WO2019160009A1 - Vehicle control method, and control device for vehicle system and vehicle - Google Patents

Vehicle control method, and control device for vehicle system and vehicle Download PDF

Info

Publication number
WO2019160009A1
WO2019160009A1 PCT/JP2019/005269 JP2019005269W WO2019160009A1 WO 2019160009 A1 WO2019160009 A1 WO 2019160009A1 JP 2019005269 W JP2019005269 W JP 2019005269W WO 2019160009 A1 WO2019160009 A1 WO 2019160009A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
gradient
road surface
related value
steering angle
Prior art date
Application number
PCT/JP2019/005269
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 梅津
修 砂原
大策 小川
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Publication of WO2019160009A1 publication Critical patent/WO2019160009A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • B60L15/2018Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking for braking on a slope
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/045Improving turning performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/24Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/642Slope of road
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle control method, a vehicle system, and a vehicle control device that control a vehicle attitude.
  • a technique for example, a skid prevention device for controlling the behavior of a vehicle in a safe direction when the behavior of the vehicle becomes unstable due to slip or the like is known. Specifically, it is known to detect that understeer or oversteer behavior has occurred in the vehicle during cornering of the vehicle, and to impart appropriate deceleration to the wheels to suppress them. ing.
  • FIG. 10 (a) schematically shows the vehicle posture when traveling on a flat road
  • FIG. 10 (b) schematically shows the vehicle posture when traveling on a downhill road.
  • FIGS. 10A and 10B when the vehicle is traveling on a downhill road, the vehicle front part in the vehicle roof is submerged than when the vehicle is traveling on a flat road (the vehicle front side relative to the vehicle rear side). The amount of sinking is large). In this state, the rigidity of the suspension on the vehicle front side, that is, the rigidity of expansion and contraction of the spring of the suspension is increased.
  • the present invention has been made to solve the above-described problems of the prior art, and a vehicle control method and a vehicle system for performing vehicle attitude control for adding deceleration to a vehicle when a steering device is turned. And in a vehicle control apparatus, it aims at ensuring the improvement effect of the vehicle turning performance by the said control appropriately at the time of driving
  • the present invention provides a wheel, a drive source for generating a driving force for driving the wheel, a suspension including an elastic member, and a steering angle for detecting a steering angle of a steering device.
  • a vehicle control method including a sensor and a gradient related value output device that outputs a road surface gradient related value related to a road surface gradient, wherein a steering device is turned on based on a steering angle detected by a steering angle sensor.
  • the road surface gradient related value output by the gradient related value output device is the first value indicating the gradient on the downward gradient side
  • the road surface gradient related value output by the gradient related value output device is flatter than the first value. Showing the slope of Than when a value, and a step of increasing the deceleration added to the vehicle, and characterized in that.
  • the road surface gradient related value output by the gradient related value output device is the first value indicating the gradient on the downward gradient side
  • the road surface gradient related value is a flat side of the first value.
  • the deceleration applied to the vehicle in the vehicle attitude control is made larger than when the second value is shown.
  • the present invention detects a steering angle of a wheel, a generator driven by the wheel to generate regenerative power, a suspension including an elastic member, and a steering device.
  • a vehicle control method having a steering angle sensor and a gradient related value output device that outputs a road surface gradient related value related to a road surface gradient, wherein the steering device cuts in based on the steering angle detected by the steering angle sensor.
  • the road surface gradient related value output by the gradient related value output device is the first value indicating the gradient on the downward gradient side
  • the road surface gradient related value output by the gradient related value output device is greater than the first value.
  • a second value indicating the slope of the flat side and a step of increasing the deceleration added to the vehicle, and characterized in that.
  • the vehicle turning performance by the vehicle attitude control can be appropriately ensured when traveling on the downhill road.
  • the present invention provides a wheel, a braking device that applies a braking force to the wheel, a suspension that includes an elastic member, and a steering that detects a steering angle of the steering device.
  • a vehicle control method having an angle sensor and a gradient-related value output device that outputs a road surface gradient-related value related to a road surface gradient, and the steering device performs a cutting operation based on a steering angle detected by the steering angle sensor
  • the road surface gradient related value output by the gradient related value output device is the first value indicating the gradient on the downward gradient side
  • the road surface gradient related value output by the gradient related value output device is flatter than the first value. Show side slope Than when the second value, and a step of increasing the deceleration added to the vehicle, and characterized in that.
  • the vehicle turning performance by the vehicle attitude control can be appropriately ensured when traveling on the downhill road.
  • the second value is a value at which the road surface gradient related value indicates the gradient on the uphill side.
  • the traveling road is a downhill road (the road surface gradient related value is the first value)
  • the traveling road is the uphill road (the road surface gradient related value is the second value). Rather, the deceleration applied to the vehicle in the vehicle attitude control can be reliably increased, and the vehicle turning performance can be effectively ensured.
  • the second value is a value indicating that the road gradient related value is flat.
  • the traveling road is a downhill road (the road surface gradient related value is the first value)
  • the traveling road is a flat road (the road surface gradient related value is the second value ( Typically, the deceleration applied to the vehicle in the vehicle attitude control can be surely increased more than substantially 0)) to effectively ensure the vehicle turning performance.
  • the present invention provides a wheel, a driving source that generates a driving force for driving the wheel, a suspension including an elastic member, and a steering angle of the steering device.
  • a vehicle system having a steering angle sensor that detects a road surface gradient, a gradient related value output device that outputs a road surface gradient related value related to the road surface gradient, and a processor, wherein the processor detects the steering angle detected by the steering angle sensor Based on the above, it is determined whether or not the steering device has been turned, and when it is determined that the steering device has been turned, the driving force of the drive source is reduced so as to control the vehicle posture.
  • the road surface gradient related value output by the gradient related value output device is the first value indicating the downward gradient
  • the road surface gradient related value output by the gradient related value output device is the first.
  • the present invention detects a steering angle of a wheel, a generator driven by the wheel to generate regenerative power, a suspension including an elastic member, and a steering device.
  • a vehicle system having a steering angle sensor, a gradient related value output device that outputs a road surface gradient related value related to the road surface gradient, and a processor, the processor based on the steering angle detected by the steering angle sensor, It is determined whether or not the steering device has been turned, and when it is determined that the steering device has been turned, the generator is caused to perform regenerative power generation to add deceleration to the vehicle so as to control the vehicle attitude.
  • the road surface gradient related value output by the gradient related value output device is the first value indicating the gradient on the downward gradient side
  • the road surface gradient related value output by the gradient related value output device Than when than the first value is a second value indicating the slope of the flat side to increase the deceleration added to the vehicle and is configured to, characterized in that.
  • the present invention provides a wheel, a braking device that applies a braking force to the wheel, a suspension that includes an elastic member, and a steering that detects a steering angle of the steering device.
  • a vehicle system having an angle sensor, a gradient-related value output unit that outputs a road-gradient-related value related to the road gradient, and a processor, the processor steering based on a steering angle detected by the steering angle sensor It is determined whether or not the device has been turned, and when it is determined that the steering device has been turned, a braking force is applied from the braking device to add a deceleration to the vehicle so as to control the vehicle posture.
  • the road surface gradient related value output by the gradient related value output device is the first value indicating the gradient on the downward gradient side
  • the road surface gradient related value output by the gradient related value output device is flatter than the first value.
  • the slope is a second value indicative of, increasing the deceleration added to the vehicle and is configured to, characterized in that.
  • the present invention provides a control device for a vehicle having a suspension provided with an elastic member, and adds deceleration to the vehicle when the steering device is turned.
  • the vehicle attitude control means for controlling the vehicle attitude by making the vehicle attitude control means increase the deceleration applied to the vehicle when the traveling road surface of the vehicle is a downward slope than when it is not. It is characterized by that.
  • a vehicle control method in a vehicle control method, a vehicle system, and a vehicle control device that perform vehicle attitude control that adds deceleration to a vehicle when a steering device is turned, in the downhill road, according to the control.
  • vehicle attitude control that adds deceleration to a vehicle when a steering device is turned, in the downhill road, according to the control.
  • the improvement effect of vehicle turning performance can be ensured appropriately.
  • FIG. 1 is a block diagram showing an overall configuration of a vehicle equipped with a vehicle control device according to an embodiment of the present invention. It is a block diagram which shows the electric constitution of the control apparatus of the vehicle by embodiment of this invention. It is a flowchart of the vehicle attitude
  • FIG. 1 is a block diagram showing the overall configuration of a vehicle equipped with a vehicle control apparatus according to an embodiment of the present invention.
  • reference numeral 1 denotes a vehicle equipped with a vehicle control device according to the present embodiment.
  • the vehicle 1 is equipped with a motor generator 4 having a function of driving the front wheels 2 (that is, a function as an electric motor) and a function of being driven by the front wheels 2 and performing regenerative power generation (that is, a function as a generator). Yes.
  • the motor generator 4 is transmitted with force from the front wheel 2 through the speed reducer 5, and is controlled by the controller 14 through the inverter 3. Further, the motor generator 4 is connected to the battery 25, and when the driving force is generated, the electric power is supplied from the battery 25. When the motor generator 4 is regenerated, the electric power is supplied to the battery 25 to charge the battery 25.
  • the vehicle 1 is a steering angle for detecting a rotation angle of a steering device (steering wheel 6 or the like) for steering the vehicle 1 and a steering column (not shown) connected to the steering wheel 6 in the steering device.
  • a sensor 8 an accelerator opening sensor 10 for detecting an accelerator pedal depression amount corresponding to an accelerator pedal opening, a brake depression amount sensor 11 for detecting a brake pedal depression amount, and a road gradient of a road surface on which the vehicle 1 travels.
  • the vehicle includes a gradient sensor 12 that detects (road surface inclination) and a vehicle longitudinal acceleration sensor 13 that detects longitudinal acceleration (longitudinal acceleration) of the vehicle 1.
  • Each of these sensors outputs a detected value to the controller 14.
  • the controller 14 includes, for example, a PCM (Power-train Control Module).
  • each wheel of the vehicle 1 is suspended from the vehicle body via a suspension 30 including an elastic member (typically a spring) and a suspension arm.
  • the vehicle 1 includes a brake control system 18 that supplies brake fluid pressure to a brake caliper of a brake device (braking device) 16 provided on each wheel.
  • the brake control system 18 includes a hydraulic pump 20 that generates a brake hydraulic pressure necessary to generate a braking force in the brake device 16 provided on each wheel, and a hydraulic pressure supply line to the brake device 16 of each wheel.
  • a provided valve unit 22 (specifically a solenoid valve) for controlling the hydraulic pressure supplied from the hydraulic pump 20 to the brake device 16 of each wheel, and the brake device 16 of each wheel from the hydraulic pump 20.
  • a hydraulic pressure sensor 24 for detecting the hydraulic pressure supplied to.
  • the hydraulic pressure sensor 24 is disposed, for example, at a connection portion between each valve unit 22 and the hydraulic pressure supply line on the downstream side thereof, detects the hydraulic pressure on the downstream side of each valve unit 22, and outputs the detected value to the controller 14. .
  • FIG. 2 is a block diagram showing an electrical configuration of the vehicle control apparatus according to the embodiment of the present invention.
  • the controller 14 (vehicle control device) according to the present embodiment is based on detection signals output from various sensors that detect the driving state of the vehicle 1, in addition to the detection signals of the sensors 8, 10, 11, 12, and 13 described above.
  • the motor generator 4 and the brake control system 18 are controlled. Specifically, when driving the vehicle 1, the controller 14 obtains a target torque (drive torque) to be applied to the vehicle 1 and controls the inverter 3 to generate the target torque from the motor generator 4. Output a signal. On the other hand, when braking the vehicle 1, the controller 14 obtains a target regenerative torque to be applied to the vehicle 1 and outputs a control signal to the inverter 3 so that the target regenerative torque is generated from the motor generator 4. .
  • the controller 14 uses the regenerative torque instead of or uses the regenerative torque and obtains the target braking force to be applied to the vehicle 1 to realize the target braking force.
  • a control signal may be output to the brake control system 18.
  • the controller 14 controls the hydraulic pump 20 and the valve unit 22 of the brake control system 18 so that a desired braking force is generated by the brake device 16.
  • the controller 14 (same as the brake control system 18) includes one or more processors, and various programs that are interpreted and executed on the processors (basic control programs such as an OS and application programs that are activated on the OS and realize specific functions And a computer having an internal memory such as a ROM or RAM for storing programs and various data.
  • the controller 14 corresponds to a vehicle control device in the present invention.
  • the controller 14 functions as a vehicle attitude control means in the present invention.
  • a system including at least the controller 14, the wheels (front wheels 2 and rear wheels), the motor generator 4, the steering angle sensor 8, the gradient sensor 12, the vehicle longitudinal acceleration sensor 13, and the suspension 30 corresponds to the vehicle system in the present invention. .
  • FIG. 1 shows an example in which the rotation angle of the steering column coupled to the steering wheel 6 (the angle detected by the steering angle sensor 8) is used as the steering angle, but instead of the rotation angle of the steering column or the steering
  • various state quantities in the steering system may be used as the steering angle.
  • FIG. 3 is a flowchart of the vehicle attitude control process according to the first embodiment of the present invention.
  • the vehicle attitude control process of FIG. 3 is started when the ignition of the vehicle 1 is turned on and power is turned on to the vehicle control device, and is repeatedly executed at a predetermined cycle (for example, 50 ms).
  • the controller 14 acquires various sensor information related to the driving state of the vehicle 1. Specifically, the controller 14 detects the steering angle detected by the steering angle sensor 8, the accelerator pedal depression amount (accelerator pedal opening) detected by the accelerator opening sensor 10, and the brake pedal depression amount detected by the brake depression amount sensor 11.
  • the detection signals output by the various sensors described above, including the road surface gradient detected by the gradient sensor 12, the longitudinal acceleration detected by the vehicle longitudinal acceleration sensor 13, the hydraulic pressure detected by the hydraulic pressure sensor 24, and the like are acquired as information related to the driving state. To do.
  • step S2 the controller 14 sets a target acceleration or a target deceleration to be added to the vehicle 1 based on the driving state of the vehicle 1 acquired in step S1. Specifically, the controller 14 sets a target acceleration or a target deceleration based on the accelerator pedal depression amount, the brake pedal depression amount, and the like. Basically, the controller 14 increases the target acceleration as the accelerator pedal depression amount increases, and increases the target deceleration as the brake pedal depression amount increases. In addition to the pedal depression amount, it is preferable to set the target acceleration or the target deceleration in consideration of the vehicle speed, the pedal depression speed, the stepping-back speed, and the like.
  • step S3 when the target acceleration is set in step S2, the controller 14 sets the basic target torque of the motor generator 4 for realizing the target acceleration, and on the other hand, the target deceleration in step S2. Is set, the basic target regenerative torque of the motor generator 4 for realizing this target deceleration is set.
  • step S4 the controller 14 executes additional deceleration setting processing, and generates vehicle deceleration by generating deceleration on the basis of the steering speed of the steering device. The amount of torque reduction necessary for control is determined. Details of this additional deceleration setting process will be described later.
  • step S5 the controller 14 determines whether the vehicle 1 is driven, in other words, whether the vehicle 1 is not braked.
  • the controller 14 determines that the vehicle 1 is driven while in step S3.
  • the controller 14 performs the determination based on detection signals from the accelerator opening sensor 10 and the brake depression amount sensor 11.
  • the controller 14 drives the vehicle 1 when the accelerator pedal depression amount detected by the accelerator opening sensor 10 is larger than 0, that is, when the accelerator pedal depression is detected by the accelerator opening sensor 10. It is determined that Further, the controller 14 drives the vehicle 1 when the brake pedal depression amount detected by the brake depression amount sensor 11 is larger than 0, that is, when the brake pedal depression amount is detected by the brake depression amount sensor 11. Judge that there is no.
  • step S5 When it is determined in step S5 that the vehicle 1 is being driven (step S5: Yes), the controller 14 is based on the basic target torque set in step S3 and the torque reduction amount set in step S4 in step S6.
  • the final target torque is determined. Specifically, the controller 14 sets a value obtained by subtracting the torque reduction amount from the basic target torque as the final target torque. That is, the controller 14 reduces the drive torque applied to the vehicle 1.
  • the torque reduction amount is not set in step S4 (that is, when the torque reduction amount is 0)
  • the controller 14 applies the basic target torque as the final target torque as it is.
  • step S7 the controller 14 sets a command value (inverter command value) of the inverter 3 for realizing the final target torque determined in step S6. That is, the controller 14 sets an inverter command value (control signal) for generating the final target torque from the motor generator 4.
  • step S10 the controller 14 outputs the inverter command value set in step S7 to the inverter 3.
  • step S10 the controller 14 ends the vehicle attitude control process.
  • step S5 when it is determined in step S5 that the vehicle 1 is not driven (step S5: No), that is, when the vehicle 1 is braked, the controller 14 determines in step S8 the basic target determined in step S3.
  • a final target regenerative torque is determined based on the regenerative torque and the torque reduction amount determined in step S4. Specifically, the controller 14 sets the value obtained by adding the torque reduction amount to the basic target regenerative torque as the final target regenerative torque (in principle, the basic target regenerative torque and the torque reduction amount are expressed as positive values). That is, the controller 14 increases the regenerative torque (braking torque) applied to the vehicle 1.
  • the torque reduction amount is not determined in step S4 (that is, when the torque reduction amount is 0)
  • the controller 14 applies the basic target regeneration torque as it is as the final target regeneration torque.
  • step S9 the controller 14 sets a command value (inverter command value) of the inverter 3 for realizing the final target regenerative torque determined in step S8. That is, the controller 14 sets an inverter command value (control signal) for generating the final target regenerative torque from the motor generator 4.
  • step S10 the controller 14 outputs the inverter command value set in step S9 to the inverter 3. After step S10, the controller 14 ends the vehicle attitude control process.
  • FIG. 4 is a flowchart of additional deceleration setting processing according to the first embodiment of the present invention.
  • FIG. 5 is a map showing the relationship between additional deceleration and steering speed according to the first embodiment of the present invention.
  • FIG. 6 is a map defining a gain (additional deceleration gain) for correcting the additional deceleration obtained from the map of FIG. 5 according to the road surface gradient in the first embodiment of the present invention.
  • step S21 the controller 14 determines whether or not the steering wheel 6 is being turned (that is, the steering angle (absolute value) is increasing). As a result, when the cutting operation is being performed (step S21: Yes), the process proceeds to step S22, and the controller 14 determines the steering speed based on the steering angle acquired from the steering angle sensor 8 in step S1 of the vehicle attitude control process of FIG. calculate.
  • step S23 the controller 14, the steering speed is determined whether a predetermined threshold S 1 or more.
  • the process proceeds to step S24, and the controller 14 sets an additional deceleration based on the steering speed.
  • This additional deceleration is a deceleration to be added to the vehicle in accordance with the steering operation in order to control the vehicle posture in accordance with the driver's intention.
  • the controller 14 sets an additional deceleration corresponding to the steering speed calculated in step S22 based on the relationship between the additional deceleration and the steering speed shown in the map of FIG.
  • the horizontal axis in FIG. 5 indicates the steering speed
  • the vertical axis indicates the additional deceleration.
  • the controller 14 when the steering speed is less than the threshold value S 1 , the corresponding additional deceleration is zero. That is, when the steering speed is less than the threshold value S 1, the controller 14 does not perform the control for adding the deceleration of the vehicle 1 based on the steering operation.
  • step S25 the controller 14 corrects the additional deceleration set in step S24 with the additional deceleration gain corresponding to the road surface gradient. Specifically, the controller 14 determines an additional deceleration gain corresponding to the current road surface gradient detected by the gradient sensor 12 based on the map shown in FIG. 6, and calculates the additional deceleration by this additional deceleration gain. to correct. For example, the controller 14 corrects the additional deceleration by multiplying the additional deceleration by a value corresponding to the additional deceleration gain.
  • the horizontal axis shows the road surface gradient
  • the vertical axis shows the additional deceleration gain.
  • “0” indicates a flat road
  • the right side of “0” indicates a road surface gradient (uphill) on an uphill road (uphill).
  • the left side shows the road gradient (downhill) on the downhill road (downhill).
  • the road surface gradient absolute value
  • the road surface gradient increases as it goes to the right side of the drawing, that is, the degree of the upward gradient increases.
  • the road surface gradient absolute value
  • the road surface gradient increases as it goes to the left in the figure, that is, the degree of the downward gradient increases.
  • the road surface gradient is expressed by an angle (°) of the road surface with respect to a horizontal plane, or by a ratio (%) of a vertical distance to a predetermined horizontal distance.
  • the map shown in FIG. 6 is basically defined such that the additional deceleration gain is greater on downhill roads than on flat roads and uphill roads. Thereby, the correction is performed on the downhill road so that the additional deceleration (absolute value) is larger than that on the flat road and the uphill road. More specifically, the map shown in FIG. 6 is defined such that the additional deceleration gain increases as the road gradient (absolute value) on the downhill road increases, and as a result, as the degree of downward gradient increases, Correction is performed so that the additional deceleration (absolute value) increases. This map is specified so that the additional deceleration gain decreases as the road gradient (absolute value) on the uphill road increases. As a result, the additional deceleration (absolute Correction is performed so that (value) becomes smaller.
  • step S26 the controller 14 determines a torque reduction amount based on the additional deceleration corrected in step S25. Specifically, the controller 14 determines the amount of torque required to realize the additional deceleration due to a decrease in driving torque from the motor generator 4 or an increase in regenerative torque from the motor generator 4. After step S26, the controller 14 ends the additional deceleration setting process and returns to the main routine.
  • step S21 if not in turning operation of the steering wheel 6 (step S21: No), or, in step S23, if the steering speed is less than the threshold S 1 (step S23: No), the controller 14, The additional deceleration setting process is terminated without setting the additional deceleration, and the process returns to the main routine. In this case, the torque reduction amount is zero.
  • step S25 described above the additional deceleration set based on the steering speed is corrected by the additional deceleration gain corresponding to the road surface gradient.
  • correction using the additional deceleration gain is performed.
  • the additional deceleration may be set based on the steering speed and the road surface gradient. For example, a map in which additional deceleration to be set for the steering speed and road surface gradient is prepared, and the additional deceleration corresponding to the current steering speed and road surface gradient is set using such a map. do it.
  • FIG. 7 is a time chart showing temporal changes of various parameters related to vehicle attitude control when the vehicle 1 equipped with the vehicle control apparatus according to the first embodiment of the present invention is turned.
  • chart (a) shows the road surface gradient
  • chart (b) shows the steering angle
  • chart (c) shows the steering speed
  • chart (d) shows the additional deceleration
  • chart (e) shows The final target torque is shown
  • chart (f) shows the actual yaw rate.
  • the steering speed as shown in FIG. 7 (c) is a threshold value S 1 or more
  • acceleration with on the basis of the steering speed is set as shown in FIG. 7 (d)
  • FIG. 7D the solid line shows the additional deceleration set by the present embodiment
  • the broken line shows the additional deceleration set by the comparative example (FIG. 7 ( The same applies to e) and (f)).
  • the additional deceleration is corrected according to the road surface gradient.
  • the additional deceleration (see FIG. 5) corresponding to the steering speed is corrected by the additional deceleration gain (see FIG. 6) corresponding to the road surface gradient.
  • the additional deceleration is not corrected according to the road gradient, that is, the additional deceleration (see FIG. 5) according to the steering speed is used as it is.
  • the additional deceleration (absolute value) is greater in this embodiment than in the comparative example.
  • an additional deceleration gain having a relatively large value is set (see FIG. 6), and the additional deceleration gain is set by this additional deceleration gain. This is because the speed (absolute value) is corrected so as to increase.
  • the final target torque is set for each of the present embodiment and the comparative example, as shown in FIG. Specifically, the final target torque is smaller in this embodiment than in the comparative example. Then, by controlling the motor generator 4 so as to generate such a final target torque, an actual yaw rate as shown in FIG. As shown in FIG. 7 (f), in this embodiment, the actual yaw rate is generated in the vehicle 1 immediately when the steering wheel 6 starts to be cut (see the solid line), whereas in the comparative example, the steering wheel The actual yaw rate is generated in the vehicle 1 after the start of the cutting operation 6 (see the broken line).
  • the reason why the actual yaw rate generated by the vehicle attitude control differs between the present embodiment and the comparative example is as follows.
  • the vehicle in the vehicle roof is more than on a flat road.
  • the front part is in a submerged state (a state in which the amount of subsidence on the vehicle front side with respect to the vehicle rear side is large). In this state, the rigidity of the suspension 30 on the vehicle front side, that is, the rigidity of expansion and contraction of the spring of the suspension 30 is increased.
  • the spring of the suspension 30 on the front side of the vehicle is already compressed when traveling on the downhill road, if the vehicle attitude control is performed in this state, the vehicle on the front side of the vehicle when the deceleration is added by the control is performed. There is a tendency for subsidence to be insufficient. That is, since the spring of the suspension 30 on the vehicle front side is compressed when traveling on a downhill road, the spring is compressed more than when the spring is not compressed (when traveling on a flat road or an uphill road). Therefore, it is desirable to increase the additional deceleration in the vehicle attitude control.
  • the additional deceleration (absolute value) is increased when traveling on a downhill road.
  • the controller 14 performs correction using the additional deceleration gain so that the additional deceleration (absolute value) increases as the road gradient (absolute value) on the downhill road increases (FIG. 6), the additional deceleration (absolute value) increases as the degree of downward gradient increases.
  • the insufficiency of subsidence on the front side of the vehicle when the deceleration is added by the vehicle attitude control when traveling on the downhill road, and the steering wheel 6 is turned in.
  • the actual yaw rate can be promptly generated in the vehicle 1 at the start. Therefore, according to the present embodiment, it is possible to appropriately ensure the effect of improving the vehicle turning performance by the vehicle attitude control when traveling downhill.
  • the additional deceleration gain is linearly changed in accordance with the road surface gradient in the entire region of the road surface gradient (see FIG. 6). In this way, the additional deceleration gain is defined in this way.
  • the additional deceleration gain is increased as the road surface gradient (downhill gradient) increases, while on an uphill road (including a flat road), the additional deceleration is independent of the road surface gradient.
  • the gain may be a constant value (at least smaller than the downhill road).
  • the additional deceleration gain is set to a constant value regardless of the road gradient on both the downhill road and the uphill road, but the additional deceleration gain may be larger on the downhill road than on the uphill road. That is, the additional deceleration gain may be set to a first predetermined value on a downhill road, and the additional deceleration gain may be set to a second predetermined value that is smaller than the first predetermined value on an uphill road (including a flat road).
  • the present invention is applied to the vehicle 1 (corresponding to an EV vehicle) driven by the motor generator 4 .
  • a general vehicle driven by an engine The present invention can also be applied to.
  • the vehicle posture may be controlled by adding deceleration to the vehicle 1 by reducing the generated torque of the engine.
  • the generated torque of the engine may be reduced by retarding (retarding) the ignition timing of the spark plug.
  • the engine is a diesel engine
  • the generated torque of the engine may be reduced by reducing the fuel injection amount.
  • the present invention can be applied to a vehicle (HV vehicle) driven by an engine and a motor generator.
  • the road surface gradient is determined using the gradient sensor 12.
  • the road surface gradient may be determined using the vehicle longitudinal acceleration sensor 13 instead of the gradient sensor 12.
  • the road surface gradient is calculated based on the difference between the target acceleration (step S2 in FIG. 3) calculated from the accelerator pedal depression amount and the vehicle speed and the longitudinal acceleration (actual acceleration) detected by the vehicle longitudinal acceleration sensor 13. Judgment can be made. Specifically, when the actual acceleration is smaller than the target acceleration, it can be determined that the slope is ascending, and when the actual acceleration is greater than the target acceleration, it can be determined that the slope is descending. Based on the difference from the target acceleration, it is possible to determine the value of the road gradient, which is an ascending gradient or a descending gradient.
  • the gradient sensor 12 and the vehicle longitudinal acceleration sensor 13 correspond to an example of a gradient related value output device in the present invention.
  • the road surface gradient detected by the gradient sensor 12 and the longitudinal acceleration detected by the vehicle longitudinal acceleration sensor 13 correspond to examples of gradient-related values in the present invention.
  • FIG. 8 is a flowchart of the vehicle attitude control process according to the second embodiment of the present invention.
  • the vehicle attitude control process shown in FIG. 8 relates to vehicle attitude control performed during braking of the vehicle 1 (vehicle attitude control performed during driving of the vehicle 1 is the same as in FIG. 3).
  • vehicle attitude control performed during driving of the vehicle 1 is the same as in FIG. 3.
  • the description of the same process as the vehicle attitude control process of FIG. 3 will be omitted as appropriate. That is, processing and control not specifically described here are the same as those in the above-described embodiment.
  • step S31 the controller 14 acquires various sensor information related to the driving state of the vehicle 1.
  • the controller 14 detects the steering angle detected by the steering angle sensor 8, the accelerator pedal depression amount detected by the accelerator opening sensor 10, the brake pedal depression amount detected by the brake depression amount sensor 11, and the gradient sensor 12. Get road slope etc.
  • step S32 the controller 14 sets a target deceleration to be added to the vehicle 1 based on the driving state of the vehicle 1 acquired in step S31. Specifically, the controller 14 sets the target deceleration mainly based on the brake pedal depression amount.
  • step S33 the controller 14 sets a basic target braking force by the brake device 16 for realizing the target deceleration set in step S32.
  • step S34 the controller 14 executes an additional deceleration setting process (see FIG. 4), and causes the vehicle 1 to generate a deceleration based on the steering speed of the steering device. To determine the amount of torque reduction required to control the vehicle attitude. Since this additional deceleration setting process is the same as in the first embodiment, the description thereof is omitted here.
  • step S35 the controller 14 determines the final target braking force based on the basic target braking force determined in step S33 and the torque reduction amount determined in step S34. Specifically, the controller 14 sets the value obtained by subtracting the torque reduction amount (positive value) from the basic target braking force (negative value) as the final target braking force (negative value). That is, the controller 14 increases the braking force applied to the vehicle 1.
  • the controller 14 applies the basic target braking force as the final target braking force as it is.
  • step S36 the controller 14 sets command values for the hydraulic pump 20 and the valve unit 22 of the brake control system 18 in order to realize the final target braking force determined in step S35. That is, the controller 14 sets command values (control signals) for the hydraulic pump 20 and the valve unit 22 for generating the final target braking force from the brake device 16.
  • step S37 the controller 14 outputs the command value set in step S36 to the hydraulic pump 20 and the valve unit 22. After step S37, the controller 14 ends the vehicle attitude control process.
  • FIG. 9 is a time chart showing temporal changes of various parameters related to vehicle attitude control when the vehicle 1 equipped with the vehicle control device according to the second embodiment of the present invention is turned.
  • chart (a) shows the road surface gradient
  • chart (b) shows the steering angle
  • chart (c) shows the steering speed
  • chart (d) shows the additional deceleration
  • chart (e) shows the chart (e).
  • the final target braking force is shown
  • chart (f) shows the actual yaw rate.
  • charts (a) to (d) and (f) are the same as FIG. 7, and only chart (e) is different from FIG. Specifically, the chart (e) in FIG. 9 shows the final target braking force set according to the additional deceleration in the chart (d) in FIG.
  • the final target torque is a positive value, but in the chart (e) of FIG. 9, the final target braking force is a negative value.
  • the chart (e) in FIG. 9 corresponds to the chart (e) in FIG. 7 moved to the negative side.
  • the final target braking force in the chart (e) in FIG. 9 decreases between the times t11 and t12, similarly to the final target torque in the chart (e) in FIG. Also in this case, the final target braking force is smaller in the second embodiment than in the comparative example. Note that the final target braking force increases from time t11 to t12 in terms of absolute value.
  • the lack of subsidence on the front side of the vehicle when deceleration is applied by vehicle attitude control when traveling downhill is eliminated.
  • the actual yaw rate can be promptly generated in the vehicle 1 at the start of the turning operation of the steering wheel 6. Therefore, when traveling on a downhill road, the effect of improving the vehicle turning performance by the vehicle attitude control can be appropriately ensured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Regulating Braking Force (AREA)

Abstract

This vehicle control method has: a step for determining whether a steering device including a steering wheel 6 and the like has been turned, on the basis of a steering angle detected by a steering angle sensor 8; a step for decreasing the driving force of a motor generator 4 and applying deceleration to a vehicle 1 so as to control the vehicle attitude when the steering device is determined to have been turned; and a step for increasing the deceleration applied to the vehicle 1 when the road surface inclination detected by an inclination sensor 12 is a first value indicating a downward inclination, as compared to the deceleration applied when the road surface inclination detected by the inclination sensor 12 is a second value indicating a flatter road surface inclination than the first value detected by the inclination sensor 12.

Description

車両の制御方法、車両システム及び車両の制御装置VEHICLE CONTROL METHOD, VEHICLE SYSTEM, AND VEHICLE CONTROL DEVICE
 本発明は、車両姿勢を制御する車両の制御方法、車両システム及び車両の制御装置に関する。 The present invention relates to a vehicle control method, a vehicle system, and a vehicle control device that control a vehicle attitude.
 従来、スリップ等により車両の挙動が不安定になった場合に、車両の挙動を安全方向に制御する技術(例えば横滑り防止装置)が知られている。具体的には、車両のコーナリング時等に、車両にアンダーステアやオーバーステアの挙動が生じたことを検出し、それらを抑制するように車輪に適切な減速度を付与するようにしたものが知られている。 Conventionally, a technique (for example, a skid prevention device) for controlling the behavior of a vehicle in a safe direction when the behavior of the vehicle becomes unstable due to slip or the like is known. Specifically, it is known to detect that understeer or oversteer behavior has occurred in the vehicle during cornering of the vehicle, and to impart appropriate deceleration to the wheels to suppress them. ing.
 一方、上述したような車両の挙動が不安定になるような走行状態における安全性向上のための制御とは異なり、通常の走行状態にある車両のコーナリング時におけるドライバによる一連の操作(ブレーキング、ステアリングの切り込み、加速、及び、ステアリングの戻し等)が自然で安定したものとなるように、コーナリング時に減速度を調整するようにした車両運動制御装置が知られている。 On the other hand, unlike the above-described control for improving safety in a driving state where the behavior of the vehicle becomes unstable, a series of operations (braking, 2. Description of the Related Art A vehicle motion control device is known in which deceleration is adjusted during cornering so that steering incision, acceleration, steering return, and the like are natural and stable.
 更に、ドライバのステアリング操作に対応するヨーレート関連量(例えばヨー加速度)に応じて、エンジンやモータの生成トルクを低減させることにより、ドライバがステアリング操作を開始したときに減速度を迅速に車両に生じさせるようにした車両用挙動制御装置が提案されている(例えば特許文献1)。この装置によれば、カーブ進入初期における車両の回頭性が向上し、ステアリングの切り込み操作に対する応答性(つまり操安性)が向上する。これにより、ドライバの意図に沿った車両姿勢の制御を実現することができる。なお、以下では、このような制御を適宜「車両姿勢制御」と呼ぶ。 Further, by reducing the torque generated by the engine and motor in accordance with the yaw rate related amount (for example, yaw acceleration) corresponding to the driver's steering operation, a deceleration is quickly generated in the vehicle when the driver starts the steering operation. There has been proposed a behavior control device for a vehicle that is adapted to be made (for example, Patent Document 1). According to this device, the turning ability of the vehicle at the beginning of the curve approach is improved, and the response to the steering operation (that is, the operability) is improved. As a result, it is possible to realize vehicle attitude control in accordance with the driver's intention. Hereinafter, such control is appropriately referred to as “vehicle attitude control”.
特許第6112304号公報Japanese Patent No. 6112304
 上記したような車両姿勢制御においては、ステアリングの切り込み操作に応答して車両に減速度を付加することにより、車両上屋(サスペンションより上部)における車両前部を沈み込ませた車両姿勢を形成させることで、車両旋回性能を向上させるようにしている。しかしながら、従来の車両姿勢制御では、車両が降坂路(下り坂)を走行しているときに、車両姿勢制御による車両旋回性能を向上させることができない場合があった。これについて、図10を参照して具体的に説明する。 In the vehicle attitude control as described above, a vehicle attitude in which the front part of the vehicle in the vehicle roof (above the suspension) is depressed is formed by adding deceleration to the vehicle in response to the steering turning operation. Thus, the vehicle turning performance is improved. However, in the conventional vehicle posture control, there are cases where the vehicle turning performance by the vehicle posture control cannot be improved when the vehicle is traveling on a downhill road (downhill). This will be specifically described with reference to FIG.
 図10(a)は、平坦路の走行時における車両姿勢を模式的に示し、図10(b)は、降坂路の走行時における車両姿勢を模式的に示している。図10(a)及び(b)から明らかなように、降坂路の走行時には、平坦路の走行時よりも、車両上屋における車両前部が沈み込んだ状態(車両後方側に対する車両前方側の沈み込み量が大きい状態)となっている。この状態においては、車両前方側のサスペンションの剛性、つまりサスペンションのスプリングの伸縮の剛性が高まっている。したがって、降坂路の走行時には、車両前方側のサスペンションのスプリングが既に圧縮された状態であるため、この状態において車両姿勢制御を行うと、当該制御により減速度を付加したときの車両前方側の沈み込みが不足して、車両旋回性能を十分に向上させることができない場合があった。 FIG. 10 (a) schematically shows the vehicle posture when traveling on a flat road, and FIG. 10 (b) schematically shows the vehicle posture when traveling on a downhill road. As is clear from FIGS. 10A and 10B, when the vehicle is traveling on a downhill road, the vehicle front part in the vehicle roof is submerged than when the vehicle is traveling on a flat road (the vehicle front side relative to the vehicle rear side). The amount of sinking is large). In this state, the rigidity of the suspension on the vehicle front side, that is, the rigidity of expansion and contraction of the spring of the suspension is increased. Therefore, since the suspension spring on the vehicle front side is already compressed when traveling on a downhill road, if vehicle posture control is performed in this state, sinking on the vehicle front side when deceleration is added by this control In some cases, the turning performance of the vehicle cannot be sufficiently improved.
 本発明は、上述した従来技術の問題点を解決するためになされたものであり、操舵装置が切り込み操作されたときに車両に減速度を付加する車両姿勢制御を行う車両の制御方法、車両システム及び車両の制御装置において、降坂路の走行時において当該制御による車両旋回性能の改善効果を適切に確保することを目的とする。 The present invention has been made to solve the above-described problems of the prior art, and a vehicle control method and a vehicle system for performing vehicle attitude control for adding deceleration to a vehicle when a steering device is turned. And in a vehicle control apparatus, it aims at ensuring the improvement effect of the vehicle turning performance by the said control appropriately at the time of driving | running on a downhill road.
 上記の目的を達成するために、本発明は、車輪と、この車輪を駆動するための駆動力を生成する駆動源と、弾性部材を備えたサスペンションと、操舵装置の操舵角を検出する操舵角センサと、路面勾配に関連する路面勾配関連値を出力する勾配関連値出力器と、を有する車両の制御方法であって、操舵角センサにより検出された操舵角に基づき、操舵装置が切り込み操作されたか否かを判定する工程と、操舵装置が切り込み操作されたと判定されたときに、車両姿勢を制御するように、駆動源の駆動力を低下させて、車両に減速度を付加する工程と、勾配関連値出力器により出力された路面勾配関連値が下り勾配側の勾配を示す第1値であるときに、勾配関連値出力器により出力された路面勾配関連値が第1値よりも平坦側の勾配を示す第2値であるときよりも、車両に付加する減速度を大きくする工程と、を有する、ことを特徴とする。 In order to achieve the above object, the present invention provides a wheel, a drive source for generating a driving force for driving the wheel, a suspension including an elastic member, and a steering angle for detecting a steering angle of a steering device. A vehicle control method including a sensor and a gradient related value output device that outputs a road surface gradient related value related to a road surface gradient, wherein a steering device is turned on based on a steering angle detected by a steering angle sensor. A step of determining whether or not the steering device has been turned, and a step of reducing the driving force of the driving source so as to control the vehicle posture and adding a deceleration to the vehicle, When the road surface gradient related value output by the gradient related value output device is the first value indicating the gradient on the downward gradient side, the road surface gradient related value output by the gradient related value output device is flatter than the first value. Showing the slope of Than when a value, and a step of increasing the deceleration added to the vehicle, and characterized in that.
 このように構成された本発明では、操舵装置が切り込み操作されたときに、車両姿勢を制御するように車両に減速度が付加される、つまり車両姿勢制御が行われる。そして、本願発明では、勾配関連値出力器により出力された路面勾配関連値が下り勾配側の勾配を示す第1値であるときに、路面勾配関連値が第1値よりも平坦側の勾配を示す第2値であるときよりも、車両姿勢制御において車両に付加する減速度を大きくする。これにより、降坂路の走行時において車両姿勢制御により減速度を付加したときの車両前方側の沈み込み不足を解消して、操舵装置の切り込み操作開始時に、ヨーレートを速やかに車両に発生させることができる。したがって、本発明によれば、降坂路の走行時において、車両姿勢制御による車両旋回性能の改善効果を適切に確保することができる。 In the present invention configured as described above, when the steering device is turned, a deceleration is added to the vehicle so as to control the vehicle posture, that is, vehicle posture control is performed. In the present invention, when the road surface gradient related value output by the gradient related value output device is the first value indicating the gradient on the downward gradient side, the road surface gradient related value is a flat side of the first value. The deceleration applied to the vehicle in the vehicle attitude control is made larger than when the second value is shown. As a result, it is possible to solve the shortage of subsidence on the front side of the vehicle when deceleration is applied by vehicle posture control when traveling on a downhill road, and to quickly generate the yaw rate at the start of the steering device turning operation. it can. Therefore, according to the present invention, it is possible to appropriately ensure the effect of improving the vehicle turning performance by the vehicle attitude control when traveling downhill.
 他の観点では、上記の目的を達成するために、本発明は、車輪と、この車輪により駆動されて回生発電を行うジェネレータと、弾性部材を備えたサスペンションと、操舵装置の操舵角を検出する操舵角センサと、路面勾配に関連する路面勾配関連値を出力する勾配関連値出力器と、を有する車両の制御方法であって、操舵角センサにより検出された操舵角に基づき、操舵装置が切り込み操作されたか否かを判定する工程と、操舵装置が切り込み操作されたと判定されたときに、車両姿勢を制御するように、ジェネレータに回生発電を行わせて、車両に減速度を付加する工程と、勾配関連値出力器により出力された路面勾配関連値が下り勾配側の勾配を示す第1値であるときに、勾配関連値出力器により出力された路面勾配関連値が第1値よりも平坦側の勾配を示す第2値であるときよりも、車両に付加する減速度を大きくする工程と、を有する、ことを特徴とする。
 このように構成された本発明によっても、降坂路の走行時において、車両姿勢制御による車両旋回性能を適切に確保することができる。
In another aspect, in order to achieve the above object, the present invention detects a steering angle of a wheel, a generator driven by the wheel to generate regenerative power, a suspension including an elastic member, and a steering device. A vehicle control method having a steering angle sensor and a gradient related value output device that outputs a road surface gradient related value related to a road surface gradient, wherein the steering device cuts in based on the steering angle detected by the steering angle sensor. A step of determining whether or not the steering device has been operated, and a step of causing the generator to perform regenerative power generation and adding a deceleration to the vehicle so as to control the vehicle attitude when it is determined that the steering device has been turned and operated. When the road surface gradient related value output by the gradient related value output device is the first value indicating the gradient on the downward gradient side, the road surface gradient related value output by the gradient related value output device is greater than the first value. Than when a second value indicating the slope of the flat side, and a step of increasing the deceleration added to the vehicle, and characterized in that.
According to the present invention configured as described above, the vehicle turning performance by the vehicle attitude control can be appropriately ensured when traveling on the downhill road.
 他の観点では、上記の目的を達成するために、本発明は、車輪と、この車輪に制動力を付加する制動装置と、弾性部材を備えたサスペンションと、操舵装置の操舵角を検出する操舵角センサと、路面勾配に関連する路面勾配関連値を出力する勾配関連値出力器と、を有する車両の制御方法であって、操舵角センサにより検出された操舵角に基づき、操舵装置が切り込み操作されたか否かを判定する工程と、操舵装置が切り込み操作されたと判定されたときに、車両姿勢を制御するように、制動装置より制動力を付加させて、車両に減速度を付加する工程と、勾配関連値出力器により出力された路面勾配関連値が下り勾配側の勾配を示す第1値であるときに、勾配関連値出力器により出力された路面勾配関連値が第1値よりも平坦側の勾配を示す第2値であるときよりも、車両に付加する減速度を大きくする工程と、を有する、ことを特徴とする。
 このように構成された本発明によっても、降坂路の走行時において、車両姿勢制御による車両旋回性能を適切に確保することができる。
In another aspect, in order to achieve the above object, the present invention provides a wheel, a braking device that applies a braking force to the wheel, a suspension that includes an elastic member, and a steering that detects a steering angle of the steering device. A vehicle control method having an angle sensor and a gradient-related value output device that outputs a road surface gradient-related value related to a road surface gradient, and the steering device performs a cutting operation based on a steering angle detected by the steering angle sensor A step of determining whether or not the steering device has been turned, and a step of adding a deceleration force to the vehicle by applying a braking force from the braking device so as to control the vehicle posture when it is determined that the steering device has been turned. When the road surface gradient related value output by the gradient related value output device is the first value indicating the gradient on the downward gradient side, the road surface gradient related value output by the gradient related value output device is flatter than the first value. Show side slope Than when the second value, and a step of increasing the deceleration added to the vehicle, and characterized in that.
According to the present invention configured as described above, the vehicle turning performance by the vehicle attitude control can be appropriately ensured when traveling on the downhill road.
 本発明において、好ましくは、第2値は、路面勾配関連値が上り勾配側の勾配を示す値である。
 このように構成された本発明によれば、走行路が降坂路である場合(路面勾配関連値が第1値)に、走行路が登坂路である場合(路面勾配関連値が第2値)よりも、車両姿勢制御において車両に付加する減速度を確実に大きくして、車両旋回性能を効果的に確保することができる。
In the present invention, it is preferable that the second value is a value at which the road surface gradient related value indicates the gradient on the uphill side.
According to the present invention configured as described above, when the traveling road is a downhill road (the road surface gradient related value is the first value), the traveling road is the uphill road (the road surface gradient related value is the second value). Rather, the deceleration applied to the vehicle in the vehicle attitude control can be reliably increased, and the vehicle turning performance can be effectively ensured.
 本発明において、好ましくは、第2値は、路面勾配関連値が平坦を示す値である。
 このように構成された本発明によれば、走行路が降坂路である場合(路面勾配関連値が第1値)に、走行路が平坦路である場合(路面勾配関連値が第2値(典型的には略0))よりも、車両姿勢制御において車両に付加する減速度を確実に大きくして、車両旋回性能を効果的に確保することができる。
In the present invention, preferably, the second value is a value indicating that the road gradient related value is flat.
According to the present invention thus configured, when the traveling road is a downhill road (the road surface gradient related value is the first value), when the traveling road is a flat road (the road surface gradient related value is the second value ( Typically, the deceleration applied to the vehicle in the vehicle attitude control can be surely increased more than substantially 0)) to effectively ensure the vehicle turning performance.
 他の観点では、上記の目的を達成するために、本発明は、車輪と、この車輪を駆動するための駆動力を生成する駆動源と、弾性部材を備えたサスペンションと、操舵装置の操舵角を検出する操舵角センサと、路面勾配に関連する路面勾配関連値を出力する勾配関連値出力器と、プロセッサと、を有する車両システムであって、プロセッサは、操舵角センサにより検出された操舵角に基づき、操舵装置が切り込み操作されたか否かを判定し、操舵装置が切り込み操作されたと判定されたときに、車両姿勢を制御するように、駆動源の駆動力を低下させて、車両に減速度を付加し、勾配関連値出力器により出力された路面勾配関連値が下り勾配側の勾配を示す第1値であるときに、勾配関連値出力器により出力された路面勾配関連値が第1値よりも平坦側の勾配を示す第2値であるときよりも、車両に付加する減速度を大きくする、ように構成されている、ことを特徴とする。 In another aspect, in order to achieve the above object, the present invention provides a wheel, a driving source that generates a driving force for driving the wheel, a suspension including an elastic member, and a steering angle of the steering device. A vehicle system having a steering angle sensor that detects a road surface gradient, a gradient related value output device that outputs a road surface gradient related value related to the road surface gradient, and a processor, wherein the processor detects the steering angle detected by the steering angle sensor Based on the above, it is determined whether or not the steering device has been turned, and when it is determined that the steering device has been turned, the driving force of the drive source is reduced so as to control the vehicle posture. When the road surface gradient related value output by the gradient related value output device is the first value indicating the downward gradient, the road surface gradient related value output by the gradient related value output device is the first. Value Than when also the second value indicating the slope of the flat side to increase the deceleration added to the vehicle and is configured to, characterized in that.
 他の観点では、上記の目的を達成するために、本発明は、車輪と、この車輪により駆動されて回生発電を行うジェネレータと、弾性部材を備えたサスペンションと、操舵装置の操舵角を検出する操舵角センサと、路面勾配に関連する路面勾配関連値を出力する勾配関連値出力器と、プロセッサと、を有する車両システムであって、プロセッサは、操舵角センサにより検出された操舵角に基づき、操舵装置が切り込み操作されたか否かを判定し、操舵装置が切り込み操作されたと判定されたときに、車両姿勢を制御するように、ジェネレータに回生発電を行わせて、車両に減速度を付加し、勾配関連値出力器により出力された路面勾配関連値が下り勾配側の勾配を示す第1値であるときに、勾配関連値出力器により出力された路面勾配関連値が第1値よりも平坦側の勾配を示す第2値であるときよりも、車両に付加する減速度を大きくする、ように構成されている、ことを特徴とする。 In another aspect, in order to achieve the above object, the present invention detects a steering angle of a wheel, a generator driven by the wheel to generate regenerative power, a suspension including an elastic member, and a steering device. A vehicle system having a steering angle sensor, a gradient related value output device that outputs a road surface gradient related value related to the road surface gradient, and a processor, the processor based on the steering angle detected by the steering angle sensor, It is determined whether or not the steering device has been turned, and when it is determined that the steering device has been turned, the generator is caused to perform regenerative power generation to add deceleration to the vehicle so as to control the vehicle attitude. When the road surface gradient related value output by the gradient related value output device is the first value indicating the gradient on the downward gradient side, the road surface gradient related value output by the gradient related value output device Than when than the first value is a second value indicating the slope of the flat side to increase the deceleration added to the vehicle and is configured to, characterized in that.
 他の観点では、上記の目的を達成するために、本発明は、車輪と、この車輪に制動力を付加する制動装置と、弾性部材を備えたサスペンションと、操舵装置の操舵角を検出する操舵角センサと、路面勾配に関連する路面勾配関連値を出力する勾配関連値出力器と、プロセッサと、を有する車両システムであって、プロセッサは、操舵角センサにより検出された操舵角に基づき、操舵装置が切り込み操作されたか否かを判定し、操舵装置が切り込み操作されたと判定されたときに、車両姿勢を制御するように、制動装置より制動力を付加させて、車両に減速度を付加し、勾配関連値出力器により出力された路面勾配関連値が下り勾配側の勾配を示す第1値であるときに、勾配関連値出力器により出力された路面勾配関連値が第1値よりも平坦側の勾配を示す第2値であるときよりも、車両に付加する減速度を大きくする、ように構成されている、ことを特徴とする。 In another aspect, in order to achieve the above object, the present invention provides a wheel, a braking device that applies a braking force to the wheel, a suspension that includes an elastic member, and a steering that detects a steering angle of the steering device. A vehicle system having an angle sensor, a gradient-related value output unit that outputs a road-gradient-related value related to the road gradient, and a processor, the processor steering based on a steering angle detected by the steering angle sensor It is determined whether or not the device has been turned, and when it is determined that the steering device has been turned, a braking force is applied from the braking device to add a deceleration to the vehicle so as to control the vehicle posture. When the road surface gradient related value output by the gradient related value output device is the first value indicating the gradient on the downward gradient side, the road surface gradient related value output by the gradient related value output device is flatter than the first value. Than when the slope is a second value indicative of, increasing the deceleration added to the vehicle and is configured to, characterized in that.
 他の観点では、上記の目的を達成するために、本発明は、弾性部材を備えたサスペンションを有する車両の制御装置であって、操舵装置が切り込み操作されたときに、車両に減速度を付加することにより車両姿勢を制御する車両姿勢制御手段を有し、この車両姿勢制御手段は、車両の走行路面が下り勾配であるときには、そうでないときよりも、車両に付加する減速度を大きくする、ことを特徴とする。 In another aspect, in order to achieve the above object, the present invention provides a control device for a vehicle having a suspension provided with an elastic member, and adds deceleration to the vehicle when the steering device is turned. The vehicle attitude control means for controlling the vehicle attitude by making the vehicle attitude control means increase the deceleration applied to the vehicle when the traveling road surface of the vehicle is a downward slope than when it is not. It is characterized by that.
 このように構成された本発明による車両システム及び車両の制御装置によっても、降坂路の走行時において、車両姿勢制御による車両旋回性能を適切に確保することができる。 Also with the vehicle system and the vehicle control device according to the present invention configured as described above, it is possible to appropriately ensure the vehicle turning performance by the vehicle attitude control when traveling on the downhill road.
 本発明によれば、操舵装置が切り込み操作されたときに車両に減速度を付加する車両姿勢制御を行う車両の制御方法、車両システム及び車両の制御装置において、降坂路の走行時において当該制御による車両旋回性能の改善効果を適切に確保することができる。 According to the present invention, in a vehicle control method, a vehicle system, and a vehicle control device that perform vehicle attitude control that adds deceleration to a vehicle when a steering device is turned, in the downhill road, according to the control. The improvement effect of vehicle turning performance can be ensured appropriately.
本発明の実施形態による車両の制御装置を搭載した車両の全体構成を示すブロック図である。1 is a block diagram showing an overall configuration of a vehicle equipped with a vehicle control device according to an embodiment of the present invention. 本発明の実施形態による車両の制御装置の電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of the control apparatus of the vehicle by embodiment of this invention. 本発明の第1実施形態による車両姿勢制御処理のフローチャートである。It is a flowchart of the vehicle attitude | position control process by 1st Embodiment of this invention. 本発明の第1実施形態による付加減速度設定処理のフローチャートである。It is a flowchart of the additional deceleration setting process by 1st Embodiment of this invention. 本発明の第1実施形態による付加減速度と操舵速度との関係を示したマップである。It is the map which showed the relationship between the additional deceleration by 1st Embodiment of this invention, and a steering speed. 本発明の第1実施形態による付加減速度を補正するためのゲイン(付加減速度ゲイン)を規定したマップである。It is the map which prescribed | regulated the gain (additional deceleration gain) for correct | amending the additional deceleration by 1st Embodiment of this invention. 本発明の第1実施形態による車両の制御装置を搭載した車両が旋回を行う場合の、車両姿勢制御に関するパラメータの時間変化を示したタイムチャートである。It is the time chart which showed the time change of the parameter regarding vehicle posture control in case the vehicles carrying the control device of vehicles by a 1st embodiment of the present invention turn. 本発明の第2実施形態による車両姿勢制御処理のフローチャートである。It is a flowchart of the vehicle attitude | position control process by 2nd Embodiment of this invention. 本発明の第2実施形態による車両の制御装置を搭載した車両が旋回を行う場合の、車両姿勢制御に関するパラメータの時間変化を示したタイムチャートである。It is the time chart which showed the time change of the parameter regarding vehicle posture control when the vehicle carrying the vehicle control apparatus by 2nd Embodiment of this invention turns. 平坦路及び降坂路の走行時における車両姿勢を示す模式図である。It is a schematic diagram which shows the vehicle attitude | position at the time of driving | running | working on a flat road and a downhill road.
 以下、添付図面を参照して、本発明の実施形態による車両の制御装置を説明する。 Hereinafter, a vehicle control apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings.
<システム構成>
 まず、図1により、本発明の実施形態による車両の制御装置を搭載した車両のシステム構成を説明する。図1は、本発明の実施形態による車両の制御装置を搭載した車両の全体構成を示すブロック図である。
<System configuration>
First, a system configuration of a vehicle equipped with a vehicle control device according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a block diagram showing the overall configuration of a vehicle equipped with a vehicle control apparatus according to an embodiment of the present invention.
 図1において、符号1は、本実施形態による車両の制御装置を搭載した車両を示す。車両1には、前輪2を駆動する機能(つまり電動機としての機能)と、前輪2により駆動されて回生発電を行う機能(つまり発電機としての機能)と、を有するモータジェネレータ4が搭載されている。モータジェネレータ4は、減速機5を介して前輪2との間で力が伝達され、また、インバータ3を介してコントローラ14により制御される。更に、モータジェネレータ4は、バッテリ25に接続されており、駆動力を発生するときにはバッテリ25から電力が供給され、回生したときにはバッテリ25に電力を供給してバッテリ25を充電する。 In FIG. 1, reference numeral 1 denotes a vehicle equipped with a vehicle control device according to the present embodiment. The vehicle 1 is equipped with a motor generator 4 having a function of driving the front wheels 2 (that is, a function as an electric motor) and a function of being driven by the front wheels 2 and performing regenerative power generation (that is, a function as a generator). Yes. The motor generator 4 is transmitted with force from the front wheel 2 through the speed reducer 5, and is controlled by the controller 14 through the inverter 3. Further, the motor generator 4 is connected to the battery 25, and when the driving force is generated, the electric power is supplied from the battery 25. When the motor generator 4 is regenerated, the electric power is supplied to the battery 25 to charge the battery 25.
 また、車両1は、当該車両1を操舵するための操舵装置(ステアリングホイール6など)と、この操舵装置においてステアリングホイール6に連結されたステアリングコラム(図示せず)の回転角度を検出する操舵角センサ8と、アクセルペダルの開度に相当するアクセルペダル踏込量を検出するアクセル開度センサ10と、ブレーキペダルの踏込量を検出するブレーキ踏込量センサ11と、車両1が走行する路面の路面勾配(路面の傾斜)を検出する勾配センサ12と、車両1の前後方向の加速度(前後加速度)を検出する車両前後加速度センサ13と、を有する。これらの各センサは、それぞれの検出値をコントローラ14に出力する。このコントローラ14は、例えばPCM(Power-train Control Module)などを含んで構成される。更に、車両1の各車輪は、弾性部材(典型的にはスプリング)やサスペンションアームなどを含むサスペンション30を介して、車体に懸架されている。 Further, the vehicle 1 is a steering angle for detecting a rotation angle of a steering device (steering wheel 6 or the like) for steering the vehicle 1 and a steering column (not shown) connected to the steering wheel 6 in the steering device. A sensor 8, an accelerator opening sensor 10 for detecting an accelerator pedal depression amount corresponding to an accelerator pedal opening, a brake depression amount sensor 11 for detecting a brake pedal depression amount, and a road gradient of a road surface on which the vehicle 1 travels. The vehicle includes a gradient sensor 12 that detects (road surface inclination) and a vehicle longitudinal acceleration sensor 13 that detects longitudinal acceleration (longitudinal acceleration) of the vehicle 1. Each of these sensors outputs a detected value to the controller 14. The controller 14 includes, for example, a PCM (Power-train Control Module). Further, each wheel of the vehicle 1 is suspended from the vehicle body via a suspension 30 including an elastic member (typically a spring) and a suspension arm.
 また、車両1は、各車輪に設けられたブレーキ装置(制動装置)16のブレーキキャリパにブレーキ液圧を供給するブレーキ制御システム18を備えている。ブレーキ制御システム18は、各車輪に設けられたブレーキ装置16において制動力を発生させるために必要なブレーキ液圧を生成する液圧ポンプ20と、各車輪のブレーキ装置16への液圧供給ラインに設けられた、液圧ポンプ20から各車輪のブレーキ装置16へ供給される液圧を制御するためのバルブユニット22(具体的にはソレノイド弁)と、液圧ポンプ20から各車輪のブレーキ装置16へ供給される液圧を検出する液圧センサ24と、を備えている。液圧センサ24は、例えば各バルブユニット22とその下流側の液圧供給ラインとの接続部に配置され、各バルブユニット22の下流側の液圧を検出し、検出値をコントローラ14に出力する。 Further, the vehicle 1 includes a brake control system 18 that supplies brake fluid pressure to a brake caliper of a brake device (braking device) 16 provided on each wheel. The brake control system 18 includes a hydraulic pump 20 that generates a brake hydraulic pressure necessary to generate a braking force in the brake device 16 provided on each wheel, and a hydraulic pressure supply line to the brake device 16 of each wheel. A provided valve unit 22 (specifically a solenoid valve) for controlling the hydraulic pressure supplied from the hydraulic pump 20 to the brake device 16 of each wheel, and the brake device 16 of each wheel from the hydraulic pump 20. And a hydraulic pressure sensor 24 for detecting the hydraulic pressure supplied to. The hydraulic pressure sensor 24 is disposed, for example, at a connection portion between each valve unit 22 and the hydraulic pressure supply line on the downstream side thereof, detects the hydraulic pressure on the downstream side of each valve unit 22, and outputs the detected value to the controller 14. .
 次に、図2により、本発明の実施形態による車両の制御装置の電気的構成を説明する。図2は、本発明の実施形態による車両の制御装置の電気的構成を示すブロック図である。 Next, the electrical configuration of the vehicle control apparatus according to the embodiment of the present invention will be described with reference to FIG. FIG. 2 is a block diagram showing an electrical configuration of the vehicle control apparatus according to the embodiment of the present invention.
 本実施形態によるコントローラ14(車両の制御装置)は、上述したセンサ8、10、11、12、13の検出信号の他、車両1の運転状態を検出する各種センサが出力した検出信号に基づいて、モータジェネレータ4及びブレーキ制御システム18に対する制御を行う。具体的には、コントローラ14は、車両1を駆動するときには、車両1に付与すべき目標トルク(駆動トルク)を求めて、この目標トルクをモータジェネレータ4から発生させるようにインバータ3に対して制御信号を出力する。他方で、コントローラ14は、車両1を制動させるときには、車両1に付与すべき目標回生トルクを求めて、この目標回生トルクをモータジェネレータ4から発生させるようにインバータ3に対して制御信号を出力する。また、コントローラ14は、車両1を制動させるときに、このような回生トルクを用いる代わりに又は回生トルクを用いると共に、車両1に付与すべき目標制動力を求めて、この目標制動力を実現するようにブレーキ制御システム18に対して制御信号を出力してもよい。この場合、コントローラ14は、ブレーキ制御システム18の液圧ポンプ20及びバルブユニット22を制御することで、ブレーキ装置16により所望の制動力を発生させるようにする。 The controller 14 (vehicle control device) according to the present embodiment is based on detection signals output from various sensors that detect the driving state of the vehicle 1, in addition to the detection signals of the sensors 8, 10, 11, 12, and 13 described above. The motor generator 4 and the brake control system 18 are controlled. Specifically, when driving the vehicle 1, the controller 14 obtains a target torque (drive torque) to be applied to the vehicle 1 and controls the inverter 3 to generate the target torque from the motor generator 4. Output a signal. On the other hand, when braking the vehicle 1, the controller 14 obtains a target regenerative torque to be applied to the vehicle 1 and outputs a control signal to the inverter 3 so that the target regenerative torque is generated from the motor generator 4. . In addition, when braking the vehicle 1, the controller 14 uses the regenerative torque instead of or uses the regenerative torque and obtains the target braking force to be applied to the vehicle 1 to realize the target braking force. Thus, a control signal may be output to the brake control system 18. In this case, the controller 14 controls the hydraulic pump 20 and the valve unit 22 of the brake control system 18 so that a desired braking force is generated by the brake device 16.
 コントローラ14(ブレーキ制御システム18も同様)は、1つ以上のプロセッサ、当該プロセッサ上で解釈実行される各種のプログラム(OSなどの基本制御プログラムや、OS上で起動され特定機能を実現するアプリケーションプログラムを含む)、及びプログラムや各種のデータを記憶するためのROMやRAMの如き内部メモリを備えるコンピュータにより構成される。
 詳細は後述するが、コントローラ14は、本発明における車両の制御装置に相当する。また、コントローラ14は、本発明における車両姿勢制御手段として機能する。更に、コントローラ14、車輪(前輪2及び後輪)、モータジェネレータ4、操舵角センサ8、勾配センサ12、車両前後加速度センサ13、及びサスペンション30を少なくとも含むシステムは、本発明における車両システムに相当する。
The controller 14 (same as the brake control system 18) includes one or more processors, and various programs that are interpreted and executed on the processors (basic control programs such as an OS and application programs that are activated on the OS and realize specific functions And a computer having an internal memory such as a ROM or RAM for storing programs and various data.
Although details will be described later, the controller 14 corresponds to a vehicle control device in the present invention. Further, the controller 14 functions as a vehicle attitude control means in the present invention. Furthermore, a system including at least the controller 14, the wheels (front wheels 2 and rear wheels), the motor generator 4, the steering angle sensor 8, the gradient sensor 12, the vehicle longitudinal acceleration sensor 13, and the suspension 30 corresponds to the vehicle system in the present invention. .
 なお、図1では、ステアリングホイール6に連結されたステアリングコラムの回転角度(操舵角センサ8により検出される角度)を操舵角として用いる例を示したが、ステアリングコラムの回転角度の代わりに又はステアリングコラムの回転角度と共に、操舵系における各種状態量(アシストトルクを付与するモータの回転角や、ラックアンドピニオンにおけるラックの変位等)を操舵角として用いてもよい。 1 shows an example in which the rotation angle of the steering column coupled to the steering wheel 6 (the angle detected by the steering angle sensor 8) is used as the steering angle, but instead of the rotation angle of the steering column or the steering In addition to the rotation angle of the column, various state quantities in the steering system (rotation angle of the motor that applies assist torque, rack displacement in the rack and pinion, etc.) may be used as the steering angle.
<第1実施形態>
 次に、本発明の第1実施形態による車両姿勢制御について説明する。まず、図3により、本発明の第1実施形態において車両の制御装置が行う車両姿勢制御処理の全体的な流れを説明する。図3は、本発明の第1実施形態による車両姿勢制御処理のフローチャートである。
<First Embodiment>
Next, vehicle attitude control according to the first embodiment of the present invention will be described. First, the overall flow of the vehicle attitude control process performed by the vehicle control device in the first embodiment of the present invention will be described with reference to FIG. FIG. 3 is a flowchart of the vehicle attitude control process according to the first embodiment of the present invention.
 図3の車両姿勢制御処理は、車両1のイグニッションがオンにされ、車両の制御装置に電源が投入された場合に起動され、所定周期(例えば50ms)で繰り返し実行される。
 車両姿勢制御処理が開始されると、図3に示すように、ステップS1において、コントローラ14は車両1の運転状態に関する各種センサ情報を取得する。具体的には、コントローラ14は、操舵角センサ8が検出した操舵角、アクセル開度センサ10が検出したアクセルペダル踏込量(アクセルペダル開度)、ブレーキ踏込量センサ11が検出したブレーキペダル踏込量、勾配センサ12が検出した路面勾配、車両前後加速度センサ13が検出した前後加速度、液圧センサ24が検出した液圧等を含む、上述した各種センサが出力した検出信号を運転状態に関する情報として取得する。
The vehicle attitude control process of FIG. 3 is started when the ignition of the vehicle 1 is turned on and power is turned on to the vehicle control device, and is repeatedly executed at a predetermined cycle (for example, 50 ms).
When the vehicle attitude control process is started, as shown in FIG. 3, in step S <b> 1, the controller 14 acquires various sensor information related to the driving state of the vehicle 1. Specifically, the controller 14 detects the steering angle detected by the steering angle sensor 8, the accelerator pedal depression amount (accelerator pedal opening) detected by the accelerator opening sensor 10, and the brake pedal depression amount detected by the brake depression amount sensor 11. The detection signals output by the various sensors described above, including the road surface gradient detected by the gradient sensor 12, the longitudinal acceleration detected by the vehicle longitudinal acceleration sensor 13, the hydraulic pressure detected by the hydraulic pressure sensor 24, and the like are acquired as information related to the driving state. To do.
 次に、ステップS2において、コントローラ14は、ステップS1において取得された車両1の運転状態に基づき、車両1に付加すべき目標加速度又は目標減速度を設定する。具体的には、コントローラ14は、アクセルペダル踏込量及びブレーキペダル踏込量などに基づき、目標加速度又は目標減速度を設定する。基本的には、コントローラ14は、アクセルペダル踏込量が大きいほど、目標加速度を大きくし、また、ブレーキペダル踏込量が大きいほど、目標減速度を大きくする。このようなペダル踏込量以外にも、車速やペダルの踏込速度や踏戻速度なども考慮に入れて、目標加速度又は目標減速度を設定するのがよい。 Next, in step S2, the controller 14 sets a target acceleration or a target deceleration to be added to the vehicle 1 based on the driving state of the vehicle 1 acquired in step S1. Specifically, the controller 14 sets a target acceleration or a target deceleration based on the accelerator pedal depression amount, the brake pedal depression amount, and the like. Basically, the controller 14 increases the target acceleration as the accelerator pedal depression amount increases, and increases the target deceleration as the brake pedal depression amount increases. In addition to the pedal depression amount, it is preferable to set the target acceleration or the target deceleration in consideration of the vehicle speed, the pedal depression speed, the stepping-back speed, and the like.
 次いで、ステップS3において、コントローラ14は、ステップS2で目標加速度を設定した場合には、この目標加速度を実現するためのモータジェネレータ4の基本目標トルクを設定し、他方で、ステップS2で目標減速度を設定した場合には、この目標減速度を実現するためのモータジェネレータ4の基本目標回生トルクを設定する。 Next, in step S3, when the target acceleration is set in step S2, the controller 14 sets the basic target torque of the motor generator 4 for realizing the target acceleration, and on the other hand, the target deceleration in step S2. Is set, the basic target regenerative torque of the motor generator 4 for realizing this target deceleration is set.
 また、ステップS2及びS3の処理と並行して、ステップS4において、コントローラ14は付加減速度設定処理を実行し、操舵装置の操舵速度に基づき、車両1に減速度を発生させることで車両姿勢を制御するために必要なトルク低減量を決定する。この付加減速度設定処理の詳細は後述する。 In parallel with the processing in steps S2 and S3, in step S4, the controller 14 executes additional deceleration setting processing, and generates vehicle deceleration by generating deceleration on the basis of the steering speed of the steering device. The amount of torque reduction necessary for control is determined. Details of this additional deceleration setting process will be described later.
 次に、ステップS5において、コントローラ14は、車両1が駆動されているか否か、換言すると車両1が制動されていないか否かを判定する。1つの例では、コントローラ14は、ステップS3において基本目標トルクを設定した場合(つまりステップS2において目標加速度を設定した場合)には、車両1が駆動されていると判定する一方で、ステップS3において基本目標回生トルクを設定した場合(つまりステップS2において目標減速度を設定した場合)には、車両1が駆動されていないと判定する。他の例では、コントローラ14は、アクセル開度センサ10及びブレーキ踏込量センサ11の検出信号に基づき当該判定を行う。この例では、コントローラ14は、アクセル開度センサ10により検出されたアクセルペダル踏込量が0より大きい場合、つまりアクセル開度センサ10によりアクセルペダルの踏み込みが検出された場合には、車両1が駆動されていると判定する。また、コントローラ14は、ブレーキ踏込量センサ11により検出されたブレーキペダル踏込量が0より大きい場合、つまりブレーキ踏込量センサ11によりブレーキペダルの踏み込みが検出された場合には、車両1が駆動されていないと判定する。 Next, in step S5, the controller 14 determines whether the vehicle 1 is driven, in other words, whether the vehicle 1 is not braked. In one example, when the basic target torque is set in step S3 (that is, when the target acceleration is set in step S2), the controller 14 determines that the vehicle 1 is driven while in step S3. When the basic target regenerative torque is set (that is, when the target deceleration is set in step S2), it is determined that the vehicle 1 is not driven. In another example, the controller 14 performs the determination based on detection signals from the accelerator opening sensor 10 and the brake depression amount sensor 11. In this example, the controller 14 drives the vehicle 1 when the accelerator pedal depression amount detected by the accelerator opening sensor 10 is larger than 0, that is, when the accelerator pedal depression is detected by the accelerator opening sensor 10. It is determined that Further, the controller 14 drives the vehicle 1 when the brake pedal depression amount detected by the brake depression amount sensor 11 is larger than 0, that is, when the brake pedal depression amount is detected by the brake depression amount sensor 11. Judge that there is no.
 ステップS5において車両1が駆動されていると判定された場合(ステップS5:Yes)、コントローラ14は、ステップS6において、ステップS3において設定した基本目標トルクと、ステップS4において設定したトルク低減量に基づき、最終目標トルクを決定する。具体的には、コントローラ14は、基本目標トルクからトルク低減量を減算した値を最終目標トルクとする。つまり、コントローラ14は、車両1に付与する駆動トルクを低減させるようにする。なお、ステップS4においてトルク低減量が設定されなかった場合には(つまりトルク低減量が0である場合)、コントローラ14は、基本目標トルクをそのまま最終目標トルクとして適用する。 When it is determined in step S5 that the vehicle 1 is being driven (step S5: Yes), the controller 14 is based on the basic target torque set in step S3 and the torque reduction amount set in step S4 in step S6. The final target torque is determined. Specifically, the controller 14 sets a value obtained by subtracting the torque reduction amount from the basic target torque as the final target torque. That is, the controller 14 reduces the drive torque applied to the vehicle 1. When the torque reduction amount is not set in step S4 (that is, when the torque reduction amount is 0), the controller 14 applies the basic target torque as the final target torque as it is.
 次いで、ステップS7において、コントローラ14は、ステップS6において決定した最終目標トルクを実現するためのインバータ3の指令値(インバータ指令値)を設定する。つまり、コントローラ14は、最終目標トルクをモータジェネレータ4から発生させるためのインバータ指令値(制御信号)を設定する。そして、ステップS10において、コントローラ14は、ステップS7において設定したインバータ指令値をインバータ3に出力する。このステップS10の後、コントローラ14は、車両姿勢制御処理を終了する。 Next, in step S7, the controller 14 sets a command value (inverter command value) of the inverter 3 for realizing the final target torque determined in step S6. That is, the controller 14 sets an inverter command value (control signal) for generating the final target torque from the motor generator 4. In step S10, the controller 14 outputs the inverter command value set in step S7 to the inverter 3. After step S10, the controller 14 ends the vehicle attitude control process.
 他方で、ステップS5において車両1が駆動されていないと判定された場合(ステップS5:No)、つまり車両1が制動されている場合、コントローラ14は、ステップS8において、ステップS3において決定した基本目標回生トルクと、ステップS4において決定したトルク低減量とに基づき、最終目標回生トルクを決定する。具体的には、コントローラ14は、基本目標回生トルクにトルク低減量を加算した値を最終目標回生トルクとする(原則、基本目標回生トルク及びトルク低減量は正値で表される)。つまり、コントローラ14は、車両1に付与する回生トルク(制動トルク)を増加させるようにする。なお、ステップS4においてトルク低減量が決定されなかった場合には(つまりトルク低減量が0である場合)、コントローラ14は、基本目標回生トルクをそのまま最終目標回生トルクとして適用する。 On the other hand, when it is determined in step S5 that the vehicle 1 is not driven (step S5: No), that is, when the vehicle 1 is braked, the controller 14 determines in step S8 the basic target determined in step S3. A final target regenerative torque is determined based on the regenerative torque and the torque reduction amount determined in step S4. Specifically, the controller 14 sets the value obtained by adding the torque reduction amount to the basic target regenerative torque as the final target regenerative torque (in principle, the basic target regenerative torque and the torque reduction amount are expressed as positive values). That is, the controller 14 increases the regenerative torque (braking torque) applied to the vehicle 1. When the torque reduction amount is not determined in step S4 (that is, when the torque reduction amount is 0), the controller 14 applies the basic target regeneration torque as it is as the final target regeneration torque.
 次いで、ステップS9において、コントローラ14は、ステップS8において決定した最終目標回生トルクを実現するためのインバータ3の指令値(インバータ指令値)を設定する。つまり、コントローラ14は、最終目標回生トルクをモータジェネレータ4から発生させるためのインバータ指令値(制御信号)を設定する。そして、ステップS10において、コントローラ14は、ステップS9において設定したインバータ指令値をインバータ3に出力する。このステップS10の後、コントローラ14は、車両姿勢制御処理を終了する。 Next, in step S9, the controller 14 sets a command value (inverter command value) of the inverter 3 for realizing the final target regenerative torque determined in step S8. That is, the controller 14 sets an inverter command value (control signal) for generating the final target regenerative torque from the motor generator 4. In step S10, the controller 14 outputs the inverter command value set in step S9 to the inverter 3. After step S10, the controller 14 ends the vehicle attitude control process.
 次に、図4乃至図6を参照して、本発明の第1実施形態における付加減速度設定処理について説明する。 Next, the additional deceleration setting process in the first embodiment of the present invention will be described with reference to FIGS.
 図4は、本発明の第1実施形態による付加減速度設定処理のフローチャートである。図5は、本発明の第1実施形態による付加減速度と操舵速度との関係を示したマップである。図6は、本発明の第1実施形態において、図5のマップより得られる付加減速度を路面勾配に応じて補正するためのゲイン(付加減速度ゲイン)を規定したマップである。 FIG. 4 is a flowchart of additional deceleration setting processing according to the first embodiment of the present invention. FIG. 5 is a map showing the relationship between additional deceleration and steering speed according to the first embodiment of the present invention. FIG. 6 is a map defining a gain (additional deceleration gain) for correcting the additional deceleration obtained from the map of FIG. 5 according to the road surface gradient in the first embodiment of the present invention.
 図4の付加減速度設定処理が開始されると、ステップS21において、コントローラ14は、ステアリングホイール6の切り込み操作中(即ち操舵角(絶対値)が増大中)か否かを判定する。
 その結果、切り込み操作中である場合(ステップS21:Yes)、ステップS22に進み、コントローラ14は、図3の車両姿勢制御処理のステップS1において操舵角センサ8から取得した操舵角に基づき操舵速度を算出する。
When the additional deceleration setting process in FIG. 4 is started, in step S21, the controller 14 determines whether or not the steering wheel 6 is being turned (that is, the steering angle (absolute value) is increasing).
As a result, when the cutting operation is being performed (step S21: Yes), the process proceeds to step S22, and the controller 14 determines the steering speed based on the steering angle acquired from the steering angle sensor 8 in step S1 of the vehicle attitude control process of FIG. calculate.
 次に、ステップS23において、コントローラ14は、操舵速度が所定の閾値S1以上であるか否かを判定する。その結果、操舵速度が閾値S1以上である場合(ステップS23:Yes)、ステップS24に進み、コントローラ14は、操舵速度に基づき付加減速度を設定する。この付加減速度は、ドライバの意図に沿って車両姿勢を制御するために、ステアリング操作に応じて車両に付加すべき減速度である。 Next, in step S23, the controller 14, the steering speed is determined whether a predetermined threshold S 1 or more. As a result, when the steering speed is greater than or equal to the threshold S 1 (step S23: Yes), the process proceeds to step S24, and the controller 14 sets an additional deceleration based on the steering speed. This additional deceleration is a deceleration to be added to the vehicle in accordance with the steering operation in order to control the vehicle posture in accordance with the driver's intention.
 具体的には、コントローラ14は、図5のマップに示す付加減速度と操舵速度との関係に基づき、ステップS22において算出した操舵速度に対応する付加減速度を設定する。図5における横軸は操舵速度を示し、縦軸は付加減速度を示す。図5に示すように、操舵速度が閾値S1未満である場合、対応する付加減速度は0である。即ち、操舵速度が閾値S1未満である場合、コントローラ14は、ステアリング操作に基づき車両1に減速度を付加するための制御を行わない。 Specifically, the controller 14 sets an additional deceleration corresponding to the steering speed calculated in step S22 based on the relationship between the additional deceleration and the steering speed shown in the map of FIG. The horizontal axis in FIG. 5 indicates the steering speed, and the vertical axis indicates the additional deceleration. As shown in FIG. 5, when the steering speed is less than the threshold value S 1 , the corresponding additional deceleration is zero. That is, when the steering speed is less than the threshold value S 1, the controller 14 does not perform the control for adding the deceleration of the vehicle 1 based on the steering operation.
 一方、操舵速度が閾値S1以上である場合には、操舵速度が増大するに従って、この操舵速度に対応する付加減速度は、所定の上限値Dmaxに漸近する。即ち、操舵速度が増大するほど付加減速度は増大し、且つ、その増大量の増加割合は小さくなる。この上限値Dmaxは、ステアリング操作に応じて車両1に減速度を付加しても、制御介入があったとドライバが感じない程度の減速度に設定される(例えば0.5m/s2≒0.05G)。さらに、操舵速度が閾値S1よりも大きい閾値S2以上の場合には、付加減速度は上限値Dmaxに維持される。 On the other hand, when the steering speed is the threshold value S 1 or more, according to the steering speed increases, additional deceleration corresponding to the steering speed is asymptotic to a predetermined upper limit value D max. That is, the additional deceleration increases as the steering speed increases, and the increase rate of the increase amount decreases. This upper limit value D max is set to such a deceleration that the driver does not feel that there is a control intervention even if a deceleration is added to the vehicle 1 according to the steering operation (for example, 0.5 m / s 2 ≈0). .05G). Further, when the steering speed is equal to or higher than the threshold value S 2 larger than the threshold value S 1 , the additional deceleration is maintained at the upper limit value D max .
 次に、ステップS25において、コントローラ14は、ステップS24で設定した付加減速度を、路面勾配に応じた付加減速度ゲインにより補正する。具体的には、コントローラ14は、図6に示すマップに基づき、勾配センサ12によって検出された現在の路面勾配に対応する付加減速度ゲインを決定して、この付加減速度ゲインによって付加減速度を補正する。例えば、コントローラ14は、付加減速度ゲインに応じた値を付加減速度に乗算することで、当該付加減速度を補正する。 Next, in step S25, the controller 14 corrects the additional deceleration set in step S24 with the additional deceleration gain corresponding to the road surface gradient. Specifically, the controller 14 determines an additional deceleration gain corresponding to the current road surface gradient detected by the gradient sensor 12 based on the map shown in FIG. 6, and calculates the additional deceleration by this additional deceleration gain. to correct. For example, the controller 14 corrects the additional deceleration by multiplying the additional deceleration by a value corresponding to the additional deceleration gain.
 図6において、横軸は路面勾配を示しており、縦軸は付加減速度ゲインを示している。図6の横軸に示す路面勾配では、「0」は平坦路を示しており、「0」よりも右側は登坂路(上り坂)における路面勾配(上り勾配)を示しており、「0」よりも左側は降坂路(下り坂)における路面勾配(下り勾配)を示している。詳しくは、登坂路においては、図の右側に進むほど路面勾配(絶対値)が大きくなる、つまり上り勾配の度合いが大きくなる。他方で、降坂路においては、図の左側に進むほど路面勾配(絶対値)が大きくなる、つまり下り勾配の度合いが大きくなる。なお、路面勾配は、原則的には、水平面に対する路面の角度(°)で表されるか、又は、所定の水平距離に対する垂直距離の割合(%)で表される。 In FIG. 6, the horizontal axis shows the road surface gradient, and the vertical axis shows the additional deceleration gain. In the road surface gradient shown on the horizontal axis of FIG. 6, “0” indicates a flat road, and the right side of “0” indicates a road surface gradient (uphill) on an uphill road (uphill). The left side shows the road gradient (downhill) on the downhill road (downhill). Specifically, on an uphill road, the road surface gradient (absolute value) increases as it goes to the right side of the drawing, that is, the degree of the upward gradient increases. On the other hand, on a downhill road, the road surface gradient (absolute value) increases as it goes to the left in the figure, that is, the degree of the downward gradient increases. In principle, the road surface gradient is expressed by an angle (°) of the road surface with respect to a horizontal plane, or by a ratio (%) of a vertical distance to a predetermined horizontal distance.
 図6に示すマップは、基本的には、降坂路では、平坦路及び登坂路よりも、付加減速度ゲインが大きくなるように規定されている。これにより、降坂路では、平坦路及び登坂路よりも、付加減速度(絶対値)が大きくなるように補正が行われる。より詳しくは、図6に示すマップは、降坂路での路面勾配(絶対値)が大きくなるほど、付加減速度ゲインが大きくなるように規定されており、その結果、下り勾配の度合いが大きくなるほど、付加減速度(絶対値)が大きくなるように補正が行われることとなる。また、このマップは、登坂路での路面勾配(絶対値)が大きくなるほど、付加減速度ゲインが小さくなるように規定されており、その結果、上り勾配の度合いが大きくなるほど、付加減速度(絶対値)が小さくなるように補正が行われることとなる。 The map shown in FIG. 6 is basically defined such that the additional deceleration gain is greater on downhill roads than on flat roads and uphill roads. Thereby, the correction is performed on the downhill road so that the additional deceleration (absolute value) is larger than that on the flat road and the uphill road. More specifically, the map shown in FIG. 6 is defined such that the additional deceleration gain increases as the road gradient (absolute value) on the downhill road increases, and as a result, as the degree of downward gradient increases, Correction is performed so that the additional deceleration (absolute value) increases. This map is specified so that the additional deceleration gain decreases as the road gradient (absolute value) on the uphill road increases. As a result, the additional deceleration (absolute Correction is performed so that (value) becomes smaller.
 次に、ステップS26において、コントローラ14は、ステップS25で補正された付加減速度に基づき、トルク低減量を決定する。具体的には、コントローラ14は、モータジェネレータ4からの駆動トルクの低下又はモータジェネレータ4からの回生トルクの増加により付加減速度を実現するために必要となるトルク量を決定する。ステップS26の後、コントローラ14は付加減速度設定処理を終了し、メインルーチンに戻る。 Next, in step S26, the controller 14 determines a torque reduction amount based on the additional deceleration corrected in step S25. Specifically, the controller 14 determines the amount of torque required to realize the additional deceleration due to a decrease in driving torque from the motor generator 4 or an increase in regenerative torque from the motor generator 4. After step S26, the controller 14 ends the additional deceleration setting process and returns to the main routine.
 また、ステップS21において、ステアリングホイール6の切り込み操作中ではない場合(ステップS21:No)、又は、ステップS23において、操舵速度が閾値S1未満である場合(ステップS23:No)、コントローラ14は、付加減速度の設定を行うことなく付加減速度設定処理を終了し、メインルーチンに戻る。この場合、トルク低減量は0となる。 Further, in step S21, if not in turning operation of the steering wheel 6 (step S21: No), or, in step S23, if the steering speed is less than the threshold S 1 (step S23: No), the controller 14, The additional deceleration setting process is terminated without setting the additional deceleration, and the process returns to the main routine. In this case, the torque reduction amount is zero.
 なお、上記したステップS25では、操舵速度に基づき設定された付加減速度を、路面勾配に応じた付加減速度ゲインにより補正していたが、他の例では、付加減速度ゲインを用いた補正を行わずに、操舵速度及び路面勾配に基づき付加減速度を設定してもよい。例えば、操舵速度及び路面勾配に対して設定すべき付加減速度が規定されたマップを用意しておき、そのようなマップを用いて、現在の操舵速度及び路面勾配に対応する付加減速度を設定すればよい。 In step S25 described above, the additional deceleration set based on the steering speed is corrected by the additional deceleration gain corresponding to the road surface gradient. In another example, correction using the additional deceleration gain is performed. Instead, the additional deceleration may be set based on the steering speed and the road surface gradient. For example, a map in which additional deceleration to be set for the steering speed and road surface gradient is prepared, and the additional deceleration corresponding to the current steering speed and road surface gradient is set using such a map. do it.
 次に、図7を参照して、本発明の第1実施形態による車両の制御装置の作用効果について説明する。図7は、本発明の第1実施形態による車両の制御装置を搭載した車両1に旋回走行させたときの、車両姿勢制御に関わる各種パラメータの時間変化を示すタイムチャートである。 Next, with reference to FIG. 7, the effect of the vehicle control apparatus according to the first embodiment of the present invention will be described. FIG. 7 is a time chart showing temporal changes of various parameters related to vehicle attitude control when the vehicle 1 equipped with the vehicle control apparatus according to the first embodiment of the present invention is turned.
 図7において、チャート(a)は路面勾配を示し、チャート(b)は操舵角を示し、チャート(c)は操舵速度を示し、チャート(d)は付加減速度を示し、チャート(e)は最終目標トルクを示し、チャート(f)は実ヨーレートを示している。 In FIG. 7, chart (a) shows the road surface gradient, chart (b) shows the steering angle, chart (c) shows the steering speed, chart (d) shows the additional deceleration, and chart (e) shows The final target torque is shown, and chart (f) shows the actual yaw rate.
 図7(a)に示すように、車両1が降坂路(下り坂)を走行しているものとする。このときに、図7(b)に示すように、時刻t11から、ステアリングホイール6の切り込み操作が行われる。この場合、時刻t11から時刻t12までの間、図7(c)に示すように操舵速度が閾値S1以上となり、図7(d)に示すようにこの操舵速度に基づき付加減速度が設定される。具体的には、図7(d)では、実線は、本実施形態により設定された付加減速度を示しており、破線は、比較例により設定された付加減速度を示している(図7(e)及び(f)も同様とする)。本実施形態では、路面勾配に応じて付加減速度が補正される。具体的には、操舵速度に応じた付加減速度(図5参照)が、路面勾配に応じた付加減速度ゲイン(図6参照)により補正される。一方で、比較例では、路面勾配に応じて付加減速度が補正されない、つまり操舵速度に応じた付加減速度(図5参照)がそのまま用いられる。その結果、図7(d)に示すように、本実施形態のほうが比較例よりも付加減速度(絶対値)が大きくなる。これは、本実施形態によれば、車両1が降坂路を走行しているため、比較的大きな値を有する付加減速度ゲインが設定されて(図6参照)、この付加減速度ゲインによって付加減速度(絶対値)が大きくなるよう補正されたからである。 Assume that the vehicle 1 is traveling on a downhill road (downhill) as shown in FIG. At this time, as shown in FIG. 7B, the turning operation of the steering wheel 6 is performed from time t11. In this case, during the period from time t11 to time t12, the steering speed as shown in FIG. 7 (c) is a threshold value S 1 or more, acceleration with on the basis of the steering speed is set as shown in FIG. 7 (d) The Specifically, in FIG. 7D, the solid line shows the additional deceleration set by the present embodiment, and the broken line shows the additional deceleration set by the comparative example (FIG. 7 ( The same applies to e) and (f)). In the present embodiment, the additional deceleration is corrected according to the road surface gradient. Specifically, the additional deceleration (see FIG. 5) corresponding to the steering speed is corrected by the additional deceleration gain (see FIG. 6) corresponding to the road surface gradient. On the other hand, in the comparative example, the additional deceleration is not corrected according to the road gradient, that is, the additional deceleration (see FIG. 5) according to the steering speed is used as it is. As a result, as shown in FIG. 7D, the additional deceleration (absolute value) is greater in this embodiment than in the comparative example. According to the present embodiment, since the vehicle 1 is traveling on a downhill road, an additional deceleration gain having a relatively large value is set (see FIG. 6), and the additional deceleration gain is set by this additional deceleration gain. This is because the speed (absolute value) is corrected so as to increase.
 このような付加減速度に応じて、図7(e)に示すように、本実施形態及び比較例のそれぞれについて最終目標トルクが設定される。具体的には、本実施形態のほうが比較例よりも最終目標トルクが小さくなっている。そして、このような最終目標トルクを発生させるようモータジェネレータ4を制御することで、図7(f)に示すような実ヨーレートが車両1に発生する。図7(f)に示すように、本実施形態では、ステアリングホイール6の切り込み操作開始時に速やかに実ヨーレートが車両1に発生しているのに対して(実線参照)、比較例では、ステアリングホイール6の切り込み操作開始から遅れて実ヨーレートが車両1に発生している(破線参照)。このように、本実施形態と比較例とにおいて車両姿勢制御によって発生する実ヨーレートに差が生じた理由は、以下の通りである。 According to such additional deceleration, the final target torque is set for each of the present embodiment and the comparative example, as shown in FIG. Specifically, the final target torque is smaller in this embodiment than in the comparative example. Then, by controlling the motor generator 4 so as to generate such a final target torque, an actual yaw rate as shown in FIG. As shown in FIG. 7 (f), in this embodiment, the actual yaw rate is generated in the vehicle 1 immediately when the steering wheel 6 starts to be cut (see the solid line), whereas in the comparative example, the steering wheel The actual yaw rate is generated in the vehicle 1 after the start of the cutting operation 6 (see the broken line). Thus, the reason why the actual yaw rate generated by the vehicle attitude control differs between the present embodiment and the comparative example is as follows.
 「発明が解決しようとする課題」のセクションにおいて、図10(a)及び(b)を参照して説明したように、降坂路の走行時には、平坦路の走行時よりも、車両上屋における車両前部が沈み込んだ状態(車両後方側に対する車両前方側の沈み込み量が大きい状態)となっている。この状態においては、車両前方側のサスペンション30の剛性、つまりサスペンション30のスプリングの伸縮の剛性が高まっている。したがって、降坂路の走行時には、車両前方側のサスペンション30のスプリングが既に圧縮された状態であるため、この状態において車両姿勢制御を行うと、当該制御により減速度を付加したときの車両前方側の沈み込みが不足する傾向にある。すなわち、降坂路の走行時には、車両前方側のサスペンション30のスプリングが圧縮されている状態であるため、スプリングが圧縮されていない状態(平坦路や登坂路の走行時)よりも、スプリングを圧縮するのに大きな力を要するので、車両姿勢制御における付加減速度を大きくする望ましいのである。 As described with reference to FIGS. 10 (a) and 10 (b) in the section “Problems to be Solved by the Invention”, when traveling on a downhill road, the vehicle in the vehicle roof is more than on a flat road. The front part is in a submerged state (a state in which the amount of subsidence on the vehicle front side with respect to the vehicle rear side is large). In this state, the rigidity of the suspension 30 on the vehicle front side, that is, the rigidity of expansion and contraction of the spring of the suspension 30 is increased. Therefore, since the spring of the suspension 30 on the front side of the vehicle is already compressed when traveling on the downhill road, if the vehicle attitude control is performed in this state, the vehicle on the front side of the vehicle when the deceleration is added by the control is performed. There is a tendency for subsidence to be insufficient. That is, since the spring of the suspension 30 on the vehicle front side is compressed when traveling on a downhill road, the spring is compressed more than when the spring is not compressed (when traveling on a flat road or an uphill road). Therefore, it is desirable to increase the additional deceleration in the vehicle attitude control.
 したがって、本実施形態では、降坂路の走行時に付加減速度(絶対値)を大きくするようにする。特に、本実施形態では、コントローラ14は、降坂路における路面勾配(絶対値)が大きいほど、付加減速度(絶対値)が大きくなるように付加減速度ゲインを用いた補正を行うことで(図6参照)、下り勾配の度合いが大きいほど付加減速度(絶対値)が大きくなるようにしている。これにより、図7(f)の実線に示すように、降坂路の走行時において車両姿勢制御により減速度を付加したときの車両前方側の沈み込み不足を解消して、ステアリングホイール6の切り込み操作開始時に速やかに実ヨーレートを車両1に発生させることができる。よって、本実施形態によれば、降坂路の走行時において、車両姿勢制御による車両旋回性能の改善効果を適切に確保することができる。 Therefore, in this embodiment, the additional deceleration (absolute value) is increased when traveling on a downhill road. In particular, in the present embodiment, the controller 14 performs correction using the additional deceleration gain so that the additional deceleration (absolute value) increases as the road gradient (absolute value) on the downhill road increases (FIG. 6), the additional deceleration (absolute value) increases as the degree of downward gradient increases. As a result, as shown by the solid line in FIG. 7 (f), the insufficiency of subsidence on the front side of the vehicle when the deceleration is added by the vehicle attitude control when traveling on the downhill road, and the steering wheel 6 is turned in. The actual yaw rate can be promptly generated in the vehicle 1 at the start. Therefore, according to the present embodiment, it is possible to appropriately ensure the effect of improving the vehicle turning performance by the vehicle attitude control when traveling downhill.
 なお、図7では、車両姿勢制御が車両1の駆動中に行われた場合、つまり図3の車両姿勢制御処理においてステップS5の判定が「Yes」となりステップS6~S7の処理が行われた場合、のタイムチャートを示した。しかしながら、車両姿勢制御が車両1の制動中に行われた場合、つまり図3の車両姿勢制御処理においてステップS5の判定が「No」となりステップS8~S9の処理が行われた場合にも、図7と同様の結果となる。具体的には、車両1の駆動中に車両姿勢制御が行われた場合には最終目標トルクが適用されるが(図7(e)参照)、車両1の制動中に車両姿勢制御が行われた場合には、最終目標トルクの代わりに最終目標回生トルクが適用されることとなる。この場合、最終目標トルクは時刻t11~t12の間に低下していたが、最終目標回生トルクは時刻t11~t12の間に増加することとなる。 In FIG. 7, when the vehicle attitude control is performed while the vehicle 1 is being driven, that is, when the determination of step S5 is “Yes” in the vehicle attitude control process of FIG. 3, the processes of steps S6 to S7 are performed. The time chart of was shown. However, even when the vehicle attitude control is performed during braking of the vehicle 1, that is, when the determination in step S5 is “No” in the vehicle attitude control process of FIG. 3 and the processes of steps S8 to S9 are performed. The result is similar to 7. Specifically, the final target torque is applied when the vehicle attitude control is performed while the vehicle 1 is being driven (see FIG. 7E), but the vehicle attitude control is performed while the vehicle 1 is being braked. In this case, the final target regenerative torque is applied instead of the final target torque. In this case, the final target torque has decreased between times t11 and t12, but the final target regenerative torque increases between times t11 and t12.
 また、上記した実施形態では、路面勾配の全領域において、路面勾配に応じて付加減速度ゲインを線形に変化させていたが(図6参照)、このように付加減速度ゲインを規定することに限定はされない。他の例では、降坂路においては、路面勾配(下り勾配)が大きくなるにつれて付加減速度ゲインを大きくする一方で、登坂路においては(平坦路も含む)、路面勾配によらずに付加減速度ゲインを一定値(降坂路よりも少なくとも小さな値)にしてもよい。更に他の例では、降坂路と登坂路の両方とも、付加減速度ゲインを路面勾配によらずに一定値にするが、降坂路では登坂路よりも付加減速度ゲインを大きくしてもよい。つまり、降坂路では付加減速度ゲインを第1所定値に設定し、登坂路(平坦路も含む)では付加減速度ゲインを第1所定値よりも小さい第2所定値に設定してもよい。 Further, in the above-described embodiment, the additional deceleration gain is linearly changed in accordance with the road surface gradient in the entire region of the road surface gradient (see FIG. 6). In this way, the additional deceleration gain is defined in this way. There is no limitation. In another example, on a downhill road, the additional deceleration gain is increased as the road surface gradient (downhill gradient) increases, while on an uphill road (including a flat road), the additional deceleration is independent of the road surface gradient. The gain may be a constant value (at least smaller than the downhill road). In yet another example, the additional deceleration gain is set to a constant value regardless of the road gradient on both the downhill road and the uphill road, but the additional deceleration gain may be larger on the downhill road than on the uphill road. That is, the additional deceleration gain may be set to a first predetermined value on a downhill road, and the additional deceleration gain may be set to a second predetermined value that is smaller than the first predetermined value on an uphill road (including a flat road).
 また、上記した実施形態では、本発明をモータジェネレータ4により駆動される車両1(EV車両に相当する)に適用した例を示したが、他の例では、エンジンにより駆動される一般的な車両にも本発明を適用することができる。この例では、エンジンの生成トルクを低下させることで、車両1に減速度を付加して車両姿勢を制御すればよい。エンジンがガソリンエンジンである場合には、点火プラグの点火時期を遅角させる(リタードする)ことにより、エンジンの生成トルクを低下させればよい。エンジンがディーゼルエンジンである場合には、燃料噴射量を減少させることにより、エンジンの生成トルクを低下させればよい。更に他の例では、エンジン及びモータジェネレータにより駆動される車両(HV車両)にも本発明を適用することができる。 In the above-described embodiment, an example in which the present invention is applied to the vehicle 1 (corresponding to an EV vehicle) driven by the motor generator 4 has been described. However, in another example, a general vehicle driven by an engine The present invention can also be applied to. In this example, the vehicle posture may be controlled by adding deceleration to the vehicle 1 by reducing the generated torque of the engine. When the engine is a gasoline engine, the generated torque of the engine may be reduced by retarding (retarding) the ignition timing of the spark plug. When the engine is a diesel engine, the generated torque of the engine may be reduced by reducing the fuel injection amount. In still another example, the present invention can be applied to a vehicle (HV vehicle) driven by an engine and a motor generator.
 また、上記した実施形態では、勾配センサ12を用いて路面勾配を判断していたが、他の例では、勾配センサ12の代わりに車両前後加速度センサ13を用いて路面勾配を判断してもよい。この場合、アクセルペダル踏込量や車速などから演算された目標加速度(図3のステップS2)と、車両前後加速度センサ13により検出された前後加速度(実加速度)との差に基づいて、路面勾配を判断することができる。具体的には、実加速度が目標加速度よりも小さい場合には上り勾配であると判断でき、また、実加速度が目標加速度よりも大きい場合には下り勾配であると判断でき、そして、実加速度と目標加速度との差に基づき上り勾配又は下り勾配の路面勾配の値を求めることができる。 In the above-described embodiment, the road surface gradient is determined using the gradient sensor 12. However, in another example, the road surface gradient may be determined using the vehicle longitudinal acceleration sensor 13 instead of the gradient sensor 12. . In this case, the road surface gradient is calculated based on the difference between the target acceleration (step S2 in FIG. 3) calculated from the accelerator pedal depression amount and the vehicle speed and the longitudinal acceleration (actual acceleration) detected by the vehicle longitudinal acceleration sensor 13. Judgment can be made. Specifically, when the actual acceleration is smaller than the target acceleration, it can be determined that the slope is ascending, and when the actual acceleration is greater than the target acceleration, it can be determined that the slope is descending. Based on the difference from the target acceleration, it is possible to determine the value of the road gradient, which is an ascending gradient or a descending gradient.
 なお、勾配センサ12や車両前後加速度センサ13は、本発明における勾配関連値出力器の一例に相当する。そして、勾配センサ12により検出される路面勾配、及び、車両前後加速度センサ13により検出される前後加速度は、本発明における勾配関連値の一例に相当する。 The gradient sensor 12 and the vehicle longitudinal acceleration sensor 13 correspond to an example of a gradient related value output device in the present invention. The road surface gradient detected by the gradient sensor 12 and the longitudinal acceleration detected by the vehicle longitudinal acceleration sensor 13 correspond to examples of gradient-related values in the present invention.
<第2実施形態>
 次に、本発明の第2実施形態について説明する。上記した第1実施形態では、車両姿勢制御を車両1の制動中に行うときに、設定した付加減速度が車両1に発生するようにモータジェネレータ4に回生発電を行わせていたが(図3参照)、第2実施形態では、車両姿勢制御を車両1の制動中に行うときに、ブレーキ装置16から制動力を付加させることで、設定した付加減速度を車両1に発生させるようにする。
Second Embodiment
Next, a second embodiment of the present invention will be described. In the first embodiment described above, when the vehicle attitude control is performed during braking of the vehicle 1, the motor generator 4 performs regenerative power generation so that the set additional deceleration is generated in the vehicle 1 (FIG. 3). In the second embodiment, when the vehicle attitude control is performed during braking of the vehicle 1, the braking force is applied from the brake device 16 so that the set additional deceleration is generated in the vehicle 1.
 図8は、本発明の第2実施形態による車両姿勢制御処理のフローチャートである。図8に示す車両姿勢制御処理は、車両1の制動中に行う車両姿勢制御に関する(車両1の駆動中に行う車両姿勢制御は、図3と同様である)。なお、以下では、図3の車両姿勢制御処理と同一の処理については、その説明を適宜省略する。つまり、ここで特に説明しない処理や制御は、上記した実施形態と同様である。 FIG. 8 is a flowchart of the vehicle attitude control process according to the second embodiment of the present invention. The vehicle attitude control process shown in FIG. 8 relates to vehicle attitude control performed during braking of the vehicle 1 (vehicle attitude control performed during driving of the vehicle 1 is the same as in FIG. 3). Hereinafter, the description of the same process as the vehicle attitude control process of FIG. 3 will be omitted as appropriate. That is, processing and control not specifically described here are the same as those in the above-described embodiment.
 まず、ステップS31において、コントローラ14は車両1の運転状態に関する各種センサ情報を取得する。特に、コントローラ14は、操舵角センサ8が検出した操舵角、アクセル開度センサ10が検出したアクセルペダル踏込量、ブレーキ踏込量センサ11が検出したブレーキペダル踏込量、及び、勾配センサ12が検出した路面勾配などを取得する。 First, in step S31, the controller 14 acquires various sensor information related to the driving state of the vehicle 1. In particular, the controller 14 detects the steering angle detected by the steering angle sensor 8, the accelerator pedal depression amount detected by the accelerator opening sensor 10, the brake pedal depression amount detected by the brake depression amount sensor 11, and the gradient sensor 12. Get road slope etc.
 次いで、ステップS32において、コントローラ14は、ステップS31において取得された車両1の運転状態に基づき、車両1に付加すべき目標減速度を設定する。具体的には、コントローラ14は、主にブレーキペダル踏込量に基づき、目標減速度を設定する。 Next, in step S32, the controller 14 sets a target deceleration to be added to the vehicle 1 based on the driving state of the vehicle 1 acquired in step S31. Specifically, the controller 14 sets the target deceleration mainly based on the brake pedal depression amount.
 次いで、ステップS33において、コントローラ14は、ステップS32で設定した目標減速度を実現するためのブレーキ装置16による基本目標制動力を設定する。 Next, in step S33, the controller 14 sets a basic target braking force by the brake device 16 for realizing the target deceleration set in step S32.
 ステップS32及びS33の処理と並行して、ステップS34において、コントローラ14は、付加減速度設定処理を実行し(図4参照)、操舵装置の操舵速度に基づき、車両1に減速度を発生させることで車両姿勢を制御するために必要なトルク低減量を決定する。この付加減速度設定処理は、第1実施形態と同様であるため、ここではその説明を省略する。 In parallel with the processes in steps S32 and S33, in step S34, the controller 14 executes an additional deceleration setting process (see FIG. 4), and causes the vehicle 1 to generate a deceleration based on the steering speed of the steering device. To determine the amount of torque reduction required to control the vehicle attitude. Since this additional deceleration setting process is the same as in the first embodiment, the description thereof is omitted here.
 次いで、ステップS35において、コントローラ14は、ステップS33において決定した基本目標制動力と、ステップS34において決定したトルク低減量とに基づき、最終目標制動力を決定する。具体的には、コントローラ14は、基本目標制動力(負値)からトルク低減量(正値)を減算した値を最終目標制動力(負値)とする。つまり、コントローラ14は、車両1に付与する制動力を増加させるようにする。なお、ステップS34においてトルク低減量が決定されなかった場合には(つまりトルク低減量が0である場合)、コントローラ14は、基本目標制動力をそのまま最終目標制動力として適用する。 Next, in step S35, the controller 14 determines the final target braking force based on the basic target braking force determined in step S33 and the torque reduction amount determined in step S34. Specifically, the controller 14 sets the value obtained by subtracting the torque reduction amount (positive value) from the basic target braking force (negative value) as the final target braking force (negative value). That is, the controller 14 increases the braking force applied to the vehicle 1. When the torque reduction amount is not determined in step S34 (that is, when the torque reduction amount is 0), the controller 14 applies the basic target braking force as the final target braking force as it is.
 次いで、ステップS36において、コントローラ14は、ステップS35において決定した最終目標制動力を実現すべく、ブレーキ制御システム18の液圧ポンプ20及びバルブユニット22の指令値を設定する。つまり、コントローラ14は、最終目標制動力をブレーキ装置16から発生させるための液圧ポンプ20及びバルブユニット22の指令値(制御信号)を設定する。そして、ステップS37において、コントローラ14は、ステップS36において設定した指令値を液圧ポンプ20及びバルブユニット22に出力する。このステップS37の後、コントローラ14は、車両姿勢制御処理を終了する。 Next, in step S36, the controller 14 sets command values for the hydraulic pump 20 and the valve unit 22 of the brake control system 18 in order to realize the final target braking force determined in step S35. That is, the controller 14 sets command values (control signals) for the hydraulic pump 20 and the valve unit 22 for generating the final target braking force from the brake device 16. In step S37, the controller 14 outputs the command value set in step S36 to the hydraulic pump 20 and the valve unit 22. After step S37, the controller 14 ends the vehicle attitude control process.
 次に、図9を参照して、本発明の第2実施形態による車両の制御装置の作用効果について説明する。図9は、本発明の第2実施形態による車両の制御装置を搭載した車両1に旋回走行させたときの、車両姿勢制御に関わる各種パラメータの時間変化を示すタイムチャートである。 Next, with reference to FIG. 9, the effect of the vehicle control apparatus according to the second embodiment of the present invention will be described. FIG. 9 is a time chart showing temporal changes of various parameters related to vehicle attitude control when the vehicle 1 equipped with the vehicle control device according to the second embodiment of the present invention is turned.
 図9において、チャート(a)は路面勾配を示し、チャート(b)は操舵角を示し、チャート(c)は操舵速度を示し、チャート(d)は付加減速度を示し、チャート(e)は最終目標制動力を示し、チャート(f)は実ヨーレートを示している。図9は、チャート(a)~(d)、(f)が図7と同一であり、チャート(e)のみが図7と異なる。具体的には、図9のチャート(e)は、図9のチャート(d)の付加減速度に応じて設定される最終目標制動力を示している。 In FIG. 9, chart (a) shows the road surface gradient, chart (b) shows the steering angle, chart (c) shows the steering speed, chart (d) shows the additional deceleration, and chart (e) shows the chart (e). The final target braking force is shown, and chart (f) shows the actual yaw rate. In FIG. 9, charts (a) to (d) and (f) are the same as FIG. 7, and only chart (e) is different from FIG. Specifically, the chart (e) in FIG. 9 shows the final target braking force set according to the additional deceleration in the chart (d) in FIG.
 図7のチャート(e)では、最終目標トルクが正値であったが、図9のチャート(e)では、最終目標制動力が負値である。図9のチャート(e)は、図7のチャート(e)を負側に移動させたものに相当する。図9のチャート(e)の最終目標制動力は、図7のチャート(e)の最終目標トルクと同様に、時刻t11~t12の間に低下する。この場合も、第2実施形態のほうが比較例よりも最終目標制動力が小さくなっている。なお、最終目標制動力は、絶対値で見ると、時刻t11~t12の間に値が大きくなる。 In the chart (e) of FIG. 7, the final target torque is a positive value, but in the chart (e) of FIG. 9, the final target braking force is a negative value. The chart (e) in FIG. 9 corresponds to the chart (e) in FIG. 7 moved to the negative side. The final target braking force in the chart (e) in FIG. 9 decreases between the times t11 and t12, similarly to the final target torque in the chart (e) in FIG. Also in this case, the final target braking force is smaller in the second embodiment than in the comparative example. Note that the final target braking force increases from time t11 to t12 in terms of absolute value.
 以上述べたような第2実施形態によっても、図9(f)の実線に示すように、降坂路の走行時において車両姿勢制御により減速度を付加したときの車両前方側の沈み込み不足を解消して、ステアリングホイール6の切り込み操作開始時に速やかに実ヨーレートを車両1に発生させることができる。よって、降坂路の走行時において、車両姿勢制御による車両旋回性能の改善効果を適切に確保することができる。 Also according to the second embodiment as described above, as shown by the solid line in FIG. 9 (f), the lack of subsidence on the front side of the vehicle when deceleration is applied by vehicle attitude control when traveling downhill is eliminated. Thus, the actual yaw rate can be promptly generated in the vehicle 1 at the start of the turning operation of the steering wheel 6. Therefore, when traveling on a downhill road, the effect of improving the vehicle turning performance by the vehicle attitude control can be appropriately ensured.
 1 車両
 2 前輪
 3 インバータ
 4 モータジェネレータ
 6 ステアリングホイール
 8 操舵角センサ
 10 アクセル開度センサ
 11 ブレーキ踏込量センサ
 12 勾配センサ
 13 車両前後加速度センサ
 14 コントローラ
 16 ブレーキ装置
 18 ブレーキ制御システム
 25 バッテリ
 30 サスペンション
DESCRIPTION OF SYMBOLS 1 Vehicle 2 Front wheel 3 Inverter 4 Motor generator 6 Steering wheel 8 Steering angle sensor 10 Accelerator opening sensor 11 Brake depression sensor 12 Gradient sensor 13 Vehicle longitudinal acceleration sensor 14 Controller 16 Brake device 18 Brake control system 25 Battery 30 Suspension

Claims (9)

  1.  車輪と、この車輪を駆動するための駆動力を生成する駆動源と、弾性部材を備えたサスペンションと、操舵装置の操舵角を検出する操舵角センサと、路面勾配に関連する路面勾配関連値を出力する勾配関連値出力器と、を有する車両の制御方法であって、
     前記操舵角センサにより検出された操舵角に基づき、前記操舵装置が切り込み操作されたか否かを判定する工程と、
     前記操舵装置が切り込み操作されたと判定されたときに、車両姿勢を制御するように、前記駆動源の駆動力を低下させて、前記車両に減速度を付加する工程と、
     前記勾配関連値出力器により出力された路面勾配関連値が下り勾配側の勾配を示す第1値であるときに、前記勾配関連値出力器により出力された路面勾配関連値が前記第1値よりも平坦側の勾配を示す第2値であるときよりも、前記車両に付加する前記減速度を大きくする工程と、
     を有する、ことを特徴とする車両の制御方法。
    A wheel, a driving source for generating a driving force for driving the wheel, a suspension provided with an elastic member, a steering angle sensor for detecting a steering angle of the steering device, and a road surface gradient related value related to the road surface gradient. A gradient related value output device for outputting a vehicle,
    Determining whether or not the steering device has been turned based on a steering angle detected by the steering angle sensor;
    Reducing the driving force of the drive source and adding a deceleration to the vehicle so as to control the vehicle posture when it is determined that the steering device has been turned.
    When the road surface gradient related value output by the gradient related value output unit is a first value indicating a downward gradient, the road surface gradient related value output by the gradient related value output unit is greater than the first value. A step of increasing the deceleration to be added to the vehicle than when the second value is a flat value indicating a slope on the flat side,
    A vehicle control method characterized by comprising:
  2.  車輪と、この車輪により駆動されて回生発電を行うジェネレータと、弾性部材を備えたサスペンションと、操舵装置の操舵角を検出する操舵角センサと、路面勾配に関連する路面勾配関連値を出力する勾配関連値出力器と、を有する車両の制御方法であって、
     前記操舵角センサにより検出された操舵角に基づき、前記操舵装置が切り込み操作されたか否かを判定する工程と、
     前記操舵装置が切り込み操作されたと判定されたときに、車両姿勢を制御するように、前記ジェネレータに回生発電を行わせて、前記車両に減速度を付加する工程と、
     前記勾配関連値出力器により出力された路面勾配関連値が下り勾配側の勾配を示す第1値であるときに、前記勾配関連値出力器により出力された路面勾配関連値が前記第1値よりも平坦側の勾配を示す第2値であるときよりも、前記車両に付加する前記減速度を大きくする工程と、
     を有する、ことを特徴とする車両の制御方法。
    A wheel, a generator driven by the wheel for generating regenerative power, a suspension provided with an elastic member, a steering angle sensor for detecting a steering angle of the steering device, and a gradient for outputting a road surface gradient related value related to the road surface gradient A control method for a vehicle having a related value output device,
    Determining whether or not the steering device has been turned based on a steering angle detected by the steering angle sensor;
    A step of causing the generator to perform regenerative power generation and adding a deceleration to the vehicle so as to control a vehicle posture when it is determined that the steering device has been turned.
    When the road surface gradient related value output by the gradient related value output unit is a first value indicating a downward gradient, the road surface gradient related value output by the gradient related value output unit is greater than the first value. A step of increasing the deceleration to be added to the vehicle than when the second value is a flat value indicating a slope on the flat side,
    A vehicle control method characterized by comprising:
  3.  車輪と、この車輪に制動力を付加する制動装置と、弾性部材を備えたサスペンションと、操舵装置の操舵角を検出する操舵角センサと、路面勾配に関連する路面勾配関連値を出力する勾配関連値出力器と、を有する車両の制御方法であって、
     前記操舵角センサにより検出された操舵角に基づき、前記操舵装置が切り込み操作されたか否かを判定する工程と、
     前記操舵装置が切り込み操作されたと判定されたときに、車両姿勢を制御するように、前記制動装置より制動力を付加させて、前記車両に減速度を付加する工程と、
     前記勾配関連値出力器により出力された路面勾配関連値が下り勾配側の勾配を示す第1値であるときに、前記勾配関連値出力器により出力された路面勾配関連値が前記第1値よりも平坦側の勾配を示す第2値であるときよりも、前記車両に付加する前記減速度を大きくする工程と、
     を有する、ことを特徴とする車両の制御方法。
    A wheel, a braking device for applying a braking force to the wheel, a suspension provided with an elastic member, a steering angle sensor for detecting a steering angle of the steering device, and a gradient-related value for outputting a road surface gradient-related value related to the road surface gradient A method for controlling a vehicle having a value output device,
    Determining whether or not the steering device has been turned based on a steering angle detected by the steering angle sensor;
    A step of adding a braking force from the braking device and adding a deceleration to the vehicle so as to control a vehicle posture when it is determined that the steering device has been turned.
    When the road surface gradient related value output by the gradient related value output unit is a first value indicating a downward gradient, the road surface gradient related value output by the gradient related value output unit is greater than the first value. A step of increasing the deceleration to be added to the vehicle than when the second value is a flat value indicating a slope on the flat side,
    A vehicle control method characterized by comprising:
  4.  前記第2値は、前記路面勾配関連値が上り勾配側の勾配を示す値である、請求項1乃至3のいずれか一項に記載の車両の制御方法。 The vehicle control method according to any one of claims 1 to 3, wherein the second value is a value at which the road surface gradient-related value indicates an upward gradient.
  5.  前記第2値は、前記路面勾配関連値が平坦を示す値である、請求項1乃至3のいずれか一項に記載の車両の制御方法。 The vehicle control method according to any one of claims 1 to 3, wherein the second value is a value indicating that the road surface gradient related value is flat.
  6.  車輪と、この車輪を駆動するための駆動力を生成する駆動源と、弾性部材を備えたサスペンションと、操舵装置の操舵角を検出する操舵角センサと、路面勾配に関連する路面勾配関連値を出力する勾配関連値出力器と、プロセッサと、を有する車両システムであって、
     前記プロセッサは、
     前記操舵角センサにより検出された操舵角に基づき、前記操舵装置が切り込み操作されたか否かを判定し、
     前記操舵装置が切り込み操作されたと判定されたときに、車両姿勢を制御するように、前記駆動源の駆動力を低下させて、前記車両に減速度を付加し、
     前記勾配関連値出力器により出力された路面勾配関連値が下り勾配側の勾配を示す第1値であるときに、前記勾配関連値出力器により出力された路面勾配関連値が前記第1値よりも平坦側の勾配を示す第2値であるときよりも、前記車両に付加する前記減速度を大きくする、
     ように構成されている、ことを特徴とする車両システム。
    A wheel, a driving source for generating a driving force for driving the wheel, a suspension provided with an elastic member, a steering angle sensor for detecting a steering angle of the steering device, and a road surface gradient related value related to the road surface gradient. A vehicle system having a gradient related value output device for outputting and a processor,
    The processor is
    Based on the steering angle detected by the steering angle sensor, it is determined whether or not the steering device has been turned.
    When it is determined that the steering device has been turned, the driving force of the driving source is reduced so as to control the vehicle posture, and deceleration is added to the vehicle,
    When the road surface gradient related value output by the gradient related value output unit is a first value indicating a downward gradient, the road surface gradient related value output by the gradient related value output unit is greater than the first value. The deceleration to be added to the vehicle is larger than when the second value indicating the slope on the flat side.
    It is comprised as follows, The vehicle system characterized by the above-mentioned.
  7.  車輪と、この車輪により駆動されて回生発電を行うジェネレータと、弾性部材を備えたサスペンションと、操舵装置の操舵角を検出する操舵角センサと、路面勾配に関連する路面勾配関連値を出力する勾配関連値出力器と、プロセッサと、を有する車両システムであって、
     前記プロセッサは、
     前記操舵角センサにより検出された操舵角に基づき、前記操舵装置が切り込み操作されたか否かを判定し、
     前記操舵装置が切り込み操作されたと判定されたときに、車両姿勢を制御するように、前記ジェネレータに回生発電を行わせて、前記車両に減速度を付加し、
     前記勾配関連値出力器により出力された路面勾配関連値が下り勾配側の勾配を示す第1値であるときに、前記勾配関連値出力器により出力された路面勾配関連値が前記第1値よりも平坦側の勾配を示す第2値であるときよりも、前記車両に付加する前記減速度を大きくする、
     ように構成されている、ことを特徴とする車両システム。
    A wheel, a generator driven by the wheel for generating regenerative power, a suspension provided with an elastic member, a steering angle sensor for detecting a steering angle of the steering device, and a gradient for outputting a road surface gradient related value related to the road surface gradient A vehicle system having an associated value output device and a processor,
    The processor is
    Based on the steering angle detected by the steering angle sensor, it is determined whether or not the steering device has been turned.
    When it is determined that the steering device has been turned, the generator is caused to perform regenerative power generation so as to control the vehicle attitude, and a deceleration is added to the vehicle,
    When the road surface gradient related value output by the gradient related value output unit is a first value indicating a downward gradient, the road surface gradient related value output by the gradient related value output unit is greater than the first value. The deceleration to be added to the vehicle is larger than when the second value indicating the slope on the flat side.
    It is comprised as follows, The vehicle system characterized by the above-mentioned.
  8.  車輪と、この車輪に制動力を付加する制動装置と、弾性部材を備えたサスペンションと、操舵装置の操舵角を検出する操舵角センサと、路面勾配に関連する路面勾配関連値を出力する勾配関連値出力器と、プロセッサと、を有する車両システムであって、
     前記プロセッサは、
     前記操舵角センサにより検出された操舵角に基づき、前記操舵装置が切り込み操作されたか否かを判定し、
     前記操舵装置が切り込み操作されたと判定されたときに、車両姿勢を制御するように、前記制動装置より制動力を付加させて、前記車両に減速度を付加し、
     前前記勾配関連値出力器により出力された路面勾配関連値が下り勾配側の勾配を示す第1値であるときに、前記勾配関連値出力器により出力された路面勾配関連値が前記第1値よりも平坦側の勾配を示す第2値であるときよりも、前記車両に付加する前記減速度を大きくする、
     ように構成されている、ことを特徴とする車両システム。
    A wheel, a braking device for applying a braking force to the wheel, a suspension provided with an elastic member, a steering angle sensor for detecting a steering angle of the steering device, and a gradient-related value for outputting a road surface gradient-related value related to the road surface gradient A vehicle system having a value output device and a processor,
    The processor is
    Based on the steering angle detected by the steering angle sensor, it is determined whether or not the steering device has been turned.
    When it is determined that the steering device has been turned, a braking force is applied from the braking device so as to control a vehicle posture, and a deceleration is added to the vehicle,
    When the road surface gradient related value output by the gradient related value output unit is the first value indicating the gradient on the downward gradient side, the road surface gradient related value output by the gradient related value output unit is the first value. The deceleration to be added to the vehicle is made larger than when the second value indicating the slope on the flat side.
    It is comprised as follows, The vehicle system characterized by the above-mentioned.
  9.  弾性部材を備えたサスペンションを有する車両の制御装置であって、
     操舵装置が切り込み操作されたときに、前記車両に減速度を付加することにより車両姿勢を制御する車両姿勢制御手段を有し、
     この車両姿勢制御手段は、前記車両の走行路面が下り勾配であるときには、そうでないときよりも、前記車両に付加する前記減速度を大きくする、ことを特徴とする車両の制御装置。
    A control device for a vehicle having a suspension with an elastic member,
    Vehicle attitude control means for controlling the vehicle attitude by adding a deceleration to the vehicle when the steering device is turned in;
    The vehicle attitude control means is configured to increase the deceleration applied to the vehicle when the traveling road surface of the vehicle has a downward slope, as compared to when it is not.
PCT/JP2019/005269 2018-02-16 2019-02-14 Vehicle control method, and control device for vehicle system and vehicle WO2019160009A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-025656 2018-02-16
JP2018025656A JP2019146291A (en) 2018-02-16 2018-02-16 Control method of vehicle, vehicle system and controller of vehicle

Publications (1)

Publication Number Publication Date
WO2019160009A1 true WO2019160009A1 (en) 2019-08-22

Family

ID=67619358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005269 WO2019160009A1 (en) 2018-02-16 2019-02-14 Vehicle control method, and control device for vehicle system and vehicle

Country Status (3)

Country Link
JP (1) JP2019146291A (en)
CN (1) CN110154778A (en)
WO (1) WO2019160009A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7377433B2 (en) * 2019-12-25 2023-11-10 マツダ株式会社 vehicle control system
CN111439129A (en) * 2020-04-14 2020-07-24 江西精骏电控技术有限公司 Sliding energy recovery control method for electric automobile
CN112660092A (en) * 2021-01-05 2021-04-16 奇瑞新能源汽车股份有限公司 Downhill braking method and device for electric automobile and electric automobile
CN115092106B (en) * 2022-06-21 2023-04-25 合众新能源汽车股份有限公司 Control method and control system for redundant braking of vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002152903A (en) * 1995-09-20 2002-05-24 Mitsubishi Motors Corp Regenerative braking controller for electric vehicle
JP2011105096A (en) * 2009-11-16 2011-06-02 Hitachi Automotive Systems Ltd Vehicle dynamics control device
JP2012121507A (en) * 2010-12-10 2012-06-28 Advics Co Ltd Steering force control device of vehicle
WO2013190653A1 (en) * 2012-06-20 2013-12-27 トヨタ自動車株式会社 Vehicle controller
JP2018001886A (en) * 2016-06-30 2018-01-11 マツダ株式会社 Vehicle behavior control device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3956693B2 (en) * 2001-12-27 2007-08-08 トヨタ自動車株式会社 Integrated vehicle motion controller
JP3896943B2 (en) * 2002-10-16 2007-03-22 株式会社豊田自動織機 Electric industrial vehicle travel control device
JP2005271822A (en) * 2004-03-25 2005-10-06 Mitsubishi Fuso Truck & Bus Corp Vehicular automatic deceleration control device
JP5929173B2 (en) * 2011-12-26 2016-06-01 株式会社アドヴィックス Motion control device for hybrid vehicle
JP6204865B2 (en) * 2014-03-31 2017-09-27 日立オートモティブシステムズ株式会社 Vehicle motion control system, vehicle, and program
JP6222472B2 (en) * 2014-08-11 2017-11-01 マツダ株式会社 Vehicle behavior control device
JP6194940B2 (en) * 2015-11-06 2017-09-13 マツダ株式会社 Vehicle behavior control device
JP6253000B1 (en) * 2016-09-14 2017-12-27 マツダ株式会社 Vehicle control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002152903A (en) * 1995-09-20 2002-05-24 Mitsubishi Motors Corp Regenerative braking controller for electric vehicle
JP2011105096A (en) * 2009-11-16 2011-06-02 Hitachi Automotive Systems Ltd Vehicle dynamics control device
JP2012121507A (en) * 2010-12-10 2012-06-28 Advics Co Ltd Steering force control device of vehicle
WO2013190653A1 (en) * 2012-06-20 2013-12-27 トヨタ自動車株式会社 Vehicle controller
JP2018001886A (en) * 2016-06-30 2018-01-11 マツダ株式会社 Vehicle behavior control device

Also Published As

Publication number Publication date
JP2019146291A (en) 2019-08-29
CN110154778A (en) 2019-08-23

Similar Documents

Publication Publication Date Title
WO2019151207A1 (en) Vehicular control method, vehicular system, and vehicular control device
WO2019160009A1 (en) Vehicle control method, and control device for vehicle system and vehicle
EP3738816B1 (en) Vehicle control method, and control device for vehicle system and vehicle
JP6985645B2 (en) Vehicle control method, vehicle system and vehicle control device
JP7038971B2 (en) Vehicle control method, vehicle system and vehicle control device
WO2017183416A1 (en) Vehicle behavior control device
WO2017183415A1 (en) Vehicle behavior control device
WO2017183417A1 (en) Vehicle behavior control device
WO2017183418A1 (en) Vehicle behavior control device
US20210146914A1 (en) Vehicle control apparatus
US11529991B2 (en) Control system for vehicle
JP7008944B2 (en) Vehicle system
JP7034438B2 (en) Vehicle control method and vehicle system
JP7185219B2 (en) VEHICLE CONTROL METHOD, VEHICLE SYSTEM, AND VEHICLE CONTROL DEVICE
JP7038972B2 (en) Vehicle control method, vehicle system and vehicle control device
JP7008945B2 (en) Vehicle control method and vehicle system
JP7377433B2 (en) vehicle control system
JP7034437B2 (en) Vehicle control method and vehicle system
JP6988557B2 (en) Vehicle control method, vehicle system and vehicle control device
JP6683186B2 (en) Vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754336

Country of ref document: EP

Kind code of ref document: A1