母船27的铠装缆固定连接,所述铠装缆起吊转接件2的底端与吊放主框架1的顶端通过铰链204转动连接;所述抓紧组件8通过螺栓与吊放主框架1的上端固定连接;所述吊放对接裙口7通过螺栓与吊放主框架1下端固定连接;所述水平推进器3通过螺栓与吊放主框架1定连接;所述竖直推进器4通过螺栓与吊放主框架1固定连接;所述吊放声学定位信标5、视觉定位组件6、吊放控制器9均通过螺栓与吊放主框架1固定连接;所述水平推进器3、竖直推进器4、吊放声学定位信标5、视觉定位组件6、抓紧组件8均与吊放控制器9相连接,所述吊放控制器9通过铠装缆与母船27的控制系统相连接。
其中,如图9所示,所述视觉定位组件6包括水下摄像机61和设置在水下摄像机61两侧的探照灯62,所述水下摄像机61和探照灯62通过安装座与吊放主框架1固定连接;所述水下摄像机61和探照灯62均与吊放控制器9相连接。
其中,所述抓紧组件8包括锁紧机构和与所述锁紧机构相连接、驱动所述锁 紧机构运动实现锁紧和放松动作的电机;所述电机与吊放控制器9相连接。
所述仪器单元包括仪器安装架16、用于对接吊放单元的顶部对接针10、用于对接原位基座的底部滑动对接件11、传感器组件12、仪器电池组13、仪器控制舱14、用于为原位基座充电的仪器电能传输接口15;所述顶部对接针10通过螺栓与仪器安装架16的上端固定连接;所述底部滑动对接件11通过螺栓与仪器安装架16的下端固定连接;所述传感器组件12通过螺栓与仪器安装架16固定连接;所述仪器电池组13和仪器控制舱14与仪器安装架16固定连接;所述仪器电能传输接口15与底部滑动对接件11的下端固定连接;所述传感器组件12、仪器电池组13、仪器电能传输接口15通过水密接插件与仪器控制舱14相连接。
其中,包括所述传感器组件12地磁日变站和重力仪,所述地磁日变站和重力仪与仪器控制舱14相连接。
所述原位基座包括基座框架25、基座上盖板17、用于对接仪器单元的基座对接裙口18、起吊环19、支撑腿26、液压支撑腿组件20、基座电池组21、基座控制舱22、基座电能传输器23、基座声学定位组件24;所述起吊环19通过螺栓与基座框架25固定连接;所述基座上盖板17通过螺栓与基座框架25固定连接;所述基座对接裙口18通过螺栓与基座框架25固定连接;所述支撑腿26与基座框架25底部的连接法兰固定连接;所述液压支撑腿组件20与基座框架25侧面的连接法兰固定连接;所述基座电池组21通过螺栓与基座框架25固定连接;所述基座控制舱22通过螺栓与基座框架25固定连接;所述基座电能传输器23通过螺栓与基座对接裙口18的下端固定连接;所述基座声学定位组件24通过螺栓与基座框架25固定连接;所述基座电池组21、基座电能传输器23、基座声学定位组件24通过水密接插件与基座控制舱22相连接。
其中,如图10所示,所述液压支撑腿组件20包括液压缸201、支腿202、防沉座203和铰链204;所述液压缸201一端通过法兰与基座框架25转动连接,另一端通过法兰与支腿202转动连接;所述支腿202一端通过法兰与铰链204固定连接,另一端通过法兰与防沉座203固定连接;所述铰链204远离支腿202的一端通过法兰与基座框架25固定连接;所述液压缸201通过水密电缆及水密接插件与基座控制舱22相连接,以实现基座控制舱22控制液压支撑腿组件20伸缩。
其中,如图11所示,所述基座声学定位组件24包括声通讯猫241、声通讯底板242、声通讯压紧盖243、内六角圆柱头螺钉244和声通讯安装板245;所述声通讯底板242与声通讯压紧盖243通过内六角圆柱头螺钉244固定连接,并将声通讯猫241通过上下两个凸台固定在声通讯底板242与声通讯压紧盖243之间;所述声通讯安装板245一面与声通讯底板242固定连接,另一面通过螺栓与基座框架25固定连接;所述声通讯猫241通过水密电缆及水密接插件与基座控制舱22相连接。
本发明深海多功能长期原位观测系统中的传感器组件12、仪器电池组13、仪器控制舱14、仪器电能传输接口15、基座控制舱22、基座电能传输器23以及基座电池组21均采用独立耐压密封结构,所述的耐压是指各组件在深海中能承受的最大压力为30MPa;所述传感器组件12、仪器电池组13、仪器电能传输接口15通过水密电缆及水密接插件与仪器控制舱14相连接,以实现电气连接;所述基座控制舱22、基座电能传输器23以及基座电池组21均采用独立耐压密封结构;所述基座电能传输器23、基座电池组21通过水密电缆及水密接插件与基座控制舱22相连接,以实现电气连接。各组件的独立密封结构能保证深海多功能长期原位观测系统的耐压性能,同时可以提高系统的可靠性。
本发明深海多功能长期原位观测系统的工作过程包括原位基座吊放、仪器单元布放和仪器单元回收三个工作过程,具体工作过程如下。
原位基座吊放过程:母船27将原位基座吊放到海底;当原位基座到达海底后,基座控制舱22控制液压支撑腿组件20由收缩状态变为支撑状态;由基座电池组21提供电能,基座控制舱22控制基座声学定位组件24启动。
仪器单元布放过程:吊放单元的吊放对接裙口7与仪器单元的顶部对接针10对接,吊放单元的抓紧组件8抓紧仪器单元顶部对接针10上端;母船27将对接好的吊放单元与仪器单元吊放入水;利用吊放单元的吊放声学定位信标5和原位基座的基座声学定位组件24进行低精度定位,然后利用吊放单元的水平推进器3和竖直推进器4带动对接好的吊放单元与仪器单元移动到原位基座附近;利用吊放单元的视觉定位组件6进行原位基座的高精度定位,然后利用吊放单元的水平推进器3和竖直推进器4带动对接好的吊放单元与仪器单元移动到原位基座上方;吊放单元与仪器单元向下移动,仪器单元的底部滑动对接件11与原位 基座的基座对接裙口18实现对接;仪器单元的仪器电池组13在仪器控制舱14控制下,通过仪器电能传输接口15和基座电能传输器23为基座电池组21充电;吊放单元的抓紧组件8释放,吊放单元上升;
仪器单元回收过程:母船27将吊放单元吊入水中;利用吊放单元的吊放声学定位信标5和原位基座的基座声学定位组件24进行低精度定位,然后利用吊放单元的水平推进器3和竖直推进器4带动吊放单元移动到原位基座附近;利用吊放单元的视觉定位组件6进行原位基座的高精度定位,然后利用吊放单元的水平推进器3和竖直推进器4带动吊放单元移动到原位基座上方;吊放单元向下移动,吊放单元的吊放对接裙口7与仪器单元的顶部对接针10对接,吊放单元的抓紧组件8抓紧仪器单元的顶部对接针10上端;母船27将对接好的吊放单元和仪器单元仪器起吊,仪器单元脱离原位基座。
尽管上面结合附图对本发明的优选实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,并不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可以做出很多形式,这些均属于本发明的保护范围之内。

Claims (12)

  1. 一种深海多功能长期原位观测系统,其特征在于,包括母船、吊放单元、仪器单元、原位基座;所述母船通过绞车的铠装缆与所述吊放单元的铠装缆起吊转接件连接;所述吊放单元的吊放对接裙口能与所述仪器单元的顶部对接针对接,所述吊放单元的抓紧组件能抓取和释放仪器单元的顶部对接针,实现吊放单元对仪器单元的抓取和释放;所述仪器单元的底部滑动对接件能与所述原位基座的基座对接裙口对接,实现仪器单元为原位观测基座充电用于数据采集、存储与传输。
  2. 根据权利要求1所述的一种深海多功能长期原位观测系统,其特征在于,所述铠装缆的一端与所述母船的控制系统相连接,另一端与所述吊放单元的铠装缆起吊转接件连接,实现电能供给和数据连接;所述铠装缆的中间部分缠绕在所述绞车上,所述绞车通过信号线与所述母船的控制系统相连接,实现控制绞车收放,通过绞车带动铠装缆进一步带动吊放单元上下运动。
  3. 根据权利要求1所述的一种深海多功能长期原位观测系统,其特征在于,所述吊放单元包括吊放主框架、铠装缆起吊转接件、水平推进器、竖直推进器、吊放声学定位信标、视觉定位组件、吊放控制器、用于对接仪器单元的吊放对接裙口、抓紧组件;所述铠装缆起吊转接件的顶端与母船的铠装缆固定连接,所述铠装缆起吊转接件的底端与吊放主框架的顶端通过铰链转动连接;所述抓紧组件通过螺栓与吊放主框架的上端固定连接;所述吊放对接裙口通过螺栓与吊放主框架下端固定连接;所述水平推进器通过螺栓与吊放主框架定连接;所述竖直推进器通过螺栓与吊放主框架固定连接;所述吊放声学定位信标、视觉定位组件、吊放控制器均通过螺栓与吊放主框架固定连接;所述水平推进器、竖直推进器、吊放声学定位信标、视觉定位组件、抓紧组件均与吊放控制器相连接,所述吊放控制器通过铠装缆与母船的控制系统相连接。
  4. 根据权利要求3所述的一种深海多功能长期原位观测系统,其特征在于,所述视觉定位组件包括水下摄像机和设置在水下摄像机两侧的探照灯,所述水下摄像机和探照灯通过安装座与吊放主框架固定连接;所述水下摄像机和探照灯均与吊放控制器相连接。
  5. 根据权利要求3所述的一种深海多功能长期原位观测系统,其特征在于, 所述抓紧组件包括锁紧机构和与所述锁紧机构相连接、驱动所述锁紧机构运动实现锁紧和放松动作的电机;所述电机与吊放控制器相连接。
  6. 根据权利要求1所述的一种深海多功能长期原位观测系统,其特征在于,所述仪器单元包括仪器安装架、用于对接吊放单元的顶部对接针、用于对接原位基座的底部滑动对接件、传感器组件、仪器电池组、仪器控制舱、用于为原位基座充电的仪器电能传输接口;所述顶部对接针通过螺栓与仪器安装架的上端固定连接;所述底部滑动对接件通过螺栓与仪器安装架的下端固定连接;所述传感器组件通过螺栓与仪器安装架固定连接;所述仪器电池组和仪器控制舱与仪器安装架固定连接;所述仪器电能传输接口与底部滑动对接件的下端固定连接;所述传感器组件、仪器电池组、仪器电能传输接口通过水密接插件与仪器控制舱相连接。
  7. 根据权利要求6所述的一种深海多功能长期原位观测系统,其特征在于,包括所述传感器组件地磁日变站和重力仪,所述地磁日变站和重力仪与仪器控制舱相连接。
  8. 根据权利要求6所述的一种深海多功能长期原位观测系统,其特征在于,所述传感器组件、仪器电池组、仪器控制舱、仪器电能传输接口均采用独立耐压密封结构;所述传感器组件、仪器电池组、仪器电能传输接口通过水密电缆及水密接插件与仪器控制舱相连接,以实现电气连接。
  9. 根据权利要求1所述的一种深海多功能长期原位观测系统,其特征在于,所述原位基座包括基座框架、基座上盖板、用于对接仪器单元的基座对接裙口、起吊环、支撑腿、液压支撑腿组件、基座电池组、基座控制舱、基座电能传输器、基座声学定位组件;所述起吊环通过螺栓与基座框架固定连接;所述基座上盖板通过螺栓与基座框架固定连接;所述基座对接裙口通过螺栓与基座框架固定连接;所述支撑腿与基座框架底部的连接法兰固定连接;所述液压支撑腿组件与基座框架侧面的连接法兰固定连接;所述基座电池组通过螺栓与基座框架固定连接;所述基座控制舱通过螺栓与基座框架固定连接;所述基座电能传输器通过螺栓与基座对接裙口的下端固定连接;所述基座声学定位组件通过螺栓与基座框架固定连接;所述基座电池组、基座电能传输器、基座声学定位组件通过水密接插件与基座控制舱相连接。
  10. 根据权利要求9所述的一种深海多功能长期原位观测系统,其特征在于, 所述液压支撑腿组件液压缸、支腿、防沉座和铰链;所述液压缸一端通过法兰与基座框架转动连接,另一端通过法兰与支腿转动连接;所述支腿一端通过法兰与铰链固定连接,另一端通过法兰与防沉座固定连接;所述铰链远离支腿的一端通过法兰与基座框架固定连接;所述液压缸通过水密电缆及水密接插件与基座控制舱相连接,以实现基座控制舱控制液压支撑腿组件伸缩。
  11. 根据权利要求9所述的一种深海多功能长期原位观测系统,其特征在于,所述基座声学定位组件包括声通讯猫、声通讯底板、声通讯压紧盖、内六角圆柱头螺钉和声通讯安装板;所述声通讯底板与声通讯压紧盖通过内六角圆柱头螺钉固定连接,并将声通讯猫通过上下两个凸台固定在声通讯底板与声通讯压紧盖之间;所述声通讯安装板一面与声通讯底板固定连接,另一面通过螺栓与基座框架固定连接;所述声通讯猫通过水密电缆及水密接插件与基座控制舱相连接。
  12. 根据权利要求9所述的一种深海多功能长期原位观测系统,其特征在于,所述基座控制舱、基座电能传输器以及基座电池组均采用独立耐压密封结构;所述基座电能传输器、基座电池组通过水密电缆及水密接插件与基座控制舱相连接,以实现电气连接。
PCT/CN2018/084567 2018-02-27 2018-04-26 一种深海多功能长期原位观测系统 WO2019165696A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810162306.5 2018-02-27
CN201810162306.5A CN108248777A (zh) 2018-02-27 2018-02-27 一种深海多功能长期原位观测系统

Publications (1)

Publication Number Publication Date
WO2019165696A1 true WO2019165696A1 (zh) 2019-09-06

Family

ID=62745361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084567 WO2019165696A1 (zh) 2018-02-27 2018-04-26 一种深海多功能长期原位观测系统

Country Status (2)

Country Link
CN (1) CN108248777A (zh)
WO (1) WO2019165696A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111142113A (zh) * 2020-01-08 2020-05-12 青岛深海云海洋科技有限公司 一种实时化深海逆式回声观测系统
US20210208297A1 (en) * 2020-01-08 2021-07-08 Ocean University Of China Five-component marine natural gas hydrate intelligent sensing node
CN114966881A (zh) * 2022-03-28 2022-08-30 杭州大祉机电有限公司 深海智能式抓斗
CN117288155A (zh) * 2023-10-11 2023-12-26 中国海洋大学 一种基于海床滑动过程原位观测设备的工作方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108854541B (zh) * 2018-07-27 2021-03-26 中国科学院海洋研究所 多层多级原位高通量过滤系统
CN110967061A (zh) * 2018-09-28 2020-04-07 安星航海洋科技(天津)有限公司 用于深海智能布放观测系统的原位重力舱
CN110963009A (zh) * 2018-09-28 2020-04-07 安星航海洋科技(天津)有限公司 深海智能布放观测系统
CN110967062A (zh) * 2018-09-28 2020-04-07 安星航海洋科技(天津)有限公司 用于深海智能布放观测系统的科学仪器舱
CN109856659B (zh) * 2019-01-21 2021-02-12 同济大学 海床基定位授时与数据回收系统及方法
CN110515137B (zh) * 2019-08-28 2021-02-19 自然资源部第一海洋研究所 一种海底环境探测预测用观测仪器定位作业装置
CN111913228A (zh) * 2019-09-12 2020-11-10 青岛海洋地质研究所 海洋地磁日变观测系统
CN110712719B (zh) * 2019-09-28 2024-07-02 广州欧纳电子科技有限公司 基于海底观测网的实时传输潜标系统
CN110926458A (zh) * 2019-09-30 2020-03-27 天津大学 一种可实现精准、原位观测且可重复布放回收的海床基
CN112987102A (zh) * 2019-12-13 2021-06-18 中国科学院深圳先进技术研究院 一种天然气水合物贮层地质条件原位监测系统
CN111121730B (zh) * 2020-02-25 2022-05-17 中国海洋大学 适用于浅水粘性海床的底边界层原位观测系统与其布设方法
CN112034123B (zh) * 2020-10-21 2022-08-30 宋兴伟 环境监控处理系统及方法
CN113055440B (zh) * 2021-02-08 2022-01-07 汕头大学 一种基于传感网络的水底监测控制方法及系统
CN114954791B (zh) * 2022-07-28 2022-11-18 广州至远海洋科技有限公司 一种新型浅海透水构筑监测平台
CN115268179B (zh) * 2022-09-23 2024-02-20 三亚深海科学与工程研究所 一种深海长期定时光学观测系统及其原位观测方法
CN115432147A (zh) * 2022-11-08 2022-12-06 杭州瀚陆海洋科技有限公司 一种深海智能作业设备
CN115807834B (zh) * 2023-02-06 2023-06-09 天津大学 减震式海底基准站

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2188729A (en) * 1986-03-31 1987-10-07 Atlantic Richfield Co Base plate locator for seismic source
US4967870A (en) * 1989-01-09 1990-11-06 Atlantic Richfield Company Alignment restoration means for use in seismic apparatus
CN102298164A (zh) * 2010-05-19 2011-12-28 中国人民解放军海军通信应用研究所 一种海底地质调查装置
CN203705664U (zh) * 2013-08-21 2014-07-09 国家海洋局第二海洋研究所 一种海底地球物理观测装置
CN106405656A (zh) * 2015-12-17 2017-02-15 国家海洋局第海洋研究所 一种海底坐底式测量设备触底过程的组合判别方法及装置
CN107010186A (zh) * 2017-03-24 2017-08-04 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 一种深海高压开式维修装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145733A (ja) * 1994-11-25 1996-06-07 Sumitomo Electric Ind Ltd 無人潜水機システム
EP1568600B1 (fr) * 2004-02-26 2010-12-01 Saipem SA Dispositif et procédé d'ancrage d'une embase sur une paroi au fond de la mer
CN102139750B (zh) * 2011-04-08 2013-07-10 中国船舶重工集团公司第七○二研究所 水下吊物装置
GB2504685A (en) * 2012-08-05 2014-02-12 North Sea Services Ltd Environmental survey apparatus incorporating a buoy and mooring mounted sensors
AU2014224153B8 (en) * 2014-07-09 2015-07-02 Woodside Energy Technologies Pty Ltd System and method for heading control of a floating lng vessel using a set of real-time monitored hull integrity data
CN204373651U (zh) * 2014-12-26 2015-06-03 中国海洋大学 一种海洋环境剖面观测系统
CN106814408A (zh) * 2017-01-12 2017-06-09 浙江大学 基于rov平台的水下文物集成探测装置
CN106841311B (zh) * 2017-01-18 2017-09-22 青岛海洋地质研究所 一种海床基多点原位长期观测系统
CN208181363U (zh) * 2018-02-27 2018-12-04 天津大学 一种深海多功能长期原位观测系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2188729A (en) * 1986-03-31 1987-10-07 Atlantic Richfield Co Base plate locator for seismic source
US4967870A (en) * 1989-01-09 1990-11-06 Atlantic Richfield Company Alignment restoration means for use in seismic apparatus
CN102298164A (zh) * 2010-05-19 2011-12-28 中国人民解放军海军通信应用研究所 一种海底地质调查装置
CN203705664U (zh) * 2013-08-21 2014-07-09 国家海洋局第二海洋研究所 一种海底地球物理观测装置
CN106405656A (zh) * 2015-12-17 2017-02-15 国家海洋局第海洋研究所 一种海底坐底式测量设备触底过程的组合判别方法及装置
CN107010186A (zh) * 2017-03-24 2017-08-04 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 一种深海高压开式维修装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111142113A (zh) * 2020-01-08 2020-05-12 青岛深海云海洋科技有限公司 一种实时化深海逆式回声观测系统
US20210208297A1 (en) * 2020-01-08 2021-07-08 Ocean University Of China Five-component marine natural gas hydrate intelligent sensing node
US11774617B2 (en) * 2020-01-08 2023-10-03 Ocean University Of China Five-component marine natural gas hydrate intelligent sensing node
CN114966881A (zh) * 2022-03-28 2022-08-30 杭州大祉机电有限公司 深海智能式抓斗
CN117288155A (zh) * 2023-10-11 2023-12-26 中国海洋大学 一种基于海床滑动过程原位观测设备的工作方法
CN117288155B (zh) * 2023-10-11 2024-04-26 中国海洋大学 一种基于海床滑动过程原位观测设备的工作方法

Also Published As

Publication number Publication date
CN108248777A (zh) 2018-07-06

Similar Documents

Publication Publication Date Title
WO2019165696A1 (zh) 一种深海多功能长期原位观测系统
CN108045532B (zh) 一种水下电动机械臂作业吊舱及使用方法
CN103183113B (zh) 一种水下机器人回收系统及其回收方法
CN104776834B (zh) 一种深海底孔隙水压力长期观测自动布放系统与方法
US9145761B2 (en) Subsea well intervention module
CN102139750B (zh) 水下吊物装置
JP2022500330A (ja) クレーンのシステムおよび交換可能工具
CN111874168A (zh) 一种移动式无缆水下机器人布放、回收及充电装置
CN110682999B (zh) Auv自动布放回收装置
CN104792452B (zh) 一种自动升降的无缆式深海底孔隙水压力长期观测装置
CN110949159B (zh) 一种充换电一体的自动岸电配套装置
CN108502110B (zh) 落管抛石船
CN203705664U (zh) 一种海底地球物理观测装置
CN104512534A (zh) 一种海底观测网主接驳盒结构
CN115783143A (zh) 一种新型船用机械臂止荡设备
CN116001988A (zh) 一种用于水下滑翔机的布放回收系统及其布放、回收方法
WO2017088467A1 (zh) 一种深水可视化可控夯击实验工作平台
CN108266604A (zh) 一种深海原位观测基座
CN208181363U (zh) 一种深海多功能长期原位观测系统
CN108680378A (zh) 一种深海可移动电视抓斗
CN115586586B (zh) 一种海洋沉积物原位观测探杆的静力贯入装置及方法
CN103399359A (zh) 一种海底地球物理观测装置
CN201179970Y (zh) 可拆式缆控深潜器导接头
CN208185750U (zh) 一种深海原位观测基座
CN115871867A (zh) 一种适应水下复杂工作环境的检测和辅助作业机器人装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908154

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/01/2021)