WO2019161614A1 - 一种臭氧发生装置 - Google Patents

一种臭氧发生装置 Download PDF

Info

Publication number
WO2019161614A1
WO2019161614A1 PCT/CN2018/083737 CN2018083737W WO2019161614A1 WO 2019161614 A1 WO2019161614 A1 WO 2019161614A1 CN 2018083737 W CN2018083737 W CN 2018083737W WO 2019161614 A1 WO2019161614 A1 WO 2019161614A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
tube
coolant
passage
ozone generating
Prior art date
Application number
PCT/CN2018/083737
Other languages
English (en)
French (fr)
Inventor
曹祚
Original Assignee
曹祚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 曹祚 filed Critical 曹祚
Publication of WO2019161614A1 publication Critical patent/WO2019161614A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/70Cooling of the discharger; Means for making cooling unnecessary
    • C01B2201/74Cooling of the discharger; Means for making cooling unnecessary by liquid

Definitions

  • An ozone generating device belongs to the technical field of ozone generators.
  • Ozone is an allotrope of oxygen. At normal temperature, ozone is a blue gas with a special odor. Ozone has many uses, and it can deeply treat industrial sewage, domestic sewage and hospital sewage. Various impurities in the water can be disinfected and sterilized; ozone can remove scale and prevent obstruction of the pipeline; ozone disinfection and sterilization does not have any harmful substances (such as chlorine-sterilized carcinogenic halogenated organic matter), The quality of water disinfection is very effective. At present, there are many uses for ozone in the medical field in the world, and ozone is also widely used in agriculture. The above various uses of ozone are established under the condition that ozone reaches a certain concentration, and when the ozone concentration is within a certain range, the higher the ozone concentration, the better the effect can be achieved.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide an ozone generating device that can adjust the output of ozone as needed to realize modular installation.
  • the technical solution adopted by the present invention to solve the technical problem thereof is: the ozone generating device, comprising: a generator body and at least one ozone generating module disposed in the generator body, and ozone of each ozone generating module The output is 0.5 ⁇ 3kg/h;
  • Each ozone generating module includes a plurality of ozone tubes, and two ends of the cooling liquid passages of each ozone tube are respectively connected with an inlet pipe and a liquid outlet pipe, and the gas passages of each ozone pipe are respectively connected with the intake pipe and The outlet pipe, the inner side and the outer side of the gas passage are insulated, and the inner side of the gas passage is connected to the discharge electrode of the power source, and the outer side of the gas passage is connected to the ground of the power source.
  • each of the ozone tubes is vertically disposed, the upper end of the cooling liquid passage of the ozone tube is in communication with the liquid outlet tube, and the lower end of the cooling liquid passage is connected with the liquid inlet tube, and the upper end of the gas passage of the ozone tube and the intake pipe Connected, the lower end of the gas passage is in communication with the outlet pipe.
  • the coolant channel comprises an inner coolant channel and an outer coolant channel
  • the gas channel is disposed around the inner coolant channel
  • the outer coolant channel is disposed around the gas channel
  • the inlet pipe comprises an inner coolant inlet pipe and an outer coolant inlet pipe
  • the outlet pipe comprises an inner coolant outlet pipe and an outer coolant discharge pipe, and the lower end of the inner coolant passage and the inner coolant enter
  • the liquid pipe is connected, the upper end is connected with the inner coolant liquid outlet pipe, the lower end of the outer coolant liquid passage is connected with the outer coolant liquid inlet pipe, and the upper end is connected with the outer coolant liquid discharge pipe.
  • each ozone tube comprises an outer tube, an intermediate tube and an inner tube which are coaxially arranged from the outside to the inside, and the outer tube and the intermediate tube are spaced apart to form the outer coolant channel, the middle tube and The inner tubes are spaced apart to form the gas passage, and both ends of the inner tube are open to form the inner coolant passage.
  • both the inner coolant channel and the outer coolant channel are provided with circulating cooling oil or cooling water.
  • the inner tube is connected to the discharge electrode of the power source, and the middle tube is connected to the ground electrode of the power source.
  • the generator body is a square box body, and the air inlet pipe and the liquid outlet pipe are horizontally disposed at an upper portion of the generator body, and the air outlet pipe and the liquid inlet pipe are horizontally disposed at a lower portion of the generator body.
  • the voltage between the inner side and the outer side of the gas passage is 1500 ⁇ 3000V.
  • the ozone production of each of the ozone generating modules is 1.5 to 2.5 kg/h.
  • the gas introduced into the intake pipe is oxygen
  • the oxygen flow rate in the intake pipe is 1 ⁇ 6 m 3 /h.
  • the present invention has the following beneficial effects:
  • Each ozone generating module of the ozone generating device includes a plurality of ozone tubes, which can adjust the number of ozone generating modules according to needs, thereby adjusting the output of ozone, and directly increasing or decreasing the ozone generating module in the main body of the generator.
  • the quantity can realize the adjustment of ozone production, which is convenient to adjust.
  • the ozone production of each ozone generating module is 0.5 ⁇ 3kg/h, which can meet most ozone production requirements, and there is no difference between the output of ozone generating device and actual demand. Large, leading to overcapacity problems.
  • the ozone tube is vertically arranged, the cooling liquid enters from the lower part of the ozone tube, and the upper part flows out, thereby ensuring that the cooling liquid fills the entire cooling passage and sufficiently cools the entire ozone tube; oxygen enters from the upper end of the gas passage, and the lower end discharges Convection with the coolant to better cool the entire gas passage, and to avoid the high temperature of the coolant at the outlet end of the gas passage leading to ozone decomposition.
  • the gas passage is disposed between the outer coolant passage and the inner coolant passage, so that the gas can be better
  • the body is cooled, the heat generated by the conversion of oxygen into ozone is lost as soon as possible, and the form of double liquid cooling is used to cool down quickly, which avoids the decomposition of ozone due to excessive temperature, further increases the concentration of ozone, and double cooling with liquid and gas.
  • the double cooling form of the ozone tube has a better cooling effect and a faster cooling rate.
  • the cooling passage is provided with circulating cooling water or cooling oil, and the heat generated in the gas passage can be sent away in time, and the temperature of the gas passage can be increased due to the circulation of the coolant.
  • the intake pipe and the outlet pipe are horizontally disposed on the upper side of the generator body, and the outlet pipe and the inlet pipe are horizontally disposed at the lower part of the generator body, thereby facilitating the disassembly and assembly of the subsequent ozone generating module, and further setting The way in which the number of ozone generation modules regulates ozone production creates conditions.
  • the voltage between the inside and the outside of the gas passage is 1500 ⁇ 3000V.
  • the inventors have found that the voltage is within a certain range.
  • the output of ozone increases with the increase of voltage.
  • the voltage reaches a certain value when the voltage increases, the increase of ozone production is no longer obvious. Therefore, the voltage of 1500 ⁇ 3000V can ensure the ozone output, that is, ensure the concentration of ozone in the gas outlet, and avoid energy waste.
  • each ozone generating module is 1.5 ⁇ 2.5kg, which better meets the requirements of different ozone production, and the ozone production is obviously increased or decreased every time an ozone generating module is installed or disassembled. That meets the demand for different ozone production, and can ensure that the ozone production has a significant impact each time the ozone generation module is increased or decreased.
  • the ozone production decreases as the oxygen flow rate increases, and the oxygen flow rate is l ⁇ 6 m 3 /h, which can be matched with the voltage inside and outside the gas passage to ensure The concentration of ozone produced.
  • FIG. 1 is a schematic front view showing the structure of an ozone generating device.
  • FIG. 2 is a partial enlarged view of a portion A in FIG. 1.
  • FIG. 3 is a front cross-sectional view of an ozone tube. 4 is a partial enlarged view of a portion B in FIG. 3.
  • FIG. 5 is a front cross-sectional view of the impurity removing device.
  • FIG. 6 is a partial enlarged view of a portion C in FIG. 5.
  • FIG. 8 is an electron energy diagram of a plasma in which oxygen molecules are ionized by electric field and ozone is generated.
  • 9 is a graph showing the relationship between average electron energy and reduced electric field strength.
  • FIGS. 1 to 9 are preferred embodiments of the present invention, and the present invention will be further described below with reference to FIGS. 1 to 9.
  • An ozone generating device comprising a generator body 1 and at least one ozone generating module disposed in the generator body 1, each ozone generating module having an ozone production of 0.5 to 3 kg/h; each ozone generating module is
  • the utility model comprises a plurality of ozone tubes 8 , and two ends of the coolant passages of each ozone tube 8 are respectively connected with an inlet pipe and an outlet pipe, and the gas passages of each ozone pipe 8 are respectively connected with the inlet pipe 5 and the outlet pipe 4, the gas
  • the inner side and the outer side of the channel are insulated, and the inner side of the gas channel is connected to the discharge electrode of the power source, and the outer side of the gas channel is connected to the ground electrode of the power source.
  • Each ozone generating module of the ozone generating device includes a plurality of ozone tubes 8 , which can adjust the number of ozone generating modules as needed, thereby adjusting the output of ozone, and directly increasing or decreasing the number of ozone generating modules in the generator body 1 To achieve the adjustment of ozone production, it is convenient to adjust.
  • the ozone production of each ozone generating module is 0.5 ⁇ 3kg/h, which can meet most of the ozone production requirements, and there will be no large gap between the output of the ozone generating device and the actual demand. The problem of overcapacity.
  • the generator body 1 is a rectangular parallelepiped box, and the ozone generating module is disposed in the ozone generator.
  • the coolant passage of each ozone tube 8 includes an inner coolant passage and an outer coolant passage, the gas passage is disposed around the inner coolant passage, and the outer coolant passage is disposed around the gas passage.
  • the inlet pipe includes an inner coolant inlet pipe 2 and an outer coolant inlet pipe 3, and the outlet pipe includes an inner coolant discharge pipe 7 and an outer coolant discharge pipe 6
  • the intake pipe 5, the inner coolant discharge pipe 7 and the outer coolant discharge pipe 6 are horizontally disposed at the upper portion of the generator body 1, and the intake pipe 5, the inner coolant discharge pipe 7, and the outer coolant are discharged.
  • the left end of the liquid pipe 6 extends out of the generator body 1, and the intake pipe 5, the outer coolant discharge pipe 6, and the inner coolant discharge pipe 7 are sequentially disposed from bottom to top.
  • the air outlet pipe 4, the inner coolant liquid inlet pipe 2 and the outer coolant liquid inlet pipe 3 are horizontally disposed at a lower portion of the generator body 1, and the air outlet pipe 4, the inner coolant liquid inlet pipe 2, and the outer coolant liquid are advanced.
  • the left end of the liquid pipe 3 extends out of the generator body 1, and the outlet pipe 4, the outer coolant inlet pipe 3 and the inner coolant inlet pipe 2 are sequentially disposed from top to bottom.
  • Each of the ozone tubes 8 is vertically disposed, and the upper end of the gas passage of the ozone tube 8 communicates with the intake pipe 5 through a pipe, and the lower end of the gas passage communicates with the gas outlet pipe 4 through a pipe.
  • the intake pipe 5 Oxygen is introduced into the interior.
  • the upper end of the inner coolant passage is in communication with the inner coolant discharge pipe 7, and the lower end of the inner coolant passage communicates with the inner coolant inlet pipe 2, thereby circulating the inner coolant in the inner coolant passage, and the outer coolant passage
  • the upper end is in communication with the outer coolant outlet pipe 6, and the lower end of the outer coolant passage is in communication with the outer coolant inlet pipe 3, thereby circulating the external coolant in the outer cooling passage, thereby ensuring the cooling effect on the gas passage.
  • the lower temperature inner coolant and the outer coolant can be brought into contact with the gas having a higher ozone concentration, thereby avoiding the temperature of the gas having a higher ozone concentration.
  • the increase, thereby avoiding the decomposition of ozone makes the concentration of ozone in the gas outputted by the ozone generating device high, thereby achieving better sterilization or sewage treatment effects.
  • the inner side of the gas passage is connected to the discharge electrode of the power source, and the outer side of the gas passage is connected to the ground of the power source, and the ground pole of the power source is connected to the ground to discharge in the gas passage, thereby converting oxygen into ozone.
  • the voltage between the inner side and the outer side of the gas passage is 3000V
  • oxygen is introduced into the gas passage
  • the flow rate of oxygen is 6m 3 /h, thereby ensuring ozone in the gas after the oxygen passes through the ozone tube 8.
  • concentration When it reaches 500g/m 3 or more, it can meet the requirements of sewage treatment and sterilization.
  • the ozone tube 8 includes an outer tube 11, a middle tube 10, and an inner tube 9, which are coaxially disposed.
  • the inner tube 9 is a circular tube having an open end, and the inner tube 9 is internally cooled. a liquid passage, the inner wall of the intermediate pipe 10 is spaced apart from the outer wall of the inner pipe 9, so that a gas passage is provided between the intermediate pipe 10 and the inner pipe 9 surrounding the inner coolant passage, and the inner wall of the outer pipe 11 is spaced apart from the outer wall of the intermediate pipe 10, Thereby, an outer coolant passage disposed around the gas passage is formed between the outer tube 11 and the intermediate tube 10. Easy to process.
  • the outer tube 11, the intermediate tube 10, and the inner tube 9 are made of stainless steel, which can prevent oxidation and can conduct electricity.
  • the inner tube 9 is provided with an inner coolant outlet port 12 at its upper end and an inner coolant inlet port 16 at the lower end.
  • the lower end of the inner coolant outlet 12 is coaxially disposed in the upper end of the inner tube 9, and the lower end of the inner coolant outlet 12 is sealed from the inner wall of the inner tube 9, and the upper end of the inner coolant inlet 16 is the same
  • the shaft is disposed in the lower end of the inner tube 9, and the upper end of the inner coolant inlet port 16 is also sealed from the inner wall of the inner tube 9, thereby forming an inner coolant passage.
  • the upper end of the inner coolant outlet port 12 communicates with the inner coolant discharge pipe 7, and the lower end of the inner coolant inlet port 16 communicates with the inner coolant inlet pipe 2, and the inner coolant outlet port 12 and the inner coolant
  • the liquid outlet pipe 7 is insulated from each other, and the inner coolant liquid inlet port 16 and the inner coolant liquid inlet pipe 2 are also insulated, that is, between the inner coolant liquid outlet port 12 and the inner coolant liquid outlet pipe 7, and There is no conduction between the coolant inlet port 16 and the internal coolant inlet pipe 2.
  • the middle portion of the inner coolant outlet 12 is provided with a high voltage electrode for connecting a power source, that is, connected to the power discharge electrode.
  • the power source is a high voltage power source.
  • Both ends of the inner tube 9 extend out of the intermediate tube 10, and the lengths of the ends of the inner tube 9 outside the intermediate tube 10 are equal; both ends of the intermediate tube 10 extend out of the outer tube 11, and the intermediate tube 10 The portions of the both ends outside the outer tube 11 are of equal length.
  • the inner coolant is cooling oil
  • the outer coolant is cooling water.
  • the ozone tube 8 further includes a connecting sleeve 18 and end caps 17 disposed at the upper and lower ends. Two connecting sleeves 18 and end caps 17 are provided on each of the ozone tubes 8.
  • the connecting sleeve 18 is sleeved outside the outer tube 11 and coaxially connected with the outer tube 11.
  • the inner diameter of the inner end of the connecting sleeve 18 is smaller than the inner diameter of the outer end, and the inner end of the connecting sleeve 18 is sleeved on the outer end of the outer tube 11 and the outer tube 11
  • the outer wall is sealed, and the inner end of the connecting sleeve 18 is sealed from the outer wall of the intermediate tube 10 to form an outer coolant passage.
  • the end cap 17 is cylindrical, and the inner end of the end cap 17 extends between the connecting sleeve 18 and the inner tube 9, and the end cap 17 is sealingly connected with the connecting sleeve 18 and the inner tube 9 to form a gas passage.
  • each connecting sleeve 18 is provided with a gas passage groove, and the gas passage groove of the connecting sleeve 18 at the upper end of the ozone tube 8 communicates with the upper end of the gas passage, and the gas passage of the connecting sleeve 18 at the lower end of the ozone tube 8 The trough is in communication with the lower end of the gas passage.
  • the connecting sleeve 18 at the upper end of the ozone tube 8 is provided with a radial gas inlet 13 which is screwed to the connecting sleeve 18, and the inner end of the gas inlet 13 passes through the gas passage of the connecting sleeve 18 at the upper end.
  • the trough is connected to the upper end of the gas passage; the connecting sleeve 18 at the lower end of the ozone tube 8 is provided with a radial gas outlet port 15, and the gas outlet port 15 is screwed to the connecting sleeve 18, and the inner end of the gas outlet port 15 passes through the connecting sleeve 18 at the lower end.
  • the gas passage groove communicates with the upper end of the gas passage.
  • the gas inlet port 13 is in communication with the intake pipe 5, and the gas inlet port 13 is insulated from the intake pipe 5, the gas outlet port 15 is in communication with the outlet pipe 4, and the gas outlet port 15 is insulated from the outlet pipe 4.
  • a coolant tank is disposed around the inner wall of the inner end of each connecting sleeve 18, and a coolant tank of the connecting sleeve 18 at the upper end of the ozone tube 8 communicates with the upper end of the outer coolant passage, and the connecting sleeve 18 at the lower end of the ozone tube 8 The coolant tank communicates with the coolant tank at the lower end of the outer coolant passage.
  • the connecting sleeve 18 at the upper end of the ozone tube 8 is provided with a radial outer coolant outlet 14 , and the coolant outlet 14 is screwed to the connecting sleeve 18, and the outer coolant outlet 14 passes through the connecting sleeve at the upper end.
  • the coolant tank of the 18 is connected to the upper end of the outer coolant passage; the connecting sleeve 18 at the lower end of the ozone tube 8 is provided with a radial outer coolant inlet, and the outer coolant outlet is screwed to the sleeve 18, and the outer coolant
  • the liquid outlet 14 communicates with the lower end of the outer coolant passage through the coolant tank of the lower end sleeve 18.
  • the outer coolant liquid outlet 14 is in communication with the outer coolant outlet pipe 6, and the outer coolant inlet port is connected to the outer coolant inlet pipe 3, and the coolant outlet port 14 and the outer coolant outlet pipe 6 are The insulation between the outer coolant inlet port and the outer coolant inlet pipe 3 is insulated.
  • the external coolant inlet port is disposed outside the gas outlet port 15, and the outer coolant outlet port 14 is disposed inside the gas inlet port 13 to avoid the gas passage and the connection at the time of connection.
  • the coolant passages interfere with each other, and it is convenient to distinguish between avoiding connection errors during assembly and affecting the cooling effect.
  • the ozone production per ozone generating module was 2 kg/h.
  • the ozone production per ozone generating module is set according to the output of each ozone tube 8 and the number of ozone tubes 8.
  • the ozone production per ozone tube 8 is 40g/h
  • each ozone generation module includes 50 ozone generating tubes, which can meet the ozone production of each ozone generating module at 2kg/h.
  • Ten modules can be connected in parallel to achieve 20kg/h ozone output. It is very convenient to realize any output demand by paralleling multiple modules.
  • a grounding electrode is disposed between the connecting sleeve 18 at the upper end of the ozone tube 8 and the end cap, the grounding electrode and the power source ground, and the grounding electrode is also connected to the intermediate tube 10.
  • the present invention also provides a de-doping device, which comprises a vertically arranged impurity removal device.
  • the tank 19 is provided with support legs on the lower side of the miscible tank 19, so that the deaeration tank 19 is spaced from the ground, which facilitates the arrangement of the ducts, and can prevent the dissipating tank 19 from coming into contact with the ground to cause heat loss.
  • the impurity removing port 28 of the impurity removing device is connected to the intake pipe 5 of the ozone generating device.
  • the inner chamber of the impurity removing tank 19 is provided with a heating chamber 22 and a heat exchange chamber from top to bottom, and a heat exchanger 30 is disposed in the heat exchange chamber.
  • a waste removing port 28 is disposed coaxially with the lower side of the miscible tank 19, and a radial exhaust gas inlet port 27 is provided at the bottom end side of the miscible tank 19.
  • the tube inlet of the heat exchanger 30 is in communication with the degassing inlet 27, and the shell outlet of the heat exchanger 30 is in communication with the heating chamber 22 via a heated inlet tube 26, which also passes through the heating outlet 21 and the heat exchanger 30.
  • the tube inlet is connected, and the tube outlet of the heat exchanger 30 is in communication with the impurity removal port 28.
  • the incoming gas and the exhausted gas are exchanged in the heat exchanger 30, thereby realizing the recovery of the heat of the exhaust gas, avoiding the waste of energy, and also preheating the incoming gas so that the gas is in the heating chamber.
  • the temperature can be raised to a predetermined temperature as soon as possible, so that combustible gas such as carbon monoxide, methane or acetylene mixed in oxygen can be burned to remove impurities in the gas, and the operation is convenient and the energy consumption is small.
  • the gas introduced into the tube and shell of the heat exchanger 30 can be set as needed, or the incoming gas can be introduced into the heating chamber 22 through the tube, and the heated gas is discharged through the shell side.
  • the heat exchanger 30 can also be replaced by a heat exchange coil, that is, the incoming gas passes through the heat exchange coil and enters the heating chamber 22, and the heat exchanged gas is directly discharged through the heat exchange chamber.
  • the heating chamber 22 is provided with a heater 23, the upper side of the heater 23 is provided with a junction box 25, the lower side of the junction box 25 is sealed, and the upper end side of the decanter 19 is provided with a radial connection port 24, the power supply
  • the wire enters the impurity removing can 19 through the wiring port 24 and is connected to the junction box 25.
  • the heater 23 is a cluster heater, and the heating rate of the gas is fast.
  • the heater 23 can also be replaced with an electric heating tube or a resistance wire.
  • the middle portion of the heating chamber 22 is provided with a horizontal baffle 29, and the side of the baffle 29 is sealed from the heating chamber 22.
  • the deflector 29 includes a horizontally disposed annular plate and a circular plate on the lower side of the annular plate.
  • the upper portion of the inner cavity of the miscellaneous can 19 is provided with a closed cylinder at the lower end to form a heating chamber 22, and the upper end of the cylinder is spaced apart from the lower side of the junction box 25.
  • the annular plate is horizontally disposed in the middle of the cylinder, and the side portion of the annular plate is sealed with the middle portion of the cylinder, and the circular plates on the upper and lower sides are spaced apart from the annular plate, and the diameter of the circular plate is equal to or slightly smaller than the inner diameter of the annular plate. Therefore, the gas entering the heating chamber 22 can be turbulent, the stroke of the gas in the heating chamber 22 is increased, the heating time of the gas is prolonged, the gas is heated sufficiently and the specified temperature is reached, thereby ensuring complete gas removal.
  • the inner wall of the impurity removing tank 19 is provided with a heat insulating layer 20, and the heat insulating layer 20 can maintain a heat insulating effect to prevent a large amount of heat from being lost.
  • the utility model also provides a plurality of uniform discharge channels of active free electrons, which reduces the diameter of the micro-discharge column and increases the density of the electric column by 2 to 3 times, and the equivalently greatly increases the discharge area, which can greatly improve the dynamic effect of oxygen molecular dissociation.
  • Oxygen molecular dissociation, ionization and three-body collision generation Ozone plasma reaction process is represented by the following formula:
  • the oxygen molecules have a maximum dissociation cross-sectional area when the electron energy is about 20 ev.
  • the 20 ev electron energy is 0 2 (x 3 I:g - ) 0 2 (B 3 I:u - ) is more than twice as long as the forbidden transition O 2 (x 3 I:g - ) 0 2 (A 3 [ u + ) is more than 3 times.
  • the electron energy of 20 ev should be the boundary value of high concentration and low power.
  • the decrease increases.
  • the electric field strength of the electron average energy of 700 deg of 20 ev can be satisfied. It is worth pointing out that the above are only the basic conditions for the conversion of oxygen molecules to ozone, but not all conditions. Studies have shown that electric field energy application is not the only provider of active particles, nor is it the optimal power of all active particles. The cold unbalanced thermal plasma requires the induction of other activations. The conditions set above also verify the correctness of this inference.
  • the present invention also provides a method for ozone flow detection, wherein a mass flow meter is disposed on both the intake pipe 5 and the outlet pipe 4, and both mass flow meters are connected to the PLC controller. Specifically, the following steps are included:
  • Step 1) under the same conditions, real-time measurement of the volume flow Q of the gas before the chemical reaction occurs, and the volume flow Q 2 of the gas after the chemical reaction occurs ;
  • the chemical reaction that occurs is a chemical reaction in which oxygen is converted to ozone.
  • the volume flow rate Q h of the incoming gas is measured in real time
  • the volume flow rate Q 2 of the discharged gas is measured in real time
  • Q 2 includes the ozone volume flow rate 0 3 and the unreacted oxygen flow rate Q 4 . It is also possible to measure the mass flow rate of the gas before the reaction in real time, and calculate the volume flow rate based on the measured mass flow rate and the density of the gas.
  • Step 2) calculating the real-time volume flow difference AQ of the fluid before and after the chemical reaction
  • Step 3 calculating the volume flow rate of the fluid to be detected after the reaction Q;;
  • Q 4 is the volume flow rate of Q 2 that does not participate in the reaction under the same conditions.
  • the exhausted gas is a mixed gas of ozone and oxygen that does not participate in the reaction, and can obtain:
  • Step 4) Calculate the percentage concentration of ozone mass of the fluid to be detected C:
  • Embodiment 2 The difference between Embodiment 2 and Embodiment 1 is that the voltage inside and outside the gas passage is 2000V, and the gas flow rate is 4m 3 /h, so that the concentration of ozone contained in the oxygen after passing through the ozone tube 8 is 500g/m 3 or more.
  • the inner coolant is cooling water and the outer coolant is cooling oil.
  • Embodiment 3 The difference between Embodiment 3 and Embodiment 1 is that the voltage inside and outside the gas passage is 1500 V, and the gas flow rate is lm 3 /h, so that the concentration of ozone contained in the oxygen after passing through the ozone tube 8 is 500 g/m 3 or more.
  • Both the inner coolant and the outer coolant are cooling oils.
  • Example 4 The difference between Example 4 and Example 1 is that the ozone production per ozone generating module is 0.5 kg/h, that is, the ozone production per hour is increased or decreased by 0.5 kg per increase or decrease of one ozone generating module. Both the inner coolant and the outer coolant are cooling water.
  • Example 5 The difference between Example 5 and Example 1 is that the ozone production per ozone generating module is 1.5 kg/h, that is, the ozone production per hour is increased or decreased by 1.5 kg per increase or decrease of one ozone generating module.
  • Example 6 The difference between Example 6 and Example 1 is that the ozone production per ozone generating module is 2.5 kg/h, that is, each Increase or decrease an ozone generation module, increase or decrease the ozone production per hour by 2.5kg
  • Example 7 The difference between Example 7 and Example 1 is that: the ozone production per ozone generating module is 3 kg/h, that is, each ozone generating module is increased or decreased, and the ozone production per hour is increased or decreased by 3 kg.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

一种臭氧发生装置,属于臭氧发生器技术领域。臭氧发生装置包括发生器主体(1)以及设置在发生器主体(1)内的至少一个臭氧发生模块,每个臭氧发生模块的臭氧产量为0.5~3kg/h;每个臭氧发生模块均包括多根臭氧管(8),每根臭氧管(8)的冷却液通道两端分别连接有进液管(2,3)和出液管(6,7),每根臭氧管(8)的气体通道两端分别连接进气管(5)和出气管(4),气体通道的内侧和外侧绝缘设置,且气体通道的内侧连接电源的放电电极,气体通道外侧连接电源地极。臭氧发生装置直接在发生器主体(1)内增加或减少臭氧发生模块的数量即可实现臭氧产量的调节,每个臭氧发生模块的臭氧产量为0.5~3kg/h,能够满足绝大部分臭氧产量要求。

Description

一种臭氧发生装置 技术领域
[0001] 一种臭氧发生装置, 属于臭氧发生器技术领域。
背景技术
[0002] 臭氧是氧气的同素异形体, 在常温下, 臭氧是一种有特殊臭味的蓝色气体, 臭 氧的用途很多, 能够对工业污水、 生活污水及医院污水进行深度处理, 可除掉 水中各种杂质, 可消毒灭菌; 臭氧可以除去水垢, 防止阻塞管道; 利用臭氧消 毒灭菌不存在任何对人体有害的残留物 (如用氯消毒有致癌的卤化有机物产生 ) , 对提高饮用水的消毒质量问题非常有效。 目前, 国际上在医疗方面臭氧已 有多种用途, 另外臭氧在农业上的应用也很广泛。 臭氧的以上各种用途, 是建 立在臭氧达到一定浓度的条件下, 并且当臭氧浓度在一定范围内时, 臭氧浓度 越高, 所能达到的效果就越好。
[0003] 人工制造臭氧技术的发展也有一百多年的历史了, 目前应用比较广泛的是臭氧 发生器对气隙中氧气或空气进行电晕放电产生臭氧。 现有的臭氧发生器在生产 之后, 发生器的臭氧的产量也就确定下来了, 由于现有的臭氧发生器的结构限 制, 难以对臭氧发生器的产量进行修改。 由于氧气在转化为臭氧的过程中会释 放热量, 由于臭氧极不稳定, 温度过高会导致臭氧的分解, 从而影响生产的臭 氧的浓度, 即现有的臭氧发生器的臭氧管生产的臭氧的浓度较低, 从而大大限 制了臭氧的应用范围。
[0004] 由于臭氧的强氧化性和绿色环保性能优良特性, 世界各国将如何产生高浓度、 高纯度、 低消耗, 大容量制备臭氧的技术及设备作为研究方向和热点。 其中在 高浓度方面日本的住友精密、 东芝三菱电机、 夏普等公司走在了世界前列。 他 们近几年分别用板式结构研制出最高达 400g/Nm 3 (25.6wt%) 的臭氧生器装置。 而国内及国外其他公司研制的同类指标水平大都在 300 g/Nm 3 ( 19.6wt%) 以下 。 需要指出的是, 为了获得更高的浓度的臭氧, 包括日本公司均采用对氧气- 臭氧混合气体进行后续的多次浓缩技术来实现。 这当然不是单纯靠臭氧发生装 置直接产生的指标, 其浓度是不能与臭氧发生器直接产生高浓度指标数值相提 并论。
[0005] 目前国内外臭氧技术及理论, 基本上停留在减小放电间隙和加大电离放电强度 以及增大介电常数及短的放电通道来实现高浓度。 由于现有臭氧生成理论的单 一和不完备, 技术方面仅在加大电场的平均大小作为追求, 没有在微观分子原 子如何高效吸收电场能量等相关方面及作用机理作更深入的细致研究。 缺少微 观氧分子转化为臭氧分子的动力学模型, 简单的用平均折合电场强度描述和单 纯用加大电离的电场强度方法, 结果出现了稍高浓度高消耗和高衰减指标的并 存状态, 且能达到的最大浓度也是有限的, 有的研究人员和学者甚至对氧气电 晕放电产生臭氧的功率方程作为研究发生臭氧的基础理论, 致使目前臭氧发生 技术和设备一直处于较低水平。
技术问题
[0006] 本发明要解决的技术问题是: 克服现有技术的不足, 提供一种能够根据需要调 节臭氧的产量, 实现了模块化安装的臭氧发生装置。
问题的解决方案
技术解决方案
[0007] 本发明解决其技术问题所采用的技术方案是: 该臭氧发生装置, 其特征在于: 包括发生器主体以及设置在发生器主体内的至少一个臭氧发生模块, 每个臭氧 发生模块的臭氧产量为 0.5~3kg/h;
[0008] 每个臭氧发生模块均包括多根臭氧管, 每个臭氧管的冷却液通道两端分别连接 有进液管和出液管, 每个臭氧管的气体通道两端分别连接进气管和出气管, 气 体通道的内侧和外侧绝缘设置, 且气体通道的内侧连接电源的放电电极, 气体 通道外侧连接电源地极。
[0009] 优选的, 每根所述的臭氧管均竖向设置, 臭氧管的冷却液通道上端与出液管连 通, 冷却液通道下端与进液管连通, 臭氧管的气体通道上端与进气管连通, 气 体通道的下端与出气管连通。
[0010] 优选的, 所述的冷却液通道包括内冷却液通道和外冷却液通道, 气体通道环绕 内冷却液通道设置, 外冷却液通道环绕气体通道设置; [0011] 进液管包括内冷却液进液管和外冷却液进液管, 出液管包括内冷却液出液管和 外冷却液出液管, 内冷却液通道的下端与内冷却液进液管连通, 上端与内冷却 液出液管连通, 外冷却液通道的下端与外冷却液进液管连通, 上端与外冷却液 出液管连通。
[0012] 优选的, 每根臭氧管均包括同轴且由外至内依次设置的外管、 中间管以及内管 , 外管与中间管间隔设置, 形成所述外冷却液通道, 中间管与内管间隔设置, 形成所述气体通道, 内管的两端敞口设置, 形成所述内冷却液通道。
[0013] 优选的, 所述的内冷却液通道和外冷却液通道内均设置有循环的冷却油或冷却 水。
[0014] 优选的, 所述的内管连接电源的放电电极, 中间管连接电源地极。
[0015] 优选的, 所述的发生器主体为方形的箱体, 进气管和出液管均水平设置在发生 器主体上部, 出气管和进液管均水平设置在发生器主体下部。
[0016] 优选的, 所述的气体通道内侧和外侧之间的电压为 1500~3000V。
[0017] 优选的, 每个所述的臭氧发生模块的臭氧产量为 1.5~2.5kg/h。
[0018] 优选的, 所述的进气管内通入的气体为氧气, 进气管内氧气流量为 l~6m 3/h。
发明的有益效果
有益效果
[0019] 与现有技术相比, 本发明所具有的有益效果是:
[0020] 1、 本臭氧发生装置的每个臭氧发生模块包括多根臭氧管, 能够根据需要调整 臭氧发生模块的数量, 进而调节臭氧的产量, 直接在发生器主体内增加或减少 臭氧发生模块的数量即可实现臭氧产量的调节, 方便调节, 每个臭氧发生模块 的臭氧产量为 0.5~3kg/h, 从而能够满足绝大部分臭氧产量要求, 不会出现臭氧 发生装置的产量与实际需求差距较大, 导致产能过剩的问题。
[0021] 2、 臭氧管竖向设置, 冷却液由臭氧管下部进入, 上部流出, 从而能够保证冷 却液充满整个冷却通道, 对整个臭氧管充分冷却; 氧气由气体通道上端进入, 下端排出, 从而与冷却液形成对流, 从而更好地对整个气体通道进行冷却, 还 能够避免气体通道的出气端冷却液温度较高导致臭氧分解。
[0022] 3、 气体通道设置在外冷却液通道和内冷却液通道之间, 从而能够更好地对气 体进行冷却, 使氧气转变为臭氧产生的热量尽快散失, 采用双液体冷却的形式 , 降温快, 避免了臭氧由于温度过高而分解, 进一步提高了臭氧的浓度, 与采 用液体和气体的双冷却形式相比, 本臭氧管的双冷却形式冷却效果更好, 冷却 速度更快。
[0023] 4、 通过内管、 中间管和外管的设置, 形成了气体通道, 环绕气体通道设置的 内冷却液通道和设置在气体通道内的外冷却液通道, 结构简单, 制作方便。
[0024] 5、 冷却通道内设置有循环的冷却水或冷却油, 能够将气体通道内产生的热量 及时送走, 由于冷却液循环, 能够边气体通道温度上升。
[0025] 6、 进气管和出液管均水平设置在发生器主体上侧, 出气管和进液管均水平设 置在发生器主体下部, 从而方便后续臭氧发生模块的拆装, 进而为通过设置臭 氧发生模块数量的方式调节臭氧产量创造了条件。
[0026] 7、 气体通道内侧和外侧之间的电压为 1500~3000V, 发明人发现, 电压在一定 的范围内, 当氧气的流量一定时, 臭氧的产量随着电压的增大而增大, 而当电 压达到一定值时, 当电压增大臭氧产量的增大不再明显, 因此 1500~3000V的电 压既能够保证臭氧产量, 即保证出气管内臭氧的浓度, 又能够避免造成能源浪 费。
[0027] 8、 每个臭氧发生模块的臭氧产量为 1.5~2.5kg, 更好地满足了不同臭氧产量的 需求, 而且每加装或拆卸一个臭氧发生模块, 使臭氧的产量明显的增多或减少 , 即满足了不同臭氧产量的需求, 又能够保证每次增加或减少臭氧发生模块时 对臭氧产量影响明显。
[0028] 9、 在一定的氧气流量范围内, 臭氧的产量随着氧气的流量增大而降低, 氧气 的流量为 l~6m 3/h, 能够与气体通道内侧和外侧的电压相配合, 保证生产出的臭 氧的浓度。
对附图的简要说明
附图说明
[0029] 图 1为臭氧发生装置的主视结构示意图。
[0030] 图 2为图 1中 A处的局部放大图。
[0031] 图 3为臭氧管的主视剖视示意图。 [0032] 图 4为图 3中 B处的局部放大图。
[0033] 图 5为除杂装置的主视剖视示意图。
[0034] 图 6为图 5中 C处的局部放大图。
[0035] 图 7为氧分子离解面积与电子能量关系图。
[0036] 图 8为氧分子经电场离化及臭氧生成的等离子体的电子能量图。
[0037] 图 9为平均电子能量与折合电场强度关系图。
[0038] 图中: 1、 发生器主体 2、 内冷却液进液管 3、 外冷却液进液管 4、 出气管 5 、 进气管 6、 外冷却液出液管 7、 内冷却液出液管 8、 臭氧管 9、 内管 10、 中 间管 11、 外管 12、 内冷却液出液口 13、 气体进气口 14、 外冷却液出液口 15 、 气体出气口 16、 内冷却液进液口 17、 端盖 18、 连接套 19、 除杂罐 20、 保 温层 21、 加热出气管 22、 加热腔 23、 加热器 24、 接线口 25、 接线盒 26、 加热进气管 27、 除杂进气口 28、 除杂出气口 29、 导流板 30、 换热器。
发明实施例
本发明的实施方式
[0039] 图 1~9是本发明的最佳实施例, 下面结合附图 1~9对本发明做进一步说明。
[0040] 一种臭氧发生装置, 包括发生器主体 1以及设置在发生器主体 1内的至少一个臭 氧发生模块, 每个臭氧发生模块的臭氧产量为 0.5~3kg/h; 每个臭氧发生模块均 包括多根臭氧管 8 , 每个臭氧管 8的冷却液通道两端分别连接有进液管和出液管 , 每个臭氧管 8的气体通道两端分别连接进气管 5和出气管 4, 气体通道的内侧和 外侧绝缘设置, 且气体通道的内侧连接电源的放电电极, 气体通道外侧连接电 源地极。 本臭氧发生装置的每个臭氧发生模块包括多根臭氧管 8 , 能够根据需要 调整臭氧发生模块的数量, 进而调节臭氧的产量, 直接在发生器主体 1内增加或 减少臭氧发生模块的数量即可实现臭氧产量的调节, 方便调节, 每个臭氧发生 模块的臭氧产量为 0.5~3kg/h, 从而能够满足绝大部分臭氧产量要求, 不会出现 臭氧发生装置的产量与实际需求差距较大, 导致产能过剩的问题。
[0041] 下面结合具体实施例对本发明做进一步说明, 然而熟悉本领域的人们应当了解
, 在这里结合附图给出的详细说明是为了更好的解释, 本发明的结构必然超出 了有限的这些实施例, 而对于一些等同替换方案或常见手段, 本文不再做详细 叙述, 但仍属于本申请的保护范围。
[0042] 实施例 1
[0043] 如图 1~2所示: 发生器主体 1为长方体箱体, 臭氧发生模块设置在臭氧发生器内 。 每个臭氧管 8的冷却液通道均包括内冷却液通道和外冷却液通道, 气体通道环 绕内冷却液通道设置, 外冷却液通道环绕气体通道设置。 进液管包括内冷却液 进液管 2和外冷却液进液管 3, 出液管包括内冷却液出液管 7和外冷却液出液管 6
[0044] 进气管 5、 内冷却液出液管 7和外冷却液出液管 6均水平设置在发生器主体 1的上 部, 且进气管 5、 内冷却液出液管 7和外冷却液出液管 6的左端均伸出发生器主体 1, 进气管 5、 外冷却液出液管 6和内冷却液出液管 7由下至上依次间隔设置。
[0045] 出气管 4、 内冷却液进液管 2和外冷却液进液管 3均水平设置在发生器主体 1的下 部, 且出气管 4、 内冷却液进液管 2和外冷却液进液管 3的左端均伸出发生器主体 1, 出气管 4、 外冷却液进液管 3和内冷却液进液管 2由上至下依次间隔设置。
[0046] 每个臭氧管 8均竖向设置, 臭氧管 8气体通道的上端通过管道与进气管 5相连通 , 气体通道的下端通过管道与出气管 4连通, 在本实施例中, 进气管 5内通入的 是氧气。 内冷却液通道的上端与内冷却液出液管 7连通, 内冷却液通道的下端与 内冷却液进液管 2连通, 从而使内冷却液通道内的内冷却液实现循环, 外冷却液 通道的上端与外冷却液出液管 6连通, 外冷却液通道的下端与外冷却液进液管 3 连通, 从而能够使外冷却通道内的外冷却液循环, 进而保证了对气体通道的冷 却效果, 避免气体通道内的气体温度过高, 从而导致产生的臭氧在高温条件下 分解。 此外, 由于气体的流向与内冷却液和外冷却液的流向均相反, 能够使温 度较低的内冷却液和外冷却液与臭氧浓度较高的气体接触, 避免臭氧浓度较高 的气体的温度升高, 进而避免了臭氧分解, 使经臭氧发生装置输出的气体中臭 氧的浓度高, 进而能够达到更好地灭菌或污水处理的效果。
[0047] 气体通道的内侧与电源的放电电极相连, 气体通道的外侧与电源的地极相连, 电源地极与地面相连通, 从而在气体通道内放电, 进而使氧气转换为臭氧。 在 本实施例中, 气体通道内侧与外侧之间的电压为 3000V, 气体通道内通入的为氧 气, 且氧气的流量为 6m 3/h, 从而保证了氧气经臭氧管 8后的气体中臭氧的浓度 达到 500g/m 3以上, 能够很好的满足污水处理以及杀菌等的要求。
[0048] 如图 3~4所示: 臭氧管 8包括同轴设置的外管 11、 中间管 10以及内管 9, 内管 9为 两端敞口的圆管, 内管 9内形成内冷却液通道, 中间管 10内壁与内管 9外壁间隔 设置, 从而在中间管 10和内管 9之间形成环绕内冷却液通道设置的气体通道, 外 管 11内壁与中间管 10的外壁间隔设置, 从而在外管 11和中间管 10之间形成环绕 气体通道设置的外冷却液通道。 加工方便。 在本实施例中, 外管 11、 中间管 10 以及内管 9均为不锈钢材质, 既能够防止氧化, 又能够起到导电作用。
[0049] 内管 9的上端设置有内冷却液出液口 12, 下端设置有内冷却液进液口 16。 内冷 却液出液口 12的下端同轴设置在内管 9的上端内, 内冷却液出液口 12的下端与内 管 9的内壁之间密封设置, 内冷却液进液口 16的上端同轴设置在内管 9的下端内 , 内冷却液进液口 16的上端也与内管 9的内壁之间密封设置, 从而形成内冷却液 通道。 内冷却液出液口 12的上端与内冷却液出液管 7连通, 内冷却液进液口 16的 下端与内冷却液进液管 2连通, 且内冷却液出液口 12与内冷却液出液管 7之间绝 缘连接, 内冷却液进液口 16与内冷却液进液管 2之间也绝缘连接, 即内冷却液出 液口 12与内冷却液出液管 7之间以及内冷却液进液口 16与内冷却液进液管 2之间 均不导电。 内冷却液出液口 12的中部外侧套设有用于连接电源的高压电极, 即 与电源放电电极相连, 在本实施例中, 电源为高压电源。
[0050] 内管 9的两端均伸出中间管 10, 且内管 9两端位于中间管 10外的部分的长度相等 ; 中间管 10的两端均伸出外管 11, 且中间管 10的两端位于外管 11外的部分的长 度相等。 在本实施例中, 内冷却液为冷却油, 外冷却液为冷却水。
[0051] 臭氧管 8还包括设置在上下两端的连接套 18以及端盖 17。 每个臭氧管 8上均设置 有两个连接套 18和端盖 17。 连接套 18套设在外管 11外并与外管 11同轴连接, 连 接套 18的内端的内径小于外端的内径, 连接套 18的内端与套设在外管 11的外端 并与外管 11的外壁密封设置, 连接套 18的内端与中间管 10的外壁密封设置, 从 而形成外冷却液通道。 端盖 17为圆筒状, 端盖 17的内端伸入连接套 18和内管 9之 间, 且端盖 17与连接套 18和内管 9均密封连接, 形成气体通道。
[0052] 环绕每个连接套 18外端的内壁设置有气体通道槽, 位于臭氧管 8上端的连接套 1 8的气体通道槽与气体通道上端连通, 位于臭氧管 8下端的连接套 18的气体通道 槽与气体通道下端连通。 臭氧管 8上端的连接套 18上设置有径向的气体进气口 13 , 气体进气口 13与连接套 18螺纹连接, 气体进气口 13的内端通过上端的连接套 1 8的气体通道槽与气体通道上端连通; 臭氧管 8下端的连接套 18上设置有径向的 气体出气口 15 , 气体出气口 15与连接套 18螺纹连接, 气体出气口 15的内端通过 下端的连接套 18的气体通道槽与气体通道上端连通。 气体进气口 13与进气管 5连 通, 且气体进气口 13与进气管 5之间绝缘, 气体出气口 15与出气管 4连通, 且气 体出气口 15与出气管 4之间绝缘。
[0053] 环绕每个连接套 18的内端内壁设置有冷却液槽, 位于臭氧管 8上端的连接套 18 的冷却液槽与外冷却液通道的上端连通, 位于臭氧管 8下端的连接套 18的冷却液 槽与外冷却液通道下端的冷却液槽连通。 臭氧管 8上端的连接套 18上设置有径向 的外冷却液出液口 14, 夕卜冷却液出液口 14与连接套 18螺纹连接, 且外冷却液出 液口 14通过上端的连接套 18的冷却液槽与外冷却液通道上端连通; 臭氧管 8下端 的连接套 18上设置有径向的外冷却液进液口, 外冷却液出液口与连接套 18螺纹 连接, 外冷却液出液口 14通过下端的连接套 18的冷却液槽与外冷却液通道下端 连通。 外冷却液出液口 14与外冷却液出液管 6连通, 外冷却液进液口与外冷却液 进液管 3连通, 夕卜冷却液出液口 14与外冷却液出液管 6之间绝缘, 外冷却液进液 口与外冷却液进液管 3之间绝缘。
[0054] 在本实施例中, 外冷却液进液口设置在气体出气口 15的外侧, 外冷却液出液口 14设置在气体进气口 13的内侧, 既避免了连接时气体通道和外冷却液通道相互 妨碍, 又方便区分避免组装时连接错误, 影响冷却效果。
[0055] 在本实施例中, 每个臭氧发生模块的臭氧产量为 2kg/h。 每个臭氧发生模块的 臭氧的产量根据每根臭氧管 8的产量以及臭氧管 8的数量来设置。 如每个臭氧管 8 的臭氧产量 40g/h, 每个臭氧发生模块包括 50根臭氧发生管, 即可满足每个臭氧 发生模块的臭氧产量为 2kg/h。 十个模块并联可实现 20kg/h的臭氧产量, 通过多 模块并联能够实现任意产量需求, 十分方便。
[0056] 位于臭氧管 8上端的连接套 18和端盖之间设置有接地电极, 接地电极与电源地 极, 接地电极还与中间管 10相连。
[0057] 如图 5~6所示: 本发明还提供一种除杂装置, 该除杂装置包括竖向设置的除杂 罐 19 , 除杂罐 19的下侧设置有支撑腿, 从而使除杂罐 19与地面间隔设置, 方便 了管道的设置, 又能够避免除杂罐 19与地面接触导致热量散失。 本除杂装置的 除杂出气口 28连接臭氧发生装置的进气管 5。
[0058] 除杂罐 19内腔由上至下依次设置有加热腔 22以及换热腔, 换热腔内设置有换热 器 30。 除杂罐 19的下侧同轴设置有除杂出气口 28 , 除杂罐 19的底端一侧设置有 径向的除杂进气口 27。 换热器 30的管程入口与除杂进气口 27连通, 换热器 30的 壳程出口通过加热进气管 26与加热腔 22连通, 加热腔 22还通过加热出气管 21与 换热器 30的管程入口连通, 换热器 30的管程出口与除杂出气口 28连通。 进入的 气体与排出的气体在换热器 30内实现了换热, 从而实现了对排出气体热量的回 收, 避免了能量的浪费, 还实现了对进入的气体的预热, 使气体在加热腔 22内 能够尽快升温至指定温度, 从而能够使氧气中混有的一氧化碳、 甲烷或乙炔等 可燃性气体燃烧, 除去气体内的杂质, 且操作方便, 并且能量消耗少。 换热器 3 0的管程和壳程内通入的气体可以根据需要设置, 也可以进入的气体经过管程进 入到加热腔 22内, 加热后的气体经过壳程后排出。 换热器 30还可以替换为换热 盘管, 即进入的气体经过换热盘管后进入到加热腔 22内, 换热后的气体经过换 热腔直接排出。
[0059] 加热腔 22内设置有加热器 23, 加热器 23上侧设置有接线盒 25, 接线盒 25下侧密 封设置, 除杂罐 19的上端一侧设置有径向的接线口 24, 电源线通过接线口 24进 入到除杂罐 19内并与接线盒 25连接。 在本实施例中, 加热器 23为集束式加热器 , 对气体的加热速度快。 加热器 23还可以替换为电热管或电阻丝。
[0060] 加热腔 22的中部设置有水平的导流板 29, 导流板 29的侧部与加热腔 22密封设置 。 导流板 29包括水平设置的环形板以及环形板上下两侧的圆板, 除杂罐 19内腔 上部设置下端封闭的圆筒, 形成加热腔 22, 圆筒上端与接线盒 25下侧间隔设置 , 环形板水平设置在圆筒中部, 环形板的侧部与圆筒的中部密封设置, 上下两 侧的圆板均与环形板间隔设置, 且圆板的直径等于或稍小于环形板的内径, 从 而能够使进入到加热腔 22内的气体形成紊流, 增加了气体在加热腔 22内的行程 , 延长了气体的加热时间, 使气体加热充分并达到指定温度, 进而保证了气体 除杂彻底。 [0061] 除杂罐 19的内壁设置有保温层 20, 保温层 20能够起到保温效果, 避免热量大量 散失。
[0062] 新的理论和实验证明, 过高的折合电场强度 Td, 施能当电子获得平均能量大于 20ev时, 再施加过大能量将以发热的方式转移, 并会对臭氧产生热力分解作用, 对氧分子的电离激发成活性粒子, 经碰撞形成臭氧分子不会有太大的帮助。 从 微观上说, 氧气分子获得 20ev以下时的能量其电场强度不是太高。 依据新理论本 发明设计了一种条件, 采用相对较低电场强度, 其值 300-700Td。 保持物理空间 上的分子平均距离 510人, 通道长度为 800mm。 并提供大量活性自由电子的均匀 放电通道, 将微放电柱直径减小, 电柱密度提高 2~3倍, 等效大幅度提高放电面 积, 可极大的提高氧分子离解的动力作用。 氧分子离解、 电离经三体碰撞生成 臭氧等离子体反应过程由下式表示:
[0063] O 2(x^g )+e^O 2 (A^u -) +e
[0064] O ( 3P) +0 ( 3P) +e
Figure imgf000012_0001
[0066] 0( 'D)+0( 3P)+e
[0067] O 2(x3Eg-)+e^O 2 (A3JTU +) +e
[0068] -^O ( 3P) +0 + ( 'S °) +2e
[0069] O+ O 2+M O 3+M O 3+M
[0070] 如图 7所示: 电子能量约为 20ev时氧分子具有最大离解截面积。 20ev电子能量 是 0 2(x3I:g - ) 0 2(B 3I:u - )所需 2倍多, 是禁阻跃迁 O 2 (x3I:g - ) 0 2 (A3[u +) 的 3 倍多。 实验表明: 20ev的电子能量应是高浓度低功率的边界值。
[0071] 如图 8所示: 放电通道内电介质和气隙电场的电场强度表达式分别为
Figure imgf000012_0002
(2)
[0074] 上式中 U为施电压峰值,
为电介质的介电常数,
为介质厚度,
为气隙距离,
为气隙介电常数。 由式 (2) 可看出, 气隙电场强度随 U的增大而增大, 随
的减小而增大, 随
的减小而增大。
[0075] 如图 9所示: 20ev的电子平均能量 700Td的折合电场强度即可满足。 值得指出 的是, 以上仅是氧分子转化臭氧的基本条件, 但不是全部条件。 研究表明, 电 场施能也不是活性粒子的唯一提供者, 也不是全部活性粒子最优动力,冷态非平 衡热力等离子体更需要除此之外的其它活化的诱导。 而上述所设定的条件也验 证了这种推断的正确性。
[0076] 根据上述设计条件, 设计开发了精密的气隙放电臭氧大容量工业发生装置, 结 果生成 660 g/Nm3 (40wt%) 的超高臭氧浓度, 达到了由臭氧发生器直接产生臭 氧浓度的国际上前所未有的最高值, 电耗 S
12k\\ii/kgo3
, 在此超高浓度下功耗也是目前国际上最低的。 该超高浓度和低功耗的出现, 充分证明了自创微观放电理论和建模的正确性, 使臭氧放电理论与技术跨跃式 的迈出一大步。 实现了浓度上升的同时与电耗的同步下降, 为臭氧的低成本制 备打开了方便之门。 达到了本发明的预期效果。
[0077] 本发明还提供了一种用于臭氧流量检测的方法, 进气管 5和出气管 4上均设置有 质量流量计, 且两个质量流量计均连接 PLC控制器。 具体包括如下步骤:
[0078] 步骤 1) , 在相同的条件下, 实时测量发生化学反应前气体的体积流量 Q,以及 发生化学反应后气体的体积流量 Q 2;
[0079] 在本实施例中, 发生的化学反应为氧气转化为臭氧的化学反应。 在相同的温度 条件和压力条件下, 实时测量进入的气体的体积流量 Qh 实时测量排出的气体 的体积流量 Q2, Q2中包括臭氧体积流量 03和未反应的氧气流量 Q4。 还可以实 时测量反应前气体的质量流量, 并根据测量好的质量流量, 依据气体的密度, 计算出体积流量。
[0080] 步骤 2) , 计算化学反应前后流体实时的体积流量差 AQ,
[0081] AQ=IQrQ2l;
[0082] 氧气转变为臭氧的化学方程式如下: 302=20 由于本化学反应反应后气体的 体积缩小, 因此, AQ= Q r Q 如果化学反应后气体的体积增大, 则 AQ=Q2- Q 1
[0083] 步骤 3) , 计算反应后待检测流体的体积流量 Q;;;
[0084] 由上述化学方程式可以看出, 每 3L的氧气可以转换为 2L的臭氧, 即转换比为 1.
5:1, 由此可得出以下关系式:
[0085] Q1=1.5Q3+Q4; (3)
[0086] 其中, Q4为相同条件下未参加反应的 Q2的体积流量。
[0087] 排出的气体为臭氧和未参加反应的氧气的混合气体, 可得:
[0088] Q2=Q3+Q4; (4)
[0089] 将式 (3) 代入式 (4) 可得:
[0090] Q3=2 (QrQ2) ; (5)
[0091] 步骤 4) 计算计算待检测流体的臭氧质量百分比浓度 C:
[0092]
Figure imgf000015_0001
(6)
[0093] 将式 (5) 带入式 (6) 得:
[0094]
Figure imgf000015_0002
[0095] 实施例 2
[0096] 实施例 2与实施例 1的区别在于: 气体通道内侧与外侧的电压为 2000V, 气体流 量为 4m 3/h, 从而使氧气经过臭氧管 8后含有的臭氧浓度在 500g/m 3以上。 内冷却 液为冷却水, 外冷却液为冷却油。
[0097] 实施例 3
[0098] 实施例 3与实施例 1的区别在于: 气体通道内侧与外侧的电压为 1500V, 气体流 量为 lm 3/h, 从而使氧气经过臭氧管 8后含有的臭氧浓度在 500g/m 3以上。 内冷却 液和外冷却液均为冷却油。
[0099] 实施例 4
[0100] 实施例 4与实施例 1的区别在于: 每个臭氧发生模块的臭氧产量为 0.5kg/h, 即每 增加或减少一个臭氧发生模块, 每小时的臭氧产量增加或减少 0.5kg。 内冷却液 和外冷却液均为冷却水。
[0101] 实施例 5
[0102] 实施例 5与实施例 1的区别在于: 每个臭氧发生模块的臭氧产量为 1.5kg/h, 即每 增加或减少一个臭氧发生模块, 每小时的臭氧产量增加或减少 1.5kg。
[0103] 实施例 6
[0104] 实施例 6与实施例 1的区别在于: 每个臭氧发生模块的臭氧产量为 2.5kg/h, 即每 增加或减少一个臭氧发生模块, 每小时的臭氧产量增加或减少 2.5kg
[0105] 实施例 7
[0106] 实施例 7与实施例 1的区别在于: 每个臭氧发生模块的臭氧产量为 3kg/h 即每 增加或减少一个臭氧发生模块, 每小时的臭氧产量增加或减少 3kg
[0107] 以上所述, 仅是本发明的较佳实施例而已, 并非是对本发明作其它形式的限制 , 任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为 等同变化的等效实施例。 但是凡是未脱离本发明技术方案内容, 依据本发明的 技术实质对以上实施例所作的任何简单修改、 等同变化与改型, 仍属于本发明 技术方案的保护范围。

Claims

权利要求书
[权利要求 1] 一种臭氧发生装置, 其特征在于: 包括发生器主体 (i) 以及设置在 发生器主体 (i) 内的至少一个臭氧发生模块, 每个臭氧发生模块的 臭氧产量为 0.5~3kg/h;
每个臭氧发生模块均包括多根臭氧管 (8) , 每根臭氧管 (8) 的冷却 液通道两端分别连接有进液管和出液管, 每根臭氧管 (8) 的气体通 道两端分别连接进气管 (5) 和出气管 (4) , 气体通道的内侧和外侧 绝缘设置, 且气体通道的内侧连接电源的放电电极, 气体通道外侧连 接电源地极。
[权利要求 2] 根据权利要求 1所述的臭氧发生装置, 其特征在于: 所述的臭氧管 (8 ) 均竖向设置, 臭氧管 (8) 的冷却液通道上端与出液管连通, 冷却 液通道下端与进液管连通, 臭氧管 (8) 的气体通道上端与进气管 (5 ) 连通, 气体通道的下端与出气管 (4) 连通。
[权利要求 3] 根据权利要求 1所述的臭氧发生装置, 其特征在于: 所述的冷却液通 道包括内冷却液通道和外冷却液通道, 气体通道环绕内冷却液通道设 置, 外冷却液通道环绕气体通道设置;
进液管包括内冷却液进液管 (2) 和外冷却液进液管 (3) , 出液管包 括内冷却液出液管 (7) 和外冷却液出液管 (6) , 内冷却液通道的下 端与内冷却液进液管 (2) 连通, 上端与内冷却液出液管 (7) 连通, 外冷却液通道的下端与外冷却液进液管 (3) 连通, 上端与外冷却液 出液管 (6) 连通。
[权利要求 4] 根据权利要求 3所述的臭氧发生装置, 其特征在于: 每根臭氧管 (8) 均包括同轴且由外至内依次设置的外管 (11) 、 中间管 (10) 以及内 管 (9) , 外管 (11) 与中间管 (10) 间隔设置, 形成所述外冷却液 通道, 中间管 (10) 与内管 (9) 间隔设置, 形成所述气体通道, 内 管 (9) 的两端敞口设置, 形成所述内冷却液通道。
[权利要求 5] 根据权利要求 3所述的臭氧发生装置, 其特征在于: 所述的内冷却液 通道和外冷却液通道内均设置有循环的冷却油或冷却水。
[权利要求 6] 根据权利要求 4所述的臭氧发生装置, 其特征在于: 所述的内管 (9) 连接电源的放电电极, 中间管 (10) 连接电源地极。
[权利要求 7] 根据权利要求 2所述的臭氧发生装置, 其特征在于: 所述的冷却液通 道包括内冷却液通道和外冷却液通道, 气体通道环绕内冷却液通道设 置, 外冷却液通道环绕气体通道设置;
进液管包括内冷却液进液管 (2) 和外冷却液进液管 (3) , 出液管包 括内冷却液出液管 (7) 和外冷却液出液管 (6) , 内冷却液通道的下 端与内冷却液进液管 (2) 连通, 上端与内冷却液出液管 (7) 连通, 外冷却液通道的下端与外冷却液进液管 (3) 连通, 上端与外冷却液 出液管 (6) 连通。
[权利要求 8] 根据权利要求 7所述的臭氧发生装置, 其特征在于: 每根臭氧管 (8) 均包括同轴且由外至内依次设置的外管 (11) 、 中间管 (10) 以及内 管 (9) , 外管 (11) 与中间管 (10) 间隔设置, 形成所述外冷却液 通道, 中间管 (10) 与内管 (9) 间隔设置, 形成所述气体通道, 内 管 (9) 的两端敞口设置, 形成所述内冷却液通道。
[权利要求 9] 根据权利要求 7所述的臭氧发生装置, 其特征在于: 所述的内冷却液 通道和外冷却液通道内均设置有循环的冷却油或冷却水。
[权利要求 10] 根据权利要求 8所述的臭氧发生装置, 其特征在于: 所述的内管 (9) 连接电源的放电电极, 中间管 (10) 连接电源地极。
[权利要求 11] 根据权利要求 1所述的臭氧发生装置, 其特征在于: 所述的发生器主 体 (1) 为方形的箱体, 进气管 (5) 和出液管均水平设置在发生器主 体 (1) 上部, 出气管 (4) 和进液管均水平设置在发生器主体 (1) 下部。
[权利要求 12] 根据权利要求 1所述的臭氧发生装置, 其特征在于: 所述的气体通道 内侧和外侧之间的电压为 1500~3000V。
[权利要求 13] 根据权利要求 1所述的臭氧发生装置, 其特征在于: 每个所述的臭氧 发生模块的臭氧产量为 1.5~2.5kg/h。
[权利要求 14] 根据权利要求 1所述的臭氧发生装置, 其特征在于: 所述的进气管 (5 ) 内通入的气体为氧气, 进气管 (5) 内氧气流量为 1〜 6m3/h。
PCT/CN2018/083737 2018-02-24 2018-04-19 一种臭氧发生装置 WO2019161614A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810156762.9 2018-02-24
CN201810156762.9A CN108147370A (zh) 2018-02-24 2018-02-24 一种臭氧发生装置

Publications (1)

Publication Number Publication Date
WO2019161614A1 true WO2019161614A1 (zh) 2019-08-29

Family

ID=62455894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083737 WO2019161614A1 (zh) 2018-02-24 2018-04-19 一种臭氧发生装置

Country Status (2)

Country Link
CN (1) CN108147370A (zh)
WO (1) WO2019161614A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022162412A1 (es) * 2021-01-29 2022-08-04 Keybiological S.L. Procedimiento de producción de aceite ozonizado, reactor y aceite producido

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108163814B (zh) * 2018-02-24 2019-11-05 恒天摩尔科技(山东)有限公司 一种高效节能的流体除杂灭活装置
CN108892107A (zh) * 2018-06-28 2018-11-27 北京境智圆融科技有限公司 一种能够控制臭氧生成量的臭氧集气管

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766051A (en) * 1971-09-22 1973-10-16 Pollution Control Ind Inc Liquid cooled ozone generator
CN1318510A (zh) * 2000-04-17 2001-10-24 大连海事大学 一种臭氧产生方法及其器件
CN2698769Y (zh) * 2003-12-05 2005-05-11 河海大学 双放电气隙、双路冷却单管并联臭氧发生器
CN2804055Y (zh) * 2005-06-10 2006-08-09 上海绿福净化设备制造有限公司 一种臭氧发生器
CN203095619U (zh) * 2012-11-29 2013-07-31 南昌工程学院 双水冷臭氧放电室
CN206051545U (zh) * 2016-08-31 2017-03-29 广州蓝奥环保科技有限公司 一种集联臭氧发生器
CN207016482U (zh) * 2017-06-15 2018-02-16 云南益水环保工程有限公司 一种双油腔冷却臭氧发生管及其制成的臭氧发生器
CN108163814A (zh) * 2018-02-24 2018-06-15 曹恒 一种高效节能的流体除杂灭活装置
CN108375651A (zh) * 2018-02-24 2018-08-07 曹祚 气体反应浓度的检测方法及检测装置
CN207882103U (zh) * 2018-02-24 2018-09-18 曹祚 一种气体反应浓度的检测装置
CN207986677U (zh) * 2018-02-24 2018-10-19 曹恒 一种高效节能的流体除杂灭活装置
CN207986683U (zh) * 2018-02-24 2018-10-19 曹祚 一种臭氧发生装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766051A (en) * 1971-09-22 1973-10-16 Pollution Control Ind Inc Liquid cooled ozone generator
CN1318510A (zh) * 2000-04-17 2001-10-24 大连海事大学 一种臭氧产生方法及其器件
CN2698769Y (zh) * 2003-12-05 2005-05-11 河海大学 双放电气隙、双路冷却单管并联臭氧发生器
CN2804055Y (zh) * 2005-06-10 2006-08-09 上海绿福净化设备制造有限公司 一种臭氧发生器
CN203095619U (zh) * 2012-11-29 2013-07-31 南昌工程学院 双水冷臭氧放电室
CN206051545U (zh) * 2016-08-31 2017-03-29 广州蓝奥环保科技有限公司 一种集联臭氧发生器
CN207016482U (zh) * 2017-06-15 2018-02-16 云南益水环保工程有限公司 一种双油腔冷却臭氧发生管及其制成的臭氧发生器
CN108163814A (zh) * 2018-02-24 2018-06-15 曹恒 一种高效节能的流体除杂灭活装置
CN108375651A (zh) * 2018-02-24 2018-08-07 曹祚 气体反应浓度的检测方法及检测装置
CN207882103U (zh) * 2018-02-24 2018-09-18 曹祚 一种气体反应浓度的检测装置
CN207986677U (zh) * 2018-02-24 2018-10-19 曹恒 一种高效节能的流体除杂灭活装置
CN207986683U (zh) * 2018-02-24 2018-10-19 曹祚 一种臭氧发生装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022162412A1 (es) * 2021-01-29 2022-08-04 Keybiological S.L. Procedimiento de producción de aceite ozonizado, reactor y aceite producido

Also Published As

Publication number Publication date
CN108147370A (zh) 2018-06-12

Similar Documents

Publication Publication Date Title
WO2019161614A1 (zh) 一种臭氧发生装置
CN201999734U (zh) 一种集成式臭氧发生器
CN206089035U (zh) 一种臭氧发生器的放电单元
WO2019161612A1 (zh) 一种高效节能的流体除杂灭活装置
CN107381710A (zh) 一种高效曝气式等离子体处理有机废水装置
CN207986677U (zh) 一种高效节能的流体除杂灭活装置
WO2019161613A1 (zh) 气体反应浓度的检测方法及检测装置
CN103159185A (zh) 多重臭氧发生设备
CN100460313C (zh) 一种双冷臭氧放电管
CN201634422U (zh) 外冷双气隙叠层板式臭氧发生器
CN207986683U (zh) 一种臭氧发生装置
CN107986239A (zh) 一种臭氧发生器
CN104891447B (zh) 一种半湿式高效臭氧发生方法及装置
CN216997674U (zh) 一种便携式臭氧发生装置
CN203095619U (zh) 双水冷臭氧放电室
CN204369565U (zh) 一种多组并联型外冷双气隙叠层板式臭氧发生器
CN215208483U (zh) 一种具有外水冷和内气冷的新型臭氧发生器
CN213446222U (zh) 一种立式臭氧发生器发生仓
CN106467291A (zh) 新型模块化板式等离子臭氧发生器
CN206359246U (zh) 一种水冷式管式臭氧发生器
CN207882103U (zh) 一种气体反应浓度的检测装置
CN2926186Y (zh) 一种双冷臭氧放电管
CN204737726U (zh) 水冷却多管式组合放电极臭氧发生装置
CN211096320U (zh) 一种臭氧消毒装置
CN210313539U (zh) 水线杀菌清洗一体机用臭氧发生器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/12/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18906915

Country of ref document: EP

Kind code of ref document: A1