WO2019165694A1 - 动磁式线性振动电机 - Google Patents

动磁式线性振动电机 Download PDF

Info

Publication number
WO2019165694A1
WO2019165694A1 PCT/CN2018/084444 CN2018084444W WO2019165694A1 WO 2019165694 A1 WO2019165694 A1 WO 2019165694A1 CN 2018084444 W CN2018084444 W CN 2018084444W WO 2019165694 A1 WO2019165694 A1 WO 2019165694A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration motor
linear vibration
magnet
elastic members
mass
Prior art date
Application number
PCT/CN2018/084444
Other languages
English (en)
French (fr)
Inventor
金士特
南旭
Original Assignee
金龙机电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金龙机电股份有限公司 filed Critical 金龙机电股份有限公司
Priority to JP2018536824A priority Critical patent/JP2020511912A/ja
Priority to US16/072,478 priority patent/US11916457B2/en
Publication of WO2019165694A1 publication Critical patent/WO2019165694A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/02Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • H02K7/065Electromechanical oscillators; Vibrating magnetic drives

Definitions

  • the invention relates to the technical field of vibration motors, in particular to a moving magnetic linear vibration motor.
  • the existing linear vibration motor generally includes a housing, a stator assembly and a vibrator assembly, and realizes linear vibration by reciprocating motion of the vibrator assembly.
  • the existing linear vibration motor usually vibrates in one direction in the vibrator assembly, and cannot satisfy vibration in multiple directions. demand.
  • the technical problem to be solved by the present invention is to overcome the drawback that the linear vibration motor of the prior art is generally unidirectional vibration, thereby providing a moving magnetic linear vibration motor that can vibrate in two directions.
  • the invention provides a moving magnetic linear vibration motor, comprising:
  • the elastic member has two oppositely connected to the side wall of the casing;
  • a magnet having two ends fixedly connected to the two ends of the mass, the magnets being connected to the centers of the two elastic members at an acute angle or an obtuse angle;
  • the coil has two wires respectively fixed to the housing at intervals from the corresponding magnets, and the coils are connected at an acute or obtuse angle to the centers of the two elastic members.
  • the two elastic members are equal in size, and the relative positions of the two elastic members are such that the mass can linearly reciprocate between the two elastic members.
  • the magnet is parallel to the coil.
  • the angle formed by the magnet and the center line of the two elastic members is equal to the angle formed by the coil and the center line of the two elastic members.
  • the two coils are subjected to the same Lorentz force direction.
  • One of the magnets has an N pole at the top end in the oblique direction and an S pole at the bottom end; the other end of the magnet has an S pole at the top end and an N pole at the bottom end; the current in the two coils The direction is the same.
  • the magnet is a Halbach structure magnet assembly with a strong face of the magnet assembly facing the coil.
  • the system of the elastic member and the mass has a first-order mode moving in the direction of the center line of the two elastic members, and another movement in a direction perpendicular to the center line of the two elastic members
  • the modal mode; the mass and the magnet vibrate in a direction corresponding to the first-order mode in which the frequency is closer to the driving force frequency in the second-order mode.
  • the elastic member includes:
  • the spring piece structure comprises at least three elastic pieces, and the adjacent two of the elastic pieces are connected to each other at an angle;
  • a plurality of stoppers are disposed on the elastic piece, and the elastic member is respectively in contact with the mass and the housing through the stopper.
  • the housing includes:
  • Shell body U-shaped, with a top opening
  • top plate covering the top opening and cooperating with the shell body to form the receiving space
  • the side plates are provided at two ends of the shell body, and each of the side plates is respectively fixed with a corresponding coil.
  • the moving magnetic linear vibration motor provided by the present invention further comprises two support blocks respectively connected to the two ends of the mass, and the support block is provided with a mounting cavity adapted to be embedded in the corresponding magnet.
  • the moving magnetic linear vibration motor provided by the present invention further includes a magnetic conductive plate corresponding to the number of the supporting blocks, and the magnetic conductive plate is connected to a side of the corresponding supporting block close to the mass.
  • An acute angle or an obtuse angle a coil having two, respectively fixed to the housing at a distance from the corresponding magnet, the coil being connected to the center of the two elastic members at an acute or obtuse angle.
  • the Lorent received by the coil The force is decomposed into a component of the first direction of the center line of the two elastic members, and a component of force in a second direction perpendicular to the center line of the two elastic members, that is, the Lorent of the coil
  • the force can be decomposed into two directions of force perpendicular to each other, and the magnet is correspondingly subjected to two forces equal in magnitude and opposite in direction to the two components of the Lorentz force of the coil, thereby including the magnet and the mass
  • the vibrator assembly can vibrate in two directions perpendicular to each other.
  • the moving magnetic linear vibration motor provided by the present invention, the magnet being parallel to the coil, so that the magnetic field strength is stronger, thereby providing a larger driving force for the vibrator assembly including the magnet and the mass, so that Stronger vibration.
  • the moving magnetic linear vibration motor provided by the present invention, the magnet is a Halbach structure magnetic steel assembly, and the strong surface of the magnetic steel assembly is disposed toward the coil, so that the magnetic field strength is stronger, thereby being a vibrator Components provide greater drive.
  • the elastic member comprises: a spring piece structure comprising at least three elastic pieces, and two adjacent elastic pieces are connected to each other at an angle; the stopper has a plurality of Provided on the elastic piece, the elastic member is respectively in contact with the mass and the housing through the stopper.
  • the spring leaf structure, the spring leaf structure, and the mass-constituting system can have the required two-direction modes, so that the vibrator assembly can be controlled by controlling the frequency of the driving force to be close to the frequency of one of the modes. Switch between two mutually perpendicular vibration directions.
  • the setting of the stopper enables the spring piece structure to make more stable contact with the mass and the casing.
  • the moving magnetic linear vibration motor provided by the present invention further comprises two support blocks respectively connected to the two ends of the mass block, and the support block is provided with a mounting cavity adapted to be embedded in the corresponding magnet. Since the magnet is embedded in the mounting cavity, the magnet can be effectively prevented from coming out of the mounting cavity, so that the mounting of the magnet is more stable, thereby improving the stability of the vibration of the vibrator assembly; meanwhile, the setting of the supporting block can be The inventive moving magnetic linear vibration motor first collides with the housing when it is dropped, thereby protecting the magnet and other components.
  • the moving magnetic linear vibration motor provided by the present invention further comprises a magnetic conductive plate having the same number of the supporting blocks, the magnetic conductive plate being connected to a side of the corresponding supporting block close to the mass.
  • the magnetic conductive plate can straighten the magnetic induction line of the magnet, so that more magnetic sensing lines enter and exit the coil vertically, thereby providing a larger driving force for the vibrator assembly.
  • FIG. 1 is a perspective exploded view of a moving magnetic linear vibration motor provided in a first embodiment of the present invention
  • FIG. 2 is a schematic view showing the force analysis of the coil of the moving magnetic linear vibration motor shown in FIG. 1;
  • FIG. 3 is a perspective exploded view of the vibrator assembly of the moving magnetic linear vibration motor shown in FIG. 1;
  • FIG. 4 is a schematic structural view of a casing and a coil portion of the moving magnetic linear vibration motor shown in FIG. 1;
  • the present embodiment provides a moving magnetic linear vibration motor including a housing, an elastic member 2, a mass 3, a magnet 4, and a coil 5.
  • the housing has a receiving space 10.
  • the elastic member 2 has two oppositely connected to the side wall of the casing.
  • the mass 3 is connected to the two elastic members 2 by a peripheral wall and suspended in the accommodating space 10 of the casing.
  • the magnet 4 has two, fixedly connected to the two ends of the mass 3, respectively, and the magnet 4 is connected to the center of the two elastic members 2 at an acute or obtuse angle.
  • the coil 5 has two bodies which are respectively fixed to the housing at intervals from the corresponding magnets 4.
  • the coils 5 are connected at an acute or obtuse angle to the centers of the two elastic members 2.
  • the X direction is in the direction in which the length of the mass 3 extends
  • the Y direction is on the center line of the two elastic members 2
  • the Z direction is a direction perpendicular to both the Y direction and the X direction.
  • the coil 5 can be made by connecting the magnet 4 to the center of the two elastic members 2 at an acute or obtuse angle while simultaneously connecting the coil 5 with the centers of the two elastic members 2 at an acute or obtuse angle.
  • the Lorentz force received is decomposed into the component forces of the first direction of the center line of the two elastic members 2 (ie, the Y direction in FIG.
  • the component of the second direction of the line i.e., the Z direction in Fig. 1
  • the Lorentz force received by the coil 5 can be decomposed into component forces in two directions perpendicular to each other, and the magnet 4 is correspondingly received by the coil 5
  • the two forces of the Lorentz force are equal in magnitude and opposite in direction, so that the vibrator assembly including the magnet 4 and the mass 3 can vibrate in two directions perpendicular to each other.
  • the two elastic members 2 are equal in size, and the relative positions of the two elastic members 2 are such that the mass 3 can linearly reciprocate between the two elastic members 2, in this embodiment.
  • the relative positions of the two elastic members 2 are satisfied, and the center lines of the two elastic members 2 are parallel to the cross section of the mass 3, specifically, the centers of the two elastic members 2 and the mass The center of 3 is collinear.
  • the magnet 4 is parallel to the coil 5, and an angle formed by a length direction of the magnet 4 and a center line of the two elastic members 2, and the coil 5 and the two elastic members 2 The angles formed by the center connections are equal. This makes the magnetic field stronger, thereby providing a larger driving force for the vibrator assembly including the magnet 4 and the mass 3, giving it a stronger vibration.
  • the two coils 5 are subjected to the same Lorentz force direction.
  • one of the magnets 4 is in an oblique direction (i.e., the center of the magnet 4 with respect to the two of the elastic members 2)
  • the top end of the line is inclined to the N pole and the bottom end is the S pole;
  • the other of the magnets 4 has an S pole at the top end and an N pole at the bottom end; the current in the two coils 5
  • the direction is the same.
  • the magnet 4 in this embodiment is a Halbach structure magnetic steel assembly, and the strong surface of the magnetic steel assembly is disposed toward the coil 5.
  • the magnetic steel assembly is constructed of three magnetic steel.
  • the magnetic steel component can also be constructed of five magnetic steel.
  • the system of the elastic member 2 and the mass 3 has a first-order mode moving along the center line direction of the two elastic members 2, that is, a first-order mode, and along the two elastic states
  • the second-order mode of the vertical movement of the center line of the piece 2 is the second-order mode;
  • the mass 3 and the magnet 4 are along the first-order mode of the two-order mode which is closer to the driving force frequency.
  • the driving force frequency refers to the output frequency of the driving device that supplies power to the coil 5.
  • the vibrator assembly is mainly embodied as the center of the two elastic members 2
  • the direction of motion of the connection when the frequency of the driving force is closer to the frequency of the second-order mode relative to the frequency of the first-order mode, the second-order mode of the spring is excited, so that the vibrator component is mainly embodied as two
  • the center line of the elastic member 2 is moved in a vertical direction, so that the vibrator assembly can be switched between two mutually perpendicular vibration directions by controlling the frequency of the driving force to be close to the frequency of one of the modes.
  • the elastic member 2 may have a plurality of specific structural forms.
  • the elastic member 2 includes a spring piece structure and a stopper 22.
  • the spring piece structure comprises three elastic pieces 21, and the two adjacent elastic pieces 21 are connected to each other at an angle, that is, the spring piece is N-shaped.
  • the spring leaf structure can have a two-order mode so that the vibrator assembly can be switched between two mutually perpendicular vibration directions by controlling the frequency of the driving force to be close to the frequency of one of the modes.
  • the three elastic pieces are connected in an integrally formed manner.
  • the leaf spring structure may include four or more spring pieces 21, and when the spring piece structure includes four elastic pieces 21, the spring piece structure is W-shaped.
  • a plurality of the stoppers 22 are disposed on the elastic piece 21, and at least one stopper 22 is disposed on the elastic piece 21 adjacent to the mass 3 for contacting the mass 3, and at least one stopper 22 is provided.
  • the housing includes a case body 11, a top plate 12, and a side plate 13.
  • the casing body 11 is U-shaped and has a top opening 111.
  • the top plate 12 covers the top opening 111 and cooperates with the case body 11 to form the receiving space 10.
  • the side plates 13 are respectively disposed at two ends of the casing body 11, and each of the side plates 13 is respectively fixed with a corresponding coil 5.
  • the moving magnetic linear vibration motor of the embodiment further includes two supporting blocks 6 respectively connected to the two ends of the mass 3, and a magnetic conductive plate 7 corresponding to the number of the supporting blocks 6.
  • the support block 6 is provided with a mounting cavity 61 adapted to be embedded in the corresponding magnet 4 . Since the magnet 4 is embedded in the mounting cavity 61, the magnet 4 can be effectively prevented from coming out of the mounting cavity 61, so that the mounting of the magnet 4 is more stable, thereby improving the stability of vibration of the vibrator assembly; meanwhile, the support block 6
  • the arrangement can be used to protect the magnet 4 and other components when the moving magnetic linear vibration motor of the embodiment is dropped.
  • the magnetic conductive plate 7 is connected to a side of the corresponding support block 6 close to the mass 3 .
  • the magnetic conductive plate 7 can straighten the magnetic induction line of the magnet 4, so that more magnetic sensing lines enter and exit the coil 5 vertically, thereby providing a larger driving force for the vibrator assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

一种动磁式线性振动电机,包括:壳体,具有容纳空间(10);弹性件(2),具有两个,相对地连接于壳体的侧壁上;质量块(3),通过周壁与两个弹性件(2)分别连接悬挂在壳体的容纳空间(10)内;磁体(4),具有两个,分别固定连接于质量块(3)的两端,磁体(4)与两个弹性件(2)的中心连线成锐角或钝角;线圈(5),具有两个,分别与对应的磁体(4)间隔地固定在壳体上,线圈(5)与两个弹性件(2)的中心连线成锐角或钝角。该电机可以使线圈(5)所受到的洛伦兹力分解为两个弹性件(2)的中心连线的第一方向的分力,及垂直于两个弹性件(2)的中心连线的第二方向的分力,磁体(4)相应地受到与线圈(5)所受到洛伦兹力的两个分力大小相等、方向相反的两个作用力,从而使包括磁体(4)和质量块(3)的振子组件可以在互相垂直的两个方向的振动。

Description

动磁式线性振动电机 技术领域
本发明涉及振动电机技术领域,具体涉及一种动磁式线性振动电机。
背景技术
近年来,微型水平线性振动电机开始应用于可穿戴设备,手机等领域,并在客户端取得了良好的反馈。这种电机具有振感清晰、振感强、多种信号的快速响应、逼真场景触觉反馈等优点。随着这种良好的体验被广泛认可,不止手机,可穿戴设备公司采用线性马达,还有汽车触控屏幕,便携式掌上游戏机也表现出了浓厚的兴趣。
现有的线性振动电机一般包括壳体、定子组件和振子组件,通过振子组件的往复运动来实现线性振动,但是现有的线性振动电机通常是振子组件单方向振动,无法满足对多方向振动的需求。
发明内容
因此,本发明要解决的技术问题在于克服现有技术中的线性振动电机通常为单方向振动的缺陷,从而提供一种可以在两个方向振动的动磁式线性振动电机。
本发明提供一种动磁式线性振动电机,包括:
壳体,具有容纳空间;
弹性件,具有两个,相对地连接于所述壳体的侧壁上;
质量块,通过周壁与两个所述弹性件分别连接悬挂在所述壳体的容纳空间内;
磁体,具有两个,分别固定连接于所述质量块的两端,所述磁体与两个所述弹性件的中心连线成锐角或钝角;
线圈,具有两个,分别与对应的所述磁体间隔地固定在所述壳体上,所述线圈与两个所述弹性件的中心连线成锐角或钝角。
两个所述弹性件的大小相等,且两个所述弹性件的相对位置满足能够使所述质量块在两个所述弹性件之间做线性往复运动。
所述磁体与所述线圈平行。
所述磁体与两个所述弹性件的中心连线所成的角度,与所述线圈与两个所述弹性件的中心连线所成的角度相等。
两个线圈所受的洛伦兹力方向相同。
其中一个所述磁体在倾斜方向上的顶端为N极,底端为S极;另一个所述磁体在倾斜方向上的顶端为S极,底端为N极;两个所述线圈中的电流方向一致。
所述磁体为海尔贝克结构磁钢组件,所述磁钢组件的强面朝向所述线圈设置。
所述弹性件与所述质量块构成的系统具有沿两个所述弹性件中心连线方向运动的一阶模态,及沿与两个所述弹性件中心连线垂直的方向运动的另一阶模态;质量块和磁体会沿着两阶模态中频率更接近驱动力频率的那一阶模态所对应的方向振动。
所述弹性件包括:
弹簧片结构,包括至少三个弹片,相邻的两个所述弹片之间互成角度连接;
挡块,具有多个,设于所述弹片上,所述弹性件通过所述挡块与所述质量块及所述壳体分别接触。
所述壳体包括:
壳本体,呈U型,具有顶部开口;
顶板,覆盖于所述顶部开口处,并与所述壳本体配合形成所述容纳空间;
侧板,具有两个,分别设于所述壳本体的两端,每个所述侧板上分别固定有一个对应的所述线圈。
本发明提供的动磁式线性振动电机,还包括两个分别连接于所述质量块两端的支撑块,所述支撑块上设有适于嵌入安装对应的所述磁体的安装腔。
本发明提供的动磁式线性振动电机,还包括与所述支撑块数量一致的导磁板,所述导磁板连接于对应的所述支撑块靠近所述质量块的一侧。
本发明技术方案,具有如下优点:
1.本发明提供的动磁式线性振动电机,包括:壳体,具有容纳空间;弹性件,具有两个,相对地连接于所述壳体的侧壁上;质量块,通过周壁与两个所述弹性件分别连接悬挂在所述壳体的容纳空间内;磁体,具有两个,分别固定连接于所述质量块的两端,所述磁体与两个所述弹性件的中心连线成锐角或钝角;线圈,具有两个,分别与对应的所述磁体间隔地固 定在所述壳体上,所述线圈与两个所述弹性件的中心连线成锐角或钝角。通过使所述磁体与两个所述弹性件的中心连线成锐角或钝角,同时使所述线圈与两个所述弹性件的中心连线成锐角或钝角,可以使线圈所受到的洛伦兹力分解为两个所述弹性件的中心连线的第一方向的分力,及垂直于两个所述弹性件的中心连线的第二方向的分力,即线圈所受的洛伦兹力可以分解为互相垂直的两个方向的分力,磁体相应地受到与线圈所受到洛伦兹力的两个分力大小相等、方向相反的两个作用力,从而使包括磁体和质量块的振子组件可以在互相垂直的两个方向的振动。
2.本发明提供的动磁式线性振动电机,所述磁体与所述线圈平行,这样可以使磁场强度更强,从而为包括磁体和质量块的振子组件提供较大的驱动力,使其具有更强的振感。
3.本发明提供的动磁式线性振动电机,所述磁体为海尔贝克结构磁钢组件,所述磁钢组件的强面朝向所述线圈设置,这样也可以使磁场强度更强,从而为振子组件提供更大的驱动力。
4.本发明提供的动磁式线性振动电机,所述弹性件包括:弹簧片结构,包括至少三个弹片,相邻的两个所述弹片之间互成角度连接;挡块,具有多个,设于所述弹片上,所述弹性件通过所述挡块与所述质量块及所述壳体分别接触。这种弹簧片结构,这种弹簧片结构,与质量块构成的系统可以具有所需要的两个方向的模态,从而可以通过控制驱动力频率与其中一个模态的频率接近,来使振子组件在两个互相垂直的振动方向之间切换。同时,挡块的设置,可以使弹簧片结构与质量块及壳体进行更稳固的接触。
5.本发明提供的动磁式线性振动电机,还包括两个分别连接于所述质 量块两端的支撑块,所述支撑块上设有适于嵌入安装对应的所述磁体的安装腔。由于磁体嵌入安装于所述安装腔中,可以有效防止磁体从安装腔中脱出,使磁体的安装更稳固,从而提高了振子组件振动的稳定性;同时,所述支撑块的设置,可以在本发明的动磁式线性振动电机跌落时先碰撞壳体,从而保护磁体和其他零部件。
6.本发明提供的动磁式线性振动电机,还包括与所述支撑块数量一致的导磁板,所述导磁板连接于对应的所述支撑块靠近所述质量块的一侧。导磁板可以使磁体的磁感线拉直,使更多的磁感线垂直进出线圈,从而为振子组件提供更大的驱动力。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的第一种实施方式中提供的动磁式线性振动电机的立体分解示意图;
图2为图1所示的动磁式线性振动电机的线圈的受力分析示意图;
图3为图1所示的动磁式线性振动电机的振子组件的立体分解示意图;
图4为图1所示的动磁式线性振动电机的壳体及线圈部分的结构示意图;
附图标记说明:
10-容纳空间,11-壳本体,111-顶部开口,12-顶板,13-侧板,2-弹性件,21-弹片,22-挡块,3-质量块,4-磁体,5-线圈,6-支撑块,61-安装腔,7-导磁板。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
如图1-图3所示,本实施例提供一种动磁式线性振动电机,包括壳体、弹性件2、质量块3、磁体4和线圈5。
壳体具有容纳空间10。
弹性件2具有两个,相对地连接于所述壳体的侧壁上。
质量块3通过周壁与两个所述弹性件2分别连接悬挂在所述壳体的容纳空间10内。
磁体4具有两个,分别固定连接于所述质量块3的两端,所述磁体4与两个所述弹性件2的中心连线成锐角或钝角。
线圈5具有两个,分别与对应的所述磁体4间隔地固定在所述壳体上,所述线圈5与两个所述弹性件2的中心连线成锐角或钝角。
在图1和图2中,X方向在质量块3的长度延伸方向上,Y方向在两个所述弹性件2的中心连线上,Z方向为同时垂直于Y方向和X方向的方向。通过使所述磁体4与两个所述弹性件2的中心连线成锐角或钝角,同时使所述线圈5与两个所述弹性件2的中心连线成锐角或钝角,可以使线圈5所受到的洛伦兹力分解为两个所述弹性件2的中心连线的第一方向(即图1中的Y方向)的分力,及垂直于两个所述弹性件2的中心连线的第二方向(即图1中的Z方向)的分力,即线圈5所受的洛伦兹力可以分解为互相垂直的两个方向的分力,磁体4相应地受到与线圈5所受到洛伦兹力的两个分力大小相等、方向相反的两个作用力,从而使包括磁体4和质量块3的振子组件可以在互相垂直的两个方向的振动。
两个所述弹性件2的大小相等,且两个所述弹性件2的相对位置满足能够使所述质量块3在两个所述弹性件2之间做线性往复运动,在本实施例中,两个所述弹性件2的相对位置满足,两个所述弹性件2的中心连线与质量块3的横截面平行,具体地,两个所述弹性件2的中心与所述质量块3的中心共线。
所述磁体4与所述线圈5平行,且所述磁体4的长度方向与两个所述弹性件2的中心连线所成的角度,与所述线圈5与两个所述弹性件2的中心连线所成的角度相等。这样可以使磁场强度更强,从而为包括磁体4和质量块3的振子组件提供较大的驱动力,使其具有更强的振感。
为了使振子组件的运动保持平衡,两个线圈5所受的洛伦兹力方向相同。
实现两个线圈5所受的洛伦兹力方向相同的方式有多种,在本实施例 中,其中一个所述磁体4在倾斜方向(即磁体4相对于两个所述弹性件2的中心连线倾斜的方向)上的顶端为N极,底端为S极;另一个所述磁体4在倾斜方向上的顶端为S极,底端为N极;两个所述线圈5中的电流方向一致。
为了使磁场强度更强,从而为振子组件提供更大的驱动力,本实施例中的所述磁体4为海尔贝克结构磁钢组件,所述磁钢组件的强面朝向所述线圈5设置。在本实施例中,磁钢组件为三磁钢构成。作为可变换的实施方式,磁钢组件也可以为五磁钢构成。
所述弹性件2与所述质量块3构成的系统,具有沿两个所述弹性件2中心连线方向运动的一阶模态,即第一阶模态,及沿与两个所述弹性件2中心连线垂直的方向运动的另一阶模态,即第二阶模态;质量块3和磁体4会沿着两阶模态中频率更接近驱动力频率的那一阶模态所对应的方向振动。其中,驱动力频率是指为线圈5供电的驱动装置的输出频率。当驱动力频率相对于第二阶模态的频率更接近第一阶模态的频率时,会激发弹簧的第一阶模态,从而使振子组件主要体现为沿两个所述弹性件2中心连线的方向运动;当驱动力频率相对于第一阶模态的频率更接近第二阶模态的频率时,会激发弹簧的第二阶模态,从而使振子组件主要体现为沿与两个所述弹性件2中心连线垂直的方向运动,这样通过控制驱动力频率与其中一个模态的频率接近,即可使振子组件在两个互相垂直的振动方向之间切换。
所述弹性件2的具体结构形式可以有多种,在本实施例中,弹性件2包括弹簧片结构和挡块22。
弹簧片结构包括三个弹片21,相邻的两个所述弹片21之间互成角度连接,即弹簧片呈N型。这种弹簧片结构,可以具有两阶模态,从而可以通过控制驱动力频率与其中一个模态的频率接近,来使振子组件在两个互相垂直的振动方向之间切换。在本实施例中,三个弹片之间以一体成型的方式连接。作为可变换的实施方式,弹簧片结构可以包括四个或四个以上的弹片21,当弹簧片结构包括四个弹片21时,弹簧片结构呈W型。
挡块22具有多个,设于所述弹片21上,至少一个挡块22设于靠近所述质量块3的弹片21上,用于与所述质量块3接触,同时至少一个挡块22设于靠近所述壳体的弹片21上,用于与所述壳体接触;这样可以使弹簧片结构与质量块3及壳体进行更稳固的接触。
配合参阅图4,所述壳体包括壳本体11、顶板12和侧板13。
壳本体11呈U型,具有顶部开口111。
顶板12覆盖于所述顶部开口111处,并与所述壳本体11配合形成所述容纳空间10。
侧板13具有两个,分别设于所述壳本体11的两端,每个所述侧板13上分别固定有一个对应的所述线圈5。
本实施例的动磁式线性振动电机,还包括两个分别连接于所述质量块3两端的支撑块6,及与所述支撑块6数量一致的导磁板7。
所述支撑块6上设有适于嵌入安装对应的所述磁体4的安装腔61。由于磁体4嵌入安装于所述安装腔61中,可以有效防止磁体4从安装腔61中脱出,使磁体4的安装更稳固,从而提高了振子组件振动的稳定性;同时,所述支撑块6的设置,可以在本实施例的动磁式线性振动电机跌落时 先碰撞壳体,从而保护磁体4和其他零部件。
所述导磁板7连接于对应的所述支撑块6靠近所述质量块3的一侧。导磁板7可以使磁体4的磁感线拉直,使更多的磁感线垂直进出线圈5,从而为振子组件提供更大的驱动力。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (12)

  1. 一种动磁式线性振动电机,其特征在于,包括:
    壳体,具有容纳空间(10);
    弹性件(2),具有两个,相对地连接于所述壳体的侧壁上;
    质量块(3),通过周壁与两个所述弹性件(2)分别连接悬挂在所述壳体的容纳空间(10)内;
    磁体(4),具有两个,分别固定连接于所述质量块(3)的两端,所述磁体(4)与两个所述弹性件(2)的中心连线成锐角或钝角;
    线圈(5),具有两个,分别与对应的所述磁体(4)间隔地固定在所述壳体上,所述线圈(5)与两个所述弹性件(2)的中心连线成锐角或钝角。
  2. 根据权利要求1所述的动磁式线性振动电机,其特征在于,两个所述弹性件(2)的大小相等,且两个所述弹性件(2)的相对位置满足能够使所述质量块(3)在两个所述弹性件(2)之间做线性往复运动。
  3. 根据权利要求1或2所述的动磁式线性振动电机,其特征在于,所述磁体(4)与所述线圈(5)平行。
  4. 根据权利要求1-3中任一项所述的动磁式线性振动电机,其特征在于,所述磁体(4)与两个所述弹性件(2)的中心连线所成的角度,与所述线圈(5)与两个所述弹性件(2)的中心连线所成的角度相等。
  5. 根据权利要求1-4中任一项所述的动磁式线性振动电机,其特征在于,两个线圈(5)所受的洛伦兹力方向相同。
  6. 根据权利要求5所述的动磁式线性振动电机,其特征在于,其中一个所述磁体(4)在倾斜方向上的顶端为N极,底端为S极;另一个所述磁 体(4)在倾斜方向上的顶端为S极,底端为N极;两个所述线圈(5)中的电流方向一致。
  7. 根据权利要求1-6中任一项所述的动磁式线性振动电机,其特征在于,所述磁体(4)为海尔贝克结构磁钢组件,所述磁钢组件的强面朝向所述线圈(5)设置。
  8. 根据权利要求1-7中任一项所述的动磁式线性振动电机,其特征在于,所述弹性件(2)与所述质量块(3)构成的系统具有沿两个所述弹性件(2)中心连线方向运动的一阶模态,及沿与两个所述弹性件(2)中心连线垂直的方向运动的另一阶模态;质量块(3)和磁体(4)会沿着两阶模态中频率更接近驱动力频率的那一阶模态所对应的方向振动。
  9. 根据权利要求1-8中任一项所述的动磁式线性振动电机,其特征在于,所述弹性件(2)包括:
    弹簧片结构,包括至少三个弹片(21),相邻的两个所述弹片(21)之间互成角度连接;
    挡块(22),具有多个,设于所述弹片(21)上,所述弹性件(2)通过所述挡块(22)与所述质量块(3)及所述壳体分别接触。
  10. 根据权利要求1-9中任一项所述的动磁式线性振动电机,其特征在于,所述壳体包括:
    壳本体(11),呈U型,具有顶部开口(111);
    顶板(12),覆盖于所述顶部开口(111)处,并与所述壳本体(11)配合形成所述容纳空间(10);
    侧板(13),具有两个,分别设于所述壳本体(11)的两端,每个所述 侧板(13)上分别固定有一个对应的所述线圈(5)。
  11. 根据权利要求1-10中任一项所述的动磁式线性振动电机,其特征在于,还包括两个分别连接于所述质量块(3)两端的支撑块(6),所述支撑块(6)上设有适于嵌入安装对应的所述磁体(4)的安装腔(61)。
  12. 根据权利要求11所述的动磁式线性振动电机,其特征在于,还包括与所述支撑块(6)数量一致的导磁板(7),所述导磁板(7)连接于对应的所述支撑块(6)靠近所述质量块(3)的一侧。
PCT/CN2018/084444 2018-03-02 2018-04-25 动磁式线性振动电机 WO2019165694A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018536824A JP2020511912A (ja) 2018-03-02 2018-04-25 可動磁石リニア振動モーター
US16/072,478 US11916457B2 (en) 2018-03-02 2018-04-25 Moving-magnet-type linear vibration motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810175193.2 2018-03-02
CN201810175193.2A CN108233662B (zh) 2018-03-02 2018-03-02 动磁式线性振动电机

Publications (1)

Publication Number Publication Date
WO2019165694A1 true WO2019165694A1 (zh) 2019-09-06

Family

ID=62662701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084444 WO2019165694A1 (zh) 2018-03-02 2018-04-25 动磁式线性振动电机

Country Status (4)

Country Link
US (1) US11916457B2 (zh)
JP (1) JP2020511912A (zh)
CN (1) CN108233662B (zh)
WO (1) WO2019165694A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258875A (zh) * 2018-03-02 2018-07-06 金龙机电股份有限公司 动圈式线性振动电机
JP7156411B2 (ja) * 2019-02-05 2022-10-19 株式会社村田製作所 振動子支持構造、振動モータおよび電子機器
WO2021000074A1 (zh) * 2019-06-29 2021-01-07 瑞声声学科技(深圳)有限公司 一种振动马达
WO2021007813A1 (zh) * 2019-07-17 2021-01-21 瑞声声学科技(深圳)有限公司 线性振动马达
CN111404347A (zh) * 2020-04-20 2020-07-10 瑞声科技(南京)有限公司 斜向振动线性马达及应用该线性马达的电子设备
CN111641323B (zh) * 2020-06-30 2022-03-25 歌尔股份有限公司 振动装置以及电子设备
CN111641312B (zh) * 2020-06-30 2022-10-28 歌尔股份有限公司 振动装置以及电子设备
CN111641318A (zh) * 2020-06-30 2020-09-08 歌尔股份有限公司 振动装置以及电子设备
CN111641316A (zh) * 2020-06-30 2020-09-08 歌尔股份有限公司 振动装置以及电子设备
CN111641319A (zh) * 2020-06-30 2020-09-08 歌尔股份有限公司 振动装置以及电子设备
CN111641320A (zh) * 2020-06-30 2020-09-08 歌尔股份有限公司 振动装置以及电子设备
CN111682731A (zh) * 2020-06-30 2020-09-18 歌尔股份有限公司 振动装置以及电子设备
CN111641322B (zh) * 2020-06-30 2022-03-25 歌尔股份有限公司 振动装置以及电子设备
CN111641315B (zh) * 2020-06-30 2022-01-28 歌尔股份有限公司 振动装置以及电子设备
CN111641317A (zh) * 2020-06-30 2020-09-08 歌尔股份有限公司 振动装置以及电子设备
CN113972808B (zh) * 2021-10-27 2023-05-09 歌尔股份有限公司 一种线性振动马达
CN114337181B (zh) * 2021-12-31 2024-02-02 歌尔股份有限公司 一种双频振动激励器
CN115622354B (zh) * 2022-08-15 2023-10-27 荣耀终端有限公司 一种线性马达及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105048757A (zh) * 2015-08-18 2015-11-11 歌尔声学股份有限公司 一种振动马达和电子设备
CN106100275A (zh) * 2016-06-20 2016-11-09 信利光电股份有限公司 一种线性马达
US20160372998A1 (en) * 2015-06-16 2016-12-22 AAC Technologies Pte. Ltd. Vibration Motor
CN106300869A (zh) * 2016-08-31 2017-01-04 浙江省东阳市诚基电机有限公司 一种同时具备x轴和z轴振动反馈的线性马达
CN106411092A (zh) * 2016-10-27 2017-02-15 昆山联滔电子有限公司 振动马达
CN107565791A (zh) * 2017-09-30 2018-01-09 重庆市灵龙电子有限公司 两级振动线性马达

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6499261B2 (ja) * 2017-11-24 2019-04-10 アルプスアルパイン株式会社 振動発生装置
CN207801722U (zh) * 2018-03-02 2018-08-31 金龙机电股份有限公司 动磁式线性振动电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160372998A1 (en) * 2015-06-16 2016-12-22 AAC Technologies Pte. Ltd. Vibration Motor
CN105048757A (zh) * 2015-08-18 2015-11-11 歌尔声学股份有限公司 一种振动马达和电子设备
CN106100275A (zh) * 2016-06-20 2016-11-09 信利光电股份有限公司 一种线性马达
CN106300869A (zh) * 2016-08-31 2017-01-04 浙江省东阳市诚基电机有限公司 一种同时具备x轴和z轴振动反馈的线性马达
CN106411092A (zh) * 2016-10-27 2017-02-15 昆山联滔电子有限公司 振动马达
CN107565791A (zh) * 2017-09-30 2018-01-09 重庆市灵龙电子有限公司 两级振动线性马达

Also Published As

Publication number Publication date
CN108233662B (zh) 2020-01-24
US20210091648A1 (en) 2021-03-25
JP2020511912A (ja) 2020-04-16
CN108233662A (zh) 2018-06-29
US11916457B2 (en) 2024-02-27

Similar Documents

Publication Publication Date Title
WO2019165694A1 (zh) 动磁式线性振动电机
WO2019165693A1 (zh) 动圈式线性振动电机
CN110266171B (zh) 振动电机
US10447133B2 (en) Linear motor with electric current injection assembly with springs connected to movable coil inside a mass block and upper and lower stationary magnets
US10008894B2 (en) Double resonance vibration motor
KR101259683B1 (ko) 수평 진동 모터
US11784549B2 (en) Motor
US10315221B2 (en) Vibration motor
US10158278B2 (en) Vibration motor
JP6814257B2 (ja) リニア振動モータ
JP2017029969A (ja) 振動モーター
JP6737767B2 (ja) 振動モーター
CN209389906U (zh) 线性振动电机
WO2017088359A1 (zh) 线性振动马达
CN211530982U (zh) 线性振动电机
WO2018107737A1 (zh) 线性振动马达
US11133735B2 (en) Linear vibration motor
CN105245080A (zh) 振动电机
JP6110932B2 (ja) 振動モーター
WO2020134378A1 (zh) 线性振动电机
CN207801722U (zh) 动磁式线性振动电机
CN107565791B (zh) 两级振动线性马达
CN107070159B (zh) 线性振动马达
CN106953492B (zh) 线性振动马达
CN106253624B (zh) 一种双振动系统的线性振动器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018536824

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907852

Country of ref document: EP

Kind code of ref document: A1