WO2019165618A1 - 一种分布式高铁沿线电磁干扰实时监测装置及其方法 - Google Patents

一种分布式高铁沿线电磁干扰实时监测装置及其方法 Download PDF

Info

Publication number
WO2019165618A1
WO2019165618A1 PCT/CN2018/077710 CN2018077710W WO2019165618A1 WO 2019165618 A1 WO2019165618 A1 WO 2019165618A1 CN 2018077710 W CN2018077710 W CN 2018077710W WO 2019165618 A1 WO2019165618 A1 WO 2019165618A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed rail
electromagnetic interference
monitoring
electromagnetic
distributed
Prior art date
Application number
PCT/CN2018/077710
Other languages
English (en)
French (fr)
Inventor
邹喜华
白文林
卢冰
潘炜
Original Assignee
西南交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南交通大学 filed Critical 西南交通大学
Priority to JP2020542246A priority Critical patent/JP6975492B2/ja
Publication of WO2019165618A1 publication Critical patent/WO2019165618A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0807Measuring electromagnetic field characteristics characterised by the application
    • G01R29/0814Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0878Sensors; antennas; probes; detectors
    • G01R29/0885Sensors; antennas; probes; detectors using optical probes, e.g. electro-optical, luminescent, glow discharge, or optical interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0892Details related to signal analysis or treatment; presenting results, e.g. displays; measuring specific signal features other than field strength, e.g. polarisation, field modes, phase, envelope, maximum value

Definitions

  • the invention relates to the technical field of electromagnetic interference detection, microwave photonics, high-speed railway (or high-speed railway), in particular to a real-time electromagnetic interference detection device and method along the high-speed rail.
  • in-band, adjacent-frequency, and unlicensed electromagnetic interference occurs in the uplink/downlink frequency bands (such as 880-940 MHz in GSM-R systems).
  • high-speed rail car wireless communication such as GSM-R, LTE-R system
  • GSM-R, LTE-R system may be disturbed or destroyed; and if the train control system is disturbed, the train at high speed is forced to slow down. Or parking, causing delays, blockages, and even worse accidents. Therefore, electromagnetic interference monitoring along high-speed railways is very important for enhancing operational safety and work efficiency.
  • the high-speed rail "empty window period" mobile clear-frequency interference monitoring method has complex and non-real-time performance, which seriously reduces the work efficiency, can not be monitored in real time, and is processed in real time.
  • the object of the present invention is to provide a distributed real-time monitoring device for electromagnetic interference along a high-speed rail with easy integration, low cost and strong anti-electromagnetic interference.
  • a distributed real-time monitoring device for electromagnetic interference along a high-speed rail comprising a secondary sub-photon RF acquisition front end, a wavelength division multiplexer, a fiber link, and a wave decomposition multiplexer , optical switch, centralized processing module; wherein, the photon RF acquisition front end is composed of a sub-secondary antenna, a low noise amplifier and a direct modulation laser; the centralized processing module is composed of a photodetector, an electrical signal spectrum analyzer, and a high-speed rail vehicle wireless communication.
  • the signal demodulation module is composed, and the latter two respectively perform frequency domain and time domain analysis processing on the output signal of the photodetector.
  • Another object of the present invention is to provide a distributed real-time monitoring method for electromagnetic interference along a high-speed rail, which is easy to integrate, low in cost, and strong against electromagnetic interference, and aims to collect electromagnetic signals along the high-speed rail in a distributed manner and process them centrally at the central station. And the use of photon-assisted electromagnetic interference monitoring system, low cost, strong anti-interference ability, real-time effective monitoring of electromagnetic interference along the high-speed rail.
  • Another object of the present invention is achieved by a distributed real-time monitoring method for electromagnetic interference along a high-speed rail.
  • the specific monitoring steps are as follows: First, a distributed acquisition network is formed at a fixed point along the high-speed rail, and photons are installed at each monitoring point.
  • the electromagnetic signal is collected by the antenna, amplified by the low-noise amplifier and then entered into the direct-tuning laser, and modulated to different wavelengths (such as ⁇ 1 ,..., ⁇ n , n is a positive integer, indicating the total number of wavelengths) of the optical carrier.
  • the modulated optical signals at different monitoring points are multiplexed by the wavelength division multiplexer, transmitted to the central station through the optical fiber link, and transmitted to the optical fiber link for long distance transmission to the central station.
  • the received optical signals are divided into different channels by the wave decomposition multiplexer, and all the channels are connected to the optical switches to implement time division multiplexing, and the different channels are separated in different time periods, multiplexed into one channel, and centralized processing is performed.
  • the present invention has the following features and advantages:
  • the photon RF acquisition front end is amplified by electromagnetic interference and then loaded onto the direct-adjusted light source, and is pulled to the central station through the fiber link.
  • the optical fiber transmission link has low loss, and the whole system is easy to integrate and low in cost;
  • the remote central station uses the optical switch mode to realize time division multiplexing. Only a centralized processing module is needed, so that real-time monitoring can be performed at multiple points to reduce costs. At the same time, simultaneous detection in the time domain and frequency domain is adopted, and it is easy to distinguish electromagnetic interference such as the same frequency and adjacent frequency.
  • the invention discloses a distributed real-time monitoring method for electromagnetic interference along a high-speed railway, fully utilizing distributed acquisition and centralized processing, and real-time monitoring electromagnetic interference faced by high-speed rail vehicle wireless communication (such as GSM-R, LTE-R system) Interference, and the entire system is inexpensive and easy to integrate.
  • high-speed rail vehicle wireless communication such as GSM-R, LTE-R system
  • FIG. 1 System block diagram of the method of the present invention (in Figure 1: the wavelength division multiplexer 20 and the wave decomposition multiplexer 40 are of the same type, but the interface order is different).
  • FIG. 1 Centralized processing module.
  • TDM time division multiplexing
  • the detection apparatus of the present invention includes a photon radio frequency acquisition front end 10, a wavelength division multiplexer 20, a fiber optic link 30, a wave decomposition multiplexer 40, an optical switch 50, and a centralized processing module 60.
  • the photon RF acquisition front end (see FIG. 2) 10 includes an antenna 101, a low noise amplifier 102, and a direct modulation laser 103.
  • the centralized processing module includes a photodetector 601, an electrical signal spectrum analyzer 602, and a high-speed rail car.
  • a method for real-time detection of electromagnetic interference along a distributed high-speed rail is as follows: firstly, a monitoring point is distributed along the high-speed rail and a photon RF acquisition front end is installed; an electromagnetic signal is collected by the antenna, and the low-noise amplifier is used. After amplification, the laser is input to the direct modulation laser. Secondly, the collected electromagnetic signals are modulated onto optical carriers of different wavelengths. Then, the modulated optical signals at different monitoring points are multiplexed by the wavelength division multiplexer and then passed through the optical fiber link.
  • the optical signal is divided into different channels according to different wavelengths by the wave decomposition multiplexer, and optical switching is used to realize time division multiplexing, and different channels are separated into different processing units in different time periods;
  • the device converts the optical signals of each period into electromagnetic signals, and performs time-domain and frequency-domain analysis on the recovered electromagnetic signals based on the electric signal spectrum analyzer and the high-speed rail wireless communication signal demodulation module to monitor the electromagnetic interference along the high-speed rail in real time. Situation and identify the type of interference.
  • the combination of distributed acquisition and centralized processing After remotely collecting electromagnetic interference at each monitoring point, the electromagnetic interference is extended to the central station for centralized processing. There are multiple monitoring points distributed along the high-speed rail.
  • the photon RF acquisition front-ends installed at multiple monitoring points use different wavelengths, and are connected and multiplexed by WDM to perform real-time distributed multi-point monitoring.
  • the optical switch mode is used to realize time division multiplexing, and a centralized processing module is used to analyze electromagnetic information collected by multiple monitoring points.
  • the high-speed rail vehicle wireless communication system includes a GSM-R system and an LTE-R system.
  • a monitoring point is arranged at a fixed point along the high-speed rail, and a photon RF acquisition front end 10 is installed: the electromagnetic signal is collected by the antenna 101, amplified by the low-noise amplifier 102, and then input to the direct-adjusting laser 103, which is modulated to different wavelengths (such as ⁇ 1 ,..., ⁇ n ) on the optical carrier; then, the optical carrier at different monitoring points is connected and multiplexed by the wavelength division multiplexer 20, and the electromagnetic signals of the plurality of monitoring points are distributedly distributed, and the multiplexed optical signals enter the optical fiber chain.
  • the road 30 is transmitted to the central station over a long distance.
  • the received optical signals are divided into different channels by the wave decomposition multiplexer 40.
  • all the channel-connected optical switches 50 implement time division multiplexing, and separate different channels in different time periods and multiplex them into
  • a centralized processing module 60 is then used to centrally process multiple monitoring points along the high-speed rail.
  • the optical signal in the channel is beaten by the photodetector 601 to recover the collected electromagnetic signal, and then based on the electrical signal spectrum analyzer 602 and the high-speed rail vehicle wireless communication (such as GSM-R, LTE).
  • the -R system) demodulation module 603 analyzes the time domain and frequency domain information for the recovered electromagnetic signal.
  • the spectrum information and power peaks of wireless signals can be obtained in the frequency domain, and each peak can be identified by global cell identification code identification (CGI); in GSM system, CGI is moved by Country number (MCC), mobile network number (MNC), location area code (LAC), cell identification code (CI); in LTE-R system, CGI is carried by mobile country number (MCC), mobile network number (MNC), The eNodeB identification code (ENODEB_ID) and the cell identification code (CI) are composed.
  • the high-speed rail vehicle wireless communication signal demodulation module 603 can identify each legal band information. If a band cannot be identified as a legitimate CGI code, it will be marked as suspect adjacent or out-of-band interference.
  • the electromagnetic interference of the high-speed rail car wireless communication can also be monitored from the time domain: combined with the electric signal spectrum analyzer 602 and the high-speed rail vehicle wireless communication signal demodulation module 603, the GSM-R system and the LTE-R system can be obtained.
  • the constellation diagram and eye diagram of the signal; according to the quality of the eye diagram and the constellation diagram, the band noise and electromagnetic interference can be effectively monitored.
  • the EMI-R system's electromagnetic interference detection process and steps are identical to those of the GSM-R system, except that the frequency band and modulation system in which the signal is located are different.
  • a plurality of monitoring points are arranged along the high-speed railway based on the photon RF acquisition front end of the direct-modulated light source; the electromagnetic signals are collected and amplified, and then modulated onto optical carriers of different wavelengths, and transmitted to the central station through the optical fiber link in combination with the wavelength division multiplexer mode.
  • Wavelength division is multiplexed into different channels by wavelength division multiplexer, and time division multiplexing is realized by optical switches.
  • Each channel is input to a centralized processing module in different time slots for time domain, frequency domain analysis and information extraction to realize electromagnetic field along the high-speed rail. Interference monitoring and classification.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Optical Communication System (AREA)

Abstract

一种分布式高铁沿线电磁干扰实时监测装置及其方法,以基于直调光源的光子射频采集前端(10)在高速铁路沿线布置多个监测点,该光子射频采集前端(10)将采集的电磁信号放大之后调制到不同波长的光载波上;将不同监测点处调制后的光信号经过波分复用器(20)复用后,通过光纤链路(30)传输至中心站,然后经波分解复用器(40)分成不同的信道,通过光开关(50)实现时分复用,将不同信道在不同时隙输入到集中处理模块(60)进行时域、频域分析和信息提取;进而实现高铁沿线电磁干扰监测与分类,尤其是针对高铁车地无线通信干扰的监测。该监测装置及其方法采用多点分布式采集和集中式处理,采用时域、频域同时检测,易于分辨图频、邻频等电磁干扰,有助于提升高速铁路运营安全和运行效率。

Description

一种分布式高铁沿线电磁干扰实时监测装置及其方法 技术领域
本发明涉及电磁干扰检测、微波光子学、高速铁路(或简称高铁)技术领域,尤其是高铁沿线的电磁干扰实时检测装置及方法。
背景技术
当前,高速铁路在全球(尤其在中国)得到了空前发展,截至到2017年底中国运营的高铁里程达到25000km。由于运行速度为300km/h及以上的高速列车控制、调度、通信通过无线通信来发送,因此可靠的车地无线通信对于高速铁路安全运行是至关重要的一环。面向高速铁路的车地无线通信主要有以下几种系统。在中国和欧洲,当前广泛应用的GSM-R系统(global system for mobile communication-railway,铁路数字移动通信系统,分配的频率范围是上行链路885-889MHz和下行链路930-934MHz);以及包括正在研发和将来应用在高铁的LTE-R系统(long term evolution-railway)、毫米波系统等。
在面向高速铁路的车地无线通信中,上/下行链路频段内(如GSM-R系统的880-940MHz)会出现信道带内、邻频、非授权的电磁干扰。在电磁干扰和电磁袭击发生的情况下,高铁车地无线通信(如GSM-R、LTE-R系统)可能会被扰乱或者破坏;并且如果列车控制系统遭受干扰,高速行驶中的列车被迫降速或者停车,导致延误、堵塞,甚至更糟糕的事故发生。因此,高速铁路沿线的电磁干扰监测对于增强运行安全和工作效率来说非常紧要的。在传统上,高铁“空窗期”移动式清频的干扰监测方式,具有复杂、非实时性,严重降低了工作效率,不能实时监测,实时处理。
发明内容
本发明目的是提供一种系统易于集成、成本低、抗电磁干扰强的分布式的高铁沿线电磁干扰实时监测装置。
本发明的目的是这样实现的:一种分布式高铁沿线电磁干扰实时监测装置,该监测装置包括顺次级联的光子射频采集前端、波分复用器、光纤链路、波分解复用器、光开关、集中处理模块;其中,光子射频采集前端由顺次级联的天线、低噪放大器和直调激光器组成;集中处理模块由光电探测器、电信号频谱分析仪、 高铁车地无线通信信号解调模块组成,后二者分别同时对光电探测器的输出信号进行频域和时域分析处理。
本发明的另一目的是提供一种系统易于集成、成本低、抗电磁干扰强的分布式的高铁沿线电磁干扰实时监测方法,旨在分布式采集高铁沿线的电磁信号,在中心站集中处理,并且使用光子辅助电磁干扰监测系统,成本低廉、抗干扰能力强,实时有效地监测高铁沿线电磁干扰。
本发明的又一目的是这样实现的:一种分布式的高铁沿线电磁干扰实时监测方法,具体监测步骤如下:首先在高铁沿线定点布置监测点组成分布式采集网络,在每个监测点安装光子射频采集前端:由天线采集电磁信号,经低噪放大器放大后进入到直调激光器,被调制到不同波长(如λ 1,…,λ n,n为正整数,表示波长的总数)的光载波上;而后,将不同监测点处调制后的光信号经过波分复用器复用后,通过光纤链路远距离传输至中心站,进入到光纤链路远距离传输至中心站。然后在中心站,接收后的光信号经波分解复用器分成不同的信道,所有信道连接光开关实现时分复用,将不同信道分离在不同时间段,复用到一个信道中,进入集中处理模块:通过光电探测器将信道中的光信号拍频恢复出采集到的电磁信号,然后,基于频谱分析仪和GSM-R解调模块对恢复后电磁信号分析时域和频域信息,实时监测高铁沿线车地无线通信(如GSM-R、LTE-R系统)面临电磁干扰情况,并辨别干扰类型。
相比现有技术,本发明具有以下特点和优点:
1)分布式采集,集中式处理,通过在高铁沿线定点监测点,实时性监测电磁干扰;
2)光子射频采集前端将电磁干扰低噪放大后加载到直调光源上,通过光纤链路拉远至中心站处理。光纤传输链路损耗小,且整个系统易于集成,成本低廉;
3)远端中心站,采用光开关模式实现时分复用,只需要一套集中处理模块,就可以多点实时监测,降低成本。同时,采用时域、频域同时检测,易于分辨同频、邻频等电磁干扰。
对于高速铁路沿线的电磁干扰检测,需要提供实时和在线模式,因此,应该采用近端采集和集中处理的方式。本发明公布了一种分布式的高铁沿线电磁干扰实时监测方法,充分利用分布式采集和集中式处理的方式,实时监测高铁车地无 线通信(如GSM-R、LTE-R系统)面临的电磁干扰,并且整个系统成本低廉,易于集成。
附图说明
图1.本发明方法的系统框图(图1中:波分复用器20与波分解复用器40为同一型号部件,只是接口顺序不一样)。
图2.光子射频采集前端。
图3.集中处理模块。
图4.不同波长信道通过光开关实施时分复用(TDM)解调。
具体实施方式
下面结合附图对本发明的实施作进一步的描述。
如图1所示,本发明的检测装置包括光子射频采集前端10、波分复用器20、光纤链路30、波分解复用器40、光开关50、集中处理模块60。其中,光子射频采集前端(见图2)10包括天线101、低噪放大器102和直调激光器103;集中处理模块(见图3)包括光电探测器601、电信号频谱分析仪602以及高铁车地无线通信(GSM-R、LTE-R系统)信号解调模块603。
一种如权利要求1所述装置的分布式高铁沿线电磁干扰实时检测方法,具体步骤如下:首先在高铁沿线分布式布置监测点并安装光子射频采集前端;由天线采集电磁信号,经低噪放大器放大后进入到直调激光器;其次,采集的电磁信号被调制到不同波长的光载波上;然后,将不同监测点处调制后的光信号经过波分复用器复用后,通过光纤链路远距离传输至中心站;而后,光信号经波分解复用器按不同波长分成不同的信道,并采用光开关实现时分复用,将不同信道分离在不同时间段进入集中处理模块;采用光电探测器将各时段的光信号转换恢复成电磁信号,基于电信号频谱分析仪和高铁车地无线通信信号解调模块集中式对恢复的电磁信号进行时域和频域分析,实时监测高铁沿线电磁干扰情况,并辨别干扰类型。分布式采集和集中式处理相结合:电磁干扰在各监测点远程采集后,通过光纤链路拉远至中心站集中处理。在高铁沿线分布式布置的监测点为多个,多个监测点安装的光子射频采集前端采用不同波长,并利用波分复用器连接和复用,进行实时分布式多点监测。采用光开关模式实现时分复用,利用一套集中处 理模块集中分析多个监测点采集的电磁信息。高铁车地无线通信系统包括GSM-R系统和LTE-R系统。
首先,在高铁沿线定点布置监测点,安装光子射频采集前端10:由天线101采集电磁信号,经低噪放大器102放大后进入到直调激光器103,被调制到不同波长(如λ 1,…,λ n)的光载波上;然后,利用波分复用器20连接并复用不同监测点处的光载波,分布式采集多个监测点的电磁信号,复用后的光信号进入到光纤链路30远距离传输至中心站。
在中心站,接收后的光信号经波分解复用器40分成不同的信道,如图4所示,所有信道连接光开关50实现时分复用,将不同信道分离在不同时间段,复用到一个信道中,然后使用一套集中处理模块60对高铁沿线的多个监测点集中式处理。在集中处理模块60中,通过光电探测器601将信道中的光信号拍频恢复出采集到的电磁信号,然后,基于电信号频谱分析仪602和高铁车地无线通信(如GSM-R、LTE-R系统)解调模块603对恢复后电磁信号分析时域和频域信息。以GSM-R、LTE-R系统为例:在频域上可以获取无线信号的频谱信息及功率峰值,并且每个峰值可以通过全球小区识别码识别(CGI)识别;GSM系统中,CGI由移动国家号(MCC)、移动网号(MNC)、位置区码(LAC)、小区标识码(CI)组成;LTE-R系统中,CGI由移动国家号(MCC)、移动网号(MNC)、eNodeB标识码(ENODEB_ID)、小区标识码(CI)组成。使用高铁车地无线通信信号解调模块603可以识别每个合法频带信息。如果一个频带不能被识别出合法的CGI码,它将会被标注为可疑的邻频或带外干扰。同时,高铁车地无线通信的电磁干扰也可以从时域上进行监测:结合电信号频谱分析仪602和高铁车地无线通信信号解调模块603,可以获得GSM-R系统和LTE-R系统中信号的星座图和眼图;根据眼图、星座图的质量,可有效监测频带噪声和电磁干扰。LTE-R系统的电磁干扰检测过程和步骤与GSM-R系统完全一致,只是信号所处的频段和调制制式不同。
以基于直调光源的光子射频采集前端在高速铁路沿线布置多个监测点;采集电磁信号并放大之后调制到不同波长的光载波上,结合波分复用器模式通过光纤链路传输至中心站,波分经波分复用器复用成不同的信道,通过光开关实现时分复用,各信道在不同时隙输入到集中处理模块进行时域、频域分析和信息提取, 实现高铁沿线电磁干扰监测与分类。
以上所陈述的仅仅是本发明的优选实施方式,应当指出,在不脱离本发明方法和核心装置实质的前提下,在实际实施中可以做出若干更改和润色也应包含在本发明的保护范围以内。

Claims (7)

  1. 一种分布式高铁沿线电磁干扰实时监测装置,其特征是,该监测装置包括顺次级联的光子射频采集前端(10)、波分复用器(20)、光纤链路(30)、波分解复用器(40)、光开关(50)、集中处理模块(60);其中,光子射频采集前端由顺次级联的天线(101)、低噪放大器(102)和直调激光器(103)组成;集中处理模块由光电探测器(601)、电信号频谱分析仪(602)、高铁车地无线通信信号解调模块(603)组成,电信号频谱分析仪(602)和高铁车地无线通信信号解调模块(603)分别对光电探测器(601)的输出信号进行频域和时域分析处理。
  2. 一种如权利要求1所述装置的分布式高铁沿线电磁干扰实时监测方法,其特征是,具体步骤如下:首先在高铁沿线分布式布置监测点并安装光子射频采集前端;由天线采集电磁信号,经低噪放大器放大后进入到直调激光器;其次,采集的电磁信号被调制到不同波长的光载波上;然后,将不同监测点处调制后的光信号经过波分复用器复用后,通过光纤链路远距离传输至中心站;而后,光信号经波分解复用器按不同波长分成不同的信道,并采用光开关实现时分复用,将不同信道分离在不同时间段进入集中处理模块;采用光电探测器将各时段的光信号转换恢复成电磁信号,基于电信号频谱分析仪和高铁车地无线通信信号解调模块集中对恢复的电磁信号进行时域和频域分析,实时监测高铁沿线电磁干扰情况,并辨别干扰类型。
  3. 根据权利要求2所述的一种分布式高铁沿线电磁干扰实时监测方法,其特征在于:分布式采集和集中式处理相结合:电磁干扰在各监测点远程采集后,通过光纤链路拉远至中心站集中处理。
  4. 根据权利要求2所述的一种分布式高铁沿线电磁干扰实时监测方法,其特征在于:所述在高铁沿线分布式布置的监测点为多个,多个监测点安装的光子射频采集前端采用不同波长,并利用波分复用器连接和复用,进行实时分布式多点监测。
  5. 根据权利要求2所述的一种分布式高铁沿线电磁干扰实时监测方法,其特征在于:采用光开关模式实现时分复用,利用一套集中处理模块集中分析多个监测点采集的电磁信息。
  6. 根据权利要求2所述的一种分布式高铁沿线电磁干扰实时监测方法,其特征在于:所述高铁车地无线通信包括global system for mobile communications–railway系统和long term evolution–railway系统。
  7. 根据权利要求2所述的一种分布式高铁沿线电磁干扰实时监测方法,其特征在于:所述高铁车地无线通信系统中,频谱分析仪(602)和高铁车地无线通信信号解调模块(603)对经过光电探测器(601)恢复后的电磁信号,在频域上获取该无线信号的频谱信息及功率峰 值,并且每个峰值通过全球小区识别码进行识别;global system for mobile communications–railway系统中,全球小区识别码由移动国家号、移动网号、位置区码、小区标识码组成;long term evolution–railway系统中,全球小区识别码由移动国家号、移动网号、eNodeB标识码、小区标识码组成;使用高铁车地无线通信信号解调模块(603)可以识别每个合法频带信息;如果一个频带不能被识别出合法的全球小区识别码,它将会被标注为可疑的邻频或带外干扰;同时,高铁车地无线通信的电磁干扰也可以从时域上进行监测:结合电信号频谱分析仪(602)和高铁车地无线通信信号解调模块(603),获得global system for mobile communications–railway系统和long term evolution–railway系统中信号的星座图和眼图;根据眼图、星座图的质量,可有效监测频带噪声和电磁干扰。
PCT/CN2018/077710 2018-02-27 2018-03-01 一种分布式高铁沿线电磁干扰实时监测装置及其方法 WO2019165618A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020542246A JP6975492B2 (ja) 2018-02-27 2018-03-01 高速鉄道沿線の電磁干渉の分散型リアルタイム監視装置及びその方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810161289.3A CN108490271B (zh) 2018-02-27 2018-02-27 一种分布式高铁沿线电磁干扰实时监测装置及其方法
CN201810161289.3 2018-02-27

Publications (1)

Publication Number Publication Date
WO2019165618A1 true WO2019165618A1 (zh) 2019-09-06

Family

ID=63340648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077710 WO2019165618A1 (zh) 2018-02-27 2018-03-01 一种分布式高铁沿线电磁干扰实时监测装置及其方法

Country Status (3)

Country Link
JP (1) JP6975492B2 (zh)
CN (1) CN108490271B (zh)
WO (1) WO2019165618A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111740803A (zh) * 2020-06-18 2020-10-02 中车长春轨道客车股份有限公司 一种轨道交通电磁通讯系统的防干扰装置
CN113740619A (zh) * 2021-08-13 2021-12-03 煤炭科学技术研究院有限公司 电磁信号监测装置
CN114111895A (zh) * 2021-11-12 2022-03-01 中国电子科技集团公司第二十九研究所 一种共享电子仪器的装置及方法
CN115981220A (zh) * 2023-03-21 2023-04-18 济南森峰激光科技股份有限公司 一种分布式多模激光器控制系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109861771B (zh) * 2019-03-22 2022-01-14 上海控创信息技术股份有限公司 轨道交通lte无线通信系统邻信道干扰功率装置及测试方法
CN111650502A (zh) * 2020-03-04 2020-09-11 苏州热工研究院有限公司 基于电磁信号评估继电器老化状态的方法
CN113131970A (zh) * 2021-05-19 2021-07-16 西南交通大学 基于强化学习与光载无线技术的高铁电磁干扰规避系统
CN113671264A (zh) * 2021-07-01 2021-11-19 博微太赫兹信息科技有限公司 一种开关式多通道辐射计
CN116311861B (zh) * 2023-03-02 2024-02-13 讯芸电子科技(中山)有限公司 一种基于光电子模块的设备远程控制方法
CN116500553B (zh) * 2023-06-07 2023-10-03 北京交通大学 雷达互相干扰抑制方法、装置、计算机设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223369A (ja) * 2004-02-03 2005-08-18 Japan Science & Technology Agency Otdm/wdm伝送方法及び装置
CN102315880A (zh) * 2010-07-05 2012-01-11 大唐移动通信设备有限公司 一种光路传输的方法及装置
CN202856745U (zh) * 2012-10-30 2013-04-03 成都和跃科技有限公司 铁路移动通信干扰实时监测仪
CN103457661A (zh) * 2013-09-09 2013-12-18 东南大学 一种led阵列可见光通信系统及其通信方法
CN105323791A (zh) * 2014-07-28 2016-02-10 北京欣易晨科技发展股份有限公司 铁路沿线gsm-r无线频谱监测系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175849B (zh) * 2013-04-17 2015-04-15 黑龙江大学 光纤在线车辆轴承故障检测装置
WO2016151715A1 (ja) * 2015-03-23 2016-09-29 株式会社日立製作所 ノイズ監視システム
CN104714108B (zh) * 2015-03-24 2017-12-05 中国铁路总公司 一种地面列车瞬态脉冲干扰场强分析系统
CN205785255U (zh) * 2016-05-11 2016-12-07 内蒙古大学 一种基于准分布式光纤传感网络的轨道监测系统
JP6620072B2 (ja) * 2016-06-28 2019-12-11 株式会社日立製作所 ノイズ監視システム及びそれを備えた鉄道車両並びにノイズ監視方法
CN107508617B (zh) * 2017-09-26 2023-03-17 洪清喜 一种450MHz数模兼容的机车综合无线通信设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223369A (ja) * 2004-02-03 2005-08-18 Japan Science & Technology Agency Otdm/wdm伝送方法及び装置
CN102315880A (zh) * 2010-07-05 2012-01-11 大唐移动通信设备有限公司 一种光路传输的方法及装置
CN202856745U (zh) * 2012-10-30 2013-04-03 成都和跃科技有限公司 铁路移动通信干扰实时监测仪
CN103457661A (zh) * 2013-09-09 2013-12-18 东南大学 一种led阵列可见光通信系统及其通信方法
CN105323791A (zh) * 2014-07-28 2016-02-10 北京欣易晨科技发展股份有限公司 铁路沿线gsm-r无线频谱监测系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MENG, LING ET AL.: "On-Line Temperature Monitoring Systems for Aluminum Reduction Based on Fiber Bragg Grating", CHINESE JOURNAL OF SENSORS AND ACTUATORS, vol. 24, no. 2, 28 February 2011 (2011-02-28), pages 204 - 208, ISSN: 1004-1699 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111740803A (zh) * 2020-06-18 2020-10-02 中车长春轨道客车股份有限公司 一种轨道交通电磁通讯系统的防干扰装置
CN111740803B (zh) * 2020-06-18 2024-02-13 中车长春轨道客车股份有限公司 一种轨道交通电磁通讯系统的防干扰装置
CN113740619A (zh) * 2021-08-13 2021-12-03 煤炭科学技术研究院有限公司 电磁信号监测装置
CN113740619B (zh) * 2021-08-13 2024-04-05 煤科(北京)检测技术有限公司 电磁信号监测装置
CN114111895A (zh) * 2021-11-12 2022-03-01 中国电子科技集团公司第二十九研究所 一种共享电子仪器的装置及方法
CN115981220A (zh) * 2023-03-21 2023-04-18 济南森峰激光科技股份有限公司 一种分布式多模激光器控制系统

Also Published As

Publication number Publication date
CN108490271B (zh) 2020-06-19
CN108490271A (zh) 2018-09-04
JP6975492B2 (ja) 2021-12-01
JP2021513064A (ja) 2021-05-20

Similar Documents

Publication Publication Date Title
WO2019165618A1 (zh) 一种分布式高铁沿线电磁干扰实时监测装置及其方法
CA2655237C (en) Method and arrangement for switching a raman pump laser on and/or off
EP1501206A1 (en) Access method and connection system by means of optical fiber using dwdm/scm hybrid techniques between base stations and remote antennas in a radiocommunication system
US20050031342A1 (en) Method of pilot-tone signal transmission on an optical fiber and a system thereof
CN102413388B (zh) 一种基于光码分复用的光纤无线RoF无源光网络实现方法
CN104301811A (zh) 相干无源光网络系统及信号的发送、接收方法
Lavery et al. Bidirectional 10 Gbit/s long-reach WDM-PON using digital coherent receivers
WO2015024453A1 (zh) 基于ftth网络的光纤和无线混合接入系统及混合接入方法
CN102136877A (zh) 高铁内基于60GHz毫米波的宽带接入系统和方法
EP0777345B1 (en) Surveillance method of optical amplifier-repeater transmission system
CN105306140A (zh) 可见光通信的组网系统及其组网方法
KR100827278B1 (ko) 광 신호 전송 장치 및 신호 처리 방법
Joseph et al. Performance analysis and optimization of radio over fiber link
CN102315880A (zh) 一种光路传输的方法及装置
CN204481832U (zh) 一种基于光梳和载波重用的rof-pon全双工系统
US8463124B2 (en) Passive optical network with sub-octave transmission
EP2453594B1 (en) Receiver, light spectrum shaping method, and optical communication system
CN100377514C (zh) 波分复用系统中提高光谱利用率的方法及系统
JPWO2003034621A1 (ja) 制御局装置、基地局装置及び光伝送方法
CN102638312B (zh) 基于正交参考符号的相干光接收方法和装置
US20130156431A1 (en) System and method for multiple sub-octave band transmissions
CN105721063B (zh) 一种基于voa调制的光载波通讯方法及系统
Kanno et al. Wavelength-switchable IF over fiber network under ultra-dense WDM configuration for high-speed railway systems
CN114401046B (zh) 光信号处理系统及光信号处理方法
Nishiyasu et al. BER performance analysis of OOK signal transmission over fiber with MIMO radio signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908243

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020542246

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908243

Country of ref document: EP

Kind code of ref document: A1