WO2019160006A1 - ハウリング抑圧装置、その方法、およびプログラム - Google Patents

ハウリング抑圧装置、その方法、およびプログラム Download PDF

Info

Publication number
WO2019160006A1
WO2019160006A1 PCT/JP2019/005241 JP2019005241W WO2019160006A1 WO 2019160006 A1 WO2019160006 A1 WO 2019160006A1 JP 2019005241 W JP2019005241 W JP 2019005241W WO 2019160006 A1 WO2019160006 A1 WO 2019160006A1
Authority
WO
WIPO (PCT)
Prior art keywords
howling
howling suppression
value
signals
maximum value
Prior art date
Application number
PCT/JP2019/005241
Other languages
English (en)
French (fr)
Inventor
翔一郎 齊藤
小林 和則
中川 朗
登 原田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US16/969,273 priority Critical patent/US11252506B2/en
Priority to EP19754765.6A priority patent/EP3755005B1/en
Priority to JP2020500539A priority patent/JP7028307B2/ja
Priority to CN201980013290.4A priority patent/CN111801951B/zh
Priority to ES19754765T priority patent/ES2948633T3/es
Publication of WO2019160006A1 publication Critical patent/WO2019160006A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M9/00Arrangements for interconnection not involving centralised switching
    • H04M9/08Two-way loud-speaking telephone systems with means for conditioning the signal, e.g. for suppressing echoes for one or both directions of traffic
    • H04M9/082Two-way loud-speaking telephone systems with means for conditioning the signal, e.g. for suppressing echoes for one or both directions of traffic using echo cancellers
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0316Speech enhancement, e.g. noise reduction or echo cancellation by changing the amplitude
    • G10L21/0324Details of processing therefor
    • G10L21/034Automatic adjustment
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/32Automatic control in amplifiers having semiconductor devices the control being dependent upon ambient noise level or sound level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/02Circuits for transducers, loudspeakers or microphones for preventing acoustic reaction, i.e. acoustic oscillatory feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G2201/00Indexing scheme relating to subclass H03G
    • H03G2201/10Gain control characterised by the type of controlled element
    • H03G2201/103Gain control characterised by the type of controlled element being an amplifying element
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/406Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones

Definitions

  • the present invention relates to a technique for suppressing howling that occurs when a loud speaker is used to make a conversation easier.
  • the voice of a speaker far from the listener in the same space is picked up by the microphone speaker 1 arranged near the speaker, and is near the listener. It is also possible to reproduce by the arranged microphone speaker 2 and to make a loud sound.
  • There are two sets of microphones and speakers for example, a microphone speaker in which a microphone and a speaker are incorporated in one housing), and two of the two microphones collected by the microphone closest to the speaker are two. Playback is performed on a speaker farther away from the speaker in the pair of speakers.
  • the system as shown in FIG. 1 is not so far away from the speakers, unlike the loudspeakers of the speakers in the auditorium. For this reason, not only the expanded voice but also the speaker voice itself (direct sound) can be heard a little. In this case, if the expanded voice is reproduced with a delay, it can be heard with a deviation from the direct sound of the speaker voice. In such a case, a sense of incongruity in hearing occurs. For example, when the amplified voice is heard with a delay of about 20 ms to 30 ms with respect to the direct sound, the human ear recognizes it as a reverberation and feels uncomfortable. Therefore, the system as shown in FIG. 1 is required to have a low delay process.
  • howling as shown in FIG. 2 may occur in the system as shown in FIG. This is a case where two adjacent frequencies cause howling, and howling time waveform causes beat.
  • FIG. 2 howling does not diverge, but especially in the vicinity of 0.4 seconds, only the howling component remains large even though there is no sound, and the sound becomes very annoying as in normal howling.
  • a problem occurs when trying to cope with the prior art.
  • in order to cope with the conventional technology in order to detect the occurrence of howling, “analyze the frequency with a sufficiently long frame to eliminate the influence of the beating phenomenon” or “short In order to reduce the influence of the beat component of the analysis result in the time frame, it is necessary to “smooth in the time direction”.
  • both require long-time observation it is contrary to the requirement of “low delay” described above. Or, since the detection is delayed, it can be dealt with only after some howling has occurred.
  • An object of the present invention is to provide a howling suppression apparatus, a method thereof, and a program that can prevent a howling detection delay and improve a howling prevention effect of a loudspeaker system.
  • a howling suppression processing unit that performs howling suppression processing on at least one of the L i-th signals.
  • An integrated processing unit for obtaining a minimum value from L values corresponding to the n-th frame of the L-th i-th signal, which is a frequency domain signal obtained from the collected acoustic signal, and the L microphones The sign of the difference between the two values corresponding to the nth frame of the two i-th signals, which is a frequency-converted signal of the acoustic signals collected by the two microphones, within a predetermined time Howling determination unit that determines that howling may occur or has occurred when it has changed more than a predetermined number of times, and howling is determined to have occurred, or howling is determined to have occurred Lth i-th signal using the minimum value And a howling suppression processing unit that performs howling suppression processing.
  • howling detection delay can be prevented, and the howling prevention effect of the loudspeaking system can be improved.
  • positioning of the howling suppression apparatus of the modification 3 of 1st embodiment The functional block diagram of the howling suppression apparatus which concerns on the modification 3 of 1st embodiment.
  • the functional block diagram of the howling suppression apparatus which concerns on 2nd embodiment The figure which shows the example of the processing flow of the howling suppression apparatus which concerns on 2nd embodiment.
  • FIG. 3 shows an arrangement example of two howling suppression apparatuses 100-i.
  • FIG. 4 is a functional block diagram of a howling suppression apparatus according to the first embodiment, and FIG. 5 shows a processing flow thereof.
  • the howling suppression apparatus 100-i includes a frequency conversion unit 110, a smoothing processing unit 120, a delay unit 121, an integration processing unit 130, a howling suppression processing unit 140, and a frequency inverse conversion unit 150.
  • the howling suppression processing unit 140 includes a power determination unit 141, a time constant determination unit 142, a delay unit 143, a gain calculation unit 144, and a gain superposition unit 145.
  • FIG. 6 is a functional block diagram of the howling suppression processing unit 140, and FIG. 7 shows its processing flow.
  • the howling suppression apparatus 100-i suppresses the howling component included in the acoustic signal collected by the microphone 80-i of the same system, and outputs the suppressed signal to the speaker 90-i of the same system.
  • the speaker 90-i reproduces the suppressed signal.
  • the microphone 80-i and the speaker 90j constitute one microphone speaker.
  • the howling suppression device is a special configuration in which a special program is read by a known or dedicated computer having a central processing unit (CPU: Central Processing Unit), a main storage device (RAM: Random Access Memory), and the like. Device.
  • CPU Central Processing Unit
  • main storage device RAM: Random Access Memory
  • the howling suppression device executes each process under the control of the central processing unit.
  • the data input to the howling suppression device and the data obtained in each process are stored in the main storage device, for example, and the data stored in the main storage device is read out to the central processing unit as necessary. It is used for processing.
  • At least a part of each processing unit of the howling suppression device may be configured by hardware such as an integrated circuit.
  • Each storage unit included in the howling suppression device can be configured by a main storage device such as a RAM (Random Access Memory) or middleware such as a relational database or a key value store.
  • a main storage device such as a RAM (Random Access Memory) or middleware such as a relational database or a key value store.
  • middleware such as a relational database or a key value store.
  • each storage unit is not necessarily provided inside the howling suppression device, and is configured by an auxiliary storage device configured by a semiconductor memory element such as a hard disk, an optical disk, or a flash memory, and a howling suppression device. It is good also as a structure with which it equips outside.
  • the frequency converter 110 receives the acoustic signal x i (t) collected by the microphone 80-i of the same system as an input, converts it into a frequency domain signal (S110), and converts the converted signal X i (k, n). ) Is output.
  • the time domain acoustic signal x i (t) is converted into a frequency domain signal by Fourier transform (fast Fourier transform or the like) represented by the following equation.
  • X i (k, n) FT (x i (n))
  • x i (n) [x i (nT-T + 1), x i (nT-T + 2), ..., x i (nT)]
  • n the frame number of the current time
  • FT is the Fourier transform
  • T is a Fourier transform frame size (T is any integer of 2 or more)
  • k is a frequency index.
  • t represents an index of discrete time
  • the signal input to the howling suppression apparatus 100-i and the frequency conversion unit 110 may not be the acoustic signal itself collected by the microphone, but may be a signal after signal processing is performed on the acoustic signal.
  • This output signal is input to the howling suppression device 100-i and the frequency conversion unit 110 in place of the acoustic signal x i (t).
  • a signal after performing signal processing such as noise suppression processing may be input.
  • L signals obtained from acoustic signals picked up by the microphone are input to the howling suppressor 100-i and the frequency converter 110.
  • the smoothing processing unit 120 receives the signal X i (k, n), takes the value X i ′ (k, n ⁇ 1) one time (frame) before from the delay unit 121, and outputs the signal X i (k, n, 1). n) is smoothed in the time direction (S120), a value X ′ i (k, n) is obtained and output to the integrated processing unit 130 and the howling suppression apparatus 100-j. Further, the value X ′ i (k, n) is stored in the delay unit 121 and used during the smoothing process of the next frame n + 1.
  • each frequency component is smoothed in the time direction by a weighted sum with a value X i ′ (k, n ⁇ 1) one time (frame) before by the following equation.
  • X ' i (k, n)
  • is a real number with a time constant of 0 or more and less than 1, and the larger the value, the larger the value that reflects past information.
  • the integration processing unit 130 outputs the value X ′ i (k, n), which is the output value of the smoothing processing unit 120 of the howling suppression device 100-i, and the output of the smoothing processing unit 120 of another howling suppression device 100-j.
  • X ′ i (k, n) which is the output value of the smoothing processing unit 120 of the howling suppression device 100-i
  • 2 pieces of values X' value X is the value i (k, n), the maximum value among the X 'j (k, n) - X (k, n) Is obtained (S130) and output.
  • the maximum value determining process two values X 'i (k, n) , X' j (k, n) known as the process of integrating, maximum value - X (k, n) an integrated value Also say.
  • FIG. 8 is a graph obtained by enlarging 0.1 seconds from 0.35 to 0.45 in FIG. 2 and plotting x 1 and x 2 side by side. It can be seen from FIG. 8 that the timing of the peak of beat is different. Therefore, when the phase of the beat is shifted and the amplitude is close, the influence of the beat amplitude can be reduced by adopting the maximum value of the two values.
  • ⁇ Howling suppression processing unit 140 the maximum value - X and (k, n) and the signal X i (k, n) in the frequency domain and an input, the maximum value - with X (k, n), signal X i ( k, n) is subjected to howling suppression processing (S140), and a signal Y i (k, n) after suppression is output.
  • howling suppression processing section 140 (i) when the maximum value ⁇ X (k, n) is larger than a value indicating a predetermined power and (ii) the maximum value ⁇ X (k, n) when the value indicating the change amount of at least one of the larger than the value that indicates a predetermined change amount, the maximum value - X (k, n) and the first gain obtained on the basis of the maximum value - X (k , n) is multiplied by a smaller value of the second gain obtained based on the value indicating the amount of change in the signal X i (k, n) to perform howling suppression processing.
  • Power determination unit 141 the maximum value - X (k, n) as input, maximum value - X (k, n) determines whether the condition is satisfied power.
  • the maximum value - X (k, n) is a value indicating a predetermined power (threshold Thr1, Thr1 is previously calculated positive real number by experiments or the like) or not greater than (S141)
  • the power determination result P (k, n) is output.
  • the power determination result P (k, n) is obtained by the following equation.
  • ⁇ Delay unit 143 Delay unit 143, the maximum value - the X (k, n) input to, and stored, and outputs the request of the time constant determination section 142.
  • ⁇ Time constant determination unit 142 The time constant determination section 142, the maximum value - X and (k, n) as input, the maximum value before one unit time (frame) from the delay unit 143 - taking out the X (k, n-1) .
  • the maximum value - X (k, n) or the difference value from a time (frame) previous meets the conditions, the maximum value - X (k, n) values and predetermined showing the amount of change It is determined from the magnitude relationship with the value indicating the amount of change.
  • Maximum value - X (k, n) the maximum value of the value indicating the change amount of the current frame - X (k, n) and the maximum value of the past frame - X (k, n-1 ) the ratio of - X (k, n) / ⁇ X (k, n ⁇ 1), and a value indicating a predetermined change amount is a predetermined time constant ⁇ .
  • the time constant determination section 142 the maximum value of the current frame - X (k, n) is the maximum value of the past frame - X (k, n-1 ) value multiplied by a predetermined time constant beta to beta - X ( It is determined whether it is larger than k, n-1), and a change amount determination result S (k, n) is output.
  • the change amount determination result S (k, n) is obtained by the following equation.
  • the gain calculation unit 144 receives the power determination result P (k, n) and the change amount determination result S (k, n) as input, calculates a gain (gain) for suppressing howling (S144), and outputs it. .
  • the first gain G p is obtained based on the magnitude relationship between and. However, - a P max - P min ⁇ . For example, the first gain G p is obtained as follows.
  • a second gain G S is obtained based on the magnitude relationship with the threshold value S thr . However, - a S max - S min ⁇ . For example, the second gain G S is obtained as follows.
  • the gain calculation unit 144 sets a smaller value of the first gain GP and the second gain G S as the third gain G, and outputs the third gain G as a gain for suppressing howling.
  • the third gain G is obtained as follows.
  • G (k, n) min ⁇ G P , G S ⁇
  • min ⁇ outputs the minimum value in ⁇ .
  • Gain superimposing unit 145 the third gain G and the signal X i (k, n) and the set as input and multiplies the third gain G signal X i (k, n) to (S145), the signal after suppression the product Output as Y i (k, n).
  • Y i (k, n) X i (k, n) G (k, n)
  • the frequency inverse transformer 150 receives the signal Y i (k, n) as an input, converts it into a time domain signal (S150), and uses the converted signal y i (t) as the output value of the howling suppression apparatus 100-i. Output.
  • a method corresponding to the conversion method to the frequency domain used in the frequency conversion unit 110 may be used as the conversion method to the time domain.
  • the frequency domain signal Y i (k, n) is converted into a time domain signal by inverse Fourier transform (such as inverse fast Fourier transform).
  • y i (n) IFT (Y i (k, n))
  • y i (n) [y i (nT ⁇ T + 1), y i (nT ⁇ T + 2),..., Y i (nT)].
  • the time-domain signal y i (n) obtained for each frame by the inverse Fourier transform is appropriately shifted to obtain a linear sum to be a continuous time-domain signal y i (t).
  • the first gain G p1 and the second gain G s1 are fixed values, but they may be linked to the input acoustic signal.
  • G p1 ⁇ ⁇ Thr2 / - X (k, n)
  • alpha is 0 or 1 with the following real
  • G p1 is the suppression gain dropping X i (k, n) until Thr2 .
  • the suppression amount is set to be smaller than Thr2.
  • Thr2 is set to a value that is considered to be howling if the sound is louder than this, or to a smaller value.
  • Thr2 may be set to a value equal to or less than Thr1 used in the power determination unit 141.
  • G S1 ⁇ 2 ⁇ Thr3 / - X (k, n)
  • ⁇ 2 is a real number between 0 and 1.
  • Thr3 is set in the same way as Thr2.
  • the howling suppression system may include L howling suppression devices 100-i (see FIG. 9).
  • the integration processing unit 130 includes the value X ′ i (k, n) that is the output value of the smoothing processing unit 120 of the howling suppression device 100-i and other L ⁇ 1 howling suppression devices.
  • a value X ′ j (k, n) that is an output value of the smoothing processing unit 120 of 100-j is input.
  • j 1, 2,..., L and i ⁇ j.
  • Integration processing unit 130 the maximum value among the L number of values X 'i (k, n) - X (k, n) and calculated (S130), and outputs.
  • the maximum value is obtained by the following equation.
  • - X (k, n) max ⁇ X 1 '(k, n), X 2' (k, n), ..., X L '(k, n) ⁇ max ⁇ outputs the maximum value in ⁇ .
  • the howling suppression system of the first embodiment can be expanded to a configuration including L howling suppression devices 100-i.
  • the first embodiment can be said to be an example of the second modification.
  • L-1 output values y i out of the output values y i of the L howling suppression devices 100- i may be combined (mixed) and output to the speaker 90-i.
  • L-1 pieces of output values y i L-1 pieces of output values y i
  • FIG. 10 shows an arrangement example of the howling suppression apparatus 100 of the third modification.
  • FIG. 11 is a functional block diagram of a howling suppression apparatus according to this modification.
  • the howling suppression apparatus 100 includes a frequency conversion unit 110, a smoothing processing unit 120, a delay unit 121, an integration processing unit 130, a howling suppression processing unit 140, and a frequency inverse conversion unit 150.
  • each unit the same as in the first embodiment. Perform the process.
  • processing is performed on signals of one system in each unit except for the integrated processing unit.
  • processing is performed on signals of two systems.
  • the integrated processing unit performs the same processing as in the first embodiment.
  • the howling suppression apparatus 100 receives sound signals picked up by two microphones 80-i and receives sound picked up by two microphones 80-i. Each of the howling components contained in the signal is suppressed, and the suppressed signal is output to each of the two speakers 90-i.
  • the howling component is suppressed in all L systems, but a configuration may be adopted in which the howling component is suppressed in at least one of the L systems.
  • a configuration may be adopted in which the howling component is suppressed in at least one of the L systems.
  • only one of the howling suppression processing apparatuses 100-1 and 100-2 may be arranged.
  • the processing (S110, S120) in the frequency conversion unit 110 and the smoothing processing unit 120 is performed on the acoustic signal picked up by the microphone of the other system, and the integrated processing unit 130 input values are generated.
  • the howling prevention effect is reduced as compared with the first embodiment, but the howling detection delay can be prevented and the howling prevention effect of the loudspeaker system can be improved.
  • the time domain acoustic signal collected by the microphone is used as an input, but an acoustic signal converted into a frequency domain signal by another device may be used as an input.
  • howling suppression apparatus 100-i does not need to include frequency domain conversion section 110.
  • howling suppression apparatus 100-i may not include smoothing processing section 120.
  • the integrated processing unit 130 may receive L number of i-th signals, which are signals in the frequency domain obtained from acoustic signals collected by a plurality of microphones. For example, in addition to the two values X ′ i (k, n) and X ′ j (k, n) of the present embodiment, a frequency domain signal X i (k, n) before smoothing processing, and a plurality of values What is necessary is just to input the signal of the frequency domain after performing signal processing, such as a beam forming process and a noise suppression process, with respect to the acoustic signal picked up by the microphone.
  • signal processing such as a beam forming process and a noise suppression process
  • the howling suppression apparatus 100-i outputs, for example, the frequency domain signal Y i (k, n) as it is and performs some signal processing on the frequency domain signal Y i (k, n) in the subsequent apparatus. May be converted into a time domain signal after signal processing. Therefore, howling suppression apparatus 100-i may not include frequency inverse conversion unit 150.
  • the lower of the two systems is selected.
  • the howling since the two systems increase at substantially the same volume, the lower value of the two systems is a relatively large value compared to the case where sound is normally generated. By using such values, it becomes easier to distinguish howling from other signals than in the first embodiment.
  • variable is defined as, and it is determined that the variable frequently goes between positive and negative in a short period of time.
  • FIG. 12 is a functional block diagram of a howling suppression apparatus according to the second embodiment, and FIG. 13 shows a processing flow thereof.
  • the howling suppression apparatus 100-i includes a frequency conversion unit 110, a smoothing processing unit 120, a delay unit 121, an integration processing unit 230, a howling determination unit 260, a howling suppression processing unit 240, and a frequency inverse conversion unit 150.
  • the processes in the frequency conversion unit 110, the smoothing processing unit 120, and the frequency inverse conversion unit 150 are the same as those in the first embodiment.
  • the two microphones 80-i are arranged at different distances from the sound source in order to use the fact that “sound emitted on one side” has a high sound pressure only on one side.
  • the integration processing unit 230 outputs the value X ′ i (k, n) that is the output value of the smoothing processing unit 120 of the howling suppression device 100-i and the output of the smoothing processing unit 120 of the other howling suppression device 100-j.
  • 'as input and j (k, n) 2 pieces of values X' value X is the value i (k, n), the minimum value among the X 'j (k, n) - X (k, n) Is obtained (S230) and output.
  • the process of obtaining the minimum value of two values X 'i (k, n) , X' j (k, n) known as the process of integrating the minimum value - X (k, n) an integrated value Also say.
  • the howling determination unit 260 outputs the value X ′ i (k, n) that is the output value of the smoothing processing unit 120 of the howling suppression device 100-i and the output of the smoothing processing unit 120 of another howling suppression device 100-j.
  • the value X ′ j (k, n) as an input is input, and the sign of the difference between the two values X ′ i (k, n), X ′ j (k, n) is determined within a predetermined time. If the number of times has changed more than the number of times, it is determined that howling may occur or has occurred (S260), and the result is output. For example, when it is determined that howling may occur or has occurred, 1 is output as the determination result, and 0 is output otherwise.
  • a predetermined time and a predetermined number of times may be set so that such a state can be detected.
  • Howling suppression processing unit 240 the minimum value - X (k, n) and a frequency-domain signal X i (k, n) and the input of the determination result of the howling determination unit 260, it is a possibility that the determination result howling occurs some, or, which indicates that the howling has occurred, the minimum value - X (k, n) using a signal X i (k, n) to perform howling suppression processing (S240), the signal after suppression Output Y i (k, n). If the above conditions are not satisfied (the determination result may cause howling or does not indicate that howling has occurred), howling suppression processing is performed on the signal X i (k, n).
  • the signal Y i (k, n) X i (k, n) is output.
  • the maximum value - X (k, n) the minimum value instead of - X (k, n) may be carried out the same processing as howling suppression processing unit 140 using the.
  • the threshold Thr1 and the time constant ⁇ such minimum - X (k, n) is set appropriately in accordance with the.
  • the howling determination unit 260 may be configured such that the determination process is not performed after it is determined that there is a possibility of howling occurring or has occurred. Further, when there is a possibility that howling occurs or does not indicate that howling has occurred, a configuration in which howling suppression processing is not performed again is performed and the determination processing in the howling determination unit 260 is resumed. Good.
  • the program describing the processing contents can be recorded on a computer-readable recording medium.
  • a computer-readable recording medium for example, any recording medium such as a magnetic recording device, an optical disk, a magneto-optical recording medium, and a semiconductor memory may be used.
  • this program is distributed by selling, transferring, or lending a portable recording medium such as a DVD or CD-ROM in which the program is recorded. Further, the program may be distributed by storing the program in a storage device of the server computer and transferring the program from the server computer to another computer via a network.
  • a computer that executes such a program first stores a program recorded on a portable recording medium or a program transferred from a server computer in its storage unit. When executing the process, this computer reads the program stored in its own storage unit and executes the process according to the read program.
  • a computer may read a program directly from a portable recording medium and execute processing according to the program. Further, each time a program is transferred from the server computer to the computer, processing according to the received program may be executed sequentially.
  • the program is not transferred from the server computer to the computer, and the above-described processing is executed by a so-called ASP (Application Service Provider) type service that realizes a processing function only by an execution instruction and result acquisition. It is good.
  • the program includes information provided for processing by the electronic computer and equivalent to the program (data that is not a direct command to the computer but has a property that defines the processing of the computer).
  • each device is configured by executing a predetermined program on a computer, at least a part of these processing contents may be realized by hardware.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Otolaryngology (AREA)
  • General Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Computational Linguistics (AREA)
  • Multimedia (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Domestic Plumbing Installations (AREA)
  • Electrotherapy Devices (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

ハウリング抑圧装置は、Lを2以上の整数の何れかとし、i=1,2,…,Lとし、複数のマイクロホンにより収音された音響信号から得られる周波数領域の信号であるL個の第i信号のn番目のフレームに対応するL個の値の中から最大値を求める統合処理部と、最大値を用いて、L個の第i信号の少なくとも何れかにハウリング抑圧処理を行うハウリング抑圧処理部と、を含む。

Description

ハウリング抑圧装置、その方法、およびプログラム
 本発明は、スピーカで音声を拡声し会話をしやすくする際に発生するハウリングを抑圧する技術に関する。
 広い空間では人同士の会話音声が相手に届きにくく、会話がしづらい状況が発生する。このような場合に、拡声装置がしばしば用いられる。多人数会議のような用途では、図1のように、同一空間内で聞き手から遠い位置にいる話者の音声を話者の近傍の配置されたマイクスピーカ1で収音し、聞き手の近傍に配置されたマイクスピーカ2で再生し、拡声するということも行われる。マイクとスピーカ(例えばマイクとスピーカとが1つの筐体内に組み込まれたマイクスピーカ)とはそれぞれ2組あり、2組のマイクのうちの話者に近い方のマイクで収音された音が2組のスピーカのうちの話者から遠い方のスピーカで再生される。
 ここで、図1のような系は、講堂等における講演者の拡声等と異なり、話者同士の距離がそれほど遠くはない。そのため、拡声された音声だけではなく話者音声そのもの(直接音)も少し聞こえる、という状況となる。この場合、拡声された音声が遅れて再生されると、話者音声の直接音とずれて聞こえる。このような場合、聴感上の違和感が生じる。例えば、拡声された音声が直接音に対して20ms~30ms程度遅れて聞こえる場合、人間の耳では響きのように認識し、違和感を感じる。そのため、図1のような系では低遅延の処理であることが求められる。
 このようなマイクスピーカの系では、一般に拡声の音量や部屋の環境によりハウリングが発生する。ハウリングを防ぐためにはマイクとスピーカとの距離を大きくする、スピーカ音量を小さくする等の他に、ハウリング防止機能を搭載する方法がある。例えば特許文献1のように、周波数ごとのパワーを用いて閾値処理によりハウリングを検出する方法がある。
特開平6-164278号公報
 ここで、図1のような系において、図2のようなハウリングを起こす場合がある。近接した2つの周波数がハウリングを起こし、ハウリングの時間波形がうなりを起こす場合である。図2では、ハウリングが発散するまでには至っていないが、特に0.4秒の辺りは音声がないにもかかわらずハウリング成分だけが大きく残り、通常のハウリングと同様に非常に耳障りな音となる。しかし、このようなケースでは、従来技術で対応しようとした場合に問題が起きる。具体的には、従来技術で対応するためには、ハウリングの発生を検知するために、「うなりがおきている現象の影響を排除するために、十分長いフレームで周波数を分析する」か「短時間フレームでの分析結果のうなり成分の影響を低減するために時間方向に平滑化する」ということをする必要がある。しかし、どちらも長時間の観測が必要であるため、上記で述べた「低遅延」という要求条件に反する。もしくは、検出が遅れるため、ハウリングがある程度起きてからしか対応ができない。
 本発明は、ハウリングの検知の遅れを防ぐことができ、拡声システムのハウリング防止効果を向上させるハウリング抑圧装置、その方法、およびプログラムを提供することを目的とする。
 上記の課題を解決するために、本発明の一態様によれば、ハウリング抑圧装置は、Lを2以上の整数の何れかとし、i=1,2,…,Lとし、複数のマイクロホンにより収音された音響信号から得られる周波数領域の信号であるL個の第i信号のn番目のフレームに対応するL個の値の中から最大値を求める統合処理部と、最大値を用いて、L個の第i信号の少なくとも何れかにハウリング抑圧処理を行うハウリング抑圧処理部と、を含む。
 上記の課題を解決するために、本発明の他の態様によれば、ハウリング抑圧装置は、Lを2以上の整数の何れかとし、i=1,2,…,Lとし、複数のマイクロホンにより収音された音響信号から得られる周波数領域の信号であるL個の第i信号のn番目のフレームに対応するL個の値の中から最小値を求める統合処理部と、L個のマイクロホンのうちの2個のマイクロホンにより収音された音響信号が周波数変換された信号である2個の第i信号のn番目のフレームに対応する2個の値の差分の符号が、所定の時間内に所定の回数以上変化した場合に、ハウリングが発生する恐れがある、または、発生していると判定するハウリング判定部と、ハウリングが発生する恐れがある、または、ハウリングが発生していると判定された場合に、最小値を用いて、L個の第i信号の少なくとも何れかにハウリング抑圧処理を行うハウリング抑圧処理部と、を含む。
 上記の課題を解決するために、本発明の他の態様によれば、ハウリング抑圧方法は、Lを2以上の整数の何れかとし、i=1,2,…,Lとし、複数のマイクロホンにより収音された音響信号から得られる周波数領域の信号であるL個の第i信号のn番目のフレームに対応するL個の値の中から最大値を求める統合処理ステップと、最大値を用いて、L個の第i信号の少なくとも何れかにハウリング抑圧処理を行うハウリング抑圧処理ステップと、を含む。
 上記の課題を解決するために、本発明の他の態様によれば、ハウリング抑圧方法は、Lを2以上の整数の何れかとし、i=1,2,…,Lとし、複数のマイクロホンにより収音された音響信号から得られる周波数領域の信号であるL個の第i信号のn番目のフレームに対応するL個の値の中から最小値を求める統合処理ステップと、L個のマイクロホンのうちの2個のマイクロホンにより収音された音響信号が周波数変換された信号である2個の第i信号のn番目のフレームに対応する2個の値の差分の符号が、所定の時間内に所定の回数以上変化した場合に、ハウリングが発生する恐れがある、または、発生していると判定するハウリング判定ステップと、ハウリングが発生する恐れがある、または、ハウリングが発生していると判定された場合に、最小値を用いて、L個の第i信号の少なくとも何れかにハウリング抑圧処理を行うハウリング抑圧処理ステップと、を含む。
 本発明によれば、ハウリングの検知の遅れを防ぐことができ、拡声システムのハウリング防止効果を向上させることができる。
拡声装置の使用状況を説明するための図。 ハウリングの状態を説明するための図。 2つのハウリング抑圧装置の配置例を示す図。 第一実施形態に係るハウリング抑圧装置の機能ブロック図。 第一実施形態に係るハウリング抑圧装置の処理フローの例を示す図。 ハウリング抑圧処理部の機能ブロック図。 ハウリング抑圧処理部の処理フローの例を示す図。 図2の0.35~0.45の0.1秒間を拡大し、x1とx2を並べてプロットした図。 第一実施形態の変形例2のL個のハウリング抑圧装置の配置例を示す図。 第一実施形態の変形例3のハウリング抑圧装置の配置例を示す図。 第一実施形態の変形例3に係るハウリング抑圧装置の機能ブロック図。 第二実施形態に係るハウリング抑圧装置の機能ブロック図。 第二実施形態に係るハウリング抑圧装置の処理フローの例を示す図。
 以下、本発明の実施形態について、説明する。なお、以下の説明に用いる図面では、同じ機能を持つ構成部や同じ処理を行うステップには同一の符号を記し、重複説明を省略する。以下の説明において、テキスト中で使用する記号「-」等は、本来直後の文字の真上に記載されるべきものであるが、テキスト記法の制限により、当該文字の直前に記載する。式中においてはこれらの記号は本来の位置に記述している。また、ベクトルや行列の各要素単位で行われる処理は、特に断りが無い限り、そのベクトルやその行列の全ての要素に対して適用されるものとする。
<第一実施形態のポイント>
 2つのハウリング系の信号解析数値を連携させ、ハウリング周波数となり得る成分の情報をより正確に求める。これにより、検出遅れによるハウリングの発散を防止する。
<第一実施形態>
 ハウリング抑圧システムは、2つのハウリング抑圧装置100-iを含む。ただし、i=1,2である。図3は2つのハウリング抑圧装置100-iの配置例を示す。
 図4は第一実施形態に係るハウリング抑圧装置の機能ブロック図を、図5はその処理フローを示す。
 ハウリング抑圧装置100-iは、周波数変換部110と平滑化処理部120と遅延部121と統合処理部130とハウリング抑圧処理部140と周波数逆変換部150とを含む。
 ハウリング抑圧処理部140は、パワー判定部141と時定数判定部142と遅延部143と利得計算部144と利得重畳部145とを含む。図6はハウリング抑圧処理部140の機能ブロック図を、図7はその処理フローを示す。
 図3に示すように、ハウリング抑圧装置100-iは、同じ系のマイクロホン80-iにより収音された音響信号と、他の系のハウリング抑圧装置100-jの平滑化処理部120の出力値とを入力とする。ただし、j=1,2、i≠jである。ハウリング抑圧装置100-iは、同じ系のマイクロホン80-iにより収音された音響信号に含まれるハウリング成分を抑圧し、抑圧後の信号を同じ系のスピーカ90-iに出力する。スピーカ90-iでは、抑圧後の信号を再生する。例えば、マイクロホン80-iとスピーカ90jとが1つのマイクスピーカを構成する。
 ハウリング抑圧装置は、例えば、中央演算処理装置(CPU: Central Processing Unit)、主記憶装置(RAM: Random Access Memory)などを有する公知又は専用のコンピュータに特別なプログラムが読み込まれて構成された特別な装置である。ハウリング抑圧装置は、例えば、中央演算処理装置の制御のもとで各処理を実行する。ハウリング抑圧装置に入力されたデータや各処理で得られたデータは、例えば、主記憶装置に格納され、主記憶装置に格納されたデータは必要に応じて中央演算処理装置へ読み出されて他の処理に利用される。ハウリング抑圧装置の各処理部は、少なくとも一部が集積回路等のハードウェアによって構成されていてもよい。ハウリング抑圧装置が備える各記憶部は、例えば、RAM(Random Access Memory)などの主記憶装置、またはリレーショナルデータベースやキーバリューストアなどのミドルウェアにより構成することができる。ただし、各記憶部は、必ずしもハウリング抑圧装置がその内部に備える必要はなく、ハードディスクや光ディスクもしくはフラッシュメモリ(Flash Memory)のような半導体メモリ素子により構成される補助記憶装置により構成し、ハウリング抑圧装置の外部に備える構成としてもよい。
 以下、各部について説明する。
<周波数変換部110>
 周波数変換部110は、同じ系のマイクロホン80-iにより収音された音響信号xi(t)を入力とし、周波数領域の信号に変換し(S110)、変換後の信号Xi(k,n)を出力する。例えば、時間領域の音響信号xi(t)を次式で表されるフーリエ変換(高速フーリエ変換等)により周波数領域の信号に変換する。
Xi(k,n)=FT(xi(n))
ここでxi(n)=[xi(nT-T+1),xi(nT-T+2),…,xi(nT)]、nは現在時刻のフレーム番号、FTはフーリエ変換、Tはフーリエ変換のフレームサイズ(Tは2以上の整数の何れか)、kは周波数インデックスを表す。なお、tは離散時刻のインデックスを表し、フレーム周期T/D(Dは2以上のTを割り切れる整数の何れか)毎に時刻tから過去T個分の音響信号xi(t),xi(t-1),…,xi(t-T+1)を用いてフーリエ変換を行う。なお、このときt=nT/Dの関係を満たす。
 なお、ハウリング抑圧装置100-i及び周波数変換部110に入力される信号は、マイクロホンにより収音された音響信号そのものではなく、音響信号に対して信号処理を行った後の信号でもよい。例えば、m個のマイクロホン(例えばマイクロホンアレー)により収音したされた音響信号に対してビームフォーミング処理を行い、所定の方向に指向性を有するL(本実施形態ではL=2)個の出力信号を得、この出力信号を音響信号xi(t)に代えて、ハウリング抑圧装置100-i及び周波数変換部110に入力する。また、ビームフォーミング処理に限らず、雑音抑圧処理等の信号処理を行った後の信号を入力としてもよい。要は、ハウリング抑圧装置100-i及び周波数変換部110には、マイクロホンにより収音された音響信号から得られるL個の信号が入力される。
<平滑化処理部120>
 平滑化処理部120は、信号Xi(k,n)を入力とし、遅延部121から一時刻(フレーム)前の値Xi'(k,n-1)を取り出し、信号Xi(k,n)を時間方向に平滑化し(S120)、値X'i(k,n)を求め、統合処理部130とハウリング抑圧装置100-jに出力する。さらに、値X'i(k,n)を遅延部121に格納し、次フレームn+1の平滑化処理時に利用する。例えば、次式により、各周波数成分を一時刻(フレーム)前の値Xi'(k,n-1)との重みづけ和で時間方向へ平滑化する。
X'i(k,n)=||Xi(k,n)||+αXi'(k,n-1)
ただし、αは、時定数で0以上1未満の実数であり、大きいほど過去の情報を大きく反映する値である。
<統合処理部130>
 統合処理部130は、ハウリング抑圧装置100-iの平滑化処理部120の出力値である値X'i(k,n)と、他のハウリング抑圧装置100-jの平滑化処理部120の出力値である値X'j(k,n)とを入力とし、2個の値X'i(k,n),X'j(k,n)の中から最大値 -X(k,n)を求め(S130)、出力する。なお、この最大値を求める処理を2個の値X'i(k,n),X'j(k,n)を統合する処理とも言い、最大値 -X(k,n)を統合した値とも言う。例えば、次式により、最大値を求める。
-X(k,n)=max{Xi'(k,n),Xj'(k,n)}
max{}は{}内の最大の値を出力するものとする。
 このような構成により、ハウリングが2組のマイクスピーカのループで発生する場合、それぞれのマイク入力信号においてうなりの位相がずれていることを利用する。例えば、最大πの位相ずれがある場合、片側のマイク入力でハウリングが局所的に最小になったタイミングで、もう片方のマイク入力ではハウリングが局所的に最大になり、逆も同様である。図8は図2の0.35~0.45の0.1秒間を拡大し、x1とx2を並べてプロットしたものである。図8からうなりのピークとなるタイミングが異なることがわかる。そのため、うなりの位相がずれている、かつ、振幅が近しい場合に、2つの値の最大値を採用することで、うなりの振幅の影響を低減することができる。
<ハウリング抑圧処理部140>
 ハウリング抑圧処理部140は、最大値 -X(k,n)と周波数領域の信号Xi(k,n)とを入力とし、最大値 -X(k,n)を用いて、信号Xi(k,n)にハウリング抑圧処理を行い(S140)、抑圧後の信号Yi(k,n)を出力する。最大値 -X(k,n)を利用する構成は、L(本実施形態ではL=2)個のマイクロホンにより収音された音響信号間におけるハウリングの位相がずれていることを利用することに相当する。つまり、ハウリング抑圧処理部140は、L個のマイクロホンにより収音された音響信号間におけるハウリングの位相がずれていることを利用してハウリング抑圧処理を行っているとも言える。
 本実施形態では、ハウリング抑圧処理部140は、(i)最大値 -X(k,n)が所定のパワーを示す値よりも大きい場合と、(ii)最大値 -X(k,n)の変化量を示す値が所定の変化量を示す値よりも大きい場合との少なくとも何れかの場合に、最大値 -X(k,n)に基づき得られる第一ゲインと、最大値 -X(k,n)の変化量を示す値に基づき得られる第二ゲインとのうちの何れか小さい値を信号Xi(k,n)に乗算することでハウリング抑圧処理を行う。以下、図6、図7を用いて、ハウリング抑圧処理部140の各部の処理内容を説明する。
<パワー判定部141>
 パワー判定部141は、最大値 -X(k,n)を入力とし、最大値 -X(k,n)がパワーの条件を満たしているかを判定する。例えば、最大値 -X(k,n)が所定のパワーを示す値(閾値Thr1、Thr1は実験等により予め算出した正の実数)よりも大きいか否かを判定し(S141)、パワー判定結果P(k,n)を出力する。例えば、次式により、パワー判定結果P(k,n)を得る。
Figure JPOXMLDOC01-appb-M000001
つまり、この例ではパワー判定結果P(k,n)が1のときにパワーの条件を満たしていることを示す。
<遅延部143>
 遅延部143は、最大値 -X(k,n)を入力とし、記憶し、時定数判定部142の求めに応じて出力する。
<時定数判定部142>
 時定数判定部142は、最大値 -X(k,n)を入力とし、遅延部143から一時刻(フレーム)前の最大値 -X(k,n-1)を取り出す。時定数判定部142は、最大値 -X(k,n)の一時刻(フレーム)前からの差分値が条件を満たしているかを判定し(S142)、時定数判定結果S(k,n)を出力する。
 本実施形態では、最大値 -X(k,n)の一時刻(フレーム)前からの差分値が条件を満たしているかを、最大値 -X(k,n)の変化量を示す値と所定の変化量を示す値との大小関係から判定する。最大値 -X(k,n)の変化量を示す値は現在のフレームの最大値 -X(k,n)と過去のフレームの最大値 -X(k,n-1)との比 -X(k,n)/ -X(k,n-1)であり、所定の変化量を示す値は所定の時定数βである。時定数判定部142は、現在のフレームの最大値 -X(k,n)が過去のフレームの最大値 -X(k,n-1)に所定の時定数βを乗じた値β -X(k,n-1)よりも大きいか否かを判定し、変化量判定結果S(k,n)を出力する。例えば、次式により、変化量判定結果S(k,n)を得る。
Figure JPOXMLDOC01-appb-M000002
時定数βは、通常室内の残響よりも十分大きく1(=減衰無し)よりは小さい値である。つまり、この例では変化量判定結果S(k,n)が1のときに変化量の条件を満たしていることを示す。
<利得計算部144>
 利得計算部144は、パワー判定結果P(k,n)と変化量判定結果S(k,n)とを入力とし、ハウリングを抑圧するための利得(ゲイン)を計算し(S144)、出力する。例えば、利得計算部144は、現在のフレームのパワー判定結果P(k,n)から得られるパワー指標 -P(k,n)が、所定の値 -Pminよりも小さい場合には -P(k,n)=-Pminとし、所定の値 -Pmaxよりも大きい場合には -P(k,n)= -Pmaxとし、パワー指標 -P(k,n)と所定の閾値Pthrとの大小関係に基づき第一ゲインGpを求める。ただし、-Pmin-Pmaxである。例えば、以下のように第一ゲインGpを求める。
Figure JPOXMLDOC01-appb-M000003
ただし、Gp1は0以上1以下の固定値である。-P(k,n)のn=0の初期値は0とする。
 さらに、利得計算部144は、現在のフレームの変化量判定結果S(k,n)から得られる時定数指標 -S(k,n)が、所定の値 -Sminよりも小さい場合には-S(k,n)=-Sminとし、所定の値 -Smaxよりも大きい場合には -S(k,n)= -Smaxとし、時定数指標 -S(k,n)と所定の閾値Sthrとの大小関係に基づき第二ゲインGSを求める。ただし、-Smin-Smaxである。例えば、以下のように第二ゲインGSを求める。
Figure JPOXMLDOC01-appb-M000004
ただし、Gs1は0以上1以下の固定値である。-S(k,n)のn=0の初期値は0とする。
 利得計算部144は、第一ゲインGPと、第二ゲインGSとのうちの何れか小さい値を第三ゲインGとし、ハウリングを抑圧するためのゲインとして第三ゲインGを出力する。例えば、以下のように第三ゲインGを求める。
G(k,n)=min{GP,GS}
ただし、min{}は{}内の最小の値を出力するものとする。
<利得重畳部145>
 利得重畳部145は、第三ゲインGと信号Xi(k,n)とを入力とし、第三ゲインGを信号Xi(k,n)に乗算し(S145)、積を抑圧後の信号Yi(k,n)として出力する。
Yi(k,n)=Xi(k,n)G(k,n)
<周波数逆変換部150>
 周波数逆変換部150は、信号Yi(k,n)を入力とし、時間領域の信号に変換し(S150)、変換後の信号yi(t)をハウリング抑圧装置100-iの出力値として出力する。なお、時間領域への変換方法は、周波数変換部110で用いた周波数領域への変換方法に対応するものを用いればよい。例えば、周波数領域の信号Yi(k,n)をフーリエ逆変換(高速フーリエ逆変換等)により時間領域の信号に変換する。
yi(n)=IFT(Yi(k,n))
なお、yi(n)=[yi(nT-T+1),yi(nT-T+2),…,yi(nT)]である。フーリエ逆変換によりフレーム毎に得られた時間領域の信号yi(n)は適宜シフトされて線形和が取られて、連続した時間領域の信号yi(t)となる。
<効果>
 以上の構成により、ハウリングの検知の遅れを防ぐことができ、拡声システムのハウリング防止効果を向上させることができる。
 図3のように2つのハウリング抑圧装置100-iを配置し、i=1,2においてそれぞれハウリング抑圧処理を実行することで、二つの系からハウリングの発生を抑圧することができる。
<変形例1>
 本実施形態において、第一ゲインGp1,第二ゲインGs1は固定値としていたが、入力音響信号に連動させてもよい。例えば、
Gp1=α×Thr2/-X(k,n)
のように設定する。αは0以上1以下の実数で、Xi(k,n)=-X(k,n)かつα=1のとき、Gp1はXi(k,n)をThr2まで落とす抑圧ゲインとなる。αが1未満の場合、Thr2よりもさらに小さくなるように抑圧量が設定される。例えば、Thr2は、これ以上大きな音であればハウリングであると考えらえる値、もしくは、それよりも小さな値に設定される。また、Thr2はパワー判定部141で用いるThr1以下の値に設定してもよい。
 第二ゲインGs1についても同様に
GS12×Thr3/-X(k,n)
のように設定してもよい。α2は0以上1以下の実数である。Thr3はThr2と同様の考え方で設定される。
<変形例2>
 ハウリング抑圧システムは、L個のハウリング抑圧装置100-iを含む構成としてもよい(図9参照)。Lは2以上の整数の何れかであり、i=1,2,…,Lである。
 この変形例2では、統合処理部130は、ハウリング抑圧装置100-iの平滑化処理部120の出力値である値X'i(k,n)と、他のL-1個のハウリング抑圧装置100-jの平滑化処理部120の出力値である値X'j(k,n)とを入力とする。ただし、j=1,2,…,Lであり、i≠jである。統合処理部130は、L個の値X'i(k,n)の中から最大値 -X(k,n)を求め(S130)、出力する。なお、この最大値を求める処理をL個の値X'i(k,n)を統合する処理とも言い、最大値 -X(k,n)を統合した値とも言う。例えば、次式により、最大値を求める。
-X(k,n)=max{X1'(k,n),X2'(k,n),…,XL'(k,n)}
max{}は{}内の最大の値を出力するものとする。
 このような構成により、第一実施形態のハウリング抑圧システムを、L個のハウリング抑圧装置100-iを含む構成に拡張することができる。また、第一実施形態は変形例2の一例と言える。
 なお、例えば、L個のハウリング抑圧装置100-iの出力値yiのうちのL-1個の出力値yiを合成(ミキシング)し、スピーカ90-iに出力する構成としてもよい。例えば、あるマイクスピーカを構成するマイクにより収音された音響信号に対応する出力値yiをL個の出力値yiから除いたもの(L-1個の出力値yi)を合成し、同じマイクスピーカを構成するスピーカで再生すればよい。
<変形例3>
 本実施形態の二つのハウリング処理装置100-iを一つの装置により実現してもよい。図10は、変形例3のハウリング抑圧装置100の配置例を示す。図11は本変形例に係るハウリング抑圧装置の機能ブロック図を示す。ハウリング抑圧装置100は、周波数変換部110と平滑化処理部120と遅延部121と統合処理部130とハウリング抑圧処理部140と周波数逆変換部150とを含み、各部において、第一実施形態と同様の処理を行う。ただし、第一実施系形態では、統合処理部を除き各部において1つの系の信号に対して処理を行っていたが、本変形例では、2つの系の信号に対して処理を行う。なお、統合処理部では、第一実施系形態と同様の処理を行う。
 このような構成により、図10に示すように、ハウリング抑圧装置100は、2つの系のマイクロホン80-iにより収音された音響信号を入力とし、2つのマイクロホン80-iにより収音された音響信号に含まれるハウリング成分をそれぞれ抑圧し、抑圧後の信号をそれぞれ2つのスピーカ90-iに出力する。
 なお、変形例1~3はそれぞれ組合せてもよい。
<その他の変形例>
 本実施形態及びその変形例では、L個の系全てにおいてハウリング成分を抑圧しているが、L個の系のうちの少なくとも1つの系においてハウリング成分を抑圧する構成としてもよい。例えば、第一実施形態において、ハウリング抑圧処理装置100-1、100-2の何れか一方のみを配置する構成としてもよい。この場合、配置されたハウリング抑圧処理装置において、他方の系のマイクロホンにより収音された音響信号に対して周波数変換部110及び平滑化処理部120における処理(S110,S120)を行い、統合処理部130の入力値を生成する。
 このような構成であっても、第一実施形態等と比べるとハウリング防止効果は下がるが、ハウリングの検知の遅れを防ぐことができ、拡声システムのハウリング防止効果を向上させることができる。
 また、本実施形態では、マイクロホンにより収音された時間領域の音響信号を入力としているが、別装置により周波数領域の信号に変換された音響信号を入力としてもよい。この場合、ハウリング抑圧装置100-iは、周波数領域変換部110を含まなくともよい。
 また、平滑化処理部120における平滑化処理を行うことで、フレームは安定するが、平滑化処理を行わずに処理を行ったとしても、ハウリングの検知の遅れを防ぐことができ、拡声システムのハウリング防止効果を向上させることはできる。よって、ハウリング抑圧装置100-iは、平滑化処理部120を含まなくともよい。
 統合処理部130では、複数のマイクロホンにより収音された音響信号から得られる周波数領域の信号であるL個の第i信号を入力とすればよい。例えば、本実施形態の2個の値X'i(k,n),X'j(k,n)以外に、平滑化処理前の周波数領域の信号Xi(k,n)や、複数のマイクロホンにより収音された音響信号に対してビームフォーミング処理、雑音抑圧処理等の信号処理を行った後の周波数領域の信号を入力とすればよい。
 また、ハウリング抑圧装置100-iは、例えば、周波数領域の信号Yi(k,n)をそのまま出力し、後段の装置において、周波数領域の信号Yi(k,n)に対して何らかの信号処理を行い、信号処理後に時間領域の信号に変換してもよい。よって、ハウリング抑圧装置100-iは、周波数逆変換部150を含まなくともよい。
<第二実施形態のポイント>
 第一実施形態の統合処理部130において
-X(k,n)=max{Xi'(k,n),Xj'(k,n)}
によりうなりの影響を軽減できるが、片側で音声を発話しているなど、別の音が鳴っている場合にも影響を受けやすい。つまり、どちらか一方で周波数成分が大きければ-X(k,n)は大きな値をとる。
 これに対し、「片側で発せられた音声」が片側でのみ音圧が大きいことを利用し、
-X(k,n)=min{Xi'(k,n),Xj'(k,n)}
とする方法を上げる。このときminは{}内の最小の値を出力するものとする。
 これにより、音声を通常に発した場合(言い換えると、ハウリングが起きていない状況で話者が音声を発した場合)は、2系統の低い方が選ばれる。一方、ハウリングをしかけている場合は、2系統はほぼ同じ音量で増加していくため、音声を通常に発生した場合に比べ2系統の低い方の値は相対的に大きな値となる。このような値を用いることで、第一実施形態よりもハウリングとそうでない信号の区別がつきやすくなる。
 なお、このやり方では逆にうなりの現象を捉えにくくなるが、以下のように、
Figure JPOXMLDOC01-appb-M000005
という変数を定義して、この変数が短期間の間にプラスとマイナスを頻繁に行き来するような場合にうなりと判定することにすれば、問題は軽減される。
 第二実施形態では、上述の構成を実現するための構成について説明する。
<第二実施形態>
 第一実施形態と異なる部分を中心に説明する。
 図12は第二実施形態に係るハウリング抑圧装置の機能ブロック図を、図13はその処理フローを示す。
 ハウリング抑圧装置100-iは、周波数変換部110と平滑化処理部120と遅延部121と統合処理部230とハウリング判定部260とハウリング抑圧処理部240と周波数逆変換部150とを含む。周波数変換部110と平滑化処理部120と周波数逆変換部150における処理は第一実施形態と同様である。
 なお、「片側で発せられた音声」が片側でのみ音圧が大きいことを利用するため、2個のマイクロホン80-iは、音源に対して異なる距離に配置されているものとする。
<統合処理部230>
 統合処理部230は、ハウリング抑圧装置100-iの平滑化処理部120の出力値である値X'i(k,n)と、他のハウリング抑圧装置100-jの平滑化処理部120の出力値である値X'j(k,n)とを入力とし、2個の値X'i(k,n),X'j(k,n)の中から最小値 -X(k,n)を求め(S230)、出力する。なお、この最小値を求める処理を2個の値X'i(k,n),X'j(k,n)を統合する処理とも言い、最小値 -X(k,n)を統合した値とも言う。例えば、次式により、最小値を求める。
-X(k,n)=min{Xi'(k,n),Xj'(k,n)}
<ハウリング判定部260>
 ハウリング判定部260は、ハウリング抑圧装置100-iの平滑化処理部120の出力値である値X'i(k,n)と、他のハウリング抑圧装置100-jの平滑化処理部120の出力値である値X'j(k,n)とを入力とし、2個の値X'i(k,n),X'j(k,n)の差分の符号が、所定の時間内に所定の回数以上変化した場合に、ハウリングが発生する恐れがある、または、発生していると判定し(S260)、判定結果に出力する。例えば、ハウリングが発生する恐れがある、または、発生していると判定した場合には判定結果として1を出力し、それ以外の場合に0を出力する。
 2個の値X'i(k,n),X'j(k,n)の差分の符号が変化するか否かは、(X'i(k,n)-X'j(k,n))の符号を用いて判断してもよいし、上述の通り、
Figure JPOXMLDOC01-appb-M000006
という変数を定義して、この変数の符号を用いて判断してもよい。例えば、図8の例では0.1秒内に6回符号が変化しているので、このような状態を検知できるように所定の時間及び所定の回数を設定すればよい。
<ハウリング抑圧処理部240>
 ハウリング抑圧処理部240は、最小値 -X(k,n)と周波数領域の信号Xi(k,n)とハウリング判定部260の判定結果とを入力とし、判定結果がハウリングが発生する恐れがある、または、ハウリングが発生していることを示す場合、最小値 -X(k,n)を用いて、信号Xi(k,n)にハウリング抑圧処理を行い(S240)、抑圧後の信号Yi(k,n)を出力する。なお、上述の条件を満たさない場合(判定結果がハウリングが発生する恐れがある、または、ハウリングが発生していることを示さない場合)、信号Xi(k,n)に対してハウリング抑圧処理を行わず、信号Yi(k,n)=Xi(k,n)を出力する。ハウリング抑圧処理を行う場合には、最大値 -X(k,n)に代えて最小値 -X(k,n)を用いてハウリング抑圧処理部140と同様の処理を行えばよい。ただし、閾値Thr1や時定数β等は最小値 -X(k,n)に合わせて適切に設定する。なお、本実施形態では、1度、ハウリング抑圧処理を行った後は、ハウリング抑圧処理を行い続けるものとする。この場合、ハウリング判定部260では、ハウリングが発生する恐れがある、または、発生していると1度判定した後は判定処理を行わない構成としてもよい。また、判定結果がハウリングが発生する恐れがある、または、ハウリングが発生していることを示さない場合は、再度ハウリング抑圧処理を行わない構成とし、ハウリング判定部260における判定処理を再開してもよい。
<効果>
 このような構成とすることで、第一実施形態と同様の効果を得ることができる。さらに、ハウリング以外の別の音が鳴っている場合にも適切にハウリングを抑圧できる。なお、本実施形態と第一実施形態の変形例とを組合せてもよい。また、ハウリング判定部260の判定結果を統合部230の入力とし、判定結果がハウリングが発生する恐れがある、または、ハウリングが発生していることを示さない場合、統合処理部230における統合処理(S230)を省略する構成としてもよい。
<その他の変形例>
 本発明は上記の実施形態及び変形例に限定されるものではない。例えば、上述の各種の処理は、記載に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されてもよい。その他、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。
<プログラム及び記録媒体>
 また、上記の実施形態及び変形例で説明した各装置における各種の処理機能をコンピュータによって実現してもよい。その場合、各装置が有すべき機能の処理内容はプログラムによって記述される。そして、このプログラムをコンピュータで実行することにより、上記各装置における各種の処理機能がコンピュータ上で実現される。
 この処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、例えば、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリ等どのようなものでもよい。
 また、このプログラムの流通は、例えば、そのプログラムを記録したDVD、CD-ROM等の可搬型記録媒体を販売、譲渡、貸与等することによって行う。さらに、このプログラムをサーバコンピュータの記憶装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することにより、このプログラムを流通させてもよい。
 このようなプログラムを実行するコンピュータは、例えば、まず、可搬型記録媒体に記録されたプログラムもしくはサーバコンピュータから転送されたプログラムを、一旦、自己の記憶部に格納する。そして、処理の実行時、このコンピュータは、自己の記憶部に格納されたプログラムを読み取り、読み取ったプログラムに従った処理を実行する。また、このプログラムの別の実施形態として、コンピュータが可搬型記録媒体から直接プログラムを読み取り、そのプログラムに従った処理を実行することとしてもよい。さらに、このコンピュータにサーバコンピュータからプログラムが転送されるたびに、逐次、受け取ったプログラムに従った処理を実行することとしてもよい。また、サーバコンピュータから、このコンピュータへのプログラムの転送は行わず、その実行指示と結果取得のみによって処理機能を実現する、いわゆるASP(Application Service Provider)型のサービスによって、上述の処理を実行する構成としてもよい。なお、プログラムには、電子計算機による処理の用に供する情報であってプログラムに準ずるもの(コンピュータに対する直接の指令ではないがコンピュータの処理を規定する性質を有するデータ等)を含むものとする。
 また、コンピュータ上で所定のプログラムを実行させることにより、各装置を構成することとしたが、これらの処理内容の少なくとも一部をハードウェア的に実現することとしてもよい。

Claims (9)

  1.  Lを2以上の整数の何れかとし、i=1,2,…,Lとし、複数のマイクロホンにより収音された音響信号から得られる周波数領域の信号であるL個の第i信号のn番目のフレームに対応するL個の値の中から最大値を求める統合処理部と、
     前記最大値を用いて、L個の第i信号の少なくとも何れかにハウリング抑圧処理を行うハウリング抑圧処理部と、を含む、
     ハウリング抑圧装置。
  2.  請求項1のハウリング抑圧装置であって、
     前記ハウリング抑圧処理部は、前記複数のマイクロホンにより収音された音響信号間におけるハウリングの位相がずれていることを利用してハウリング抑圧処理を行う、
     ハウリング抑圧装置。
  3.  請求項1または請求項2のハウリング抑圧装置であって、
     前記ハウリング抑圧処理部は、(i)前記最大値が所定のパワーを示す値よりも大きい場合と、(ii)前記最大値の変化量を示す値が所定の変化量を示す値よりも大きい場合との少なくとも何れかの場合に、前記最大値に基づき得られる第一ゲインと、前記最大値の変化量を示す値に基づき得られる第二ゲインとのうちの何れか小さい値を前記L個の第i信号の少なくとも何れかに乗算することでハウリング抑圧処理を行う、
     ハウリング抑圧装置。
  4.  請求項1から請求項3の何れかのハウリング抑圧装置であって、
     前記L個の第i信号を時間方向に平滑化し、前記L個の値を求める平滑化処理部を含み、
     前記ハウリング抑圧処理部は、
     前記最大値が所定のパワーを示す値よりも大きいか否かを示すパワー判定結果P(k,n)を求めるパワー判定部と、
     前記最大値の変化量を示す値は現在のフレームの最大値と過去のフレームの最大値との比であり、前記所定の変化量を示す値は所定の時定数であり、現在のフレームの最大値が過去のフレームの最大値に所定の時定数を乗じた値よりも大きいか否かを示す変化量判定結果S(k,n)を求める時定数判定部と、
     現在のフレームのパワー判定結果P(k,n)から得られるパワー指標 -P(k,n)が、所定の値-Pminよりも小さい場合には-P(k,n)=-Pminとし、所定の値-Pmaxよりも大きい場合には-P(k,n)=-Pmaxとし、パワー指標 -P(k,n)と所定の閾値Pthrとの大小関係に基づき第一ゲインを求め、現在のフレームの変化量判定結果S(k,n)から得られる時定数指標 -S(k,n)が、所定の値-Sminよりも小さい場合には-S(k,n)=-Sminとし、所定の値-Smaxよりも大きい場合には-S(k,n)=-Smaxとし、時定数指標 -S(k,n)と所定の閾値Sthrとの大小関係に基づき第二ゲインを求める利得計算部と、
     前記第一ゲインと前記第二ゲインとのうちの何れか小さい値を前記L個の第i信号に乗算する利得重畳部とを含む、
     ハウリング抑圧装置。
  5.  Lを2以上の整数の何れかとし、i=1,2,…,Lとし、複数のマイクロホンにより収音された音響信号から得られる周波数領域の信号であるL個の第i信号のn番目のフレームに対応するL個の値の中から最小値を求める統合処理部と、
     L個のマイクロホンのうちの2個のマイクロホンにより収音された音響信号が周波数変換された信号である2個の第i信号のn番目のフレームに対応する2個の値の差分の符号が、所定の時間内に所定の回数以上変化した場合に、ハウリングが発生する恐れがある、または、発生していると判定するハウリング判定部と、
     ハウリングが発生する恐れがある、または、ハウリングが発生していると判定された場合に、前記最小値を用いて、L個の第i信号の少なくとも何れかにハウリング抑圧処理を行うハウリング抑圧処理部と、を含む、
     ハウリング抑圧装置。
  6.  請求項1から請求項5の何れかのハウリング抑圧装置であって、
     L=2である、
     ハウリング抑圧装置。
  7.  Lを2以上の整数の何れかとし、i=1,2,…,Lとし、複数のマイクロホンにより収音された音響信号から得られる周波数領域の信号であるL個の第i信号のn番目のフレームに対応するL個の値の中から最大値を求める統合処理ステップと、
     前記最大値を用いて、L個の第i信号の少なくとも何れかにハウリング抑圧処理を行うハウリング抑圧処理ステップと、を含む、
     ハウリング抑圧方法。
  8.  Lを2以上の整数の何れかとし、i=1,2,…,Lとし、複数のマイクロホンにより収音された音響信号から得られる周波数領域の信号であるL個の第i信号のn番目のフレームに対応するL個の値の中から最小値を求める統合処理ステップと、
     L個のマイクロホンのうちの2個のマイクロホンにより収音された音響信号が周波数変換された信号である2個の第i信号のn番目のフレームに対応する2個の値の差分の符号が、所定の時間内に所定の回数以上変化した場合に、ハウリングが発生する恐れがある、または、発生していると判定するハウリング判定ステップと、
     ハウリングが発生する恐れがある、または、ハウリングが発生していると判定された場合に、前記最小値を用いて、L個の第i信号の少なくとも何れかにハウリング抑圧処理を行うハウリング抑圧処理ステップと、を含む、
     ハウリング抑圧方法。
  9.  請求項1から請求項6の何れかのハウリング抑圧装置としてコンピュータを機能させるためのプログラム。
PCT/JP2019/005241 2018-02-16 2019-02-14 ハウリング抑圧装置、その方法、およびプログラム WO2019160006A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/969,273 US11252506B2 (en) 2018-02-16 2019-02-14 Howling suppression apparatus, and method and program for the same
EP19754765.6A EP3755005B1 (en) 2018-02-16 2019-02-14 Howling suppression device, method therefor, and program
JP2020500539A JP7028307B2 (ja) 2018-02-16 2019-02-14 ハウリング抑圧装置、その方法、およびプログラム
CN201980013290.4A CN111801951B (zh) 2018-02-16 2019-02-14 啸叫抑制装置、其方法以及计算机可读取记录介质
ES19754765T ES2948633T3 (es) 2018-02-16 2019-02-14 Dispositivo de supresión de aullidos, método para el mismo y programa

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-026181 2018-02-16
JP2018026181 2018-02-16

Publications (1)

Publication Number Publication Date
WO2019160006A1 true WO2019160006A1 (ja) 2019-08-22

Family

ID=67618652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005241 WO2019160006A1 (ja) 2018-02-16 2019-02-14 ハウリング抑圧装置、その方法、およびプログラム

Country Status (6)

Country Link
US (1) US11252506B2 (ja)
EP (1) EP3755005B1 (ja)
JP (1) JP7028307B2 (ja)
CN (1) CN111801951B (ja)
ES (1) ES2948633T3 (ja)
WO (1) WO2019160006A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2590346A (en) * 2019-10-10 2021-06-30 Gibby Adrian Elimination of feedback or howlround due to microphones, pickups and audio input transducers feeding back through loudspeakers
CN113450819A (zh) * 2021-05-21 2021-09-28 音科思(深圳)技术有限公司 信号处理方法及相关产品
TWI825471B (zh) * 2021-09-01 2023-12-11 宏碁股份有限公司 會議終端及回授抑制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06164278A (ja) 1992-11-25 1994-06-10 Matsushita Electric Ind Co Ltd ハウリング抑制装置
WO2005125273A1 (ja) * 2004-06-16 2005-12-29 Matsushita Electric Industrial Co., Ltd. ハウリング検出装置およびその方法
JP2011024071A (ja) * 2009-07-17 2011-02-03 Yamaha Corp ハウリングキャンセラ
JP2013236272A (ja) * 2012-05-09 2013-11-21 Sony Corp 音声処理装置および音声処理方法、並びにプログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294019A (ja) * 1987-05-27 1988-11-30 Oki Electric Ind Co Ltd ハウリング抑圧装置
JP4681163B2 (ja) * 2001-07-16 2011-05-11 パナソニック株式会社 ハウリング検出抑圧装置、これを備えた音響装置、及び、ハウリング検出抑圧方法
EP1965603B1 (en) * 2005-12-19 2017-01-11 Yamaha Corporation Sound emission and collection device
CN102549661B (zh) * 2009-10-21 2013-10-09 松下电器产业株式会社 音响处理装置、音响处理方法及助听器
EP2736271B1 (en) * 2012-11-27 2019-06-19 Oticon A/s A method of controlling an update algorithm of an adaptive feedback estimation system and a de-correlation unit
US9854358B2 (en) 2014-07-25 2017-12-26 2236008 Ontario Inc. System and method for mitigating audio feedback
CN107810643B (zh) * 2015-06-19 2020-09-15 唯听助听器公司 操作助听器系统的方法和助听器系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06164278A (ja) 1992-11-25 1994-06-10 Matsushita Electric Ind Co Ltd ハウリング抑制装置
WO2005125273A1 (ja) * 2004-06-16 2005-12-29 Matsushita Electric Industrial Co., Ltd. ハウリング検出装置およびその方法
JP2011024071A (ja) * 2009-07-17 2011-02-03 Yamaha Corp ハウリングキャンセラ
JP2013236272A (ja) * 2012-05-09 2013-11-21 Sony Corp 音声処理装置および音声処理方法、並びにプログラム

Also Published As

Publication number Publication date
CN111801951B (zh) 2022-06-03
JP7028307B2 (ja) 2022-03-02
US20210006899A1 (en) 2021-01-07
EP3755005A4 (en) 2021-10-13
US11252506B2 (en) 2022-02-15
EP3755005B1 (en) 2023-06-07
ES2948633T3 (es) 2023-09-15
JPWO2019160006A1 (ja) 2021-02-04
CN111801951A (zh) 2020-10-20
EP3755005A1 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
JP6636937B2 (ja) 状況に応じた過渡抑制
JP6290429B2 (ja) 音声処理システム
WO2019160006A1 (ja) ハウリング抑圧装置、その方法、およびプログラム
CN100525101C (zh) 使用波束形成算法来记录信号的方法和设备
Roman et al. Speech intelligibility in reverberation with ideal binary masking: Effects of early reflections and signal-to-noise ratio threshold
US10553236B1 (en) Multichannel noise cancellation using frequency domain spectrum masking
CN110956969B (zh) 直播音频处理方法、装置、电子设备和存储介质
US10089998B1 (en) Method and apparatus for processing audio signals in a multi-microphone system
WO2020020247A1 (zh) 信号处理方法、装置以及计算机存储介质
US20240177726A1 (en) Speech enhancement
Shankar et al. Efficient two-microphone speech enhancement using basic recurrent neural network cell for hearing and hearing aids
US11380312B1 (en) Residual echo suppression for keyword detection
CN115175063A (zh) 啸叫抑制方法、装置、音响及扩音系统
JP2007047427A (ja) 音声処理装置
JP7020554B2 (ja) 会話サポートシステム、その方法、およびプログラム
WO2020107455A1 (zh) 语音处理方法、装置、存储介质及电子设备
US20190074805A1 (en) Transient Detection for Speaker Distortion Reduction
Park et al. Two‐Microphone Generalized Sidelobe Canceller with Post‐Filter Based Speech Enhancement in Composite Noise
WO2017171864A1 (en) Acoustic environment understanding in machine-human speech communication
WO2023013019A1 (ja) 発話フィードバック装置、発話フィードバック方法、プログラム
JP4395105B2 (ja) 音響結合量推定方法、音響結合量推定装置、プログラム、記録媒体
US11894013B2 (en) Sound collection loudspeaker apparatus, method and program for the same
WO2021245871A1 (ja) 通話環境生成方法、通話環境生成装置、プログラム
WO2023013020A1 (ja) マスキング装置、マスキング方法、プログラム
CN115547355A (zh) 信号处理方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754765

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500539

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019754765

Country of ref document: EP

Effective date: 20200916