WO2019163068A1 - 整流回路装置 - Google Patents

整流回路装置 Download PDF

Info

Publication number
WO2019163068A1
WO2019163068A1 PCT/JP2018/006570 JP2018006570W WO2019163068A1 WO 2019163068 A1 WO2019163068 A1 WO 2019163068A1 JP 2018006570 W JP2018006570 W JP 2018006570W WO 2019163068 A1 WO2019163068 A1 WO 2019163068A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
current
semiconductor switch
voltage
reactor
Prior art date
Application number
PCT/JP2018/006570
Other languages
English (en)
French (fr)
Inventor
吉朗 土山
康平 梶原
孝浩 福西
吉田 泉
京極 章弘
シンホイ 戴
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to DE112018007147.2T priority Critical patent/DE112018007147T5/de
Priority to CN201880089889.1A priority patent/CN111819781B/zh
Priority to PCT/JP2018/006570 priority patent/WO2019163068A1/ja
Publication of WO2019163068A1 publication Critical patent/WO2019163068A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4216Arrangements for improving power factor of AC input operating from a three-phase input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a rectifier circuit device, and in particular, in an air conditioner or the like, a three-phase alternating current power source is used as an input to rectify alternating current power, and it is converted again into alternating current power of another frequency, By driving the compressor or the like with the converted alternating current, the air conditioning capability can be generated efficiently with respect to the fluctuating air conditioning load.
  • FIG. 13 shows an example in which the compressor motor is driven at a variable speed by an inverter circuit as a specific example of the DC load in this example.
  • a three-phase AC power source 1 is connected to a reactor 3r, 3s, 3t and a unidirectional semiconductor switching element having a function of turning on / off the unidirectional current, and connected in reverse parallel to the semiconductor switching element.
  • the smoothing capacitor 5 makes a direct current through a rectifier circuit composed of a semiconductor switch group (4rSH, 4sSH, 4tSH, 4rSL, 4sSL, 4tSL) made of the diodes.
  • the inverter circuit 7 converts the current into AC again, and the compressor motor 8 is driven. Since the frequency of the alternating current converted again can be arbitrarily changed, the rotational speed of the motor 8 can be made variable.
  • Some unidirectional semiconductor switching elements may be configured in a parasitic manner without separately arranging diodes connected in antiparallel, but it is also known that the same can be realized in that case. .
  • the semiconductor switch group is controlled on and off so that the distortion of the current waveform from the AC power supply is reduced.
  • the basic principle is that a short circuit between the semiconductor switch and the reactor with respect to the three-phase AC power supply 1 allows a current to flow through the reactor even in a section where the absolute value of the power supply voltage is low, and the circuit is opened by opening the semiconductor switch.
  • the connection status and causing the current stored in the reactor to flow into the DC side the current of the AC power source is controlled to improve the power source power factor.
  • the DC voltage in the smoothing capacitor is higher than the voltage of the AC power supply.
  • the compressor motor 8 rotates at a low speed. At this time, the voltage required for the motor 8 is a low voltage. Conversely, if the air conditioning load is heavy, the motor 8 rotates at a high speed. At this time, the voltage necessary for the motor 8 becomes a high voltage.
  • the inverter circuit 7 can generate an arbitrary AC voltage lower than the input DC voltage, but the power conversion efficiency decreases as the input / output voltage difference increases. Similarly, the greater the difference between the voltage required for the motor 8 and the DC voltage at the inverter input, the lower the efficiency of the motor due to current distortion caused by turning on and off the semiconductor switch of the inverter circuit 7.
  • the rectifier circuit composed of the reactors 3r, 3s, 3t and the semiconductor switch group (4rSH, 4sSH, 4tSH, 4rSL, 4sSL, 4tSL) makes the DC voltage higher than the peak value of the input AC line voltage. Control the input current, reduce power supply current distortion, and reduce the burden on the power transmission system. However, the greater the difference between the input AC voltage and the DC voltage, the lower the power conversion efficiency.
  • the on / off operation at the arm corresponding to at least one of the three phases is suspended and the semiconductor switch is turned on / off in the other two phases.
  • a so-called two-phase modulation may be used.
  • the phase that pauses every 120 degree phase period or every 60 degree phase period is changed.
  • the on / off operation in each phase has a stop period of 1/3 period of the power supply cycle.
  • FIG. 14 shows the relationship between the r-phase voltage waveform and the on-width (on-duty) of the semiconductor switches 4rSL and 4rSH connected to the r-phase when the short-circuit of the power supply via the reactor is suspended every 60-degree phase period. It is a wave form diagram which shows a relationship. Among the on-duty waveforms, those indicated by broken lines are those in which the corresponding semiconductor switch may be off because a current flows through the parallel diode. The r-phase voltage Vr is highest in the section from the phase 60 deg to 120 deg. In this section, the on-duty of the semiconductor switch 4rSL related to the short circuit via the reactor is made zero.
  • the semiconductor switches 4sSH and 4tSH of the other phases perform the on / off operation, they can be boosted from the line voltages of the r phase-s phase and the r phase-t phase, and are not used for the short circuit via the reactor.
  • the current can be supplied to the direct current section through the diodes connected in parallel.
  • the r-phase voltage Vr is lowest in the interval from phase 240 deg to 300 deg. In this interval, the on-duty of the semiconductor switch 4rSH related to the short circuit via the reactor is set to zero.
  • the semiconductor switch of the other phase is performing the on / off operation, current can be supplied to the direct current section through the diode connected in parallel with the short circuit 4rSL via the reactor. At this time, the DC voltage is higher than the voltage between the lines on the AC side.
  • Patent Document 2 discloses that the same technique as two-phase modulation can be realized.
  • the compressor drive for air conditioning there is no regenerative operation in which energy returns from the motor to the power supply side, so there is no need to provide a semiconductor switch through which energy returns when the on / off operation is stopped.
  • the current stored in can be made to flow to the DC side through the diode.
  • FIG. 11 shows a case where the short circuit of the power supply via the reactor is paused every 60 degrees phase interval in the case of the circuit of Patent Document 2 and is connected to the r-phase voltage waveform and the r-phase. It is a wave form diagram which shows the relationship with the ON width (ON duty) of the semiconductor switch 4rS which is.
  • the r-phase voltage Vr is highest in the section from 60 deg to 120 deg.
  • the on-duty of the semiconductor switch 4rSL related to the short circuit via the reactor is made zero.
  • the voltage can be boosted higher than the line voltages of r phase-s phase and r phase-t phase, and the current stored in the reactor is passed through the diode.
  • a current can be supplied to the direct current section.
  • the r-phase voltage Vr is lowest in the interval from phase 240 deg to 300 deg. In this interval, the on-duty of the semiconductor switch 4rSH that realizes the short circuit via the reactor is set to zero.
  • the semiconductor switch of the other phase is performing the on / off operation, and at this time, it is possible to supply current to the direct current section via another diode.
  • the DC voltage is higher than the voltage between the lines on the AC side.
  • the three-phase rectifier circuit does not disclose a method for reducing the DC voltage so that it can operate even when the air conditioning load is heavy.
  • the present invention In the rectifier circuit that varies the DC voltage according to the weight of the air conditioning load, the present invention generates a DC voltage lower than the AC voltage while reducing the increase in distortion of the AC current waveform, and is efficient even with a light air conditioning load.
  • a rectifier circuit device which can drive a compressor motor well.
  • a rectifier circuit device includes a unidirectional semiconductor switch element and a diode connected in antiparallel to the semiconductor switch element via a reactor for each phase output line of a three-phase AC power supply.
  • the reactor current is increased.
  • the current value of the reactor can be adjusted by rectifying the current stored in the reactor with a diode by turning off the semiconductor switch.
  • the on / off state of the semiconductor switch that acts to increase the current of the connected reactor by turning it on is always turned off so that the reactor current becomes a desired value. The on / off ratio of the semiconductor switch connected to the other two phases is adjusted.
  • the desired value of the current from the three-phase AC power supply is set so that the DC voltage becomes the desired DC voltage value while sequentially switching the phase that is always in the OFF state every 60 degrees section or every 120 degree section. Configured to adjust. Further, the desired DC voltage value is adjusted so that the section width in which the semiconductor switch in which the section that is always in the off state is set is in the off state is constant at an electrical phase angle of 60 degrees or more or 120 degrees or more.
  • the semiconductor switch of each phase when the phase where the semiconductor switch of each phase is in the OFF state exists in an electrical phase angle of 60 degrees or more or 120 degrees or more, that is, the semiconductor switch of each phase has an ON / OFF rest period of 1/3 period or more.
  • the DC voltage value decreases. Therefore, by keeping this section width constant, distortion of the AC power supply waveform can be kept small, and as a result, the conversion efficiency from AC to DC can be kept high. Furthermore, since the increase in the distortion of the motor current is suppressed in a state where the air conditioning load is light, the loss of the compressor motor can also be reduced.
  • the phase current waveform of a desired current from the three-phase power source includes a section where the command current is zero in the second half portion of each half-cycle of each phase voltage. Like that.
  • a rectifier circuit device is directed to each phase output line of a three-phase AC power supply, which is input to a DC smoothing circuit via a diode bridge via a reactor, and a reactor and a diode bridge connected to each phase
  • a bidirectional semiconductor switch is provided between the contact point and the DC neutral point.
  • the reactor current is adjusted by increasing the current of the reactor by turning on the semiconductor switch and rectifying the current stored in the reactor by a diode by turning off the semiconductor switch.
  • the on / off ratio of the semiconductor switch connected to the other two phases so that the semiconductor switch of any phase of the three-phase AC power supply is always in the OFF state, and the current from the AC power supply becomes a desired value. Configure to adjust.
  • the phase which is always in the OFF state is configured to be sequentially switched every section of the electrical phase angle 60 degrees, and the desired value of the current from the three-phase AC power supply is adjusted so that the DC voltage becomes the desired DC voltage value.
  • the section width in which the on / off ratio of the semiconductor switch of each phase of the three-phase AC power supply is 100% off is set to be always off, and the electric phase angle is constant at 60 degrees or more.
  • the desired DC voltage value is adjusted. Further, in the phase current waveform of the desired current, a section where the command current is zero exists in the latter half of each half-cycle of each phase voltage.
  • a rectifier circuit device is directed to a three-phase AC power supply having a neutral phase, and a unidirectional semiconductor switch element and a semiconductor switch element opposite to each other through four reactors of the three-phase AC power supply.
  • Semiconductor switches composed of diodes connected in parallel are connected in a bridge shape.
  • the current of the reactor is increased by turning on the semiconductor switch, and the current value can be adjusted by rectifying the current stored in the reactor with a diode by turning off the semiconductor switch.
  • the current of the connected reactor connected to one of the phases of the semiconductor switch connected via the reactor other than the neutral phase of the three-phase AC power supply is increased so as to increase the current of the connected reactor.
  • the semiconductor switch to be turned on / off is always turned off. Further, the ON / OFF ratio of the semiconductor switch connected to the other two phases is adjusted so that the current becomes a desired value, and the phase that is always in the OFF state is set to the section with the electrical phase angle of 60 degrees or 120 degrees. It is configured to sequentially switch every degree interval.
  • the semiconductor switch connected to the neutral phase is driven and controlled so that a 3N (N is an integer) order harmonic current flows in the neutral phase within a predetermined limit value of the power supply harmonic regulation. Is configured to adjust the desired value of the current from the three-phase AC power supply so that becomes a desired DC voltage value. Further, the desired DC voltage value is set so that the section width of the semiconductor switch in which the section in which the phase other than the neutral phase is always off is set is constant at the electrical phase angle of 60 degrees or more or 120 degrees or more. Adjust.
  • phase voltage of the frequency of 3N (N is an integer) times AC power supply frequency can generate
  • a rectifier circuit device is directed to a three-phase AC power source having a neutral phase, and four wires of the three-phase AC power source are respectively input to a DC smoothing circuit via a diode bridge via a reactor.
  • a bidirectional semiconductor switch is provided between the contact between the reactor and the diode bridge and the DC neutral point. Further, the current of the reactor is increased by turning on the semiconductor switch, and the current value can be adjusted by rectifying the current stored in the reactor with a diode by turning off the semiconductor switch.
  • the semiconductor switch provided in any phase other than the neutral phase of the three-phase AC power supply every 60 ° section of the electrical phase angle is always in the OFF state, so that the current becomes a desired value.
  • the semiconductor switch connected to the two phases is configured to adjust the on / off ratio, and the phase that is always in the off state is configured to be sequentially switched every section of the electrical phase angle of 60 degrees.
  • a section where the command current is zero exists in the latter half of each half cycle of each phase voltage, and within a predetermined limit value of power supply harmonic regulation, 3N ( N is an integer)
  • the semiconductor switch connected to the neutral phase is driven and controlled so that the next harmonic current flows in the neutral phase.
  • it is comprised so that the desired value of the electric current from a three-phase alternating current power supply may be adjusted so that a direct current voltage may become a desired direct current voltage value.
  • section width in which the ON / OFF ratio of the semiconductor switch of the phase other than the neutral phase is 100% OFF is set to be constant at an electrical phase angle of 60 degrees or more, together with the section width set to be always OFF.
  • the desired DC voltage value is adjusted.
  • the power conversion efficiency can be further improved, and a phase voltage having a frequency 3N times the AC power supply frequency can be generated in each of the three-phase terminal voltages. Therefore, it is possible to generate a lower DC voltage than the three-phase line voltage.
  • the fluctuation of the potential per ON / OFF of the semiconductor switch at the contact point between the reactor and the diode bridge becomes half of the DC voltage, and the distortion of the AC power supply current waveform due to the ON / OFF of the semiconductor switch is further reduced, resulting in low DC A voltage can be obtained.
  • a rectifier circuit device detects information related to the magnitude of a connected load, and performs control operation of the rectifier circuit device according to any one of the first to fifth aspects when the load is small.
  • a DC voltage is set such that the period during which the on / off ratio of each phase semiconductor switch is 100% off does not exceed 1/3 of one cycle of the AC power supply.
  • the rectifier circuit device of the present invention can change the DC output voltage according to the weight of the DC load, the efficiency of conversion to AC again from the AC power source through the DC power can be kept high. Furthermore, since the current distortion of the motor driven by the inverter is reduced, the motor efficiency can be kept high.
  • FIG. 1 is a circuit block diagram of a rectifier circuit device according to a first embodiment of the present invention.
  • FIG. 2 is a circuit block diagram of the rectifier circuit device according to the second embodiment of the present invention.
  • FIG. 3 is a circuit block diagram of a rectifier circuit device according to the third embodiment of the present invention.
  • FIG. 4 is a circuit block diagram of a rectifier circuit device according to the fourth embodiment of the present invention.
  • FIG. 5 is a circuit block diagram of a rectifier circuit device according to the fifth embodiment of the present invention.
  • FIG. 6 is a graph showing the power supply harmonic distribution in the first to third embodiments of the present invention.
  • FIG. 7 is a graph showing the power supply harmonic distribution in the fourth to fifth embodiments of the present invention.
  • FIG. 1 is a circuit block diagram of a rectifier circuit device according to a first embodiment of the present invention.
  • FIG. 2 is a circuit block diagram of the rectifier circuit device according to the second embodiment of the present invention.
  • FIG. 3 is
  • FIG. 8 is a circuit block diagram of a rectifier circuit device according to the sixth embodiment of the present invention.
  • FIG. 9 is a timing waveform diagram of the rectifier circuit device according to the first embodiment of the present invention.
  • FIG. 10 is a timing waveform diagram of the rectifier circuit device according to the second embodiment or the fourth embodiment of the present invention.
  • FIG. 11 is a timing waveform diagram in the conventional rectifier circuit device corresponding to the third embodiment of the present invention.
  • FIG. 12 is a timing waveform diagram of the rectifier circuit device according to the third embodiment or the fifth embodiment of the present invention.
  • FIG. 13 is a circuit block diagram of a conventional motor drive circuit rectifier circuit device.
  • FIG. 14 is a timing waveform diagram in the conventional motor drive circuit rectifier circuit device.
  • FIG. 1 is a circuit block diagram of a rectifier circuit device including a motor drive circuit according to a first embodiment of the present invention.
  • a three-phase AC power source 1 is connected to a semiconductor bridge circuit 4 via reactors 3r, 3s, and 3t.
  • the semiconductor bridge circuit 4 is controlled so that the current flowing from the three-phase AC power supply 1 is in a high power factor state by turning on and off the semiconductor switch group (4rSH, 4sSH, 4tSH, 4rSL, 4sSL, 4tSL).
  • the direct current output of the semiconductor bridge circuit 4 is connected to the smoothing capacitor 5 and the inverter circuit 7, and the motor 8 is driven at an arbitrary number of revolutions by controlling the inverter circuit 7. Since a well-known control method can be applied to the motor control, detailed description is omitted.
  • the semiconductor bridge circuit 4 is controlled such that the current flowing from the three-phase AC power source 1 is detected by the current detectors 2r, 2s, and 2t and the current becomes a sine wave.
  • the current information detected by the current detectors 2r, 2s, and 2t is input to the three-phase / two-phase / fixed-rotating coordinate conversion unit 121 together with the AC power source phase information detected by the power source phase detecting unit 9, and Information on the axes (r phase, s phase, t phase) is converted into currents Iq (effective current) and Id (reactive current) of information on the d axis and q axis.
  • the fixed coordinate conversion means 126 converts the information into three-phase axis information (r phase, s phase, t phase) again and sends it to the switch drive circuit 111 of the semiconductor bridge circuit 4 to drive the semiconductor bridge circuit 4.
  • the DC voltage Vdc is detected by the DC voltage detection means 6 and compared with a desired DC voltage Vdc * by the comparison means 129, and the error is passed through the voltage control compensation means 130 to the q-axis current command information Iq *.
  • the d-axis current that is a reactive current is always zero, the d-axis current command information Id * is set to zero.
  • a rectifier circuit is realized in which the power supply current is sinusoidal and has a high power factor while maintaining the DC voltage at a desired value.
  • the switch drive circuit 111 obtains the period during which the power supply short-circuit drive via the reactor of the semiconductor switch group (4rSH, 4sSH, 4tSH, 4rSL, 4sSL, 4tSL) in the semiconductor bridge circuit 4 is off, A certain “real off width” is sent to the comparison means 127.
  • the off width includes the off portion used in the two-phase modulation.
  • the comparison means 127 compares with a predetermined “reference off width”, and the deviation is set as DC voltage command information Vdc * via the compensation means 128.
  • the rectifier circuit using the semiconductor switch group as shown in FIG. 1 assumes a so-called step-up type in which the DC voltage is higher than the AC voltage. Therefore, when the DC voltage is lowered, the off width increases, and the DC voltage is reduced. Since the off width decreases when the height is raised, the operation realizes the desired off width by this control.
  • the off width By keeping the off width constant, it has a slight harmonic current while maintaining a low circuit loss state, but with a high power factor and low DC voltage output, it can drive a motor at a low rotational speed. Efficiency can also be improved.
  • FIG. 9 is a timing waveform diagram in the r-phase when this control is realized.
  • the short-circuit operation via the reactor is stopped in a section wider than 60 deg from the 60 deg to 120 deg r phase, and the increase in DC voltage is suppressed, and the semiconductor switch Circuit loss due to turning on and off is also suppressed.
  • three current detectors 2r, 2s, and 2t are used for detecting the three-phase current. However, since the total of the three-phase current is zero, one of them is omitted. Can do.
  • the three-phase alternating current is controlled by converting the coordinates into the q-axis (effective axis) and the d-axis (ineffective axis). However, the three-phase alternating current remains unchanged or another two-phase alternating current is used. It is obvious that the same can be realized by using another method such as coordinate transformation.
  • FIG. 2 shows a rectifier circuit device according to a second embodiment of the present invention.
  • the description of the first embodiment will be cited for those having the same configuration, operational effects, and the like.
  • the difference between the second embodiment and the first embodiment is the method for creating the d-axis and q-axis current commands in FIG.
  • the desired current is assumed to be a sine wave, and the q-axis current and the d-axis current are also DC.
  • the pattern waveform 150 rectangular waves including a zero current period are converted into q-axis and d-axis information by three-phase-two-phase / fixed-rotation conversion. Are stored in the pattern storage means 122 and 132, respectively.
  • the information based on the error of the DC voltage Vdc is adjusted through the voltage control compensation means 130 to adjust the current amplitude of the desired d-axis current waveform and the desired q-axis current waveform.
  • the multiplication means 123 and 133 are used to multiply the information in the pattern storage means 122 and 132 before the comparison means 124 and 134.
  • the current can be adjusted according to the DC voltage deviation while maintaining the same current waveform. Since there is a zero interval in the command current waveform, the OFF period of the semiconductor bridge circuit 4 can be increased and the DC voltage can be further reduced as compared with the first embodiment.
  • FIG. 6 shows the distribution of harmonic components in a three-phase current waveform including a zero current section.
  • the rectangular wave including the zero interval is composed of frequency components of “6N ⁇ 1” (N is an integer). Since the limit value of harmonics in the international standard is constant regardless of the weight of the load, the lighter load allows the distortion rate of the power source current. That is, by using the desired current information including such harmonics with a light load, a rectifier circuit device that is within the limit value of the power supply harmonic regulation can be realized.
  • FIG. 10 is a timing waveform diagram in the r-phase when this control is realized.
  • the short-circuit operation via the reactor is suspended in a section wider than 60 deg from the 60 deg to 120 deg section of the r phase, and the rise in DC voltage is further suppressed, and the semiconductor switch Circuit loss due to on / off is further suppressed.
  • FIG. 3 shows a rectifier circuit device according to a third embodiment of the present invention.
  • the second embodiment Only matters different from the second embodiment will be described, and the description of the second embodiment will be cited for those having the same configuration, operational effects, and the like.
  • the difference from the second embodiment is that instead of the semiconductor bridge circuit 4 in FIG. 2, a diode group (4rDH, 4sDH, 4tDH, 4rDL, 4sDL, 4tDL) and its diode group (4rDH, 4sDH, 4tDH, 4rDL). 4sDL, 4tDL) and the reactor group (3r, 3s, 3t), and two bidirectional switch groups (4rS, 4sS, 4tS) and two smoothing capacitors (5H, 5L) connected in series. It is configured to connect points, that is, DC neutral points.
  • This circuit configuration is called a three-phase three-level converter, and is basically equivalent to that described in Patent Document 2.
  • the potential change caused by turning on / off the switch at the connection point with the reactor is a fluctuation between the intermediate potential of the direct current portion and the voltage at one end of the direct current portion, compared with the circuit configuration of FIG. , Half the potential change. For this reason, there is an advantage that the distortion of the AC power supply current accompanying the on / off of the switch is reduced and the power factor is further improved.
  • FIG. 12 is a timing waveform diagram in the r-phase when this control is realized.
  • the short circuit operation via the reactor is suspended in a section wider than 60 deg from the 60 deg to 120 deg r phase, and the rise in the DC voltage is further suppressed. Further, circuit loss due to on / off of the semiconductor switch is further suppressed.
  • the off-period of the bidirectional switch group (4rS, 4sS, 4tS) can be set by 60 degrees, respectively. Can also reduce the DC voltage and further increase the off period. That is, the circuit efficiency of the three-level converter can be improved and the motor efficiency can also be improved.
  • FIG. 4 shows a rectifier circuit device according to a fourth embodiment of the present invention.
  • the neutral phase of the hot wire is present in the three-phase AC power supply
  • a method capable of further reducing the DC voltage than that described so far is disclosed.
  • a description will be given centering on differences from FIG. 2 showing the second embodiment.
  • the three-phase AC power supply 301 has a four-wire configuration with a neutral phase, and is connected to eight semiconductor switch groups (4rSH, 4sSH, 4tSH, 4nSH, through four reactor groups (3r, 3s, 3t, 3n). 4rSL, 4sSL, 4tSL, 4nSL).
  • the DC output of the bridge circuit 304 is smoothed by the smoothing capacitor 5 as in FIG. 2 and the motor 8 is driven by the inverter circuit 7.
  • the currents from the three-phase AC power supply 301 are detected by current detector groups (302r, 302s, 302t, 302n), respectively, and d-axis current information Id and q by the four-phase / three-phase / fixed-rotating coordinate conversion means 321. It is converted into shaft current information Iq and zero phase current information I0. This conversion is called “dq0 conversion”.
  • the three types of current information are controlled so as to have respective desired values.
  • the d-axis current information Id, the q-axis current information Iq, and the zero-phase current information I0 are compared with current commands Id *, Iq *, and I0 *, which are desired values, by the comparison means 324, 334, and 354, respectively.
  • the error information calculated by the comparison means 324, 334, and 354 is returned to the four-phase information by the three-phase / four-phase / rotation-fixed coordinate conversion means 326 via the control compensation means 325, 335, and 355, and the switch
  • the signal is sent to the drive circuit 311 to drive the semiconductor switch group of the bridge circuit 304.
  • the 3-phase-4 phase / rotation-fixed coordinate conversion means 326 performs a conversion called “dq0 reverse conversion”.
  • a waveform including a zero current period in which the sum of three phases is not necessarily zero is converted into four-phase to three-phase, q-axis information, d
  • the information converted into the axis information and the zero phase information is stored in the pattern storage means 322, 332, and 352, respectively.
  • the information based on the error of the DC voltage Vdc is adjusted through the voltage control compensation means 130 and the desired current is adjusted, but before that, the multiplication means 123, 133 and 153 are used to store the pattern.
  • the information of the means 122, 132, 152 is multiplied.
  • the current can be adjusted according to the DC voltage deviation while maintaining the same current waveform.
  • the zero-phase current flows through the reactor 3n and the semiconductor switches 4nSH and 4nSL because the three-phase total of the command current waveform is not zero.
  • FIG. 7 shows the distribution of harmonic components in the three-phase current waveform when the total value of the three-phase current is not necessarily zero.
  • the current of each phase includes “3N” (N is an integer) frequency components of the same phase.
  • the neutral phase current does not include the fundamental wave, and only the 3N-order harmonic current flows. If the waveform of the 3N order component and the waveform of the fundamental wave are added at a certain phase (the relationship where the peak of the waveform of the 3N order component is reversed with respect to the phase of the peak of the fundamental wave), the amplitude of the waveform becomes that of the fundamental waveform.
  • the amplitude can be made smaller than the amplitude, and a 3N-order voltage is required to generate a 3N-order current, which can be realized at a lower voltage than when only the fundamental wave is generated. It will be possible.
  • a rectifier circuit device that is within the limit value of the power supply harmonic regulation is realized.
  • the DC voltage can be lowered as compared with the case of the second embodiment. Note that the amplitude of the zero-phase current is smaller than that of the fundamental wave and only needs to be operated when the load is light. Therefore, the reactor 3n and the semiconductor switches 4nSH and 4nSL, which are components connected from the neutral phase, One having a small current capacity can be used.
  • four current detectors 302r, 302s, 302t, and 302n are used to detect a three-phase current including a neutral phase. However, the sum of these currents is zero. , One of them can be omitted.
  • FIG. 10 is also a timing waveform diagram in the r-phase when this control is realized.
  • the maximum voltage suppression due to the tertiary component acts, so that the short-circuit operation via the reactor is suspended in a wider section than in the second embodiment, and the rise of the DC voltage is further suppressed, and the semiconductor switch Circuit loss due to on / off is further suppressed.
  • FIG. 5 shows a rectifier circuit device according to a fifth embodiment of the present invention.
  • the fourth embodiment Only matters different from the fourth embodiment will be described, and the description of the fourth embodiment will be cited for those having the same configuration, operational effects, and the like.
  • a three-level converter is used. That is, instead of the bridge circuit 304 by the semiconductor switch group in FIG. 4, a diode group (4rDH, 4sDH, 4tDH, 4nDH, 4rDL, 4sDL, 4tDL, 4nDL) and its diode group (4rDH, 4sDH, 4tDH, 4nDH, 4rDL 4sDL, 4tDL, 4nDL) and a smoothing capacitor (5H) connected in series with two bidirectional switch groups (4rS, 4sS, 4tS, 4nS) at the connection point between the reactor group (3r, 3s, 3t, 3n) , 5L), that is, a direct current neutral point.
  • a three-level converter distortion of the power supply current waveform is further reduced.
  • FIG. 12 is a timing waveform diagram in the r-phase when this control is realized.
  • the maximum voltage suppression due to the third-order component acts, and the short circuit operation via the reactor is suspended in the section further wider than the 60 deg from the 60 deg to 120 deg r phase with respect to the third embodiment.
  • the rise of the DC voltage is further suppressed, and the circuit loss due to the on / off of the semiconductor switch is further suppressed.
  • the off periods of the bidirectional switch groups (4rS, 4sS, 4tS) can be set at least 60 degrees, respectively.
  • the DC voltage can be lowered and the off period can be further increased. That is, the circuit efficiency of the three-level converter can be improved and the motor efficiency can also be improved.
  • FIG. 8 shows a rectifier circuit device according to a sixth embodiment of the present invention.
  • the DC voltage pattern storage means 902 for setting the DC voltage and the width at which the ON / OFF ratio is 100% OFF or the DC voltage pattern.
  • a switch means 901 for switching between them is added.
  • the switch means 901 reduces the DC voltage based on the output from the compensation means 128 so that the OFF width is constant, thereby improving the conversion efficiency of the rectifier circuit and the efficiency of the motor.
  • the DC voltage can be raised by the output from the DC voltage pattern storage means 902 by the switch means 901, the applied voltage to the motor can be increased, and the motor efficiency can be improved.
  • the section where the on / off ratio of the semiconductor switch of each phase is 100% off may be set to 120 degrees.
  • the light weight detection of the load may use information on the number of revolutions of the motor 8, information on the current detector 2, and the like.
  • rectifier circuit portion has the same configuration as that of FIG. 1, it is obvious that the same can be realized by using the configuration diagrams of the other embodiments, FIG. 2, FIG. 3, FIG. 4, and FIG. It is.
  • the rectifier circuit device has a unidirectional semiconductor switch element and an antiparallel connection to the semiconductor switch element via the reactor with respect to each phase output line of the three-phase AC power supply.
  • the current of the reactor is increased by turning on a semiconductor switch composed of a diode connected to the.
  • the current value of the reactor can be adjusted by rectifying the current stored in the reactor with a diode by turning off the semiconductor switch.
  • the on / off state of the semiconductor switch that acts to increase the current of the connected reactor by turning it on is always turned off so that the reactor current becomes a desired value.
  • the on / off ratio of the semiconductor switch connected to the other two phases is adjusted.
  • the desired value of the current from the three-phase AC power supply is set so that the DC voltage becomes the desired DC voltage value while sequentially switching the phase that is always in the OFF state every 60 degrees section or every 120 degree section. Configured to adjust. Further, the desired DC voltage value is adjusted so that the section width in which the semiconductor switch in which the section that is always in the off state is set is in the off state is constant at an electrical phase angle of 60 degrees or more or 120 degrees or more.
  • the semiconductor switch of each phase when the phase where the semiconductor switch of each phase is in the OFF state exists in an electrical phase angle of 60 degrees or more or 120 degrees or more, that is, the semiconductor switch of each phase has an ON / OFF rest period of 1/3 period or more.
  • the DC voltage value decreases. Therefore, by keeping this section width constant, distortion of the AC power supply waveform can be kept small, and as a result, the conversion efficiency from AC to DC can be kept high. Furthermore, since the increase in the distortion of the motor current is suppressed in a state where the air conditioning load is light, the loss of the compressor motor can also be reduced.
  • the phase current waveform of a desired current from the three-phase power supply includes a section in which the command current is zero in the second half portion of each half-cycle of each phase voltage. Make sure it exists.
  • a rectifier circuit device is configured such that each phase output line of a three-phase AC power supply is input to a DC smoothing circuit via a diode bridge via a reactor, and a reactor and a diode bridge connected to each phase A bidirectional semiconductor switch is provided between the contact point and the DC neutral point.
  • the reactor current is adjusted by increasing the current of the reactor by turning on the semiconductor switch and rectifying the current stored in the reactor by a diode by turning off the semiconductor switch.
  • the on / off ratio of the semiconductor switch connected to the other two phases so that the semiconductor switch of any phase of the three-phase AC power supply is always in the OFF state, and the current from the AC power supply becomes a desired value. Configure to adjust.
  • the phase which is always in the OFF state is configured to be sequentially switched every section of the electrical phase angle 60 degrees, and the desired value of the current from the three-phase AC power supply is adjusted so that the DC voltage becomes the desired DC voltage value.
  • the section width in which the on / off ratio of the semiconductor switch of each phase of the three-phase AC power supply is 100% off is set to be always off, and the electric phase angle is constant at 60 degrees or more.
  • the desired DC voltage value is adjusted. Further, in the phase current waveform of the desired current, a section where the command current is zero exists in the latter half of each half-cycle of each phase voltage.
  • a three-phase AC power supply having a neutral phase is reversed with respect to the unidirectional semiconductor switch element and the semiconductor switch element via a reactor on each of the four wires of the three-phase AC power supply.
  • Semiconductor switches composed of diodes connected in parallel are connected in a bridge shape.
  • the current of the reactor is increased by turning on the semiconductor switch, and the current value can be adjusted by rectifying the current stored in the reactor with a diode by turning off the semiconductor switch.
  • the current of the connected reactor connected to one of the phases of the semiconductor switch connected via the reactor other than the neutral phase of the three-phase AC power supply is increased so as to increase the current of the connected reactor.
  • the semiconductor switch to be turned on / off is always turned off. Further, the ON / OFF ratio of the semiconductor switch connected to the other two phases is adjusted so that the current becomes a desired value, and the phase that is always in the OFF state is set to the section with the electrical phase angle of 60 degrees or 120 degrees. It is configured to sequentially switch every degree interval.
  • the semiconductor switch connected to the neutral phase is driven and controlled so that a 3N (N is an integer) order harmonic current flows in the neutral phase within a predetermined limit value of the power supply harmonic regulation. Is configured to adjust the desired value of the current from the three-phase AC power supply so that becomes a desired DC voltage value. Further, the desired DC voltage value is set so that the section width of the semiconductor switch in which the section in which the phase other than the neutral phase is always off is set is constant at the electrical phase angle of 60 degrees or more or 120 degrees or more. Adjust.
  • phase voltage of the frequency of 3N (N is an integer) times AC power supply frequency can generate
  • the rectifier circuit device In the rectifier circuit device according to the fifth disclosure, four lines of the three-phase AC power supply are respectively input to the DC smoothing circuit via the diode bridge via the reactor with respect to the three-phase AC power supply having a neutral phase.
  • a bidirectional semiconductor switch is provided between the contact between the reactor and the diode bridge and the DC neutral point. Further, the current of the reactor is increased by turning on the semiconductor switch, and the current value can be adjusted by rectifying the current stored in the reactor with a diode by turning off the semiconductor switch.
  • the semiconductor switch provided in any phase other than the neutral phase of the three-phase AC power supply every 60 ° section of the electrical phase angle is always in the OFF state, so that the current becomes a desired value.
  • the semiconductor switch connected to the two phases is configured to adjust the on / off ratio, and the phase that is always in the off state is configured to be sequentially switched every section of the electrical phase angle of 60 degrees.
  • a section where the command current is zero exists in the latter half of each half cycle of each phase voltage, and within a predetermined limit value of power supply harmonic regulation, 3N ( N is an integer)
  • the semiconductor switch connected to the neutral phase is driven and controlled so that the next harmonic current flows in the neutral phase.
  • it is comprised so that the desired value of the electric current from a three-phase alternating current power supply may be adjusted so that a direct current voltage may become a desired direct current voltage value.
  • section width in which the ON / OFF ratio of the semiconductor switch of the phase other than the neutral phase is 100% OFF is set to be constant at an electrical phase angle of 60 degrees or more, together with the section width set to be always OFF.
  • the desired DC voltage value is adjusted.
  • the power conversion efficiency can be further improved, and a phase voltage having a frequency 3N times the AC power supply frequency can be generated in each of the three-phase terminal voltages. Therefore, it is possible to generate a lower DC voltage than the three-phase line voltage.
  • the fluctuation of the potential per ON / OFF of the semiconductor switch at the contact point between the reactor and the diode bridge becomes half of the DC voltage, and the distortion of the AC power supply current waveform due to the ON / OFF of the semiconductor switch is further reduced, resulting in low DC A voltage can be obtained.
  • the rectifier circuit device detects information related to the magnitude of the connected load, and performs the control operation of the rectifier circuit device according to any one of the first to fifth disclosures when the load is small.
  • a DC voltage is set such that the period during which the on / off ratio of each phase semiconductor switch is 100% off does not exceed 1/3 of one cycle of the AC power supply.
  • the rectifier circuit device can generate a high-efficiency and low DC voltage, the efficiency related to the rectification operation can be improved and the driving efficiency of the motor can be improved. As described above, the efficiency can be improved in a light load state with a large operation time ratio, and the compressor motor in a large load state can be driven at high speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

いずれかの相の半導体スイッチ(4rSL;4rSH)が常にオフ状態となるようにし、リアクタの電流が所望値になるように他の2つの相の半導体スイッチ(4sSH,4tSH;4sSL,4tSL)のオンオフ比率を調整し、かつ、常にオフ状態とする相を電気位相角60度区間毎もしくは120度区間毎に順次切換えながら、直流電圧(Vdc)が所望直流電圧値(Vdc*)になるように、三相交流電源からの電流の所望値(Id*,Iq*)を調整する。さらに、半導体スイッチ(4rSL;4rSH)のオフ状態になる区間幅が、電気位相角度60度以上もしくは120度以上で一定になるように、所望直流電圧値(Vdc*)を調整することを特徴とする。これにより、交流電流波形を低歪みに保ちつつ、低い直流電圧(Vdc)を実現でき、電力変換効率を高く保ち、軽負荷時のモータ電流の歪みの増加を抑制して、モータの損失も低減することができる。

Description

整流回路装置
 本発明は、整流回路装置に関するものであって、とくに、空調機器などにおいて、三相交流電源を入力として、交流電力を整流するものであり、さらに別の周波数の交流電力に再度変換して、変換された交流にて圧縮機などを駆動することにより、変動する空調負荷に対して常に効率よく空調能力を発生しうるものである。
 従来、この種の整流回路装置は、例えば特許文献1において従来例として紹介されているものが代表的である。この例における直流負荷の具体例としてインバータ回路により圧縮機モータを可変速駆動する例を図13に示す。
 図13において、三相交流電源1をリアクタ3r、3s、3tと一方向の電流に対してオン・オフする機能を有する単方向の半導体スイッチ素子と、その半導体スイッチ素子に対して逆並列に接続されたダイオードよりなる半導体スイッチ群(4rSH、4sSH、4tSH、4rSL、4sSL、4tSL)で構成される整流回路を経由して、平滑コンデンサ5で直流となす。さらに、インバータ回路7にて再度交流に変換して、圧縮機用のモータ8を駆動するよう構成されている。再度変換された交流の周波数は任意に変えることができるので、モータ8の回転数を可変とすることができる。モータ8の回転数を可変とすることにより、変動する空調負荷に対して、常に効率よく空調能力を発生することができる。なお、単方向の半導体スイッチ素子によっては、逆並列に接続されたダイオードを別途配置することなく寄生的にダイオードが構成されてしまうものもあるが、その場合でも同様に実現できることも知られている。
 整流回路では、交流電源からの電流波形のひずみが少なくなるように、半導体スイッチ群をオンオフ制御する。その基本原理は、三相交流電源1に対して半導体スイッチとリアクタとで短絡することにより電源電圧の絶対値が低い区間でもリアクタに電流を流れるようにし、半導体スイッチを開放することにより、回路の接続状況が変化して、リアクタに蓄えた電流を直流側に流入させることにより、交流電源の電流を制御して、電源力率を向上させるものである。その結果、平滑コンデンサにおける直流電圧は交流電源の電圧よりも高い電圧になる。
 また、交流電源の電圧が高い場合に、直流出力側に中性点を設け、リアクタ出力と直流中性点との間を、双方向の半導体スイッチを短絡開放することにより、交流電源からの電流波形ひずみを少なくなるようにする構成も提案されている(例えば、特許文献2参照)。
特開2000―32760号公報 特開平9―182441号公報
 しかしながら、従来の構成では、変動する空調負荷に対応する空調能力発生に対して、モータ8の回転数を変化させる場合に、リアクタ3r、3s、3tと半導体スイッチ群(4rSH、4sSH、4tSH、4rSL、4sSL、4tSL)で構成される整流回路、インバータ回路7、モータ8の効率を常に適正にすることができない。
 例えば、空調負荷が軽ければ、圧縮機用のモータ8は低速で回転することになるが、このときに、モータ8に必要な電圧は低い電圧である。逆に、空調負荷が重ければ、モータ8は高速で回転するが、このときには、モータ8に必要な電圧は高い電圧になる。
 一方、インバータ回路7では、入力される直流電圧よりも低い任意の交流電圧を発生することができるものの、入出力の電圧の差が大きいほどその電力変換効率は低下する。同様に、モータ8にとって必要な電圧とインバータ入力の直流電圧との差が大きいほど、インバータ回路7の半導体スイッチのオンオフによって発生する電流歪みによって、モータの効率も低下する。
 一方、リアクタ3r、3s、3tと半導体スイッチ群(4rSH、4sSH、4tSH、4rSL、4sSL、4tSL)で構成される整流回路は、入力交流線間電圧のピーク値よりも直流電圧を高くすることにより入力電流を制御し、電源電流歪みを減少させ、電力送電系統への負担を軽減する。ただし、入力交流電圧と直流電圧との差が大きいほど、その電力変換効率は低下する。
 また、半導体スイッチ群の頻繁なオンオフ動作による損失を少なくするため、3つの相のうち少なくとも1つの相に対応するアームでのオンオフ動作を休止して、他の2つの相で半導体スイッチをオンオフする、いわゆる2相変調という手段が用いられることもある。2相変調においては、オンオフ動作休止期間は、120度位相期間毎あるいは60度位相期間毎に休止する相を変更していく。その結果、各相におけるオンオフ動作は、電源周期の1/3期間の停止期間を有することになる。
 図14は60度位相期間毎にリアクタ経由で電源を短絡することを休止する場合において、r相の電圧波形とr相に接続されている半導体スイッチ4rSLおよび4rSHのオン幅(オンデューティ)との関連を示す波形図である。オンデューティ波形のうち、破線で示しているものは、並列ダイオードに電流が流れるため、対応する半導体スイッチがオフであってもよいものである。位相60degから120degの区間はr相電圧Vrが最も高くなり、この区間において、リアクタ経由短絡に関連する半導体スイッチ4rSLのオンデューティをゼロにする。
 このとき、他の相の半導体スイッチ4sSHおよび4tSHはオンオフ動作を行っているので、r相-s相およびr相-t相の線間電圧よりも昇圧できて、リアクタ経由短絡に用いていない4rSHの並列接続されているダイオードを介して直流部に電流を供給することができる。位相240degから300degの区間はr相電圧Vrが最も低くなり、この区間において、リアクタ経由短絡に関連する半導体スイッチ4rSHのオンデューティをゼロにする。このときも他の相の半導体スイッチがオンオフ動作を行っているので、このときリアクタ経由短絡4rSLの並列接続されているダイオードを介して直流部に電流を供給することができる。このとき、交流側の線間の電圧よりも、直流電圧は高い電圧になる。
 同様に、特許文献2においても、2相変調と同じ手法が実現できることが開示されている。とくに、空調用の圧縮機駆動では、モータから電源側へとエネルギーが戻る回生動作がないため、オンオフ動作休止時にはエネルギーが戻るときに通る半導体スイッチを設ける必要も無く、特許文献2の回路ではリアクタに蓄えた電流を、ダイオードを通じて直流側に流れるようにすることができる。
 図11は、特許文献2の回路の場合において、60度位相区間毎にリアクタ経由で電源を短絡することを休止する場合を示したものであり、r相の電圧波形とr相に接続されている半導体スイッチ4rSのオン幅(オンデューティ)との関連を示す波形図である。
 この場合も図14と同様に、位相60degから120degの区間はr相電圧Vrがもっとも高くなり、この区間において、リアクタ経由短絡に関連する半導体スイッチ4rSLのオンデューティをゼロにする。このとき、他の相の半導体スイッチはオンオフ動作を行っているので、r相-s相およびr相-t相の線間電圧よりも昇圧できて、リアクタに蓄えられた電流はダイオードを介して直流部に電流を供給することができる。位相240degから300degの区間はr相電圧Vrが最も低くなり、この区間においても、リアクタ経由短絡を実現する半導体スイッチ4rSHのオンデューティをゼロにする。このときも他の相の半導体スイッチがオンオフ動作を行っているので、このとき、もうひとつのダイオードを介して直流部に電流を供給することができる。このとき、交流側の線間の電圧よりも、直流電圧は高い電圧になる。
 すなわち、空調負荷の軽重に応じて、直流電圧を連動するように動作させることが望ましく、しかも運転時間比率の高い軽負荷での高効率な整流および高効率なモータ駆動回路が望ましい。しかしながら、空調負荷の軽重の幅と同程度に直流電圧を可変しようとすると、三相用の整流回路では直流電圧を下げる方法が開示されておらず、空調負荷の重いときにも動作できるように直流電圧を設定して、それに相応する高電圧の圧縮機モータを用いようとすると、非常に高い直流電圧になってしまい、平滑コンデンサ5やインバータ回路7に耐電圧の高いものが必要になってしまうという課題を有していた。
 本発明は、空調負荷の軽重に応じて、直流電圧を可変する整流回路において、交流電流波形のひずみの増加を少なくしながら、交流電圧よりも低い直流電圧を発生させて、軽い空調負荷でも効率よく圧縮機モータを駆動できる整流回路装置を提供する。
 第1の発明における整流回路装置は、三相交流電源の各相出力線に対して、リアクタを介して、単方向の半導体スイッチ素子と該半導体スイッチ素子に対して逆並列に接続されたダイオードよりなる半導体スイッチのオンにより、リアクタの電流を増加させる。また、半導体スイッチのオフにより、リアクタに蓄えた電流をダイオードで整流するようにしてリアクタの電流値を調整できるよう構成する。また、いずれかの相において、オンさせることにより接続されているリアクタの電流が増加するよう作用する半導体スイッチのオンオフ状態が常にオフ状態となるようにして、リアクタの電流が所望値になるように、他の2つの相に接続された半導体スイッチのオンオフ比率を調整するよう構成する。加えて、常にオフ状態とする相を電気位相角60度区間毎もしくは120度区間毎に順次切換えながら、直流電圧が所望直流電圧値になるように、三相交流電源からの電流の所望値を調整するように構成される。さらに、常にオフ状態となる区間が設定された半導体スイッチのオフ状態になる区間幅が、電気位相角度60度以上もしくは120度以上で一定になるように、所望直流電圧値を調整する。
 これによって、各相の半導体スイッチのオフ状態になる区間が電気位相角度60度以上もしくは120度以上存在するとき、すなわち、各相の半導体スイッチには1/3期間以上のオンオフ休止区間が存在するときには、直流電圧値が下がる。そのため、この区間幅を一定に保つことにより、交流電源波形の歪みを少なく保つことができ、結果として、交流から直流への変換効率も高く保つことができる。さらに、空調負荷の軽い状態においては、モータ電流の歪みの増加を抑制するので、圧縮機モータの損失も低減することができる。
 第2の発明は、第1の発明において、三相電源からの所望の電流の相電流波形には、各相電圧の半周期毎の後半部分に指令電流がゼロである区間が存在しているようにする。
 これによって、さらに半導体スイッチがオフ状態になる区間が広がるので、交流電源電流波形の歪みを少なく保ったまま、さらに低い直流電圧を得ることができる。
 第3の発明の整流回路装置は、三相交流電源の各相出力線に対して、リアクタを介してダイオードブリッジを経て直流平滑回路に入力されるとともに、各相に接続されたリアクタとダイオードブリッジとの接点と直流中性点との間に双方向の半導体スイッチを設ける。また、半導体スイッチのオンにより、リアクタの電流を増加させ、半導体スイッチのオフにより、リアクタに蓄えた電流をダイオードで整流するようにしてリアクタの電流値を調整できるよう構成する。また、三相交流電源のどれかの相の半導体スイッチが常にオフ状態となるようにし、交流電源からの電流が所望値になるように、他の2つの相に接続された半導体スイッチのオンオフ比率を調整するよう構成する。かつ、常にオフ状態とする相を電気位相角60度区間毎に順次切換えるよう構成し、直流電圧が所望直流電圧値になるように、三相交流電源からの電流の所望値を調整するように構成される。また、三相交流電源の各相の半導体スイッチのオンオフ比率が100%オフ状態になる区間幅が常にオフ状態になるように設定された分を合わせて電気位相角60度以上で一定になるように、所望直流電圧値を調整するようにする。さらに、所望電流の相電流波形には、各相電圧の半周期毎の後半部分に指令電流がゼロである区間が存在するようにする。
 これにより、リアクタとダイオードブリッジとの接点における半導体スイッチのオンオフ1回当たりの電位の変動が直流電圧の半分になり、半導体スイッチのオンオフに伴う交流電源電流波形のひずみをさらに少なくして、低い直流電圧を得ることができる。
 第4の発明の整流回路装置は、中性相を有する三相交流電源に対し、三相交流電源の4線にそれぞれリアクタを介して単方向の半導体スイッチ素子とその半導体スイッチ素子に対して逆並列に接続されたダイオードよりなる半導体スイッチがブリッジ状に接続されている。また、半導体スイッチのオンにより、リアクタの電流を増加させ、半導体スイッチのオフにより、リアクタに蓄えた電流をダイオードで整流するようにして電流値を調整できるよう構成する。また、三相交流電源の中性相以外にリアクタを介して接続された半導体スイッチ群のうち、いずれかの相に接続された、オンさせることにより接続されているリアクタの電流が増加するよう作用する半導体スイッチのオンオフ状態が常にオフ状態となるようにする。また、電流が所望値になるように、他の2つの相に接続された半導体スイッチのオンオフ比率を調整するよう構成し、かつ、常にオフ状態とする相を電気位相角60度区間毎もしくは120度区間毎に順次切換えるよう構成する。また、所定の電源高調波規制の限度値内で、3N(Nは整数)次の高調波電流が中性相に流れるように、中性相に接続される半導体スイッチを駆動制御し、直流電圧が所望直流電圧値になるように、三相交流電源からの電流の所望値を調整するように構成される。さらに、中性相以外の相の常にオフ状態となる区間が設定された半導体スイッチのオフ状態になる区間幅が電気位相角度60度以上もしくは120度以上で一定になるように、所望直流電圧値を調整する。
 これにより、電力変換効率をさらに向上させるとともに、交流電源周波数の3N(Nは整数)倍の周波数の相電圧が三相の各端子電圧に発生できるので、三相の線間電圧に対して、さらに低い直流電圧を発生することができる。
 第5の発明の整流回路装置は、中性相を有する三相交流電源に対し、三相交流電源の4線がそれぞれリアクタを介してダイオードブリッジを経て直流平滑回路に入力されるとともに、各相のリアクタとダイオードブリッジとの接点と直流中性点との間に双方向の半導体スイッチを設ける。また、半導体スイッチのオンにより、リアクタの電流を増加させ、半導体スイッチのオフにより、リアクタに蓄えた電流をダイオードで整流するようにして電流値を調整できるよう構成する。また、電気位相角度60度区間毎に三相交流電源の中性相以外のどれかの相に設けられた半導体スイッチが常にオフ状態となるようにし、電流が所望値になるように、他の2つの相に接続された半導体スイッチのオンオフ比率を調整するよう構成し、かつ、常にオフ状態とする相を電気位相角60度区間毎に順次切換えるように構成する。また、所望の電流の相電流波形には、各相電圧の半周期毎の後半部分に指令電流がゼロである区間が存在するようにし、所定の電源高調波規制の限度値内で、3N(Nは整数)次の高調波電流が中性相に流れるように、中性相に接続される半導体スイッチを駆動制御する。また、直流電圧が所望直流電圧値になるように、三相交流電源からの電流の所望値を調整するように構成されるものである。さらに、中性相以外の相の半導体スイッチのオンオフ比率が100%オフ状態になる区間幅が常にオフ状態になるように設定された分を合わせて電気位相角度60度以上で一定になるように、所望直流電圧値を調整する。
 これにより、電力変換効率をさらに向上させるとともに、交流電源周波数の3N倍の周波数の相電圧が三相の各端子電圧に発生できる。そのため、三相の線間電圧に対して、さらに低い直流電圧を発生することができる。加えて、リアクタとダイオードブリッジとの接点における半導体スイッチのオンオフ1回当たりの電位の変動が直流電圧の半分になり、半導体スイッチのオンオフに伴う交流電源電流波形のひずみをさらに少なくして、低い直流電圧を得ることができる。
 第6の発明の整流回路装置は、接続された負荷の大小に関連する情報を検出し、負荷が小さいときに、第1から第5のいずれか1つの発明の整流回路装置の制御動作を実施し、負荷が大きいときには、各相の半導体スイッチのオンオフ比率が100%オフになる期間が交流電源の1周期の1/3区間を越えない直流電圧を設定する。
 これにより、空調機などのように、運転時間比率が大きい負荷の軽い状態での効率改善ができるとともに、負荷が大きい状態の、圧縮機モータを高速回転駆動も両立することができる。
 本発明の整流回路装置は、直流負荷の軽重に応じて、直流出力電圧の可変することができるので、交流電源から直流電力を経て再度交流に変換する効率を高く保つことができる。さらに、インバータ駆動されるモータの電流歪みが低減されるため、モータ効率も高く保つことができる。
図1は、本発明の第1の実施の形態における整流回路装置の回路ブロック図である。 図2は、本発明の第2の実施の形態における整流回路装置の回路ブロック図である。 図3は、本発明の第3の実施の形態における整流回路装置の回路ブロック図である。 図4は、本発明の第4の実施の形態における整流回路装置の回路ブロック図である。 図5は、本発明の第5の実施の形態における整流回路装置の回路ブロック図である。 図6は、本発明の第1の実施の形態から第3の実施の形態における電源高調波分布を示すグラフである。 図7は、本発明の第4の実施の形態から第5の実施の形態における電源高調波分布を示すグラフである。 図8は、本発明の第6の実施の形態における整流回路装置の回路ブロック図である。 図9は、本発明の第1の実施の形態における整流回路装置のタイミング波形図である。 図10は、本発明の第2の実施の形態もしくは第4の実施の形態における整流回路装置のタイミング波形図である。 図11は、本発明の第3の実施の形態に対応する従来例の整流回路装置におけるタイミング波形図である。 図12は、本発明の第3の実施の形態もしくは第5の実施の形態における整流回路装置のタイミング波形図である。 図13は、従来のモータ駆動用回路用整流回路装置の回路ブロック図である。 図14は、従来のモータ駆動用回路用整流回路装置におけるタイミング波形図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
 (第1の実施の形態)
 図1は、本発明の第1の実施の形態におけるモータ駆動回路を含む整流回路装置の回路ブロック図を示すものである。
 図1において、三相交流電源1をリアクタ3r、3s、3tを経由して、半導体ブリッジ回路4に接続する。半導体ブリッジ回路4は半導体スイッチ群(4rSH、4sSH、4tSH、4rSL、4sSL、4tSL)をオンオフして三相交流電源1から流入する電流が高力率状態となるように、制御されるものである。この半導体ブリッジ回路4の直流側出力は、平滑コンデンサ5および、インバータ回路7に接続しており、インバータ回路7を制御することにより、モータ8を任意の回転数で駆動する。モータ制御は周知の制御方法を適用できるので詳細の説明は省略する。
 半導体ブリッジ回路4の制御は、三相交流電源1から流入する電流を電流検出器2r、2s、2tで検出し、その電流が正弦波になるように制御を行う。電流検出器2r、2s、2tで検出された電流情報は、電源位相検出手段9により検出された交流電源位相情報とともに、3相-2相・固定-回転座標変換手段121に入力され、3つの軸(r相、s相、t相)の情報をd軸およびq軸の情報の電流Iq(有効電流)、Id(無効電流)に変換する。
 これら2種類の電流情報をそれぞれ比較手段124,134で目標となる電流Iq*、Id*と比較して、その誤差を、制御補償手段125,135を経由して、2相-3相・回転-固定座標変換手段126で再び、三相の軸の情報(r相、s相、t相)に変換し、半導体ブリッジ回路4のスイッチ駆動回路111に送り、半導体ブリッジ回路4を駆動する。
 一方、直流電圧検出手段6により直流電圧Vdcを検出し、比較手段129で所望の直流電圧Vdc*と比較し、その誤差を電圧制御補償手段130を経由して、q軸電流指令情報Iq*とする。また、無効電流であるd軸電流は、常にゼロが望ましいので、d軸電流指令情報Id*はゼロとする。これらにより、直流電圧を所望値に保ったまま、電源電流が正弦波状でかつ高力率となる整流回路が実現される。
 さらに、スイッチ駆動回路111から、半導体ブリッジ回路4における半導体スイッチ群(4rSH、4sSH、4tSH、4rSL、4sSL、4tSL)のリアクタ経由の電源短絡させる駆動がオフになっている期間を求め、その情報である「実オフ幅」を比較手段127に送る。なお、オフ幅には二相変調で用いるオフ分も含むものとする。比較手段127ではあらかじめ定められた「基準オフ幅」と比較し、その偏差を、補償手段128を経由して、直流電圧指令情報Vdc*とする。図1に示すような半導体スイッチ群を用いた整流回路では、直流電圧が交流電圧よりも高くなる、いわゆる昇圧型を前提としているため、直流電圧を下げると、オフ幅が増加し、直流電圧を上げるとオフ幅が減少するため、この制御により、所望のオフ幅を保つよう動作が実現する。
 オフ幅が一定に保たれることにより、回路損失の少ない状態を保ちながら、若干の高調波電流を有するものの、高力率でかつ低い直流電圧出力が得られて、低回転数でのモータ駆動効率も改善できる。
 図9はこの制御が実現した際のr相におけるタイミング波形図である。図14の従来例に対して、r相の60degから120degの区間の60deg分よりも広い区間で、リアクタ経由の短絡動作が休止することになり、直流電圧の上昇が抑制されるとともに、半導体スイッチのオンオフによる回路損失も抑制される。
 なお、本実施の形態では、三相電流の検出に電流検出器2r、2s、2tの3つを用いるものとして説明したが、三相電流の合計はゼロになるので、そのうち1つ省略することができる。また、本実施の形態では、三相交流電流をq軸(有効軸)とd軸(無効軸)に座標変換して制御する事例で説明したが、三相交流のままや別の二相交流に座標変換するなどの別の手法を用いても同様のことが実現できることは明白である。
 (第2の実施の形態)
 図2は、本発明の第2の実施の形態である整流回路装置を示している。ここでは、第1の実施の形態と相違する事項についてのみ説明し、同様の構成や作用効果等を有するものについては第1の実施の形態の説明を援用する。
 第2の実施の形態が第1の実施の形態と異なる部分は、図2において、d軸およびq軸の電流指令の作成方法である。第1の実施の形態では、所望電流は正弦波を前提とし、q軸電流とd軸電流も直流となるようにしていた。第2の実施の形態では、パターン波形150に示すように、ゼロ電流期間を含む矩形波とし、それらを3相-2相・固定-回転変換してq軸およびd軸情報に変換したものを、それぞれパターン記憶手段122,132に格納しておく。
 また、第1の実施の形態と同様に直流電圧Vdcの誤差に基づく情報を、電圧制御補償手段130を経て予め定めた、所望のd軸電流波形および所望のq軸電流波形の電流振幅を調整するが、第2の実施の形態では、比較手段124、134の手前で、乗算手段123,133を用いて、パターン記憶手段122,132の情報と乗算するようにする。これにより、直流電圧偏差に応じて、同じ電流波形を保ったまま、電流を調整することができることになる。指令電流波形にゼロの区間があるので、第1の実施の形態よりも、半導体ブリッジ回路4のオフ期間が増加でき、直流電圧もさらに低下させることができる。
 ここで、パターン波形150について説明する。図6は、ゼロ電流区間を含む三相電流波形における、高調波成分の分布を示したものである。ゼロ区間を含む矩形波は、「6N±1」(Nは整数)の周波数成分から構成される。国際規格における高調波の限度値は負荷の軽重によらず一定であるため、負荷が軽いほうが、電源電流の歪み率を許容できる。すなわち、軽負荷でこのような高調波を含んだ所望電流情報を用いることで、電源高調波規制の限度値内となる整流回路装置が実現できる。
 図10はこの制御が実現した際のr相におけるタイミング波形図である。図9に対して、r相の60degから120degの区間の60deg分よりもさらに広い区間で、リアクタ経由の短絡動作が休止することになり、直流電圧の上昇がさらに抑制されるとともに、半導体スイッチのオンオフによる回路損失もさらに抑制される。
 (第3の実施の形態)
 図3は、本発明の第3の実施の形態である整流回路装置を示している。ここでは、第2の実施の形態と相違する事項についてのみ説明し、同様の構成や作用効果等を有するものについては第2の実施の形態の説明を援用する。
 第2の実施の形態と異なる点は、図2での半導体ブリッジ回路4の代わりに、ダイオード群(4rDH、4sDH、4tDH、4rDL、4sDL、4tDL)とそのダイオード群(4rDH、4sDH、4tDH、4rDL、4sDL、4tDL)とリアクタ群(3r、3s、3t)との接続点に、さらに双方向スイッチ群(4rS、4sS、4tS)と2つ直列接続された平滑コンデンサ(5H,5L)との中点、すなわち直流中性点を結ぶ構成としたものである。
 この回路構成は、三相の3レベルコンバータと呼ばれるものであり、特許文献2にも記載されているものとも基本的に等価な構成である。
 3レベルコンバータでは、リアクタとの接続点におけるスイッチのオン/オフに伴う電位変化は、直流部分の中間電位と直流部分の一端の電圧との間の変動になり、図2の回路構成に比べて、半分の電位変化になる。このため、スイッチのオン/オフに伴う交流電源電流の歪みが少なくなり、さらに力率が向上するという利点がある。
 図12はこの制御が実現した際のr相におけるタイミング波形図である。従来例である図11に対して、r相の60degから120degの区間の60deg分よりもさらに広い区間で、リアクタ経由の短絡動作が休止することになり、直流電圧の上昇がさらに抑制されるとともに、半導体スイッチのオンオフによる回路損失もさらに抑制される。
 特許文献2にも記載されているように、双方向スイッチ群(4rS、4sS、4tS)のオフ期間をそれぞれ60度期間ずつ設定することができるが、本実施の形態においては、特許文献2よりも直流電圧を低下させ、オフ期間をさらに増加させることができる。すなわち、3レベルコンバータの回路効率を改善し、かつ、モータ効率も改善することができる。
 なお、3レベルコンバータの構成方法は、特許文献2記載の回路でも同様に実現できるなど、図3で示したものに限定されることはない。
 (第4の実施の形態)
 図4は、本発明の第4の実施の形態である整流回路装置を示している。三相交流電源に活線の中性相が存在している場合に対して、これまで述べたものよりもさらに直流電圧を低下させることができる方法を開示するものである。第2の実施の形態を示す図2との差異を中心に説明する。
 三相交流電源301は中性相もある4線の構成とし、4つのリアクタ群(3r、3s、3t、3n)を経由して、8個の半導体スイッチ群(4rSH、4sSH、4tSH、4nSH、4rSL、4sSL、4tSL、4nSL)によるブリッジ回路304に入力される。ブリッジ回路304の直流出力は図2と同様に平滑コンデンサ5により平滑されて、インバータ回路7によりモータ8を駆動する。
 三相交流電源301からの電流は、電流検出器群(302r、302s、302t、302n)によりそれぞれ検出され、4相-3相・固定-回転座標変換手段321により、d軸電流情報Idとq軸電流情報Iqとゼロ相電流情報I0に変換される。この変換は「dq0変換」と呼ばれるものである。この3種類の電流情報について、それぞれ所望値になるように制御を行う。
 d軸電流情報Id、q軸電流情報Iq、ゼロ相電流情報I0は、それぞれ、所望値である電流指令Id*、Iq*、I0*と、比較手段324,334、354にて比較される。比較手段324,334、354で演算された誤差情報は、制御補償手段325、335、355を経て、3相-4相・回転-固定座標変換手段326により、4相情報に戻されて、スイッチ駆動回路311に送られ、ブリッジ回路304の半導体スイッチ群を駆動する。
 4相-3相・固定-回転座標変換手段321と同様に、3相-4相・回転-固定座標変換手段326は、「dq0逆変換」と呼ばれる変換を行うものである。
 図2で示したものと同様に、パターン波形350に示すように、三相の合計が必ずしもゼロではないゼロ電流期間を含む波形とし、それらを4相―3相変換してq軸情報、d軸情報、ゼロ相情報に変換したものを、それぞれパターン記憶手段322,332、352に格納しておく。
 第2の実施の形態と同様に直流電圧Vdcの誤差に基づく情報を、電圧制御補償手段130を経て所望電流を調整するが、その手前で、乗算手段123,133、153を用いて、パターン記憶手段122,132、152の情報と乗算するようにする。これにより、直流電圧偏差に応じて、同じ電流波形を保ったまま、電流を調整することができることになる。指令電流波形の三相合計がゼロで無い分、ゼロ相電流が、リアクタ3nおよび半導体スイッチ4nSH、4nSLに流れる。
 図7は、三相電流の合計値が必ずしもゼロでは無い場合の三相電流波形における、高調波成分の分布を示したものである。三相とも同じ波形の場合、各相の電流には、同相の「3N」(Nは整数)の周波数成分が含まれる。また、中性相の電流は、基本波は含まれず、3N次の高調波電流のみが流れている。3N次成分の波形と基本波の波形をある位相(基本波のピークの位相に対して、3N次成分の波形のピークが逆になる関係)で加算すると、その波形の振幅は基本波波形の振幅よりも、小さくできることが知られており、3N次の電流を発生するためにも3N次の電圧が必要になり、基本波だけを発生する場合に比べて、より低い電圧で実現することができることになる。第2の実施の形態での構成に加えて、軽負荷でこのような3N次の高調波成分を含む所望電流情報を用いることで、電源高調波規制の限度値内となる整流回路装置が実現でき、しかも、第2の実施の形態の場合よりも直流電圧を下げることが可能である。なお、ゼロ相電流の振幅は、基本波に比べて小さく、しかも軽負荷のときのみ動作させるだけでよいので、中性相からの接続される部品であるリアクタ3nや半導体スイッチ4nSH、4nSLは、小電流容量のものを用いることができる。
 なお、本実施の形態では、中性相を含む三相電流の検出に電流検出器302r、302s、302t、302nの4つを用いるものとして説明したが、これらの電流の合計はゼロになるので、そのうち1つ省略することができる。
 図10はこの制御が実現した際のr相におけるタイミング波形図でもある。3次成分による最大電圧抑制が作用して、実施の形態2よりもさらにまた広い区間で、リアクタ経由の短絡動作が休止することになり、直流電圧の上昇がさらに抑制されるとともに、半導体スイッチのオンオフによる回路損失もさらに抑制される。
 (第5の実施の形態)
 図5は、本発明の第5の実施の形態である整流回路装置を示している。ここでは、第4の実施の形態と相違する事項についてのみ説明し、同様の構成や作用効果等を有するものについては第4の実施の形態の説明を援用する。
 第4の実施の形態と異なる点は、3レベルコンバータとした点である。すなわち、図4での半導体スイッチ群によるブリッジ回路304の代わりに、ダイオード群(4rDH、4sDH、4tDH、4nDH、4rDL、4sDL、4tDL、4nDL)とそのダイオード群(4rDH、4sDH、4tDH、4nDH、4rDL、4sDL、4tDL、4nDL)とリアクタ群(3r、3s、3t、3n)との接続点に、さらに双方向スイッチ群(4rS、4sS、4tS、4nS)と2つ直列接続された平滑コンデンサ(5H,5L)との中点、すなわち直流中性点を結ぶ構成としている。3レベルコンバータ化により電源電流波形の歪みがさらに少なくなる。
 図12はこの制御が実現した際のr相におけるタイミング波形図である。3次成分による最大電圧抑制が作用して、実施の形態3に対して、r相の60degから120degの区間の60deg分よりもさらにまた広い区間で、リアクタ経由の短絡動作が休止することになり、直流電圧の上昇がさらにまた抑制されるとともに、半導体スイッチのオンオフによる回路損失もさらにまた抑制される。
 第3の実施の形態と同じく、特許文献2にも記載されているように、双方向スイッチ群(4rS、4sS、4tS)のオフ期間をそれぞれ少なくとも60度期間ずつ設定することができるが、本実施の形態においては、直流電圧を低下させ、オフ期間をさらに増加させることができる。すなわち、3レベルコンバータの回路効率を改善し、かつ、モータ効率も改善することができる。
 (第6の実施の形態)
 図8は、本発明の第6の実施の形態である整流回路装置を示している。図1の回路構成に対して、負荷を検出して、直流電圧を設定する直流電圧パターン記憶手段902とオンオフ比率が100%オフになる幅を制御するか直流電圧パターンになるように制御するかを切り替えるスイッチ手段901を追加している。
 これにより、負荷が軽いときには、スイッチ手段901により、オフ幅が一定になるように補償手段128からの出力に基づき直流電圧を下げて、整流回路の変換効率やモータの効率を改善し、負荷が重いときには、スイッチ手段901により直流電圧パターン記憶手段902からの出力で直流電圧を上げて、モータへの印加電圧を高くして、モータの効率を改善することができる。
 直流電圧を上昇させるには、二相変調の場合、各相の半導体スイッチのオンオフ比率が100%オフとなる区間を120度にすればよい。なお、図には示していないが、負荷の軽重検出は、モータ8の回転数情報や電流検出器2の情報などを用いればよい。
 また、整流回路部分は図1と同じ構成を用いたが、他の実施の形態における構成図である、図2、図3、図4、図5を用いても同様のことが実現できることは明白である。
 以上説明したように、第1の開示における整流回路装置は、三相交流電源の各相出力線に対して、リアクタを介して、単方向の半導体スイッチ素子と該半導体スイッチ素子に対して逆並列に接続されたダイオードよりなる半導体スイッチのオンにより、リアクタの電流を増加させる。また、半導体スイッチのオフにより、リアクタに蓄えた電流をダイオードで整流するようにしてリアクタの電流値を調整できるよう構成する。また、いずれかの相において、オンさせることにより接続されているリアクタの電流が増加するよう作用する半導体スイッチのオンオフ状態が常にオフ状態となるようにして、リアクタの電流が所望値になるように、他の2つの相に接続された半導体スイッチのオンオフ比率を調整するよう構成する。加えて、常にオフ状態とする相を電気位相角60度区間毎もしくは120度区間毎に順次切換えながら、直流電圧が所望直流電圧値になるように、三相交流電源からの電流の所望値を調整するように構成される。さらに、常にオフ状態となる区間が設定された半導体スイッチのオフ状態になる区間幅が、電気位相角度60度以上もしくは120度以上で一定になるように、所望直流電圧値を調整する。
 これによって、各相の半導体スイッチのオフ状態になる区間が電気位相角度60度以上もしくは120度以上存在するとき、すなわち、各相の半導体スイッチには1/3期間以上のオンオフ休止区間が存在するときには、直流電圧値が下がる。そのため、この区間幅を一定に保つことにより、交流電源波形の歪みを少なく保つことができ、結果として、交流から直流への変換効率も高く保つことができる。さらに、空調負荷の軽い状態においては、モータ電流の歪みの増加を抑制するので、圧縮機モータの損失も低減することができる。
 第2の開示における整流回路装置は、第1の開示において、三相電源からの所望の電流の相電流波形には、各相電圧の半周期毎の後半部分に指令電流がゼロである区間が存在しているようにする。
 これによって、さらに半導体スイッチがオフ状態になる区間が広がるので、交流電源電流波形の歪みを少なく保ったまま、さらに低い直流電圧を得ることができる。
 第3の開示における整流回路装置は、三相交流電源の各相出力線に対して、リアクタを介してダイオードブリッジを経て直流平滑回路に入力されるとともに、各相に接続されたリアクタとダイオードブリッジとの接点と直流中性点との間に双方向の半導体スイッチを設ける。また、半導体スイッチのオンにより、リアクタの電流を増加させ、半導体スイッチのオフにより、リアクタに蓄えた電流をダイオードで整流するようにしてリアクタの電流値を調整できるよう構成する。また、三相交流電源のどれかの相の半導体スイッチが常にオフ状態となるようにし、交流電源からの電流が所望値になるように、他の2つの相に接続された半導体スイッチのオンオフ比率を調整するよう構成する。かつ、常にオフ状態とする相を電気位相角60度区間毎に順次切換えるよう構成し、直流電圧が所望直流電圧値になるように、三相交流電源からの電流の所望値を調整するように構成される。また、三相交流電源の各相の半導体スイッチのオンオフ比率が100%オフ状態になる区間幅が常にオフ状態になるように設定された分を合わせて電気位相角60度以上で一定になるように、所望直流電圧値を調整するようにする。さらに、所望電流の相電流波形には、各相電圧の半周期毎の後半部分に指令電流がゼロである区間が存在するようにする。
 これにより、リアクタとダイオードブリッジとの接点における半導体スイッチのオンオフ1回当たりの電位の変動が直流電圧の半分になり、半導体スイッチのオンオフに伴う交流電源電流波形のひずみをさらに少なくして、低い直流電圧を得ることができる。
 第4の開示における整流回路装置は、中性相を有する三相交流電源に対し、三相交流電源の4線にそれぞれリアクタを介して単方向の半導体スイッチ素子と該半導体スイッチ素子に対して逆並列に接続されたダイオードよりなる半導体スイッチがブリッジ状に接続されている。また、半導体スイッチのオンにより、リアクタの電流を増加させ、半導体スイッチのオフにより、リアクタに蓄えた電流をダイオードで整流するようにして電流値を調整できるよう構成する。また、三相交流電源の中性相以外にリアクタを介して接続された半導体スイッチ群のうち、いずれかの相に接続された、オンさせることにより接続されているリアクタの電流が増加するよう作用する半導体スイッチのオンオフ状態が常にオフ状態となるようにする。また、電流が所望値になるように、他の2つの相に接続された半導体スイッチのオンオフ比率を調整するよう構成し、かつ、常にオフ状態とする相を電気位相角60度区間毎もしくは120度区間毎に順次切換えるよう構成する。また、所定の電源高調波規制の限度値内で、3N(Nは整数)次の高調波電流が中性相に流れるように、中性相に接続される半導体スイッチを駆動制御し、直流電圧が所望直流電圧値になるように、三相交流電源からの電流の所望値を調整するように構成される。さらに、中性相以外の相の常にオフ状態となる区間が設定された半導体スイッチのオフ状態になる区間幅が電気位相角度60度以上もしくは120度以上で一定になるように、所望直流電圧値を調整する。
 これにより、電力変換効率をさらに向上させるとともに、交流電源周波数の3N(Nは整数)倍の周波数の相電圧が三相の各端子電圧に発生できるので、三相の線間電圧に対して、さらに低い直流電圧を発生することができる。
 第5の開示における整流回路装置は、中性相を有する三相交流電源に対し、三相交流電源の4線がそれぞれリアクタを介してダイオードブリッジを経て直流平滑回路に入力されるとともに、各相のリアクタとダイオードブリッジとの接点と直流中性点との間に双方向の半導体スイッチを設ける。また、半導体スイッチのオンにより、リアクタの電流を増加させ、半導体スイッチのオフにより、リアクタに蓄えた電流をダイオードで整流するようにして電流値を調整できるよう構成する。また、電気位相角度60度区間毎に三相交流電源の中性相以外のどれかの相に設けられた半導体スイッチが常にオフ状態となるようにし、電流が所望値になるように、他の2つの相に接続された半導体スイッチのオンオフ比率を調整するよう構成し、かつ、常にオフ状態とする相を電気位相角60度区間毎に順次切換えるように構成する。また、所望の電流の相電流波形には、各相電圧の半周期毎の後半部分に指令電流がゼロである区間が存在するようにし、所定の電源高調波規制の限度値内で、3N(Nは整数)次の高調波電流が中性相に流れるように、中性相に接続される半導体スイッチを駆動制御する。また、直流電圧が所望直流電圧値になるように、三相交流電源からの電流の所望値を調整するように構成されるものである。さらに、中性相以外の相の半導体スイッチのオンオフ比率が100%オフ状態になる区間幅が常にオフ状態になるように設定された分を合わせて電気位相角度60度以上で一定になるように、所望直流電圧値を調整する。
 これにより、電力変換効率をさらに向上させるとともに、交流電源周波数の3N倍の周波数の相電圧が三相の各端子電圧に発生できる。そのため、三相の線間電圧に対して、さらに低い直流電圧を発生することができる。加えて、リアクタとダイオードブリッジとの接点における半導体スイッチのオンオフ1回当たりの電位の変動が直流電圧の半分になり、半導体スイッチのオンオフに伴う交流電源電流波形のひずみをさらに少なくして、低い直流電圧を得ることができる。
 第6の開示における整流回路装置は、接続された負荷の大小に関連する情報を検出し、負荷が小さいときに、第1から第5のいずれか1つの開示における整流回路装置の制御動作を実施し、負荷が大きいときには、各相の半導体スイッチのオンオフ比率が100%オフになる期間が交流電源の1周期の1/3区間を越えない直流電圧を設定する。
 これにより、空調機などのように、運転時間比率が大きい負荷の軽い状態での効率改善ができるとともに、負荷が大きい状態の、圧縮機モータを高速回転駆動も両立することができる。
 以上のように、本発明にかかる整流回路装置は、高効率で低い直流電圧を発生させることができるので、整流動作にかかわる効率が改善するとともに、モータの駆動効率も改善できるので、空調機などのように、運転時間比率が大きい負荷の軽い状態での効率改善ができるとともに、負荷が大きい状態の、圧縮機モータを高速回転駆動も両立することができる。
 1,301 三相交流電源
 2,2r,2s,2t,2n 電流検出器
 3r,3s,3t,3n リアクタ
 4 半導体ブリッジ回路
 4rSH,4sSH,4tSH,4rSL,4sSL,4tSL 半導体スイッチ
 5,5H,5L 平滑コンデンサ
 6 直流電圧検出手段
 7 インバータ回路
 8 モータ
 9 電源位相検出手段
 111,211,311,411 スイッチ駆動回路
 121 3相―2相・固定―回転座標変換手段
 122,132,322,332,352 パターン記憶手段
 123,133,153 乗算手段
 124,134 比較手段
 125,135 制御補償手段
 126 2相―3相・回転―固定座標変換手段
 127 比較手段
 128 補償手段
 129 比較手段
 130 電圧制御補償手段
 302r,302s,302t,302n 電流検出器
 304 ブリッジ回路
 321 4相―3相・固定―回転座標変換手段
 324,334,354 比較手段
 325,335,355 制御補償手段
 326 3相―4相・回転―固定座標変換手段
 901 スイッチ手段
 902 直流電圧パターン記憶手段

Claims (6)

  1. 三相交流電源の各相出力線に対して、リアクタを介して、単方向の半導体スイッチ素子と該半導体スイッチ素子に対して逆並列に接続されたダイオードよりなる半導体スイッチのオンにより、リアクタの電流を増加させ、前記半導体スイッチのオフにより、前記リアクタに蓄えた電流をダイオードで整流するようにしてリアクタの電流値を調整できるよう構成し、
    いずれかの相において、オンさせることにより接続されているリアクタの電流が増加するよう作用する半導体スイッチのオンオフ状態が常にオフ状態となるようにし、リアクタの電流が所望値になるように、他の2つの相に接続された半導体スイッチのオンオフ比率を調整するよう構成し、かつ、常にオフ状態とする相を電気位相角60度区間毎もしくは120度区間毎に順次切換えながら、直流電圧が所望直流電圧値になるように、三相交流電源からの電流の所望値を調整するように構成されるものであって、
    前記常にオフ状態となる区間が設定された半導体スイッチのオフ状態になる区間幅が、電気位相角度60度以上もしくは120度以上で一定になるように、前記所望直流電圧値を調整することを特徴とする整流回路装置。
  2. 前記所望電流の相電流波形には、各相電圧の半周期毎の後半部分に指令電流がゼロである区間が存在していることを特徴とする請求項1に記載の整流回路装置。
  3. 三相交流電源の各相出力線に対して、リアクタを介してダイオードブリッジを経て直流平滑回路に入力されるとともに、各相に接続された前記リアクタと前記ダイオードブリッジとの接点と直流中性点との間に双方向の半導体スイッチをもうけ、前記半導体スイッチのオンにより、前記リアクタの電流を増加させ、前記半導体スイッチのオフにより、前記リアクタに蓄えた電流を前記ダイオードで整流するようにしてリアクタの電流値を調整できるよう構成し、
    前記三相交流電源のどれかの相の前記半導体スイッチが常にオフ状態となるようにし、前記交流電源からの電流が所望値になるように、他の2つの相に接続された半導体スイッチのオンオフ比率を調整するよう構成し、かつ、常にオフ状態とする相を電気位相角60度区間毎に順次切換えるよう構成し、直流電圧が所望直流電圧値になるように、三相交流電源からの電流の所望値を調整するように構成されるものであって、
    前記三相交流電源の各相の前記半導体スイッチのオンオフ比率が100%オフ状態になる区間幅が常にオフ状態になるように設定された分を合わせて電気位相角60度以上で一定になるように、所望直流電圧値を調整するようにするものであり、前記所望電流の相電流波形には、各相電圧の半周期毎の後半部分に指令電流がゼロである区間が存在するようにすることを特徴とする整流回路装置。
  4. 中性相を有する三相交流電源に対し、前記三相交流電源の4線にそれぞれリアクタを介して単方向の半導体スイッチ素子と該半導体スイッチ素子に対して逆並列に接続されたダイオードよりなる半導体スイッチがブリッジ状に接続され、
    前記半導体スイッチのオンにより、前記リアクタの電流を増加させ、前記半導体スイッチのオフにより、前記リアクタに蓄えた電流をダイオードで整流するようにして電流値を調整できるよう構成し、
    前記三相交流電源の中性相以外にリアクタを介して接続された前記半導体スイッチ群のうち、いずれかの相に接続された、オンさせることにより接続されているリアクタの電流が増加するよう作用する半導体スイッチのオンオフ状態が常にオフ状態となるようにし、
    電流が所望値になるように、他の2つの相に接続された半導体スイッチのオンオフ比率を調整するよう構成し、かつ、常にオフ状態とする相を電気位相角60度区間毎もしくは120度区間毎に順次切換えるよう構成し、所定の電源高調波規制の限度値内で、3N(Nは整数)次の高調波電流が前記中性相に流れるように、中性相に接続される前記半導体スイッチを駆動制御し、直流電圧が所望直流電圧値になるように、三相交流電源からの電流の所望値を調整するように構成されるものであって、
    前記中性相以外の相の常にオフ状態となる区間が設定された半導体スイッチのオフ状態になる区間幅が電気位相角度60度以上もしくは120度以上で一定になるように、所望直流電圧値を調整することを特徴とする整流回路装置。
  5. 中性相を有する三相交流電源に対し、前記三相交流電源の4線がそれぞれリアクタを介してダイオードブリッジを経て直流平滑回路に入力されるとともに、各相の前記リアクタと前記ダイオードブリッジとの接点と直流中性点との間に双方向の半導体スイッチを設け、前記半導体スイッチのオンにより、前記リアクタの電流を増加させ、前記半導体スイッチのオフにより、前記リアクタに蓄えた電流を前記ダイオードで整流するようにして電流値を調整できるよう構成し、
    電気位相角度60度区間毎に前記三相交流電源の中性相以外のどれかの相に設けられた前記半導体スイッチが常にオフ状態となるようにし、電流が所望値になるように、他の2つの相に接続された半導体スイッチのオンオフ比率を調整するよう構成し、かつ、常にオフ状態とする相を電気位相角60度区間毎に順次切換えるよう構成し、
    前記所望の電流の相電流波形には、各相電圧の半周期毎の後半部分に指令電流がゼロである区間が存在するようにし、所定の電源高調波規制の限度値内で、3N(Nは整数)次の高調波電流が前記中性相に流れるように、中性相に接続される前記半導体スイッチを駆動制御し、直流電圧が所望直流電圧値になるように、三相交流電源からの電流の所望値を調整するように構成されるものであって、
    前記中性相以外の相の前記半導体スイッチのオンオフ比率が100%オフ状態になる区間幅が常にオフ状態になるように設定された分を合わせて電気位相角度60度以上で一定になるように、所望直流電圧値を調整することを特徴とする整流回路装置。
  6. 接続された負荷の大小に関連する情報を検出し、負荷が小さいときに、請求項1から5のいずれか1つに記載の整流回路装置の制御動作を実施し、負荷が大きいときには、各相の半導体スイッチのオンオフ比率が100%オフになる期間が前記交流電源の1周期の1/3区間を越えない直流電圧を設定する整流回路装置。
PCT/JP2018/006570 2018-02-22 2018-02-22 整流回路装置 WO2019163068A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018007147.2T DE112018007147T5 (de) 2018-02-22 2018-02-22 Gleichrichter-Schaltungsvorrichtung
CN201880089889.1A CN111819781B (zh) 2018-02-22 2018-02-22 整流电路装置
PCT/JP2018/006570 WO2019163068A1 (ja) 2018-02-22 2018-02-22 整流回路装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/006570 WO2019163068A1 (ja) 2018-02-22 2018-02-22 整流回路装置

Publications (1)

Publication Number Publication Date
WO2019163068A1 true WO2019163068A1 (ja) 2019-08-29

Family

ID=67687943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006570 WO2019163068A1 (ja) 2018-02-22 2018-02-22 整流回路装置

Country Status (3)

Country Link
CN (1) CN111819781B (ja)
DE (1) DE112018007147T5 (ja)
WO (1) WO2019163068A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042579A (ja) * 2004-07-30 2006-02-09 Daikin Ind Ltd スイッチング制御方法、整流装置及び駆動システム
JP2015126579A (ja) * 2013-12-26 2015-07-06 三菱電機株式会社 電力変換装置、および電力変換方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3298450B2 (ja) * 1997-03-19 2002-07-02 株式会社日立製作所 空気調和機及び電力変換装置
US20120300519A1 (en) * 2011-05-26 2012-11-29 Hamilton Sundstrand Corporation Multi-phase active rectifier
JP6117039B2 (ja) * 2013-07-18 2017-04-19 株式会社日立製作所 電力変換装置およびエレベーター
WO2017033320A1 (ja) * 2015-08-26 2017-03-02 三菱電機株式会社 電源回生コンバータおよびモータ制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042579A (ja) * 2004-07-30 2006-02-09 Daikin Ind Ltd スイッチング制御方法、整流装置及び駆動システム
JP2015126579A (ja) * 2013-12-26 2015-07-06 三菱電機株式会社 電力変換装置、および電力変換方法

Also Published As

Publication number Publication date
CN111819781B (zh) 2023-12-12
CN111819781A (zh) 2020-10-23
DE112018007147T5 (de) 2020-11-05

Similar Documents

Publication Publication Date Title
EP2309635B1 (en) Ac-dc converter, ac-dc converter control method, motor driving device, compressor driving device, air conditioner, and heat pump-type hot-water supply device
US10811997B2 (en) Power conversion device
WO2012098873A1 (ja) 電力変換装置
US11705843B2 (en) Direct power conversion device
Itoh et al. A novel five-level three-phase PWM rectifier with reduced switch count
WO2016158805A1 (ja) 3相/単相マトリクスコンバータ
US11218107B2 (en) Control device for power converter
KR102009512B1 (ko) 3상 인버터의 옵셋 전압 생성 장치 및 방법
CN109804543B (zh) 电力变换装置、马达驱动控制装置、送风机、压缩机以及空气调节机
KR20160122923A (ko) 3상 인버터의 옵셋 전압 생성 장치 및 방법
WO2019187721A1 (ja) 電力変換装置
JP6379730B2 (ja) 電力変換装置
Rodriguez et al. Predictive torque and flux control of an induction machine fed by an indirect matrix converter with reactive power minimization
JPH07322634A (ja) インバータ制御方法及びインバータ装置
WO2019163068A1 (ja) 整流回路装置
JP2016149913A (ja) 電力変換装置
JP5272484B2 (ja) 三相ブラシレスdcモータ制御装置
JP6695028B2 (ja) 整流回路装置
JP4517762B2 (ja) スイッチング制御方法、整流装置及び駆動システム
JP2022080081A (ja) スイッチング電源装置、その制御装置及び制御方法
JP5769555B2 (ja) 交流−直流電力変換器の制御装置
Shah et al. Generalized current control scheme for unity power factor two-level and three-level bi-directional front-end power converters: An approach for multi-level front-end converters
Nishizawa et al. Reduction of dc-link current harmonics over wide power-factor range for three-phase VSI using single-carrier-comparison continuous PWM
Riedemann et al. A resonant current control of an open-end winding induction motor fed by an indirect matrix converter
JP7361222B2 (ja) オープン巻線モータ駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906944

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18906944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP