WO2019163369A1 - Determination apparatus, cell detachment/collection apparatus, and determination method - Google Patents

Determination apparatus, cell detachment/collection apparatus, and determination method Download PDF

Info

Publication number
WO2019163369A1
WO2019163369A1 PCT/JP2019/001886 JP2019001886W WO2019163369A1 WO 2019163369 A1 WO2019163369 A1 WO 2019163369A1 JP 2019001886 W JP2019001886 W JP 2019001886W WO 2019163369 A1 WO2019163369 A1 WO 2019163369A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
culture
unit
determination
cells
Prior art date
Application number
PCT/JP2019/001886
Other languages
French (fr)
Japanese (ja)
Inventor
慎市 菊池
貴之 占部
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020502085A priority Critical patent/JP7030953B2/en
Publication of WO2019163369A1 publication Critical patent/WO2019163369A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor

Definitions

  • Japanese Patent Application Laid-Open No. 2014-113062 discloses a scraper for scraping off cells adhering to the bottom surface of a culture container, a pipette device for sucking cells detached from the bottom surface of the culture container together with a medium, and a treatment with the pipette device.
  • a cell detachment system is described, which includes a cell observation device that images the obtained culture vessel and determines whether or not cells remain in the culture vessel.
  • Patent Document 1 describes that the presence or absence of cells remaining in the culture container is determined from an image obtained by imaging the culture container after the peeling treatment. However, Patent Document 1 does not describe a specific method for determining the presence or absence of cells remaining in the culture vessel. For example, if the cells are light transmissive, it is difficult to specify the area where the cells remain from the image obtained by imaging the culture container. Therefore, it is difficult to determine the presence or absence of cells remaining in the culture container. It is considered difficult.
  • the disclosed technique has been made in view of the above points, and aims to accurately determine the presence or absence of cells attached to the culture surface of a culture vessel.
  • the determination apparatus it is possible to accurately determine the presence / absence of cells attached to the culture surface of the culture container even when the cells have light permeability.
  • the determination unit may determine the presence or absence of cells attached to the culture surface based on at least one of distortion and blur in the image portion corresponding to the contour line of the pattern. This embodiment is particularly effective for cells having light permeability.
  • the pattern may include a bright part and a dark part arranged adjacent to each other. As a result, the determination in the determination unit can be performed more accurately.
  • the pattern may have a repeating pattern in which bright parts and dark parts are alternately arranged.
  • a part of the pattern may have light transparency, and in this case, the determination device according to the disclosed technique further includes a light source disposed on the opposite side of the imaging unit with the drawing surface interposed therebetween. Also good.
  • the pattern may be formed of a light emitting element. According to these aspects, the contrast of the pattern can be increased, and the determination accuracy in the determination unit can be increased.
  • the drawing surface may include a plurality of pixels arranged in a matrix, and a pattern may be formed by controlling a light transmission state or a light emission state of each of the plurality of pixels. According to this aspect, it is possible to appropriately change the pattern of the design.
  • the imaging unit may acquire a picture image in a state where the entire culture surface is included in the imaging field of view. According to this aspect, when it is determined whether or not the cells are attached to the entire culture surface, the number of times of imaging by the imaging unit can be reduced.
  • a cell detachment collection apparatus includes the above-described determination apparatus, a thermostatic bath that has a storage space for storing the culture container, keeps the temperature of the storage space constant, a transport unit that transports the culture container, and a culture
  • a chemical solution adding unit for adding a chemical solution for separating cells attached to the surface to the culture vessel; a chemical solution removing unit for removing the chemical solution from the culture vessel; and a cell recovery unit for collecting the cells detached from the culture surface.
  • the peeling recovery apparatus According to the peeling recovery apparatus according to the disclosed technique, the same effect as that of the determination apparatus according to the disclosed technique can be obtained, and further, a peeling process for peeling cells adhering to the culture surface, and adhesion to the cell surface It is possible to automate the determination process for determining the presence of cells.
  • the imaging field of the imaging unit is set on the drawing surface on which the pattern is drawn, and the culture surface having light permeability of the culture vessel for culturing cells between the drawing surface and the imaging unit
  • the image of the pattern is acquired by the imaging unit in a state where the is placed, and the presence or absence of cells attached to the culture surface is determined based on the image of the pattern.
  • the determination method it is possible to accurately determine the presence or absence of cells attached to the culture surface of the culture vessel even when the cells have light permeability.
  • FIG. 2B is a cross-sectional view taken along line 2B-2B in FIG. 2A. It is a figure which shows an example of the pattern drawn on the drawing surface which concerns on embodiment of the technique of an indication. It is a figure which shows an example of the pattern drawn on the drawing surface which concerns on embodiment of the technique of an indication. It is a figure which shows an example of the pattern drawn on the drawing surface which concerns on embodiment of the technique of an indication. It is a figure which shows an example of the pattern drawn on the drawing surface which concerns on embodiment of the technique of an indication.
  • FIG. 14 is a flowchart illustrating an example of a flow of determination processing in a determination unit according to an embodiment of the disclosed technology. It is a figure showing an example of composition of a cell exfoliation collection device concerning an embodiment of an art of an indication provided with a judgment device concerning an embodiment of an art of an indication.
  • 10 is a flowchart illustrating an example of an operation sequence of the cell detachment collection apparatus according to an embodiment of the disclosed technology. It is a figure which shows an example of the image of the pattern acquired by the imaging part which concerns on embodiment of the technique of an indication.
  • FIG. 14 is a flowchart illustrating an example of a flow of derivation processing in a derivation unit according to an embodiment of the disclosed technology. 14 is a flowchart illustrating another example of the flow of derivation processing in the derivation unit according to an embodiment of the disclosed technology. It is a figure which shows the other example of the determination method using the determination apparatus which concerns on embodiment of the technique of an indication.
  • FIG. 1 is a diagram illustrating an example of a configuration of a determination apparatus 1 according to an embodiment of the disclosed technology.
  • the determination apparatus 1 includes a drawing surface 20 on which a pattern 21 is drawn, an imaging unit 30 in which an imaging field of view is set on the drawing surface 20, and a determination unit 40.
  • the determination unit 40 adheres to the culture surface 11 based on the image of the pattern 21 acquired by the imaging unit 30 in a state where the culture surface 11 of the culture vessel 10 is disposed between the drawing surface 20 and the imaging unit 30. Determine the presence or absence of cells.
  • FIG. 2A is a perspective view showing an example of the configuration of the culture vessel 10, and FIG. 2B is a cross-sectional view taken along line 2B-2B in FIG. 2A.
  • the external shape of the culture vessel 10 is not particularly limited, for example, it may be a rectangular parallelepiped including a top plate 10A and a bottom plate 10B facing the top plate 10A as shown in FIG. 2A.
  • the top plate 10A of the culture vessel 10 is provided with two caps 12 that can be opened and closed. By opening the cap 12, it is possible to inject a chemical solution such as a medium and an enzyme into the culture vessel 10, discharge the chemical solution from the culture vessel 10, and take out the cells from the culture vessel 10. . By closing the cap 12, the internal space of the culture vessel 10 is sealed.
  • the inner surface of the culture vessel 10 of the bottom plate 10 ⁇ / b> B is a culture surface 11, and the cells 200 cultured in the culture vessel 10 are cultured while being adhered to the culture surface 11.
  • the culture container 10 In the culture container 10, at least the top plate 10A and the bottom plate 10B are light transmissive.
  • the culture container 10 is disposed between the drawing surface 20 and the imaging unit 30.
  • the culture container 10 is arranged in such a direction that the bottom plate 10B is on the drawing surface 20 side and the top plate 10A is on the imaging unit 30 side.
  • the culture vessel 10 may be arranged in such a direction that the bottom plate 10B is on the imaging unit 30 side and the top plate 10A is on the drawing surface 20 side.
  • the drawing surface 20 may be constituted by, for example, the surface of a plate-like member, a sheet-like member, or a film-like member, and the pattern 21 may be drawn on the surface of these members.
  • the area of the region where the pattern 21 is drawn on the drawing surface 20 is preferably larger than the area of the culture surface 11 of the culture vessel 10.
  • FIG. 3A, FIG. 3B, and FIG. 3C are diagrams showing an example of the picture 21 drawn on the drawing surface 20, respectively.
  • the pattern 21 includes a bright part 21A and a dark part 21B.
  • the boundary between the bright part 21 ⁇ / b> A and the dark part 21 ⁇ / b> B extends over the entire drawing surface 20.
  • the pattern 21 further preferably includes a repetitive pattern in which bright portions 21A and dark portions 21B are alternately arranged.
  • the pattern 21 may form a so-called check pattern in which square light portions 21A and dark portions 21B are alternately arranged in the vertical direction and the horizontal direction, as shown in FIG. 3A, for example.
  • the pattern 21 forms a so-called stripe pattern in which linear bright portions 21 ⁇ / b> A and dark portions 21 ⁇ / b> B extending in one direction are alternately arranged in the intersecting direction intersecting the one direction. You may do.
  • the pattern 21 includes a plurality of linear dark portions 21 ⁇ / b> B extending in the first direction at a certain interval in the second direction intersecting the first direction.
  • a plurality of linear dark portions 21B extending in the second direction are arranged at a certain interval in the first direction, and bright portions 21A are arranged in a region other than the dark portion 21B.
  • a so-called lattice pattern may be formed.
  • the drawing surface 20 is constituted by the surface of a member that does not transmit light
  • a portion of the drawing surface 20 drawn in white for example, is a bright portion 21A
  • a portion of the drawing surface 20 drawn in black for example, is It is good also as the dark part 21B.
  • the drawing surface 20 is constituted by the surface of a light-transmitting member, for example, a portion where the light transmittance of the drawing surface 20 is reduced by coloring the drawing surface 20 is set as a dark portion 21B.
  • a portion where the light transmittance of the drawing surface 20 is maintained by not coloring the surface 20 may be a bright portion 21A.
  • the imaging unit 30 includes an imaging device such as a digital camera, for example.
  • the imaging unit 30 removes the pattern 21 drawn on the drawing surface 20 under the condition that the liquid such as the cell culture solution or the enzyme agent does not enter the photographing optical path through the top plate 10A and the bottom plate 10B of the culture vessel 10. Take an image. That is, the image of the pattern 21 drawn on the drawing surface 20 is formed on the imaging surface of the imaging unit 30 via the bottom plate 10B and the top plate 10A of the culture vessel 10. It is preferable that the entire culture surface 11 is included in the imaging field of the imaging unit 30.
  • the imaging unit 30 generates image data of the pattern 21 and supplies the generated image data to the determination unit 40.
  • the determination unit 40 performs determination processing for determining the presence or absence of cells attached to the culture surface 11 by analyzing the image data of the pattern 21 generated by the imaging unit 30.
  • FIG. 4 is a diagram illustrating an example of a hardware configuration of the determination unit 40.
  • the determination unit 40 includes a computer 500. That is, the determination unit 40 includes a communication interface (I / F) for performing communication with a CPU (Central Processing Unit) 501, a main storage device 502 as a temporary storage area, a nonvolatile auxiliary storage device 503, and the imaging unit 30. InterFace) 504 and a display unit 505 such as a liquid crystal display.
  • I / F communication interface
  • the CPU 501, main storage device 502, auxiliary storage device 503, communication I / F 504, and display unit 505 are each connected to a bus 507.
  • the auxiliary storage device 503 stores a determination program 506 describing the procedure of the determination process.
  • the determination unit 40 performs determination processing when the CPU 501 executes the determination program 506.
  • FIG. 5 is a flowchart showing an example of the flow of determination processing in the determination unit 40.
  • the determination unit 40 acquires the image data of the pattern 21 generated by the imaging unit 30.
  • step S ⁇ b> 2 the determination unit 40 analyzes the image data of the pattern 21, and determines whether distortion or blur has occurred in the image portion corresponding to the outline of the pattern 21.
  • the outline of the pattern 21 means the boundary between the bright part 21A and the dark part 21B.
  • the cells cultured in the culture vessel 10 are transparent or translucent to visible light. Therefore, when cells are attached to the culture surface 11 of the culture vessel 10, the image of the pattern 21 drawn on the drawing surface 20 is imaged on the imaging surface of the imaging unit 30 via the cells attached to the culture surface.
  • an image portion corresponding to the contour line of the pattern 21 (the boundary between the bright part 21A and the dark part 21B) has a refractive index between the cell and the medium surrounding the cell. Distortion or blur is caused by effects such as differences and scattering of light within the cell.
  • the distortion in the contour line means that the boundary line between the bright part 21A and the dark part 21B is curved.
  • FIG. 19A is an example of an image of the picture 21 captured through the culture surface 11 with no cells attached.
  • FIG. 19B is an example of an image of the pattern 21 captured through the culture surface 11 in a state where cells are attached.
  • the image portion corresponding to the contour line of the picture 21 (the boundary between the bright part 21 ⁇ / b> A and the dark part 21 ⁇ / b> B) is distorted. It can be confirmed that blur is occurring.
  • the determination unit 40 uses, for example, the spatial frequency or contrast of the image of the pattern 21 acquired in advance in a state where no cells are attached to the culture surface 11 as a reference, and the spatial frequency or contrast of the image of the pattern 21 to be determined.
  • the difference from the reference is equal to or greater than the threshold value, it may be determined that the image portion corresponding to the contour line of the pattern 21 is blurred.
  • the determination unit 40 uses, for example, the contour line in the image of the pattern 21 acquired in advance in a state where cells are not attached to the culture surface 11 as a reference, and the contour line in the image of the pattern 21 to be determined is based on the above reference.
  • the amount of deviation is greater than or equal to the threshold value, it may be determined that the image portion corresponding to the contour line of the pattern 21 is distorted.
  • step S3 If the determination unit 40 determines that the image portion corresponding to the contour line of the pattern 21 is distorted or blurred, it is determined in step S3 that “there are cells attached to the culture surface 11 of the culture vessel 10”. To do. On the other hand, when the determination unit 40 determines that the image portion corresponding to the contour line of the pattern 21 is not distorted or blurred, in step S4, “no cells attached to the culture surface 11 of the culture vessel 10”. Is determined.
  • step S5 the determination unit 40 outputs a determination result.
  • the determination unit 40 may display the determination result on a display (not shown). Further, the determination unit 40 may output the determination result by voice, or may output it by text printed on paper.
  • FIG. 6 is a diagram illustrating an example of a configuration of the cell detachment / collection apparatus 2 according to an embodiment of the disclosed technology, which includes the determination apparatus 1.
  • the cell detachment / collection device 2 includes a thermostatic bath 110, a transport unit 120, a cap opening / closing unit 130, a chemical solution removal unit 140, a chemical solution addition unit 150, and A cell recovery unit 160 is provided.
  • the thermostat 110 has a storage space for storing the plurality of culture vessels 10 and keeps the temperature of the storage space constant (for example, 37 ° C.).
  • the transport unit 120 is an arm type robot having a gripping mechanism 121 that grips the culture vessel 10.
  • the transport unit 120 transports the culture container 10 between the thermostatic chamber 110, the cap opening / closing unit 130, the chemical solution removal unit 140, the chemical solution addition unit 150, and the cell recovery unit 160 in a state where the culture container 10 is gripped by the gripping mechanism 121.
  • the conveyance part 120 can change the attitude
  • the cap opening / closing unit 130 includes a gripping mechanism 131 that grips the cap 12 provided in the culture vessel 10, and opens and closes the cap 12 by rotating the cap 12 while the cap 12 is gripped by the gripping mechanism 131. .
  • the chemical solution removal unit 140 includes a suction nozzle 141 and a waste bottle 142, and removes the chemical solution from the culture vessel 10 by sucking the chemical solution such as a medium and an enzyme contained in the culture vessel 10 from the suction nozzle 141. .
  • the chemical liquid sucked from the suction nozzle 141 is collected in the waste bottle 142.
  • the chemical solution addition unit 150 has a discharge nozzle 151 and a chemical solution bottle 152 that individually stores chemical solutions such as a culture medium and an enzyme agent, and the chemical solution stored in the chemical solution bottle 152 is discharged from the discharge nozzle 151, whereby the culture container 10. Add the chemical inside.
  • an enzyme agent is used in the peeling process which peels the cell adhering to the culture surface 11 of the culture container 10.
  • the cell collection unit 160 includes a suction nozzle 161 and a collection bottle 162, and sucks the cells detached from the culture surface 11 of the culture vessel 10 by the separation process from the suction nozzle 161 and collects them in the collection bottle 162.
  • FIG. 7 is a flowchart showing an example of an operation sequence of the cell detachment / collection apparatus 2.
  • the culture vessel 10 is accommodated in the thermostatic chamber 110, and the cells are cultured in a state where the cells adhere to the culture surface 11 in the culture vessel 10. Further, it is assumed that the culture medium is accommodated in the culture vessel 10 together with the cells.
  • step S11 the transport unit 120 takes the culture vessel 10 out of the thermostatic chamber 110 and transports it to the cap opening / closing unit 130.
  • step S ⁇ b> 12 the cap opening / closing part 130 opens the cap 12 of the culture vessel 10.
  • step S ⁇ b> 13 the transport unit 120 transports the culture container 10 to the chemical solution removal unit 140.
  • step S ⁇ b> 14 the chemical solution removing unit 140 inserts the suction nozzle 141 into the culture container 10 from the circulation port of the culture container 10 exposed by opening the cap 12, and sucks the medium contained in the culture container 10 as the suction nozzle. The medium is removed from the culture vessel 10 by aspiration from 141.
  • step S15 the transport unit 120 transports the culture vessel 10 to the chemical solution addition unit 150.
  • step S ⁇ b> 16 the chemical solution addition unit 150 inserts the discharge nozzle 151 into the culture container 10 from the circulation port of the culture container 10 exposed by opening the cap 12, and discharges the enzyme agent from the discharge nozzle 151.
  • An enzyme agent is added to the culture vessel 10.
  • step S ⁇ b> 17 the transport unit 120 transports the culture container 10 to the cap opening / closing unit 130.
  • step S18 the cap opening / closing part 130 closes the cap 12 of the culture vessel 10.
  • step S ⁇ b> 19 the transport unit 120 stores the culture container 10 in the thermostatic chamber 110. While the culture container 10 is accommodated in the thermostatic chamber 110, the separation of the cells from the culture surface 11 proceeds.
  • step S20 the transport unit 120 determines whether or not a predetermined time has elapsed since the culture vessel 10 was accommodated in the thermostatic chamber 110. If it is determined that the predetermined time has elapsed, in step S21, the transport unit 120 transports the culture vessel 10 to the imaging position. That is, the conveyance unit 120 places the culture container 10 between the imaging unit 30 and the drawing surface 20. More specifically, the transport unit 120 has the culture container 10 in a position and orientation where the culture surface 11 overlaps the drawing surface 20 in a state where the liquid such as the enzyme agent is removed from the culture surface 11 within the imaging field of the imaging unit 30. Positioning.
  • step S22 the imaging unit 30 captures an image of the pattern 21 drawn on the drawing surface 20 through the top plate 10A and the bottom plate 10B of the culture vessel 10, and generates image data of the pattern 21.
  • the imaging unit 30 supplies the generated image data of the pattern 21 to the determination unit 40.
  • FIG. 8A and FIG. 8B are diagrams each illustrating an example of the image of the pattern 21 acquired by the imaging unit 30 in step S22.
  • 8A and 8B show images IMG1 and IMG2 of the pattern 21 that have passed through the culture surface 11, respectively.
  • the transport unit 120 When imaging the pattern 21 in the imaging unit 30, the transport unit 120 first starts the culture container so that the side BC of the culture surface 11 is positioned vertically below the side AD as shown in FIG. 8A. 10 positioning is performed.
  • imaging of the pattern 21 by the imaging unit 30 is performed in a state where the enzyme agent 210 is accommodated in the culture vessel 10.
  • the pattern 21 in the vicinity of the side BC is blocked by the enzyme agent 210 moved to the vicinity of the side BC of the culture surface 11.
  • the determination part 40 determines the presence or absence of the cell adhering to the culture surface 11 based on the image of the pattern 21, when the pattern 21 in the vicinity of the side BC is blocked by the enzyme agent 210, the determination unit 40 is in the vicinity of the side BC. There is a possibility that it is difficult to appropriately determine the presence or absence of cells by the determination unit 40.
  • the transport unit 120 performs culture so that the side AD of the culture surface 11 is positioned vertically below the side BC as illustrated in FIG. 8B.
  • the container 10 is turned upside down. Thereby, the enzyme agent 210 moves to the vicinity of the side AD of the culture surface 11. In this state, the imaging unit 30 captures the pattern 21 again.
  • the determination unit 40 determines the presence or absence of cells attached to the culture surface 11 using both the image IMG1 shown in FIG. 8A and the image IMG2 shown in FIG. 8B. Thereby, the determination unit 40 can appropriately determine the presence / absence of cells attached to the culture surface 11 over the entire culture surface 11.
  • the determination unit 40 synthesizes the image IMG1 illustrated in FIG. 8A and the image IMG2 illustrated in FIG. 8B to reconstruct an image in which the enzyme agent 210 is not depicted, and based on the reconstructed image, the culture is performed. The presence or absence of cells adhering to the surface 11 may be determined.
  • the imaging unit 30 captures the pattern 21, if the enzyme agent 210 does not block the pattern 21, or even if the enzyme agent 210 blocks the pattern 21, the determination process in the determination unit 40 is not hindered. In some cases, imaging in a state where the orientation of the culture vessel 10 is reversed is unnecessary.
  • step S ⁇ b> 23 the determination unit 40 determines the presence / absence of cells attached to the culture surface 11 based on the image of the pattern acquired by the imaging unit 30. That is, the determination unit 40 performs each process of the flowchart shown in FIG.
  • the process returns to step S19. That is, in this case, the transport unit 120 accommodates the culture vessel 10 in the thermostatic chamber 110, advances cell detachment, and after a predetermined time has elapsed, captures the pattern 21 by the imaging unit 30, and determination by the determination unit 40 The process is performed again.
  • the process proceeds to step S ⁇ b> 24.
  • step S24 the transport unit 120 transports the culture vessel 10 to the cap opening / closing unit 130.
  • step S ⁇ b> 25 the cap opening / closing part 130 opens the cap 12 of the culture vessel 10.
  • step S ⁇ b> 26 the transport unit 120 transports the culture container 10 to the cell collection unit 160.
  • step S27 the cell recovery unit 160 inserts a suction nozzle 161 into the inside of the culture container 10 from the circulation port 13 of the culture container 10 exposed by opening the cap 12, and from the culture surface 11
  • the detached cells are sucked from the suction nozzle 161 and collected in a collection bottle 162 (see FIG. 6).
  • the culture vessel 10 may be tilted as shown in FIG. 9A. At this time, it is preferable that the tip of the suction nozzle 161 reaches the lowermost part of the culture vessel 10 in order to suppress cell recovery loss. As shown in FIG.
  • a tapered guide hole 14 is provided in the flow port 13 in accordance with the tapered shape of the suction nozzle 161 so that the tip of the suction nozzle 161 is cultured. It becomes possible to position at a specific position inside the container 10.
  • step S28 the transport unit 120 transports the culture vessel 10 to the cap opening / closing unit 130.
  • step S29 the cap opening / closing part 130 closes the cap 12 of the culture vessel 10.
  • step S ⁇ b> 30 the transport unit 120 stores the culture container 10 in the thermostatic chamber 110.
  • the imaging unit 30 places the culture surface 11 of the culture container 10 between the drawing surface 20 and the imaging unit 30. In the arranged state, an image of the pattern 21 drawn on the drawing surface 20 is acquired.
  • the outline of the pattern 21 (the boundary between the bright part 21 ⁇ / b> A and the dark part 21 ⁇ / b> B) Distortion or blur occurs due to the influence of the difference in refractive index from the medium and the scattering of light in the cell.
  • the determination unit 40 determines the presence or absence of cells attached to the culture surface 11 based on the image of the pattern 21 acquired by the imaging unit 30. Specifically, the determination unit 40 is a cell attached to the culture surface 11 based on at least one of distortion and blur in the image portion corresponding to the contour line of the pattern 21 (that is, the boundary between the bright part 21A and the dark part 21B). The presence or absence of is determined. Therefore, even if the cells are transparent or translucent to visible light, it is possible to accurately determine the presence or absence of cells attached to the culture surface 11.
  • the determination apparatus 1 and the cell detachment collection apparatus 2 since the image of the pattern 21 drawn on the drawing surface 20 is an analysis target in the determination unit 40, a plurality of culture surfaces 11 are included. Compared with the case where the location is observed in detail, the burden of the determination process in the determination unit 40 can be reduced, and the determination result can be obtained in a short time.
  • the imaging unit 30 when determining the presence or absence of cell attachment on the entire culture surface 11, the number of imaging by the imaging unit 30 is reduced. be able to. That is, it becomes possible to determine the presence or absence of cells for the entire culture surface 11 from only one image acquired by the imaging unit 30 or only two images in which the orientation of the culture container 10 is in an inverted relationship. .
  • the pattern 21 includes a repeated pattern in which the bright portions 21A and the dark portions 21B are alternately arranged, the determination process in the determination unit 40 can be simplified, and the processing time can be shortened. .
  • the pattern 21 is imaged by sandwiching the culture container 10 between the imaging unit 30 and the drawing surface 20 by making the area of the pattern 21 larger than the area of the culture surface 11 of the culture container 10, Strict alignment of the culture vessel 10 with respect to the pattern 21 is not necessary.
  • the imaging of the pattern 21 by the imaging unit 30 is performed in a state where the enzyme agent is accommodated in the culture vessel 10.
  • the processing time can be shortened compared to the case where imaging is performed after the enzyme agent is removed.
  • the determination unit 40 determines that “there are cells attached to the culture surface 11”, the cell detachment process can be continued or resumed without adding the enzyme agent again. .
  • FIG. 10A is a diagram showing an example of another method for positioning the culture vessel 10 at the imaging position.
  • the culture vessel 10 may be positioned using an installation table 170.
  • the installation table 170 has a guide 171 for installing the culture vessel 10 at a predetermined position on the installation table 170. Further, the surface of the installation table 170 that contacts the culture surface 11 is the drawing surface 20. By positioning the culture vessel 10 on the installation table 170 along the guide 171, the alignment between the culture vessel 10 and the drawing surface 20 (the pattern 21) is completed. Further, in a state where the culture vessel 10 is installed on the installation table 170 along the guide 171, the culture surface 11 is parallel to the vertical direction and the pattern 21 is blocked by the enzyme agent 210 accommodated in the culture vessel 10. The area is minimized.
  • the installation table 170 may be configured to be rotatable around a rotation shaft 172 as shown in FIG. 10B.
  • FIG. 11 is a diagram showing another example of the configuration of the culture vessel 10.
  • the culture vessel 10 has a storage space 15 for the enzyme agent 210 at its end.
  • the enzyme agent 210 accommodated in the culture container 10 flows into the accommodation space 15. Thereby, when imaging the pattern 21 by the imaging unit 30, the area of the region where the enzyme agent 210 covers the culture surface 11 (that is, the area of the region where the pattern 21 is blocked by the enzyme agent 210) can be reduced. .
  • the culture vessel 10 includes a frame 16, a plate member 17, a support member 18, and a partition member 19.
  • a region inside the partition member 19 on one surface of the plate member 17 is a culture surface 11, and a drawing surface 20 on which a pattern 21 is drawn is provided on the surface of the plate member 17 opposite to the culture surface 11.
  • the partition member 19 is a member that defines the range of the culture surface 11. That is, the range in which the cells 200 spread by proliferation is limited to the area inside the partition member 19.
  • the plate-like member 17 can move in the vertical direction as the push-up pin 180 moves up and down.
  • the partition member 19 is disposed inside the push-up pin 180. That is, the culture surface 11 is disposed inside the push-up pin 180.
  • FIG. 12A shows a state in which a peeling process for peeling the cells 200 adhered to the culture surface 11 using the enzyme agent 210 is performed.
  • the push-up pin 180 is in the lowered position, and the plate-like member 17 is supported by the support member 18.
  • the enzyme agent 210 covers the culture surface 11.
  • the push-up pin 180 rises and pushes the plate-like member 17 as shown in FIG. 12B.
  • the plate member 17 is separated from the support member 18, and a gap is formed between the support member 18 and the plate member 17.
  • the enzyme agent 210 that has covered the culture surface 11 passes through the gap formed between the support member 18 and the plate-like member 17 and moves to the bottom surface side of the frame body 16. Thereby, the enzyme agent 210 is removed from the culture surface 11.
  • the push-up pin 180 is lowered, and the plate member 17 is supported by the support member 18.
  • the image 21 is imaged by the imaging unit 30.
  • the imaging unit 30 is disposed above the plate-like member 17.
  • the removal of the enzyme agent 210 from the culture surface 11 may be realized by image processing. Specifically, the pattern 21 is imaged after cell detachment using an enzyme agent, and then the culture vessel 10 is vibrated to further image the pattern. A cell floating in the enzyme agent is identified from the difference between the two images acquired by these two imaging operations, and the identified cell is removed from one of the two images. Thereby, the image similar to the image acquired in the state which removed the enzyme agent 210 from the culture surface 11 is acquirable.
  • FIG. 13 is a diagram showing an example of another method for recovering cells detached from the culture surface 11 of the culture vessel 10 by the separation treatment.
  • the cells detached by the separation treatment may be discharged from the distribution port 13 by inclining the culture container 10 and directly poured into the recovery bottle 162.
  • the shape of the circulation port 13 may be processed into a shape in which dripping does not easily occur.
  • FIG. 14 is a diagram illustrating another example of the configuration of the determination apparatus 1.
  • the drawing surface 20 is constituted by, for example, the surface of a light-transmitting member, a portion where the light transmittance of the drawing surface 20 is reduced is a dark portion 21B, and a portion where the light transmittance of the drawing surface 20 is maintained is a bright portion.
  • 21A it is preferable to arrange the light source 50 on the opposite side of the imaging unit 30 with the drawing surface 20 in between, and irradiate the drawing surface 20 with light emitted from the light source 50.
  • the light source 50 is preferably a surface light source such as an organic EL (Electro-Luminescence) illumination capable of irradiating light with substantially uniform luminance over the entire drawing surface 20.
  • a point light source such as a halogen lamp
  • the pattern 21 drawn on the drawing surface 20 may be formed by light emission by a light emitting element.
  • the bright portion 21A may be formed by light emission with relatively high luminance
  • the dark portion 21B may be formed by light emission (or non-light emission) with relatively low luminance.
  • FIG. 15 is a diagram illustrating another example of the configuration of the determination apparatus 1.
  • the drawing surface 20 may be configured by a display surface of the display panel 60. That is, the drawing surface 20 includes a plurality of pixels arranged in a matrix.
  • the display panel 60 is a transmissive type such as a liquid crystal panel, for example, the pattern 21 is formed by controlling the light transmission state in each pixel.
  • the display panel 60 is a self-luminous type such as an organic EL panel, for example, the pattern 21 is formed by controlling the light emission state of each pixel.
  • the drawing surface 20 is constituted by the display surface of the display panel 60, whereby the pattern of the pattern 21 drawn on the drawing surface 20 can be appropriately changed.
  • FIG. 16 is a diagram illustrating another example of the configuration of the determination apparatus 1.
  • the determination device 1 may include a derivation unit 70.
  • the deriving unit 70 derives the area of the region where the cells are attached to the culture surface 11 based on the image data of the pattern 21 generated by the imaging unit 30.
  • the derivation unit 70 may be configured to include the same computer as the computer 500 (see FIG. 5) that configures the determination unit 40.
  • FIG. 17A is a flowchart illustrating an example of a flow of derivation processing performed in the derivation unit 70 to derive the area of a region where cells are attached to the culture surface 11.
  • step S41 the derivation unit 70 acquires the image data of the pattern 21 generated by the imaging unit 30.
  • step S42 the derivation unit 70 analyzes the image data of the pattern 21 and specifies a region where the outline of the pattern 21 is distorted or blurred.
  • step S43 the derivation unit 70 derives the area of the region specified in step S42 as the area of the region where the cells are attached to the culture surface 11.
  • the deriving unit 70 derives the value obtained by adding the areas of the plurality of regions as the area of the region where the cells are attached to the culture surface 11.
  • the determination unit 40 determines that the area derived by the deriving unit 70 is larger than a predetermined threshold, it determines that “there are cells attached to the culture surface 11”. On the other hand, if the determination unit 40 determines that the area derived by the deriving unit 70 is smaller than the predetermined threshold, it determines that “there is no cell attached to the culture surface 11”.
  • FIG. 17B is a flowchart illustrating another example of the flow of the derivation process performed in the derivation unit 70.
  • the flowchart shown in FIG. 17B is different from the flowchart shown in FIG. 17A in that the process of step S44 is added.
  • step S44 the deriving unit 70 derives the ratio of the area derived in step S43 to the area of the culture surface 11 (that is, the area ratio of the region where the cells are attached to the culture surface 11).
  • the determination unit 40 determines that the ratio (area ratio) derived by the deriving unit 70 is greater than a predetermined threshold, it determines that “there are cells attached to the culture surface 11”. On the other hand, if the determination unit 40 determines that the ratio (area ratio) derived by the deriving unit 70 is smaller than a predetermined threshold, it determines that “there are no cells attached to the culture surface 11”.
  • FIG. 18 is a diagram illustrating another example of a determination method using the determination device 1. As illustrated in FIG. 18, a plurality of culture vessels 10 may be disposed in a stacked state between the drawing surface 20 and the imaging unit 30. According to this aspect, it is possible to determine whether or not cells are attached to any of the culture surfaces of the plurality of culture containers 10.

Abstract

A determination apparatus is provided with: a pattern-drawn surface having a pattern drawn thereon; an imaging unit of which the imaging field of view is preset to the pattern-drawn surface; and a determination unit whereby it becomes possible to determine the presence or absence of cells attached to a light-permeable culturing surface of a culture vessel for cell culturing use, wherein the determination is carried out based on an image of the pattern which is obtained by the imaging unit while placing the culturing surface between the pattern-drawn surface and the imaging unit.

Description

判定装置、細胞剥離回収装置及び判定方法Determination device, cell detachment recovery device, and determination method
 本発明は、判定装置、細胞剥離回収装置及び判定方法に関する。 The present invention relates to a determination apparatus, a cell detachment collection apparatus, and a determination method.
 細胞培養装置に関する技術として、以下の技術が知られている。例えば、特開2014-113062号公報には、培養容器の底面に接着した細胞を掻き取るためのスクレーパと、培養容器の底面から剥離された細胞を培地と共に吸引するピペット装置と、ピペット装置で処理された培養容器を撮像し、培養容器内に細胞が残っているか否かを判定する細胞観察装置と、を備えた、細胞剥離システムが記載されている。 The following technologies are known as cell culture device technologies. For example, Japanese Patent Application Laid-Open No. 2014-113062 discloses a scraper for scraping off cells adhering to the bottom surface of a culture container, a pipette device for sucking cells detached from the bottom surface of the culture container together with a medium, and a treatment with the pipette device. A cell detachment system is described, which includes a cell observation device that images the obtained culture vessel and determines whether or not cells remain in the culture vessel.
 培養容器の培養面に細胞を接着させて培養を行う接着培養における継代処理は、培養容器の培養面に接着した細胞を酵素剤等の薬液を用いて培養面から剥離する剥離処理を行い、剥離した細胞を回収し、回収した細胞を新たな培養容器にて培養する処理である。継代処理では、剥離処理後に培養面に残留している細胞が多いと細胞ロスが発生し培養効率が低下してしまう。そのため剥離処理後の培養面に残留している細胞の有無を判定し、残留している細胞の量が一定以上である場合、剥離処理を継続または再開する。しかしながら、培養面に残留している細胞の有無の判定を作業者の目視で行う場合、細胞の有無の判定精度が、作業者間でばらつき、その結果、細胞の回収量が作業者間でばらつくという問題がある。 The subculture treatment in the adhesion culture in which the cells are adhered to the culture surface of the culture vessel is cultured, and the cells adhered to the culture surface of the culture vessel are separated from the culture surface using a chemical solution such as an enzyme agent, In this process, detached cells are collected, and the collected cells are cultured in a new culture vessel. In the passaging treatment, if there are many cells remaining on the culture surface after the detachment treatment, cell loss occurs and the culture efficiency is lowered. Therefore, the presence or absence of cells remaining on the culture surface after the detachment treatment is determined, and the detachment treatment is continued or restarted when the amount of remaining cells is a certain level or more. However, when the presence / absence of cells remaining on the culture surface is visually determined by an operator, the accuracy of determining the presence / absence of cells varies among workers, and as a result, the amount of collected cells varies among workers. There is a problem.
 特許文献1には、剥離処理後の培養容器を撮像して得られた画像から培養容器内に残留する細胞の有無を判定することが記載されている。しかしながら、特許文献1には、培養容器内に残留する細胞の有無を判定する具体的な手法については記載されていない。例えば、細胞が光透過性を有する場合、培養容器を撮像した画像から細胞が残留している領域を特定することは困難であり、従って、培養容器内に残留する細胞の有無を判定することは困難であると考えられる。 Patent Document 1 describes that the presence or absence of cells remaining in the culture container is determined from an image obtained by imaging the culture container after the peeling treatment. However, Patent Document 1 does not describe a specific method for determining the presence or absence of cells remaining in the culture vessel. For example, if the cells are light transmissive, it is difficult to specify the area where the cells remain from the image obtained by imaging the culture container. Therefore, it is difficult to determine the presence or absence of cells remaining in the culture container. It is considered difficult.
 開示の技術は、上記の点に鑑みてなされたものであり、培養容器の培養面に付着している細胞の有無を適確に判定することを目的とする。 The disclosed technique has been made in view of the above points, and aims to accurately determine the presence or absence of cells attached to the culture surface of a culture vessel.
 開示の技術に係る判定装置は、絵柄が描画された描画面と、描画面に撮像視野が設定された撮像部と、細胞を培養する培養容器の光透過性を有する培養面を描画面と撮像部との間に配置した状態で撮像部によって取得された絵柄の画像に基づいて、培養面に付着している細胞の有無を判定する判定部と、を含む。 The determination apparatus according to the disclosed technique includes imaging a drawing surface on which a pattern is drawn, an imaging unit in which an imaging field of view is set on the drawing surface, and a culture surface having a light transmission property of a culture vessel for culturing cells. And a determination unit that determines the presence / absence of cells attached to the culture surface based on the image of the pattern acquired by the imaging unit in a state of being disposed between the two.
 開示の技術に係る判定装置によれば、細胞が光透過性を有する場合でも、培養容器の培養面に付着している細胞の有無を適確に判定することが可能となる。 According to the determination apparatus according to the disclosed technology, it is possible to accurately determine the presence / absence of cells attached to the culture surface of the culture container even when the cells have light permeability.
 判定部は、絵柄の輪郭線に対応する画像部分における歪み及びボケの少なくとも一方に基づいて培養面に付着している細胞の有無を判定してもよい。この態様は、光透過性を有する細胞に対して特に有効である。 The determination unit may determine the presence or absence of cells attached to the culture surface based on at least one of distortion and blur in the image portion corresponding to the contour line of the pattern. This embodiment is particularly effective for cells having light permeability.
 絵柄は、互いに隣接して配置された明部と暗部とを含んでいてもよい。これにより、判定部における判定を、より適確に行うことが可能となる。 The pattern may include a bright part and a dark part arranged adjacent to each other. As a result, the determination in the determination unit can be performed more accurately.
 絵柄は、明部と暗部とが交互に配置された繰り返しパターンを有していてもよい。これにより、判定部における判定の処理を簡略化することができ、処理時間を短くすることが可能となる。 The pattern may have a repeating pattern in which bright parts and dark parts are alternately arranged. Thereby, the determination process in the determination unit can be simplified, and the processing time can be shortened.
 開示の技術に係る判定装置は、細胞が培養面に付着している領域の面積を導出する導出部を更に含んでいてもよい。また、開示の技術に係る判定装置は、細胞が培養面に付着している領域の面積の、培養面の面積に対する割合を導出する導出部を更に含んでいてもよい。これにより、判定部において、細胞の回収効率と、処理コストとを考慮した、より適確な判定を行うことが可能となる。 The determination apparatus according to the disclosed technique may further include a derivation unit that derives the area of the region where the cells are attached to the culture surface. In addition, the determination apparatus according to the disclosed technique may further include a derivation unit that derives a ratio of the area of the region where the cells are attached to the culture surface to the area of the culture surface. As a result, the determination unit can perform more accurate determination in consideration of the cell recovery efficiency and the processing cost.
 絵柄の一部は光透過性を有していてもよく、この場合、開示の技術に係る判定装置は、描画面を間に挟んで撮像部の反対側に配置された光源を更に含んでいてもよい。また、絵柄は、発光素子により形成されていてもよい。これらの態様によれば、絵柄のコントラストを大きくすることができ、判定部における判定の精度を高めることができる。 A part of the pattern may have light transparency, and in this case, the determination device according to the disclosed technique further includes a light source disposed on the opposite side of the imaging unit with the drawing surface interposed therebetween. Also good. The pattern may be formed of a light emitting element. According to these aspects, the contrast of the pattern can be increased, and the determination accuracy in the determination unit can be increased.
 描画面はマトリックス状に配置された複数の画素を含んでいてもよく、複数の画素の各々の、光の透過状態または発光状態が制御されることにより絵柄が形成されてもよい。この態様によれば、絵柄のパターンを適宜変化させることが可能となる。 The drawing surface may include a plurality of pixels arranged in a matrix, and a pattern may be formed by controlling a light transmission state or a light emission state of each of the plurality of pixels. According to this aspect, it is possible to appropriately change the pattern of the design.
 撮像部は、培養面の全体を撮像視野に含んだ状態で絵柄の画像を取得してもよい。この態様によれば、培養面の全体について細胞の付着の有無を判定する場合、撮像部による撮像の回数を少なくすることができる。 The imaging unit may acquire a picture image in a state where the entire culture surface is included in the imaging field of view. According to this aspect, when it is determined whether or not the cells are attached to the entire culture surface, the number of times of imaging by the imaging unit can be reduced.
 開示の技術に係る細胞剥離回収装置は、上記の判定装置と、培養容器を収容する収容空間を有し、収容空間の温度を一定に保つ恒温槽と、培養容器を搬送する搬送部と、培養面に付着している細胞を剥離する薬液を培養容器に添加する薬液添加部と培養容器から薬液を除去する薬液除去部と、培養面から剥離した細胞を回収する細胞回収部と、を有する。 A cell detachment collection apparatus according to the disclosed technology includes the above-described determination apparatus, a thermostatic bath that has a storage space for storing the culture container, keeps the temperature of the storage space constant, a transport unit that transports the culture container, and a culture A chemical solution adding unit for adding a chemical solution for separating cells attached to the surface to the culture vessel; a chemical solution removing unit for removing the chemical solution from the culture vessel; and a cell recovery unit for collecting the cells detached from the culture surface.
 開示の技術に係る剥離回収装置によれば、開示の技術に係る判定装置と同様の効果を得ることができ、更に、培養面に付着している細胞を剥離する剥離処理と、細胞面に付着している細胞の有無を判定する判定処理とを自動化することができる。 According to the peeling recovery apparatus according to the disclosed technique, the same effect as that of the determination apparatus according to the disclosed technique can be obtained, and further, a peeling process for peeling cells adhering to the culture surface, and adhesion to the cell surface It is possible to automate the determination process for determining the presence of cells.
 開示の技術に係る判定方法は、絵柄が描画された描画面に撮像部の撮像視野を設定し、描画面と撮像部との間に、細胞を培養する培養容器の光透過性を有する培養面を配置した状態で、撮像部によって絵柄の画像を取得し、絵柄の画像に基づいて、培養面に付着している細胞の有無を判定する、というものである。 In the determination method according to the disclosed technique, the imaging field of the imaging unit is set on the drawing surface on which the pattern is drawn, and the culture surface having light permeability of the culture vessel for culturing cells between the drawing surface and the imaging unit The image of the pattern is acquired by the imaging unit in a state where the is placed, and the presence or absence of cells attached to the culture surface is determined based on the image of the pattern.
 開示の技術に係る判定方法によれば、細胞が光透過性を有する場合でも、培養容器の培養面に付着している細胞の有無を適確に判定することが可能となる。 According to the determination method according to the disclosed technique, it is possible to accurately determine the presence or absence of cells attached to the culture surface of the culture vessel even when the cells have light permeability.
 培養容器の培養面に付着している細胞の有無を適確に判定する。 Determine the presence or absence of cells adhering to the culture surface of the culture vessel.
開示の技術の実施形態に係る判定装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the determination apparatus which concerns on embodiment of the technique of an indication. 開示の技術の実施形態に係る培養容器の構成の一例を示す斜視図である。It is a perspective view which shows an example of a structure of the culture container which concerns on embodiment of the technique of an indication. 図2Aにおける2B-2B線に沿った断面図である。FIG. 2B is a cross-sectional view taken along line 2B-2B in FIG. 2A. 開示の技術の実施形態に係る描画面に描画される絵柄の一例を示す図である。It is a figure which shows an example of the pattern drawn on the drawing surface which concerns on embodiment of the technique of an indication. 開示の技術の実施形態に係る描画面に描画される絵柄の一例を示す図である。It is a figure which shows an example of the pattern drawn on the drawing surface which concerns on embodiment of the technique of an indication. 開示の技術の実施形態に係る描画面に描画される絵柄の一例を示す図である。It is a figure which shows an example of the pattern drawn on the drawing surface which concerns on embodiment of the technique of an indication. 開示の技術の実施形態に係る判定部のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of the determination part which concerns on embodiment of the technique of an indication. 開示の技術の実施形態に係る判定部における判定処理の流れの一例を示すフローチャートである。14 is a flowchart illustrating an example of a flow of determination processing in a determination unit according to an embodiment of the disclosed technology. 開示の技術の実施形態に係る判定装置を備えた、開示の技術の実施形態に係る細胞剥離回収装置の構成の一例を示す図である。It is a figure showing an example of composition of a cell exfoliation collection device concerning an embodiment of an art of an indication provided with a judgment device concerning an embodiment of an art of an indication. 開示の技術の実施形態に係る細胞剥離回収装置の動作シーケンスの一例を示すフローチャートである。10 is a flowchart illustrating an example of an operation sequence of the cell detachment collection apparatus according to an embodiment of the disclosed technology. 開示の技術の実施形態に係る撮像部によって取得される絵柄の画像の一例を示す図である。It is a figure which shows an example of the image of the pattern acquired by the imaging part which concerns on embodiment of the technique of an indication. 開示の技術の実施形態に係る撮像部によって取得される絵柄の画像の一例を示す図である。It is a figure which shows an example of the image of the pattern acquired by the imaging part which concerns on embodiment of the technique of an indication. 開示の技術の実施形態に係る細胞回収部において細胞を回収している様子を示す図である。It is a figure which shows a mode that the cell is collect | recovered in the cell collection part which concerns on embodiment of the technique of an indication. 開示の技術の実施形態に係る細胞回収部において細胞を回収している様子を示す図である。It is a figure which shows a mode that the cell is collect | recovered in the cell collection part which concerns on embodiment of the technique of an indication. 開示の技術の実施形態に係る培養容器を撮像位置に位置決めする他の方法の一例を示す図である。It is a figure which shows an example of the other method of positioning the culture container which concerns on embodiment of the technique of an indication to an imaging position. 開示の技術の実施形態に係る培養容器を撮像位置に位置決めする他の方法の一例を示す図である。It is a figure which shows an example of the other method of positioning the culture container which concerns on embodiment of the technique of an indication to an imaging position. 開示の技術の実施形態に係る培養容器の構成の他の例を示す図である。It is a figure which shows the other example of a structure of the culture container which concerns on embodiment of the technique of an indication. 開示の技術の実施形態に係る培養面から酵素剤を除去する他の方法の一例を示す図である。It is a figure which shows an example of the other method of removing an enzyme agent from the culture surface which concerns on embodiment of the technique of an indication. 開示の技術の実施形態に係る培養面から酵素剤を除去する他の方法の一例を示す図である。It is a figure which shows an example of the other method of removing an enzyme agent from the culture surface which concerns on embodiment of the technique of an indication. 開示の技術の実施形態に係る培養面から酵素剤を除去する他の方法の一例を示す図である。It is a figure which shows an example of the other method of removing an enzyme agent from the culture surface which concerns on embodiment of the technique of an indication. 開示の技術の実施形態に係る培養容器の培養面から剥離した細胞を回収する他の方法の一例を示す図である。It is a figure which shows an example of the other method of collect | recovering the cells which peeled from the culture surface of the culture container which concerns on embodiment of the technique of an indication. 開示の技術の実施形態に係る判定装置の構成の他の例を示す図である。It is a figure which shows the other example of a structure of the determination apparatus which concerns on embodiment of the technique of an indication. 開示の技術の実施形態に係る判定装置の構成の他の例を示す図である。It is a figure which shows the other example of a structure of the determination apparatus which concerns on embodiment of the technique of an indication. 開示の技術の実施形態に係る判定装置の構成の他の例を示す図である。It is a figure which shows the other example of a structure of the determination apparatus which concerns on embodiment of the technique of an indication. 開示の技術の実施形態に係る導出部における導出処理の流れの一例を示すフローチャートである。14 is a flowchart illustrating an example of a flow of derivation processing in a derivation unit according to an embodiment of the disclosed technology. 開示の技術の実施形態に係る導出部における導出処理の流れの他の例を示すフローチャートである。14 is a flowchart illustrating another example of the flow of derivation processing in the derivation unit according to an embodiment of the disclosed technology. 開示の技術の実施形態に係る判定装置を用いた判定方法の他の例を示す図である。It is a figure which shows the other example of the determination method using the determination apparatus which concerns on embodiment of the technique of an indication. 開示の技術の実施形態に係る、細胞が付着していない状態の培養面越しに撮像された絵柄の画像の一例を示す図である。It is a figure which shows an example of the image of the pattern imaged through the culture surface of the state which has not adhered the cell based on embodiment of the technique of an indication. 開示の技術の実施形態に係る、細胞が付着している状態の培養面越しに撮像された絵柄の画像の一例を示す図である。It is a figure which shows an example of the image of the pattern imaged through the culture surface of the state which the cell has adhered based on embodiment of the technique of an indication.
 以下、本発明の実施形態について図面を参照しつつ説明する。尚、各図面において、実質的に同一又は等価な構成要素又は部分には同一の参照符号を付している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, substantially the same or equivalent components or parts are denoted by the same reference numerals.
 図1は、開示の技術の実施形態に係る判定装置1の構成の一例を示す図である。判定装置1は、絵柄21が描画された描画面20と、描画面20に撮像視野が設定された撮像部30と、判定部40とを、含んで構成されている。判定部40は、培養容器10の培養面11を、描画面20と撮像部30との間に配置した状態で撮像部30によって取得された絵柄21の画像に基づいて、培養面11に付着している細胞の有無を判定する。 FIG. 1 is a diagram illustrating an example of a configuration of a determination apparatus 1 according to an embodiment of the disclosed technology. The determination apparatus 1 includes a drawing surface 20 on which a pattern 21 is drawn, an imaging unit 30 in which an imaging field of view is set on the drawing surface 20, and a determination unit 40. The determination unit 40 adheres to the culture surface 11 based on the image of the pattern 21 acquired by the imaging unit 30 in a state where the culture surface 11 of the culture vessel 10 is disposed between the drawing surface 20 and the imaging unit 30. Determine the presence or absence of cells.
 図2Aは、培養容器10の構成の一例を示す斜視図であり、図2Bは、図2Aにおける2B-2B線に沿った断面図である。培養容器10の外形形状は、特に限定されないが、例えば、図2Aに示すように天板10A及び天板10Aに対向する底板10Bを含む直方体であってもよい。培養容器10の天板10Aには、開閉可能な2つのキャップ12が設けられている。キャップ12を開けることで、培養容器10内に培地及び酵素剤等の薬液を注入したり、培養容器10内から薬液を排出したり、培養容器10内から細胞を取り出したりすることが可能である。キャップ12を閉めることで、培養容器10の内部空間が封鎖される。 2A is a perspective view showing an example of the configuration of the culture vessel 10, and FIG. 2B is a cross-sectional view taken along line 2B-2B in FIG. 2A. Although the external shape of the culture vessel 10 is not particularly limited, for example, it may be a rectangular parallelepiped including a top plate 10A and a bottom plate 10B facing the top plate 10A as shown in FIG. 2A. The top plate 10A of the culture vessel 10 is provided with two caps 12 that can be opened and closed. By opening the cap 12, it is possible to inject a chemical solution such as a medium and an enzyme into the culture vessel 10, discharge the chemical solution from the culture vessel 10, and take out the cells from the culture vessel 10. . By closing the cap 12, the internal space of the culture vessel 10 is sealed.
 底板10Bの、培養容器10の内側の面は、培養面11とされており、培養容器10内で培養される細胞200は、培養面11に接着した状態で培養される。培養容器10は、少なくとも、天板10A及び底板10Bが光透過性を有する。判定装置1を用いて培養面11に付着している細胞の有無を判定する場合、培養容器10は、描画面20と撮像部30との間に配置される。このとき、培養容器10は、底板10Bが描画面20側となり、天板10Aが撮像部30側となる向きに配置される。なお、培養容器10は、底板10Bが撮像部30側となり、天板10Aが描画面20側となる向きに配置されてもよい。 The inner surface of the culture vessel 10 of the bottom plate 10 </ b> B is a culture surface 11, and the cells 200 cultured in the culture vessel 10 are cultured while being adhered to the culture surface 11. In the culture container 10, at least the top plate 10A and the bottom plate 10B are light transmissive. When determining the presence or absence of cells adhering to the culture surface 11 using the determination device 1, the culture container 10 is disposed between the drawing surface 20 and the imaging unit 30. At this time, the culture container 10 is arranged in such a direction that the bottom plate 10B is on the drawing surface 20 side and the top plate 10A is on the imaging unit 30 side. Note that the culture vessel 10 may be arranged in such a direction that the bottom plate 10B is on the imaging unit 30 side and the top plate 10A is on the drawing surface 20 side.
 描画面20は、例えば、板状部材、シート状部材、フィルム状部材の表面によって構成されていてもよく、絵柄21は、これらの部材の表面に描画されていてもよい。描画面20において絵柄21が描画されている領域の面積は、培養容器10の培養面11の面積よりも大きいことが好ましい。 The drawing surface 20 may be constituted by, for example, the surface of a plate-like member, a sheet-like member, or a film-like member, and the pattern 21 may be drawn on the surface of these members. The area of the region where the pattern 21 is drawn on the drawing surface 20 is preferably larger than the area of the culture surface 11 of the culture vessel 10.
 図3A、図3B、図3Cは、それぞれ、描画面20に描画される絵柄21の一例を示す図である。絵柄21は、明部21Aと暗部21Bとを含んで構成されている。絵柄21は、明部21Aと暗部21Bとの境界が、描画面20の全域に及んでいることが好ましい。また、絵柄21は、図3A~図3Cに示すように、明部21Aと暗部21Bとが交互に配置された繰り返しパターンを含んでいることが更に好ましい。 FIG. 3A, FIG. 3B, and FIG. 3C are diagrams showing an example of the picture 21 drawn on the drawing surface 20, respectively. The pattern 21 includes a bright part 21A and a dark part 21B. In the pattern 21, it is preferable that the boundary between the bright part 21 </ b> A and the dark part 21 </ b> B extends over the entire drawing surface 20. Further, as shown in FIGS. 3A to 3C, the pattern 21 further preferably includes a repetitive pattern in which bright portions 21A and dark portions 21B are alternately arranged.
 絵柄21は、例えば、図3Aに示すように、正方形の明部21A及び暗部21Bが、縦方向及び横方向に交互に配置された、いわゆるチェック模様を形成するものであってもよい。また、絵柄21は、例えば、図3Bに示すように、一方向に延びる直線状の明部21A及び暗部21Bが、上記一方向と交差する交差方向に交互に配置された、いわゆるストライプ模様を形成するものであってもよい。また、絵柄21は、例えば、図3Cに示すように、第1の方向に延びる直線状の複数の暗部21Bが、上記第1の方向と交差する第2の方向に一定の間隔を隔てて配置されるとともに、上記第2の方向に延びる直線状の複数の暗部21Bが、上記第1の方向に一定の間隔を隔てて配置され、且つ暗部21B以外の領域に明部21Aが配置された、いわゆる格子模様を形成するものであってもよい。 The pattern 21 may form a so-called check pattern in which square light portions 21A and dark portions 21B are alternately arranged in the vertical direction and the horizontal direction, as shown in FIG. 3A, for example. In addition, for example, as shown in FIG. 3B, the pattern 21 forms a so-called stripe pattern in which linear bright portions 21 </ b> A and dark portions 21 </ b> B extending in one direction are alternately arranged in the intersecting direction intersecting the one direction. You may do. Further, for example, as illustrated in FIG. 3C, the pattern 21 includes a plurality of linear dark portions 21 </ b> B extending in the first direction at a certain interval in the second direction intersecting the first direction. In addition, a plurality of linear dark portions 21B extending in the second direction are arranged at a certain interval in the first direction, and bright portions 21A are arranged in a region other than the dark portion 21B. A so-called lattice pattern may be formed.
 描画面20が、光透過性を有さない部材の表面によって構成される場合、描画面20の例えば白色で描画された部分を明部21Aとし、描画面20の例えば黒色で描画された部分を暗部21Bとしてもよい。一方、描画面20が、光透過性を有する部材の表面によって構成される場合、例えば描画面20に着色を施すこと等により描画面20の光透過率を低下させた部分を暗部21Bとし、描画面20に着色を施さないことにより描画面20の光透過率を維持した部分を明部21Aとしてもよい。 When the drawing surface 20 is constituted by the surface of a member that does not transmit light, a portion of the drawing surface 20 drawn in white, for example, is a bright portion 21A, and a portion of the drawing surface 20 drawn in black, for example, is It is good also as the dark part 21B. On the other hand, when the drawing surface 20 is constituted by the surface of a light-transmitting member, for example, a portion where the light transmittance of the drawing surface 20 is reduced by coloring the drawing surface 20 is set as a dark portion 21B. A portion where the light transmittance of the drawing surface 20 is maintained by not coloring the surface 20 may be a bright portion 21A.
 撮像部30は、例えば、デジタルカメラ等の撮像装置を含んで構成されている。撮像部30は、描画面20に描画された絵柄21を、培養容器10の天板10A及び底板10B越しで細胞培養液や酵素剤等の液体が撮影光路に入らないように除去された条件で撮像する。すなわち、描画面20に描画された絵柄21の像が、培養容器10の底板10B及び天板10Aを介して撮像部30の撮像面に結像される。撮像部30の撮像視野内には、培養面11の全体が含まれていることが好ましい。撮像部30は、絵柄21の画像データを生成し、生成した画像データを判定部40に供給する。 The imaging unit 30 includes an imaging device such as a digital camera, for example. The imaging unit 30 removes the pattern 21 drawn on the drawing surface 20 under the condition that the liquid such as the cell culture solution or the enzyme agent does not enter the photographing optical path through the top plate 10A and the bottom plate 10B of the culture vessel 10. Take an image. That is, the image of the pattern 21 drawn on the drawing surface 20 is formed on the imaging surface of the imaging unit 30 via the bottom plate 10B and the top plate 10A of the culture vessel 10. It is preferable that the entire culture surface 11 is included in the imaging field of the imaging unit 30. The imaging unit 30 generates image data of the pattern 21 and supplies the generated image data to the determination unit 40.
 判定部40は、撮像部30によって生成された絵柄21の画像データを解析することで、培養面11に付着している細胞の有無を判定する判定処理を行う。ここで、図4は、判定部40のハードウェア構成の一例を示す図である。判定部40は、コンピュータ500を含んで構成されている。すなわち、判定部40は、CPU(Central Processing Unit)501、一時記憶領域としての主記憶装置502、不揮発性の補助記憶装置503、撮像部30との間で通信を行うための通信I/F(InterFace)504、及び液晶ディスプレイ等の表示部505を含んで構成されている。CPU501、主記憶装置502、補助記憶装置503、通信I/F504、及び表示部505は、それぞれ、バス507に接続されている。補助記憶装置503には、上記判定処理の手順を記述した判定プログラム506が格納されている。判定部40は、CPU501が判定プログラム506を実行することで、判定処理を行う。 The determination unit 40 performs determination processing for determining the presence or absence of cells attached to the culture surface 11 by analyzing the image data of the pattern 21 generated by the imaging unit 30. Here, FIG. 4 is a diagram illustrating an example of a hardware configuration of the determination unit 40. The determination unit 40 includes a computer 500. That is, the determination unit 40 includes a communication interface (I / F) for performing communication with a CPU (Central Processing Unit) 501, a main storage device 502 as a temporary storage area, a nonvolatile auxiliary storage device 503, and the imaging unit 30. InterFace) 504 and a display unit 505 such as a liquid crystal display. The CPU 501, main storage device 502, auxiliary storage device 503, communication I / F 504, and display unit 505 are each connected to a bus 507. The auxiliary storage device 503 stores a determination program 506 describing the procedure of the determination process. The determination unit 40 performs determination processing when the CPU 501 executes the determination program 506.
 図5は、判定部40における判定処理の流れの一例を示すフローチャートである。ステップS1において、判定部40は、撮像部30によって生成された絵柄21の画像データを取得する。 FIG. 5 is a flowchart showing an example of the flow of determination processing in the determination unit 40. In step S <b> 1, the determination unit 40 acquires the image data of the pattern 21 generated by the imaging unit 30.
 ステップS2において、判定部40は、絵柄21の画像データを解析し、絵柄21の輪郭線に対応する画像部分に歪みまたはボケが生じているか否かを判定する。なお、絵柄21の輪郭線とは、明部21Aと暗部21Bの境界を意味する。 In step S <b> 2, the determination unit 40 analyzes the image data of the pattern 21, and determines whether distortion or blur has occurred in the image portion corresponding to the outline of the pattern 21. The outline of the pattern 21 means the boundary between the bright part 21A and the dark part 21B.
 ここで、培養容器10内で培養される細胞は、可視光に対して透明または半透明であることが想定される。従って、培養容器10の培養面11に細胞が付着している場合、描画面20に描画された絵柄21の像は、培養面に付着した細胞を介して撮像部30の撮像面に結像される。この場合、撮像部30によって取得される絵柄21の画像における、絵柄21の輪郭線(明部21Aと暗部21Bの境界)に対応する画像部分には、細胞と細胞の周囲の媒質との屈折率差及び細胞内における光の散乱などの影響により、歪みまたはボケが生じる。輪郭線に歪みが生じるとは、明部21Aと暗部21Bの境界線が湾曲することを意味する。輪郭線にボケが生じるとは、明部21Aと暗部21Bのコントラストが低下することを意味する。図19Aは、細胞が付着していない状態の培養面11越しに撮像された絵柄21の画像の一例である。図19Bは、細胞が付着している状態の培養面11越しに撮像された絵柄21の画像の一例である。図19Aと図19Bとを比較して明らかなように、培養面11に細胞が付着している場合、絵柄21の輪郭線(明部21Aと暗部21Bの境界)に対応する画像部分に歪み及びボケが生じているのが確認できる。 Here, it is assumed that the cells cultured in the culture vessel 10 are transparent or translucent to visible light. Therefore, when cells are attached to the culture surface 11 of the culture vessel 10, the image of the pattern 21 drawn on the drawing surface 20 is imaged on the imaging surface of the imaging unit 30 via the cells attached to the culture surface. The In this case, in the image of the pattern 21 acquired by the imaging unit 30, an image portion corresponding to the contour line of the pattern 21 (the boundary between the bright part 21A and the dark part 21B) has a refractive index between the cell and the medium surrounding the cell. Distortion or blur is caused by effects such as differences and scattering of light within the cell. The distortion in the contour line means that the boundary line between the bright part 21A and the dark part 21B is curved. The blurring of the outline means that the contrast of the bright part 21A and the dark part 21B is lowered. FIG. 19A is an example of an image of the picture 21 captured through the culture surface 11 with no cells attached. FIG. 19B is an example of an image of the pattern 21 captured through the culture surface 11 in a state where cells are attached. As apparent from comparison between FIG. 19A and FIG. 19B, when cells are attached to the culture surface 11, the image portion corresponding to the contour line of the picture 21 (the boundary between the bright part 21 </ b> A and the dark part 21 </ b> B) is distorted. It can be confirmed that blur is occurring.
 絵柄21の輪郭線の画像部分にボケが生じている場合、絵柄21の画像において、空間周波数の低下が生じるものと考えらえる。従って、判定部40は、例えば、培養面11に細胞が付着していない状態で予め取得した絵柄21の画像の空間周波数またはコントラストを基準とし、判定対象の絵柄21の画像の空間周波数またはコントラストと、上記基準との差分が閾値以上である場合に、絵柄21の輪郭線に対応する画像部分にボケが生じていると判定してもよい。また、判定部40は、例えば、培養面11に細胞が付着していない状態で予め取得した絵柄21の画像における輪郭線を基準とし、判定対象の絵柄21の画像における輪郭線の、上記基準からのずれ量が閾値以上である場合に、絵柄21の輪郭線に対応する画像部分に歪みが生じていると判定してもよい。 When the image portion of the contour line of the pattern 21 is blurred, it can be considered that the spatial frequency is lowered in the image of the pattern 21. Therefore, the determination unit 40 uses, for example, the spatial frequency or contrast of the image of the pattern 21 acquired in advance in a state where no cells are attached to the culture surface 11 as a reference, and the spatial frequency or contrast of the image of the pattern 21 to be determined. When the difference from the reference is equal to or greater than the threshold value, it may be determined that the image portion corresponding to the contour line of the pattern 21 is blurred. In addition, the determination unit 40 uses, for example, the contour line in the image of the pattern 21 acquired in advance in a state where cells are not attached to the culture surface 11 as a reference, and the contour line in the image of the pattern 21 to be determined is based on the above reference. When the amount of deviation is greater than or equal to the threshold value, it may be determined that the image portion corresponding to the contour line of the pattern 21 is distorted.
 判定部40は、絵柄21の輪郭線に対応する画像部分に歪みまたはボケが生じていると判定した場合、ステップS3において、「培養容器10の培養面11に付着している細胞有り」と判定する。一方、判定部40は、絵柄21の輪郭線に対応する画像部分に歪みまたはボケが生じていないと判定した場合、ステップS4において、「培養容器10の培養面11に付着している細胞無し」と判定する。 If the determination unit 40 determines that the image portion corresponding to the contour line of the pattern 21 is distorted or blurred, it is determined in step S3 that “there are cells attached to the culture surface 11 of the culture vessel 10”. To do. On the other hand, when the determination unit 40 determines that the image portion corresponding to the contour line of the pattern 21 is not distorted or blurred, in step S4, “no cells attached to the culture surface 11 of the culture vessel 10”. Is determined.
 ステップS5において、判定部40は、判定結果を出力する。判定部40は、例えば、判定結果をディスプレイ(図示せず)上に表示させてもよい。また、判定部40は、判定結果を音声により出力してもよいし、紙面に印刷されたテキストによって出力してもよい。 In step S5, the determination unit 40 outputs a determination result. For example, the determination unit 40 may display the determination result on a display (not shown). Further, the determination unit 40 may output the determination result by voice, or may output it by text printed on paper.
 図6は、判定装置1を備えた、開示の技術の実施形態に係る細胞剥離回収装置2の構成の一例を示す図である。細胞剥離回収装置2は、判定装置1を構成する描画面20、撮像部30及び判定部40に加え、恒温槽110、搬送部120、キャップ開閉部130、薬液除去部140、薬液添加部150及び細胞回収部160を有する。 FIG. 6 is a diagram illustrating an example of a configuration of the cell detachment / collection apparatus 2 according to an embodiment of the disclosed technology, which includes the determination apparatus 1. In addition to the drawing surface 20, the imaging unit 30, and the determination unit 40 that constitute the determination device 1, the cell detachment / collection device 2 includes a thermostatic bath 110, a transport unit 120, a cap opening / closing unit 130, a chemical solution removal unit 140, a chemical solution addition unit 150, and A cell recovery unit 160 is provided.
 恒温槽110は、複数の培養容器10を収容する収容空間を有し、収容空間の温度を一定(例えば37℃)に保つ。 The thermostat 110 has a storage space for storing the plurality of culture vessels 10 and keeps the temperature of the storage space constant (for example, 37 ° C.).
 搬送部120は、培養容器10を把持する把持機構121を有するアーム型のロボットである。搬送部120は、培養容器10を把持機構121によって把持した状態で、恒温槽110、キャップ開閉部130、薬液除去部140、薬液添加部150及び細胞回収部160相互間における培養容器10の搬送を行う。搬送部120は、培養容器10を把持した状態において、培養容器10の姿勢を自在に変化させることが可能である。 The transport unit 120 is an arm type robot having a gripping mechanism 121 that grips the culture vessel 10. The transport unit 120 transports the culture container 10 between the thermostatic chamber 110, the cap opening / closing unit 130, the chemical solution removal unit 140, the chemical solution addition unit 150, and the cell recovery unit 160 in a state where the culture container 10 is gripped by the gripping mechanism 121. Do. The conveyance part 120 can change the attitude | position of the culture container 10 freely in the state which hold | gripped the culture container 10. FIG.
 キャップ開閉部130は、培養容器10に設けられたキャップ12を把持する把持機構131を有し、把持機構131によってキャップ12を把持した状態でキャップ12を回転させることで、キャップ12の開閉を行う。 The cap opening / closing unit 130 includes a gripping mechanism 131 that grips the cap 12 provided in the culture vessel 10, and opens and closes the cap 12 by rotating the cap 12 while the cap 12 is gripped by the gripping mechanism 131. .
 薬液除去部140は、吸引ノズル141及び廃棄ボトル142を有し、培養容器10に収容されている培地および酵素剤等の薬液を吸引ノズル141から吸引することで培養容器10内から薬液を除去する。吸引ノズル141から吸引された薬液は、廃棄ボトル142に回収される。 The chemical solution removal unit 140 includes a suction nozzle 141 and a waste bottle 142, and removes the chemical solution from the culture vessel 10 by sucking the chemical solution such as a medium and an enzyme contained in the culture vessel 10 from the suction nozzle 141. . The chemical liquid sucked from the suction nozzle 141 is collected in the waste bottle 142.
 薬液添加部150は、吐出ノズル151及び培地及び酵素剤等の薬液を個別に収容した薬液ボトル152を有し、薬液ボトル152に収容された薬液を吐出ノズル151から吐出することで、培養容器10内に薬液を添加する。なお、酵素剤は、培養容器10の培養面11に接着した細胞を剥離する剥離処理において使用される。 The chemical solution addition unit 150 has a discharge nozzle 151 and a chemical solution bottle 152 that individually stores chemical solutions such as a culture medium and an enzyme agent, and the chemical solution stored in the chemical solution bottle 152 is discharged from the discharge nozzle 151, whereby the culture container 10. Add the chemical inside. In addition, an enzyme agent is used in the peeling process which peels the cell adhering to the culture surface 11 of the culture container 10. FIG.
 細胞回収部160は、吸引ノズル161及び回収ボトル162を有し、剥離処理によって培養容器10の培養面11から剥離した細胞を吸引ノズル161から吸引し、回収ボトル162に回収する。 The cell collection unit 160 includes a suction nozzle 161 and a collection bottle 162, and sucks the cells detached from the culture surface 11 of the culture vessel 10 by the separation process from the suction nozzle 161 and collects them in the collection bottle 162.
 以下に、細胞剥離回収装置2の動作の一例を、図7を参照しつつ説明する。図7は、細胞剥離回収装置2の動作シーケンスの一例を示すフローチャートである。 Hereinafter, an example of the operation of the cell detachment collection apparatus 2 will be described with reference to FIG. FIG. 7 is a flowchart showing an example of an operation sequence of the cell detachment / collection apparatus 2.
 初期状態において、培養容器10が恒温槽110に収容されており、培養容器10内には、細胞が培養面11に接着した状態で培養されているものとする。また、培養容器10内には細胞とともに培地が収容されているものとする。 In the initial state, it is assumed that the culture vessel 10 is accommodated in the thermostatic chamber 110, and the cells are cultured in a state where the cells adhere to the culture surface 11 in the culture vessel 10. Further, it is assumed that the culture medium is accommodated in the culture vessel 10 together with the cells.
 ステップS11において、搬送部120は、培養容器10を恒温槽110から取り出してキャップ開閉部130に搬送する。ステップS12において、キャップ開閉部130は、培養容器10のキャップ12を開ける。ステップS13において、搬送部120は、培養容器10を薬液除去部140に搬送する。ステップS14において、薬液除去部140は、キャップ12を開けることにより露出した培養容器10の流通口から培養容器10の内部に吸引ノズル141を挿入し、培養容器10に収容されている培地を吸引ノズル141から吸引することで、培地を培養容器10から除去する。 In step S11, the transport unit 120 takes the culture vessel 10 out of the thermostatic chamber 110 and transports it to the cap opening / closing unit 130. In step S <b> 12, the cap opening / closing part 130 opens the cap 12 of the culture vessel 10. In step S <b> 13, the transport unit 120 transports the culture container 10 to the chemical solution removal unit 140. In step S <b> 14, the chemical solution removing unit 140 inserts the suction nozzle 141 into the culture container 10 from the circulation port of the culture container 10 exposed by opening the cap 12, and sucks the medium contained in the culture container 10 as the suction nozzle. The medium is removed from the culture vessel 10 by aspiration from 141.
 ステップS15において、搬送部120は、培養容器10を薬液添加部150に搬送する。ステップS16において、薬液添加部150は、キャップ12を開けることにより露出した培養容器10の流通口から培養容器10の内部に吐出ノズル151を挿入し、吐出ノズル151から酵素剤を吐出することで、培養容器10内に酵素剤を添加する。ステップS17において、搬送部120は、培養容器10をキャップ開閉部130に搬送する。ステップS18において、キャップ開閉部130は、培養容器10のキャップ12を閉める。ステップS19において、搬送部120は、培養容器10を恒温槽110に収容する。培養容器10が恒温槽110で収容されている間、細胞の培養面11からの剥離が進行する。 In step S15, the transport unit 120 transports the culture vessel 10 to the chemical solution addition unit 150. In step S <b> 16, the chemical solution addition unit 150 inserts the discharge nozzle 151 into the culture container 10 from the circulation port of the culture container 10 exposed by opening the cap 12, and discharges the enzyme agent from the discharge nozzle 151. An enzyme agent is added to the culture vessel 10. In step S <b> 17, the transport unit 120 transports the culture container 10 to the cap opening / closing unit 130. In step S18, the cap opening / closing part 130 closes the cap 12 of the culture vessel 10. In step S <b> 19, the transport unit 120 stores the culture container 10 in the thermostatic chamber 110. While the culture container 10 is accommodated in the thermostatic chamber 110, the separation of the cells from the culture surface 11 proceeds.
 ステップS20において、搬送部120は、培養容器10を恒温槽110に収容してから所定時間が経過したか否かを判定する。所定時間が経過したものと判定すると、ステップS21において、搬送部120は、培養容器10を撮像位置に搬送する。すなわち、搬送部120は、撮像部30と描画面20との間に培養容器10を配置する。より具体的には、搬送部120は、撮像部30の撮像視野内において培養面11から酵素剤等の液体が除去された状態で培養面11が描画面20と重なる位置及び向きに培養容器10を位置決めする。 In step S20, the transport unit 120 determines whether or not a predetermined time has elapsed since the culture vessel 10 was accommodated in the thermostatic chamber 110. If it is determined that the predetermined time has elapsed, in step S21, the transport unit 120 transports the culture vessel 10 to the imaging position. That is, the conveyance unit 120 places the culture container 10 between the imaging unit 30 and the drawing surface 20. More specifically, the transport unit 120 has the culture container 10 in a position and orientation where the culture surface 11 overlaps the drawing surface 20 in a state where the liquid such as the enzyme agent is removed from the culture surface 11 within the imaging field of the imaging unit 30. Positioning.
 ステップS22において、撮像部30は、培養容器10の天板10A及び底板10B越しに描画面20に描画された絵柄21を撮像し、絵柄21の画像データを生成する。撮像部30は、生成した絵柄21の画像データを判定部40に供給する。 In step S22, the imaging unit 30 captures an image of the pattern 21 drawn on the drawing surface 20 through the top plate 10A and the bottom plate 10B of the culture vessel 10, and generates image data of the pattern 21. The imaging unit 30 supplies the generated image data of the pattern 21 to the determination unit 40.
 ここで、図8A及び図8Bは、それぞれ、ステップS22において、撮像部30によって取得される絵柄21の画像の一例を示す図である。図8A及び図8Bには、それぞれ、培養面11を透過した絵柄21の画像IMG1及びIMG2が示されている。 Here, FIG. 8A and FIG. 8B are diagrams each illustrating an example of the image of the pattern 21 acquired by the imaging unit 30 in step S22. 8A and 8B show images IMG1 and IMG2 of the pattern 21 that have passed through the culture surface 11, respectively.
 撮像部30において絵柄21の撮像を行う際に、搬送部120は、初めに、図8Aに示すように、培養面11の辺BCが辺ADに対して鉛直方向下方に位置するように培養容器10の位置決めを行う。本実施形態において、撮像部30による絵柄21の撮像は、培養容器10に酵素剤210を収容した状態で行われる。この場合、培養面11の辺BCの近傍に移動した酵素剤210によって辺BCの近傍の絵柄21が遮られる。判定部40は、絵柄21の画像に基づいて、培養面11に付着している細胞の有無を判定するので、酵素剤210によって辺BCの近傍の絵柄21が遮られると、辺BCの近傍において、判定部40による細胞の有無の判定を適切に行うことが困難となるおそれがある。 When imaging the pattern 21 in the imaging unit 30, the transport unit 120 first starts the culture container so that the side BC of the culture surface 11 is positioned vertically below the side AD as shown in FIG. 8A. 10 positioning is performed. In the present embodiment, imaging of the pattern 21 by the imaging unit 30 is performed in a state where the enzyme agent 210 is accommodated in the culture vessel 10. In this case, the pattern 21 in the vicinity of the side BC is blocked by the enzyme agent 210 moved to the vicinity of the side BC of the culture surface 11. Since the determination part 40 determines the presence or absence of the cell adhering to the culture surface 11 based on the image of the pattern 21, when the pattern 21 in the vicinity of the side BC is blocked by the enzyme agent 210, the determination unit 40 is in the vicinity of the side BC. There is a possibility that it is difficult to appropriately determine the presence or absence of cells by the determination unit 40.
 そこで、撮像部30が図8Aに示す画像IMG1を取得した後、搬送部120は、図8Bに示すように、培養面11の辺ADが辺BCに対して鉛直方向下方に位置するように培養容器10の上下を反転させる。これにより、酵素剤210は、培養面11の辺ADの近傍に移動する。撮像部30は、この状態において絵柄21の撮像を再度行う。 Therefore, after the imaging unit 30 acquires the image IMG1 illustrated in FIG. 8A, the transport unit 120 performs culture so that the side AD of the culture surface 11 is positioned vertically below the side BC as illustrated in FIG. 8B. The container 10 is turned upside down. Thereby, the enzyme agent 210 moves to the vicinity of the side AD of the culture surface 11. In this state, the imaging unit 30 captures the pattern 21 again.
 判定部40は、図8Aに示す画像IMG1と図8Bに示す画像IMG2の双方を用いて培養面11に付着している細胞の有無を判定する。これにより、判定部40は、培養面11に付着している細胞の有無の判定を、培養面11の全域に亘って適切に行うことが可能となる。判定部40は、図8Aに示す画像IMG1と図8Bに示す画像IMG2とを合成することで、酵素剤210が描写されていない画像を再構成し、この再構成された画像に基づいて、培養面11に付着している細胞の有無を判定してもよい。なお、撮像部30において絵柄21の撮像を行う際に、酵素剤210が絵柄21を遮らない場合、または、酵素剤210が絵柄21を遮ったとしても、判定部40における判定処理に支障がない場合には、培養容器10の向きを反転させた状態での撮像は不要である。 The determination unit 40 determines the presence or absence of cells attached to the culture surface 11 using both the image IMG1 shown in FIG. 8A and the image IMG2 shown in FIG. 8B. Thereby, the determination unit 40 can appropriately determine the presence / absence of cells attached to the culture surface 11 over the entire culture surface 11. The determination unit 40 synthesizes the image IMG1 illustrated in FIG. 8A and the image IMG2 illustrated in FIG. 8B to reconstruct an image in which the enzyme agent 210 is not depicted, and based on the reconstructed image, the culture is performed. The presence or absence of cells adhering to the surface 11 may be determined. Note that when the imaging unit 30 captures the pattern 21, if the enzyme agent 210 does not block the pattern 21, or even if the enzyme agent 210 blocks the pattern 21, the determination process in the determination unit 40 is not hindered. In some cases, imaging in a state where the orientation of the culture vessel 10 is reversed is unnecessary.
 ステップS23において、判定部40は、撮像部30によって取得された絵柄の画像に基づいて、培養面11に付着している細胞の有無を判定する。すなわち、判定部40は、図5に示すフローチャートの各処理を実施する。 In step S <b> 23, the determination unit 40 determines the presence / absence of cells attached to the culture surface 11 based on the image of the pattern acquired by the imaging unit 30. That is, the determination unit 40 performs each process of the flowchart shown in FIG.
 判定部40によって「培養面11に付着している細胞有り」と判定された場合、すなわち、培養面11に細胞が残留していると判定された場合、処理はステップS19に戻される。すなわち、この場合、搬送部120は、培養容器10を恒温槽110に収容し、細胞の剥離を進行させ、所定時間が経過した後に、撮像部30による絵柄21の撮像、及び判定部40による判定処理が再度実施される。判定部40によって「培養面11に付着している細胞無し」と判定された場合、すなわち、培養面11に細胞が残留していないと判定された場合、処理はステップS24に移行される。 When the determination unit 40 determines that “there are cells attached to the culture surface 11”, that is, when it is determined that cells remain on the culture surface 11, the process returns to step S19. That is, in this case, the transport unit 120 accommodates the culture vessel 10 in the thermostatic chamber 110, advances cell detachment, and after a predetermined time has elapsed, captures the pattern 21 by the imaging unit 30, and determination by the determination unit 40 The process is performed again. When it is determined by the determination unit 40 that “no cells are attached to the culture surface 11”, that is, when it is determined that no cells remain on the culture surface 11, the process proceeds to step S <b> 24.
 ステップS24において、搬送部120は、培養容器10をキャップ開閉部130に搬送する。ステップS25において、キャップ開閉部130は、培養容器10のキャップ12を開ける。ステップS26において、搬送部120は、培養容器10を細胞回収部160に搬送する。 In step S24, the transport unit 120 transports the culture vessel 10 to the cap opening / closing unit 130. In step S <b> 25, the cap opening / closing part 130 opens the cap 12 of the culture vessel 10. In step S <b> 26, the transport unit 120 transports the culture container 10 to the cell collection unit 160.
 ステップS27において、細胞回収部160は、図9Aに示すように、キャップ12を開けることにより露出した培養容器10の流通口13から培養容器10の内部に吸引ノズル161を挿入し、培養面11から剥離した細胞を、吸引ノズル161から吸引し、回収ボトル162(図6参照)に回収する。なお、細胞を回収する際に、図9Aに示すように、培養容器10を傾けてもよい。このとき、細胞の回収ロスを抑制するために、吸引ノズル161の先端が、培養容器10の最下部に達していることが好ましい。図9Bに示すように、吸引ノズル161がテーパ形状を有する場合、吸引ノズル161のテーパ形状に合わせて、流通口13にテーパ付きの誘導孔14を設けることで、吸引ノズル161の先端を、培養容器10の内部の特定の位置に位置決めすることが可能となる。 In step S27, as shown in FIG. 9A, the cell recovery unit 160 inserts a suction nozzle 161 into the inside of the culture container 10 from the circulation port 13 of the culture container 10 exposed by opening the cap 12, and from the culture surface 11 The detached cells are sucked from the suction nozzle 161 and collected in a collection bottle 162 (see FIG. 6). When collecting the cells, the culture vessel 10 may be tilted as shown in FIG. 9A. At this time, it is preferable that the tip of the suction nozzle 161 reaches the lowermost part of the culture vessel 10 in order to suppress cell recovery loss. As shown in FIG. 9B, when the suction nozzle 161 has a tapered shape, a tapered guide hole 14 is provided in the flow port 13 in accordance with the tapered shape of the suction nozzle 161 so that the tip of the suction nozzle 161 is cultured. It becomes possible to position at a specific position inside the container 10.
 ステップS28において、搬送部120は、培養容器10をキャップ開閉部130に搬送する。ステップS29において、キャップ開閉部130は、培養容器10のキャップ12を閉める。ステップS30において、搬送部120は、培養容器10を恒温槽110に収容する。 In step S28, the transport unit 120 transports the culture vessel 10 to the cap opening / closing unit 130. In step S29, the cap opening / closing part 130 closes the cap 12 of the culture vessel 10. In step S <b> 30, the transport unit 120 stores the culture container 10 in the thermostatic chamber 110.
 以上のように、開示の技術の実施形態に係る判定装置1及び細胞剥離回収装置2おいて、撮像部30は、培養容器10の培養面11を、描画面20と撮像部30との間に配置した状態で、描画面20に描画された絵柄21の画像を取得する。細胞が培養面11に付着している場合、培養面11越しに撮像される絵柄21の画像において、絵柄21の輪郭線(明部21Aと暗部21Bの境界)には、細胞と細胞の周囲の媒質との屈折率差及び細胞内における光の散乱などの影響により歪みまたはボケが生じる。判定部40は、撮像部30によって取得された絵柄21の画像に基づいて、培養面11に付着している細胞の有無を判定する。具体的には、判定部40は、絵柄21の輪郭線(すなわち明部21Aと暗部21Bの境界)に対応する画像部分における歪み及びボケの少なくとも一方に基づいて培養面11に付着している細胞の有無を判定する。従って、細胞が、可視光に対して透明または半透明であっても、培養面11に付着している細胞の有無を適確に判定することが可能である。 As described above, in the determination apparatus 1 and the cell detachment collection apparatus 2 according to the embodiment of the disclosed technique, the imaging unit 30 places the culture surface 11 of the culture container 10 between the drawing surface 20 and the imaging unit 30. In the arranged state, an image of the pattern 21 drawn on the drawing surface 20 is acquired. When cells are attached to the culture surface 11, in the image of the pattern 21 captured through the culture surface 11, the outline of the pattern 21 (the boundary between the bright part 21 </ b> A and the dark part 21 </ b> B) Distortion or blur occurs due to the influence of the difference in refractive index from the medium and the scattering of light in the cell. The determination unit 40 determines the presence or absence of cells attached to the culture surface 11 based on the image of the pattern 21 acquired by the imaging unit 30. Specifically, the determination unit 40 is a cell attached to the culture surface 11 based on at least one of distortion and blur in the image portion corresponding to the contour line of the pattern 21 (that is, the boundary between the bright part 21A and the dark part 21B). The presence or absence of is determined. Therefore, even if the cells are transparent or translucent to visible light, it is possible to accurately determine the presence or absence of cells attached to the culture surface 11.
 例えば、培養面11に付着している細胞の有無を判定するために、培養面11の複数個所を詳細に観察しようとすると、判定結果を得るまでに膨大な時間を要することが想定される。開示の技術の実施形態に係る判定装置1及び細胞剥離回収装置2によれば、描画面20に描画された絵柄21の画像が判定部40における解析の対象とされるので、培養面11の複数個所を詳細に観察する場合と比較して、判定部40における判定処理の負担を軽減することができ、短時間で判定結果を得ることができる。 For example, in order to determine the presence / absence of cells adhering to the culture surface 11, if it is intended to observe a plurality of locations on the culture surface 11 in detail, it is assumed that an enormous amount of time is required to obtain the determination result. According to the determination apparatus 1 and the cell detachment collection apparatus 2 according to the embodiment of the disclosed technology, since the image of the pattern 21 drawn on the drawing surface 20 is an analysis target in the determination unit 40, a plurality of culture surfaces 11 are included. Compared with the case where the location is observed in detail, the burden of the determination process in the determination unit 40 can be reduced, and the determination result can be obtained in a short time.
 また、培養容器10の培養面11の全体を撮像部30の撮像視野内に含めることで、培養面11の全体について細胞の付着の有無を判定する場合、撮像部30による撮像の回数を少なくすることができる。すなわち、撮像部30によって取得される1枚の画像、または培養容器10の向きが互いに反転関係にある2枚の画像のみから培養面11の全体について、細胞の有無を判定することが可能となる。 In addition, by including the entire culture surface 11 of the culture vessel 10 within the imaging field of the imaging unit 30, when determining the presence or absence of cell attachment on the entire culture surface 11, the number of imaging by the imaging unit 30 is reduced. be able to. That is, it becomes possible to determine the presence or absence of cells for the entire culture surface 11 from only one image acquired by the imaging unit 30 or only two images in which the orientation of the culture container 10 is in an inverted relationship. .
 また、絵柄21が、明部21Aと暗部21Bとが交互に配置された繰り返しパターンを含むことで、判定部40における判定処理を簡略化することができ、処理時間を短くすることが可能となる。 Further, since the pattern 21 includes a repeated pattern in which the bright portions 21A and the dark portions 21B are alternately arranged, the determination process in the determination unit 40 can be simplified, and the processing time can be shortened. .
 また、絵柄21の面積を、培養容器10の培養面11の面積よりも大きくすることで、撮像部30と描画面20との間に培養容器10を挟んで絵柄21の撮像を行う場合に、培養容器10の、絵柄21に対する厳密な位置合わせが不要となる。 Further, when the pattern 21 is imaged by sandwiching the culture container 10 between the imaging unit 30 and the drawing surface 20 by making the area of the pattern 21 larger than the area of the culture surface 11 of the culture container 10, Strict alignment of the culture vessel 10 with respect to the pattern 21 is not necessary.
 また、撮像部30による絵柄21の撮像は、培養容器10に酵素剤を収容したままの状態で行われる。この態様によれば、酵素剤を除去した後に撮像を行う場合と比較して処理時間を短縮することができる。また、判定部40において、「培養面11に付着している細胞有り」と判定された場合に、酵素剤の再度の添加を行うことなく細胞の剥離処理を継続または再開することが可能となる。 Further, the imaging of the pattern 21 by the imaging unit 30 is performed in a state where the enzyme agent is accommodated in the culture vessel 10. According to this aspect, the processing time can be shortened compared to the case where imaging is performed after the enzyme agent is removed. In addition, when the determination unit 40 determines that “there are cells attached to the culture surface 11”, the cell detachment process can be continued or resumed without adding the enzyme agent again. .
[変形例]
 上記の判定装置1及び細胞剥離回収装置2の構成に対しては、様々な改変を加えることが可能である。
[Modification]
Various modifications can be made to the configuration of the determination apparatus 1 and the cell detachment collection apparatus 2 described above.
 図10Aは、培養容器10を撮像位置に位置決めする他の方法の一例を示す図である。撮像部30において絵柄21の撮像を行う場合、図10Aに示すように、設置台170を用いて培養容器10の位置決めを行ってもよい。 FIG. 10A is a diagram showing an example of another method for positioning the culture vessel 10 at the imaging position. When imaging the pattern 21 in the imaging unit 30, as shown in FIG. 10A, the culture vessel 10 may be positioned using an installation table 170.
 設置台170は、培養容器10を設置台170の所定位置に設置するためのガイド171を有する。また、設置台170の、培養面11と接する面が、描画面20とされている。培養容器10をガイド171に沿って設置台170に設置することで、培養容器10と描画面20(絵柄21)との位置合わせが完了する。また、培養容器10をガイド171に沿って設置台170に設置した状態において、培養面11が鉛直方向に対して平行となり、培養容器10に収容された酵素剤210によって絵柄21が遮られる領域の面積が最小となる。なお、設置台170は、図10Bに示すように、回転軸172の周りに回転可能に構成されていてもよい。 The installation table 170 has a guide 171 for installing the culture vessel 10 at a predetermined position on the installation table 170. Further, the surface of the installation table 170 that contacts the culture surface 11 is the drawing surface 20. By positioning the culture vessel 10 on the installation table 170 along the guide 171, the alignment between the culture vessel 10 and the drawing surface 20 (the pattern 21) is completed. Further, in a state where the culture vessel 10 is installed on the installation table 170 along the guide 171, the culture surface 11 is parallel to the vertical direction and the pattern 21 is blocked by the enzyme agent 210 accommodated in the culture vessel 10. The area is minimized. The installation table 170 may be configured to be rotatable around a rotation shaft 172 as shown in FIG. 10B.
 図11は、培養容器10の構成の他の例を示す図である。培養容器10は、その端部に、酵素剤210の収容空間15を有する。培養容器10が撮像位置に位置決めされると、培養容器10に収容された酵素剤210が収容空間15に流入する。これにより、撮像部30により絵柄21の撮像を行う場合に、酵素剤210が培養面11を覆う領域の面積(すなわち、酵素剤210によって絵柄21が遮られる領域の面積)を小さくすることができる。 FIG. 11 is a diagram showing another example of the configuration of the culture vessel 10. The culture vessel 10 has a storage space 15 for the enzyme agent 210 at its end. When the culture container 10 is positioned at the imaging position, the enzyme agent 210 accommodated in the culture container 10 flows into the accommodation space 15. Thereby, when imaging the pattern 21 by the imaging unit 30, the area of the region where the enzyme agent 210 covers the culture surface 11 (that is, the area of the region where the pattern 21 is blocked by the enzyme agent 210) can be reduced. .
 図12A、図12B及び図12Cは、撮像部30において絵柄21の撮像を行う際に、培養面11から酵素剤210を除去する他の方法の一例を示す図である。図12A~図12Cに示す例において、培養容器10は、枠体16と、板状部材17と、支持部材18と、仕切り部材19とを含んで構成されている。板状部材17の一方の面の仕切り部材19の内側の領域が培養面11とされ、板状部材17の培養面11とは反対側の面には絵柄21が描画された描画面20が設けられている。仕切り部材19は、培養面11の範囲を画定する部材である。すなわち、増殖により細胞200が広がる範囲は、仕切り部材19の内側の領域に制限される。板状部材17は、突き上げピン180の昇降動作に伴って、鉛直方向に移動することが可能である。仕切り部材19は、突き上げピン180よりも内側に配置されている。すなわち、培養面11は、突き上げピン180の内側に配置されている。 12A, 12B, and 12C are diagrams illustrating an example of another method for removing the enzyme agent 210 from the culture surface 11 when the image 21 is imaged by the imaging unit 30. FIG. In the example shown in FIGS. 12A to 12C, the culture vessel 10 includes a frame 16, a plate member 17, a support member 18, and a partition member 19. A region inside the partition member 19 on one surface of the plate member 17 is a culture surface 11, and a drawing surface 20 on which a pattern 21 is drawn is provided on the surface of the plate member 17 opposite to the culture surface 11. It has been. The partition member 19 is a member that defines the range of the culture surface 11. That is, the range in which the cells 200 spread by proliferation is limited to the area inside the partition member 19. The plate-like member 17 can move in the vertical direction as the push-up pin 180 moves up and down. The partition member 19 is disposed inside the push-up pin 180. That is, the culture surface 11 is disposed inside the push-up pin 180.
 図12Aは、培養面11に接着している細胞200を、酵素剤210を用いて剥離する剥離処理を実施している状態を示している。この状態において、突き上げピン180は降下位置にあり、板状部材17は支持部材18に支持されている。酵素剤210は、培養面11を覆っている。 FIG. 12A shows a state in which a peeling process for peeling the cells 200 adhered to the culture surface 11 using the enzyme agent 210 is performed. In this state, the push-up pin 180 is in the lowered position, and the plate-like member 17 is supported by the support member 18. The enzyme agent 210 covers the culture surface 11.
 撮像部30において描画面20に描画された絵柄21の撮像を行う場合、図12Bに示すように、突き上げピン180が上昇し、板状部材17を突き上げる。これにより、板状部材17は支持部材18から離間し、支持部材18と板状部材17との間に間隙が形成される。培養面11を覆っていた酵素剤210は、支持部材18と板状部材17との間に形成された間隙を通過して、枠体16の底面側に移動する。これにより、培養面11から酵素剤210が除去される。 When imaging the pattern 21 drawn on the drawing surface 20 in the imaging unit 30, the push-up pin 180 rises and pushes the plate-like member 17 as shown in FIG. 12B. As a result, the plate member 17 is separated from the support member 18, and a gap is formed between the support member 18 and the plate member 17. The enzyme agent 210 that has covered the culture surface 11 passes through the gap formed between the support member 18 and the plate-like member 17 and moves to the bottom surface side of the frame body 16. Thereby, the enzyme agent 210 is removed from the culture surface 11.
 その後、図12Cに示すように、突き上げピン180が降下し、板状部材17が支持部材18に支持された状態とされ、この状態で、撮像部30による絵柄21の撮像が行われる。撮像部30は、板状部材17の上方に配置される。 Thereafter, as shown in FIG. 12C, the push-up pin 180 is lowered, and the plate member 17 is supported by the support member 18. In this state, the image 21 is imaged by the imaging unit 30. The imaging unit 30 is disposed above the plate-like member 17.
 このように、板状部材17の昇降動作により、培養面11から酵素剤210を除去することで、撮像部30による絵柄21の撮像において、培養容器10の向きを反転させた状態での撮像が不要となる。また、培養面11を突き上げピン180の内側に配置することにより、絵柄21の画像を撮像する際に、突き上げピン180を撮像視野から除外することが可能となる。 In this way, by removing the enzyme agent 210 from the culture surface 11 by the lifting and lowering operation of the plate-like member 17, in the imaging of the pattern 21 by the imaging unit 30, imaging in a state where the direction of the culture vessel 10 is reversed can be performed. It becomes unnecessary. Further, by arranging the culture surface 11 inside the push-up pin 180, the push-up pin 180 can be excluded from the imaging field when the image of the pattern 21 is picked up.
 一方、培養面11からの酵素剤210の除去を画像処理により実現してもよい。具体的には、酵素剤を用いて細胞の剥離処理を実施した後に絵柄21の撮像を行い、その後、培養容器10に振動を加え、更に絵柄の撮像を行う。これら2回の撮像によって取得した2つの画像の差分から酵素剤に浮遊する細胞を特定し、特定した細胞を、上記2つの画像のいずれかから除去する。これにより、培養面11からの酵素剤210の除去した状態で取得した画像と同様の画像を取得することができる。 On the other hand, the removal of the enzyme agent 210 from the culture surface 11 may be realized by image processing. Specifically, the pattern 21 is imaged after cell detachment using an enzyme agent, and then the culture vessel 10 is vibrated to further image the pattern. A cell floating in the enzyme agent is identified from the difference between the two images acquired by these two imaging operations, and the identified cell is removed from one of the two images. Thereby, the image similar to the image acquired in the state which removed the enzyme agent 210 from the culture surface 11 is acquirable.
 図13は、剥離処理によって培養容器10の培養面11から剥離した細胞を回収する他の方法の一例を示す図である。図13に示すように、培養容器10を傾けることにより、剥離処理によって剥離した細胞を、流通口13から排出して、回収ボトル162に直接注いでもよい。この場合、流通口13からの液垂れを抑制するために、流通口13の形状を、液垂れが生じにくい形状に加工してもよい。 FIG. 13 is a diagram showing an example of another method for recovering cells detached from the culture surface 11 of the culture vessel 10 by the separation treatment. As shown in FIG. 13, the cells detached by the separation treatment may be discharged from the distribution port 13 by inclining the culture container 10 and directly poured into the recovery bottle 162. In this case, in order to suppress dripping from the circulation port 13, the shape of the circulation port 13 may be processed into a shape in which dripping does not easily occur.
 図14は、判定装置1の構成の他の例を示す図である。描画面20が、例えば、光透過性を有する部材の表面によって構成され、描画面20の光透過率を低下させた部分を暗部21Bとし、描画面20の光透過率を維持した部分を明部21Aとする場合、描画面20を間に挟んで撮像部30の反対側に光源50を配置し、光源50から発せられる光を描画面20に照射することが好ましい。これにより、撮像部30によって取得される絵柄21の画像において、明部21Aと暗部21Bとのコントラストを大きくすることができ、判定部40における判定処理の精度を高めることができる。光源50は、描画面20の全域に略均一な輝度の光を照射することができる有機EL(Electro-Luminescence)照明等の面光源であることが好ましい。光源50として、ハロゲンランプ等の点光源を用いる場合、図14に示すように、光源50と描画面20との間に、光源50からの光を拡散させる拡散板51を配置することが好ましい。 FIG. 14 is a diagram illustrating another example of the configuration of the determination apparatus 1. The drawing surface 20 is constituted by, for example, the surface of a light-transmitting member, a portion where the light transmittance of the drawing surface 20 is reduced is a dark portion 21B, and a portion where the light transmittance of the drawing surface 20 is maintained is a bright portion. In the case of 21A, it is preferable to arrange the light source 50 on the opposite side of the imaging unit 30 with the drawing surface 20 in between, and irradiate the drawing surface 20 with light emitted from the light source 50. Thereby, in the image of the pattern 21 acquired by the imaging part 30, the contrast of the bright part 21A and the dark part 21B can be enlarged, and the precision of the determination process in the determination part 40 can be improved. The light source 50 is preferably a surface light source such as an organic EL (Electro-Luminescence) illumination capable of irradiating light with substantially uniform luminance over the entire drawing surface 20. When a point light source such as a halogen lamp is used as the light source 50, it is preferable to arrange a diffusion plate 51 that diffuses light from the light source 50 between the light source 50 and the drawing surface 20, as shown in FIG.
 また、描画面20に描画される絵柄21を、発光素子による発光によって形成してもよい。この場合、明部21Aを相対的に輝度の高い発光により形成し、暗部21Bを相対的に輝度の低い発光(または非発光)により形成してもよい。 Further, the pattern 21 drawn on the drawing surface 20 may be formed by light emission by a light emitting element. In this case, the bright portion 21A may be formed by light emission with relatively high luminance, and the dark portion 21B may be formed by light emission (or non-light emission) with relatively low luminance.
 図15は、判定装置1の構成の他の例を示す図である。図15に示すように、描画面20は、表示パネル60の表示面によって構成されていてもよい。すなわち、描画面20は、マトリックス状に配置された複数の画素を含む。表示パネル60が、例えば、液晶パネル等の透過型である場合、各画素における光の透過状態が制御されることにより絵柄21が形成される。一方、表示パネル60が、例えば、有機ELパネル等の自発光型である場合、各画素における光の発光状態が制御されることにより絵柄21が形成される。このように、描画面20が表示パネル60の表示面によって構成されることで、描画面20に描画される絵柄21のパターンを適宜変化させることが可能となる。 FIG. 15 is a diagram illustrating another example of the configuration of the determination apparatus 1. As shown in FIG. 15, the drawing surface 20 may be configured by a display surface of the display panel 60. That is, the drawing surface 20 includes a plurality of pixels arranged in a matrix. When the display panel 60 is a transmissive type such as a liquid crystal panel, for example, the pattern 21 is formed by controlling the light transmission state in each pixel. On the other hand, when the display panel 60 is a self-luminous type such as an organic EL panel, for example, the pattern 21 is formed by controlling the light emission state of each pixel. As described above, the drawing surface 20 is constituted by the display surface of the display panel 60, whereby the pattern of the pattern 21 drawn on the drawing surface 20 can be appropriately changed.
 図16は、判定装置1の構成の他の例を示す図である。判定装置1は、導出部70を含んでいてもよい。導出部70は、撮像部30によって生成された絵柄21の画像データに基づいて、細胞が培養面11に付着している領域の面積を導出する。導出部70は、判定部40を構成するコンピュータ500(図5参照)と同じコンピュータを含んで構成されていてもよい。 FIG. 16 is a diagram illustrating another example of the configuration of the determination apparatus 1. The determination device 1 may include a derivation unit 70. The deriving unit 70 derives the area of the region where the cells are attached to the culture surface 11 based on the image data of the pattern 21 generated by the imaging unit 30. The derivation unit 70 may be configured to include the same computer as the computer 500 (see FIG. 5) that configures the determination unit 40.
 図17Aは、導出部70において実施される、細胞が培養面11に付着している領域の面積を導出する導出処理の流れの一例を示すフローチャートである。 FIG. 17A is a flowchart illustrating an example of a flow of derivation processing performed in the derivation unit 70 to derive the area of a region where cells are attached to the culture surface 11.
 ステップS41において、導出部70は、撮像部30によって生成された絵柄21の画像データを取得する。 In step S41, the derivation unit 70 acquires the image data of the pattern 21 generated by the imaging unit 30.
 ステップS42において、導出部70は、絵柄21の画像データを解析し、絵柄21の輪郭線に歪みまたはボケが生じている領域を特定する。 In step S42, the derivation unit 70 analyzes the image data of the pattern 21 and specifies a region where the outline of the pattern 21 is distorted or blurred.
 ステップS43において、導出部70は、ステップS42において特定した領域の面積を、細胞が培養面11に付着している領域の面積として導出する。なお、導出部70は、ステップS42において複数の領域を特定した場合、複数の領域の各々の面積を合算した値を細胞が培養面11に付着している領域の面積として導出する。 In step S43, the derivation unit 70 derives the area of the region specified in step S42 as the area of the region where the cells are attached to the culture surface 11. When the plurality of regions are specified in step S42, the deriving unit 70 derives the value obtained by adding the areas of the plurality of regions as the area of the region where the cells are attached to the culture surface 11.
 判定部40は、導出部70によって導出された面積が、所定の閾値よりも大きいと判定した場合、「培養面11に付着している細胞有り」と判定する。一方、判定部40は、導出部70によって導出された面積が、所定の閾値よりも小さいと判定した場合、「培養面11に付着している細胞無し」と判定する。 When the determination unit 40 determines that the area derived by the deriving unit 70 is larger than a predetermined threshold, it determines that “there are cells attached to the culture surface 11”. On the other hand, if the determination unit 40 determines that the area derived by the deriving unit 70 is smaller than the predetermined threshold, it determines that “there is no cell attached to the culture surface 11”.
 図17Bは、導出部70において実施される導出処理の流れの他の例を示すフローチャートである。図17Bに示すフローチャートは、ステップS44の処理が追加されている点が、図17Aにフローチャートと異なる。 FIG. 17B is a flowchart illustrating another example of the flow of the derivation process performed in the derivation unit 70. The flowchart shown in FIG. 17B is different from the flowchart shown in FIG. 17A in that the process of step S44 is added.
 導出部70は、ステップS44において、ステップS43にて導出した面積の、培養面11の面積に対する割合(すなわち、細胞が培養面11に付着している領域の面積率)を導出する。 In step S44, the deriving unit 70 derives the ratio of the area derived in step S43 to the area of the culture surface 11 (that is, the area ratio of the region where the cells are attached to the culture surface 11).
 判定部40は、導出部70によって導出された割合(面積率)が、所定の閾値よりも大きいと判定した場合、「培養面11に付着している細胞有り」と判定する。一方、判定部40は、導出部70によって導出された割合(面積率)が、所定の閾値よりも小さいと判定した場合、「培養面11に付着している細胞無し」と判定する。 When the determination unit 40 determines that the ratio (area ratio) derived by the deriving unit 70 is greater than a predetermined threshold, it determines that “there are cells attached to the culture surface 11”. On the other hand, if the determination unit 40 determines that the ratio (area ratio) derived by the deriving unit 70 is smaller than a predetermined threshold, it determines that “there are no cells attached to the culture surface 11”.
 このように、細胞が培養面11に付着している領域の面積またはその割合(面積率)に基づいて、培養面11に付着している細胞の有無を判定することで、細胞の回収効率と、処理コストとを考慮した、より適確な判定を行うことが可能となる。 Thus, by determining the presence or absence of cells adhering to the culture surface 11 based on the area of the region where the cells are adhering to the culture surface 11 or its ratio (area ratio), the cell recovery efficiency and Therefore, it is possible to perform more accurate determination in consideration of the processing cost.
 図18は、判定装置1を用いた判定方法の他の例を示す図である。図18に示すように、描画面20と撮像部30との間に、複数の培養容器10を積層した状態で配置してもよい。この態様によれば、複数の培養容器10のいずれかの培養面に細胞が付着しているか否かを判定することが可能となる。 FIG. 18 is a diagram illustrating another example of a determination method using the determination device 1. As illustrated in FIG. 18, a plurality of culture vessels 10 may be disposed in a stacked state between the drawing surface 20 and the imaging unit 30. According to this aspect, it is possible to determine whether or not cells are attached to any of the culture surfaces of the plurality of culture containers 10.
 なお、2018年2月20日に出願された日本国特許出願2018-027904の開示は、その全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2018-027904 filed on February 20, 2018 is incorporated herein by reference in its entirety. In addition, all documents, patent applications, and technical standards described in this specification are as much as if each document, patent application, and technical standard were specifically and individually described to be incorporated by reference. , Incorporated herein by reference.

Claims (12)

  1.  絵柄が描画された描画面と、
     前記描画面に撮像視野が設定された撮像部と、
     細胞を培養する培養容器の光透過性を有する培養面を前記描画面と前記撮像部との間に配置した状態で前記撮像部によって取得された前記絵柄の画像に基づいて、前記培養面に付着している細胞の有無を判定する判定部と、
     を含む判定装置。
    A drawing surface on which a pattern is drawn, and
    An imaging unit having an imaging field of view set on the drawing surface;
    Adhering to the culture surface based on the image of the pattern acquired by the imaging unit in a state where a culture surface having light permeability of a culture vessel for culturing cells is disposed between the drawing surface and the imaging unit A determination unit for determining the presence or absence of cells that are
    A determination device including:
  2.  前記判定部は、前記絵柄の輪郭線に対応する画像部分における歪み及びボケの少なくとも一方に基づいて前記培養面に付着している細胞の有無を判定する
     請求項1に記載の判定装置。
    The determination apparatus according to claim 1, wherein the determination unit determines the presence or absence of cells attached to the culture surface based on at least one of distortion and blur in an image portion corresponding to the outline of the pattern.
  3.  前記絵柄は、互いに隣接して配置された明部と暗部とを含む
     請求項1または請求項2に記載の判定装置。
    The determination apparatus according to claim 1, wherein the pattern includes a bright part and a dark part arranged adjacent to each other.
  4.  前記絵柄は、前記明部と前記暗部とが交互に配置された繰り返しパターンを有する
     請求項3に記載の判定装置。
    The determination apparatus according to claim 3, wherein the pattern has a repetitive pattern in which the bright portions and the dark portions are alternately arranged.
  5.  細胞が前記培養面に付着している領域の面積を導出する導出部を更に含む
     請求項1から請求項4のいずれか1項に記載の判定装置。
    The determination apparatus according to claim 1, further comprising a deriving unit that derives an area of a region where cells are attached to the culture surface.
  6.  細胞が前記培養面に付着している領域の面積の、前記培養面の面積に対する割合を導出する導出部を更に含む
     請求項1から請求項4のいずれか1項に記載の判定装置。
    The determination apparatus according to any one of claims 1 to 4, further comprising a deriving unit that derives a ratio of an area of a region where the cell is attached to the culture surface to an area of the culture surface.
  7.  前記絵柄の一部は光透過性を有し、前記描画面を間に挟んで前記撮像部の反対側に配置された光源を更に含む
     請求項1から請求項6のいずれか1項に記載の判定装置。
    The part of the said pattern has light transmittance, The light source arrange | positioned on the opposite side of the said imaging part on both sides of the said drawing surface is further included in any one of Claims 1-6. Judgment device.
  8.  前記絵柄は発光素子により形成される
     請求項1から請求項6のいずれか1項に記載の判定装置。
    The determination device according to claim 1, wherein the pattern is formed by a light emitting element.
  9.  前記描画面はマトリックス状に配置された複数の画素を含み、
     前記複数の画素の各々の、光の透過状態または発光状態が制御されることにより前記絵柄が形成される
     請求項1から請求項8のいずれか1項に記載の判定装置。
    The drawing surface includes a plurality of pixels arranged in a matrix,
    The determination apparatus according to any one of claims 1 to 8, wherein the pattern is formed by controlling a light transmission state or a light emission state of each of the plurality of pixels.
  10.  前記撮像部は、前記培養面の全体を撮像視野に含んだ状態で前記絵柄の画像を取得する
     請求項1から請求項9のいずれか1項に記載の判定装置。
    The determination device according to any one of claims 1 to 9, wherein the imaging unit acquires the image of the pattern in a state where the entire culture surface is included in an imaging field of view.
  11.  請求項1から請求項10のいずれか1項に記載の判定装置と、
     前記培養容器を収容する収容空間を有し、前記収容空間の温度を一定に保つ恒温槽と、
     前記培養容器を搬送する搬送部と、
     前記培養面に付着している細胞を剥離する薬液を前記培養容器に添加する薬液添加部と
     前記培養容器から前記薬液を除去する薬液除去部と、
     前記培養面から剥離した細胞を回収する細胞回収部と、
     を有する細胞剥離回収装置。
    A determination apparatus according to any one of claims 1 to 10,
    A thermostat having a storage space for storing the culture vessel, and maintaining a constant temperature of the storage space;
    A transport unit for transporting the culture vessel;
    A chemical solution adding unit for adding a chemical solution for separating cells adhering to the culture surface to the culture vessel; a chemical solution removing unit for removing the chemical solution from the culture vessel;
    A cell recovery unit for recovering cells detached from the culture surface;
    A cell detachment and recovery apparatus.
  12.  絵柄が描画された描画面に撮像部の撮像視野を設定し、
     前記描画面と前記撮像部との間に、細胞を培養する培養容器の培養面を配置した状態で、前記撮像部によって前記絵柄の画像を取得し、
     前記絵柄の画像に基づいて、前記培養面に付着している細胞の有無を判定する
     判定方法。
    Set the imaging field of view of the imaging unit on the drawing surface on which the pattern is drawn,
    In a state where a culture surface of a culture vessel for culturing cells is disposed between the drawing surface and the imaging unit, an image of the pattern is acquired by the imaging unit,
    A determination method for determining the presence or absence of cells attached to the culture surface based on the image of the pattern.
PCT/JP2019/001886 2018-02-20 2019-01-22 Determination apparatus, cell detachment/collection apparatus, and determination method WO2019163369A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020502085A JP7030953B2 (en) 2018-02-20 2019-01-22 Judgment device, cell detachment recovery device and judgment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-027904 2018-02-20
JP2018027904 2018-02-20

Publications (1)

Publication Number Publication Date
WO2019163369A1 true WO2019163369A1 (en) 2019-08-29

Family

ID=67687621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001886 WO2019163369A1 (en) 2018-02-20 2019-01-22 Determination apparatus, cell detachment/collection apparatus, and determination method

Country Status (2)

Country Link
JP (1) JP7030953B2 (en)
WO (1) WO2019163369A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110302A (en) * 1993-10-13 1995-04-25 Hajime Sangyo Kk Defect detector for transparent board
JPH08220021A (en) * 1995-02-10 1996-08-30 Central Glass Co Ltd Defect detecting method for transparent plate-shaped body
JP2007178426A (en) * 2005-11-30 2007-07-12 Hamamatsu Univ School Of Medicine Observation apparatus
JP2008256610A (en) * 2007-04-06 2008-10-23 Nikon Corp Observation apparatus
JP2008268599A (en) * 2007-04-20 2008-11-06 Nikon Corp Observation apparatus
JP2009198709A (en) * 2008-02-20 2009-09-03 Nikon Corp Observation device and observation method
JP2010020151A (en) * 2008-07-11 2010-01-28 Nikon Corp Observation apparatus
JP2010039262A (en) * 2008-08-06 2010-02-18 Nikon Corp Observation device
JP2010054465A (en) * 2008-08-29 2010-03-11 Nikon Corp Observation apparatus
JP2010060519A (en) * 2008-09-05 2010-03-18 Nikon Corp Observation apparatus
JP2010204051A (en) * 2009-03-05 2010-09-16 Mutual Corp Inspection apparatus and inspection method
JP2010223676A (en) * 2009-03-23 2010-10-07 Nikon Corp Observation device
JP2014113062A (en) * 2012-12-06 2014-06-26 Kawasaki Heavy Ind Ltd Device for automatically peeling cells and system for peeling cells
WO2016013395A1 (en) * 2014-07-22 2016-01-28 株式会社日立ハイテクノロジーズ Cell dispersion measurement mechanism, and cell subculture system utilizing same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110302A (en) * 1993-10-13 1995-04-25 Hajime Sangyo Kk Defect detector for transparent board
JPH08220021A (en) * 1995-02-10 1996-08-30 Central Glass Co Ltd Defect detecting method for transparent plate-shaped body
JP2007178426A (en) * 2005-11-30 2007-07-12 Hamamatsu Univ School Of Medicine Observation apparatus
JP2008256610A (en) * 2007-04-06 2008-10-23 Nikon Corp Observation apparatus
JP2008268599A (en) * 2007-04-20 2008-11-06 Nikon Corp Observation apparatus
JP2009198709A (en) * 2008-02-20 2009-09-03 Nikon Corp Observation device and observation method
JP2010020151A (en) * 2008-07-11 2010-01-28 Nikon Corp Observation apparatus
JP2010039262A (en) * 2008-08-06 2010-02-18 Nikon Corp Observation device
JP2010054465A (en) * 2008-08-29 2010-03-11 Nikon Corp Observation apparatus
JP2010060519A (en) * 2008-09-05 2010-03-18 Nikon Corp Observation apparatus
JP2010204051A (en) * 2009-03-05 2010-09-16 Mutual Corp Inspection apparatus and inspection method
JP2010223676A (en) * 2009-03-23 2010-10-07 Nikon Corp Observation device
JP2014113062A (en) * 2012-12-06 2014-06-26 Kawasaki Heavy Ind Ltd Device for automatically peeling cells and system for peeling cells
WO2016013395A1 (en) * 2014-07-22 2016-01-28 株式会社日立ハイテクノロジーズ Cell dispersion measurement mechanism, and cell subculture system utilizing same

Also Published As

Publication number Publication date
JP7030953B2 (en) 2022-03-07
JPWO2019163369A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
US9625478B2 (en) Automated integrated slide-processing system
JP6062059B2 (en) Bioimaging method
JP4921978B2 (en) Cell culture device, image processing device, and cell detection system
US20180127695A1 (en) Automatic device for culturing cell and operating method thereof
US20060166305A1 (en) Animal cell confluence detection method and apparatus
WO2005059091A1 (en) Device for cell culture
US8409506B2 (en) Apparatus for execution of treatment operations in connection with colouring of tissue specimens on object glasses
CN102460177A (en) System and method for automatically venting and sampling a culture specimen container
CN117054316A (en) System and method for counting cells
CN113358440A (en) Full-automatic liquid-based cell slide making, dyeing, slide sealing and slide reading integrated machine and method
WO2019163369A1 (en) Determination apparatus, cell detachment/collection apparatus, and determination method
JP2006141326A (en) Culturing device
TWI625394B (en) Image processing method, control program, recording medium and image processing apparatus
EP3739036B1 (en) Biological subject transfer device
CN106248764B (en) Real-time visual sharing and integrated imaging nucleic acid electrophoresis device and operation method thereof
CN214408744U (en) Electronic device image acquisition device
CN113166701A (en) Compact optical imaging system for cell culture monitoring
JP2006242690A (en) Detector and detecting method for protein crystal
KR102655618B1 (en) Substrate processing device and substrate processing method
EP4006523A1 (en) Specimen preparation apparatus
JP4451263B2 (en) Sample extraction device
Pechan et al. Image Processing in an Automated Live Cell Imaging System
KR101702332B1 (en) Liquid Dipping Type ITO Pattern Inspection Apparatus
CN116242686A (en) Imaging device and operation method thereof
CN112763512A (en) Character defect detection device and method for electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19758054

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020502085

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19758054

Country of ref document: EP

Kind code of ref document: A1