WO2019159861A1 - 積層チューブ - Google Patents

積層チューブ Download PDF

Info

Publication number
WO2019159861A1
WO2019159861A1 PCT/JP2019/004778 JP2019004778W WO2019159861A1 WO 2019159861 A1 WO2019159861 A1 WO 2019159861A1 JP 2019004778 W JP2019004778 W JP 2019004778W WO 2019159861 A1 WO2019159861 A1 WO 2019159861A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
acid
layer
copolymer
mol
Prior art date
Application number
PCT/JP2019/004778
Other languages
English (en)
French (fr)
Inventor
一俊 坪井
広昭 藤井
晶 久留宮
孝治 中村
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2019537323A priority Critical patent/JP6614402B1/ja
Publication of WO2019159861A1 publication Critical patent/WO2019159861A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics

Definitions

  • the present invention relates to a laminated tube.
  • tubes for automobile piping are oxygen-containing gasoline blended with low boiling point alcohols such as methanol and ethanol, or ethers such as ethyl-t-butyl ether (ETBE) from the viewpoint of saving gasoline consumption and improving performance. Etc. are transferred.
  • ETBE ethyl-t-butyl ether
  • strict exhaust gas regulations including prevention of leakage into the atmosphere due to diffusion of volatile hydrocarbons and the like through piping tube partition walls are being implemented.
  • a single-layer tube using a polyamide-based resin, particularly polyamide 11 or polyamide 12 that is excellent in strength, toughness, chemical resistance, flexibility, etc., is used as described above.
  • the barrier property against the chemical solution is not sufficient, and in particular, an improvement to the alcohol-containing gasoline barrier property is required.
  • resins having good chemical barrier properties such as saponified ethylene / vinyl acetate copolymer (EVOH), polymetaxylylene adipamide (polyamide MXD6), polybutylene terephthalate (PBT), polyethylene Naphthalate (PEN), polybutylene naphthalate (PBN), polyphenylene sulfide (PPS), polyvinylidene fluoride (PVDF), ethylene / tetrafluoroethylene copolymer (ETFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE) ), Tetrafluoroethylene / hexafluoropropylene copolymer (TFE / HFP, FEP), tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymer (TFE / HFP / VDF, THV), tetrafur Ethylene / hexacetate copolymer (EVOH
  • saponified ethylene / vinyl acetate copolymer is extremely excellent in chemical solution barrier properties, particularly hydrocarbon barrier properties.
  • a fuel composed of an outermost layer made of polyamide 12, an adhesive layer made of modified polyolefin, an outer layer made of polyamide 6, an intermediate layer made of saponified ethylene / vinyl acetate copolymer (EVOH), and an innermost layer made of polyamide 6 Piping has been proposed (see Patent Document 2). Further, at least one selected from the group consisting of an outermost layer made of polyamide 12, a polyamide 6/12 copolymer, a polyamide 12/6 copolymer, polyamide 612, polyamide 610, a mixture of polyamide 12, polyamide 6, and a compatibilizer.
  • a laminated composite composed of an adhesive layer made of seed, an intermediate layer made of saponified ethylene / vinyl acetate copolymer (EVOH), and an innermost layer made of polyamide 6 or polyamide 12 has been proposed (Patent Documents 3 and 4). reference).
  • an outermost layer made of polyamide 12 an adhesive layer made of a mixture of polyamide 6, polyamide 12 and polyamine / polyamide copolymer, an intermediate layer made of saponified ethylene / vinyl acetate copolymer (EVOH), polyamide 6 or polyamide
  • Patent Document 5 A laminated composite composed of 12 innermost layers has been proposed.
  • This technique is good for a polyamide copolymer having a specific composition ratio or a mixture of polyamide 6 and polyamide 12 and a compatibilizer as an adhesive layer interposing both polyamide 12 and saponified ethylene / vinyl acetate copolymer.
  • a compatibilizer as an adhesive layer interposing both polyamide 12 and saponified ethylene / vinyl acetate copolymer.
  • the development of the adhesive layer-less where the outer layer polyamide and the saponified ethylene / vinyl acetate copolymer (EVOH) are directly bonded Is also progressing.
  • a multilayer structure composed of inner and outer layers made of polyamide 12 and polyamide 6 and a compatibilizer and an intermediate layer made of saponified ethylene / vinyl acetate copolymer (EVOH), and polyamide 12 and polyamide 6 are used as hard segments.
  • Laminated composite comprising an outer layer made of polyetheramide elastomer, an intermediate layer made of saponified ethylene / vinyl acetate copolymer (EVOH), polyamide 610, polyamide 612, or a mixture of polyamide 610 and polyamide 6
  • EVOH saponified ethylene / vinyl acetate copolymer
  • it is composed of a layer composed of a specific polyamide copolymer composed of hexamethylenediamine, terephthalic acid and an aliphatic dicarboxylic acid having 8 to 20 carbon atoms, and a layer composed of an ethylene / vinyl acetate copolymer saponified product (EVOH).
  • EVOH ethylene / vinyl acetate copolymer saponified product
  • the intermediate layer has a saponified ethylene / vinyl acetate copolymer (EVOH) containing a specific structural unit, has excellent fuel barrier performance stability, and is subject to rapid temperature changes such as heat shock. After that, a fuel container having a good fuel barrier performance has been proposed (see Patent Document 10).
  • EVOH saponified ethylene / vinyl acetate copolymer
  • a tube having the same material as the inner and outer layers and ethylene / vinyl acetate copolymer saponified product (EVOH) as the intermediate layer may be inferior in resistance (chemical resistance) to calcium chloride and zinc chloride as described later. found.
  • EVOH ethylene / vinyl acetate copolymer saponified product
  • Patent Document 7 in order to improve the elongation at break of an extruded article at a high extrusion speed, a modified polyamide (PA) extruded material modified with a polyamide elastomer is used as an outer layer material, and ethylene / vinyl acetate is used.
  • PA polyamide
  • the present inventors have a layer containing a specific aliphatic polyamide composition and a layer containing a specific vinyl alcohol polymer composition, and the both layers In an adjacent laminated tube, the aliphatic polyamide composition has a specific range in which the absolute value of the difference in the solubility parameter SP value between the aliphatic polyamide and the aliphatic polyamide in which the ratio of the number of methylene groups to the number of amide groups is equal to or greater than a specific value.
  • an elastomer polymer containing a structural unit derived from an unsaturated compound having a carboxyl group and / or an acid anhydride group, and the vinyl alcohol polymer composition has a specific structural unit.
  • a vinyl alcohol polymer having a structural unit derived from an unsaturated compound having a carboxyl group and / or an acid anhydride group By including an elastomer polymer, chemical resistance, low temperature impact resistance after environmental stress loading, interlaminar adhesion, and durability are maintained while maintaining various properties such as low temperature impact resistance and elution resistance of monomers and oligomers. It has been found that a laminated tube having excellent properties can be obtained.
  • the layer (a) includes the aliphatic polyamide composition (A)
  • the layer (b) includes a vinyl alcohol polymer composition (B)
  • the aliphatic polyamide composition (A) includes a polyamide (A1), a polyamide (A2), and an elastomer polymer (A3)
  • the polyamide (A1) is an aliphatic polyamide having a ratio of methylene groups to amide groups of 8.0 or more, and is contained in the aliphatic polyamide composition (A) by 40% by mass or more and 85% by mass or less.
  • the polyamide (A2) is a polyamide other than the polyamide (A1), and is contained in the aliphatic polyamide composition (A) by 10% by mass to 35% by mass
  • the elastomer polymer (A3) contains a structural unit derived from an unsaturated compound having a carboxyl group and / or an acid anhydride group, and is 5% by mass or more and 25% in the aliphatic polyamide composition (A). Contains less than mass%, The absolute value [
  • the vinyl alcohol polymer composition (B) includes a vinyl alcohol polymer (B1) containing a side chain 1,2-diol unit represented by the following formula (1) and an elastomer polymer (B2):
  • the vinyl alcohol polymer (B1) containing the side chain 1,2-diol unit is contained in the vinyl alcohol polymer composition (B) in an amount of 60% by mass to 95% by mass
  • the elastomer polymer (B2) contains a structural unit derived from an unsaturated compound having a carboxyl group and / or an acid anhydride group, and is 5% by mass or more in the vinyl alcohol polymer composition (B).
  • the present invention relates to a laminated tube containing 40% by mass or less.
  • R 1 , R 2 , and R 3 each independently represent a hydrogen atom or an organic group
  • X represents a single bond or a bonded chain
  • R 4 , R 5 , and R 6 each independently represents a hydrogen atom or an organic group.
  • the preferable aspect of a laminated tube is shown below. A plurality of preferred embodiments can be combined.
  • the polyamide (A1) is polyhexamethylene dodecamide (polyamide 612), polynonamethylene dodecamide (polyamide 912), polydecamethylene sebacamide (polyamide 1010), polydecamethylene dodecamide (polyamide 1012). , At least one homopolymer selected from the group consisting of polydodecane methylene dodecanamide (polyamide 1212), polyundecanamide (polyamide 11), and polydodecanamide (polyamide 12), and / or a raw material for forming them.
  • a laminated tube which is at least one copolymer using several kinds of monomers.
  • the polyamide (A2) is polycaproamide (polyamide 6), polyhexamethylene adipamide (polyamide 66), polyhexamethylene azelamide (polyamide 69), and polyhexamethylene sebacamide (polyamide 610). At least one homopolymer selected from the group consisting of: and / or at least one copolymer using several raw material monomers forming them, or the polycaproamide (polyamide 6), poly The main component is a raw material monomer that forms at least one selected from the group consisting of hexamethylene adipamide (polyamide 66), polyhexamethylene azelamide (polyamide 69), and polyhexamethylene sebacamide (polyamide 610).
  • Polyhexamethylene dodecamide (polyamide 612), polynoname Lendecamide (polyamide 912), polydecane methylene sebamide (polyamide 1010), polydecane methylene dodecane (polyamide 1012), polydodecane methylene dodecane (polyamide 1212), polyundecanamide (polyamide 11), and polydodecanamide ( A laminated tube which is at least one copolymer using several raw material monomers forming at least one selected from the group consisting of polyamide 12).
  • the content of the side chain 1,2-diol unit represented by the above formula (1) in the vinyl alcohol polymer (B1) containing the side chain 1,2-diol unit is determined by the side chain A laminated tube having a content of 0.1 mol% or more and 30 mol% or less with respect to 100 mol% of all monomer units of the vinyl alcohol polymer (B1) containing 1,2-diol units.
  • the vinyl alcohol polymer (B1) containing a side chain 1,2-diol unit is a polyvinyl alcohol polymer containing a side chain 1,2-diol unit represented by the above formula (1).
  • a laminated tube which is a saponified ethylene / vinyl ester copolymer (B12) containing (B11) and / or a side chain 1,2-diol unit represented by the above formula (1).
  • the ethylene unit content in the saponified ethylene / vinyl ester copolymer (B12) containing the side chain 1,2-diol unit includes the side chain 1,2-diol unit.
  • the laminated tube which is 10 mol% or more and 40 mol% or less with respect to 100 mol% of all the monomer units of ethylene / vinyl ester type
  • the polyamide composition (C) includes a polyamide (C1) and an elastomer polymer (C2), and the polyamide (C1) is a polyamide other than an aliphatic polyamide having a ratio of the number of methylene groups to the number of amide groups of 8.0 or more. And the polyamide composition (C) is contained in an amount of 70% by mass to 95% by mass, and the elastomer polymer (C2) is derived from an unsaturated compound having a carboxyl group and / or an acid anhydride group.
  • a (d) layer is included, the (d) layer is disposed on the inner side with respect to the (a) layer, and the (d) layer includes a semi-aromatic polyamide composition (D),
  • the semi-aromatic polyamide composition (D) includes a semi-aromatic polyamide (D1) and / or a semi-aromatic polyamide (D2), and the semi-aromatic polyamide composition (D) includes the semi-aromatic polyamide (D).
  • the semi-aromatic polyamide (D1) and / or the semi-aromatic polyamide (D2) is contained in an amount of 60% by mass or more, and the semi-aromatic polyamide (D1) is a carbon atom with respect to all diamine units of the semi-aromatic polyamide (D1). It contains 50 mol% or more of aliphatic diamine units of 4 or more and 12 or less, and consists of terephthalic acid units, isophthalic acid units, and naphthalenedicarboxylic acid units with respect to all dicarboxylic acid units of the semiaromatic polyamide (D1).
  • the semiaromatic polyamide (D2) is composed of xylylenediamine units and / or the total diamine units of the semiaromatic polyamide (D2). Or it contains 50 mol% or more of bis (aminomethyl) naphthalene units, and 50 mol% or more of aliphatic dicarboxylic acid units having 4 to 12 carbon atoms with respect to all dicarboxylic acid units of the semiaromatic polyamide (D2). Including laminated tube.
  • the semi-aromatic polyamide composition (D) includes an elastomer polymer (D3), and the elastomer polymer (D3) is derived from an unsaturated compound having a carboxyl group and / or an acid anhydride group.
  • the layer (e) further includes a layer (e), the layer (e) is disposed on the inner side of the layer (a), and the layer (e) has a functional group reactive to an amino group
  • the method further includes a layer (e), the layer (e) is disposed on the inner side of the layer (d), and the layer (e) has a functional group reactive to an amino group.
  • a laminated tube in which the innermost layer is a conductive layer containing a thermoplastic resin composition containing a conductive filler.
  • the laminated tube includes two layers (a) and (b). 1. (A) Layer The (a) layer of the laminated tube contains the aliphatic polyamide composition (A).
  • the aliphatic polyamide composition (A) includes a polyamide (A1), a polyamide (A2), and an elastomer polymer (A3).
  • the polyamide (A1) is a fat having a ratio of methylene groups to amide groups of 8.0 or more.
  • the polyamide (A2) is a polyamide other than the polyamide (A1), and the aliphatic polyamide composition ( A) is contained in 10% by mass to 35% by mass, and the elastomer polymer (A3) contains a structural unit derived from an unsaturated compound having a carboxyl group and / or an acid anhydride group, and is aliphatic.
  • the polyamide composition (A) contains 5 mass% or more and 25 mass% or less, and the solubility parameter S between the polyamide (A1) and the polyamide (A2)
  • ] is 1.8 to 4.5 (MPa) is 1/2 (or less, (It may be called an aliphatic polyamide composition (A).)
  • the aliphatic polyamide composition (A) preferably does not contain a plasticizer from the viewpoint of durability of interlayer adhesion after being contacted and immersed in the fuel for a long time and / or after a short heat treatment.
  • the polyamide (A1) contains only aliphatic groups in the repeating unit, has an amide bond (—CONH—) in the main chain, and has a ratio of the number of methylene groups ([CH 2 ]) to the number of amide groups ([NHCO]).
  • [CH 2 ] / [NHCO] (hereinafter, the ratio of the number of methylene groups to the number of amide groups may be referred to as [CH 2 ] / [NHCO]) is 8.0 or more (hereinafter referred to as polyamide (A1)).
  • These polyamides (A1) include not only the above-mentioned at least one homopolymer, but also at least one copolymer using several raw material monomers
  • the ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups in a poly (dodecanamide / dodecane methylene dodecane) copolymer can be calculated from polydodecanamide (polyamide 12) and polydodecane methylene. Since the ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups in dodecanamide (polyamide 1212) is 11.0, the ratio of the number of methylene groups to the number of amide groups [CH 2 ] / [NHCO] is 11.0.
  • the ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups in the poly (dodecanamide / hexamethylene dodecanamide) copolymer (polyamide 12/612) varies depending on the molar ratio of the constituent repeating units.
  • the ratio [CH 2 ] / [NHCO] of the number of methylene groups of polydodecanamide (polyamide 12) to the number of amide groups is 11.0, and the ratio of the number of methylene groups of polyhexamethylene dodecane (polyamide 612) to the number of amide groups [CH 2 ] / [NHCO] is 8.0, it can be calculated if the molar ratio of the repeating units of the structural unit is known, and the poly (dodecanamide / hexamethylenedodecanamide) copolymer (polyamide 12/612) When the dodecanamide unit / hexamethylene dodecanamide unit is 80:20 (molar ratio), the ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups is 11.0 ⁇ 0.80 + 8.0 ⁇ 0.20.
  • the copolymer using several raw material monomers (constituent repeating units) that form an aliphatic polyamide having a ratio [CH 2 ] / [NHCO] of 8.0 or more is independent of the molar ratio of the constituent repeating units.
  • the ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups is 8.0 or more and is included in the polyamide (A1) of the present application.
  • the polyamide (A1) has, as one component, a raw material monomer (constituent repeating unit) that forms an aliphatic polyamide having a ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups of 8.0 or more. It is also possible to copolymerize raw material monomers (constituent repeating units) that form an aliphatic polyamide having a ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups of less than 8.0.
  • the copolymer is included in the polyamide (A1) of the present application.
  • the ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups in a poly (dodecanamide / caproamide) copolymer varies depending on the molar ratio of the constituent repeating units.
  • the ratio [CH 2 ] / [NHCO] of the number of methylene groups of polydodecanamide (polyamide 12) to the number of amide groups is 11.0, and the ratio of the number of methylene groups of polycaproamide (polyamide 6) to the number of amide groups [CH 2 ] / Since [NHCO] is 5.0, it can be calculated if the molar ratio of the constitutional repeating units is known, and the dodecanamide unit / caproamide unit of the poly (dodecanamide / caproamide) copolymer (polyamide 12/6) is
  • the polyamide copolymer having a ratio of 50.0: 50.0 to 99.5: 0.5 (molar ratio) has a ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups of 8.0 or more.
  • polyamide (A1) of the present application dodecanamide of poly (dodecanamide / caproamide) copolymer (polyamide 12/6) and polydodecanamide (polyamide 12), dodecanamide of poly (dodecanamide / caproamide) copolymer (polyamide 12/6).
  • the ratio of the unit / caproamide unit is higher than 99.5: 0.5 (molar ratio)
  • the dodecanamide unit is handled as polydodecanamide (polyamide 12).
  • the homopolymer and the copolymer are treated in the same manner.
  • a polyamide copolymer having a poly (dodecanamide / caproamide) copolymer (polyamide 12/6) having a dodecanamide unit / caproamide unit of 0.5: 99.5 to 49.9: 50.1 (molar ratio).
  • the coalescence is not included in the polyamide (A1) of the present application because the ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups is less than 8.0.
  • the raw material monomer (repeating unit) that forms the aliphatic polyamide having a ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups of 8.0 or more is one component, and the number of methylene groups to the number of amide groups the ratio [CH 2] / raw monomer [NHCO] to form a 8.0 below aliphatic polyamide ratio amide groups methylene groups in the copolymer using several kinds of (repeating units) [CH 2] / [NHCO] can be calculated by the molar ratio of constituent repeating units and the ratio [CH 2 ] / [NHCO] of the number of methylene groups of each polyamide to the number of amide groups, and the ratio of the number of methylene groups to the number of amide groups [CH 2 ] / [NHCO ] Which satisfy
  • fills 8.0 or more is included by the polyamide (A1) of this application.
  • the polyamide (A1) is a polyundecanamide (from the viewpoint of economical efficiency and availability, ensuring sufficient physical properties such as mechanical properties, heat resistance and chemical resistance of the obtained laminated tube.
  • Polyamide 11 polydodecanamide (polyamide 12), polyhexamethylene dodecane (polyamide 612), polynonamethylene azeamide (polyamide 99), polynonamethylene decanamide (polyamide 910), polynonamethylene dodecane (polyamide 912).
  • Polydecamethylene sebamide polyamide 1010
  • polydecamethylene dodecamide polyamide 1012
  • at least one homopolymer selected from the group consisting of polydocamethylene dodecamide (polyamide 1212), and / or Using several raw materials to form these At least one copolymer or the like is preferable, such as polyundecanamide (polyamide 11), polydodecanamide (polyamide 12), polyhexamethylene dodecanamide (polyamide 612), polynonamethylene dodecanamide (polyamide 912), polydecane.
  • At least one homopolymer selected from the group consisting of methylene sebamide (polyamide 1010), polydecamethylene dodecamide (polyamide 1012), and polydocamethylene dodecamide (polyamide 1212), and / or these At least one copolymer using several kinds of raw material monomers is more preferable. Further, from the viewpoint of the elution resistance of the monomer and oligomer, at least selected from the group consisting of polyhexamethylene dodecane (polyamide 612), polydecamethylene decanamide (polyamide 1010), and polydecamethylene dodecane (polyamide 1012). One kind of homopolymer and / or at least one kind of copolymer using several kinds of raw material monomers forming these are preferable.
  • the polyamide (A2) is a polyamide other than the polyamide (A1), has an amide bond (—CONH—) in the main chain, and is a raw material monomer (repeating unit) lactam, aminocarboxylic It is obtained by polymerizing or copolymerizing an acid or a diamine and a dicarboxylic acid (hereinafter sometimes referred to as polyamide (A2)).
  • ] of the difference in solubility parameter SP value between polyamide (A1) and polyamide (A2) is 1.8 or more 4.5 or less (MPa) 1/2 , preferably 2.0 or more and 4.3 or less (MPa) 1/2 , and 2.2 or more and 4.1 or less (MPa) 1/2 Is more preferable.
  • the absolute value of the difference between the solubility parameter SP values of the polyamide (A1) and the polyamide (A2) is less than the above value, the interlayer adhesion of the obtained laminated tube and its durability may be inferior, When the above value is exceeded, the mechanical properties and chemical resistance of the resulting laminated tube may be inferior.
  • the solubility parameter SP value is a value obtained from the Fedors equation shown below, and is a value expressed by the square root of the molecular agglomeration energy density.
  • the unit is (MPa) 1/2 and a value at 25 ° C. (Hereinafter, the solubility parameter may be referred to as SP value).
  • the SP value described in the present specification is a value in which the unit is (MPa) 1/2 .
  • the solubility parameter SP value of each polyamide (A1) mentioned as a preferred example is (unit: (MPa) 1/2 ), polyundecanamide (polyamide 11, SP value: 22.9), polydodecanamide ( Polyamide 12, SP value: 22.5), polyhexamethylene dodecamide (polyamide 612, SP value: 24.1), polynonamethylene azelamide (polyamide 99, SP value: 24.1), polynonamethylene decanamide (Polyamide 910, SP value: 23.8), Polynonamethylene dodecamide (Polyamide 912, SP value: 23.2), Polydecamethylene sebamide (Polyamide 1010, SP value: 23.5), Polydecamethylene Dodecamide (polyamide 1012, SP value: 22.9), polydodecamethylene dodecamide (polyamide 1) 12, SP value: 22.5) and a.
  • the polyamide (A2) may be selected so that the absolute value of the difference in the solubility parameter SP value from the polyamide (A1) is 1.8 or more and 4.5 or less (MPa) 1/2 , and this is satisfied. Is done.
  • the polyamide (A2) is selected from at least one selected from the group consisting of aliphatic polyamides having a ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups of less than 8.0. It is preferable that the absolute value of the difference in solubility parameter SP value is appropriately selected so as to satisfy 1.8 or more and 4.5 or less (MPa) 1/2 .
  • polyamide 6 As an aliphatic polyamide having a ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups of less than 8.0 (the unit of SP value is (MPa) 1/2 ), polycaproamide (polyamide 6, SP value: 26.9), polytetramethylene glutamide (polyamide 45, SP value: 29.2), polytetramethylene adipamide (polyamide 46, SP value: 28.3), polytetramethylene suberamide (polyamide 48, SP) Value: 26.9), polytetramethylene azelamide (polyamide 49, SP value: 26.3), polytetramethylene sebamide (polyamide 410, SP value: 25.7), polytetramethylene dodecamide (polyamide 412) , SP value: 24.9), polypentamethylenesuccinamide (polyamide 54, SP value: 29.2), polypentamene Tyleneglutamide (polyamide 55, SP
  • polyamide 69 polyhexamethylene azelamide
  • polyamide 610 polyhexamethy Nessevacamide
  • polynonamethylene adipamide polyamide 96, SP value: 25.3
  • polydecamethylene glutamide polyamide 105, SP value: 25.3
  • polydeca Methylene adipamide polyamide 106, SP value: 24.9
  • a copolymer using several raw material monomers of these polyamides and / or the raw material monomers described in the polyamide (A1) Examples include copolymers used in several kinds. These can use 1 type (s) or 2 or more types.
  • polydodecanamide polyamide 12, SP value: 22.5
  • polydodecane dodecamide polyamide 1212, SP value: 22.5
  • polypentamethylene dodecamide polyamide 512, SP value: 24.5
  • polydodecamethylene glutamide polyamide 125, SP value: 24. 24
  • the absolute value of the difference between the solubility parameter SP value and 5) is 2.0 (MPa) 1/2 , which is within the specified range of the present application.
  • polydodecanamide polyamide 12, SP value: 22.5) or polydodecane methylene dodecane (polyamide 1212, SP value: 22.5) and polyamide (A2) are used as polyamide (A1).
  • Combinations of amide (polyamide 512, SP value: 24.5) and polydodecamethyleneglutamide (polyamide 125, SP value: 24.5) are within the specified range of the present application.
  • polyamides (A1) polyhexamethylene dodecamide (polyamide 612, SP value: 24.1) or polynonamethylene azelamide (polyamide 99, SP value: 24.1) having the highest solubility parameter SP value.
  • polyamide 512, SP value: 24.5 having the lowest solubility parameter SP value among the polyamides (A2) or polydodecamethylene glutamide (polyamide 125, SP).
  • the absolute value of the difference between the solubility parameter SP value and the value (24.5) is 0.4 (MPa) 1/2 , which is outside the specified range of the present application.
  • polyhexamethylene dodecamide polyamide 612, SP value: 24.1 or polynonamethylene azelamide (polyamide 99, SP value: 24.1) and polyamide (A2) as poly (pentaethylene) (A1)
  • the combination of methylene dodecamide (polyamide 512, SP value: 24.5) and polydodecamethylene glutamide (polyamide 125, SP value: 24.5) is outside the specified range of the present application, and as the polyamide (A1), polyhexa When methylene dodecamide (polyamide 612, SP value: 24.1) or polynonamethylene azelamide (polyamide 99, SP value: 24.1) is selected, the absolute value of the difference in solubility parameter SP value is 1.
  • solubility parameter SP value 25.9 (MPa) 1 It is necessary to select two or more polyamides (A2). Further, among the polyamides (A1), polydodecanamide (polyamide 12, SP value: 22.5) and polydodecane methylene dodecane (polyamide 1212, SP value: 22.5) having the lowest solubility parameter SP value are used. When selected, the absolute value of the difference in solubility parameter SP value of polytetramethylene adipamide (polyamide 46, SP value: 28.3) having the highest solubility parameter SP value among the polyamides (A2) is 5.8 (MPa) 1/2 , which is outside the specified range of the present application.
  • polyamide (A1) polydodecanamide (polyamide 12, SP value: 22.5), polydodecane methylene dodecane (polyamide 1212, SP value: 22.5) and polyamide (A2) as polytetramethylene azide
  • polyamide (A1) polydodecanamide (polyamide 12, SP value: 22.5) or polydodecane methylene dodecane
  • polyamide 1212, SP value: 22.5 is selected, in order for the absolute value of the difference in solubility parameter SP value to be 4.5 (MPa) 1/2 or less, the solubility parameter SP value is It is necessary to select a polyamide (A2) of 27.0 (MPa) 1/2 or less.
  • polyamides (A1) polyhexamethylene dodecamide (polyamide 612, SP value: 24.1) or polynonamethylene azelamide (polyamide 99, SP value: 24.1) having the highest solubility parameter SP value.
  • polyamide 46, SP value: 28.3 polytetramethylene adipamide having the highest solubility parameter SP value among the polyamides (A2)
  • the value is 4.2 (MPa) 1/2 and is within the specified range of the present application.
  • polyamide (A1) polyhexamethylene dodecamide (polyamide 612, SP value: 24.1) or polynonamethylene azeamide (polyamide 99, SP value: 24.1) and polyamide (A2) as polytetramethylene
  • polyamide (A2) polyhexamethylene dodecamide
  • polyamide 99, SP value: 24.1 polynonamethylene azeamide
  • polyamide (A2) polyamide (A2) as polytetramethylene
  • the combination of methylene adipamide (polyamide 46, SP value: 28.3) is within the specified range of the present application.
  • the polyamide (A2) is a fat having a ratio of the number of methylene groups to the number of amide groups [CH 2 ] / [NHCO] of less than 8.0.
  • polyhexamethylene dodecamide polyamide 612
  • polynonamethylene dodecamide polyamide 912
  • polydecamethylene sebamide polyamide 1010
  • polydecamethylene dodecamide polyamide 1012
  • polydodecane methylene dodecane polyamide 1212
  • polyundecanamide polyamide 11
  • several raw material monomers forming at least one selected from the group consisting of polydodecanamide polyamide 12
  • aliphatic polyamides in which the ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups is less than 8.0, which are polycaproamide (polyamide 6), polyhexamethylene adipamide (polyamide 66) , Polyhexamethylene azelamide (polyamide 69), polyhexamethylene sebamide (polyamide 610), poly (caproamide / hexamethylene adipamide) copolymer (polyamide 6/66), poly (caproamide / hexamethylene azelamide) ) Copolymer (polyamide 6/69), poly (caproamide / hexamethylene sebamide) copolymer (polyamide 6/610), poly (caproamide / hexamethylene dodecamide) copolymer (polyamide 6/612), Poly (caproamide / dodecanamide) copo
  • the solubility parameter SP value of poly (caproamide / hexamethylene adipamide) copolymer is the solubility of polycaproamide (polyamide 6) and polyhexamethylene adipamide (polyamide 66). Since the parameter SP value is 26.9 (MPa) 1/2 , the solubility parameter SP value is 26.9 (MPa) 1/2 regardless of the molar ratio of the constituent repeating units.
  • polyamides (A1) polyhexamethylene dodecamide (polyamide 612, SP value: 24.1) and polynonamethylene azelamide (polyamide 99, SP value: 24.1) having the highest solubility parameter SP value are used.
  • the SP value is 26.9 (MPa) 1/2 regardless of the molar ratio of the constituent repeating units of the poly (caproamide / hexamethylene adipamide) copolymer (polyamide 6/66). Therefore, the absolute value of the difference in the solubility parameter SP value is 2.8 (MPa) 1/2 , which is within the specified range of the present application.
  • polyamide (A1) polyhexamethylene dodecamide (polyamide 612, SP value: 24.1) or polynonamethylene azelamide (polyamide 99, SP value: 24.1) and polyamide (A2) as poly ( The combination of caproamide / hexamethylene adipamide) copolymer (polyamide 6/66, SP value: 26.9) is within the specified range of the present application.
  • polyamides (A1) polydodecanamide (polyamide 12, SP value: 22.5) and polydodecane dodecamide (polyamide 1212, SP value: 22.5) having the lowest solubility parameter SP value are used.
  • the SP value is 26.9 (MPa) 1/2 regardless of the molar ratio of the constituent repeating units of the poly (caproamide / hexamethylene adipamide) copolymer (polyamide 6/66). Therefore, the absolute value of the difference in solubility parameter SP value is 4.4 (MPa) 1/2 , which is within the specified range of the present application.
  • polyamide (A1) polydodecanamide (polyamide 12, SP value: 22.5) or polydodecane methylene dodecane (polyamide 1212, SP value: 22.5) and polyamide (A2) as poly (caproamide /
  • the combination of hexamethylene adipamide) copolymer (polyamide 6/66, SP value: 26.9) is within the specified range of the present application.
  • the ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups in the poly (caproamide / hexamethylene adipamide) copolymer (polyamide 6/66) is expressed as polycaproamide (polyamide 6) and polyxamethylene.
  • the ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups in adipamide (polyamide 66) is 5.0, the ratio of the number of methylene groups to the number of amide groups regardless of the molar ratio of the constituent repeating units [ CH 2] / [NHCO] it is 5.0. That is, an aliphatic polyamide having a ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups of less than 8.0, such as a poly (caproamide / hexamethylene adipamide) copolymer (polyamide 6/66).
  • a copolymer using several raw material monomers (constituent repeating units) to be formed has a ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups of 8.0 regardless of the molar ratio of the constituent repeating units. Less than.
  • the solubility parameter SP value of a poly (caproamide / hexamethylene sebacamide) copolymer (polyamide 6/610) varies depending on the molar ratio of constituent repeating units.
  • the solubility parameter SP value of polycaproamide (polyamide 6) is 26.9 (MPa) 1/2
  • the solubility parameter SP value of polyhexamethylene sebacamide (polyamide 610) is 24.9 (MPa) 1 / since 2 is, if the molar ratio of repeating units of the structural unit is known, can be calculated
  • the solubility parameter SP value of the polyamide copolymer having an amide unit of 0.5: 99.5 to 99.5: 0.5 (molar ratio) is 24.9 (MPa) 1/2 or more and 26.9 ( MPa) 1/2 or less.
  • polyamide 6/610 polyhexamethylene dodecamide (polyamide 612, SP) having the highest solubility parameter SP value among the polyamides (A1). Value: 24.1) or polynonamethylene azeamide (polyamide 99, SP value: 24.1), the absolute value of the difference in solubility parameter SP value is 0.8 (MPa) 1/2 The above is 2.8 (MPa) 1/2 or less.
  • a poly (caproamide / hexamethylene sebacamide) copolymer A polyamide copolymer having a caproamide unit / hexamethylene sebacamide unit (polyamide 6/610) of 50.0: 50.0 to 99.5: 0.5 (molar ratio) is selected.
  • polyamide (A1) polyhexamethylene dodecamide (polyamide 612, SP value: 24.1) or polynonamethylene azelamide (polyamide 99, SP value: 24.1) and polyamide (A2) as poly
  • Polyamide in which caproamide unit / hexamethylene sebacamide unit of caproamide / hexamethylene sebacamide) copolymer (polyamide 6/610) is 50.0: 50.0 to 99.5: 0.5 (molar ratio) Copolymer combinations are within the scope of this application.
  • polyamide 1212, SP having the lowest solubility parameter SP value among the polyamides (A1). Value: 22.5) or polydodecamethylene dodecamide (polyamide 1212, SP value: 22.5)
  • the absolute value of the difference in solubility parameter SP value is 2.41 (MPa) 1/2 4.
  • polyamide (A1) polydodecanamide (polyamide 12, SP value: 22.5) or polydodecane methylene dodecane (polyamide 1212, SP value: 22.5) and polyamide (A2) as poly (caproamide / Hexamethylene sebacamide) copolymer (polyamide 6/610) having a caproamide unit / hexamethylene sebacamide unit of 0.5: 99.5 to 99.5: 0.5 (molar ratio) Combinations are within the scope of this application.
  • the ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups in the poly (caproamide / hexamethylene sebacamide) copolymer (polyamide 6/610) varies depending on the molar ratio of the constituent repeating units.
  • the ratio [CH 2 ] / [NHCO] of the number of methylene groups of polycaproamide (polyamide 6) to the number of amide groups is 5.0
  • the ratio of the number of methylene groups of polyhexamethylene sebacamide (polyamide 610) to the number of amide groups [CH 2 ] / [NHCO] is 7.0, and can be calculated if the molar ratio of the repeating units of the structural unit is known.
  • an aliphatic polyamide having a ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups of less than 8.0 such as a poly (caproamide / hexamethylene sebacamide) copolymer (polyamide 6/610).
  • a copolymer using several raw material monomers (constituent repeating units) to be formed has a ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups of 8.0 regardless of the molar ratio of the constituent repeating units. Less than.
  • the solubility parameter SP value of the poly (caproamide / dodecanamide) copolymer (polyamide 6/12) varies depending on the molar ratio of the constituent repeating units.
  • the solubility parameter SP value of polycaproamide (polyamide 6) is 26.9 (MPa) 1/2
  • the solubility parameter SP value of polydodecanamide (polyamide 12) is 22.5 (MPa) 1/2 . Therefore, if the molar ratio of the repeating units of the structural unit is known, it can be calculated, and the caproamide unit / dodecanamide unit of the poly (caproamide / dodecanamide) copolymer (polyamide 6/12) is 0.5: 99.
  • the solubility parameter SP value of the polyamide copolymer of 5 to 99.5: 0.5 (molar ratio) is 22.5 (MPa) 1/2 or more and 26.9 (MPa) 1/2 or less.
  • poly (caproamide / dodecanamide) copolymer polyamide 6/12
  • polyhexamethylene dodecanamide polyamide 612, SP value: 24
  • the absolute value of the difference in solubility parameter SP value is 0 (MPa) 1/2 or more and 2.8 ( MPa) 1/2 or less.
  • a poly (caproamide / dodecanamide) copolymer (polyamide 6 / 12) is selected from polyamide copolymers having caproamide units / dodecanamide units of 77.28: 22.72 to 99.5: 0.5 (molar ratio).
  • polyamide (A1) polyhexamethylene dodecamide (polyamide 612, SP value: 24.1) or polynonamethylene azelamide (polyamide 99, SP value: 24.1) and polyamide (A2) as poly ( Caproamide / dodecanamide) copolymer (polyamide 6/12) has a caproamide unit / dodecanamide unit of 77.28: 22.72 to 99.5: 0.5 (molar ratio). It is within the specified range of the present application.
  • poly (caproamide / dodecanamide) copolymer (polyamide 6/12) polydodecanamide (polyamide 12, SP value: 22) having the lowest solubility parameter SP value among the polyamides (A1).
  • a poly (caproamide / dodecanamide) copolymer (polyamide 6 / 12) is selected from polyamide copolymers having caproamide units / dodecanamide units of 40.9: 50.1 to 99.5: 0.5 (molar ratio).
  • polyamide (A1) polydodecanamide (polyamide 12, SP value: 22.5) or polydodecane methylene dodecane (polyamide 1212, SP value: 22.5) and polyamide (A2) as poly (caproamide /
  • the combination of the polyamide copolymer in which the caproamide unit / dodecanamide unit of the dodecanamide) copolymer (polyamide 6/12) is 40.9: 50.1 to 99.5: 0.5 (molar ratio) is Within specified range.
  • the ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups in the poly (caproamide / dodecanamide) copolymer (polyamide 6/12) varies depending on the molar ratio of the constituent repeating units.
  • the ratio [CH 2 ] / [NHCO] of the number of methylene groups of polycaproamide (polyamide 6) to the number of amide groups is 5.0, and the ratio of the number of methylene groups of polydodecanamide (polyamide 12) to the number of amide groups [CH 2 ] / Since [NHCO] is 11.0, it can be calculated if the molar ratio of the repeating units of the structural unit is known, and the caproamide unit / dodecanamide of the poly (caproamide / dodecanamide) copolymer (polyamide 6/12).
  • a polyamide copolymer having a unit of 50.1: 49.9 to 99.5: 0.5 (molar ratio) has a ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups of less than 8.0.
  • a polydodecanamide having the lowest solubility parameter SP value among the polyamides (A1) (polyamide 12, SP value: 22.5) Or polydodecamethylene dodecamide (polyamide 1212, SP value: 22.5) is selected, the polyamide (A2) is a caproamide unit / dodecane of a poly (caproamide / dodecanamide) copolymer (polyamide 6/12).
  • a polyamide copolymer having an amide unit of 50.1: 49.9 to 99.5: 0.5 (molar ratio) is preferred.
  • the production apparatus for polyamide (A1) and polyamide (A2) includes batch reactors, one- or multi-tank continuous reactors, tubular continuous reactors, single-screw kneading extruders, twin-screw kneading extruders, etc.
  • a known polyamide production apparatus such as a kneading reaction extruder may be used.
  • As a polymerization method a known method such as melt polymerization, solution polymerization, solid phase polymerization or the like can be used, and polymerization can be performed by repeating normal pressure, reduced pressure, and pressure operations. These polymerization methods can be used alone or in appropriate combination.
  • the relative viscosity of polyamide (A1) and polyamide (A2) measured under the conditions of 96% sulfuric acid, 1% polymer concentration and 25 ° C. is the mechanical property of the resulting laminated tube. From the viewpoint of ensuring and ensuring the desirable formability of the laminated tube by setting the viscosity at the time of melting to an appropriate range, it is preferably 1.5 or more and 5.0 or less, and is 1.8 or more and 4.5 or less. It is more preferable.
  • the vinyl alcohol polymer composition described later From the viewpoint of sufficiently obtaining interlayer adhesion with the product (B) and its durability, [A]> [B] +10 is preferable, [A]> [B] +15 is more preferable, More preferably, A]> [B] +20. Furthermore, from the viewpoint of the melt stability of the polyamide and the suppression of the generation of a gel-like material, [A]> 30 is preferable, and 30 ⁇ [A] ⁇ 140 is more preferable.
  • the terminal amino group concentration per gram of the aliphatic polyamide composition (A) is [A] ( ⁇ eq / g), and the terminal carboxyl group concentration is [B] ( ⁇ eq / g).
  • the terminal amino group concentration ( ⁇ eq / g) and terminal carboxyl group concentration ( ⁇ eq / g) of (A2) are multiplied by the respective mixing mass ratios to obtain a value obtained by adding both.
  • the terminal amino group concentration ( ⁇ eq / g) can be measured by dissolving the polyamide in a phenol / methanol mixed solution and titrating with 0.05N hydrochloric acid.
  • the terminal carboxyl group concentration ( ⁇ eq / g) can be measured by dissolving the polyamide in benzyl alcohol and titrating with 0.05N sodium hydroxide solution.
  • the polyamide (A1) and the polyamide (A2) are produced by polymerizing or copolymerizing the polyamide raw material in the presence of amines by a known method such as melt polymerization, solution polymerization, or solid phase polymerization. Alternatively, it is produced by melt-kneading in the presence of amines after polymerization. In this way, amines can be added at any stage during polymerization, or after polymerization, at any stage during melt-kneading, but in consideration of interlayer adhesion of the resulting laminated tube, at the stage during polymerization. It is preferable to add. Examples of the amines include monoamines, diamines, triamines, tetraamines, and polyamines.
  • carboxylic acids such as monocarboxylic acid, dicarboxylic acid, and tricarboxylic acid may be added as necessary as long as they do not deviate from the range of the above-mentioned end group concentration conditions. These amines and carboxylic acids may be added simultaneously or separately. Moreover, 1 type (s) or 2 or more types can be used for the amines and carboxylic acids illustrated below.
  • the monoamine to be added include methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, 2-ethylhexylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine , Tetradecylamine, pentadecylamine, hexadecylamine, octadecylamine, octadecyleneamine, eicosylamine, docosylamine and other aliphatic monoamines; cyclohexylamine, methylcyclohexylamine and other alicyclic monoamines; benzylamine, ⁇ - Aromatic monoamines such as phenylmethylamine; N, N-dimethylamine, N, N-diethylamine, N, N-dipropylamine, N, N, N
  • diamine to be added examples include 1,2-ethanediamine, 1,3-propanediamine, 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, and 1,7-heptanediamine.
  • 1,8-octanediamine, 1,9-nonanediamine 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, 1,13-tridecanediamine, 1,14-tetradecanediamine, 1,15-pentadecanediamine, 1,16-hexadecanediamine, 1,17-heptadecanediamine, 1,18-octadecanediamine, 2-methyl-1,5-pentanediamine, 3-methyl-1,5-pentanediamine 2-methyl-1,8-octanediamine, 2,2,4-trimethyl-1,6-hexane Aliphatic diamines such as amine, 2,4,4-trimethyl-1,6-hexanediamine, 5-methyl-1,9-non
  • triamine and tetraamine to be added include 1,2,3-triaminopropane, 1,2,3-triamino-2-methylpropane, 1,2,4-triaminobutane, 1,2,3, 4-tetraminobutane, 1,3,5-triaminocyclohexane, 1,2,4-triaminocyclohexane, 1,2,3-triaminocyclohexane, 1,2,4,5-tetraminocyclohexane, 1,3, 5-triaminobenzene, 1,2,4-triaminobenzene, 1,2,3-triaminobenzene, 1,2,4,5-tetraminobenzene, 1,2,4-triaminonaphthalene, 2,5 , 7-triaminonaphthalene, 2,4,6-triaminopyridine, 1,2,7,8-tetraminonaphthalene, 1,4,5,8-tetraminonaphthalene, etc. That. These can use 1
  • the polyamine to be added may be a compound having a plurality of primary amino groups (—NH 2 ) and / or secondary amino groups (—NH—).
  • polyalkyleneimine, polyalkylenepolyamine, polyvinylamine, Examples include polyallylamine. These can use 1 type (s) or 2 or more types.
  • the amino group with active hydrogen is the reaction point of the polyamine.
  • Polyalkyleneimine is produced by a method in which alkyleneimine such as ethyleneimine or propyleneimine is ionically polymerized, or a method in which alkyloxazoline is polymerized and then the polymer is partially or completely hydrolyzed.
  • alkyleneimine such as ethyleneimine or propyleneimine
  • alkyloxazoline is polymerized and then the polymer is partially or completely hydrolyzed.
  • Examples of the polyalkylene polyamine include diethylenetriamine, triethylenetetramine, pentaethylenehexamine, or a reaction product of ethylenediamine and a polyfunctional compound.
  • Polyvinylamine can be obtained, for example, by polymerizing N-vinylformamide to poly (N-vinylformamide) and then partially or completely hydrolyzing the polymer with an acid such as hydrochloric acid.
  • Polyallylamine is generally obtained by polymerizing a hydrochloride of an allylamine monomer and then removing hydroch
  • polyalkyleneimine examples include one or two alkyleneimines having 2 to 8 carbon atoms such as ethyleneimine, propyleneimine, 1,2-butyleneimine, 2,3-butyleneimine, 1,1-dimethylethyleneimine, etc.
  • species or more by a conventional method are mentioned. These can use 1 type (s) or 2 or more types. Among these, polyethyleneimine is more preferable.
  • Polyalkyleneimine is polymerized from alkyleneimine as a raw material, branched polyalkyleneimine obtained by ring-opening polymerization of alkyleneimine, secondary polyamineimine containing secondary amine and tertiary amine, or alkyloxazoline as a raw material. Either a linear polyalkyleneimine containing only a primary amine and a secondary amine, or a three-dimensionally crosslinked structure may be used.
  • copolymerized monomers such as ethylenediamine, propylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenetriamine, tripropylenetetramine, dihexamethylenetriamine, aminopropylethylenediamine, bisaminopropylethylenediamine It may be.
  • the polyalkyleneimine is usually derived from the reactivity of the active hydrogen atom on the nitrogen atom contained therein, and in addition to the tertiary amino group, the primary amino group and / or the secondary amino group having an active hydrogen atom. (Imino group).
  • the number of nitrogen atoms in the polyalkyleneimine is not particularly limited and is preferably 4 or more and 3,000, more preferably 8 or more and 1,500 or less, and even more preferably 11 or more and 500 or less.
  • the number average molecular weight of the polyalkyleneimine is preferably 100 or more and 20,000 or less, more preferably 200 or more and 10,000 or less, and further preferably 500 or more and 8,000 or less.
  • carboxylic acids to be added acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, capric acid, pelargonic acid, undecanoic acid, lauric acid, tridecanoic acid, myristic acid, myristic acid, Aliphatic monocarboxylic acids such as palmitic acid, stearic acid, oleic acid, linoleic acid, arachidic acid, behenic acid, erucic acid; alicyclic monocarboxylic acids such as cyclohexanecarboxylic acid, methylcyclohexanecarboxylic acid; benzoic acid, toluic acid , Aromatic monocarboxylic acids such as ethylbenzoic acid and phenylacetic acid; malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid,
  • the amount of amines to be added is appropriately determined by a known method in consideration of the terminal amino group concentration, terminal carboxyl group concentration, and relative viscosity of the polyamide (A1) and polyamide (A2) to be produced.
  • the addition amount of amines is sufficient to obtain sufficient reactivity with respect to 1 mol of the polyamide raw material (monomer constituting the repeating unit or 1 mol of the monomer unit) and a polyamide having a desired viscosity. From the viewpoint of facilitating production, it is preferably 0.5 meq / mol to 20 meq / mol, more preferably 1 meq / mol to 10 meq / mol (the amino group equivalent (eq) is a carboxyl group). And 1: 1 (molar ratio) to form an amide group, the amount of amino group is 1 equivalent).
  • the polyamide (A1) and the polyamide (A2) it is preferable to add a diamine and / or a polyamine during polymerization in order to satisfy the condition of the terminal group concentration among the amines exemplified above, from the viewpoint of suppressing gel generation. More preferably, at least one selected from the group consisting of aliphatic diamines, alicyclic diamines, and polyalkyleneimines is added during polymerization.
  • the aliphatic polyamide composition (A) contains an elastomer polymer (A3) containing a structural unit derived from an unsaturated compound having a carboxyl group and / or an acid anhydride group (hereinafter referred to as an elastomer polymer (A3)). ).
  • an (ethylene and / or propylene) / ⁇ -olefin copolymer containing a structural unit derived from an unsaturated compound having a carboxyl group and / or an acid anhydride group, ( Ethylene and / or propylene) / ( ⁇ , ⁇ -unsaturated carboxylic acid ester) type copolymer and aromatic vinyl compound / conjugated diene compound type block copolymer are used, and these use one kind or two kinds or more. be able to.
  • the (ethylene and / or propylene) / ⁇ -olefin copolymer is a polymer obtained by copolymerizing ethylene and / or propylene and an ⁇ -olefin having 3 or more carbon atoms, and ⁇ -olefin having 3 or more carbon atoms.
  • olefins examples include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicocene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4- Methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ester -1-hexene, 3-ethyl-1-hexene, 9-methyl-1-decene, 11-methyl-1-dodecene, 12-e
  • the (ethylene and / or propylene) / ( ⁇ , ⁇ -unsaturated carboxylic acid ester) copolymer is a polymer obtained by copolymerizing ethylene and / or propylene and an ⁇ , ⁇ -unsaturated carboxylic acid ester monomer.
  • ⁇ , ⁇ -unsaturated carboxylic acid ester monomer methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, butyl acrylate, butyl methacrylate , Pentyl acrylate, pentyl methacrylate, hexyl acrylate, hexyl methacrylate, heptyl acrylate, heptyl methacrylate, octyl acrylate, octyl methacrylate, nonyl acrylate, nonyl methacrylate, decyl acrylate, decyl methacrylate, acrylic 2-ethylhexyl acid, metac Le 2-ethylhexyl acrylate, hydroxyethyl acrylate, hydroxyethyl methacrylate, monomethyl maleate, monomethyl itaconate, dimethyl
  • the aromatic vinyl compound / conjugated diene compound block copolymer is a block copolymer comprising an aromatic vinyl compound polymer block and a conjugated diene compound polymer block, and the aromatic vinyl compound polymer.
  • a block copolymer having at least one block and at least one conjugated diene compound-based polymer block is used.
  • the unsaturated bond in the conjugated diene compound-based polymer block may be hydrogenated.
  • the aromatic vinyl compound polymer block is a polymer block mainly composed of units derived from an aromatic vinyl compound.
  • aromatic vinyl compounds include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 1,5-dimethylstyrene, 2,4-dimethylstyrene, vinylnaphthalene, vinylanthracene, 4-propyl.
  • the aromatic vinyl compound-based polymer block may optionally have a unit composed of a small amount of another unsaturated monomer.
  • Conjugated diene compound-based polymer blocks are 1,3-butadiene, chloroprene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 4-methyl-1,3-pentadiene, 1,3 -A polymer block formed from one or more conjugated diene compounds such as hexadiene, and the hydrogenated aromatic vinyl compound / conjugated diene compound block copolymer is a conjugated diene compound polymer. Part or all of the unsaturated bond portions in the block are saturated bonds by hydrogenation.
  • the molecular structure of the aromatic vinyl compound / conjugated diene compound block copolymer and the hydrogenated product thereof may be linear, branched, radial, or any combination thereof.
  • an aromatic vinyl compound / conjugated diene compound block copolymer and / or a hydrogenated product thereof one aromatic vinyl compound polymer block and one conjugated diene compound polymer block are linear.
  • the three polymer blocks are linearly bonded in the order of diblock copolymer, aromatic vinyl compound polymer block, conjugated diene compound polymer block, and aromatic vinyl compound polymer block.
  • One or more of these triblock copolymers and hydrogenated products thereof are preferably used.
  • Unhydrogenated or hydrogenated styrene / butadiene block copolymers unhydrogenated or hydrogenated styrene / isoprene block copolymers
  • Examples of the unsaturated compound having a carboxyl group forming the structural unit of the elastomer polymer (A3) include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, mesaconic acid, citraconic acid, glutaconic acid, cis ⁇ , ⁇ -unsaturated carboxylic acids such as -4-cyclohexene-1,2-dicarboxylic acid, endobicyclo- [2.2.1] -5-heptene-2,3-dicarboxylic acid, and metal salts of these carboxylic acids Examples include acids. These can use 1 type (s) or 2 or more types.
  • Examples of the unsaturated compound having an acid anhydride group forming the structural unit of the elastomer polymer (A3) include maleic anhydride, itaconic anhydride, citraconic anhydride, endobicyclo- [2.2.1] -5-heptene.
  • dicarboxylic anhydrides having an ⁇ , ⁇ -unsaturated bond such as -2,3-dicarboxylic anhydride. These can use 1 type (s) or 2 or more types. Of these, dicarboxylic anhydrides having an ⁇ , ⁇ -unsaturated bond are preferred, and maleic anhydride and itaconic anhydride are more preferred.
  • the carboxyl group and / or acid anhydride group concentration in the elastomer polymer (A3) is sufficient to improve the low temperature impact resistance, the interlaminar adhesion with the vinyl alcohol polymer composition (B) described later, and its durability.
  • it is preferably 25 ⁇ eq / g or more and 200 ⁇ eq / g or less, and more preferably 50 ⁇ eq / g or more and 150 ⁇ eq / g or less.
  • the concentration of carboxyl group and / or acid anhydride group in the elastomer polymer (A3) is determined by dissolving phenolephthalein using a sample solution prepared by dissolving the elastomer polymer in a toluene solution and further adding ethanol. It can be measured by titrating with 0.1N KOH ethanol solution as an indicator.
  • the content of the polyamide (A1) in the aliphatic polyamide composition (A) is 40% by mass to 85% by mass and 42% by mass to 80% by mass with respect to 100% by mass of the aliphatic polyamide composition (A). It is preferable that it is mass% or less, and it is more preferable that it is 45 mass% or more and 75 mass% or less.
  • the content of the polyamide (A1) is less than the above value, mechanical properties and low-temperature impact resistance of the obtained laminated tube may be inferior. Adhesion and its durability may be inferior.
  • the content of the polyamide (A2) in the aliphatic polyamide composition (A) is 10% by mass or more and 35% by mass or less, and 12% by mass or more and 32% by mass with respect to 100% by mass of the aliphatic polyamide composition (A). It is preferable that it is mass% or less, and it is more preferable that it is 15 mass% or more and 30 mass% or less.
  • the content of the polyamide (A2) is less than the above value, the interlayer adhesiveness and durability of the obtained laminated tube may be inferior.
  • the content exceeds the above value the mechanical properties of the obtained laminated tube Properties and chemical resistance may be inferior.
  • the content of the elastomer polymer (A3) in the aliphatic polyamide composition (A) is 5% by mass or more and 25% by mass or less, and 8% by mass with respect to 100% by mass of the aliphatic polyamide composition (A).
  • the content is preferably 23% by mass or less, and more preferably 10% by mass or more and 20% by mass or less.
  • the resulting laminated tube may have poor low temperature impact resistance, interlayer adhesion and durability, while exceeding the above value, The mechanical properties of the resulting laminated tube and the fluidity of the resulting aliphatic polyamide composition (A) may be inferior.
  • the method for mixing the polyamide (A1) and the polyamide (A2) with the elastomer polymer (A3) is not particularly limited, and various conventionally known methods are adopted by blending various additives as required. be able to. For example, using a tumbler and / or a mixer, a method of uniformly dry-blending the pellets of polyamide (A1), polyamide (A2), and elastomer polymer (A3) so as to have the above mixing ratio, both With other components added as necessary, it can be produced by dry blending in advance at a concentration used at the time of molding, and melt kneading.
  • the melt kneading can be performed using a kneader such as a single screw extruder, a twin screw extruder, a kneader, or a Banbury mixer.
  • the aliphatic polyamide composition (A) may be a mixture with other thermoplastic resins.
  • the total content of the polyamide (A1), the polyamide (A2), and the elastomer polymer (A3) is preferably 80% by mass or more with respect to 100% by mass of the aliphatic polyamide composition (A), and 85% by mass. % Or more is more preferable.
  • thermoplastic resins to be mixed include high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), ultra high molecular weight polyethylene (UHMWPE), polypropylene Polyolefin resins such as (PP), polybutene (PB), polymethylpentene (TPX), saponified unmodified ethylene / vinyl ester copolymer (unmodified EVOH polymer) described later; polystyrene (PS), syndiotactic Polystyrene resins such as tic polystyrene (SPS), methyl methacrylate / styrene copolymer (MS), methyl methacrylate / styrene / butadiene copolymer (MBS); carboxyl groups and salts thereof, acid anhydride groups, epoxy groups
  • the polio containing functional groups such as Fin resin and polystyrene resin: polybutylene terephthalate
  • polyacrylonitrile PAN
  • polymethacrylonitrile polymethacrylonitrile
  • acrylonitrile / styrene copolymer AS
  • methacrylonitrile / styrene copolymer acrylonitrile / butadiene
  • Polynitrile resins such as ethylene / styrene copolymer (ABS) and acrylonitrile / butadiene copolymer (NBR)
  • polymethacrylate resins such as polymethyl methacrylate (PMMA) and polyethyl methacrylate (PEMA); polyvinyl alcohol ( Polyvinyl resins such as PVA), polyvinylidene chloride (PVDC), polyvinyl chloride (PVC), vinyl chloride / vinylidene chloride copolymer, vinylidene chloride / methyl acrylate copolymer; celluloses such as cellulose acetate and cellulose butyrate Resin; Polycarbonate resin
  • PVDF polyvinylidene fluoride
  • PVF polyvinyl fluoride
  • PTFE polytetrafluoroethylene
  • PCTFE polychlorofluoroethylene
  • tetrafluoroethylene / Ethylene copolymer (ETFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymer (THV), tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride / perfluoro (alkyl vinyl ether) copolymer, tetrafluoroethylene / perful B (alkyl vinyl ether) copolymer (PFA), tetrafluoroethylene / hexafluoroethylene
  • an antioxidant for the aliphatic polyamide composition (A), an antioxidant, a heat stabilizer, an ultraviolet absorber, a light stabilizer, a lubricant, an inorganic filler, an antistatic agent, a flame retardant, crystallization, if necessary. Accelerators, colorants and the like may be added.
  • the vinyl alcohol polymer composition (B) includes a vinyl alcohol polymer (B1) containing a side chain 1,2-diol unit represented by the following formula (1) and an elastomer polymer (B2).
  • the vinyl alcohol polymer (B1) containing a chain 1,2-diol unit is contained in the vinyl alcohol polymer composition (B) in an amount of 60% by mass to 95% by mass, and the elastomer polymer (B2).
  • a vinyl alcohol polymer composition (B) Contains a structural unit derived from an unsaturated compound having a carboxyl group and / or an acid anhydride group, and is contained in the vinyl alcohol polymer composition (B) in an amount of 5% by mass to 40% by mass ( Hereinafter, it may be referred to as a vinyl alcohol polymer composition (B).)
  • R 1 , R 2 , and R 3 each independently represent a hydrogen atom or an organic group
  • X represents a single bond or a bonded chain
  • R 4 , R 5 , and R 6 each independently represents a hydrogen atom or an organic group.
  • the vinyl alcohol polymer (B1) containing a side chain 1,2-diol unit contains a side chain 1,2-diol unit represented by the following formula (1) (hereinafter referred to as a side chain 1,2-diol unit). (It may be referred to as a unit-containing vinyl alcohol polymer (B1)). Such a polymer may contain units derived from other comonomer as required.
  • R 1 , R 2 , and R 3 each independently represent a hydrogen atom or an organic group
  • X represents a single bond or a bonded chain
  • R 4 , R 5 , and R 6 each independently represents a hydrogen atom or an organic group.
  • R 1 to R 6 each independently represents a hydrogen atom or an organic group.
  • the organic group is not particularly limited, and examples thereof include saturated hydrocarbon groups such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, and t-butyl group, Examples thereof include aromatic hydrocarbon groups such as phenyl group and benzyl group, and may optionally have a substituent such as a halogen group, a hydroxyl group, an acyloxy group, an alkoxycarbonyl group, a carboxyl group, or a sulfonic acid group. .
  • a saturated hydrocarbon group or hydrogen atom having 1 to 30 carbon atoms is preferable, a saturated hydrocarbon group or hydrogen atom having 1 to 15 carbon atoms is more preferable, and a saturated hydrocarbon group having 1 to 4 carbon atoms is more preferable.
  • a hydrocarbon group or a hydrogen atom is more preferred, and a hydrogen atom is particularly preferred.
  • all of R 1 to R 6 are hydrogen atoms.
  • X is a single bond or a bond chain, and is preferably a single bond from the viewpoint of suitably maintaining the chemical solution barrier property.
  • the bonding chain is not particularly limited, but is a hydrocarbon chain such as alkylene, alkenylene, alkynylene, phenylene, or naphthylene (these hydrocarbons may be substituted with halogen such as fluorine, chlorine, or bromine).
  • Units containing titanium atoms; units containing metal atoms such as aluminum atoms such as —Al (OR) —, —OAl (OR) —, —OAl (OR) O—, etc. are each independently an arbitrary substituent, preferably a hydrogen atom or an alkyl group, and m is a natural number, usually from 1 to 30, preferably from 1 to 15. More preferably, it is 10 or less.) These can use 1 type (s) or 2 or more types.
  • a hydrocarbon chain having 1 to 10 carbon atoms is more preferable, a hydrocarbon chain having 1 to 6 carbon atoms is more preferable, and the number of carbon atoms is 1
  • the hydrocarbon chain is particularly preferred.
  • the most preferred structure of the side chain 1,2-diol unit represented by the formula (1) is a structural unit in which all of R 1 to R 6 are hydrogen atoms and X is a single bond. That is, the structural unit represented by the following formula (1a) is most preferable.
  • the content of the side chain 1,2-diol unit in the side chain 1,2-diol unit-containing vinyl alcohol polymer (B1) is good low temperature impact resistance, environmental stress load resistance, especially after environmental stress load. From the viewpoint of ensuring low-temperature impact resistance and melt moldability, 0.1 mol% is added to 100 mol% of all monomer units of the side chain 1,2-diol unit-containing vinyl alcohol polymer (B1). It is preferably 30 mol% or less, more preferably 0.5 mol% or more and 20 mol% or less, and further preferably 1 mol% or more and 15 mol% or less.
  • the content of the side chain 1,2-diol unit can be calculated from the measurement result of 1 H-NMR.
  • the vinyl alcohol polymer composing the side chain 1,2-diol unit-containing vinyl alcohol polymer (B1) is a polyvinyl alcohol polymer (hereinafter referred to as PVA polymer) as a saponified vinyl ester polymer. And / or a saponified ethylene / vinyl ester copolymer (hereinafter sometimes referred to as EVOH polymer).
  • PVA polymer polyvinyl alcohol polymer
  • EVOH polymer saponified ethylene / vinyl ester copolymer
  • each side chain 1,2-diol unit-containing vinyl alcohol polymer (B1) a polyvinyl alcohol polymer (B11) containing a side chain 1,2-diol unit represented by the above formula (1) and And / or an ethylene / vinyl ester copolymer saponified polymer (B12) containing a side chain 1,2-diol unit represented by the above formula (1) (hereinafter, each side chain 1,2- A diol unit-containing PVA polymer (B11) and a side chain 1,2-diol unit-containing EVOH polymer (B12)).
  • a vinyl alcohol polymer containing no side chain 1,2-diol unit In order to distinguish a vinyl alcohol polymer containing no side chain 1,2-diol unit from a vinyl alcohol polymer (B1) containing a side chain 1,2-diol unit, it is referred to as an unmodified vinyl alcohol polymer.
  • an unmodified vinyl alcohol polymer In order to distinguish a PVA polymer not containing a side chain 1,2-diol unit from a side chain 1,2-diol unit-containing PVA polymer (B11), an unmodified PVA polymer In order to distinguish the EVOH polymer not containing side chain 1,2-diol units from the EVOH polymer containing side chain 1,2-diol units (B12), an unmodified EVOH polymer May be called.
  • the side chain 1,2-diol unit-containing vinyl alcohol polymer (B1) has a lower melting point than the vinyl alcohol polymer containing no side chain 1,2-diol unit, The difference between the two is large and the melt moldability is excellent.
  • a polyvinyl alcohol polymer (unmodified PVA polymer) that does not contain a side chain 1,2-diol unit as a saponified product of a vinyl ester polymer usually has a content other than the vinyl alcohol unit. 10 mol% or less, the difference between the melting point and the thermal decomposition temperature is small, and melt molding cannot be performed.
  • the side chain 1,2-diol unit-containing PVA polymer (B11) has a lower melting point than the unmodified PVA polymer, a large difference from the thermal decomposition start temperature, and a melt-moldable temperature range. There is an advantage that it becomes wide and can be melt-molded.
  • the side chain 1,2-diol unit-containing PVA polymer (B11) loses its properties as a vinyl ester monomer, a monomer that becomes a side chain 1,2-diol unit, and a PVA polymer.
  • the total content of the vinyl alcohol unit and the side chain 1,2-diol unit in the side chain 1,2-diol unit-containing PVA polymer (B11) is determined from the viewpoint of suitably maintaining the chemical solution barrier property.
  • 2-diol unit-containing PVA polymer (B11) is preferably from 60 mol% to 100 mol%, preferably from 80 mol% to 100 mol%, based on 100 mol% of all monomer units. It is more preferable.
  • the side chain 1,2-diol unit-containing EVOH polymer (B12) is an ethylene, vinyl ester monomer, a monomer that becomes a side chain 1,2-diol unit, and a characteristic as an EVOH polymer.
  • the content of the ethylene unit in the side chain 1,2-diol unit-containing EVOH polymer (B12) is such that the side chain 1,2-diol unit-containing EVOH polymer ( It is preferably 10 mol% or more and 40 mol% or less, more preferably 12 mol% or more and 35 mol% or less, and more preferably 15 mol% or more and 30 mol% with respect to 100 mol% of all monomer units of B12). % Or less is more preferable.
  • the content of the ethylene unit can be calculated from the measurement result of 1 H-NMR.
  • the total content of the vinyl alcohol unit and the side chain 1,2-diol unit in the side chain 1,2-diol unit-containing EVOH polymer (B12) is from the viewpoint of suitably maintaining the chemical solution barrier property. It is preferably 60 mol% or more and 90 mol% or less, and 65 mol% or more and 88 mol% or less with respect to 100 mol% of all monomer units of the chain 1,2-diol unit-containing EVOH polymer (B12). More preferably, it is 70 mol% or more and 85 mol% or less.
  • vinyl ester monomers examples include vinyl formate, vinyl acetate, vinyl propionate, vinyl valelate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl itaconate, vinyl caproate, vinyl caprylate, and caprin.
  • the side chain 1,2-diol unit-containing vinyl alcohol polymer (B1) can be copolymerized with other monomers as long as the excellent properties of the resulting laminated tube are not impaired. It is.
  • Other monomers include, for example, ⁇ -olefins such as propylene, 1-butene, isobutene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-dodecene, 1-octadecene; styrene, Styrenes such as ⁇ -methylstyrene; unsaturated acids such as acrylic acid, methacrylic acid, crotonic acid, phthalic acid, (anhydrous) maleic acid, (anhydrous) itaconic acid, or salts thereof, unsaturated acids or salts thereof, or carbon Mono- or dialkyl esters having 1 to 18 atoms; N-alkyl (meth) acrylamides having 1 to 18 carbon atoms such as (meth) acrylamide
  • N-vinylamides N-methylol (meth) acrylamide, N-methylol (meth) acrylamide, dimethylol (meth) acrylamide, trimethylolpropane tri (meth) acrylate and other methylol group-containing unsaturated monomers; acrylonitrile, methacrylonitrile Vinyl cyanides such as methyl vinyl ether, ethyl Alkyl vinyl ethers having 1 to 18 carbon atoms, such as vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether, stearyl vinyl ether, hydroxyalkyl vinyl ether, alkoxy Vinyl ethers such as alkyl vinyl ethers; vinyl halides such as vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride, vinyl bromide;
  • Xylene glycol (meth) acrylates hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate; ethylene sulfonic acid, allyl sulfone Olefin sulfonic acid such as acid, methallyl sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid (AMPS) or salts thereof; glycidyl (meth) acrylate, glycidyl allyl ether, glycidyl methallyl ether, 3,4-epoxycyclohexyl Glycidyl group-containing unsaturated monomers such as (meth) acrylate and glycidyl vinyl ether; 1,3-diacetoxy-2-methylenepropane (2-methylene-1,3-propanediol diacetate) 1,
  • the content of these other monomer units is 5 mol% or less with respect to 100 mol% of all monomer units of the side chain 1,2-diol unit-containing vinyl alcohol polymer (B1). Preferably, it is 3 mol% or less, more preferably 2 mol% or less.
  • Such side chain 1,2-diol units are not particularly limited.
  • the copolymer is further copolymerized with ethylene) to obtain a copolymer, which is then saponified,
  • a unit capable of supplying side chain 1,2-diol units As a monomer, a copolymer of vinyl ethylene carbonate or the like represented by the following general formula (3) and a vinyl ester monomer (or ethylene in the case of a side chain 1,2-diol unit-containing EVOH polymer (B12)) is used.
  • a method of saponifying and decarboxylating this, and [3] a monomer capable of supplying a side chain 1,2-diol unit is represented by the following general formula (4) 2,2-dialkyl-4-vinyl-1,3-dio After copolymerization with solan and the like and a vinyl ester monomer (an ethylene in the case of EVOH polymer containing side chain 1,2-diol unit (B12)) to obtain a copolymer, It can be produced by a method of deacetalization or the like.
  • R 1 to R 6 and X are the same as those in the formula (1), and R 1 to R 6 are each independently X represents a hydrogen atom or an organic group, and X represents a single bond or a bond chain.
  • R 7 and R 8 are each independently a hydrogen atom or R 9 —CO— (wherein R 9 is an alkyl group having 1 to 20 carbon atoms).
  • R 10 and R 11 each independently represent a hydrogen atom or an organic group.
  • R 1 to R 6 and X are the same as those in the formula (1), and R 7 and R 8 are each independently a hydrogen atom or R 9 —CO— (wherein R 9 is an alkyl group), and the alkyl group is not particularly limited, and usually has 1 to 20 carbon atoms, and includes a methyl group, a propyl group, a butyl group, An alkyl group having 1 to 8 carbon atoms such as a hexyl group and an octyl group is preferable, and an alkyl group having 1 to 4 carbon atoms is more preferable.
  • Such an alkyl group may have a substituent such as a halogen group, a hydroxyl group, an ester group, a carboxylic acid group, or a sulfonic acid group as long as the copolymerization reactivity is not inhibited.
  • X is a single bond in view of excellent copolymerization reactivity and industrial handling, and 3,4-diol-1-butene, 3,4-diacyloxy-1-butene, and 3-acyloxy- 4-ol-1-butene, 4-acyloxy-3-ol-1-butene and 3,4-diacyloxy-2-methyl-1-butene are preferred, R 1 to R 6 are hydrogen atoms, X is a single bond, 3,4-diasiloxy-1-butene in which R 7 and R 8 are R 9 —CO—, R 9 is an alkyl group is more preferable, and 3,4-diacetoxy-1-butene in which R 9 is a methyl group Is more preferable.
  • R 1 to R 6 and X are all the same as those in the formula (1).
  • R 1 to R 3 are hydrogen atoms
  • R 4 to R 6 are hydrogen atoms or alkyl groups having 1 to 4 carbon atoms in terms of easy availability and good copolymerizability
  • Vinylethylene carbonate (4-vinylethylene carbonate, 4-vinyl-1,3-dioxolan-2-one), 4-methyl-4-vinylethylene carbonate, 5-methyl-4-vinylethylene carbonate in which X is a single bond 4,5-dimethyl-4-vinylethylene carbonate, 5,5-dimethyl-4-vinylethylene carbonate, 4,5,5-trimethyl-4-vinylethylene carbonate
  • 4-ethyl-4-vinylethylene carbonate, 4, -N-propyl-4-vinylethylene carbonate, 4-butyl-4-vinylethylene carbonate are preferred
  • R More preferred is vinyl ethylene carbonate in which 1 to R 6 are hydrogen atoms
  • R 1 to R 6 and X are the same as those in the formula (1), and R 10 and R 11 are each independently a hydrogen atom or alkyl.
  • the alkyl group is not particularly limited, and examples thereof include one or more carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a t-butyl group.
  • An alkyl group of 4 or less is preferred.
  • Such an alkyl group may have a substituent such as a halogen group, a hydroxyl group, an ester group, a carboxylic acid group, or a sulfonic acid group as long as the copolymerization reactivity is not inhibited.
  • 2,2-dialkyl- in which R 1 to R 6 are hydrogen atoms, X is a single bond, and R 10 and R 11 are alkyl groups in terms of availability and good copolymerizability.
  • 2,2-dimethyl-4-vinyl-1,3 is preferably 4-vinyl-1,3-dioxolane
  • R 1 to R 6 are hydrogen atoms
  • X is a single bond
  • R 10 and R 11 are methyl groups.
  • -Dioxolane is more preferred.
  • R 9 —CO— is an alkyl group having 1 to 20 carbon atoms, and is preferably an alkyl group having 1 to 10 carbon atoms from the viewpoint of industrial productivity, and preferably has 1 to 5 carbon atoms.
  • the alkyl group is more preferably a methyl group.
  • the polymerization proceeds satisfactorily, and side chain 1,2-diol units are easily introduced into the main chain of the vinyl alcohol polymer, resulting in less unreacted monomer and impurities. There is an advantage that it can be reduced.
  • Cx (vinyl ethylene carbonate) 0.005 (65 ° C.) of vinyl ethylene carbonate used in the method [2] and 2,2-dimethyl-4-vinyl-1,3-dioxolane used in the method [3]
  • Cx (2,2-dimethyl-4-vinyl-1,3-dioxolane) 0.023 (65 ° C)
  • the chain transfer constant of 3,4-diacetoxy-1-butene is small and the degree of polymerization is increased. It is easy to cause a decrease in polymerization rate.
  • 3,4-diacetoxy-1-butene when 3,4-diacetoxy-1-butene is used, the by-product generated when the obtained copolymer is saponified is derived from vinyl acetate units frequently used as vinyl ester monomers. Identical to by-products. Therefore, the method [1] using 3,4-diacetoxy-1-butene has an industrial advantage that it is not necessary to provide a special apparatus or process for the post-treatment.
  • the above 3,4-diacetoxy-1-butene is obtained via an epoxybutene derivative described in, for example, International Publication No. 2000/24702, US Pat. No. 5,562,086, US Pat. No. 6,072,079, etc.
  • 1,4-diacetoxy-1-butene which is an intermediate product of the 1,4-butanediol production process, can be produced by isomerization using a metal catalyst such as palladium chloride.
  • the 3,4-diol-1-butene used as a raw material for the method [1] is from Eastman Chemical Co.
  • 3,4-diacetoxy-1-butene is from Eastman Chemical Co.
  • Acros products can be obtained from the market.
  • 3,4-diacetoxy-1-butene obtained as a by-product in the production process of 1,4-butanediol can also be used.
  • 3,4-diacetoxy-1-butene used as a raw material includes 3,4-diacetoxy-1-butane, 1,4-diacetoxy-1-butene, 1,4-diacetoxy-1-butane, etc. as a small amount of impurities May be included.
  • a vinyl alcohol polymer containing a side chain 1,2-diol unit produced by the method of [2] has a side chain in the case where the degree of saponification is low or decarboxylation is insufficient.
  • the carbonate ring remains and tends to be decarboxylated during melt molding and cause the resin to foam.
  • the vinyl alcohol polymer containing a side chain 1,2-diol unit produced by [3] is also a functional group derived from a monomer remaining in the side chain, as in the production method [2]. Since the (acetal ring) tends to be detached at the time of melt molding and odor is generated, it is necessary to use this in mind.
  • the polymerization of the side chain 1,2-diol unit-containing vinyl alcohol polymer (B1) can be carried out by any known polymerization method, for example, batch polymerization, semi-batch polymerization, continuous polymerization, semi-continuous polymerization or the like.
  • a known arbitrary method such as a known polymerization method, a bulk polymerization method, a solution polymerization method, a suspension polymerization method, or an emulsion polymerization method can be employed.
  • a bulk polymerization method or a solution polymerization method in which polymerization proceeds in a solvent-free or solvent such as alcohol is usually employed.
  • an emulsion polymerization method is one of the options.
  • polymerization is performed with a vinyl ester monomer under the above-described method under ethylene gas pressure.
  • the solvent used in the solution polymerization method is not particularly limited, an alcohol is preferable, and for example, a lower alcohol such as methanol, ethanol, and propanol is more preferable.
  • the amount of the solvent used in the polymerization reaction solution may be selected in consideration of the degree of polymerization of the target side chain 1,2-diol unit-containing vinyl alcohol polymer (B1) and the chain transfer of the solvent.
  • the polymerization initiator used when polymerizing the side chain 1,2-diol unit-containing vinyl alcohol polymer (B1) is a known polymerization initiator, for example, an azo initiator, a peroxide initiator, And redox initiators.
  • the polymerization initiator is selected according to the polymerization method.
  • the azo initiator include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (4-methoxy-2, 4-dimethylvaleronitrile) and the like.
  • peroxide initiator examples include diisopropyl peroxydicarbonate, di-n-propyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, diethoxyethyl peroxydicarbonate, bis- (4- percarbonate compounds such as t-butylcyclohexyl) peroxy-dicarbonate; t-butylperoxyneodecanate, t-butylperoxypivalate, t-hexylperoxypivalate, ⁇ -cumylperoxyneodecanate
  • Perester compounds such as isobutyral peroxide, acetyl peroxide, di-lauroyl peroxide, di-decanoyl peroxide, di-octanoyl peroxide, di-propyl peroxide, benzoyl peroxide Things; acetylcyclohexylsulfonyl peroxy, 2,4,4-tri
  • the redox initiator is, for example, a polymerization initiator in which the peroxide initiator is combined with a reducing agent such as sodium bisulfite, sodium hydrogen carbonate, tartaric acid, L-ascorbic acid, or longalite. These can use 1 type (s) or 2 or more types.
  • the amount of the polymerization initiator used varies depending on the polymerization catalyst and cannot be determined unconditionally, but is adjusted according to the polymerization rate.
  • the amount of the polymerization initiator used is preferably 0.01 mol% or more and 0.2 mol% or less, and 0.02 mol% or more and 0.15 mol% or less with respect to the vinyl ester monomer. It is more preferable.
  • the polymerization temperature is not particularly limited, but is preferably from room temperature to 150 ° C., and more preferably from 30 ° C. to the boiling point of the solvent used.
  • the side chain 1,2-diol unit-containing vinyl alcohol polymer (B1) When the side chain 1,2-diol unit-containing vinyl alcohol polymer (B1) is polymerized, it may be copolymerized in the presence of a chain transfer agent as long as the effects of the present invention are not impaired.
  • a chain transfer agent examples include aldehydes such as acetaldehyde and propionaldehyde; ketones such as acetone and methyl ethyl ketone; mercaptans such as 2-hydroxyethanethiol; phosphinic acid salts such as sodium phosphinate monohydrate and the like. It is done. These can use 1 type (s) or 2 or more types. Among these, aldehydes and / or ketones are preferable.
  • the amount of chain transfer agent added to the polymerization reaction solution is determined in accordance with the chain transfer coefficient of the chain transfer agent and the degree of polymerization of the desired side chain 1,2-diol unit-containing vinyl alcohol polymer (B1). However, in general, it is preferably 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the vinyl ester monomer.
  • the saponification reaction is usually performed in a solution of alcohol or hydrous alcohol.
  • the alcohol used at this time is preferably a lower alcohol such as methanol or ethanol, more preferably methanol.
  • the alcohol or hydrous alcohol used in the saponification reaction may contain other solvents such as acetone, methyl acetate, ethyl acetate, and benzene as long as the mass is 40% by mass or less.
  • Examples of the catalyst used for the saponification include alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, sodium methylate, sodium ethylate, potassium methylate and lithium methylate, and alkali catalysts such as alcoholate;
  • alkali catalysts such as alcoholate;
  • acid catalysts such as sulfuric acid, hydrochloric acid, nitric acid, mineral acid, metasulfonic acid, zeolite, and cation exchange resin. These can use 1 type (s) or 2 or more types.
  • the temperature at which saponification is performed is not limited, but is preferably 20 ° C. or higher and 120 ° C. or lower.
  • the degree of saponification of the side chain 1,2-diol unit-containing vinyl alcohol polymer (B1) is although not particularly limited, from the viewpoint of suitably maintaining the chemical solution barrier property, it is preferably 90 mol% or more and 100 mol% or less, more preferably 95 mol% or more and 100 mol% or less, and 99 mol% or more and 100 mol% or less. More preferably, it is at most mol%.
  • the degree of saponification is based on the measurement results of 1 H-NMR, the monomers represented by the general formulas (2) to (4), vinyl ester monomers, etc. in accordance with JIS K 6726. It can be calculated from the alkali consumption required for hydrolysis of the remaining vinyl ester monomer.
  • the melting point of the side chain 1,2-diol unit-containing vinyl alcohol polymer (B1) is preferably 100 ° C. or higher and 220 ° C. or lower, more preferably 130 ° C. or higher and 200 ° C. or lower, and 150 ° C. or higher and 190 ° C. or lower. More preferably, it is not higher than ° C.
  • melt flow rate (MFR) at 210 ° C. and a load of 2160 g of the side chain 1,2-diol unit-containing vinyl alcohol polymer (B1) ensures a desirable moldability by setting the viscosity at the time of melting within an appropriate range, From the viewpoint of preventing the occurrence of problems such as drawdown during molding without excessively reducing the melt tension, it is preferably from 0.1 g / 10 min to 200 g / 10 min, and preferably from 1 g / 10 min to 100 g / 10. More preferably, it is more preferably 2 g / 10 min or more and 50 g / 10 min or less.
  • the side chain 1,2-diol unit-containing vinyl alcohol polymer (B1) is not only one type, but the side chain 1,2-diol unit-containing vinyl alcohol polymer (B1) having a different degree of saponification has a molecular weight of Different side-chain 1,2-diol unit-containing vinyl alcohol polymers (B1), other side-chain 1,2-diol unit-containing vinyl alcohol polymers (B1) with different types of copolymerizable monomers, etc. Two or more types of side chain 1,2-diol unit-containing vinyl alcohol polymers (B1) may be used in combination.
  • the side chain 1,2-diol unit-containing vinyl alcohol polymer (B1) is the side chain 1,2-diol unit-containing EVOH polymer (B12), those having different ethylene unit contents are also used. It may be used. When those having different ethylene unit contents are used together, the other units may be the same or different, but the ethylene content difference is preferably 1 mol% or more, preferably 2 mol% or more. More preferably, it is 2 mol% or more and 20 mol% or less.
  • a PVA polymer not containing a side chain 1,2-diol unit (unmodified PVA polymer) and / or an EVOH polymer not containing a side chain 1,2-diol unit (unmodified) EVOH polymer) may be mixed.
  • the side chain 1,2 in the mixture The content of the diol unit is preferably 0.1 mol% or more and 30 mol% or less with respect to 100 mol% of the total monomer units of the mixture, as calculated from the mixing mass ratio.
  • a side chain 1,2-diol unit-containing PVA polymer (B11) and a side chain 1,2-diol unit-containing EVOH polymer (B12) may be used in combination.
  • the method for producing the blend is not particularly limited. For example, a method in which each paste of vinyl ester copolymer before saponification is mixed and then saponified, and a solution in which each vinyl alcohol polymer after saponification is dissolved in alcohol or a mixed solvent of water and alcohol is mixed. The method, the method of melt-kneading after mixing the pellet or powder of each vinyl alcohol-type polymer, etc. are mentioned.
  • the vinyl alcohol polymer composition (B) contains an elastomer polymer (B2) containing a structural unit derived from an unsaturated compound having a carboxyl group and / or an acid anhydride group.
  • the elastomer polymer (B2) is as described in the explanation of the elastomer polymer (A3) contained in the aliphatic polyamide composition (A).
  • As an elastomer polymer (B2) the same thing as an elastomer polymer (A3) may be used, and a different thing may be used. These can use 1 type (s) or 2 or more types.
  • the content of the side chain 1,2-diol unit-containing vinyl alcohol polymer (B1) in the vinyl alcohol polymer composition (B) is 100% by mass with respect to 100% by mass of the vinyl alcohol polymer composition (B). 60 mass% to 95 mass%, preferably 65 mass% to 93 mass%, and more preferably 70 mass% to 90 mass%. If the content of the side chain 1,2-diol unit-containing vinyl alcohol polymer (B1) is less than the above value, the resulting laminated tube has poor chemical solution barrier properties. The laminated tube is poor in low temperature impact resistance and low temperature impact resistance after environmental stress loading.
  • the content of the elastomer polymer (B2) in the vinyl alcohol polymer composition (B) is 5% by mass or more and 40% by mass or less with respect to 100% by mass of the vinyl alcohol polymer composition (B). 7 mass% or more and 35 mass% or less is preferable, and 10 mass% or more and 30 mass% or less is more preferable.
  • the content of the elastomer polymer (B2) is less than the above value, the resulting laminated tube has poor low temperature impact resistance, low temperature impact resistance after environmental stress loading, interlayer adhesion, and durability.
  • the mechanical properties, chemical barrier properties, and fluidity of the resulting vinyl alcohol polymer composition (B) are inferior.
  • Examples of the method of mixing the side chain 1,2-diol unit-containing vinyl alcohol polymer (B1) and the elastomer polymer (B2) include the known methods described in the description of the aliphatic polyamide composition (A). .
  • thermoplastic resins other than the vinyl alcohol polymer various additives, as long as the excellent properties of the obtained laminated tube are not impaired. So-called impurities such as monomer residues and saponified monomers for the production of unavoidably contained vinyl alcohol polymers may be contained.
  • inevitable impurities include 3,4-diacetoxy-1-butene, 3,4-diol-1-butene, 3,4-diacetoxy-1-butene, and 3-acetoxy-4-ol-1.
  • additives include plasticizers such as dimethyl phthalate, diethyl phthalate, dioctyl phthalate, and phosphate esters; pentaerythritol monostearate, sorbitan monopalmitate, sulfated polyolefins; ethylene glycol, glycerin, hexane Antistatic agents such as aliphatic polyhydric alcohols such as diols; Saturated fatty acid amides such as stearic acid amide; Unsaturated fatty acid amides such as oleic acid amide; Bis fatty acid amides such as ethylene bisstearic acid amide; Calcium stearate and stearic acid Fatty acid metal salts such as magnesium, zinc stearate and aluminum stearate; slips of wax, liquid paraffin, low molecular weight polyethylene having a molecular weight of about 500 to 10,000, low molecular weight polyolefin such as low molecular weight polypropylene,
  • Organic acids such as acetic acid, propionic acid and stearic acid; inorganic acid compounds such as boric acid compounds and phosphoric acid compounds; stabilizers such as metal salts of hydrotalcites; reduced iron powders, potassium sulfite, ascorbic acid, Oxygen absorbers such as hydroquinone and gallic acid; Colorants such as carbon black, phthalocyanine, quinacridone, indoline, azo pigment, Bengala; glass fiber, asbestos, ballastite, mica, sericite, talc, silica, kaolin, silicic acid Fillers such as calcium and montmorillonite; 2,5-di-t-butylhydroquinone, 2,6-di-t-butyl-p-cresol, 4,4'-thiobis (6-t-butyl-m-cresol) 4,4′-thiobis (6-t-butylphenol), 4,4′-thiobis (3-methyl-6-t Butyphenol), 2,2′-methylene-
  • additives in order to improve various physical properties such as thermal stability during melt molding, as long as the excellent properties of the obtained laminated tube are not impaired, metal salts of hydrotalcite, etc. 0.01 parts by mass of one or more stabilizers such as stabilizers and hindered phenols with respect to 100 parts by mass of the side chain 1,2-diol unit-containing vinyl alcohol polymer (B1) It is preferable to add 1 part by mass or less.
  • organic acids such as acid, propionic acid, butyric acid, butyric acid, lauric acid, stearic acid, oleic acid, and behenic acid are used to improve various physical properties such as heat stability during melt molding; or these Alkali metal salts (sodium, potassium, etc.), alkaline earth metal salts (calcium, magnesium, etc.); inorganic acids such as sulfuric acid, sulfurous acid, carbonic acid, phosphoric acid, boric acid, or alkali metal salts thereof (sodium) , Potassium, etc.), alkaline earth metal salts (calcium, magnesium, etc.) and the like may be added. These can use 1 type (s) or 2 or more types. Among these, it is preferable to add a boron compound, acetate, and phosphate including acetic acid, boric acid and salts thereof.
  • the content of acetic acid is sufficient with respect to 100 parts by mass of the side-chain 1,2-diol unit-containing vinyl alcohol polymer (B1) from the viewpoint of sufficiently securing the content effect and obtaining a tube having a uniform thickness. 0.001 to 1 part by mass, preferably 0.005 to 0.2 part by mass, and more preferably 0.01 to 0.1 part by mass More preferably.
  • the content of the boron compound is sufficient with respect to 100 parts by mass of the side chain 1,2-diol unit-containing vinyl alcohol polymer (B1) from the viewpoint of sufficiently securing the content and obtaining a tube having a uniform thickness. It is preferably 0.001 part by mass or more and 1 part by mass or less in terms of boron element (analyzed by ICP emission analysis after ashing), and 0.002 part by mass or more and 0.2 part by mass or less. Is more preferably 0.005 parts by mass or more and 0.1 parts by mass or less.
  • the content of acetate and phosphate is sufficient to ensure the inclusion effect, and from the viewpoint of obtaining a tube having a uniform wall thickness, 1,2-diol units in the side chain It is 0.0005 parts by mass or more and 0.1 parts by mass or less in terms of metal element (analyzed by ICP emission analysis after ashing) with respect to 100 parts by mass of the vinyl alcohol polymer (B1). Preferably, it is 0.001 part by mass or more and 0.05 part by mass or less, and more preferably 0.002 part by mass or more and 0.03 part by mass or less. In addition, when adding 2 or more types of salts to a vinyl alcohol-type polymer composition (B), it is preferable that the sum total is the said range.
  • the method of adding the boron compound, acetate, and phosphate to the side chain 1,2-diol unit-containing vinyl alcohol polymer (B1) is not particularly limited, and i) a water content of 20% by mass to 80% by mass. % Of side chain 1,2-diol unit-containing vinyl alcohol polymer (B1) with a porous precipitate brought into contact with an aqueous solution of the additive so that the additive is contained and then dried, ii) side After adding an additive to a homogenous solution (water / alcohol solution, etc.) of a chain 1,2-diol unit-containing vinyl alcohol polymer (B1), it is extruded into a coagulating liquid and then the obtained strand is A method of further cutting and drying as pellets, iii) one side chain 1,2-diol unit-containing vinyl alcohol polymer (B1), elastomer polymer (B2), and additives.
  • the alkali (sodium hydroxide) used in the saponification step during the production of the side chain 1,2-diol unit-containing vinyl alcohol polymer (B1) And potassium hydroxide, etc.) are neutralized with organic acids such as acetic acid, and the remaining organic acids such as acetic acid and by-product salts are adjusted by washing with water.
  • the method i) and ii), which are excellent in the dispersibility of the additive, and the method iv) are preferred when an organic acid and a salt thereof are contained.
  • the vinyl alcohol polymer composition (B) can be prepared by further adding other polymers, additives and the like added as necessary, and melt kneading.
  • the vinyl alcohol polymer (B1) containing the side chain 1,2-diol unit and the elastomer polymer (B2) in the vinyl alcohol polymer composition (B). ) Is preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more based on the total composition.
  • the total content of the additives is preferably less than 30% by mass, more preferably less than 20% by mass, and still more preferably less than 10% by mass.
  • the vinyl alcohol polymer composition (B) may be a mixture with other thermoplastic resins.
  • the other thermoplastic resins include the same resins as those of the aliphatic polyamide composition (A). These can use 1 type (s) or 2 or more types.
  • the polyamide described in the description of the polyamide (A1) and / or polyamide (A2) contained in the aliphatic polyamide composition (A) A mixture is also preferred.
  • polyamide-type elastomers such as polyetheresteramide elastomer and polyetheramide elastomer, and polyester elastomer.
  • the total content of the side chain 1,2-diol unit-containing vinyl alcohol polymer (B1) and the elastomer polymer (B2) in the vinyl alcohol polymer composition (B) is 70% by mass or more. Preferably, it is 80 mass% or more. Accordingly, the total content of other thermoplastic resins is preferably less than 30% by mass, and more preferably less than 20% by mass.
  • the laminated tube further has a (c) layer.
  • the (c) layer of the laminated tube contains the polyamide composition (C).
  • the polyamide composition (C) includes a polyamide (C1) and an elastomer polymer (C2), and the polyamide (C1) is a polyamide other than an aliphatic polyamide having a ratio of methylene groups to amide groups of 8.0 or more.
  • the elastomeric polymer (C2) is a structural unit derived from an unsaturated compound having a carboxyl group and / or an acid anhydride group.
  • the polyamide composition (C) in an amount of 5% by mass to 30% by mass (hereinafter sometimes referred to as a polyamide composition (C)).
  • the polyamide composition (C) preferably does not contain a plasticizer from the viewpoint of durability of interlayer adhesion after being contacted and immersed in fuel for a long time and / or after a short heat treatment.
  • the polyamide (C1) is as described in the description of the polyamide (A2) contained in the aliphatic polyamide composition (A).
  • polyamide (C1) the same thing as polyamide (A2) may be used, and a different thing may be used. These can use 1 type (s) or 2 or more types.
  • the content of the polyamide (C1) in the polyamide composition (C) is 70% by mass to 95% by mass and 75% by mass to 93% by mass with respect to 100% by mass of the polyamide composition (C). It is preferably 80% by mass or more and 90% by mass or less.
  • the content of the polyamide (C1) is less than the above value, the mechanical properties of the obtained laminated tube may be inferior.
  • the content exceeds the above value the low temperature impact resistance and resistance of the obtained laminated tube are reduced. Chemical properties may be inferior.
  • the elastomer polymer (C2) is as described in the explanation of the elastomer polymer (A3) contained in the aliphatic polyamide composition (A).
  • the elastomer polymer (C2) the same polymer as the elastomer polymer (A3) may be used, or a different one may be used. These can use 1 type (s) or 2 or more types.
  • the content of the elastomer polymer (C2) in the polyamide composition (C) is 5% by mass to 30% by mass, and 7% by mass to 25% by mass with respect to 100% by mass of the polyamide composition (C). The content is preferably 10% by mass or more and more preferably 20% by mass or less.
  • the resulting laminated tube may be inferior in low-temperature impact resistance, interlayer adhesion, and durability, while on the other hand, exceeding the above value.
  • the mechanical properties of the resulting laminated tube and the fluidity of the resulting polyamide composition (C) may be inferior.
  • Examples of the method for mixing the polyamide (C1) and the elastomer polymer (C2) include the known methods described in the explanation of the aliphatic polyamide composition (A).
  • the polyamide composition (C) may contain other thermoplastic resins.
  • the other thermoplastic resins include the same resins as in the case of the aliphatic polyamide composition (A). These can use 1 type (s) or 2 or more types.
  • the total content of the polyamide (C1) and the elastomer polymer (C2) in the polyamide composition (C) is preferably 80% by mass or more, and more preferably 90% by mass or more.
  • an antioxidant if necessary, an antioxidant, a heat stabilizer, an ultraviolet absorber, a light stabilizer, a lubricant, an inorganic filler, an antistatic agent, a flame retardant, a crystallization accelerator. Colorants, lubricants and the like may be added.
  • (D) Layer It is preferable that the laminated tube further has a (d) layer.
  • the (d) layer of the laminated tube contains the semi-aromatic polyamide composition (D).
  • the semi-aromatic polyamide composition (D) includes a semi-aromatic polyamide (D1) and / or a semi-aromatic polyamide (D2).
  • the semi-aromatic polyamide (D) D1) and / or the semi-aromatic polyamide (D2) is contained in an amount of 60% by mass or more, and the semi-aromatic polyamide (D1) has 4 or more carbon atoms with respect to the total diamine units of the semi-aromatic polyamide (D1).
  • the semi-aromatic polyamide composition (D) has an embodiment containing a semi-aromatic polyamide (D1) (hereinafter sometimes referred to as semi-aromatic polyamide (D1)), and the semi-aromatic polyamide (D1) is A diamine unit containing 50 mol% or more of an aliphatic diamine unit having 4 to 12 carbon atoms with respect to all diamine units of the semi-aromatic polyamide (D1) and all dicarboxylic acid units of the semi-aromatic polyamide (D1).
  • D1 semi-aromatic polyamide
  • D1 is A diamine unit containing 50 mol% or more of an aliphatic diamine unit having 4 to 12 carbon atoms with respect to all diamine units of the semi-aromatic polyamide (D1) and all dicarboxylic acid units of the semi-aromatic polyamide (D1).
  • a dicarboxylic acid unit containing 50 mol% or more of a dicarboxylic acid unit containing at least one selected from the group consisting of a terephthalic acid unit, an isophthalic acid unit, and a naphthalenedicarboxylic acid unit.
  • the content of aliphatic diamine units having 4 to 12 carbon atoms in the semi-aromatic polyamide (D1) has various physical properties such as heat resistance, chemical resistance, impact resistance and chemical barrier properties of the obtained laminated tube. From the viewpoint of ensuring sufficiently, it is at least 50 mol%, preferably at least 55 mol%, more preferably at least 60 mol%, based on all diamine units of the semi-aromatic polyamide (D1).
  • Examples of the aliphatic diamine unit having 4 to 12 carbon atoms include 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, Examples include units derived from 1,9-nonanediamine, 1,10-decanediamine 1,11-undecanediamine, 1,12-dodecanediamine, and the like.
  • 1-butyl-1,2-ethanediamine 1,1-dimethyl-1,4-butanediamine, 1-ethyl-1,4-butanediamine, 1,2-dimethyl- 1,4-butanediamine, 1,3-dimethyl-1,4-butanediamine, 1,4-dimethyl-1,4-butanediamine, 2,3-dimethyl-1,4-butanediamine, 2-methyl- 1,5-pentanediamine, 3-methyl-1,5-pentanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, 2, 4-diethyl-1,6-hexanediamine, 2,2-dimethyl-heptanediamine, 2,3-dimethyl-heptanediamine, 2,4-dimethyl-heptanediamine, 2,5-dimethyl-heptane Amine, 2-methyl-1,8-octanediamine, 3-
  • 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 2- Units derived from methyl-1,5-pentanediamine, 1,9-nonanediamine, 2-methyl-1,8-octanediamine, 1,10-decanediamine and 1,12-dodecanediamine are preferred.
  • 1,6-hexanediamine and 2-methyl-1,5-pentanediamine are used in combination, the molar ratio of 1,6-hexanediamine unit to 2-methyl-1,5-pentanediamine unit is determined by moldability.
  • the viewpoint of balance between impact strength and impact resistance it is preferably 30:70 to 98: 2 (molar ratio), more preferably 40:60 to 95: 5 (molar ratio), and 1,9-nonanediamine.
  • the molar ratio of 1,9-nonanediamine unit to 2-methyl-1,8-octanediamine unit is from the viewpoint of the balance between moldability and impact resistance.
  • 30:70 to 98: 2 (molar ratio) is preferable, and 40:60 to 95: 5 (molar ratio) is more preferable.
  • the diamine unit in the semi-aromatic polyamide (D1) is a diamine unit other than the aliphatic diamine unit having 4 to 12 carbon atoms, as long as it does not impair the excellent characteristics of the obtained laminated tube. May be included.
  • Examples of other diamine units include units derived from aliphatic diamines such as 1,2-ethanediamine, 1,3-propanediamine, and 1,13-tridecanediamine; 1,3-cyclohexanediamine, 1,4- Cyclohexanediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, bis (4-aminocyclohexyl) methane, 2,2-bis (4-aminocyclohexyl) propane, bis (3 -Methyl-4-aminocyclohexyl) methane, 2,2-bis (3-methyl-4-aminocyclohexyl) propane, 5-amino-2,2,4
  • the content of the dicarboxylic acid unit containing at least one selected from the group consisting of a terephthalic acid unit, an isophthalic acid unit, and a naphthalenedicarboxylic acid unit in the semi-aromatic polyamide (D1) is the heat resistance of the obtained laminated tube. From the viewpoint of sufficiently ensuring various physical properties such as chemical resistance and chemical barrier properties, it is at least 50 mol% and at least 55 mol% with respect to the total dicarboxylic acid unit of the semi-aromatic polyamide (D1). Is preferable, and it is more preferable that it is 60 mol% or more.
  • naphthalenedicarboxylic acid unit examples include units derived from 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and the like. These can use 1 type (s) or 2 or more types. Among the naphthalenedicarboxylic acid units, units derived from 2,6-naphthalenedicarboxylic acid and 2,7-naphthalenedicarboxylic acid are preferred in view of economy and availability.
  • dicarboxylic acid unit in the semi-aromatic polyamide (D1) is within a range that does not impair the excellent properties of the obtained laminated tube, other dicarboxylic acids other than the terephthalic acid unit, the isophthalic acid unit, and the naphthalenedicarboxylic acid unit. It may contain an acid unit.
  • dicarboxylic acid units include oxalic acid, malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, 2,2-diethylsuccinic acid.
  • Acid suberic acid, azelaic acid, 2,2,4-trimethyladipic acid, 2,4,4-trimethyladipic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid Units derived from aliphatic dicarboxylic acids such as hexadecanedioic acid, octadecanedioic acid, eicosanedioic acid; 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, etc.
  • Units derived from alicyclic dicarboxylic acids phthalic acid, 1,3-phenylenedioxydiacetic acid, 1, -Phenylenedioxydiacetic acid, 4,4'-oxydibenzoic acid, diphenylmethane-4,4'-dicarboxylic acid, diphenylethane-4,4'-dicarboxylic acid, diphenylpropane-4,4'-dicarboxylic acid, diphenyl ether- Examples include units derived from aromatic dicarboxylic acids such as 4,4′-dicarboxylic acid, diphenylsulfone-4,4′-dicarboxylic acid, 4,4′-biphenyldicarboxylic acid, and 4,4′-triphenyldicarboxylic acid.
  • units derived from aromatic dicarboxylic acids are preferred.
  • the content of these other dicarboxylic acid units is less than 50 mol%, preferably 45 mol% or less, and preferably 40 mol% or less, based on all dicarboxylic acid units of the semiaromatic polyamide (D1). It is more preferable.
  • polycarboxylic acids such as trimellitic acid, trimesic acid and pyromellitic acid can be used as long as melt molding is possible.
  • the semi-aromatic polyamide (D1) may contain other units other than the dicarboxylic acid unit and the diamine unit as long as the excellent properties of the obtained laminated tube are not impaired.
  • other units include units derived from lactams such as caprolactam, enantolactam, undecane lactam, dodecane lactam, ⁇ -pyrrolidone, ⁇ -piperidone; 6-aminocaproic acid, 7-aminoheptanoic acid, 9-aminononanoic acid, 11 -Units derived from aminocarboxylic acids of aliphatic aminocarboxylic acids such as aminoundecanoic acid and 12-aminododecanoic acid; and aromatic aminocarboxylic acids such as p-aminomethylbenzoic acid.
  • the content of other units is preferably 45 mol% or less, more preferably 40 mol% or less, and more preferably 35 mol% or less, based on the total polymerization units of the semiaromatic polyamide (D1). More preferably.
  • semi-aromatic polyamide (D1) examples include polytetramethylene terephthalamide (polyamide 4T), polytetramethylene isophthalamide (polyamide 4I), polytetramethylene naphthalamide (polyamide 4N), polypentamethylene terephthalate.
  • polyamide (D1) As a semi-aromatic polyamide (D1), from the viewpoint of ensuring availability and various physical properties such as heat resistance, chemical resistance, impact resistance, and chemical barrier properties of the obtained laminated tube, Poly (hexamethylene terephthalamide / hexamethylene isophthalamide) copolymer (polyamide 6T / 6I), poly (hexamethylene terephthalamide / 2-methylpentamethylene terephthalamide) copolymer (polyamide 6T / M5T) , Poly (hexamethylene terephthalamide / caproamide) copolymer (polyamide 6T / 6), poly (hexamethylene terephthalamide / hexamethylene adipamide) copolymer (polyamide 6T / 66), poly (hexamethylene tele Phthalamide / hexamethylene sebacamide) copolymer (polyamide 6T / 610), poly (hexamethyl) Lentelephthalamide /
  • a semi-aromatic polyamide (D1) production apparatus a batch-type reaction kettle, a single-tank or multi-tank continuous reaction apparatus, a tubular continuous reaction apparatus, a single-screw kneading extruder, a twin-screw kneading extruder, etc.
  • a known polyamide production apparatus such as a kneading reaction extruder may be used.
  • a polymerization method a known method such as melt polymerization, solution polymerization, solid phase polymerization or the like can be used, and polymerization can be performed by repeating normal pressure, reduced pressure, and pressure operations. These polymerization methods can be used alone or in appropriate combination.
  • phosphoric acid, phosphorous acid, hypophosphorous acid, a salt or ester thereof, or the like can be added as a catalyst.
  • phosphoric acid, phosphorous acid, hypophosphorous acid salts or esters include phosphoric acid, phosphorous acid, or hypophosphorous acid and potassium, sodium, magnesium, vanadium, calcium, zinc, cobalt, manganese, tin Metal salts with metals such as tungsten, germanium, titanium, antimony, phosphoric acid, phosphorous acid, or ammonium salts of hypophosphorous acid, phosphoric acid, phosphorous acid, or ethyl ester or isopropyl ester of hypophosphorous acid Butyl ester, hexyl ester, isodecyl ester, decyl ester, stearyl ester, phenyl ester and the like. These can use 1 type (s) or 2 or more types.
  • the semi-aromatic polyamide composition (D) has an embodiment containing a semi-aromatic polyamide (D2) (hereinafter sometimes referred to as semi-aromatic polyamide (D2)), and the semi-aromatic polyamide (D2) is A diamine unit containing 50 mol% or more of xylylenediamine units and / or bis (aminomethyl) naphthalene units with respect to all diamine units of the semiaromatic polyamide (D2), and all dicarboxylic acids of the semiaromatic polyamide (D2) It contains a dicarboxylic acid unit containing 50 mol% or more of an aliphatic dicarboxylic acid unit having 4 to 12 carbon atoms based on the unit.
  • D2 semi-aromatic polyamide
  • the content of xylylenediamine units and / or bis (aminomethyl) naphthalene units in the semi-aromatic polyamide (D2) depends on the heat resistance, chemical resistance, impact resistance, chemical barrier properties, etc. of the resulting laminated tube. From the viewpoint of sufficiently ensuring the physical properties, it is 50 mol% or more, preferably 55 mol% or more, more preferably 60 mol% or more, based on all diamine units of the semi-aromatic polyamide (D2). preferable.
  • Examples of the xylylenediamine unit include units derived from o-xylylenediamine, m-xylylenediamine, and p-xylylenediamine. These can use 1 type (s) or 2 or more types. Among the xylylenediamine units, units derived from m-xylylenediamine and p-xylylenediamine are preferable in consideration of economy and availability.
  • the molar ratio of m-xylylenediamine unit to p-xylylenediamine unit is 10:90 to from the viewpoint of the balance between moldability and impact resistance.
  • the ratio is preferably 99: 1 (molar ratio), more preferably 50:50 to 99: 1 (molar ratio), and even more preferably 65:35 to 99: 1 (molar ratio).
  • the bis (aminomethyl) naphthalene unit 1,4-bis (aminomethyl) naphthalene, 1,5-bis (aminomethyl) naphthalene, 2,6-bis (aminomethyl) naphthalene, 2,7-bis (amino) And units derived from methyl) naphthalene. These can use 1 type (s) or 2 or more types.
  • the bis (aminomethyl) naphthalene units there are units derived from 1,5-bis (aminomethyl) naphthalene and 2,6-bis (aminomethyl) naphthalene in consideration of economy and availability. preferable.
  • the diamine unit in the semi-aromatic polyamide (D2) is a diamine other than the xylylenediamine unit and / or the bis (aminomethyl) naphthalene unit as long as the excellent properties of the obtained laminated tube are not impaired. Units may be included.
  • Examples of other diamine units include 1,2-ethanediamine, 1,3-propanediamine, 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,7-heptanediamine, , 8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, 1,13-tridecanediamine, 1,14-tetradecanediamine, 1, 15-pentadecanediamine, 1,16-hexadecanediamine, 1,17-heptadecanediamine, 1,18-octadecanediamine, 1,19-nonadecanediamine, 1,20-eicosanediamine, 2-methyl-1,5 -Pentanediamine, 3-methyl-1,5-pentanediamine, 2-methyl-1,8-octane Derived from aliphatic diamines such as amines, 2,2,4-trimethyl-1,6-hexan
  • units derived from aromatic diamines are preferred.
  • the content of these other diamine units is less than 50 mol%, preferably 45 mol% or less, and preferably 40 mol% or less, based on the total diamine units of the semiaromatic polyamide (D2). More preferred.
  • Examples of the aliphatic dicarboxylic acid unit having 4 to 12 carbon atoms include units derived from succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, etc. Is mentioned.
  • a unit derived from a branched aliphatic dicarboxylic acid such as adipic acid or 2-butylsuberic acid may be contained.
  • aliphatic dicarboxylic acid units having 4 to 12 carbon atoms those derived from adipic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, and dodecanedioic acid from the viewpoint of availability and economy. More preferred are units derived from adipic acid, sebacic acid and dodecanedioic acid, and more preferred are units derived from adipic acid and sebacic acid.
  • the molar ratio of the adipic acid unit to the sebacic acid unit is preferably 60:40 to 90:10 (molar ratio) from the viewpoint of the balance between moldability and impact resistance. 65:30 to 85:15 (molar ratio) is more preferable, and 70:30 to 85:15 (molar ratio) is more preferable.
  • the content of the aliphatic dicarboxylic acid unit having 4 to 12 carbon atoms in the semi-aromatic polyamide (D2) has sufficient physical properties such as heat resistance, chemical resistance and chemical barrier property of the obtained laminated tube. From the viewpoint of ensuring the above, it is 50 mol% or more, preferably 55 mol% or more, and more preferably 60 mol% or more with respect to all dicarboxylic acid units of the semi-aromatic polyamide (D2).
  • the dicarboxylic acid unit in the semi-aromatic polyamide (D2) is a dicarboxylic acid unit other than the aliphatic dicarboxylic acid unit having 4 to 12 carbon atoms, as long as the excellent properties of the resulting laminated tube are not impaired. It may contain an acid unit.
  • dicarboxylic acid units include units derived from aliphatic dicarboxylic acids such as oxalic acid, malonic acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, octadecanedioic acid, eicosanedioic acid; 1 Units derived from alicyclic dicarboxylic acids such as 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid; terephthalic acid, isophthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,3-phenylenedioxydiacetic
  • the content of these other dicarboxylic acid units is less than 50 mol%, preferably 45 mol% or less, and preferably 40 mol% or less, based on all dicarboxylic acid units of the semiaromatic polyamide (D2). It is more preferable. Furthermore, polycarboxylic acids such as trimellitic acid, trimesic acid and pyromellitic acid can be used as long as melt molding is possible.
  • the semi-aromatic polyamide (D2) may contain other units other than the dicarboxylic acid unit and the diamine unit as long as the excellent properties of the obtained laminated tube are not impaired.
  • the other units include units derived from lactam and / or units derived from aminocarboxylic acid described in the description of the semi-aromatic polyamide (D1). These can use 1 type (s) or 2 or more types.
  • the content of other units is preferably 45 mol% or less, more preferably 40 mol% or less, and more preferably 35 mol% or less, based on the total polymerization units of the semi-aromatic polyamide (D2). More preferably.
  • the semi-aromatic polyamide (D2) include polymetaxylylene succinamide (polyamide MXD4), polymetaxylylene glutamide (polyamide MXD5), polymetaxylylene adipamide (polyamide MXD6), polymetaxylylene verami (Polyamide MXD8), polymetaxylylene azelamide (polyamide MXD9), polymetaxylylene sebamide (polyamide MXD10), polymetaxylylene dodecamide (polyamide MXD12), polyparaxylylene succinamide (polyamide PXD4), polypara Xylylene Glutamide (Polyamide PXD5), Polyparaxylylene Adipamide (Polyamide PXD6), Polyparaxylylene Beramide (Polyamide PXD8), Polyparaxylylene Azelamide (Polyamide) XD9), polyparaxylylene sebacamide (polyamide PXD10), polyparaxx
  • polystyrene resin As a semi-aromatic polyamide (D2), from the viewpoint of ensuring availability and various physical properties such as heat resistance, chemical resistance, impact resistance, and chemical barrier properties of the obtained laminated tube, Polymetaxylylene adipamide (polyamide MXD6), polyparaxylylene adipamide (polyamide PXD6), poly (metaxylylene adipamide / metaxylylene terephthalamide) copolymer (polyamide MXD6 / MXDT), poly (Metaxylylene adipamide / metaxylylene isophthalamide) copolymer (polyamide MXD6 / MXDI), poly (metaxylylene adipamide / metaxylylene terephthalamide / metaxylylene isophthalamide) copolymer Combined (polyamide MXD6 / MXDT / MXDI), poly (paraxylylene adipamide / paraxy
  • Semi-aromatic polyamide (D2) production equipment includes kneading in batch-type reaction kettles, single-tank or multi-tank continuous reaction equipment, tubular continuous reaction equipment, single-screw kneading extruder, twin-screw kneading extruder, etc.
  • a known polyamide production apparatus such as a reaction extruder may be used.
  • As a method for producing the semi-aromatic polyamide (D2) there are known methods such as melt polymerization, solution polymerization, and solid-phase polymerization. Polyamide (D2) can be produced. These production methods can be used alone or in appropriate combination, and among these, the melt polymerization method is preferable.
  • a nylon salt composed of xylylenediamine and / or bis (aminomethyl) naphthalene and an aliphatic dicarboxylic acid having 4 to 12 carbon atoms is pressurized, heated in the presence of water, added water and condensation. It is produced by a method of polymerizing in a molten state while removing water. It can also be produced by a method in which xylylenediamine and / or bis (aminomethyl) naphthalene is directly added to an aliphatic dicarboxylic acid having 4 to 12 carbon atoms in a molten state and polycondensed under normal pressure.
  • a phosphorus atom-containing compound can be added as a catalyst or in order to enhance processing stability during melt molding and prevent coloring.
  • phosphorus atom-containing compounds include hypophosphorous acid, phosphorous acid, phosphoric acid, pyrophosphoric acid, metaphosphoric acid, phosphonous acid, and derivatives thereof, ie, alkaline earth metal salts of hypophosphorous acid, phosphorous acid Alkali metal salt, phosphorous acid alkaline earth metal salt, phosphoric acid alkali metal salt, phosphoric acid alkaline earth metal salt, pyrophosphoric acid alkali metal salt, pyrophosphoric acid alkaline earth metal salt, metaphosphoric acid Examples include alkali metal salts, alkaline earth metal salts of metaphosphoric acid, alkali metal salts of phosphonous acid, alkaline earth metal salts of phosphonous acid, alkali metal salts of phosphonic acid, alkaline earth metal salts of phosphonic acid, etc.
  • phosphorus atom-containing compound examples include phosphinic acid (hypophosphorous acid), ethyl hypophosphite, dimethylphosphinic acid, phenylmethylphosphinic acid, sodium hypophosphite, potassium hypophosphite, hypophosphorous acid.
  • phosphinic acid hypophosphorous acid
  • ethyl hypophosphite dimethylphosphinic acid
  • phenylmethylphosphinic acid sodium hypophosphite
  • potassium hypophosphite hypophosphorous acid.
  • These phosphorus atom-containing compounds may be hydrates.
  • the content of the phosphorus atom-containing compound is such that the phosphorus atom concentration is 100 parts by mass of the semi-aromatic polyamide (D2) from the viewpoints of sufficiently ensuring the catalytic effect during polymerization, preventing coloring, and suppressing the generation of gel. It is preferably 0.03 to 0.3 parts by mass, more preferably 0.05 to 0.2 parts by mass, and 0.07 to 0.15 parts by mass. More preferably, it is as follows.
  • the addition method of these phosphorus atom-containing compounds is a method of adding to a nylon salt aqueous solution, diamine, or dicarboxylic acid that is a raw material of the semi-aromatic polyamide (D2), a method of adding to a dicarboxylic acid in a molten state, Any method may be used as long as it can be uniformly dispersed in the semi-aromatic polyamide (D2), but is not limited thereto.
  • An alkali metal compound and / or an alkaline earth metal compound can be added to the semi-aromatic polyamide (D2) in combination with the phosphorus atom-containing compound.
  • the alkali metal salt and / or alkaline earth metal salt refers to a compound other than the phosphorus atom-containing compound.
  • a sufficient amount of the phosphorus atom-containing compound needs to be present, but in some cases, the gelation of the polyamide may be caused, so that the amidation reaction rate is adjusted.
  • alkali metal compound and alkaline earth metal compound examples include alkali metal hydroxide, alkaline earth metal hydroxide, alkali metal acetate, alkaline earth metal acetate, alkali metal carbonate, alkaline earth metal carbonate, Alkali metal alkoxides, alkaline earth metal alkoxides, and the like can be given. These can use 1 type (s) or 2 or more types. Among these, alkali metal hydroxide and / or alkali metal acetate are more preferable.
  • alkali metal compounds and alkaline earth metal compounds include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide.
  • Alkali metal / alkaline earth metal hydroxides lithium acetate, sodium acetate, potassium acetate, rubidium acetate, cesium acetate, magnesium acetate, calcium acetate, strontium acetate, barium acetate alkali metal / alkaline earth metal acetic acid Salt: Lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, cesium carbonate, magnesium carbonate, calcium carbonate, strontium carbonate, barium carbonate and other alkali metal / alkaline earth metal carbonates; sodium methoxide, sodium Tokido, sodium propoxide, sodium butoxide, potassium methoxide, lithium methoxide, magnesium methoxide, alkoxides of an alkali metal / alkaline earth metal such as calcium methoxide and the like. These can use 1 type (s) or 2 or more types. Among these, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, sodium acetate, and potassium
  • a value obtained by dividing the number of moles of the compound by the number of moles of phosphorus atoms in the phosphorus atom-containing compound is preferably 0.3 or more and 2 or less, more preferably 0.4 or more and 1.9 or less, and 0.5 or more and 1.8 or less from the viewpoint of the balance between promotion and suppression of the amidation reaction. More preferably.
  • alkali metal compounds and / or alkaline earth metal compounds can be added to the aqueous solution of nylon salt, diamine, or dicarboxylic acid, which is the raw material of the semi-aromatic polyamide (D2), to the dicarboxylic acid in the molten state.
  • nylon salt, diamine, or dicarboxylic acid which is the raw material of the semi-aromatic polyamide (D2)
  • D2 semi-aromatic polyamide
  • the relative viscosity of the semi-aromatic polyamide (D1) and the semi-aromatic polyamide (D2) measured under the conditions of 96% sulfuric acid, polymer concentration of 1% and 25 ° C. is the resulting laminate
  • it is preferably 1.5 or more and 4.0 or less, and 1.6 or more It is more preferably 3.5 or less, and still more preferably 1.8 or more and 3.0 or less.
  • terminal group of a semi-aromatic polyamide (D1) and a semi-aromatic polyamide (D2) terminal group concentration, and molecular weight distribution.
  • One or more of monoamine, diamine, polyamine, monocarboxylic acid and dicarboxylic acid can be added in combination as appropriate for molecular weight adjustment and melt stabilization during molding.
  • aliphatic monoamines such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine; alicyclic such as cyclohexylamine, dicyclohexylamine Monoamines; aromatic monoamines such as aniline, toluidine, diphenylamine, naphthylamine; aliphatic diamines such as 1,2-ethanediamine, 1,3-propanediamine, 1,13-tridecanediamine; cyclohexanediamine, bis (aminomethyl) Cycloaliphatic diamines such as 5-amino-1,3,3-trimethylcyclohexanemethylamine; aromatic diamines such as m-phenylenediamine and p-phenylenediamine; poly Polyamines such as rukylenimine, poly
  • Alicyclic dicarboxylic acid phthalate
  • Aromatic dicarboxylic acids such as isophthalic acid.
  • These can use 1 type (s) or 2 or more types.
  • the amount of these molecular weight regulators to be used varies depending on the reactivity of the molecular weight regulator and the polymerization conditions, but is appropriately determined so that the relative viscosity of the finally obtained polyamide falls within the above range.
  • the molecular chain ends of the semi-aromatic polyamide (D1) and the semi-aromatic polyamide (D2) are sealed with an end-capping agent, and at least 10% of the end groups are sealed. It is more preferable that it is stopped, and it is still more preferable that 20% or more of the end groups are sealed.
  • the end capping agent is not particularly limited as long as it is a monofunctional compound having reactivity with the amino group or carboxyl group at the end of the polyamide, but from the viewpoint of reactivity, stability of the capped end, etc.
  • An acid or a monoamine is preferable, and a monocarboxylic acid is more preferable from the viewpoint of easy handling.
  • acid anhydrides such as phthalic anhydride, monoisocyanates, monoacid halides, monoesters, monoalcohols, and the like can be used.
  • the monocarboxylic acid used as the end-capping agent is not particularly limited as long as it has reactivity with an amino group.
  • An acid etc. are mentioned. These can use 1 type (s) or 2 or more types. Among these, from the viewpoint of reactivity, stability of the sealing end, price, etc., acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecylic acid, myristic acid, palmitic acid, stearic acid Benzoic acid is preferred.
  • the monoamine used as the terminal blocking agent is not particularly limited as long as it has reactivity with a carboxyl group, and examples thereof include the aliphatic monoamines, alicyclic monoamines, and aromatic monoamines. These can use 1 type (s) or 2 or more types. Among these, butylamine, hexylamine, octylamine, decylamine, stearylamine, cyclohexylamine, and aniline are preferable from the viewpoints of reactivity, boiling point, sealing end stability, price, and the like.
  • the amount of the terminal blocking agent used can be appropriately selected in consideration of the reactivity, boiling point, reaction apparatus, reaction conditions, etc. of the terminal blocking agent used. From the viewpoint of adjusting the degree of polymerization, it is preferably 0.1 mol% or more and 15 mol% or less with respect to the total number of moles of the dicarboxylic acid and diamine which are raw material components.
  • an impact modifier to the semi-aromatic polyamide composition (D). It is more preferable to add an elastomer polymer (D3) containing a structural unit derived from an unsaturated compound having an acid anhydride group.
  • the elastomer polymer (D3) is as described in the explanation of the elastomer polymer (A3) contained in the aliphatic polyamide composition (A).
  • an elastomer polymer (D3) the same thing as an elastomer polymer (A3) may be used, and a different thing may be used.
  • the elastomer polymer (D3) does not contain a structural unit derived from an unsaturated compound having a carboxyl group and / or an acid anhydride group, the impact improving effect may be insufficient.
  • the content of the impact modifier is the main component semi-aromatic polyamide (D1) and / or semi-aromatic polyamide (D2) 100 from the viewpoint of sufficiently ensuring the mechanical strength and low-temperature impact resistance of the resulting laminated tube. It is preferably 1 part by mass or more and 30 parts by mass or less, and more preferably 3 parts by mass or more and 25 parts by mass or less with respect to parts by mass.
  • the semi-aromatic polyamide composition (D) may contain other thermoplastic resin together with the semi-aromatic polyamide (D1) and / or the semi-aromatic polyamide (D2).
  • the other thermoplastic resins include the same resins as those of the aliphatic polyamide composition (A). These can use 1 type (s) or 2 or more types.
  • the content of the semi-aromatic polyamide (D1) and / or the semi-aromatic polyamide (D2) in the semi-aromatic polyamide composition (D) is 60% by mass or more, and preferably 70% by mass or more.
  • a conductive filler an antioxidant, a heat stabilizer, an ultraviolet absorber, a light stabilizer, a lubricant, an inorganic filler, an antistatic agent, Flame retardants, crystallization accelerators, colorants, lubricants and the like may be added.
  • the laminated tube further has a (e) layer.
  • the (e) layer of the laminated tube is a fluorine-containing polymer (E) in which a functional group having reactivity with an amino group is introduced into a molecular chain (hereinafter referred to as a fluorine-containing polymer (E)). Is included.)
  • the fluorine-containing polymer (E) is a fluorine-containing polymer in which a functional group having reactivity with an amino group is introduced into a molecular chain.
  • the fluorine-containing polymer (E) is a polymer (homopolymer or copolymer) having a repeating unit derived from at least one fluorine-containing monomer. It is not particularly limited as long as it is a fluorine-containing polymer that can be heat-melted.
  • TFE tetrafluoroethylene
  • VDF vinylidene fluoride
  • VF vinyl fluoride
  • CTFE chlorotrifluoroethylene
  • HFP trichlorofluoroethylene
  • CF 2 ⁇ CFOR f1 where R f1 represents a perfluoroalkyl group which may contain an etheric oxygen atom having 1 to 10 carbon atoms
  • R f2 represents a perfluoroalkylene group which may contain an etheric oxygen atom having 1 to 10 carbon atoms
  • CF 2 ⁇ CF—OCH 2 —R f2 where R f2 represents a perfluoroalkylene group which may contain an etheric oxygen atom having 1 to 10 carbon atoms
  • CF 2 ⁇ CF (CF 2 ) p OCF ⁇ CF 2 here, p is 1 or 2.
  • CH 2 CX 1 (CF 2) n X 2 (wherein, X 1 and X 2 Independently represent a hydrogen atom or a fluorine
  • CH 2 CX 1 (CF 2 ) n X 2 (where X 1 and X 2 independently represent a hydrogen atom or a fluorine atom, and n is an integer of 2 or more and 10 or less.
  • N in the compound represented by.
  • n in the formula is more preferably 2 or more and 4 or less.
  • the fluorine-containing polymer (E) may further contain a polymer unit based on a non-fluorine-containing monomer in addition to the fluorine-containing monomer.
  • Non-fluorine-containing monomers include olefins having 2 to 4 carbon atoms such as ethylene, propylene, isobutene; vinyl chloride, vinylidene chloride, vinyl acetate, vinyl chloroacetate, vinyl lactate, vinyl butyrate, vinyl pivalate, benzoic acid Vinyl esters such as vinyl acid, vinyl crotonate, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate and methyl crotonate; methyl vinyl ether (MVE), ethyl vinyl ether (EVE), Examples thereof include vinyl ethers such as butyl vinyl ether (BVE), isobutyl vinyl ether (IBVE), cyclohexyl vinyl ether (CHVE), and
  • a copolymer (E2) comprising (TFE units) and ethylene units (E units), at least tetrafluoroethylene units (TFE units), hexafluoropropylene units (HFP units), and / or the general formula CF 2 CFOR f1 (wherein R f1 represents a perfluoroalkyl group which may contain an etheric oxygen atom having 1 to 10 carbon atoms.)
  • a polymer (E1) comprising at least a vinylidene fluoride unit (VDF unit) (hereinafter sometimes referred to as a VDF copolymer (E1)), for example, a vinylidene fluoride homopolymer (polyvinylidene fluoride (polyvinylidene fluoride ( PVDF)) (E1-1), A copolymer comprising VDF units and TFE units, wherein the content of VDF units is 30 mol% or more and 99 mol% or less with respect to the whole monomer excluding the functional group-containing monomers described later, and TFE A copolymer (E1-2) having a unit content of 1 mol% or more and 70 mol% or less, A copolymer comprising a VDF unit, a TFE unit, and a trichlorofluoroethylene unit, wherein the content of the VDF unit is 10 mol% or more and 90 mol with respect to the whole monomer excluding the functional group-containing monomer described later
  • the content of VDF units is 15 mol% or more and 84 mol% or less with respect to the whole monomers excluding the functional group-containing monomers described later, and the content of TFE units. Is preferably 15 mol% or more and 84 mol% or less, and the content of HFP units is preferably 0 mol% or more and 30 mol% or less.
  • a copolymer (E2) comprising at least a tetrafluoroethylene unit (TFE unit) and an ethylene unit (E unit) (hereinafter sometimes referred to as a TFE copolymer (E2)), for example, a functional group described below Examples include a polymer having a TFE unit content of 20 mol% or more based on the entire monomer excluding the group-containing monomer, and further, the entire monomer excluding the functional group-containing monomer described later.
  • the content of TFE units is 20 mol% or more and 80 mol% or less
  • the content of E units is 20 mol% or more and 80 mol% or less
  • the content of units derived from monomers copolymerizable therewith examples thereof include a copolymer having an amount of 0 mol% to 60 mol%.
  • TFE copolymer (E2) for example, TFE unit, E unit, and general formula CH 2 ⁇ CX 1 (CF 2 ) n X 2 (where X 1 and X 2 each independently represent a hydrogen atom or a fluorine atom, and n is 2 or more and 10
  • X 1 and X 2 each independently represent a hydrogen atom or a fluorine atom, and n is 2 or more and 10
  • It is a copolymer consisting of a fluoroolefin unit derived from a fluoroolefin represented by the following formula, and contains the TFE unit with respect to the entire monomer excluding the functional group-containing monomer described later.
  • the amount is 30 mol% or more and 70 mol% or less
  • the content of E unit is 20 mol% or more and 55 mol% or less
  • the general formula CH 2 ⁇ CX 3 (CF 2 ) n X 4 (where X 3 and X 4 represents a hydrogen atom or a fluorine atom independently of each other, and n is an integer of 2 or more and 10 or less.)
  • the content of the fluoroolefin unit derived from the fluoroolefin represented by Are both Combined (E2-1), A copolymer composed of a TFE unit, an E unit, an HFP unit, and a unit derived from a monomer copolymerizable therewith, with respect to the entire monomer excluding the functional group-containing monomer described later, TFE unit content of 30 mol% to 70 mol%, E unit content of 20 mol% to 55 mol%, HFP unit content of 1 mol% to 30 mol%, and copolymerization with these A copo
  • TFE unit tetrafluoroethylene unit
  • HFP unit hexafluoropropylene unit
  • CF 2 CFOR f1
  • R f1 is an etheric oxygen having 1 to 10 carbon atoms
  • E3 a copolymer (hereinafter sometimes referred to as TFE copolymer (E3)) composed of PAVE units derived from PAVE represented by PAVE represented by an atom.
  • TFE units are a copolymer composed of TFE units and HFP units
  • the content of TFE units is preferably 70 mol% or more and 95 mol% or less with respect to the whole monomer excluding the functional group-containing monomer described later
  • a copolymer comprising one or more PAVE units, wherein the content of TFE units is 70 mol% or more and 95 mol% with respect to the whole monomer excluding the functional group-containing monomers described later.
  • a copolymer (E3-2) in which the content of one or more PAVE units is 5 mol% or more and 30 mol% or less, TFE unit, HFP unit, and the general formula CF 2 CFOR f1 (wherein R f1 represents a perfluoroalkyl group which may contain an etheric oxygen atom having 1 to 10 carbon atoms).
  • the copolymer consisting of at least chlorotrifluoroethylene units is composed of CTFE units [—CFCl—CF 2 —], ethylene units (E units) and / or fluorine-containing monomer units.
  • Chlorotrifluoroethylene copolymer (E4) (hereinafter sometimes referred to as CTFE copolymer (E4)).
  • the CTFE copolymer (E4) is not particularly limited, and examples thereof include a CTFE / PAVE copolymer, a CTFE / VDF copolymer, a CTFE / HFP copolymer, a CTFE / E copolymer, and a CTFE / PAVE / E. Examples thereof include a copolymer, a CTFE / VDF / E copolymer, and a CTFE / HFP / E copolymer. These can use 1 type (s) or 2 or more types.
  • the CTFE unit content in the CTFE copolymer (E4) is preferably 15 mol% or more and 70 mol% or less, based on the whole monomer excluding the functional group-containing monomer described later, and is 18 mol%. More preferably, it is 65 mol% or less.
  • the content of the E unit and / or the fluorine-containing monomer unit is preferably 30 mol% or more and 85 mol% or less, and more preferably 35 mol% or more and 82 mol% or less.
  • the copolymer (E5) comprising at least a chlorotrifluoroethylene unit (CTFE unit) and a tetrafluoroethylene unit (TFE unit) is composed of a CTFE unit [—CFCl—CF 2 —], a TFE unit [—CF 2 —CF 2). -], And a chlorotrifluoroethylene copolymer composed of monomer units copolymerizable with CTFE and TFE (hereinafter sometimes referred to as CTFE / TFE copolymer (E5)).
  • CTFE unit chlorotrifluoroethylene unit
  • TFE unit tetrafluoroethylene unit
  • Fluorine-containing monomers such as olefins; olefins having 2 to 4 carbon atoms such as ethylene, propylene, and isobutene; vinyl acetate, methyl (meth) acrylate, Meth) vinyl esters such as ethyl acrylate; methyl vinyl ether (MVE), ethyl vinyl ether (EVE), non-fluorine-containing monomers of vinyl ether and butyl vinyl ether (BVE), and the like. These can use 1 type (s) or 2 or more types.
  • PAVE represented by the general formula CF 2 CFOR f1 (wherein R f1 represents a perfluoroalkyl group which may contain an etheric oxygen atom having 1 to 10 carbon atoms). It is preferable that perfluoro (methyl vinyl ether) (PMVE) and perfluoro (propyl vinyl ether) (PPVE) are more preferable, and PPVE is more preferable from the viewpoint of heat resistance.
  • the CTFE / TFE copolymer (E5) is not particularly limited, and examples thereof include a CTFE / TFE copolymer, a CTFE / TFE / HFP copolymer, a CTFE / TFE / VDF copolymer, and a CTFE / TFE / PAVE copolymer.
  • Examples include polymers, CTFE / TFE / E copolymers, CTFE / TFE / HFP / PAVE copolymers, CTFE / TFE / VDF / PAVE copolymers, and the like. These can use 1 type (s) or 2 or more types. Among these, a CTFE / TFE / PAVE copolymer and a CTFE / TFE / HFP / PAVE copolymer are preferable.
  • the total content of CTFE units and TFE units in the CTFE / TFE copolymer (E5) is from the viewpoint of securing good moldability, environmental stress crack resistance, chemical barrier properties, heat resistance, and mechanical properties. It is preferable that it is 90 mol% or more and 99.9 mol% or less with respect to the whole monomer except the functional group containing monomer of the postscript, Content of the monomer unit copolymerizable with the said CTFE and TFE Is preferably 0.1 mol% or more and 10 mol% or less.
  • the CTFE unit content in the CTFE / TFE copolymer (E5) is 100% in total from the viewpoint of ensuring good moldability, environmental stress crack resistance, and chemical barrier properties. It is preferably 15 mol% or more and 80 mol% or less, more preferably 17 mol% or more and 70 mol% or less, and further preferably 19 mol% or more and 65 mol% or less with respect to mol%.
  • the content of the PAVE unit is the entire monomer excluding the functional group-containing monomer described later. On the other hand, it is preferably 0.5 mol% or more and 7 mol% or less, more preferably 1 mol% or more and 5 mol% or less.
  • the total content of the HFP unit and the PAVE unit is the functional group-containing monomer described later. It is preferably 0.5 mol% or more and 7 mol% or less, and more preferably 1 mol% or more and 5 mol% or less with respect to the whole monomer excluding.
  • the TFE copolymer (E3), the CTFE copolymer (E4), and the CTFE / TFE copolymer (E5) are excellent in chemical solution barrier properties, particularly barrier properties against alcohol-containing gasoline.
  • the alcohol-containing gasoline permeability coefficient put the sheet obtained from the resin to be measured into a permeability coefficient measuring cup filled with isooctane / toluene / ethanol mixed solvent in which isooctane, toluene, and ethanol are mixed at a volume ratio of 45:45:10. , A value calculated from a change in mass measured at 60 ° C.
  • the alcohol-containing gasoline permeability coefficient of the TFE copolymer (E3), CTFE copolymer (E4), and CTFE / TFE copolymer (E5) is 1.5 g ⁇ mm / (m 2 ⁇ day) or less. Is more preferably 0.01 g ⁇ mm / (m 2 ⁇ day) to 1 g ⁇ mm / (m 2 ⁇ day), and more preferably 0.02 g ⁇ mm / (m 2 ⁇ day) to 0. More preferably, it is 8 g ⁇ mm / (m 2 ⁇ day) or less.
  • the fluorine-containing polymer (E) can be obtained by using a monomer constituting the polymer and (co) polymerizing by a conventional polymerization method.
  • a method by radical polymerization is mainly used. That is, in order to start the polymerization, the means is not limited as long as it proceeds radically, but it is started by, for example, organic or inorganic radical polymerization initiator, heat, light, ionizing radiation or the like.
  • the polymerization method using the radical polymerization initiator generally used is used.
  • Polymerization methods include bulk polymerization, solution polymerization using organic solvents such as fluorinated hydrocarbons, chlorinated hydrocarbons, fluorinated chlorohydrocarbons, alcohols, hydrocarbons, aqueous media, and appropriate organic solvents as required.
  • Known methods such as suspension polymerization, emulsion polymerization using an aqueous medium and an emulsifier can be employed.
  • the polymerization can be carried out as a batch operation or a continuous operation using a one-tank or multi-tank stirring polymerization apparatus, a tube polymerization apparatus, or the like.
  • the decomposition temperature with a half-life of 10 hours is preferably 0 ° C. or higher and 100 ° C. or lower, and more preferably 20 ° C. or higher and 90 ° C. or lower.
  • Chain transfer agents include alcohols such as methanol and ethanol; 1,3-dichloro-1,1,2,2,3-pentafluoropropane, 1,1-dichloro-1-fluoroethane, 1,2-dichloro- Chlorofluorohydrocarbons such as 1,1,2,2-tetrafluoroethane, 1,1-dichloro-1-fluoroethane, 1,1,2-trichloro-1,2,2-trifluoroethane; pentane, hexane And hydrocarbons such as cyclohexane; chlorohydrocarbons such as carbon tetrachloride, chloroform, methylene chloride, and methyl chloride. These can use 1 type (s) or 2 or more types.
  • Polymerization conditions are not particularly limited, and the polymerization temperature is preferably 0 ° C. or higher and 100 ° C. or lower, and more preferably 20 ° C. or higher and 90 ° C. or lower. In order to avoid a decrease in heat resistance due to ethylene-ethylene chain formation in the polymer, a low temperature is generally preferred.
  • the polymerization pressure is appropriately determined according to other polymerization conditions such as the type, amount, vapor pressure, polymerization temperature and the like of the solvent used, but is preferably 0.1 MPa or more and 10 MPa or less, and is 0.5 MPa or more and 3 MPa or less. It is more preferable.
  • the polymerization time is preferably 1 hour or more and 30 hours or less.
  • the molecular weight of the fluorine-containing polymer (E) is not particularly limited, but is preferably a polymer that is solid at room temperature and can itself be used as a thermoplastic resin, an elastomer, or the like.
  • the molecular weight is controlled by the concentration of the monomer used for the polymerization, the concentration of the polymerization initiator, the concentration of the chain transfer agent, the temperature, and the like.
  • the fluorine-containing polymer (E) is used together with the aliphatic polyamide composition (A), the vinyl alcohol polymer composition (B), the polyamide composition (C), the semi-aromatic polyamide composition (D) and the like.
  • the temperature is 50 ° C. higher than the melting point of the fluorine-containing polymer (E) and the load is 5 kg.
  • the melt flow rate is preferably from 0.5 g / 10 min to 200 g / 10 min, more preferably from 1 g / 10 min to 100 g / 10 min.
  • the melting point, glass transition point, and the like of the polymer can be adjusted by selecting the type of fluorine-containing monomer and other monomers, the composition ratio, and the like.
  • the melting point of the fluorine-containing polymer (E) is appropriately selected depending on the purpose, application, method of use, etc., but the aliphatic polyamide composition (A), vinyl alcohol polymer composition (B), polyamide composition When coextruding with (C), the semi-aromatic polyamide composition (D), etc., it is preferably close to the molding temperature of the resin.
  • the melting point means that the sample is heated to a temperature higher than the expected melting point using a differential scanning calorimeter, and then the sample is cooled at a rate of 10 ° C. per minute and cooled to 30 ° C.
  • the temperature of the peak value of the melting curve measured by standing for about 1 minute as it is and raising the temperature at a rate of 10 ° C. per minute is defined as the melting point.
  • a functional group having reactivity with an amino group is introduced into the molecular structure, and the functional group includes a molecular end and a side chain of the fluorine-containing polymer (E). Alternatively, it may be introduced into any of the main chains. Moreover, the functional group may be used alone or in combination of two or more in the fluorine-containing polymer (E).
  • the type and content of the functional group are appropriately determined depending on the type, shape, application, required interlayer adhesion, adhesion method, functional group introduction method, etc. of the counterpart material laminated on the fluorine-containing polymer (E).
  • the functional group having reactivity with the amino group is selected from the group consisting of a carboxyl group, an acid anhydride group or a carboxylate, a sulfo or sulfonate, an epoxy group, a cyano group, a carbonate group, and a haloformyl group.
  • a carboxyl group an acid anhydride group or a carboxylate, a sulfo or sulfonate, an epoxy group, a cyano group, a carbonate group, and a haloformyl group.
  • the fluorine-containing polymer (E) produced from the above (i) and (ii) is preferable.
  • JP-A-7-18035, JP-A-7-259592, JP-A-7-25594, JP-A-7-173230, JP-A-7-173446, JP-A-7- See the production methods described in JP-A-173447 and JP-T-10-503236.
  • a polymerization monomer comprising at least one functional group-containing monomer selected from the group consisting of a carboxyl group, an acid anhydride group or carboxylate, a hydroxyl group, a sulfo group or sulfonate, an epoxy group, and a cyano group; Use.
  • the functional group-containing monomer include a functional group-containing non-fluorine monomer and a functional group-containing fluorine-containing monomer.
  • Functional group-containing non-fluorine monomers include acrylic acid, halogenated acrylic acid (excluding fluorine), methacrylic acid, halogenated methacrylic acid (excluding fluorine), maleic acid, halogenated maleic acid (provided that , Fluorine), fumaric acid, halogenated fumaric acid (excluding fluorine), itaconic acid, citraconic acid, crotonic acid, endobicyclo- [2.2.1] -5-heptene-2,3-dicarboxylic acid Unsaturated carboxylic acids such as acids and derivatives thereof; maleic anhydride, itaconic anhydride, succinic anhydride, citraconic anhydride, endobicyclo- [2.2.1] -5-heptene-2,3-dicarboxylic acid Carboxyl group-containing monomers such as anhydrides; Epoxy group-containing monomers such as glycidyl acrylate, glycidyl methacrylate, and glycidyl
  • The. These can use 1 type (s) or 2 or more types.
  • the functional group-containing non-fluorine monomer is determined in consideration of copolymerization reactivity with the fluorine-containing monomer to be used. By selecting an appropriate functional group-containing non-fluorine monomer, the polymerization proceeds favorably and is easily introduced into the main chain of the functional group-containing non-fluorine monomer, resulting in less unreacted monomer. There is an advantage that impurities can be reduced.
  • Group or ether bond It represents a fluorine-containing oxyalkylene group having 1 or more and 40 or less carbon atoms having, n is 0 or 1.
  • Examples of the group derived from a carboxyl group as Y in the general formula include, for example, a general formula —C ( ⁇ O) Q 1 (wherein Q 1 is —OR 8 , —NH 2 , F, Cl, Br, or I R 8 represents an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 22 carbon atoms.) And the like.
  • Examples of the sulfonic acid-derived group that is Y in the general formula include a general formula —SO 2 Q 2 (wherein Q 2 represents —OR 9 , —NH 2 , F, Cl, Br, or I; R 9 represents an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 22 carbon atoms.) And the like.
  • Y is preferably —COOH, —SO 3 H, —SO 3 Na, —SO 2 F, or —CN.
  • the functional group-containing fluorine-containing monomer for example, in the case of a functional group having a carbonyl group, perfluoroacrylic acid fluoride, 1-fluoroacrylic acid fluoride, acrylic acid fluoride, 1-trifluoromethacrylic acid fluoride, perfluoro Examples include butenoic acid. These can use 1 type (s) or 2 or more types.
  • the content of the functional group-containing monomer in the fluorine-containing polymer (E) ensures sufficient interlayer adhesion, and ensures sufficient heat resistance without causing a decrease in interlayer adhesion depending on the use environment conditions. From the viewpoint of preventing the occurrence of poor adhesion, coloring, foaming, use at high temperatures, peeling due to decomposition, coloring, foaming, elution, etc. during processing at high temperatures, total polymerization of the fluorine-containing polymer (E) It is preferably 0.01 mol% or more and 5 mol% or less, more preferably 0.015 mol% or more and 4 mol% or less, and 0.02 mol% or more and 3 mol% or less with respect to the unit. More preferably.
  • the method for adding the functional group-containing monomer is not particularly limited, and may be added all at once at the start of polymerization, or may be continuously added during the polymerization. The addition method is appropriately selected depending on the decomposition reactivity of the polymerization initiator and the polymerization temperature. During the polymerization, the amount consumed is continuously or intermittently as the functional group-containing monomer is consumed in the polymerization.
  • the content of the functional group-containing monomer in the fluorine-containing polymer (E) is 0.01 mol% with respect to the total polymerization units of the fluorine-containing polymer (E). This corresponds to the content of the functional group residue in the polymer (E) being 100 with respect to 1 ⁇ 10 6 main chain carbon atoms of the fluorine-containing polymer (E).
  • the functional group residue content in the fluorine-containing polymer (E) is the fluorine-containing polymer (E ) Corresponding to 1 ⁇ 10 6 main chain carbon atoms. As long as the content is satisfied, it may be a mixture of a fluorine-containing polymer into which a functional group has been introduced and a fluorine-containing polymer into which no functional group has been introduced.
  • the functional group is introduced into one or both ends of the molecular chain of the fluorine-containing polymer.
  • the functional group introduced at the terminal is preferably a carbonate group and / or a haloformyl group.
  • the carbonate group introduced as a terminal group of the fluorine-containing polymer (E) is generally a group having a —OC ( ⁇ O) O— bond, specifically, —OC ( ⁇ O) O—.
  • R 10 group [R 10 is a hydrogen atom, an organic group (for example, an alkyl group having 1 to 20 carbon atoms, an alkyl group having 2 to 20 carbon atoms having an ether bond, etc.), or an I, II, or VII group element It is. ] —OC ( ⁇ O) OCH 3 , —OC ( ⁇ O) OC 3 H 7 , —OC ( ⁇ O) OC 8 H 17 , —OC ( ⁇ O) OCH 2 CH 2 OCH 2 CH 3 etc. may be mentioned.
  • a haloformyl group is specifically —COZ [Z is a halogen element. ], And includes -COF, -COCl and the like.
  • a polymerization initiator and / or a chain transfer agent can be employed to introduce a carbonate group at the molecular end of the polymer.
  • Peroxides particularly peroxycarbonates and / or peroxyesters. Can be preferably employed from the viewpoint of performance such as economy, heat resistance, chemical resistance and the like.
  • a carbonyl group derived from peroxide such as a carbonate group derived from peroxycarbonate, an ester group derived from peroxyester, a haloformyl group formed by converting these functional groups, etc.
  • it is more preferable to use peroxycarbonate because the polymerization temperature can be lowered and no side reaction is involved in the initiation reaction.
  • haloformyl group at the molecular end of the polymer.
  • the carbonate group of the fluorine-containing polymer having the carbonate group at the end is heated to cause thermal decomposition (decarboxylation). Can be obtained.
  • Peroxycarbonates include diisopropyl peroxycarbonate, di-n-propyl peroxycarbonate, t-butyl peroxyisopropyl carbonate, t-butyl peroxymethacryloyloxyethyl carbonate, bis (4-t-butylcyclohexyl) peroxy Examples thereof include dicarbonate and di-2-ethylhexyl peroxydicarbonate. These can use 1 type (s) or 2 or more types.
  • the amount of peroxycarbonate used varies depending on the type of polymer (composition, etc.), molecular weight, polymerization conditions, type of initiator used, etc., but the polymerization rate is properly controlled to ensure a sufficient polymerization rate. From the viewpoint of performing, it is preferably 0.05 parts by mass or more and 20 parts by mass or less, and more preferably 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the total polymer obtained by polymerization. .
  • the carbonate group content at the molecular end of the polymer can be controlled by adjusting the polymerization conditions.
  • the addition method of a polymerization initiator is not specifically limited, You may add collectively at the time of superposition
  • the addition method is appropriately selected depending on the decomposition reactivity of the polymerization initiator and the polymerization temperature.
  • the number of terminal functional groups with respect to 10 6 main chain carbon atoms in the fluorine-containing polymer (E) ensures sufficient interlayer adhesion, and does not cause deterioration of interlayer adhesion depending on the use environment conditions.
  • the number is 200 or more and 2,000 or less, and more preferably 300 or more and 1,000 or less.
  • the fluorine-containing polymer (E) is a fluorine-containing polymer in which a functional group having reactivity with an amino group is introduced into a molecular chain.
  • the fluorine-containing polymer (E) having a functional group introduced is itself a heat-resistant, water-resistant, low-friction, chemical-resistant, weather-resistant, and antifouling property specific to the fluorine-containing polymer. It is possible to maintain excellent characteristics such as a chemical barrier property, which is advantageous in terms of productivity and cost.
  • Fluorine-containing polymer (E) can be added with various fillers such as inorganic powder, glass fiber, carbon fiber, metal oxide, carbon and the like within a range that does not impair the performance depending on the purpose and application.
  • a pigment, an ultraviolet absorber, and other optional additives can be mixed.
  • other fluororesins, other thermoplastic resins, synthetic rubber, etc. can also be added, improving mechanical properties, improving weather resistance, imparting design, preventing static electricity, The moldability can be improved.
  • the first aspect of the laminated tube includes at least two layers (a) and (b), and at least one pair of the (a) layer and the (b) layer is disposed adjacent to each other.
  • the laminated tube of the first aspect it is essential to include the (b) layer, and the low-temperature impact resistance after the environmental stress load of the laminated tube becomes good. Furthermore, by arranging the (a) layer and the (b) layer adjacent to each other, it becomes possible to obtain a laminated tube excellent in interlayer adhesion and durability.
  • it has at least one (b) layer disposed inside the (a) layer.
  • the (b) layer disposed inside the (a) layer is adjacent to the (a) layer.
  • the other layer may be arrange
  • the (a) layer is disposed on the outermost layer of the laminated tube.
  • the layer is disposed in the innermost layer of the laminated tube.
  • (A) By arrange
  • the conductive layer containing the aliphatic polyamide composition (A) further containing a conductive filler when used as a fuel piping tube, it is possible to prevent the spark generated by the internal friction of the fuel circulating in the piping or the friction with the tube wall from igniting the fuel. At that time, it is possible to achieve both low temperature impact resistance and conductivity by disposing the layer containing the non-conductive aliphatic polyamide composition (A) outside the conductive layer. It is also economically advantageous.
  • Conductivity means that, for example, when a flammable fluid such as gasoline is continuously in contact with an insulator such as resin, static electricity may accumulate and ignite, but this static electricity will not accumulate. Says having electrical properties. This makes it possible to prevent an explosion due to static electricity generated when a fluid such as fuel is conveyed.
  • the conductive filler includes all fillers added to impart conductive performance to the resin, and examples thereof include granular, flaky, and fibrous fillers.
  • Examples of the particulate filler include carbon black and graphite.
  • Examples of the flaky filler include aluminum flakes, nickel flakes, and nickel-coated mica.
  • Examples of the fibrous filler include carbon fibers, carbon-coated ceramic fibers, carbon whiskers, carbon nanotubes, aluminum fibers, copper fibers, brass fibers, and stainless steel fibers. These can use 1 type (s) or 2 or more types. Among these, carbon nanotubes and carbon black are preferable.
  • Carbon nanotubes are what are called hollow carbon fibrils, which have an outer region consisting of an essentially continuous multi-layer of regularly arranged carbon atoms and an inner hollow region, each layer And the hollow region are essentially cylindrical fibrils arranged substantially concentrically around the cylindrical axis of the fibrils. Furthermore, the regularly arranged carbon atoms in the outer region are preferably graphite-like, and the diameter of the hollow region is preferably 2 nm or more and 20 nm or less.
  • the outer diameter of the carbon nanotube is preferably 3.5 nm or more and 70 nm or less, preferably 4 nm or more and 60 nm or less, from the viewpoint of imparting sufficient dispersibility in the resin and good conductivity of the obtained resin molded body. It is more preferable.
  • the aspect ratio (length / outer diameter ratio) of the carbon nanotubes is preferably 5 or more, more preferably 100 or more, and further preferably 500 or more. By satisfying the aspect ratio, it is easy to form a conductive network, and excellent conductivity can be exhibited by addition of a small amount.
  • Carbon black includes all carbon blacks that are commonly used to impart electrical conductivity.
  • Preferred carbon blacks are acetylene black obtained by incomplete combustion of acetylene gas, and furnace-type incomplete combustion using crude oil as a raw material.
  • Furnace black such as ketjen black, oil black, naphthalene black, thermal black, lamp black, channel black, roll black, disk black, etc., manufactured by: These can use 1 type (s) or 2 or more types. Among these, acetylene black and furnace black are more preferable.
  • Carbon black is produced in various carbon powders having different characteristics such as particle diameter, surface area, DBP oil absorption, ash content and the like. Although there is no restriction
  • the surface area (BET method) is preferably 10 m 2 / g or more, more preferably 30 m 2 / g or more, and 50 m 2 / g or more.
  • the DBP (dibutyl phthalate) oil absorption is preferably 50 ml / 100 g or more, more preferably 100 ml / 100 g, and even more preferably 150 ml / 100 g or more.
  • the ash content is preferably 0.5% by mass or less, and more preferably 0.3% by mass or less.
  • the DBP oil absorption referred to here is a value measured by a method defined in ASTM D-2414.
  • the volatile content of carbon black is less than 1 mass%.
  • These conductive fillers may be subjected to surface treatment with a surface treatment agent such as titanate, aluminum or silane. Furthermore, it is possible to use a granulated product for improving the melt-kneading workability.
  • the content of the conductive filler varies depending on the type of the conductive filler used, it cannot be specified unconditionally, but from the viewpoint of balance with conductivity, fluidity, mechanical strength, etc., the aliphatic polyamide composition (A) Generally, it is preferably 3 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass.
  • the conductive filler preferably has a surface resistivity of the melt-extruded product of 10 8 ⁇ / square or less, more preferably 10 6 ⁇ / square or less. preferable.
  • the addition of the conductive filler tends to cause deterioration of strength and fluidity. Therefore, it is desirable that the content of the conductive filler is as small as possible if a target conductivity level is obtained.
  • the thickness of each layer is not particularly limited and can be adjusted according to the type of polymer constituting each layer, the total number of layers in the laminated tube, the use, etc., but the thickness of each layer is It is determined in consideration of characteristics such as the chemical barrier property, low temperature impact resistance, and flexibility of the laminated tube.
  • the thickness of the (a) layer and the (b) layer is preferably 3% or more and 90% or less, respectively, with respect to the thickness of the entire laminated tube.
  • the thickness of the layer (b) is more preferably 5% or more and 30% or less, and more preferably 7% or more and 20% with respect to the total thickness of the laminated tube. More preferably, it is as follows.
  • the total number of layers in the laminated tube of the first aspect is not particularly limited as long as it is at least two layers having (a) layers and (b) layers. Furthermore, the laminated tube of the first aspect is provided with other thermoplastic resins in order to give a further function or to obtain an economically advantageous laminated tube in addition to the two layers (a) and (b). It may have one layer or two or more layers. Although the number of layers of the laminated tube of the first aspect is 2 or more, it is preferably 8 or less, more preferably 3 or more and 7 or less, judging from the mechanism of the tube production apparatus.
  • the second aspect of the laminated tube includes, in addition to the first aspect, at least three layers having (c) layers, and at least one (b) layer and (c) layer are arranged adjacent to each other.
  • the laminated tube of the second aspect it is essential to include the layer (b), and the low-temperature impact resistance after the environmental stress load of the laminated tube becomes good.
  • the (b) layer has at least one (c) layer disposed inside the (b) layer.
  • the (b) layer is disposed between the (a) layer and the (c) layer.
  • at least one pair of (a) layer and (b) layer and (b) layer and (c) layer are adjacent to each other, they are arranged between (a) layer and (c) layer.
  • the (b) layer may be disposed adjacent to the (a) layer and / or the (c) layer, and is between the (a) layer and the (b) layer and between the (b) layer and the (c) layer.
  • Other layers may be disposed on the surface.
  • the (a) layer is disposed on the outermost layer of the laminated tube.
  • the (c) layer is disposed in the innermost layer of the laminated tube.
  • (C) By arrange
  • the conductive layer containing the polyamide composition (C) further containing a conductive filler when used as a fuel pipe, it is possible to prevent the spark generated by the internal friction of the fuel circulating in the pipe or the friction with the pipe wall from igniting the fuel. In that case, it is possible to achieve both low temperature impact resistance and conductivity by arranging the layer containing the polyamide composition (C) having no conductivity on the outside of the conductive layer, and It is also economically advantageous.
  • the content of the conductive filler varies depending on the type of conductive filler used, it cannot be specified unconditionally, but from the viewpoint of balance with conductivity, fluidity, mechanical strength, etc., the polyamide composition (C) 100 mass Generally, it is preferably 3 parts by mass or more and 30 parts by mass or less with respect to parts.
  • the conductive filler preferably has a surface resistivity of the melt-extruded product of 10 8 ⁇ / square or less, more preferably 10 6 ⁇ / square or less. preferable.
  • the addition of the conductive filler tends to cause deterioration of strength and fluidity. Therefore, it is desirable that the content of the conductive filler is as small as possible if a target conductivity level is obtained.
  • the thickness of each layer is not particularly limited and can be adjusted according to the type of polymer constituting each layer, the total number of layers in the laminated tube, the use, etc., but the thickness of each layer is It is determined in consideration of characteristics such as the chemical barrier property, low temperature impact resistance, and flexibility of the laminated tube.
  • the thicknesses of the (a) layer, the (b) layer, and the (c) layer are preferably 3% or more and 90% or less, respectively, with respect to the thickness of the entire laminated tube.
  • the thickness of the layer (b) is more preferably 5% or more and 30% or less, and more preferably 7% or more and 20% with respect to the total thickness of the laminated tube. % Or less is more preferable.
  • the total number of layers in the laminated tube of the second embodiment is not particularly limited as long as it is at least three layers having (a) layer, (b) layer, and (c) layer.
  • the laminated tube of the second aspect is not only three layers of (a) layer, (b) layer, and (c) layer.
  • One or two or more layers containing other thermoplastic resins may be included.
  • the number of layers of the laminated tube of the second aspect is 3 or more, but it is preferably 8 or less, more preferably 3 or more and 7 or less, judging from the mechanism of the tube production apparatus.
  • the third aspect of the laminated tube further includes at least three layers (at least four layers in the case of having (c) layers) in the first aspect or the second aspect, further including (d) layers, (A) Arranged inside the layer.
  • the laminated tube of the third aspect it is essential to include the (b) layer and the (d) layer, and by including the (b) layer, the low temperature impact resistance after the environmental stress load of the laminated tube becomes good, (D)
  • medical solution barrier property of a laminated tube, especially hydrocarbon barrier property become more favorable.
  • the laminated tube excellent in interlayer adhesiveness and its durability by arrange
  • the (d) layer is disposed on the inner side with respect to the (a) layer, the chemical resistance of the laminated tube becomes better.
  • the (d) layer may be disposed so as to be in contact with the (a) layer, and another layer may be disposed between the (a) layer and the (d) layer.
  • the (a) layer and / or the (c) layer is disposed between the (b) layer and the (d) layer.
  • the (a) layer and / or the (c) layer disposed between the (b) layer and the (d) layer May be arranged adjacent to the (b) layer and / or the (d) layer, and between the (b) layer and the (d) layer, other than the (a) layer and the (c) layer.
  • a layer may be disposed.
  • the (a) layer is disposed on the outermost layer of the laminated tube.
  • the layer (d) is disposed in the innermost layer of the laminated tube. (D) By arranging the layer in the innermost layer, it is possible to obtain a laminated tube having excellent resistance to deterioration fuel and to suppress elution of low molecular weight components such as monomers and oligomers due to contact with alcohol-containing gasoline. Become.
  • the layer is disposed in the outermost layer, (b) the layer is disposed in the intermediate layer, (a) the layer is disposed in the inner layer, and (d) the laminated tube in which the layer is disposed in the innermost layer, or ( More preferred is a laminated tube in which the a) layer is disposed in the outermost layer, the (b) layer is disposed in the intermediate layer, the (c) layer is disposed in the inner layer, and the (d) layer is disposed in the innermost layer.
  • the conductive layer containing the semi-aromatic polyamide composition (D) further containing a conductive filler when used as a fuel piping tube, sparks generated by internal friction of the fuel circulating in the piping or friction with the tube wall ignite the fuel. It becomes possible to prevent.
  • the layer containing the semi-aromatic polyamide composition (D) having no electrical conductivity is disposed outside the conductive layer, so that both low temperature impact resistance and electrical conductivity can be achieved. It is also economically advantageous.
  • the content of the conductive filler varies depending on the type of conductive filler used, it cannot be specified unconditionally. ) Generally, it is preferably 3 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass.
  • the conductive filler preferably has a surface resistivity of the melt-extruded product of 10 8 ⁇ / square or less, more preferably 10 6 ⁇ / square or less. preferable.
  • the addition of the conductive filler tends to cause deterioration of strength and fluidity. Therefore, it is desirable that the content of the conductive filler is as small as possible if a target conductivity level is obtained.
  • the thickness of each layer is not particularly limited, and can be adjusted according to the type of polymer constituting each layer, the total number of layers in the laminated tube, applications, etc., but the thickness of each layer is It is determined in consideration of characteristics such as the chemical barrier property, low temperature impact resistance, and flexibility of the laminated tube.
  • the thicknesses of (a) layer, (b) layer, and (d) layer or (a) layer, (b) layer, (c) layer, and (d) layer are relative to the total thickness of the laminated tube. Thus, it is preferably 3% or more and 90% or less, respectively.
  • the thicknesses of the (b) layer and (d) layer are more preferably 5% or more and 50% or less, respectively, with respect to the total thickness of the laminated tube. More preferably, it is 7% or more and 30% or less.
  • the total number of layers in the laminated tube of the third aspect is (a) layer, (b) layer, and (d) layer or (a) layer, (b) layer, (c) layer, and (d).
  • the layer is not particularly limited as long as it has at least three layers (or at least four layers in the case of having (c) layer).
  • the laminated tube of the third aspect is other than the three layers (a), (b), and (d), or (a), (b), (c), and (d).
  • one or two or more layers containing other thermoplastic resins may be included.
  • the number of layers of the laminated tube of the third aspect is 3 or more (4 or more if (c) layer is provided), but preferably 8 or less as judged from the mechanism of the tube manufacturing apparatus. More preferably, it is 7 layers or less.
  • the fourth aspect of the laminated tube includes at least three layers (or at least four layers in the case of having (c) layer) further having (e) layer in the first aspect or second aspect, and (e) layer comprises: (A) Arranged inside the layer.
  • the laminated tube of the fourth aspect it is essential to include the (b) layer and the (e) layer, and by including the (b) layer, the low-temperature impact resistance after the environmental stress load of the laminated tube becomes good, (E)
  • the laminated tube excellent in interlayer adhesiveness and its durability by arrange
  • the chemical resistance of the laminated tube is further improved by disposing the (e) layer on the inner side with respect to the (a) layer.
  • the (e) layer may be disposed so as to be in contact with the (a) layer, and another layer may be disposed between the (a) layer and the (e) layer.
  • the (a) layer and / or the (c) layer are disposed between the (b) layer and the (e) layer.
  • the (a) layer and / or the (c) layer disposed between the (b) layer and the (e) layer May be arranged adjacent to the (b) layer and / or the (e) layer, and other than the (a) layer and the (c) layer between the (b) layer and the (e) layer.
  • a layer may be disposed.
  • the (a) layer is disposed on the outermost layer of the laminated tube.
  • the (e) layer is disposed in the innermost layer of the laminated tube.
  • the layer in the innermost layer it is possible to obtain a laminated tube with excellent resistance to deterioration fuel, and to suppress elution of low molecular weight components such as monomers and oligomers due to contact with alcohol-containing gasoline. Become.
  • a laminated tube in which (a) layer is disposed in the outermost layer, (b) layer is disposed in the intermediate layer, (a) layer is disposed in the inner layer, and (e) layer is disposed in the innermost layer, or ( More preferred is a laminated tube in which a) the layer is disposed in the outermost layer, (b) the layer is disposed in the intermediate layer, (c) the layer is disposed in the inner layer, and (e) the layer is disposed in the innermost layer.
  • the conductive layer containing the fluorine-containing polymer composition further containing a conductive filler when used as a fuel piping tube, it prevents the spark generated by the internal friction of the fuel circulating in the piping or the friction with the tube wall from igniting the fuel. It becomes possible. In that case, it is possible to achieve both low temperature impact resistance and conductivity by arranging a layer containing a fluorine-containing polymer having no conductivity outside the conductive layer, and It is also economically advantageous.
  • the fluorine-containing polymer referred to here also includes a fluorine-containing polymer (E) in which a functional group having reactivity with an amino group is introduced into the molecular chain. It also refers to a fluorine-containing polymer that does not contain a reactive functional group.
  • the content of the conductive filler varies depending on the type of the conductive filler to be used, it cannot be specified unconditionally, but from the viewpoint of balance with conductivity, fluidity, mechanical strength, etc. On the other hand, generally, it is preferably 3 parts by mass or more and 30 parts by mass or less.
  • the conductive filler preferably has a surface resistivity of the melt-extruded product of 10 8 ⁇ / square or less, more preferably 10 6 ⁇ / square or less. preferable.
  • the addition of the conductive filler tends to cause deterioration of strength and fluidity. Therefore, it is desirable that the content of the conductive filler is as small as possible if a target conductivity level is obtained.
  • the thickness of each layer is not particularly limited, and can be adjusted according to the type of polymer constituting each layer, the total number of layers in the laminated tube, the use, etc., but the thickness of each layer is It is determined in consideration of characteristics such as the chemical barrier property, low temperature impact resistance, and flexibility of the laminated tube.
  • the thickness of the (a) layer, (b) layer, and (e) layer or (a) layer, (b) layer, (c) layer, and (e) layer is relative to the total thickness of the laminated tube. Thus, it is preferably 3% or more and 90% or less, respectively.
  • the thicknesses of the (b) layer and (e) layer are more preferably 5% or more and 50% or less, respectively, with respect to the total thickness of the laminated tube. More preferably, it is 7% or more and 30% or less.
  • the total number of layers in the laminated tube of the fourth aspect is (a) layer, (b) layer, and (e) layer or (a) layer, (b) layer, (c) layer, and (e).
  • the layer is not particularly limited as long as it has at least three layers (or at least four layers in the case of having (c) layer).
  • the laminated tube of the fourth aspect is a layer other than three layers (a), (b), and (e), or (a), (b), (c), and (e).
  • one or two or more layers containing other thermoplastic resins may be included.
  • the number of layers of the laminated tube of the fourth aspect is 3 or more (4 or more if (c) layer is provided), but preferably 8 or less as judged from the mechanism of the tube manufacturing apparatus. More preferably, it is 7 layers or less.
  • the fifth aspect of the laminated tube includes, in the third aspect, at least four layers (in the case of having (c) layer, at least five layers) further having (e) layer, and the (e) layer includes the above (d) ) Arranged inside the layer.
  • the laminated tube of the fifth aspect it is essential to include the (b) layer, the (d) layer, and the (e) layer.
  • the (b) layer By including the (b) layer, the low-temperature resistance after the environmental stress load of the laminated tube is achieved. The impact property is improved, and the (d) layer is included to improve the chemical barrier property of the laminated tube, particularly the hydrocarbon barrier property, and the (e) layer is included to improve the chemical solution barrier property of the laminated tube, particularly alcohol.
  • the barrier property and the barrier property against high-concentration alcohol-containing gasoline are improved.
  • the chemical resistance of the laminated tube is further improved by disposing the (e) layer on the inner side with respect to the (a) layer.
  • the (e) layer may be disposed so as to be in contact with the (a) layer, and another layer may be disposed between the (a) layer and the (e) layer.
  • the (e) layer is disposed on the inner side of the (d) layer, and at least one (d) layer and (e) layer are disposed adjacent to each other.
  • the (b) layer is disposed between the (a) layer and the (e) layer.
  • at least one pair of (a) layer and (b) layer and (d) layer and (e) layer are adjacent to each other, they are arranged between (a) layer and (e) layer.
  • the (b) layer may be disposed adjacent to the (a) layer and / or the (d) layer, and is between the (a) layer and the (b) layer and between the (b) layer and the (d) layer.
  • Other layers may be disposed on the surface.
  • the (a) layer is disposed on the outermost layer of the laminated tube.
  • the (e) layer is disposed in the innermost layer of the laminated tube.
  • (E) By arranging the layer in the innermost layer, it is possible to obtain a laminated tube with excellent resistance to deterioration fuel, and to suppress elution of low molecular weight components such as monomers and oligomers due to contact with alcohol-containing gasoline. Become. That is, (a) layer is arranged in the outermost layer, (b) layer is arranged in the outer layer, (a) layer is arranged in the intermediate layer, (d) layer is arranged in the inner layer, and (e) layer is arranged in the outermost layer.
  • Laminated tube arranged in the inner layer or (a) layer is arranged in the outermost layer, (b) layer is arranged in the outer layer, (c) layer is arranged in the intermediate layer, (d) layer is arranged in the inner layer (E) A laminated tube in which the layer is disposed in the innermost layer is more preferable.
  • the conductive layer containing the fluorine-containing polymer composition further containing a conductive filler when used as a fuel piping tube, it prevents the spark generated by the internal friction of the fuel circulating in the piping or the friction with the tube wall from igniting the fuel. It becomes possible. In that case, it is possible to achieve both low temperature impact resistance and conductivity by arranging a layer containing a fluorine-containing polymer having no conductivity outside the conductive layer, and It is also economically advantageous.
  • the fluorine-containing polymer referred to here also includes a fluorine-containing polymer (E) in which a functional group having reactivity with an amino group is introduced into the molecular chain. It also refers to a fluorine-containing polymer that does not contain a reactive functional group.
  • the content of the conductive filler varies depending on the type of the conductive filler to be used, it cannot be specified unconditionally, but from the viewpoint of balance with conductivity, fluidity, mechanical strength, etc. On the other hand, generally, it is preferably 3 parts by mass or more and 30 parts by mass or less.
  • the conductive filler preferably has a surface resistivity of the melt-extruded product of 10 8 ⁇ / square or less, more preferably 10 6 ⁇ / square or less. preferable.
  • the addition of the conductive filler tends to cause deterioration of strength and fluidity. Therefore, it is desirable that the content of the conductive filler is as small as possible if a target conductivity level is obtained.
  • the thickness of each layer is not particularly limited, and can be adjusted according to the type of polymer constituting each layer, the total number of layers in the laminated tube, usage, etc., but the thickness of each layer is It is determined in consideration of characteristics such as the chemical barrier property, low temperature impact resistance, and flexibility of the laminated tube.
  • the (a) layer, (b) layer, (d) layer, and (e) layer or (a) layer, (b) layer, (c) layer, (d) layer, and (e) layer The thickness is preferably 3% or more and 90% or less with respect to the thickness of the entire laminated tube.
  • the thicknesses of the (b) layer, (d) layer, and (e) layer are 5% or more and 50% or less, respectively, with respect to the total thickness of the laminated tube. It is more preferable that it is 7% or more and 40% or less.
  • the total number of layers in the laminated tube of the fifth aspect is (a) layer, (b) layer, (d) layer, and (e) layer or (a) layer, (b) layer, (c) layer. , (D) layer, and (e) layer, and at least four layers (or at least five layers in the case of (c) layer) are not particularly limited.
  • the laminated tube of the fifth aspect is a layer other than four layers (a), (b), (d), and (e), or (a), (b), and (c) layers.
  • one or two layers containing other thermoplastic resins are added in order to provide a further function or to obtain an economically advantageous laminated tube. You may have the above.
  • the number of layers of the laminated tube of the fifth aspect is 4 or more (5 or more if (c) layers are included), but preferably 8 or less as judged from the mechanism of the tube manufacturing apparatus. More preferably, it is 7 layers or less.
  • thermoplastic resins in the laminated tube of the first aspect, the second aspect, the third aspect, the fourth aspect, and the fifth aspect include polyamide (A1), polyamide (A2), semi-aromatic polyamide (D1), Other than semi-aromatic polyamide (D2), polymetaxylylene terephthalamide (polyamide MXDT), polymetaxylylene isophthalamide (polyamide MXDI), polymetaxylylene hexahydroterephthalamide (polyamide MXDT (H)), polymetaxyl Silylene naphthalamide (polyamide MXDN), polyparaxylylene terephthalamide (polyamide PXDT), polyparaxylylene isophthalamide (polyamide PXDI), polyparaxylylene hexahydroterephthalamide (polyamide PXDT (H)), poly Paraxylylene naphthalamide (Polymer) Amide PXDN), polyparaphenylene terephthalamide (PPTA),
  • PVDF polyvinylidene fluoride
  • PVF polyvinyl fluoride
  • PTFE polytetrafluoroethylene
  • PCTFE polychlorotrifluoroethylene
  • FEP Tetrafluoroethylene / hexafluoropropylene copolymer
  • EEP Tetrafluoroethylene / hexafluoropropylene copolymer
  • EEP Tetrafluoroethylene / perfluoro (alkyl vinyl ether) / hexafluoropropylene copolymer
  • ETFE ethylene / tetrafluoroethylene copolymer
  • EEP ethylene / tetrafluoroethylene / Hexafluoropropylene copolymer
  • EEP vinylidene fluoride / tetrafluoroethylene copolymer
  • vinylidene fluoride / tetrafluoroethylene copolymer vinylidene fluoride / hexaflu
  • the laminated tube has the (e) layer
  • the layer containing the fluorine-containing polymer that does not contain the functional group having reactivity with the amino group is disposed on the inner side of the (e) layer. It is possible to achieve both low temperature impact resistance, chemical barrier properties, and environmental stress crack resistance, and it is economically advantageous.
  • high density polyethylene HDPE
  • medium density polyethylene MDPE
  • low density polyethylene LDPE
  • linear low density polyethylene LLDPE
  • ultra high molecular weight polyethylene UHMWPE
  • polypropylene PP
  • polybutene PB
  • Polymethylpentene TPX
  • EPR ethylene / propylene copolymer
  • EBR ethylene / butene copolymer
  • EVA ethylene / vinyl acetate copolymer
  • EAA ethylene / acrylic acid copolymer
  • EMMA Ethylene / methacrylic acid copolymer
  • EMMA ethylene / methyl methacrylate copolymer
  • EAA unmodified Saponified ethylene / vinyl ester copolymer
  • the melting point of the above-exemplified thermoplastic resins from the viewpoint of melt stability and molding stability. It is preferable to use a polyester resin having a temperature of 290 ° C. or less, a polyamide resin, a polythioether resin, a polyolefin resin, and a fluorine-containing polymer that does not contain a functional group reactive with an amino group.
  • thermoplastic resin such as paper, metal-based material, non-stretched, uniaxially or biaxially stretched plastic film or sheet, woven fabric, non-woven fabric, metal cotton, wood, etc.
  • metal materials include aluminum, iron, copper, nickel, gold, silver, titanium, molybdenum, magnesium, manganese, lead, tin, chromium, beryllium, tungsten, cobalt, and other metals, metal compounds, and two or more of these.
  • Alloy steels such as stainless steel, aluminum alloys, copper alloys such as brass and bronze, and alloys such as nickel alloys. These can use 1 type (s) or 2 or more types.
  • melt extrusion is performed using an extruder corresponding to the number of layers or the number of materials, and the layers are laminated simultaneously inside or outside the die (coextrusion molding method), or once, a single layer tube
  • a method (coating method) in which the laminated tube produced by the above method is produced in advance and the resin is integrated and laminated sequentially using an adhesive on the outside as necessary.
  • the laminated tube is preferably manufactured by a coextrusion molding method in which various materials are coextruded in a molten state, both are heat-fused (melt-bonded), and a tube having a laminated structure is manufactured in one step. That is, it is preferable that the manufacturing method of a laminated tube includes co-extrusion molding.
  • the obtained laminated tube has a complicated shape, or when it is subjected to heat bending after molding to form a molded product, in order to remove the residual distortion of the molded product, after forming the laminated tube, It is also possible to obtain a desired molded article by heat treatment at a temperature lower than the lowest melting point of the resin constituting the tube at a temperature of 0.01 hours to 10 hours.
  • the laminated tube may have a corrugated region.
  • the waveform region is a region formed in a waveform shape, a bellows shape, an accordion shape, a corrugated shape, or the like.
  • the corrugated region is not limited to having the entire length of the laminated tube, but may be partially provided in an appropriate region on the way.
  • the corrugated region can be easily formed by first forming a straight tube and then molding it to obtain a predetermined corrugated shape or the like. By having such a corrugated region, it has shock absorption and attachment is easy. Furthermore, for example, it is possible to make L-shaped, U-shaped or the like by adding necessary parts such as connectors or bending the connector.
  • All or part of the outer periphery of the laminated tube formed in this way is made of natural rubber (NR), butadiene rubber (BR), isoprene rubber (IR) in consideration of stone shaving, abrasion with other parts, and flame resistance.
  • Butyl rubber (IIR) chloroprene rubber (CR), carboxylated butadiene rubber (XBR), carboxylated chloroprene rubber (XCR), epichlorohydrin rubber (ECO), acrylonitrile butadiene rubber (NBR), hydrogenated acrylonitrile butadiene rubber (HNBR) , Carboxylated acrylonitrile butadiene rubber (XNBR), mixture of NBR and polyvinyl chloride, acrylonitrile isoprene rubber (NIR), chlorinated polyethylene rubber (CM), chlorosulfonated polyethylene rubber (CSM), ethylene propylene rubber (EPR) Ethylene propylene diene rubber (EPDM), ethylene vinyl acetate rubber (
  • the protective member may be a sponge-like porous body by a known method.
  • a porous body By using a porous body, a protective part that is lightweight and excellent in heat insulation can be formed. Moreover, material cost can also be reduced. Alternatively, the strength may be improved by adding glass fiber or the like.
  • the shape of a protection member is not specifically limited, Usually, it is a block-shaped member which has a recessed part which receives a cylindrical member or a laminated tube. In the case of a cylindrical member, the laminated tube can be inserted later into a previously produced cylindrical member, or the cylindrical member can be covered and extruded onto the laminated tube, and the two can be made in close contact with each other.
  • the adhesive is applied to the inner surface of the protective member or the concave surface as necessary, and the laminated tube is inserted or fitted into this, and the two are brought into close contact with each other, thereby integrating the laminated tube and the protective member.
  • Forming a structure It can also be reinforced with metal or the like.
  • the outer diameter of the laminated tube considers the flow rate of chemicals (for example, fuel such as alcohol-containing gasoline), and the thickness is such that the permeability of chemicals does not increase and the normal tube breaking pressure can be maintained.
  • the thickness is designed so as to maintain flexibility with a satisfactory degree of ease of assembly work of the tube and vibration resistance during use, but is not limited thereto.
  • the outer diameter is preferably 4 mm to 300 mm
  • the inner diameter is preferably 3 mm to 250 mm
  • the wall thickness is preferably 0.5 mm to 25 mm.
  • the laminated tube of this embodiment includes machine parts such as automobile parts, internal combustion engine applications, power tool housings, industrial materials, industrial materials, electrical / electronic parts, medical care, food, household / office supplies, building material-related parts, It can be used for various purposes such as furniture parts.
  • a laminated tube is excellent in a chemical
  • chemical solutions include aromatic hydrocarbon solvents such as benzene, toluene, xylene, and alkylbenzenes; methanol, ethanol, propanol, butanol, pentanol, ethylene glycol, propylene glycol, diethylene glycol, phenol, cresol, polyethylene glycol, polypropylene glycol Alcohols such as polyalkylene glycol; phenol solvents; ether solvents such as dimethyl ether, dipropyl ether, methyl t-butyl ether, ethyl t-butyl ether, dioxane, tetrahydrofuran, polyol esters, polyvinyl ethers; HFC-23 (trifluoromethane), HFC-32 (difluoromethane), HFC-41 (fluoromethane), HFC-
  • the laminated tube is suitable as a tube for conveying the chemical solution.
  • it is suitable as a fuel tube. That is, the present invention includes the use of the laminated tube as a
  • Example and a comparative example the analysis used in an Example and a comparative example, the measuring method of a physical property, and the material used for the Example and the comparative example are shown.
  • the properties of the polyamide were measured by the following method. [Relative viscosity] According to JIS K-6920, it was measured in 96% sulfuric acid under the conditions of a polyamide concentration of 1% and a temperature of 25 ° C.
  • Total concentration of carboxyl group and acid anhydride group of elastomer polymer (A3) A predetermined amount of elastomer polymer sample is put in a three-necked pear-shaped flask, dissolved in 170 mL of toluene, and further, 30 mL of ethanol is added, and phenolphthalein is used as an indicator and 0.1 N KOH. Titration with an ethanol solution was performed to determine the total concentration of carboxyl groups and acid anhydride groups.
  • the characteristics of the vinyl alcohol polymer were measured by the following method. [Ethylene content and saponification degree] It was dissolved in deuterated dimethyl sulfoxide containing tetramethylsilane as an internal standard substance, and calculated from a spectrum obtained by 1 H-NMR (nuclear magnetic resonance) measurement (AVANCE500 manufactured by Bruker BioSpin).
  • the characteristics of the fluorine-containing polymer were measured by the following method. [Content of each constituent unit of fluorine-containing polymer] The proportion (mol%) of each structural unit was determined by melting NMR (nuclear magnetic resonance) analysis and fluorine content analysis.
  • [Number of carbonate groups with respect to 10 6 main chain carbon atoms in the fluorine-containing polymer] 500 AW / ⁇ df
  • 170 from the model compound.
  • d Film density [g / cm 3 ]
  • f Film thickness [mm]
  • the melting points of the polyamide and the fluorine-containing polymer were measured by the following method. [Melting point] Using a differential scanning calorimeter, the sample was heated to a temperature above the expected melting point, then the sample was cooled at a rate of 10 ° C. per minute, cooled to 30 ° C. and left for about 1 minute. Thereafter, the melting point was the temperature at the peak value of the melting curve measured by raising the temperature at a rate of 10 ° C. per minute.
  • the physical properties of the laminated tube were measured by the following methods.
  • Polyamide (A1) Production of polyamide 12 (A1-1)
  • dodecane lactam 19.73 kg (100.0 mol) 5-amino-1,3,3-trimethylcyclohexanemethylamine 45. 0 g (0.264 mol) and 0.5 L of distilled water were charged, the inside of the polymerization tank was purged with nitrogen, and then heated to 180 ° C., and stirred at this temperature so that the reaction system was in a uniform state.
  • the temperature in the polymerization tank was raised to 270 ° C., and polymerization was performed with stirring for 2 hours while adjusting the pressure in the tank to 3.5 MPa. Thereafter, the pressure was released to normal pressure over about 2 hours, and then the pressure was reduced to 53 kPa, and polymerization was performed for 5 hours under reduced pressure. Next, nitrogen was introduced into the autoclave, and after returning to normal pressure, the strand was extracted from the lower nozzle of the reaction vessel and cut to obtain pellets.
  • polyamide 12 having a relative viscosity of 2.10, a terminal amino group concentration of 48 ⁇ eq / g, and a terminal carboxyl group concentration of 24 ⁇ eq / g (hereinafter, this polyamide 12 is referred to as (A1-1)).
  • the ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups in polyamide 12 (A1-1) is 11.0, which satisfies 8.0 or more.
  • the solubility parameter SP value of polyamide 12 (A1-1) is 22.5 (MPa) 1/2 .
  • polyamide 1010 (A1-2) In a pressure-resistant reaction vessel with an internal volume of 70 liters equipped with a stirrer, equimolar salt of 1,10-decanediamine and sebacic acid 17.82 kg (50.0 mol), 1,10-decane After charging 29.3 g (0.17 mol) of diamine and 5.0 L of distilled water, the polymerization tank was purged with nitrogen, heated to 220 ° C., and stirred at this temperature so that the reaction system was in a uniform state. did. Next, the temperature in the polymerization tank was raised to 270 ° C., and polymerization was performed with stirring for 2 hours while adjusting the pressure in the tank to 1.7 MPa.
  • polyamide 1010 having a relative viscosity of 2.22, a terminal amino group concentration of 45 ⁇ eq / g, and a terminal carboxyl group concentration of 28 ⁇ eq / g (hereinafter, this polyamide 1010 is referred to as (A1-2)).
  • the ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups in polyamide 1010 (A1-2) is 9.0, which satisfies 8.0 or more.
  • the solubility parameter SP value of polyamide 1010 (A1-2) is 23.5 (MPa) 1/2 .
  • polyamide 612 (A1-3)
  • 17.82 kg (50.0 mol) of an equimolar salt of 1,10-decanediamine and sebacic acid was mixed with 1,6-hexanediamine.
  • 16.42 kg (50.0 mol) of equidecane salt of dodecanedioic acid 29.3 g (0.17 mol) of 1,10-decanediamine was changed to 16.3 g (0.14 mol) of 1,6-hexanediamine
  • the method was the same as in the production of polyamide 1010 (A1-2), and the same method as in the production of polyamide 1010 (A1-2) was used.
  • a polyamide 612 having a group concentration of 50 ⁇ eq / g and a terminal carboxyl group concentration of 35 ⁇ eq / g was obtained (hereinafter, this polyamide 612 is referred to as (A1-3)).
  • the ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups in polyamide 612 (A1-3) is 8.0, which satisfies 8.0 or more.
  • the solubility parameter SP value of polyamide 612 (A1-3) is 24.1 (MPa) 1/2 .
  • the ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups in polyamide 6/12 (A2-1) is 5.75, which is less than 8.0.
  • the solubility parameter SP value of polyamide 6/12 (A2-1) is 26.4 (MPa) 1/2 .
  • Polyamide 6 is referred to as (A2-2).)
  • the ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups in polyamide 6 (A2-2) is 5.0, which is less than 8.0.
  • the solubility parameter SP value of polyamide 6 (A2-2) is 26.9 (MPa) 1/2 .
  • Polyamide 6 (A2-3) Polyamide 6 (A2-2) was manufactured using the same procedure except that 80.0 g (0.47 mol) of 5-amino-1,3,3-trimethylcyclohexanemethylamine was not used. 6 (A2-2) was used to obtain polyamide 6 having a relative viscosity of 3.50, a terminal amino group concentration of 38 ⁇ eq / g, and a terminal carboxyl group concentration of 40 ⁇ eq / g. A2-3))).
  • the ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups in polyamide 6 (A2-3) is 5.0, which is less than 8.0.
  • the solubility parameter SP value of polyamide 6 (A2-3) is 26.9 (MPa) 1/2 .
  • polyamide 610 (A2-4) In the production of polyamide 1010 (A1-2), 17.82 kg (50.0 mol) of equimolar salt of 1,10-decanediamine and sebacic acid was mixed with 1,6-hexanediamine. Sebacic acid equimolar salt 15.02 kg (50.0 mol), 1,10-decanediamine 29.3 g (0.17 mol) was changed to 1,6-hexanediamine 15.1 g (0.13 mol) Except for the above, polyamide 610 having a relative viscosity of 2.58, a terminal amino group concentration of 53 ⁇ eq / g, and a terminal carboxyl group concentration of 33 ⁇ eq / g was obtained in the same manner as in the production of polyamide 1010 (A1-2) (hereinafter referred to as “this”).
  • Polyamide 610 is referred to as (A2-4).)
  • the ratio [CH 2 ] / [NHCO] of the number of methylene groups to the number of amide groups in polyamide 610 (A2-4) is 7.0, which is less than 8.0.
  • the solubility parameter SP value of polyamide 610 (A2-4) is 24.9 (MPa) 1/2 .
  • Maleic anhydride-modified ethylene / 1-butene copolymer (A3-1) (manufactured by Mitsui Chemicals, Tuffmer MH5010, acid anhydride group concentration: 50 ⁇ eq / g)
  • Maleic anhydride-modified ethylene / 1-butene copolymer (A3-2) manufactured by Mitsui Chemicals, Tuffmer MH5020, acid anhydride group concentration: 100 ⁇ eq / g
  • Maleic anhydride-modified hydrogenated styrene / (ethylene / butadiene) / styrene block copolymer (A3-3) (Asahi Kasei Co., Ltd., Toughmer MH1911, acid anhydride group concentration: 30 ⁇ eq / g)
  • elastomer polymers (A4) Hydrogenated styrene / (ethylene / butadiene) / styrene block copolymer (A4-1) (Asahi Kasei Co., Ltd., Tuftec H1041) Hydrogenated styrene / (ethylene / butadiene) / styrene block copolymer (A4-2) (Asahi Kasei Co., Ltd., Tuftec H1141) Ethylene / 1-butene copolymer (A4-3) (Mitsui Chemicals, Tuffmer A-0550)
  • Aliphatic polyamide composition (A) Preparation of polyamide 12 composition (A-1) Polyamide 6/12 (A2-1), maleic anhydride-modified ethylene / 1-butene copolymer (A3-1), antioxidant, polyamide 12 (A1-1) Triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate] (manufactured by BASF Japan, IRGANOX 245), and tris (2,4-di- -T-Butylphenyl) phosphite (manufactured by BASF Japan, IRGAFOS168) is mixed in advance and supplied to a twin-screw melt kneader (manufactured by Nippon Steel Works, model: TEX44), and the cylinder temperature is 180 ° C to 270 ° C.
  • terminal amino group concentration [A] ( ⁇ eq / g) and the terminal carboxyl group concentration [B] ( ⁇ eq / g) of the polyamide 12 composition (A-1) (per gram of the aliphatic polyamide composition (A)) The values calculated from the terminal amino group concentration ( ⁇ eq / g) and the terminal carboxyl group concentration ( ⁇ eq / g) of each of the polyamide (A1) and the polyamide (A2) and the mixing mass ratio thereof are the aliphatic polyamide composition ) Terminal amino group concentration per gram [A] ( ⁇ eq / g), terminal carboxyl group concentration [B] ( ⁇ eq / g), and so on.) Satisfies [A]> [B] +10.
  • polyamide 12 composition (A-2) In the production of polyamide 12 composition (A-1), the addition amount of polyamide 12 (A1-1) and polyamide 6/12 (A2-1) was changed.
  • Polyamide 12 (A1-1) / polyamide 6/12 (A2-1) / maleic anhydride-modified elastomer polymer (A3-1) 65 in the same manner as in the production of the polyamide 12 composition (A-1)
  • Pellets of polyamide 12 composition comprising 0.8 parts by weight of antioxidant and 0.2 parts by weight of phosphorus processing stabilizer with respect to a total of 100 parts by weight of 0.0 / 15.0 / 20.0 (% by weight) (Hereinafter, this polyamide 12 composition is referred to as (A-2)).
  • ] is,
  • 3.9 (MPa ) 1/2 satisfies the 1.8 to 4.5 (MPa) 1/2.
  • the terminal amino group concentration [A] ( ⁇ eq / g) and the terminal carboxyl group concentration [B] ( ⁇ eq / g) of the polyamide 12 composition (A-2) satisfy [A]> [B] +10.
  • polyamide 12 composition (A-3) In the production of polyamide 12 composition (A-1), the addition amount of polyamide 12 (A1-1) and polyamide 6/12 (A2-1) was changed.
  • Polyamide 12 (A1-1) / polyamide 6/12 (A2-1) / maleic anhydride-modified elastomer polymer (A3-1) 60 in the same manner as in the production of the polyamide 12 composition (A-1)
  • Pellets of polyamide 12 composition comprising 0.8 parts by mass of antioxidant and 0.2 parts by mass of phosphorus processing stabilizer with respect to a total of 100 parts by mass of 0.0 / 20.0 / 20.0 (% by mass) (Hereinafter, this polyamide 12 composition is referred to as (A-3)).
  • ] is,
  • 3.9 (MPa ) 1/2 satisfies the 1.8 to 4.5 (MPa) 1/2.
  • the terminal amino group concentration [A] ( ⁇ eq / g) and the terminal carboxyl group concentration [B] ( ⁇ eq / g) of the polyamide 12 composition (A-3) satisfy [A]> [B] +10.
  • polyamide 12 composition (A-4) Polyamide 12 composition (A-4) except that polyamide 6/12 (A2-1) was changed to polyamide 6 (A2-2) in the production of polyamide 12 composition (A-1).
  • Polyamide 12 (A1-1) / Polyamide 6 (A2-2) / Maleic anhydride modified elastomer polymer (A3-1) 55.0 / 25.
  • Polyamide 12 composition pellets consisting of 0.8 parts by weight of antioxidant and 0.2 parts by weight of phosphorus-based processing stabilizer were obtained with respect to a total of 100 parts by weight of 0 / 20.0 (% by weight) (hereinafter referred to as “parts”).
  • the polyamide 12 composition is referred to as (A-4)).
  • ] is,
  • 4.4 (MPa ) 1/2 satisfies the 1.8 to 4.5 (MPa) 1/2.
  • the terminal amino group concentration [A] ( ⁇ eq / g) and the terminal carboxyl group concentration [B] ( ⁇ eq / g) of the polyamide 12 composition (A-4) satisfy [A]> [B] +10.
  • polyamide 12 composition (A-5) Polyamide 12 composition except that polyamide 6/12 (A2-1) was changed to polyamide 610 (A2-4) in the production of polyamide 12 composition (A-1).
  • Polyamide 12 (A1-1) / Polyamide 610 (A2-4) / Maleic anhydride-modified elastomer polymer (A3-1) 50.0 / 30.
  • Polyamide 12 composition pellets consisting of 0.8 parts by weight of antioxidant and 0.2 parts by weight of phosphorus-based processing stabilizer were obtained with respect to a total of 100 parts by weight of 0 / 20.0 (% by weight) (hereinafter referred to as “parts”).
  • the polyamide 12 composition is referred to as (A-5)).
  • ] is,
  • 2.4 (MPa ) 1/2 satisfies the 1.8 to 4.5 (MPa) 1/2.
  • ] is,
  • 3.9 (MPa ) 1/2 satisfies the 1.8 to 4.5 (MPa) 1/2.
  • the terminal amino group concentration [A] ( ⁇ eq / g) and the terminal carboxyl group concentration [B] ( ⁇ eq / g) of the polyamide 12 composition (A-6) satisfy [A]> [B] +10.
  • polyamide 1010 composition (A-7) Polyamide 12 composition (A-7) except that polyamide 12 (A1-1) was changed to polyamide 1010 (A1-2) in the production of polyamide 12 composition (A-1).
  • polyamide 1010 (A1-2) / polyamide 6/12 (A2-1) / maleic anhydride-modified elastomer polymer (A3-1) 60.0 / 20.
  • the polyamide 1010 composition is referred to as (A-7)).
  • ] is,
  • 2.9 (MPa ) 1/2 satisfies the 1.8 to 4.5 (MPa) 1/2.
  • the terminal amino group concentration [A] ( ⁇ eq / g) and terminal carboxyl group concentration [B] ( ⁇ eq / g) of the polyamide 12 composition (A-7) satisfy [A]> [B] +10.
  • polyamide 612 composition (A-8) Polyamide 12 composition (A-1) was produced except that polyamide 12 (A1-1) was changed to polyamide 612 (A1-3) in the production of polyamide 12 composition (A-1).
  • polyamide 612 (A1-3) / polyamide 6/12 (A2-1) / maleic anhydride-modified elastomer polymer (A3-1) 65.0 / 15.
  • a pellet of a polyamide 612 composition comprising 0.8 parts by mass of an antioxidant and 0.2 parts by mass of a phosphorus-based processing stabilizer was obtained (hereinafter referred to as the following).
  • the polyamide 612 composition is referred to as (A-8)).
  • ] is,
  • 2.3 (MPa ) 1/2 satisfies the 1.8 to 4.5 (MPa) 1/2.
  • the terminal amino group concentration [A] ( ⁇ eq / g) and the terminal carboxyl group concentration [B] ( ⁇ eq / g) of the polyamide 612 composition (A-8) satisfy [A]> [B] +10.
  • conductive polyamide 12 composition (A-9) In the production of polyamide 12 composition (A-1), carbon black (Vulcan XC-72, manufactured by Cabot Corporation) was used as the conductive filler, and the cylinder temperature was 270 ° C.
  • the polyamide 12 (A1-1) / polyamide 6/12 (A2-1) / maleic anhydride modified elastomer was prepared in the same manner as in the production of the polyamide 12 composition (A-1) except that the temperature was changed from 290 ° C.
  • this conductive polyamide 12 composition is referred to as (A-9)).
  • ] is,
  • 3.9 (MPa ) 1/2 satisfies the 1.8 to 4.5 (MPa) 1/2.
  • the terminal amino group concentration [A] ( ⁇ eq / g) and the terminal carboxyl group concentration [B] ( ⁇ eq / g) of the conductive polyamide 12 composition (A-9) are: [A]> [B] +10 Fulfill.
  • This conductive polyamide 612 composition is referred to as (A-10)).
  • ] is,
  • 2.3 (MPa ) 1/2 satisfies the 1.8 to 4.5 (MPa) 1/2.
  • the terminal amino group concentration [A] ( ⁇ eq / g) and the terminal carboxyl group concentration [B] ( ⁇ eq / g) of the conductive polyamide 612 composition (A-10) are: [A]> [B] +10 Fulfill.
  • polyamide 12 composition (A-13) Polyamide 12 composition (A-13) except that polyamide 6/12 (A2-1) was changed to polyamide 1010 (A1-2) in the production of polyamide 12 composition (A-1).
  • polyamide 12 (A1-1) / polyamide 1010 (A1-2) / maleic anhydride-modified elastomer polymer (A3-1) 60.0 / 20.
  • Polyamide 12 composition pellets consisting of 0.8 parts by weight of antioxidant and 0.2 parts by weight of phosphorus-based processing stabilizer were obtained with respect to a total of 100 parts by weight of 0 / 20.0 (% by weight) (hereinafter referred to as “parts”).
  • the polyamide 12 composition is referred to as (A-13)). Since polyamide 6/12 (A2-1) is not used, the absolute value of the difference between the solubility parameter SP values of polyamide (A1) and polyamide (A2) cannot be calculated, but polyamide 1010 (A1-2) When the absolute value of the difference in solubility parameter SP value between the polyamide (A1) and the polyamide (A2) is calculated as the polyamide (A2), [
  • 1.0 (MPa) 1/2 and is 1.8 or more and 4.5 or less (MPa) 1/2 . Do not meet.
  • polyamide 12 composition (A-14) In the production of polyamide 12 composition (A-1), polyamide 6/12 (A2-1) was changed to polyamide 6 (A2-2) to obtain polyamide 12 (A1-1). ) And polyamide 6 (A2-2), except that the amount of polyamide 12 (A1-1) / polyamide 6 (A2-2) is changed in the same manner as in the preparation of the polyamide 12 composition (A-1).
  • a methanol solution of the ethylene / vinyl acetate / diacetoxybutene copolymer was supplied from the top of the plate tower (saponification tower), and at the same time, 150 mmol equivalent of hydroxylation with respect to the remaining acetate groups in the copolymer.
  • Saponification was performed by supplying a methanol solution containing sodium from the top of the column, and a methanol solution of EVOH containing side chain 1,2-diol units (30% EVOH polymer containing side chain 1,2-diol units, Methanol 70%) was obtained.
  • the saponification degree of the vinyl acetate component of the side chain 1,2-diol unit-containing EVOH polymer was 99.7 mol%.
  • a methanol solution of the obtained EVOH polymer containing a side chain 1,2-diol unit was supplied from the top of the methanol / water solution adjusting tower, methanol vapor at 120 ° C. was charged from the bottom of the tower, and methanol was added from the top of the tower.
  • 6 equivalents of methyl acetate was charged from the middle of the column at a column temperature of 95 ° C. to 110 ° C. with respect to the amount of sodium hydroxide used in the saponification.
  • a water / alcohol solution (resin concentration 35%) of the contained EVOH polymer was obtained.
  • the obtained water / alcohol solution of the side chain 1,2-diol unit-containing EVOH polymer was extruded in a strand form into a cold water tank from a nozzle having a pore diameter of 4 mm, and after completion of solidification, the strand was cut with a cutter.
  • a porous pellet of EVOH polymer containing a side chain 1,2-diol unit having a resin content of 35% and a diameter of 3.8 mm and a length of 4 mm was obtained. After 100 parts of the porous pellets were washed with water until the sodium content was 0.08 parts, 0.5 parts of acetic acid and calcium phosphate were added to 100 parts by weight of the EVOH polymer containing a side chain 1,2-diol unit.
  • Such pellets are 0.03 part of sodium content, 0.0005 part of phosphoric acid radical (phosphorus equivalent), 0.02 part of boric acid (boron) with respect to 100 parts by weight of EVOH polymer containing a side chain 1,2-diol unit. Conversion).
  • the MFR of the side chain 1,2-diol unit-containing EVOH polymer (B12-1) is 4.0 g / 10 min (at 210 ° C. under 2160 g load), and the side chain 1,2-diol unit is contained. The amount was 3.7 mol%.
  • a 1,2-diol unit-containing PVA polymer is referred to as (B11-2)).
  • the MFR of the obtained side chain 1,2-diol unit-containing PVA polymer (B11-2) is 3.5 g / 10 min (at 210 ° C. under a load of 2160 g).
  • the content was 6.0 mol%, and the saponification degree was 98.9 mol%.
  • the MFR of the obtained side chain 1,2-diol unit-containing PVA polymer (B11-3) is 4.0 g / 10 min (at 210 ° C. under 2160 g load).
  • the content was 8.0 mol% and the degree of saponification was 98.5 mol%.
  • side chain 1,2-diol unit-containing PVA polymer (B11-4) In production of side chain 1,2-diol unit-containing PVA polymer (B11-2), vinyl acetate 68.0 kg, methanol 23 Side chain 1,2 kg, except that 38 kg, 8.2 kg of 3,4-diacetoxy-1-butene were changed to vinyl acetate 68.6k, methanol 13.7 kg, 3,4-diacetoxy-1-butene 4.0 kg A pellet of side chain 1,2-diol unit-containing PVA polymer was obtained in the same manner as in the production of the diol unit-containing PVA polymer (B11-2) (hereinafter, this side chain 1,2- The diol unit-containing PVA polymer is referred to as (B11-4)).
  • the MFR of the obtained side chain 1,2-diol unit-containing PVA polymer (B11-4) is 3.8 g / 10 min (at 210 ° C. under a load of 2160 g).
  • the content was 4.0 mol%, and the degree of saponification was 98.7 mol%.
  • EVOH pellets having an ethylene content of 32 mol% were obtained in the same manner as in the side chain 1,2-diol unit-containing EVOH polymer composition (B12-1) (hereinafter, This unmodified EVOH polymer is referred to as (B12-5)).
  • Such pellets contained 0.03 part of sodium, 0.0005 part of phosphate group (in terms of phosphorus), and 0.02 part of boric acid (in terms of boron) with respect to 100 parts by mass of EVOH.
  • MFR 3.2 g / 10 min at 210 ° C. under a load of 2160 g
  • the content of side chain 1,2-diol units was 0 mol%
  • the degree of saponification was 99.5 mol%.
  • Vinyl alcohol polymer composition (B) Production of EVOH polymer composition (B-1) containing a side chain 1,2-diol unit To a side chain 1,2-diol unit-containing EVOH polymer (B12-1), maleic anhydride-modified hydrogenated styrene / (Ethylene / butadiene) / styrene block copolymer (A3-3), hydrogenated styrene / (ethylene / butadiene) / styrene block copolymer (A4-1), triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate] (manufactured by BASF Japan, IRGANOX 245), and tris (2,4-di-t-butylphenyl) phosphite as a phosphorus processing stabilizer ( BASF Japan Co., Ltd., IRGAFOS168) is mixed in advance, and a twin-screw
  • Unit-containing EVOH polymer (B12-1) / maleic anhydride-modified elastomer polymer (A3-1) / elastomer polymer (A4-1) 85.0 / 7.5 / 7.5 (% by mass)
  • a side chain 1,2-diol unit-containing EVOH polymer composition pellet comprising 0.8 parts by mass of an antioxidant and 0.2 parts by mass of a phosphorus processing stabilizer was obtained for a total of 100 parts by mass (
  • this EVOH polymer composition containing a side chain 1,2-diol unit is referred to as (B-1)).
  • side chain 1,2-diol unit-containing PVA polymer composition (B-2) In production of side chain 1,2-diol unit-containing EVOH polymer composition (B-1), side chain 1, 2-diol unit-containing EVOH polymer (B12-1), side chain 1,2-diol unit-containing PVA polymer (B11-2), maleic anhydride-modified hydrogenated styrene / (ethylene / butadiene) / styrene block Copolymer (A3-3) was changed to (A3-4) and hydrogenated styrene / (ethylene / butadiene) / styrene block copolymer (A4-1) was changed to (A4-2), and the addition amount was changed.
  • side chain 1,2-diol unit-containing EVOH polymer composition (B-1) side chain 1, 2-diol unit-containing EVOH polymer (B12-1), side chain 1,2-diol unit-containing PVA polymer (B11-2
  • the side chain 1,2-diol unit-containing PVA polymer (B11-2) was prepared in the same manner as in the production of the side chain 1,2-diol unit-containing EVOH polymer composition (B-1).
  • / Maleic anhydride modified elastomer 0.8 parts by mass of an antioxidant with respect to 100 parts by mass in total of polymer (A3-4)
  • / elastomer polymer (A4-2) 80.0 / 10.0 / 10.0 (mass%)
  • a side chain 1,2-diol unit-containing PVA polymer composition pellet comprising 0.2 parts by weight of a phosphorus processing stabilizer was obtained (hereinafter, this side chain 1,2-diol unit-containing PVA polymer composition). This is called (B-2).)
  • side chain 1,2-diol unit-containing PVA polymer composition (B-3) In production of side chain 1,2-diol unit-containing EVOH polymer composition (B-1), side chain 1, 2-diol unit-containing EVOH polymer (B12-1), side chain 1,2-diol unit-containing PVA polymer (B11-3), maleic anhydride-modified hydrogenated styrene / (ethylene / butadiene) / styrene block Copolymer (A3-3) was changed to (A3-4) and hydrogenated styrene / (ethylene / butadiene) / styrene block copolymer (A4-1) was changed to (A4-2), and the addition amount was changed.
  • side chain 1,2-diol unit-containing EVOH polymer composition (B-1) side chain 1, 2-diol unit-containing EVOH polymer (B12-1), side chain 1,2-diol unit-containing PVA polymer (B11-3
  • the side chain 1,2-diol unit-containing PVA polymer (B11-3) was prepared in the same manner as in the production of the side chain 1,2-diol unit-containing EVOH polymer composition (B-1).
  • / Maleic anhydride modified elastomer 0.8 parts by mass of an antioxidant with respect to 100 parts by mass in total of polymer (A3-4)
  • / elastomer polymer (A4-2) 80.0 / 10.0 / 10.0 (mass%)
  • a side chain 1,2-diol unit-containing PVA polymer composition pellet comprising 0.2 parts by weight of a phosphorus processing stabilizer was obtained (hereinafter, this side chain 1,2-diol unit-containing PVA polymer composition). The thing is called (B-3).)
  • side chain 1,2-diol unit-containing PVA polymer composition (B-4) In production of side chain 1,2-diol unit-containing EVOH polymer composition (B-1), side chain 1, 2-diol unit-containing EVOH polymer (B12-1), side chain 1,2-diol unit-containing PVA polymer (B11-4), maleic anhydride-modified hydrogenated styrene / (ethylene / butadiene) / styrene block Copolymer (A3-3) was changed to (A3-4) and hydrogenated styrene / (ethylene / butadiene) / styrene block copolymer (A4-1) was changed to (A4-2), and the addition amount was changed.
  • side chain 1,2-diol unit-containing EVOH polymer composition (B-1) side chain 1, 2-diol unit-containing EVOH polymer (B12-1), side chain 1,2-diol unit-containing PVA polymer (B11-4
  • the side chain 1,2-diol unit-containing PVA polymer (B11-4) was prepared in the same manner as in the production of the side chain 1,2-diol unit-containing EVOH polymer composition (B-1).
  • / Maleic anhydride modified elastomer 0.8 parts by mass of antioxidant with respect to 100 parts by mass in total of polymer (A3-4)
  • / elastomer polymer (A4-2) 70.0 / 15.0 / 15.0 (% by mass)
  • a side chain 1,2-diol unit-containing PVA polymer composition pellet comprising 0.2 parts by weight of a phosphorus processing stabilizer was obtained (hereinafter, this side chain 1,2-diol unit-containing PVA polymer composition). The thing is called (B-4).)
  • Conductive polyamide 612 composition (A-10) was produced in the same manner as in the production of conductive polyamide 612 composition (A-10) except that polyamide 612 (A1-3) was changed to polyamide 610 (A2-4).
  • the polyamide 610 (A2-4) / maleic anhydride-modified elastomer polymer (A3-1) / conductive filler 60.0 / 20.
  • Pellets of conductive polyamide 610 composition comprising 0 / 20.0 (mass%) were obtained (hereinafter this conductive polyamide 610 composition is referred to as (C-2)).
  • polyamide 6/12 composition (C-3) Polyamide except that polyamide 610 (A2-4) was changed to polyamide 6/12 (A2-1) in the production of polyamide 610 composition (C-1).
  • 610 Polyamide 6/12 (A2-1) / maleic anhydride-modified elastomer polymer (A3-1) 80.0 / 20.0 (mass%) by the same method as the production of the composition (C-1) )
  • polyamide 6 composition a pellet of polyamide 6 composition comprising 0.8 part by weight of antioxidant and 0.2 part by weight of phosphorus-based processing stabilizer (hereinafter referred to as “polyamide 6 composition”).
  • polyamide 6 composition a pellet of polyamide 6 composition comprising 0.8 part by weight of antioxidant and 0.2 part by weight of phosphorus-based processing stabilizer (hereinafter referred to as “polyamide 6 composition”).
  • Semi-aromatic polyamide (D1) Production of semi-aromatic polyamide (D1-1) 1.374 kg (15.0 mol) of 1,9-nonanediamine, 2.374 kg (15.0 mol) of 2-methyl-1,8-octanediamine, 4. 939 kg (29.7 mol), benzoic acid 65.9 g (0.54 mol), sodium hypophosphite monohydrate 9.8 g (0.1% by mass with respect to the raw material), and distilled water 6. 0 L was placed in an autoclave and purged with nitrogen. The mixture was stirred at 100 ° C. for 30 minutes, and the internal temperature was raised to 190 ° C. over 2 hours. At this time, the autoclave was pressurized to 2.0 MPa.
  • Semi-aromatic polyamide (D2) Manufacture of semi-aromatic polyamide (D2-1) Equipped with a stirrer, thermometer, torque meter, pressure gauge, raw material inlet directly connected with diaphragm pump, nitrogen gas inlet, pressure outlet, pressure regulator, and polymer outlet
  • a pressure vessel with an internal volume of 70 liters was charged with 6.068 kg (30.0 mol) of sebacic acid, 8.50 g (0.049 mol) of calcium hypophosphite, and 2.19 g (0.025 mol) of sodium acetate. After the pressure inside the pressure vessel was pressurized to 0.3 MPa with 99.9999% nitrogen gas, the operation of releasing the nitrogen gas to normal pressure was repeated 5 times to perform nitrogen substitution, and then the pressure was reduced.
  • the system was heated while stirring. Furthermore, after raising the temperature to 190 ° C. under a small nitrogen stream, 4.086 kg (30.0 mol) of m-xylylenediamine was added dropwise over 160 minutes with stirring. During this time, the internal pressure of the reaction system was controlled to 0.5 MPa, and the internal temperature was continuously raised to 295 ° C. Further, water distilled together with the dropwise addition of m-xylylenediamine was removed from the system through a condenser and a cooler. After completion of the dropwise addition of m-xylylenediamine, the pressure was reduced to normal pressure over 60 minutes. During this time, the temperature in the container was maintained at 250 ° C., and the reaction was continued for 10 minutes.
  • Semi-aromatic polyamide composition (D) Production of Semi-Aromatic Polyamide Composition (D-1) To semi-aromatic polyamide (D1-1), maleic anhydride-modified ethylene / 1-butene copolymer (A3-1) as an impact modifier, as an antioxidant Triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate] (manufactured by BASF Japan, IRGANOX 245), and tris (2,4-di-) as a phosphorus processing stabilizer t-Butylphenyl) phosphite (manufactured by BASF Japan, IRGAFOS 168) is mixed in advance and supplied to a twin-screw melt kneader (manufactured by Nippon Steel Works, model: TEX44) at a cylinder temperature of 220 ° C to 300 ° C.
  • a twin-screw melt kneader manufactured by Nippo
  • semi-aromatic polyamide composition (D-2) In production of semi-aromatic polyamide composition (D-1), semi-aromatic polyamide (D1-1) was changed to (D1-2), and the cylinder temperature was changed to 300
  • the semi-aromatic polyamide (D1-2) / maleic anhydride-modified elastomer polymer (A3 ⁇ 3) was prepared in the same manner as in the production of the semi-aromatic polyamide composition (D-1) except that the temperature was changed from 0 ° C. to 340 ° C.
  • a semi-aromatic polyamide composition comprising 0.8 parts by mass of an antioxidant and 0.2 parts by mass of a phosphorus processing stabilizer with respect to a total of 100 parts by mass of 90.0 / 10.0 (% by mass).
  • this semi-aromatic polyamide composition is referred to as (D-2)).
  • semi-aromatic polyamide composition (D-4) In the production of semi-aromatic polyamide composition (D-1), semi-aromatic polyamide (D1-1) was changed to (D1-4), and the cylinder temperature was changed to 300.
  • the semi-aromatic polyamide (D1-4) / maleic anhydride-modified elastomer polymer (A3- 1) A semi-aromatic polyamide composition comprising 0.8 parts by mass of an antioxidant and 0.2 parts by mass of a phosphorus processing stabilizer with respect to a total of 100 parts by mass of 90.0 / 10.0 (% by mass). (Hereinafter, this semi-aromatic polyamide composition is referred to as (D-4)).
  • semi-aromatic polyamide composition (D-5) In the production of semi-aromatic polyamide composition (D-1), semi-aromatic polyamide (D1-1) was changed to (D1-5), and the cylinder temperature was changed to 300.
  • the semi-aromatic polyamide (D1-5) / maleic anhydride-modified elastomer polymer (A3 ⁇ 3) was prepared in the same manner as in the production of the semi-aromatic polyamide composition (D-1) except that the temperature was changed from 0 ° C. to 290 ° C.
  • a semi-aromatic polyamide composition comprising 0.8 parts by mass of an antioxidant and 0.2 parts by mass of a phosphorus processing stabilizer with respect to a total of 100 parts by mass of 90.0 / 10.0 (% by mass).
  • this semi-aromatic polyamide composition is referred to as (D-5)).
  • semi-aromatic polyamide composition (D-6) In production of semi-aromatic polyamide composition (D-1), semi-aromatic polyamide (D1-1) was changed to (D1-6), and the cylinder temperature was changed to 300
  • the semi-aromatic polyamide (D1-6) / maleic anhydride-modified elastomer polymer (A3 ⁇ 3) was prepared in the same manner as in the production of the semi-aromatic polyamide composition (D-1) except that the temperature was changed from 0 ° C. to 310 ° C.
  • a semi-aromatic composition comprising 0.8 parts by mass of an antioxidant and 0.2 parts by mass of a phosphorus processing stabilizer with respect to a total of 100 parts by mass of 10% by mass. Polyamide composition pellets were obtained (hereinafter, this semi-aromatic polyamide composition is referred to as (D-6)).
  • semi-aromatic polyamide composition (D-8) In production of semi-aromatic polyamide composition (D-1), semi-aromatic polyamide (D1-1) was changed to (D1-8), and the cylinder temperature was changed to 300.
  • the semi-aromatic polyamide (D1-8) / maleic anhydride-modified elastomer polymer (A3- 1) A semi-aromatic polyamide composition comprising 0.8 parts by mass of an antioxidant and 0.2 parts by mass of a phosphorus processing stabilizer with respect to a total of 100 parts by mass of 85.0 / 15.0 (% by mass). (Hereinafter, this semi-aromatic polyamide composition is referred to as (D-8)).
  • semi-aromatic polyamide composition (D-9) In the production of semi-aromatic polyamide composition (D-1), semi-aromatic polyamide (D1-1) was changed to (D1-9), and the cylinder temperature was changed to 300.
  • the semi-aromatic polyamide (D1-9) / maleic anhydride-modified elastomer polymer (A3 ⁇ 3) was prepared in the same manner as in the production of the semi-aromatic polyamide composition (D-1) except that the temperature was changed from °C to 330 ° C.
  • a semi-aromatic polyamide composition comprising 0.8 parts by mass of an antioxidant and 0.2 parts by mass of a phosphorus processing stabilizer with respect to a total of 100 parts by mass of 85.0 / 15.0 (% by mass).
  • this semi-aromatic polyamide composition is referred to as (D-9)).
  • semi-aromatic polyamide composition (D-10) In production of semi-aromatic polyamide composition (D-1), semi-aromatic polyamide (D1-1) was changed to (D1-10), and the cylinder temperature was changed to 300.
  • a semi-aromatic polyamide (D1-10) / maleic anhydride modified elastomer polymer (A3- 1) A semi-aromatic polyamide composition comprising 0.8 parts by mass of an antioxidant and 0.2 parts by mass of a phosphorus processing stabilizer with respect to a total of 100 parts by mass of 85.0 / 15.0 (% by mass). (Hereinafter, this semi-aromatic polyamide composition is referred to as (D-10)).
  • semi-aromatic polyamide composition (D-11) In the production of semi-aromatic polyamide composition (D-1), semi-aromatic polyamide (D1-1) was changed to (D1-11), and the cylinder temperature was changed to 300.
  • the semi-aromatic polyamide (D1-11) / maleic anhydride-modified elastomer polymer (A3 ⁇ 3) was prepared in the same manner as in the production of the semi-aromatic polyamide composition (D-1) except that the temperature was changed from 350 ° C. to 330 ° C.
  • a semi-aromatic polyamide composition comprising 0.8 parts by mass of an antioxidant and 0.2 parts by mass of a phosphorus processing stabilizer with respect to a total of 100 parts by mass of 85.0 / 15.0 (% by mass).
  • this semi-aromatic polyamide composition is referred to as (D-11)).
  • semi-aromatic polyamide composition (D-12) In the production of semi-aromatic polyamide composition (D-1), semi-aromatic polyamide (D1-1) was changed to (D1-12), and the cylinder temperature was changed to 300.
  • a semi-aromatic polyamide (D1-12) / maleic anhydride modified elastomer polymer (A3- 1) A semi-aromatic polyamide composition comprising 0.8 parts by mass of an antioxidant and 0.2 parts by mass of a phosphorus processing stabilizer with respect to a total of 100 parts by mass of 85.0 / 15.0 (% by mass). (Hereinafter, this semi-aromatic polyamide composition is referred to as (D-12)).
  • Semi-aromatic polyamide composition (D-1) was produced in the same manner as semi-aromatic polyamide composition (D-1) except that semi-aromatic polyamides (D1-1) and (D1-7) were used in combination.
  • Semi-aromatic polyamide (D1-7) / semi-aromatic polyamide (D1-1) / maleic anhydride-modified elastomer polymer (A3-1) in the same manner as in the production of the aromatic polyamide composition (D-1) ) 59.5 / 25.5 / 15.0 (mass%) for a total of 100 parts by mass, a semi-aromatic composition comprising 0.8 parts by mass of an antioxidant and 0.2 parts by mass of a phosphorus processing stabilizer. Polyamide composition pellets were obtained (hereinafter, this semi-aromatic polyamide composition is referred to as (D-13)).
  • semi-aromatic polyamide composition (D-15) In production of semi-aromatic polyamide composition (D-1), semi-aromatic polyamide (D1-1) was changed to (D2-1), and the cylinder temperature was changed to 300.
  • the semi-aromatic polyamide (D2-1) / maleic anhydride modified elastomer polymer (A3- 1) A semi-aromatic polyamide composition comprising 0.8 parts by mass of an antioxidant and 0.2 parts by mass of a phosphorus processing stabilizer with respect to a total of 100 parts by mass of 90.0 / 10.0 (% by mass). (Hereinafter, this semi-aromatic polyamide composition is referred to as (D-15)).
  • semi-aromatic polyamide composition (D-17) In production of semi-aromatic polyamide composition (D-15), semi-aromatic polyamide (D2-1) was changed to (D2-3), and the cylinder temperature was adjusted to 240.
  • the semi-aromatic polyamide (D2-3) / maleic anhydride-modified elastomer polymer (A3 ⁇ 3) was prepared in the same manner as in the production of the semi-aromatic polyamide composition (D-15) except that the temperature was changed from 320 ° C.
  • a semi-aromatic polyamide composition comprising 0.8 parts by mass of an antioxidant and 0.2 parts by mass of a phosphorus processing stabilizer with respect to a total of 100 parts by mass of 90.0 / 10.0 (% by mass). (Hereinafter, this semi-aromatic polyamide composition is referred to as (D-17)).
  • semi-aromatic polyamide composition (D-18) In production of semi-aromatic polyamide composition (D-15), semi-aromatic polyamide (D2-1) was changed to (D2-4), and the cylinder temperature was adjusted to 240.
  • the semi-aromatic polyamide (D2-4) / maleic anhydride-modified elastomer polymer (A3 ⁇ 3) was prepared in the same manner as in the production of the semi-aromatic polyamide composition (D-15) except that the temperature was changed from 280 ° C.
  • a semi-aromatic polyamide composition comprising 0.8 parts by mass of an antioxidant and 0.2 parts by mass of a phosphorus processing stabilizer with respect to a total of 100 parts by mass of 85.0 / 15.0 (% by mass). (Hereinafter, this semi-aromatic polyamide composition is referred to as (D-18)).
  • semi-aromatic polyamide composition (D-20) In production of semi-aromatic polyamide composition (D-15), semi-aromatic polyamide (D2-1) was changed to (D2-6), and the cylinder temperature was adjusted to 240.
  • the semi-aromatic polyamide (D2-6) / maleic anhydride-modified elastomer polymer (A3 ⁇ 3) was prepared in the same manner as in the production of the semi-aromatic polyamide composition (D-15) except that the temperature was changed from 320 ° C. to 320 ° C.
  • a semi-aromatic polyamide composition comprising 0.8 parts by mass of an antioxidant and 0.2 parts by mass of a phosphorus processing stabilizer with respect to a total of 100 parts by mass of 85.0 / 15.0 (% by mass).
  • this semi-aromatic polyamide composition is referred to as (D-20)).
  • conductive semi-aromatic polyamide composition pellets comprising 0.8 parts by weight of an antioxidant and 0.2 parts by weight of a phosphorus processing stabilizer were obtained (hereinafter referred to as “conductive semi-aromatic polyamide composition”). (D-26).)
  • a conductive semi-aromatic polyamide composition (D-24)
  • the total amount of the elastomer polymer (A4-3) / conductive filler 49.0 / 21.0 / 10.0 / 7.5 / 7.5 / 5.0 (mass%) is 100 parts by mass.
  • IAH itac
  • a monomer mixed gas of TFE / E: 60/40 (molar ratio) was continuously charged so that the pressure was constant during the polymerization.
  • (perfluoroethyl) ethylene corresponding to 2.0 mol% and IAH corresponding to 0.5 mol% are continuously charged with respect to the total number of moles of TFE and E charged during the polymerization. It is. 5.5 hours after the start of the polymerization, when the monomer mixed gas of 8.0 kg and IAH of 63 g were charged, the temperature inside the polymerization tank was lowered to room temperature and purged to normal pressure.
  • the obtained slurry-like fluorine-containing polymer was put into a 200 L granulation tank charged with 75.0 kg of water, and then heated to 105 ° C. while stirring and granulated while distilling and removing the solvent.
  • the obtained granulated product was dried at 150 ° C. for 5 hours to obtain 8.3 kg of a fluorine-containing polymer.
  • This granulated product was melted at 280 ° C. and a residence time of 2 minutes using an extruder to obtain a fluorine-containing polymer pellet (hereinafter, this fluorine-containing polymer is referred to as (E-1)). ).
  • conductive fluorine-containing polymer composition 100 parts by mass of fluorine-containing polymer (E-1) and 13 parts by mass of carbon black (manufactured by Electrochemical Co., Ltd.) were mixed in advance and biaxial Supplied to a melt kneader (Toshiba Machine Co., Ltd., model: TEM-48S), melt kneaded at a cylinder temperature of 240 ° C. to 300 ° C., extruded the molten resin into a strand, and then introduced it into a water bath. The discharged strand was cooled with water, the strand was cut with a pelletizer, and dried for 10 hours with a dryer at 120 ° C. to remove moisture, to obtain a pellet of a conductive fluorine-containing polymer composition (hereinafter referred to as this conductive material).
  • the fluorine-containing polymer composition is referred to as (E-2)).
  • TFE tetrafluoroethylene
  • NAH 5-norbornene-2,3-dicarboxylic acid anhydride
  • This granulated product was melted using an extruder at 300 ° C. for a residence time of 2 minutes to obtain a fluorine-containing polymer pellet (hereinafter, this fluorine-containing polymer is referred to as (E-6)). ).
  • the composition of the fluorine-containing polymer is 24.4 / 73.1 / 2.5 in terms of a molar ratio of polymerized units based on CTFE / polymerized units based on TFE / polymerized units based on PPVE.
  • the number of carbonate end groups with respect to 1 ⁇ 10 6 main chain carbon atoms was 170.
  • the melting point was 241 ° C. This granulated product was melted at 290 ° C. and a residence time of 2 minutes using an extruder to obtain pellets of a fluorine-containing polymer (hereinafter, this fluorine-containing polymer is referred to as (E-8)). ).
  • Example 1 Using the polyamide 12 composition (A-1) and the EVOH polymer composition (B-1) containing 1,2-diol units in the side chain, Plabor (Plastics Engineering Laboratory Co., Ltd.) 3 In a layer tube forming machine, (A-1) is melted separately at an extrusion temperature of 270 ° C. and (B-1) is melted at an extrusion temperature of 220 ° C., and the discharged molten resin is joined by an adapter to form a laminated tubular body. Molded.
  • Example 2 In Example 1, except that the polyamide 12 composition (A-1) used for the innermost layer and the outermost layer was changed to (A-2), the layer structure shown in Table 1 was used in the same manner as in Example 1. A laminated tube was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 3 In Example 1, except that the polyamide 12 composition (A-1) used for the innermost layer and the outermost layer was changed to (A-3), the layer structure shown in Table 1 was used in the same manner as in Example 1. A laminated tube was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 4 In Example 1, except that the polyamide 12 composition (A-1) used for the innermost layer and the outermost layer was changed to (A-4), the layer structure shown in Table 1 was used in the same manner as in Example 1. A laminated tube was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 5 In Example 1, except that the polyamide 12 composition (A-1) used for the innermost layer and the outermost layer was changed to (A-5), the layer structure shown in Table 1 was used in the same manner as in Example 1. A laminated tube was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 6 In Example 1, except that the polyamide 12 composition (A-1) used for the innermost layer and the outermost layer was changed to (A-6), the layer structure shown in Table 1 was used in the same manner as in Example 1. A laminated tube was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 7 In Example 1, except that the polyamide 12 composition (A-1) used for the innermost layer and the outermost layer was changed to the polyamide 1010 composition (A-7), the same procedure as in Example 1 was repeated. A laminated tube having the layer structure shown in FIG. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 8 The layers shown in Table 1 were prepared in the same manner as in Example 1 except that the polyamide 12 composition (A-1) used in the innermost layer in Example 1 was changed to the polyamide 612 composition (A-8). A laminated tube with a configuration was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 9 In Example 1, the polyamide 12 composition (A-1) used for the innermost layer was changed to the conductive polyamide 12 composition (A-9), and the extrusion temperature of (A-9) was changed to 290 ° C.
  • the physical property measurement results of the laminated tube are shown in Table 1. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 10 In Example 9, except that the polyamide 12 composition (A-9) used for the innermost layer was changed to the conductive polyamide 612 composition (A-10) and the extrusion temperature of (A-10) was changed to 300 ° C. In the same manner as in Example 9, a laminated tube having the layer structure shown in Table 1 was obtained. The physical property measurement results of the laminated tube are shown in Table 1. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 11 In Example 1, the side chain 1,2-diol unit-containing EVOH polymer composition (B-1) used in the intermediate layer was replaced with the side chain 1,2-diol unit-containing PVA polymer composition (B-2).
  • the laminated tube of the layer structure shown in Table 1 was obtained by the same method as Example 1 except having changed to (1).
  • the physical property measurement results of the laminated tube are shown in Table 1.
  • Example 12 In Example 1, the side chain 1,2-diol unit-containing EVOH polymer composition (B-1) used in the intermediate layer was changed to the side chain 1,2-diol unit-containing PVA polymer composition (B-3).
  • the laminated tube of the layer structure shown in Table 1 was obtained by the same method as Example 1 except having changed to (1).
  • the physical property measurement results of the laminated tube are shown in Table 1.
  • Example 13 In Example 1, the side chain 1,2-diol unit-containing EVOH polymer composition (B-1) used in the intermediate layer was changed to the side chain 1,2-diol unit-containing PVA polymer (B-4). A laminated tube having the layer structure shown in Table 1 was obtained in the same manner as in Example 1 except that the change was made. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 14 The layers shown in Table 1 were prepared in the same manner as in Example 1 except that the polyamide 12 composition (A-1) used in the innermost layer in Example 1 was changed to the polyamide 610 composition (C-1). A laminated tube with a configuration was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 15 In Example 9, except that the polyamide 12 composition (A-9) used for the innermost layer was changed to the conductive polyamide 610 composition (C-2) and the extrusion temperature of (C-2) was changed to 300 ° C. In the same manner as in Example 9, a laminated tube having the layer structure shown in Table 1 was obtained. The physical property measurement results of the laminated tube are shown in Table 1. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 16 Using the polyamide 12 composition (A-1), the side chain 1,2-diol unit-containing EVOH polymer composition (B-1), and the semi-aromatic polyamide composition (D-1) shown above, (A-1) is extrusion temperature 270 ° C., (B-1) is extrusion temperature 220 ° C., and (D-1) is extrusion temperature 300 on a Plabor (Plastics Engineering Laboratory Co., Ltd.) 4-layer tube molding machine. The melted resin was melted separately at 0 ° C., and the discharged molten resin was joined by an adapter to form a laminated tubular body.
  • a laminated tube having an inner diameter of 6.0 mm and an outer diameter of 8.0 mm was obtained at .15 mm.
  • Table 2 shows the physical property measurement results of the laminated tube.
  • Example 17 In Example 16, except that the semi-aromatic polyamide composition (D-1) used for the innermost layer was changed to (D-2) and the extrusion temperature of (D-2) was changed to 340 ° C. In the same manner as above, a laminated tube having the layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 18 In Example 16, except that the semiaromatic polyamide composition (D-1) used for the innermost layer was changed to (D-3) and the extrusion temperature of (D-3) was changed to 310 ° C. In the same manner as above, a laminated tube having the layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 19 In Example 16, the semiaromatic polyamide composition (D-1) used for the innermost layer was changed to (D-4), and the extrusion temperature of (D-4) was changed to 340 ° C.
  • Example 16 In the same manner as above, a laminated tube having the layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 20 In Example 16, the semiaromatic polyamide composition (D-1) used for the innermost layer was changed to (D-5), and the extrusion temperature of (D-5) was changed to 290 ° C.
  • Example 16 In the same manner as above, a laminated tube having the layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 21 In Example 16, the semiaromatic polyamide composition (D-1) used for the innermost layer was changed to (D-6), and the extrusion temperature of (D-6) was changed to 310 ° C.
  • Example 16 In the same manner as above, a laminated tube having the layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 22 In Example 16, except that the semi-aromatic polyamide composition (D-1) used for the innermost layer was changed to (D-7), the layer constitution shown in Table 2 was obtained in the same manner as in Example 16. A laminated tube was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 23 In Example 16, the semi-aromatic polyamide composition (D-1) used for the innermost layer was changed to (D-8), and the extrusion temperature of (D-8) was changed to 330 ° C.
  • Example 16 In the same manner as above, a laminated tube having the layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 24 In Example 16, the semiaromatic polyamide composition (D-1) used for the innermost layer was changed to (D-9), and the extrusion temperature of (D-9) was changed to 330 ° C.
  • Example 16 In the same manner as above, a laminated tube having the layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 25 In Example 16, the semiaromatic polyamide composition (D-1) used for the innermost layer was changed to (D-10), and the extrusion temperature of (D-10) was changed to 340 ° C.
  • Example 16 In the same manner as above, a laminated tube having the layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 26 In Example 16, except that the semi-aromatic polyamide composition (D-1) used for the innermost layer was changed to (D-11) and the extrusion temperature of (D-11) was changed to 330 ° C. In the same manner as above, a laminated tube having the layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 27 In Example 16, the semiaromatic polyamide composition (D-1) used for the innermost layer was changed to (D-12), and the extrusion temperature of (D-12) was changed to 330 ° C.
  • Example 16 In the same manner as above, a laminated tube having the layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 28 In Example 16, except that the semi-aromatic polyamide composition (D-1) used for the innermost layer was changed to (D-13), the layer constitution shown in Table 2 was obtained in the same manner as in Example 16. A laminated tube was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 29 In Example 16, except that the semi-aromatic polyamide composition (D-1) used for the innermost layer was changed to (D-14), the layer constitution shown in Table 2 was obtained in the same manner as in Example 16. A laminated tube was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 30 In Example 16, the semiaromatic polyamide composition (D-1) used for the innermost layer was changed to (D-15), and the extrusion temperature of (D-15) was changed to 240 ° C. In the same manner as above, a laminated tube having the layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 31 In Example 16, the semiaromatic polyamide composition (D-1) used for the innermost layer was changed to (D-16), and the extrusion temperature of (D-16) was changed to 250 ° C. In the same manner as above, a laminated tube having the layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 32 In Example 16, the semiaromatic polyamide composition (D-1) used for the innermost layer was changed to (D-17), and the extrusion temperature of (D-17) was changed to 320 ° C.
  • Example 16 In the same manner as above, a laminated tube having the layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 33 In Example 16, the semiaromatic polyamide composition (D-1) used for the innermost layer was changed to (D-18), and the extrusion temperature of (D-18) was changed to 280 ° C. In the same manner as above, a laminated tube having the layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 34 In Example 16, except that the semi-aromatic polyamide composition (D-1) used for the innermost layer was changed to (D-19), the layer constitution shown in Table 2 was obtained in the same manner as in Example 16. A laminated tube was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 35 In Example 16, the semiaromatic polyamide composition (D-1) used for the innermost layer was changed to (D-20), and the extrusion temperature of (D-20) was changed to 320 ° C.
  • Example 16 In the same manner as above, a laminated tube having the layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 36 In Example 16, the semiaromatic polyamide composition (D-1) used for the innermost layer was changed to (D-21), and the extrusion temperature of (D-21) was changed to 280 ° C.
  • Example 16 In the same manner as above, a laminated tube having the layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 37 In Example 16, the semiaromatic polyamide composition (D-1) used for the innermost layer was changed to (D-22), and the extrusion temperature of (D-22) was changed to 280 ° C.
  • Example 16 In the same manner as above, a laminated tube having the layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 38 In Example 16, except that the semiaromatic polyamide composition (D-1) used for the innermost layer was changed to (D-23) and the extrusion temperature of (D-23) was changed to 320 ° C. In the same manner as above, a laminated tube having the layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 39 In Example 16, except that the polyamide 12 composition (A-1) used for the inner layer was changed to a polyamide 6/12 composition (C-3) and the extrusion temperature of (C-3) was changed to 240 ° C.
  • a laminated tube having the layer configuration shown in Table 2 was obtained in the same manner as in Example 16. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 40 the layer structure shown in Table 2 was prepared in the same manner as in Example 16 except that the polyamide 12 composition (A-1) used for the inner layer was changed to the polyamide 6 composition (C-4). A laminated tube was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 41 Polyamide 12 composition (A-1), EVOH polymer composition containing side chain 1,2-diol units (B-1), semi-aromatic polyamide composition (D-1), conductive semi-aromatic (A-1) was extruded at 270 ° C., and (B-1) was heated at a Plabor (manufactured by Plastics Engineering Laboratory Co., Ltd.) 5-layer tube molding machine using the group A polyamide composition (D-24). The molten resin was melted separately at an extrusion temperature of 220 ° C., (D-1) at an extrusion temperature of 300 ° C., and (D-24) at an extrusion temperature of 320 ° C. Molded.
  • Table 3 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 42 In Example 41, the semi-aromatic polyamide composition (D-1) used for the inner layer was (D-7), and the conductive semi-aromatic polyamide composition (D-24) used for the innermost layer was (D-25)
  • the laminated tube having the layer structure shown in Table 3 was obtained in the same manner as in Example 41, except that it was changed to).
  • Table 3 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 43 In Example 41, the semi-aromatic polyamide composition (D-1) used for the inner layer was (D-7), and the conductive semi-aromatic polyamide composition (D-24) used for the innermost layer was (D-26).
  • the laminated tube having the layer structure shown in Table 3 was obtained in the same manner as in Example 41, except that it was changed to).
  • Table 3 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 44 In Example 41, the semi-aromatic polyamide composition (D-1) used for the inner layer was (D-15), and the conductive semi-aromatic polyamide composition (D-24) used for the innermost layer was (D-27). Except that the extrusion temperature of (D-15) was changed to 240 ° C. and the extrusion temperature of (D-27) was changed to 270 ° C., in the same manner as in Example 41, the layer constitution shown in Table 3 was obtained. A laminated tube was obtained. Table 3 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 45 In Example 41, the semi-aromatic polyamide composition (D-1) used for the inner layer was (D-18), and the conductive semi-aromatic polyamide composition (D-24) used for the innermost layer was (D-28). ), And the extrusion temperature of (D-18) was changed to 280 ° C. and the extrusion temperature of (D-28) was changed to 300 ° C., and the layer constitution shown in Table 3 was obtained in the same manner as in Example 41. A laminated tube was obtained. Table 3 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 46 In Example 41, the semi-aromatic polyamide composition (D-1) used for the inner layer was (D-18), and the conductive semi-aromatic polyamide composition (D-24) used for the innermost layer was (D-29). ), And the extrusion temperature of (D-18) was changed to 280 ° C., and the extrusion temperature of (D-29) was changed to 300 ° C., in the same manner as in Example 41. A laminated tube was obtained. Table 3 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 47 In Example 41, the semi-aromatic polyamide composition (D-1) used for the inner layer was (D-18), and the conductive semi-aromatic polyamide composition (D-24) used for the innermost layer was (D-30). ), And the extrusion temperature of (D-18) was changed to 280 ° C. and the extrusion temperature of (D-30) was changed to 300 ° C., in the same manner as in Example 41, and the layer constitution shown in Table 3 was changed. A laminated tube was obtained. Table 3 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 48 In Example 41, except that the polyamide 12 composition (A-1) used in the intermediate layer was changed to the polyamide 6/12 composition (C-3) and the extrusion temperature of (C-3) was changed to 240 ° C.
  • a laminated tube having a layer structure shown in Table 3 Electricity was obtained.
  • Table 3 shows the physical property measurement results of the laminated tube. Further, when the lead of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 49 The layers shown in Table 3 were prepared in the same manner as in Example 41 except that the polyamide 12 composition (A-1) used in the intermediate layer in Example 41 was changed to the polyamide 6 composition (C-4). A laminated tube with a configuration was obtained. Table 3 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 51 In Example 50, except that the polyamide 6/12 composition (C-3) used for the inner layer was changed to the polyamide 6 composition (C-4) and the extrusion temperature of (C-4) was changed to 270 ° C.
  • a laminated tube having the layer configuration shown in Table 3 was obtained in the same manner as in Example 50.
  • Table 3 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 52 the polyamide 12 composition (A-1) used for the intermediate layer was polyamide 6/12 composition (C-3), and the semi-aromatic polyamide composition (D-1) used for the inner layer was polyamide 12
  • the composition (A-1) was changed, the extrusion temperature of (A-1) was changed to 270 ° C., and the extrusion temperature of (C-3) was changed to 240 ° C.
  • a laminated tube having the layer structure shown in 3 was obtained.
  • Table 3 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 53 the polyamide 12 composition (A-1) used for the intermediate layer was the polyamide 6 composition (C-4), and the semi-aromatic polyamide composition (D-1) used for the inner layer was the polyamide 12 composition.
  • a laminated tube having the layer structure shown in Table 3 was obtained in the same manner as in Example 41 except that (A-1) was changed and the extrusion temperature of (A-1) was changed to 270 ° C. Table 3 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 54 In Example 16, the semi-aromatic polyamide composition (D-1) used for the innermost layer was changed to a fluorine-containing polymer (E-1), the extrusion temperature of (E-1) was changed to 290 ° C., ( (A) layer (outermost layer, inner layer) composed of A-1), (b) layer (intermediate layer) composed of (B-1), and (e) layer (innermost layer) composed of (E-1)
  • Table 2 shows the physical property measurement results of the laminated tube.
  • Example 55 In Example 54, the fluorine-containing polymer (E-1) used for the innermost layer was changed to the conductive fluorine-containing polymer (E-2), and the extrusion temperature of (E-2) was changed to 310 ° C.
  • a laminated tube having the layer structure shown in Table 2 was obtained in the same manner as in Example 54 except that. Table 2 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 56 In Example 54, except that the fluorine-containing polymer (E-1) used for the innermost layer was changed to (E-5) and the extrusion temperature of (E-5) was changed to 310 ° C.
  • a laminated tube having the layer configuration shown in Table 2 was obtained in the same manner. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 57 In Example 54, except that the fluorine-containing polymer (E-1) used for the innermost layer was changed to (E-8) and the extrusion temperature of (E-8) was changed to 300 ° C.
  • a laminated tube having the layer configuration shown in Table 2 was obtained in the same manner. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 58 In Example 54, except that the polyamide 12 composition (A-1) used for the inner layer was changed to the polyamide 6/12 composition (C-3) and the extrusion temperature of (C-3) was changed to 240 ° C.
  • a laminated tube having the layer structure shown in Table 2 was obtained in the same manner as in Example 54. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 59 In Example 54, the layer structure shown in Table 2 was obtained in the same manner as in Example 54 except that the polyamide 12 composition (A-1) used for the inner layer was changed to the polyamide 6 composition (C-4). A laminated tube was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 60 the semi-aromatic polyamide composition (D-1) used for the inner layer was the fluorinated polymer (E-1), and the conductive semi-aromatic polyamide composition (D-24) used for the innermost layer.
  • E-1 fluorinated polymer
  • D-24 conductive semi-aromatic polyamide composition
  • E-2 a conductive fluorine-containing polymer
  • E-1 the extrusion temperature of (E-1) was changed to 290 ° C.
  • the extrusion temperature of (E-2) was changed to 310 ° C.
  • the laminated tube of the layer structure shown in Table 3 was obtained by this method. Table 3 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 61 In Example 60, the conductive fluorine-containing polymer (E-2) used for the innermost layer was changed to a fluorine-containing polymer (E-3), and the extrusion temperature of (E-3) was changed to 290 ° C. Except for the above, a laminated tube having the layer structure shown in Table 3 was obtained in the same manner as in Example 60. Table 3 shows the physical property measurement results of the laminated tube.
  • Example 62 The layer structure shown in Table 3 was the same as in Example 60 except that the conductive fluorine-containing polymer (E-2) used in the innermost layer was changed to (E-4) in Example 60. A laminated tube was obtained. Table 3 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 63 In Example 60, the fluorine-containing polymer (E-1) used for the inner layer was (E-5), and the conductive fluorine-containing polymer (E-2) used for the innermost layer was a fluorine-containing polymer (A laminated tube having the layer structure shown in Table 3 was obtained in the same manner as in Example 60 except that the extrusion temperature of (E-5) was changed to 310 ° C. in place of E-6). Table 3 shows the physical property measurement results of the laminated tube.
  • Example 64 In Example 60, the fluorine-containing polymer (E-1) used for the inner layer was changed to (E-5), and the conductive fluorine-containing polymer (E-2) used for the innermost layer was changed to (E-7).
  • the extrusion temperature of (E-5) was changed to 310 ° C.
  • the extrusion temperature of (E-7) was changed to 330 ° C.
  • Table 3 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 65 In Example 60, the fluorine-containing polymer (E-1) used for the inner layer was (E-8), and the conductive fluorine-containing polymer (E-2) used for the innermost layer was a fluorine-containing polymer (A laminated tube having the layer structure shown in Table 3 was obtained in the same manner as in Example 60 except that the procedure was changed to E-9). Table 3 shows the physical property measurement results of the laminated tube.
  • Example 66 In Example 60, the fluorine-containing polymer (E-1) used for the inner layer was changed to (E-8), and the conductive fluorine-containing polymer (E-2) used for the innermost layer was changed to (E-10).
  • a laminated tube having the layer configuration shown in Table 3 was obtained in the same manner as in Example 60 except that the change was made. Table 3 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 67 In Example 60, except that the polyamide 12 composition (A-1) used in the intermediate layer was changed to the polyamide 6/12 composition (C-3) and the extrusion temperature of (C-3) was changed to 240 ° C.
  • the laminated tube having the layer structure shown in Table 3 was obtained in the same manner as in Example 60.
  • Table 3 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 68 The layers shown in Table 3 were prepared in the same manner as in Example 60 except that the polyamide 12 composition (A-1) used in the intermediate layer in Example 60 was changed to the polyamide 6 composition (C-4). A laminated tube with a configuration was obtained. Table 3 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 70 In Example 69, except that the polyamide 6/12 composition (C-3) used for the inner layer was changed to the polyamide 6 composition (C-4) and the extrusion temperature of (C-4) was changed to 270 ° C.
  • a laminated tube having the layer configuration shown in Table 3 was obtained in the same manner as in Example 69.
  • Table 3 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 71 In Example 60, the polyamide 12 composition (A-1) used for the intermediate layer was the polyamide 6/12 composition (C-3), and the fluorine-containing polymer (E-1) used for the inner layer was the polyamide 12 composition.
  • Table 3 was prepared in the same manner as in Example 60 except that the extrusion temperature of (A-1) was changed to 270 ° C. and the extrusion temperature of (C-3) was changed to 240 ° C.
  • a laminated tube having the layer structure shown in FIG. Table 3 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 72 In Example 60, the polyamide 12 composition (A-1) used for the intermediate layer was the polyamide 6 composition (C-4), and the fluorine-containing polymer (E-1) used for the inner layer was the polyamide 12 composition (A laminated tube having the layer structure shown in Table 3 was obtained in the same manner as in Example 60 except that the extrusion temperature of (A-1) was changed to 270 ° C. in place of A-1). Table 3 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 73 In Example 41, the conductive semi-aromatic polyamide composition (D-24) used for the innermost layer was changed to the fluorine-containing polymer (E-1), and the extrusion temperature of (E-1) was changed to 290 ° C.
  • a laminated tube having the layer structure shown in Table 3 was obtained in the same manner as in Example 41 except that. Table 3 shows the physical property measurement results of the laminated tube.
  • Example 74 In Example 73, the fluorine-containing polymer (E-1) used for the innermost layer was changed to the conductive fluorine-containing polymer (E-2), and the extrusion temperature of (E-2) was changed to 310 ° C.
  • the laminated tube of the layer structure shown in Table 3 was obtained by the method similar to Example 73 except that. Table 3 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 75 In Example 73, except that the fluorine-containing polymer (E-1) used for the innermost layer was changed to (E-5) and the extrusion temperature of (E-5) was changed to 310 ° C.
  • a laminated tube having the layer configuration shown in Table 3 was obtained in the same manner. Table 3 shows the physical property measurement results of the laminated tube.
  • Example 76 In Example 73, except that the fluorine-containing polymer (E-1) used for the innermost layer was changed to (E-8) and the extrusion temperature of (E-8) was changed to 300 ° C.
  • a laminated tube having the layer configuration shown in Table 3 was obtained in the same manner. Table 3 shows the physical property measurement results of the laminated tube.
  • Example 77 In Example 74, except that the polyamide 12 composition (A-1) used for the intermediate layer was changed to the polyamide 6/12 composition (C-3) and the extrusion temperature of (C-3) was changed to 240 ° C. In the same manner as in Example 74, a laminated tube having the layer structure shown in Table 3 was obtained. Table 3 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 78 The layers shown in Table 3 were prepared in the same manner as in Example 74 except that the polyamide 12 composition (A-1) used in the intermediate layer in Example 74 was changed to the polyamide 6 composition (C-4). A laminated tube with a configuration was obtained. Table 3 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 1 Comparative Example 1 In Example 1, except that the polyamide 12 composition (A-1) used in the innermost layer and the outermost layer was changed to (A-11), the layer structure shown in Table 1 was used in the same manner as in Example 1. A laminated tube was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 2 In Example 1, except that the polyamide 12 composition (A-1) used in the innermost layer and the outermost layer was changed to (A-12), the layer structure shown in Table 1 was used in the same manner as in Example 1. A laminated tube was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 3 In Example 1, except that the polyamide 12 composition (A-1) used in the innermost layer and the outermost layer was changed to (A-13), the layer structure shown in Table 1 was used in the same manner as in Example 1. A laminated tube was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 4 Comparative Example 4 In Example 1, except that the polyamide 12 composition (A-1) used in the innermost layer and the outermost layer was changed to (A-14), the layer structure shown in Table 1 was used in the same manner as in Example 1. A laminated tube was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 1 the side chain 1,2-diol unit-containing EVOH polymer composition (B-1) used in the intermediate layer was changed to an unmodified EVOH polymer (B12-5). 1 was used to obtain a laminated tube having the layer structure shown in Table 1. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 14 Comparative Example 6 In Example 14, the laminated tube having the layer structure shown in Table 1 was prepared in the same manner as in Example 14 except that the polyamide 12 composition (A-1) used in the outermost layer was changed to (A-11). Got. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 14 Comparative Example 7 In Example 14, the laminated tube having the layer structure shown in Table 1 was prepared in the same manner as in Example 14 except that the polyamide 12 composition (A-1) used in the outermost layer was changed to (A-12). Got. The physical property measurement results of the laminated tube are shown in Table 1.
  • Comparative Example 8 A laminated tube having the layer structure shown in Table 1 was prepared in the same manner as in Example 14 except that the polyamide 12 composition (A-1) used in the outermost layer in Example 14 was changed to (A-13). Got. The physical property measurement results of the laminated tube are shown in Table 1.
  • Comparative Example 9 A laminated tube having the layer structure shown in Table 1 was prepared in the same manner as in Example 14 except that the polyamide 12 composition (A-1) used in the outermost layer in Example 14 was changed to (A-14). Got. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 14 except that the side chain 1,2-diol unit-containing EVOH polymer composition (B-1) used in the intermediate layer was changed to an unmodified EVOH polymer (B12-5) 14 was used to obtain a laminated tube having the layer structure shown in Table 1. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 11 Comparative Example 11 In Example 16, except that the polyamide 12 composition (A-1) used for the inner layer and the outermost layer was changed to (A-11), the layer constitution shown in Table 2 was obtained in the same manner as in Example 16. A laminated tube was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 12 Comparative Example 12 In Example 16, except that the polyamide 12 composition (A-1) used for the inner layer and the outermost layer was changed to (A-12), the layer constitution shown in Table 2 was obtained in the same manner as in Example 16. A laminated tube was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 16 Comparative Example 13 In Example 16, except that the polyamide 12 composition (A-1) used for the inner layer and the outermost layer was changed to (A-13), the layer constitution shown in Table 2 was obtained in the same manner as in Example 16. A laminated tube was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 14 Comparative Example 14 In Example 16, except that the polyamide 12 composition (A-1) used for the inner layer and the outermost layer was changed to (A-14), the layer constitution shown in Table 2 was obtained in the same manner as in Example 16. A laminated tube was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 16 Comparative Example 15 In Example 16, except that the side chain 1,2-diol unit-containing EVOH polymer composition (B-1) used in the intermediate layer was changed to an unmodified EVOH polymer (B12-5). 16 was used to obtain a laminated tube having the layer structure shown in Table 2. Table 2 shows the physical property measurement results of the laminated tube.
  • Comparative Example 16 The layer constitution shown in Table 3 was the same as in Example 41 except that the polyamide 12 composition (A-1) used in the intermediate layer and the outermost layer was changed to (A-11) in Example 41. A laminated tube was obtained. Table 3 shows the physical property measurement results of the laminated tube.
  • Comparative Example 17 The layer constitution shown in Table 3 was the same as in Example 41 except that the polyamide 12 composition (A-1) used in the intermediate layer and the outermost layer was changed to (A-12) in Example 41. A laminated tube was obtained. Table 3 shows the physical property measurement results of the laminated tube.
  • Example 41 Comparative Example 18 In Example 41, the layer structure shown in Table 3 was used in the same manner as in Example 41 except that the polyamide 12 composition (A-1) used in the intermediate layer and outermost layer was changed to (A-13). A laminated tube was obtained. Table 3 shows the physical property measurement results of the laminated tube.
  • Comparative Example 19 The layer constitution shown in Table 3 was the same as in Example 41 except that the polyamide 12 composition (A-1) used in the intermediate layer and the outermost layer was changed to (A-14) in Example 41. A laminated tube was obtained. Table 3 shows the physical property measurement results of the laminated tube.
  • Example 41 Comparative Example 20 In Example 41, except that the side chain 1,2-diol unit-containing EVOH polymer composition (B-1) used in the outer layer was changed to an unmodified EVOH polymer (B12-5), Example 41 In the same manner as above, a laminated tube having the layer structure shown in Table 3 was obtained. Table 3 shows the physical property measurement results of the laminated tube.
  • Example 54 Comparative Example 21 In Example 54, except that the polyamide 12 composition (A-1) used for the inner layer and the outermost layer was changed to (A-11), the layer constitution shown in Table 2 was obtained in the same manner as in Example 54. A laminated tube was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 54 Comparative Example 22 In Example 54, except that the polyamide 12 composition (A-1) used for the inner layer and the outermost layer was changed to (A-12), the layer constitution shown in Table 2 was obtained in the same manner as in Example 54. A laminated tube was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 54 Comparative Example 23 In Example 54, except that the polyamide 12 composition (A-1) used for the inner layer and the outermost layer was changed to (A-13), the layer constitution shown in Table 2 was obtained in the same manner as in Example 54. A laminated tube was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 54 Comparative Example 24 In Example 54, except that the polyamide 12 composition (A-1) used for the inner layer and the outermost layer was changed to (A-14), the layer constitution shown in Table 2 was obtained in the same manner as in Example 54. A laminated tube was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 54 Comparative Example 25
  • a laminated tube having the layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Comparative Example 26 The layer constitution shown in Table 3 was the same as in Example 60 except that the polyamide 12 composition (A-1) used in the intermediate layer and outermost layer was changed to (A-11) in Example 60. A laminated tube was obtained. Table 3 shows the physical property measurement results of the laminated tube.
  • Comparative Example 27 The layer constitution shown in Table 3 was the same as in Example 60 except that the polyamide 12 composition (A-1) used in the intermediate layer and outermost layer was changed to (A-12) in Example 60. A laminated tube was obtained. Table 3 shows the physical property measurement results of the laminated tube.
  • Comparative Example 28 The layer constitution shown in Table 3 was the same as in Example 60 except that the polyamide 12 composition (A-1) used in the intermediate layer and the outermost layer was changed to (A-13) in Example 60. A laminated tube was obtained. Table 3 shows the physical property measurement results of the laminated tube.
  • Comparative Example 29 The layer constitution shown in Table 3 was the same as in Example 60 except that the polyamide 12 composition (A-1) used in the intermediate layer and the outermost layer was changed to (A-14) in Example 60. A laminated tube was obtained. Table 3 shows the physical property measurement results of the laminated tube.
  • Comparative Example 30 Example 60 except that the side chain 1,2-diol unit-containing EVOH polymer composition (B-1) used in the outer layer in Example 60 was changed to an unmodified EVOH polymer (B12-5). In the same manner as above, a laminated tube having the layer structure shown in Table 3 was obtained. Table 3 shows the physical property measurement results of the laminated tube.
  • Example 73 Comparative Example 31 In Example 73, the layer structure shown in Table 3 was used in the same manner as in Example 73 except that the polyamide 12 composition (A-1) used in the intermediate layer and the outermost layer was changed to (A-11). A laminated tube was obtained. Table 3 shows the physical property measurement results of the laminated tube.
  • Example 73 Comparative Example 32 In Example 73, the layer structure shown in Table 3 was used in the same manner as in Example 73, except that the polyamide 12 composition (A-1) used in the intermediate layer and outermost layer was changed to (A-12). A laminated tube was obtained. Table 3 shows the physical property measurement results of the laminated tube.
  • Comparative Example 33 The layer constitution shown in Table 3 was the same as in Example 73 except that the polyamide 12 composition (A-1) used in the intermediate layer and the outermost layer was changed to (A-13) in Example 73. A laminated tube was obtained. Table 3 shows the physical property measurement results of the laminated tube.
  • Example 73 Comparative Example 34 In Example 73, the layer structure shown in Table 3 was used in the same manner as in Example 73, except that the polyamide 12 composition (A-1) used in the intermediate layer and outermost layer was changed to (A-14). A laminated tube was obtained. Table 3 shows the physical property measurement results of the laminated tube.
  • Example 73 Comparative Example 35 In Example 73, except that the side chain 1,2-diol unit-containing EVOH polymer composition (B-1) used in the outer layer was changed to an unmodified EVOH polymer (B12-5), Example 73 In the same manner as above, a laminated tube having the layer structure shown in Table 3 was obtained. Table 3 shows the physical property measurement results of the laminated tube.
  • the solubility parameter SP value of the polyamide (A1) and the polyamide (A2) calculated for convenience without using the polyamide (A2) defined in the present invention From Comparative Examples 1 to 2, 6 to 7, 11 to 12, 16 to 17, 21 to 22, 26 having a layer (a) containing an aliphatic polyamide composition whose absolute value of the difference is outside the specified range of the present invention
  • the laminated tubes 27 and 31 to 32 were inferior in durability of interlayer adhesion.
  • a polyamide other than the polyamide (A2) specified in the present invention is used, and the absolute value of the difference in solubility parameter SP value between the polyamide (A1) and the polyamide (A2) is outside the specified range of the present invention.
  • the laminated tubes of Comparative Examples 3, 8, 13, 18, 23, 28, and 33 having the layer (a) containing the composition were inferior in durability of interlayer adhesion.
  • the laminated tubes of Comparative Examples 4, 9, 14, 19, 24, 29, and 34 having a layer (a) containing an aliphatic polyamide composition whose amount of polyamide (A2) is outside the specified range of the present invention are It was inferior to chemicals.
  • the laminated tubes of Comparative Examples 5, 10, 15, 20, 25, 30, and 35 having a layer (b) containing a vinyl alcohol polymer composition (B) other than those specified in the present invention are low in temperature after heat shock. It was inferior in impact.
  • the laminated tubes of Examples 1 to 78 that satisfy the conditions specified in the present invention have good characteristics such as chemical resistance, low impact temperature after environmental stress loading, interlayer adhesion, and durability. Obviously.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

本発明は、低温耐衝撃性、及びモノマー、オリゴマーの耐溶出性といった諸特性を維持しつつ、耐薬品性、環境応力負荷後の低温耐衝撃性、層間接着性、及びその耐久性に優れる積層チューブを提供する。本発明は、脂肪族ポリアミド組成物を含む層とビニルアルコール系重合体組成物を含む層が隣接する積層チューブにおいて、脂肪族ポリアミド組成物が、メチレン基数のアミド基数に対する比が特定の値以上の脂肪族ポリアミドと、同脂肪族ポリアミドとの溶解性パラメーターSP値の差の絶対値が特定範囲にある脂肪族ポリアミドと、カルボキシル基及び/又は酸無水物基を有する不飽和化合物から誘導される構成単位を含有するエラストマー重合体とを含み、ビニルアルコール系重合体組成物が、特定の構造単位を有するビニルアルコール系重合体と、カルボキシル基及び/又は酸無水物基を有する不飽和化合物から誘導される構成単位を含有するエラストマー重合体とを含む。

Description

積層チューブ
 本発明は、積層チューブに関する。
 自動車配管用チューブにおいては、古くは道路の凍結防止剤による発錆の問題や、地球温暖化防止、省エネルギー化の要請を受けて、その主要素材は、金属から、防錆性に優れ軽量な樹脂への代替が進みつつある。通常、配管用チューブとして使用される樹脂は、ポリアミド系樹脂、飽和ポリエステル系樹脂、ポリオレフィン系樹脂、熱可塑性ポリウレタン系樹脂等が挙げられるが、これらを使用した単層チューブの場合、耐熱性、耐薬品性等が不十分なことから、適用可能な範囲が限定されていた。
 また、自動車配管用チューブは、ガソリンの消費節約、高性能化の観点から、メタノール、エタノール等の沸点の低いアルコール類、あるいはエチル-t-ブチルエーテル(ETBE)等のエーテル類をブレンドした含酸素ガソリン等が移送される。更に、環境汚染防止の観点から、配管用チューブ隔壁を通じての揮発性炭化水素等の拡散による大気中への漏洩防止を含めた厳しい排ガス規制が実施されている。かかる厳しい規制に対して、従来から使用されている、ポリアミド系樹脂、特に、強度、靭性、耐薬品性、柔軟性等に優れるポリアミド11又はポリアミド12を単独で使用した単層チューブは、前記の薬液に対するバリア性は十分でなく、特に含アルコールガソリンバリア性に対する改良が求められている。
 この問題を解決する方法として、薬液バリア性の良好な樹脂、例えば、エチレン/酢酸ビニル共重合体ケン化物(EVOH)、ポリメタキシリレンアジパミド(ポリアミドMXD6)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリフェニレンスルフィド(PPS)、ポリフッ化ビニリデン(PVDF)、エチレン/テトラフルオロエチレン共重合体(ETFE)、エチレン/クロロトリフルオロエチレン共重合体(ECTFE)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(TFE/HFP,FEP)、テトラフルオロエチレン/ヘキサフルオロプロピレン/フッ化ビニリデン共重合体(TFE/HFP/VDF,THV)、テトラフルオロエチレン/ヘキサフルオロプロピレン/フッ化ビニリデン/パーフルオロ(アルキルビニルエーテル)共重合体(TFE/HFP/VDF/PAVE)、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体(TFE/PAVE,PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン/パーフルオロ(アルキルビニルエーテル)共重合体(TFE/HFP/PAVE)、クロロトリフルオロエチレン/パーフルオロ(アルキルビニルエーテル)/テトラフルオロエチレン共重合体(CTFE/PAVE/TFE,CPT)が配置された積層チューブが提案されてきた(例えば、特許文献1等参照)。
 これらの中でも、エチレン/酢酸ビニル共重合体ケン化物(EVOH)は、薬液バリア性、特に炭化水素に対するバリア性に非常に優れている。例えば、ポリアミド12よりなる最外層、変性ポリオレフィンよりなる接着層、ポリアミド6よりなる外層、エチレン/酢酸ビニル共重合体ケン化物(EVOH)よりなる中間層、ポリアミド6よりなる最内層から構成された燃料配管が提案されている(特許文献2参照)。また、ポリアミド12よりなる最外層、ポリアミド6/12共重合体、ポリアミド12/6共重合体、ポリアミド612、ポリアミド610、ポリアミド12とポリアミド6と相溶化剤の混合物からなる群より選ばれる少なくとも1種よりなる接着層、エチレン/酢酸ビニル共重合体ケン化物(EVOH)よりなる中間層、ポリアミド6又はポリアミド12よりなる最内層から構成された積層複合体が提案されている(特許文献3、4参照)。同様に、ポリアミド12よりなる最外層、ポリアミド6とポリアミド12とポリアミン/ポリアミド共重合体の混合物よりなる接着層、エチレン/酢酸ビニル共重合体ケン化物(EVOH)よりなる中間層、ポリアミド6又はポリアミド12よりなる最内層から構成された積層複合体が提案されている(特許文献5参照)。該技術は、ポリアミド12とエチレン/酢酸ビニル共重合体ケン化物との両者を介在する接着層として、特定組成比のポリアミド共重合体や、ポリアミド6とポリアミド12と相溶化剤からなる混合物が良好な層間接着強度を有するものとして提案されている。
 一方で、積層チューブ製造プロセス全体の簡素化、コスト・管理面での低減を図るため、外層材のポリアミドとエチレン/酢酸ビニル共重合体ケン化物(EVOH)が直接接着された接着層レスの開発も進んでいる。例えば、ポリアミド12とポリアミド6と相溶化剤よりなる内外層とエチレン/酢酸ビニル共重合体ケン化物(EVOH)よりなる中間層から構成された多層構造体や、ポリアミド12とポリアミド6をハードセグメントとするポリエーテルアミドエラストマーよりなる外層、エチレン/酢酸ビニル共重合体ケン化物(EVOH)よりなる中間層、ポリアミド610、ポリアミド612、又はポリアミド610とポリアミド6の混合物よりなる内層から構成された積層複合体が提案されている(特許文献6、7参照)。更に、ヘキサメチレンジアミンとテレフタル酸及び炭素原子数8以上20以下の脂肪族ジカルボン酸よりなる特定のポリアミド共重合体からなる層、エチレン/酢酸ビニル共重合体ケン化物(EVOH)よりなる層から構成され、十分な層間接着性を有する多層構造物も提案されている(特許文献8、9参照)。
 また、中間層に、特定の構造単位を含有するエチレン/酢酸ビニル共重合体ケン化物(EVOH)を有し、燃料バリア性能の安定性に優れ、かつヒートショックと言った急激な温度変化を受けた後においても良好な燃料バリア性能を有する燃料容器が提案されている(特許文献10参照)。
米国特許第5554425号明細書 特開平3-177683号公報 特表2003-535717号公報 特開2003-021276号公報 特開2002-210904号公報 特開2004-262244号公報 特開2008-30483号公報 特表2013-514212号公報 特開2016-172447号公報 特開2006-095748号公報
 これら積層チューブにおいて、初期の層間接着性は十分である。しかしながら、長時間燃料に接触・浸漬した後や熱処理後において、層間接着性の耐久性については改善の余地を残すところである。特許文献6の実施例において、45質量%のポリアミド6、45質量%のポリアミド12、相溶化剤として酸変性エチレン/α-オレフィン共重合体、及び安定剤類10質量%を含有する内外層材が開示されており、エチレン/酢酸ビニル共重合体ケン化物(EVOH)に対する初期の層間接着性は十分である。しかしながら、同材料を内外層とし、エチレン/酢酸ビニル共重合体ケン化物(EVOH)を中間層とするチューブは、後記に示す通り、塩化カルシウムや塩化亜鉛に対する耐性(耐薬品性)に劣ることが判明した。また、特許文献7においては、高速押出速度での押出物品の破断時の伸びの改善のため、ポリアミドエラストマーで改質された改質ポリアミド(PA)押出成形材料を外層材料とし、エチレン/酢酸ビニル共重合体ケン化物(EVOH)が直接接着した積層複合体を開示しており、層間剥離強度に対する耐性についての記載はあるものの、長時間燃料に接触・浸漬した後や熱処理後の層間接着性(層間接着性の耐久性)のみならず、初期の層間接着性に関しても具体的な技術データの開示は無い。
 更に、これら燃料移送用チューブをはじめとする積層体は、一般に、曲げ応力を加えた状態で配管される場合が多く、長期に亘り実使用されている条件下においても高い燃料バリア性が必要となるが、ヒートショックと言われる、低温と高温という急激な温度変化を受けた後においても、良好な燃料バリア性能を有することが求められている。しかしながら、これらのヒートショックを受けた後、エチレン/酢酸ビニル共重合体ケン化物からなる層内にクレーズと呼ばれる微小なクラックが発生し、薬液バリア性が大きく損なわれるという問題を有している。特許文献10においては、これらを解決する方策が開示されている。しかしながら、初期や熱処理後の層間接着性(層間接着性の耐久性)に関して、具体的な技術データの開示や技術的示唆は無い。更に、実使用時に近い形での応力が負荷された状態下において、ヒートショックと言われる、低温と高温という急激な温度変化を受けた後においても、薬液バリア性のみならず、良好なチューブ性能を保持することが求められるところである。
 本発明者らは、前記問題点を解決するために、鋭意検討した結果、特定の脂肪族ポリアミド組成物を含む層と特定のビニルアルコール系重合体組成物を含む層を有し、該両層が隣接する積層チューブにおいて、脂肪族ポリアミド組成物が、メチレン基数のアミド基数に対する比が特定の値以上の脂肪族ポリアミドと同脂肪族ポリアミドとの溶解性パラメーターSP値の差の絶対値が特定範囲にある脂肪族ポリアミド、並びにカルボキシル基及び/又は酸無水物基を有する不飽和化合物から誘導される構成単位を含有するエラストマー重合体を含み、ビニルアルコール系重合体組成物が、特定の構造単位を有するビニルアルコール系重合体、並びにカルボキシル基及び/又は酸無水物基を有する不飽和化合物から誘導される構成単位を含有するエラストマー重合体を含むことにより、低温耐衝撃性、及びモノマー、オリゴマーの耐溶出性といった諸特性を維持しつつ、耐薬品性、環境応力負荷後の低温耐衝撃性、層間接着性、及びその耐久性に優れる積層チューブが得られることを見出した。
 即ち、本発明は、
 少なくとも1組の前記(a)層と前記(b)層とは、隣接して配置され、
 前記(a)層は、脂肪族ポリアミド組成物(A)を含み、
 前記(b)層は、ビニルアルコール系重合体組成物(B)を含み、
 前記脂肪族ポリアミド組成物(A)は、ポリアミド(A1)、ポリアミド(A2)、及びエラストマー重合体(A3)を含み、
 前記ポリアミド(A1)は、メチレン基数のアミド基数に対する比が8.0以上の脂肪族ポリアミドであり、前記脂肪族ポリアミド組成物(A)中に、40質量%以上85質量%以下含まれ、
 前記ポリアミド(A2)は、前記ポリアミド(A1)以外のポリアミドであり、前記脂肪族ポリアミド組成物(A)中に、10質量%以上35質量%以下含まれ、
 前記エラストマー重合体(A3)は、カルボキシル基及び/又は酸無水物基を有する不飽和化合物から誘導される構成単位を含有し、前記脂肪族ポリアミド組成物(A)中に、5質量%以上25質量%以下含まれ、
 前記ポリアミド(A1)と前記ポリアミド(A2)との溶解性パラメーターSP値の差の絶対値[|(ポリアミド(A1)のSP値)-(ポリアミド(A2)のSP値)|]は、1.8以上4.5以下(MPa)1/2であり、
 前記ビニルアルコール系重合体組成物(B)は、下記(1)式で表わされる側鎖1,2-ジオール単位を含有するビニルアルコール系重合体(B1)及びエラストマー重合体(B2)を含み、
 前記側鎖1,2-ジオール単位を含有するビニルアルコール系重合体(B1)は、前記ビニルアルコール系重合体組成物(B)中に、60質量%以上95質量%以下含まれ、
 前記エラストマー重合体(B2)は、カルボキシル基及び/又は酸無水物基を有する不飽和化合物から誘導される構成単位を含有し、前記ビニルアルコール系重合体組成物(B)中に5質量%以上40質量%以下含まれる積層チューブに関する。
Figure JPOXMLDOC01-appb-C000002
 [一般式(1)において、R、R、及びRは、それぞれ独立して水素原子又は有機基を示し、Xは、単結合又は結合鎖を示し、R、R、及びRは、それぞれ独立して水素原子又は有機基を示す。]
 積層チューブの好ましい態様を以下に示す。好ましい態様は複数組み合わせることができる。
 [1]前記ポリアミド(A1)が、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリノナメチレンドデカミド(ポリアミド912)、ポリデカメチレンセバカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、ポリドデカメチレンドデカミド(ポリアミド1212)、ポリウンデカンアミド(ポリアミド11)、及びポリドデカンアミド(ポリアミド12)からなる群より選ばれる少なくとも1種の単独重合体、並びに/又はこれらを形成する原料単量体を数種用いた少なくとも1種の共重合体である積層チューブ。
 [2]前記ポリアミド(A2)が、ポリカプロアミド(ポリアミド6)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリヘキサメチレンアゼラミド(ポリアミド69)、及びポリヘキサメチレンセバカミド(ポリアミド610)からなる群より選ばれる少なくとも1種の単独重合体、並びに/若しくはこれらを形成する原料単量体を数種用いた少なくとも1種の共重合体、又は、前記ポリカプロアミド(ポリアミド6)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリヘキサメチレンアゼラミド(ポリアミド69)、及びポリヘキサメチレンセバカミド(ポリアミド610)からなる群より選ばれる少なくとも1種を形成する原料単量体を主成分とし、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリノナメチレンドデカミド(ポリアミド912)、ポリデカメチレンセバカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、ポリドデカメチレンドデカミド(ポリアミド1212)、ポリウンデカンアミド(ポリアミド11)、及びポリドデカンアミド(ポリアミド12)からなる群より選ばれる少なくとも1種を形成する原料単量体を数種用いた少なくとも1種の共重合体である積層チューブ。
 [3]前記脂肪族ポリアミド組成物(A)の1gあたりのポリアミド(A1)及びポリアミド(A2)のそれぞれの末端アミノ基濃度(μeq/g)、末端カルボキシル基濃度(μeq/g)にその混合質量比を乗じた値を合計した末端アミノ基濃度を[A](μeq/g)、末端カルボキシル基濃度を[B](μeq/g)とした時、[A]>[B]+10である積層チューブ。
 [4]前記側鎖1,2-ジオール単位を含有するビニルアルコール系重合体(B1)中の上記(1)式で表される側鎖1,2-ジオール単位の含有量は、前記側鎖1,2-ジオール単位を含有するビニルアルコール系重合体(B1)の全単量体単位100モル%に対して、0.1モル%以上30モル%以下である積層チューブ。
 [5]前記側鎖1,2-ジオール単位を含有するビニルアルコール系重合体(B1)は、上記(1)式で表される側鎖1,2-ジオール単位を含有するポリビニルアルコール系重合体(B11)及び/又は上記(1)式で表される側鎖1,2-ジオール単位を含有するエチレン/ビニルエステル系共重合体ケン化物(B12)である積層チューブ。
 [6]前記側鎖1,2-ジオール単位を含有するエチレン/ビニルエステル系共重合体ケン化物(B12)中のエチレン単位の含有量は、前記側鎖1,2-ジオール単位を含有する含有エチレン/ビニルエステル系共重合体ケン化物(B12)の全単量体単位100モル%に対して、10モル%以上40モル%以下である積層チューブ。
 [7]前記(a)層に対して内側に配置される少なくとも1層の前記(b)層を有する積層チューブ。
 [8]更に(c)層を含み、少なくとも1組の前記(b)層と前記(c)層とが隣接して配置され、前記(c)層は、ポリアミド組成物(C)を含み、前記ポリアミド組成物(C)は、ポリアミド(C1)及びエラストマー重合体(C2)を含み、前記ポリアミド(C1)は、メチレン基数のアミド基数に対する比が8.0以上の脂肪族ポリアミド以外のポリアミドであり、前記ポリアミド組成物(C)中に70質量%以上95質量%以下含まれ、前記エラストマー重合体(C2)は、カルボキシル基及び/又は酸無水物基を有する不飽和化合物から誘導される構成単位を含有し、前記ポリアミド組成物(C)中に5質量%以上30質量%以下含まれる積層チューブ。
 [9]前記(b)層に対して内側に配置される少なくとも1層の前記(c)層を有する積層チューブ。
 [10]更に(d)層を含み、前記(d)層は、前記(a)層に対して内側に配置され、前記(d)層は、半芳香族ポリアミド組成物(D)を含み、前記半芳香族ポリアミド組成物(D)は、半芳香族ポリアミド(D1)及び/又は半芳香族ポリアミド(D2)を含み、前記半芳香族ポリアミド組成物(D)中に、前記半芳香族ポリアミド(D1)及び/又は前記半芳香族ポリアミド(D2)が60質量%以上含まれ、前記半芳香族ポリアミド(D1)は、前記半芳香族ポリアミド(D1)の全ジアミン単位に対して、炭素原子数4以上12以下の脂肪族ジアミン単位を50モル%以上含み、前記半芳香族ポリアミド(D1)の全ジカルボン酸単位に対して、テレフタル酸単位、イソフタル酸単位、及びナフタレンジカルボン酸単位からなる群より選ばれる少なくとも1種を含むジカルボン酸単位を50モル%以上含み、前記半芳香族ポリアミド(D2)は、前記半芳香族ポリアミド(D2)の全ジアミン単位に対して、キシリレンジアミン単位及び/又はビス(アミノメチル)ナフタレン単位を50モル%以上含み、前記半芳香族ポリアミド(D2)の全ジカルボン酸単位に対して、炭素原子数4以上12以下の脂肪族ジカルボン酸単位を50モル%以上含む積層チューブ。
 [11]前記半芳香族ポリアミド組成物(D)が、エラストマー重合体(D3)を含み、前記エラストマー重合体(D3)は、カルボキシル基及び/又は酸無水物基を有する不飽和化合物から誘導される構成単位を含有する積層チューブ。
 [12]更に(e)層を含み、前記(e)層は、前記(a)層に対して内側に配置され、前記(e)層は、アミノ基に対して反応性を有する官能基が分子鎖中に導入された含フッ素系重合体(E)を含む積層チューブ。
 [13]更に(e)層を含み、前記(e)層は、前記(d)層に対して内側に配置され、前記(e)層は、アミノ基に対して反応性を有する官能基が分子鎖中に導入された含フッ素系重合体(E)を含む積層チューブ。
 [14]少なくとも1組の前記(d)層と前記(e)層とが隣接して配置される積層チューブ。
 [15]最内層が、導電性フィラーを含有させた熱可塑性樹脂組成物を含む導電層である積層チューブ。
 [16]共押出成形により製造される積層チューブ。
 [17]燃料チューブとして使用される積層チューブ。
 本発明によれば、低温耐衝撃性、及びモノマー、オリゴマーの耐溶出性といった諸特性を維持しつつ、耐薬品性、環境応力負荷後の低温耐衝撃性、層間接着性、及びその耐久性に優れた積層チューブを提供することができる。
 積層チューブは、(a)層と(b)層とを含み、2層以上である。
 1.(a)層
 積層チューブの(a)層は、脂肪族ポリアミド組成物(A)を含む。
 [脂肪族ポリアミド組成物(A)]
 脂肪族ポリアミド組成物(A)は、ポリアミド(A1)、ポリアミド(A2)、及びエラストマー重合体(A3)を含み、ポリアミド(A1)は、メチレン基数のアミド基数に対する比が8.0以上の脂肪族ポリアミドであり、脂肪族ポリアミド組成物(A)中に、40質量%以上85質量%以下含まれ、ポリアミド(A2)は、前記ポリアミド(A1)以外のポリアミドであり、脂肪族ポリアミド組成物(A)中に、10質量%以上35質量%以下含まれ、エラストマー重合体(A3)は、カルボキシル基及び/又は酸無水物基を有する不飽和化合物から誘導される構成単位を含有し、脂肪族ポリアミド組成物(A)中に、5質量%以上25質量%以下含まれ、前記ポリアミド(A1)と前記ポリアミド(A2)との溶解性パラメーターSP値の差の絶対値[|(ポリアミド(A1)のSP値)-(ポリアミド(A2)のSP値)|]は、1.8以上4.5以下(MPa)1/2である(以下、脂肪族ポリアミド組成物(A)と称する場合がある。)。
 また、脂肪族ポリアミド組成物(A)は、長時間燃料に接触・浸漬した後及び/又は短時間の熱処理後における層間接着性の耐久性の観点から可塑剤を含有しないことが好ましい。
 [ポリアミド(A1)]
 ポリアミド(A1)は、脂肪族基のみを繰り返し単位中に含み、主鎖中にアミド結合(-CONH-)を有し、メチレン基数([CH])のアミド基数([NHCO])に対する比[CH]/[NHCO](以下、メチレン基数のアミド基数に対する比を[CH]/[NHCO]と称する場合がある。)が8.0以上である(以下、ポリアミド(A1)と称する場合がある。)。
 メチレン基数のアミド基数に対する比[CH]/[NHCO]が8.0以上のポリアミド(A1)としては、ポリウンデカンアミド(ポリアミド11):[CH]/[NHCO]=10.0、ポリドデカンアミド(ポリアミド12):[CH]/[NHCO]=11.0、ポリヘキサメチレンドデカミド(ポリアミド612):[CH2]/[NHCO]=8.0、ポリヘキサメチレンテトラデカミド(ポリアミド614):[CH]/[NHCO]=9.0、ポリヘキサメチレンヘキサデカミド(ポリアミド616):[CH]/[NHCO]=10.0、ポリヘキサメチレンオクタデカミド(ポリアミド618):[CH]/[NHCO]=11.0、ポリノナメチレンアゼラミド(ポリアミド99):[CH]/[NHCO]=8.0、ポリノナメチレンセバカミド(ポリアミド910):[CH]/[NHCO]=8.5、ポリノナメチレンドデカミド(ポリアミド912):[CH]/[NHCO]=9.5、ポリデカメチレンスベラミド(ポリアミド108):[CH]/[NHCO]=8.0、ポリデカメチレンアゼラミド(ポリアミド109):[CH]/[NHCO]=8.5、ポリデカメチレンセバカミド(ポリアミド1010):[CH]/[NHCO]=9.0、ポリデカメチレンドデカミド(ポリアミド1012):[CH]/[NHCO]=10.0、ポリドデカメチレンアジパミド(ポリアミド126):[CH]/[NHCO]=8.0、ポリドデカメチレンスベラミド(ポリアミド128):[CH]/[NHCO]=9.0、ポリドデカメチレンアゼラミド(ポリアミド129):[CH]/[NHCO]=9.5、ポリドデカメチレンセバカミド(ポリアミド1210):[CH]/[NHCO]=10.0、ポリドデカメチレンドデカミド(ポリアミド1212):[CH]/[NHCO]=11.0等が挙げられる。これらポリアミド(A1)は、前記の少なくとも1種の単独重合体のみならず、これらを形成する原料単量体を数種用いた少なくとも1種の共重合体も挙げられる。
 例えば、ポリ(ドデカンアミド/ドデカメチレンドデカミド)共重合体(ポリアミド12/1212)のメチレン基数のアミド基数に対する比[CH]/[NHCO]は、ポリドデカンアミド(ポリアミド12)とポリドデカメチレンドデカミド(ポリアミド1212)のメチレン基数のアミド基数に対する比[CH]/[NHCO]は11.0であることから、構成繰り返し単位のモル比にかかわらず、メチレン基数のアミド基数に対する比[CH]/[NHCO]は11.0である。
 また、ポリ(ドデカンアミド/ヘキサメチレンドデカミド)共重合体(ポリアミド12/612)のメチレン基数のアミド基数に対する比[CH]/[NHCO]は、構成繰り返し単位のモル比により変わる。ポリドデカンアミド(ポリアミド12)のメチレン基数のアミド基数に対する比[CH]/[NHCO]は11.0であり、ポリヘキサメチレンドデカミド(ポリアミド612)のメチレン基数のアミド基数に対する比[CH]/[NHCO]は8.0であることから、構成単位の繰り返し単位のモル比が分かれば、算出可能で、ポリ(ドデカンアミド/ヘキサメチレンドデカミド)共重合体(ポリアミド12/612)のドデカンアミド単位/ヘキサメチレンドデカミド単位が80:20(モル比)の場合、メチレン基数のアミド基数に対する比[CH]/[NHCO]は、11.0×0.80+8.0×0.20=10.4となる。ヘキサメチレンドデカミド単位のモル比が増加すれば、メチレン基数のアミド基数に対する比[CH]/[NHCO]は減少するが、少なくともメチレン基数のアミド基数に対する比[CH]/[NHCO]は8.0未満となることはない。即ち、ポリ(ドデカンアミド/ドデカメチレンドデカミド)共重合体(ポリアミド12/1212)やポリ(ドデカンアミド/ヘキサメチレンドデカミド)共重合体(ポリアミド12/612)のように、メチレン基数のアミド基数に対する比[CH]/[NHCO]が8.0以上の脂肪族ポリアミドを形成する原料単量体(構成繰り返し単位)を数種用いた共重合体は、構成繰り返し単位のモル比によらず、メチレン基数のアミド基数に対する比[CH]/[NHCO]は8.0以上となり、本願のポリアミド(A1)に包含される。
 一方、ポリアミド(A1)は、メチレン基数のアミド基数に対する比[CH]/[NHCO]が8.0以上の脂肪族ポリアミドを形成する原料単量体(構成繰り返し単位)を一成分とし、後記の通りのメチレン基数のアミド基数に対する比[CH]/[NHCO]が8.0未満の脂肪族ポリアミドを形成する原料単量体(構成繰り返し単位)を共重合することも可能で、得られた共重合体は、メチレン基数のアミド基数に対する比[CH]/[NHCO]が8.0以上である限り、本願のポリアミド(A1)に包含される。
 メチレン基数のアミド基数に対する比[CH]/[NHCO]が8.0未満の脂肪族ポリアミドとしては、ポリカプロアミド(ポリアミド6):[CH]/[NHCO]=5.0、ポリエチレンアジパミド(ポリアミド26):[CH]/[NHCO]=3.0、ポリテトラメチレンスクシナミド(ポリアミド44):[CH]/[NHCO]=3.0、ポリテトラメチレングルタミド(ポリアミド45):[CH]/[NHCO]=3.5、ポリテトラメチレンアジパミド(ポリアミド46):[CH]/[NHCO]=4.0、ポリテトラメチレンスベラミド(ポリアミド48):[CH]/[NHCO]=5.0、ポリテトラメチレンアゼラミド(ポリアミド49):[CH]/[NHCO]=5.5、ポリテトラメチレンセバカミド(ポリアミド410):[CH]/[NHCO]=6.0、ポリテトラメチレンドデカミド(ポリアミド412):[CH]/[NHCO]=7.0、ポリペンタメチレンスクシナミド(ポリアミド54):[CH]/[NHCO]=3.5、ポリペンタメチレングルタミド(ポリアミド55):[CH]/[NHCO]=4.0、ポリペンタメチレンアジパミド(ポリアミド56):[CH]/[NHCO]=4.5、ポリペンタメチレンスベラミド(ポリアミド58):[CH]/[NHCO]=5.5、ポリペンタメチレンアゼラミド(ポリアミド59):[CH]/[NHCO]=6.0、ポリペンタメチレンセバカミド(ポリアミド510):[CH]/[NHCO]=6.5、ポリペンタメチレンドデカミド(ポリアミド512):[CH]/[NHCO]=7.5、ポリヘキサメチレンスクシナミド(ポリアミド64):[CH]/[NHCO]=4.0、ポリヘキサメチレングルタミド(ポリアミド65):[CH]/[NHCO]=4.5、ポリヘキサメチレンアジパミド(ポリアミド66):[CH]/[NHCO]=5.5、ポリヘキサメチレンスベラミド(ポリアミド68):[CH]/[NHCO]=6.0、ポリヘキサメチレンアゼラミド(ポリアミド69):[CH]/[NHCO]=6.5、ポリヘキサメチレンセバカミド(ポリアミド610):[CH]/[NHCO]=7.0、ポリノナメチレンアジパミド(ポリアミド96):[CH]/[NHCO]=6.5、ポリノナメチレンスベラミド(ポリアミド98):[CH]/[NHCO]=7.5、ポリデカメチレングルタミド(ポリアミド105):[CH]/[NHCO]=6.5、ポリデカメチレンアジパミド(ポリアミド106):[CH]/[NHCO]=7.0、ポリドデカメチレングルタミド(ポリアミド125):[CH]/[NHCO]=7.5等が挙げられる。これらは前記の少なくとも1種の単独重合体のみならず、これらを形成する原料単量体を数種用いた少なくとも1種の共重合体も挙げられる。
 例えば、ポリ(ドデカンアミド/カプロアミド)共重合体(ポリアミド12/6)のメチレン基数のアミド基数に対する比[CH]/[NHCO]は、構成繰り返し単位のモル比により変わる。ポリドデカンアミド(ポリアミド12)のメチレン基数のアミド基数に対する比[CH]/[NHCO]は11.0であり、ポリカプロアミド(ポリアミド6)のメチレン基数のアミド基数に対する比[CH]/[NHCO]は5.0であることから、構成繰り返し単位のモル比が分かれば、算出可能で、ポリ(ドデカンアミド/カプロアミド)共重合体(ポリアミド12/6)のドデカンアミド単位/カプロアミド単位が50.0:50.0~99.5:0.5(モル比)であるポリアミド共重合体は、メチレン基数のアミド基数に対する比[CH]/[NHCO]が8.0以上であるため、本願のポリアミド(A1)に包含される。但し、ポリ(ドデカンアミド/カプロアミド)共重合体(ポリアミド12/6)とポリドデカンアミド(ポリアミド12)を区別するため、ポリ(ドデカンアミド/カプロアミド)共重合体(ポリアミド12/6)のドデカンアミド単位/カプロアミド単位が99.5:0.5(モル比)よりも、ドデカンアミド単位の割合が高い場合は、ポリドデカンアミド(ポリアミド12)として取り扱う。以下、単独重合体と共重合体は同様の扱いとする。
 一方、ポリ(ドデカンアミド/カプロアミド)共重合体(ポリアミド12/6)のドデカンアミド単位/カプロアミド単位が0.5:99.5~49.9:50.1(モル比)であるポリアミド共重合体は、メチレン基数のアミド基数に対する比[CH]/[NHCO]が8.0未満であるため、本願のポリアミド(A1)に包含されない。
 このように、メチレン基数のアミド基数に対する比[CH]/[NHCO]が8.0以上の脂肪族ポリアミドを形成する原料単量体(繰り返し単位)を一成分とし、メチレン基数のアミド基数に対する比[CH]/[NHCO]が8.0未満の脂肪族ポリアミドを形成する原料単量体(繰り返し単位)を数種用いた共重合体におけるメチレン基数のアミド基数に対する比[CH]/[NHCO]は、構成繰り返し単位のモル比と各ポリアミドのメチレン基数のアミド基数に対する比[CH]/[NHCO]とにより計算可能で、メチレン基数のアミド基数に対する比[CH]/[NHCO]が8.0以上を満たす該共重合体は本願のポリアミド(A1)に包含される。
 これらの中でも、得られる積層チューブの機械的特性、耐熱性、耐薬品性等の諸物性を十分に確保し、経済性及び入手の容易さの観点から、ポリアミド(A1)は、ポリウンデカンアミド(ポリアミド11)、ポリドデカンアミド(ポリアミド12)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリノナメチレンアゼラミド(ポリアミド99)、ポリノナメチレンデカミド(ポリアミド910)、ポリノナメチレンドデカミド(ポリアミド912)、ポリデカメチレンセバカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、及びポリドデカメチレンドデカミド(ポリアミド1212)からなる群より選ばれる少なくとも1種の単独重合体、並びに/又はこれらを形成する原料を数種用いた少なくとも1種の共重合体等が好ましく、ポリウンデカンアミド(ポリアミド11)、ポリドデカンアミド(ポリアミド12)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリノナメチレンドデカミド(ポリアミド912)、ポリデカメチレンセバカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、及びポリドデカメチレンドデカミド(ポリアミド1212)からなる群より選ばれる少なくとも1種の単独重合体、並びに/又はこれらを形成する原料単量体を数種用いた少なくとも1種の共重合体がより好ましい。また、モノマー、オリゴマーの耐溶出性の観点から、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリデカメチレンデカミド(ポリアミド1010)、及びポリデカメチレンドデカミド(ポリアミド1012)からなる群より選ばれる少なくとも1種の単独重合体、並びに/又はこれらを形成する原料単量体を数種用いた少なくとも1種の共重合体が好ましい。
 [ポリアミド(A2)]
 ポリアミド(A2)は、ポリアミド(A1)以外のポリアミドであって、主鎖中にアミド結合(-CONH-)を有し、ポリアミドを形成する原料単量体(繰り返し単位)であるラクタム、アミノカルボン酸、又はジアミンとジカルボン酸を重合又は共重合することにより得られる(以下、ポリアミド(A2)と称する場合がある。)。
 ポリアミド(A1)とポリアミド(A2)との溶解性パラメーターSP値の差の絶対値[|(ポリアミド(A1)のSP値)-(ポリアミド(A2)のSP値)|]は、1.8以上4.5以下(MPa)1/2であり、2.0以上4.3以下(MPa)1/2であることが好ましく、2.2以上4.1以下(MPa)1/2であることがより好ましい。ポリアミド(A1)とポリアミド(A2)との溶解性パラメーターSP値の差の絶対値が前記の値未満であると、得られる積層チューブの層間接着性及びその耐久性が劣ることがあり、一方、前記の値を超えると、得られる積層チューブの機械的特性及び耐薬品性が劣ることがある。
 尚、溶解性パラメーターSP値は、下記に示すFedorsの式より求められる値であり、分子凝集エネルギー密度の平方根で表される値で、単位は(MPa)1/2、25℃における値である(以下、溶解性パラメーターをSP値と称する場合がある。)。
δ=[ΔEv/ΔV]1/2=[ΣΔe/ΣΔv1/2
δ:溶解性パラメーターSP値
ΔEv:凝集エネルギー
ΔV:モル分子容
Δe:i成分の原子又は原子団のモル凝集エネルギー
Δv:i成分の原子又は原子団の分子容
 ここで、ΔEv及びΔVは、それぞれΔEv=ΣΔe及びΔV=ΣΔvで表され、e及びvは、POLYMER ENGINEERING AND SCIENCE(1974年発刊、第14巻、NO.2、147~154頁)より求めた値である。以下、本明細書中において記載されるSP値は、単位を(MPa)1/2とした値である。
 好ましい例として挙げられている夫々のポリアミド(A1)の溶解性パラメーターSP値は(単位は(MPa)1/2)、ポリウンデカンアミド(ポリアミド11,SP値:22.9)、ポリドデカンアミド(ポリアミド12,SP値:22.5)、ポリヘキサメチレンドデカミド(ポリアミド612,SP値:24.1)、ポリノナメチレンアゼラミド(ポリアミド99,SP値:24.1)、ポリノナメチレンデカミド(ポリアミド910,SP値:23.8)、ポリノナメチレンドデカミド(ポリアミド912,SP値:23.2)、ポリデカメチレンセバカミド(ポリアミド1010,SP値:23.5)、ポリデカメチレンドデカミド(ポリアミド1012,SP値:22.9)、ポリドデカメチレンドデカミド(ポリアミド1212,SP値:22.5)となる。
 ポリアミド(A2)は、前記ポリアミド(A1)との溶解性パラメーターSP値の差の絶対値が1.8以上4.5以下(MPa)1/2であればよく、これを満たすように適宜選択される。尚、ポリアミド(A2)は、メチレン基数のアミド基数に対する比[CH]/[NHCO]が8.0未満の脂肪族ポリアミドからなる群より選ばれる少なくとも1種から、前記ポリアミド(A1)との溶解性パラメーターSP値の差の絶対値が1.8以上4.5以下(MPa)1/2を満たすように適宜選択されることが好ましい。
 メチレン基数のアミド基数に対する比[CH]/[NHCO]が8.0未満の脂肪族ポリアミドとしては(SP値の単位は(MPa)1/2)、ポリカプロアミド(ポリアミド6,SP値:26.9)、ポリテトラメチレングルタミド(ポリアミド45,SP値:29.2)、ポリテトラメチレンアジパミド(ポリアミド46,SP値:28.3)、ポリテトラメチレンスベラミド(ポリアミド48,SP値:26.9)、ポリテトラメチレンアゼラミド(ポリアミド49,SP値:26.3)、ポリテトラメチレンセバカミド(ポリアミド410,SP値:25.7)、ポリテトラメチレンドデカミド(ポリアミド412,SP値:24.9)、ポリペンタメチレンスクシナミド(ポリアミド54,SP値:29.2)、ポリペンタメチレングルタミド(ポリアミド55,SP値:28.3)、ポリペンタメチレンアジパミド(ポリアミド56,SP値:27.5)、ポリペンタメチレンスベラミド(ポリアミド58,SP値:26.3)、ポリペンタメチレンアゼラミド(ポリアミド59,SP値:25.7)、ポリペンタメチレンセバカミド(ポリアミド510,SP値:25.3)、ポリヘキサメチレンスクシナミド(ポリアミド64,SP値:28.3)、ポリヘキサメチレングルタミド(ポリアミド65,SP値:27.5)、ポリヘキサメチレンアジパミド(ポリアミド66,SP値:26.9)、ポリヘキサメチレンスベラミド(ポリアミド68,SP値:25.7)、ポリヘキサメチレンアゼラミド(ポリアミド69,SP値:25.3)、ポリヘキサメチレンセバカミド(ポリアミド610,SP値:24.9)、ポリノナメチレンアジパミド(ポリアミド96,SP値:25.3)、ポリデカメチレングルタミド(ポリアミド105,SP値:25.3)、ポリデカメチレンアジパミド(ポリアミド106,SP値:24.9)、及びこれらポリアミドの原料単量体を数種用いた共重合体、並びに/又は前記ポリアミド(A1)中に説明した原料単量体を数種用いた共重合体等が挙げられる。これらは1種又は2種以上を用いることができる。
 前記ポリアミド(A1)の中でも最低の溶解性パラメーターSP値を有するポリドデカンアミド(ポリアミド12,SP値:22.5)やポリドデカメチレンドデカミド(ポリアミド1212,SP値:22.5)が選択される場合、前記ポリアミド(A2)の中でも最低の溶解性パラメーターSP値を有するポリペンタメチレンドデカミド(ポリアミド512,SP値:24.5)やポリドデカメチレングルタミド(ポリアミド125,SP値:24.5)との溶解性パラメーターSP値の差の絶対値は2.0(MPa)1/2となり、本願の規定範囲内である。従って、ポリアミド(A1)として、ポリドデカンアミド(ポリアミド12,SP値:22.5)やポリドデカメチレンドデカミド(ポリアミド1212,SP値:22.5)とポリアミド(A2)として、ポリペンタメチレンドデカミド(ポリアミド512,SP値:24.5)やポリドデカメチレングルタミド(ポリアミド125,SP値:24.5)の組み合わせは本願の規定範囲内である。
 一方、前記ポリアミド(A1)の中でも最高の溶解性パラメーターSP値を有するポリヘキサメチレンドデカミド(ポリアミド612,SP値:24.1)やポリノナメチレンアゼラミド(ポリアミド99,SP値:24.1)が選択される場合、前記ポリアミド(A2)の中でも最低の溶解性パラメーターSP値を有するポリペンタメチレンドデカミド(ポリアミド512,SP値:24.5)やポリドデカメチレングルタミド(ポリアミド125,SP値:24.5)との溶解性パラメーターSP値の差の絶対値は0.4(MPa)1/2となり、本願の規定範囲外である。従って、ポリアミド(A1)として、ポリヘキサメチレンドデカミド(ポリアミド612,SP値:24.1)やポリノナメチレンアゼラミド(ポリアミド99,SP値:24.1)とポリアミド(A2)として、ポリペンタメチレンドデカミド(ポリアミド512,SP値:24.5)やポリドデカメチレングルタミド(ポリアミド125,SP値:24.5)の組み合わせは本願の規定範囲外であり、ポリアミド(A1)として、ポリヘキサメチレンドデカミド(ポリアミド612,SP値:24.1)やポリノナメチレンアゼラミド(ポリアミド99,SP値:24.1)が選択される場合、溶解性パラメーターSP値の差の絶対値が1.8(MPa)1/2以上となるためには、溶解性パラメーターSP値が25.9(MPa)1/2以上のポリアミド(A2)を選択する必要がある。
 また、前記ポリアミド(A1)の中でも最低の溶解性パラメーターSP値を有するポリドデカンアミド(ポリアミド12,SP値:22.5)やポリドデカメチレンドデカミド(ポリアミド1212,SP値:22.5)が選択される場合、前記ポリアミド(A2)の中でも最高の溶解性パラメーターSP値を有するポリテトラメチレンアジパミド(ポリアミド46,SP値:28.3)の溶解性パラメーターSP値の差の絶対値は5.8(MPa)1/2となり、本願の規定範囲外である。従って、ポリアミド(A1)として、ポリドデカンアミド(ポリアミド12,SP値:22.5)やポリドデカメチレンドデカミド(ポリアミド1212,SP値:22.5)とポリアミド(A2)として、ポリテトラメチレンアジパミド(ポリアミド46,SP値:28.3)の組み合わせは本願の規定範囲外であり、ポリアミド(A1)として、ポリドデカンアミド(ポリアミド12,SP値:22.5)やポリドデカメチレンドデカミド(ポリアミド1212,SP値:22.5)が選択される場合、溶解性パラメーターSP値の差の絶対値が4.5(MPa)1/2以下となるためには、溶解性パラメーターSP値が27.0(MPa)1/2以下のポリアミド(A2)を選択する必要がある。
 一方、前記ポリアミド(A1)の中でも最高の溶解性パラメーターSP値を有するポリヘキサメチレンドデカミド(ポリアミド612,SP値:24.1)やポリノナメチレンアゼラミド(ポリアミド99,SP値:24.1)が選択される場合、前記ポリアミド(A2)の中でも最高の溶解性パラメーターSP値を有するポリテトラメチレンアジパミド(ポリアミド46,SP値:28.3)の溶解性パラメーターSP値の差の絶対値は4.2(MPa)1/2となり、本願の規定範囲内である。従って、ポリアミド(A1)として、ポリヘキサメチレンドデカミド(ポリアミド612,SP値:24.1)やポリノナメチレンアゼラミド(ポリアミド99,SP値:24.1)とポリアミド(A2)として、ポリテトラメチレンアジパミド(ポリアミド46,SP値:28.3)の組み合わせは本願の規定範囲内である。
 入手の容易さ、経済性、前記ポリアミド(A1)との相溶性、得られる積層チューブの機械的特性、耐薬品性、柔軟性等の諸物性を十分に確保することと、後記ビニルアルコール系重合体組成物(B)との層間接着性及びその耐久性を十分に得る観点から、ポリアミド(A2)は、メチレン基数のアミド基数に対する比[CH]/[NHCO]が8.0未満の脂肪族ポリアミドであって、ポリカプロアミド(ポリアミド6)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリヘキサメチレンアゼラミド(ポリアミド69)、及びポリヘキサメチレンセバカミド(ポリアミド610)からなる群より選ばれる少なくとも1種の単独重合体、並びに/若しくはこれらを形成する原料単量体を数種用いた少なくとも1種の共重合体、又は、ポリカプロアミド(ポリアミド6)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリヘキサメチレンアゼラミド(ポリアミド69)、及びポリヘキサメチレンセバカミド(ポリアミド610)からなる群より選ばれる少なくとも1種を形成する原料単量体を主成分とし、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリノナメチレンドデカミド(ポリアミド912)、ポリデカメチレンセバカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、ポリドデカメチレンドデカミド(ポリアミド1212)、ポリウンデカンアミド(ポリアミド11)、及びポリドデカンアミド(ポリアミド12)からなる群より選ばれる少なくとも1種を形成する原料単量体を数種用いた少なくとも1種の共重合体であることがより好ましい。
 これらの中でも、メチレン基数のアミド基数に対する比[CH]/[NHCO]が8.0未満の脂肪族ポリアミドであって、ポリカプロアミド(ポリアミド6)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリヘキサメチレンアゼラミド(ポリアミド69)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリ(カプロアミド/ヘキサメチレンアジパミド)共重合体(ポリアミド6/66)、ポリ(カプロアミド/ヘキサメチレンアゼラミド)共重合体(ポリアミド6/69)、ポリ(カプロアミド/ヘキサメチレンセバカミド)共重合体(ポリアミド6/610)、ポリ(カプロアミド/ヘキサメチレンドデカミド)共重合体(ポリアミド6/612)、ポリ(カプロアミド/ドデカンアミド)共重合体(ポリアミド6/12)、ポリ(カプロアミド/ヘキサメチレンアジパミド/ヘキサメチレンセバカミド)共重合体(ポリアミド6/66/610)、ポリ(カプロアミド/ヘキサメチレンアジパミド/ヘキサメチレンドデカミド)共重合体(ポリアミド6/66/612)、ポリ(カプロアミド/ヘキサメチレンアジパミド/ドデカンアミド)共重合体(ポリアミド6/66/12)、ポリ(カプロアミド/ヘキサメチレンセバカミド/ドデカンアミド)共重合体(ポリアミド6/610/12)、ポリ(カプロアミド/ヘキサメチレンドデカミド/ドデカンアミド)共重合体(ポリアミド6/612/12)、及びこれらの混合物が更に好ましく、メチレン基数のアミド基数に対する比[CH]/[NHCO]が8.0未満の脂肪族ポリアミドであって、ポリカプロアミド(ポリアミド6)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリ(カプロアミド/ヘキサメチレンアジパミド)共重合体(ポリアミド6/66)、ポリ(カプロアミド/ヘキサメチレンセバカミド)共重合体(ポリアミド6/610)、ポリ(カプロアミド/ヘキサメチレンドデカミド)共重合体(ポリアミド6/612)、ポリ(カプロアミド/ドデカンアミド)共重合体(ポリアミド6/12)、ポリ(カプロアミド/ヘキサメチレンアジパミド/ヘキサメチレンセバカミド)共重合体(ポリアミド6/66/610)、ポリ(カプロアミド/ヘキサメチレンアジパミド/ヘキサメチレンドデカミド)共重合体(ポリアミド6/66/612)、ポリ(カプロアミド/ヘキサメチレンアジパミド/ドデカンアミド)共重合体(ポリアミド6/66/12)、及びこれらの混合物が特に好ましい。
 例えば、ポリ(カプロアミド/ヘキサメチレンアジパミド)共重合体(ポリアミド6/66)の溶解性パラメーターSP値は、ポリカプロアミド(ポリアミド6)とポリヘキサメチレンアジパミド(ポリアミド66)の溶解性パラメーターSP値は26.9(MPa)1/2であることから、構成繰り返し単位のモル比にかかわらず、溶解性パラメーターSP値は26.9(MPa)1/2である。
 前記ポリアミド(A1)の中でも最高の溶解性パラメーターSP値を有するポリヘキサメチレンドデカミド(ポリアミド612,SP値:24.1)やポリノナメチレンアゼラミド(ポリアミド99,SP値:24.1)が選択される場合、ポリ(カプロアミド/ヘキサメチレンアジパミド)共重合体(ポリアミド6/66)の構成繰り返し単位のモル比にかかわらず、SP値は26.9(MPa)1/2であることから、溶解性パラメーターSP値の差の絶対値は2.8(MPa)1/2となり、本願の規定範囲内である。従って、ポリアミド(A1)として、ポリヘキサメチレンドデカミド(ポリアミド612,SP値:24.1)やポリノナメチレンアゼラミド(ポリアミド99,SP値:24.1)とポリアミド(A2)として、ポリ(カプロアミド/ヘキサメチレンアジパミド)共重合体(ポリアミド6/66,SP値:26.9)の組み合わせは本願の規定範囲内である。
 一方、前記ポリアミド(A1)の中でも最低の溶解性パラメーターSP値を有するポリドデカンアミド(ポリアミド12,SP値:22.5)やポリドデカメチレンドデカミド(ポリアミド1212,SP値:22.5)が選択される場合、ポリ(カプロアミド/ヘキサメチレンアジパミド)共重合体(ポリアミド6/66)の構成繰り返し単位のモル比にかかわらず、SP値は26.9(MPa)1/2であることから、溶解性パラメーターSP値の差の絶対値は4.4(MPa)1/2となり、本願の規定範囲内である。従って、ポリアミド(A1)として、ポリドデカンアミド(ポリアミド12,SP値:22.5)やポリドデカメチレンドデカミド(ポリアミド1212,SP値:22.5)とポリアミド(A2)として、ポリ(カプロアミド/ヘキサメチレンアジパミド)共重合体(ポリアミド6/66,SP値:26.9)の組み合わせは本願の規定範囲内である。
 尚、ポリ(カプロアミド/ヘキサメチレンアジパミド)共重合体(ポリアミド6/66)のメチレン基数のアミド基数に対する比[CH]/[NHCO]は、ポリカプロアミド(ポリアミド6)とポリキサメチレンアジパミド(ポリアミド66)のメチレン基数のアミド基数に対する比[CH]/[NHCO]は5.0であることから、構成繰り返し単位のモル比にかかわらず、メチレン基数のアミド基数に対する比[CH]/[NHCO]は5.0である。即ち、ポリ(カプロアミド/ヘキサメチレンアジパミド)共重合体(ポリアミド6/66)のように、メチレン基数のアミド基数に対する比[CH]/[NHCO]が8.0未満の脂肪族ポリアミドを形成する原料単量体(構成繰り返し単位)を数種用いた共重合体は、構成繰り返し単位のモル比によらず、メチレン基数のアミド基数に対する比[CH]/[NHCO]は8.0未満となる。
 例えば、ポリ(カプロアミド/ヘキサメチレンセバカミド)共重合体(ポリアミド6/610)の溶解性パラメーターSP値は、構成繰り返し単位のモル比により変わる。ポリカプロアミド(ポリアミド6)の溶解性パラメーターSP値は26.9(MPa)1/2であり、ポリヘキサメチレンセバカミド(ポリアミド610)の溶解性パラメーターSP値は24.9(MPa)1/2であることから、構成単位の繰り返し単位のモル比が分かれば、算出可能で、ポリ(カプロアミド/ヘキサメチレンセバカミド)共重合体(ポリアミド6/610)のカプロアミド単位/ヘキサメチレンセバカミド単位が0.5:99.5~99.5:0.5(モル比)であるポリアミド共重合体の溶解性パラメーターSP値は、24.9(MPa)1/2以上26.9(MPa)1/2以下となる。
 このポリ(カプロアミド/ヘキサメチレンセバカミド)共重合体(ポリアミド6/610)に対して、前記ポリアミド(A1)の中でも最高の溶解性パラメーターSP値を有するポリヘキサメチレンドデカミド(ポリアミド612,SP値:24.1)やポリノナメチレンアゼラミド(ポリアミド99,SP値:24.1)が選択される場合、溶解性パラメーターSP値の差の絶対値は、0.8(MPa)1/2以上2.8(MPa)1/2以下となる。溶解性パラメーターSP値の差の絶対値が1.8(MPa)1/2以上4.5(MPa)1/2以下を満たすためには、ポリ(カプロアミド/ヘキサメチレンセバカミド)共重合体(ポリアミド6/610)のカプロアミド単位/ヘキサメチレンセバカミド単位が50.0:50.0~99.5:0.5(モル比)であるポリアミド共重合体が選択される。従って、ポリアミド(A1)として、ポリヘキサメチレンドデカミド(ポリアミド612,SP値:24.1)やポリノナメチレンアゼラミド(ポリアミド99,SP値:24.1)とポリアミド(A2)として、ポリ(カプロアミド/ヘキサメチレンセバカミド)共重合体(ポリアミド6/610)のカプロアミド単位/ヘキサメチレンセバカミド単位が50.0:50.0~99.5:0.5(モル比)であるポリアミド共重合体の組み合わせは本願の規定範囲内である。
 一方、このポリ(カプロアミド/ヘキサメチレンセバカミド)共重合体(ポリアミド6/610)に対して、前記ポリアミド(A1)の中でも最低の溶解性パラメーターSP値を有するポリドデカンアミド(ポリアミド12,SP値:22.5)やポリドデカメチレンドデカミド(ポリアミド1212,SP値:22.5)が選択される場合、溶解性パラメーターSP値の差の絶対値は、2.41(MPa)1/2以上4.39(MPa)1/2以下となり、カプロアミド単位/ヘキサメチレンセバカミド単位が0.5:99.5~99.5:0.5(モル比)であるポリ(カプロアミド/ヘキサメチレンセバカミド)共重合体(ポリアミド6/610)の全ての範囲で、溶解性パラメーターSP値の差の絶対値が1.8(MPa)1/2以上4.5以下(MPa)1/2を満たす。従って、ポリアミド(A1)として、ポリドデカンアミド(ポリアミド12,SP値:22.5)やポリドデカメチレンドデカミド(ポリアミド1212,SP値:22.5)とポリアミド(A2)として、ポリ(カプロアミド/ヘキサメチレンセバカミド)共重合体(ポリアミド6/610)のカプロアミド単位/ヘキサメチレンセバカミド単位が0.5:99.5~99.5:0.5(モル比)であるポリアミド共重合体の組み合わせは本願の規定範囲内である。尚、ポリ(カプロアミド/ヘキサメチレンセバカミド)共重合体(ポリアミド6/610)のメチレン基数のアミド基数に対する比[CH]/[NHCO]は、構成繰り返し単位のモル比により変わる。ポリカプロアミド(ポリアミド6)のメチレン基数のアミド基数に対する比[CH]/[NHCO]は5.0であり、ポリヘキサメチレンセバカミド(ポリアミド610)のメチレン基数のアミド基数に対する比[CH]/[NHCO]は7.0であることから、構成単位の繰り返し単位のモル比が分かれば、算出可能で、ポリ(カプロアミド/ヘキサメチレンセバカミド)共重合体(ポリアミド6/610)のカプロアミド単位/ヘキサメチレンセバカミド単位が80:20(モル比)の場合、メチレン基数のアミド基数に対する比[CH]/[NHCO]は、5.0×0.80+7.0×0.20=5.4となる。ヘキサメチレンセバカミド単位のモル比が増加すれば、メチレン基数のアミド基数に対する比[CH]/[NHCO]は増加するが、少なくともメチレン基数のアミド基数に対する比[CH]/[NHCO]は8.0以上となることはない。即ち、ポリ(カプロアミド/ヘキサメチレンセバカミド)共重合体(ポリアミド6/610)のように、メチレン基数のアミド基数に対する比[CH]/[NHCO]が8.0未満の脂肪族ポリアミドを形成する原料単量体(構成繰り返し単位)を数種用いた共重合体は、構成繰り返し単位のモル比によらず、メチレン基数のアミド基数に対する比[CH]/[NHCO]は8.0未満となる。
 ポリ(カプロアミド/ドデカンアミド)共重合体(ポリアミド6/12)の溶解性パラメーターSP値は、構成繰り返し単位のモル比により変わる。ポリカプロアミド(ポリアミド6)の溶解性パラメーターSP値は26.9(MPa)1/2であり、ポリドデカンアミド(ポリアミド12)の溶解性パラメーターSP値は22.5(MPa)1/2であることから、構成単位の繰り返し単位のモル比が分かれば、算出可能で、ポリ(カプロアミド/ドデカンアミド)共重合体(ポリアミド6/12)のカプロアミド単位/ドデカンアミド単位が0.5:99.5~99.5:0.5(モル比)であるポリアミド共重合体の溶解性パラメーターSP値は、22.5(MPa)1/2以上26.9(MPa)1/2以下となる。
 このポリ(カプロアミド/ドデカンアミド)共重合体(ポリアミド6/12)に対して、前記ポリアミド(A1)の中でも最高の溶解性パラメーターSP値を有するポリヘキサメチレンドデカミド(ポリアミド612,SP値:24.1)やポリノナメチレンアゼラミド(ポリアミド99,SP値:24.1)が選択される場合、溶解性パラメーターSP値の差の絶対値は、0(MPa)1/2以上2.8(MPa)1/2以下となる。溶解性パラメーターSP値の差の絶対値が1.8(MPa)1/2以上4.5(MPa)1/2以下を満たすためには、ポリ(カプロアミド/ドデカンアミド)共重合体(ポリアミド6/12)のカプロアミド単位/ドデカンアミド単位が77.28:22.72~99.5:0.5(モル比)であるポリアミド共重合体が選択される。従って、ポリアミド(A1)として、ポリヘキサメチレンドデカミド(ポリアミド612,SP値:24.1)やポリノナメチレンアゼラミド(ポリアミド99,SP値:24.1)とポリアミド(A2)として、ポリ(カプロアミド/ドデカンアミド)共重合体(ポリアミド6/12)のカプロアミド単位/ドデカンアミド単位が77.28:22.72~99.5:0.5(モル比)であるポリアミド共重合体の組み合わせは本願の規定範囲内である。
 一方、このポリ(カプロアミド/ドデカンアミド)共重合体(ポリアミド6/12)に対して、前記ポリアミド(A1)の中でも最低の溶解性パラメーターSP値を有するポリドデカンアミド(ポリアミド12,SP値:22.5)やポリドデカメチレンドデカミド(ポリアミド1212,SP値:22.5)が選択される場合、溶解性パラメーターSP値の差の絶対値は、0(MPa)1/2以上4.4(MPa)1/2以下となる。溶解性パラメーターSP値の差の絶対値が1.8(MPa)1/2以上4.5(MPa)1/2以下を満たすためには、ポリ(カプロアミド/ドデカンアミド)共重合体(ポリアミド6/12)のカプロアミド単位/ドデカンアミド単位が40.9:50.1~99.5:0.5(モル比)であるであるポリアミド共重合体が選択される。従って、ポリアミド(A1)として、ポリドデカンアミド(ポリアミド12,SP値:22.5)やポリドデカメチレンドデカミド(ポリアミド1212,SP値:22.5)とポリアミド(A2)として、ポリ(カプロアミド/ドデカンアミド)共重合体(ポリアミド6/12)のカプロアミド単位/ドデカンアミド単位が40.9:50.1~99.5:0.5(モル比)であるポリアミド共重合体の組み合わせは本願の規定範囲内である。
 尚、ポリ(カプロアミド/ドデカンアミド)共重合体(ポリアミド6/12)のメチレン基数のアミド基数に対する比[CH]/[NHCO]は、構成繰り返し単位のモル比により変わる。ポリカプロアミド(ポリアミド6)のメチレン基数のアミド基数に対する比[CH]/[NHCO]は5.0であり、ポリドデカンアミド(ポリアミド12)のメチレン基数のアミド基数に対する比[CH]/[NHCO]は11.0であることから、構成単位の繰り返し単位のモル比が分かれば、算出可能で、ポリ(カプロアミド/ドデカンアミド)共重合体(ポリアミド6/12)のカプロアミド単位/ドデカンアミド単位が50.1:49.9~99.5:0.5(モル比)であるポリアミド共重合体は、メチレン基数のアミド基数に対する比[CH]/[NHCO]が8.0未満であり、前記ポリアミド(A1)の中でも最低の溶解性パラメーターSP値を有するポリドデカンアミド(ポリアミド12,SP値:22.5)やポリドデカメチレンドデカミド(ポリアミド1212,SP値:22.5)が選択される場合、ポリアミド(A2)として、ポリ(カプロアミド/ドデカンアミド)共重合体(ポリアミド6/12)のカプロアミド単位/ドデカンアミド単位が50.1:49.9~99.5:0.5(モル比)であるポリアミド共重合体が好ましい。
 ポリアミド(A1)及びポリアミド(A2)の製造装置としては、バッチ式反応釜、一槽式ないし多槽式の連続反応装置、管状連続反応装置、一軸型混練押出機、二軸型混練押出機等の混練反応押出機等、公知のポリアミド製造装置が挙げられる。重合方法としては、溶融重合、溶液重合、固相重合等の公知の方法を用い、常圧、減圧、加圧操作を繰り返して重合することができる。これらの重合方法は、単独で、あるいは適宜、組合せて用いることができる。
 JIS K-6920に準拠して、96%硫酸、ポリマー濃度1%、25℃の条件下にて測定したポリアミド(A1)及びポリアミド(A2)の相対粘度は、得られる積層チューブの機械的性質を確保することと、溶融時の粘度を適正範囲にして積層チューブの望ましい成形性を確保する観点から、1.5以上5.0以下であることが好ましく、1.8以上4.5以下であることがより好ましい。
 脂肪族ポリアミド組成物(A)の1gあたりの末端アミノ基濃度を[A](μeq/g)、末端カルボキシル基濃度を[B](μeq/g)とした時、後記ビニルアルコール系重合体組成物(B)との層間接着性及びその耐久性を十分に得る観点から、[A]>[B]+10であることが好ましく、[A]>[B]+15であることがより好ましく、[A]>[B]+20であることが更に好ましい。更に、ポリアミドの溶融安定性及びゲル状物発生抑制の観点から、[A]>30であることが好ましく、30<[A]<140であることがより好ましい。
 ここで、脂肪族ポリアミド組成物(A)の1gあたりの末端アミノ基濃度を[A](μeq/g)、末端カルボキシル基濃度を[B](μeq/g)は、ポリアミド(A1)及びポリアミド(A2)のそれぞれの末端アミノ基濃度(μeq/g)、末端カルボキシル基濃度(μeq/g)にそれぞれの混合質量比を乗じ、両者を加えた値とする。 尚、末端アミノ基濃度(μeq/g)は、該ポリアミドをフェノール/メタノール混合溶液に溶解し、0.05Nの塩酸で滴定して測定することができる。末端カルボキシル基濃度(μeq/g)は、該ポリアミドをベンジルアルコールに溶解し、0.05Nの水酸化ナトリウム溶液で滴定して測定することができる。
 ポリアミド(A1)及びポリアミド(A2)は、前記ポリアミド原料を、アミン類の存在下に、溶融重合、溶液重合、固相重合等の公知の方法で、重合又は共重合することにより製造される。あるいは、重合後、アミン類の存在下に、溶融混練することにより製造される。このように、アミン類は、重合時の任意の段階、あるいは、重合後、溶融混練時の任意の段階において添加できるが、得られる積層チューブの層間接着性を考慮した場合、重合時の段階で添加することが好ましい。
 前記アミン類としては、モノアミン、ジアミン、トリアミン、テトラアミン、及びポリアミンが挙げられる。また、アミン類の他に、前記の末端基濃度条件の範囲を外れない限り、必要に応じて、モノカルボン酸、ジカルボン酸、トリカルボン酸等のカルボン酸類を添加しても良い。これら、アミン類、カルボン酸類は、同時に添加しても、別々に添加しても良い。また、後記例示のアミン類、カルボン酸類は、1種又は2種以上を用いることができる。
 添加するモノアミンの具体例としては、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、2-エチルヘキシルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、オクタデシルアミン、オクタデシレンアミン、エイコシルアミン、ドコシルアミン等の脂肪族モノアミン;シクロヘキシルアミン、メチルシクロヘキシルアミン等の脂環式モノアミン;ベンジルアミン、β-フエニルメチルアミン等の芳香族モノアミン;N,N-ジメチルアミン、N,N-ジエチルアミン、N,N-ジプロピルアミン、N,N-ジブチルアミン、N,N-ジヘキシルアミン、N,N-ジオクチルアミン等の対称第二アミン;N-メチル-N-エチルアミン、N-メチル-N-ブチルアミン、N-メチル-N-ドデシルアミン、N-メチル-N-オクタデシルアミン、N-エチル-N-ヘキサデシルアミン、N-エチル-N-オクタデシルアミン、N-プロピル-N-ヘキサデシルアミン、N-プロピル-N-ベンジルアミン等の混成第二アミンが挙げられる。これらは1種又は2種以上を用いることができる。
 添加するジアミンの具体例としては、1,2-エタンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミン、1,13-トリデカンジアミン、1,14-テトラデカンジアミン、1,15-ペンタデカンジアミン、1,16-ヘキサデカンジアミン、1,17-ヘプタデカンジアミン、1,18-オクタデカンジアミン、2-メチル-1,5-ペンタンジアミン、3-メチル-1,5-ペンタンジアミン、2-メチル-1,8-オクタンジアミン、2,2,4-トリメチル-1,6-ヘキサンジアミン、2,4,4-トリメチル-1,6-ヘキサンジアミン、5-メチル-1,9-ノナンジアミン等の脂肪族ジアミン;1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、2,2-ビス(3-メチル-4-アミノシクロヘキシル)プロパン、5-アミノ-2,2,4-トリメチル-1-シクロペンタンメチルアミン、5-アミノ-1,3,3-トリメチルシクロヘキサンメチルアミン、ビス(アミノプロピル)ピペラジン、ビス(アミノエチル)ピペラジン、2,5-ビス(アミノメチル)ノルボルナン、2,6-ビス(アミノメチル)ノルボルナン、3,8-ビス(アミノメチル)トリシクロデカン、4,9-ビス(アミノメチル)トリシクロデカン等の脂環式ジアミン;m-キシリレンジアミン、p-キシリレンジアミン等の芳香族ジアミンが挙げられる。これらは1種又は2種以上を用いることができる。
 添加するトリアミン及びテトラアミンの具体例としては、1,2,3-トリアミノプロパン、1,2,3-トリアミノ-2-メチルプロパン、1,2,4-トリアミノブタン、1,2,3,4-テトラミノブタン、1,3,5-トリアミノシクロヘキサン、1,2,4-トリアミノシクロヘキサン、1,2,3-トリアミノシクロヘキサン、1,2,4,5-テトラミノシクロヘキサン、1,3,5-トリアミノベンゼン、1,2,4-トリアミノベンゼン、1,2,3-トリアミノベンゼン、1,2,4,5-テトラミノベンゼン、1,2,4-トリアミノナフタレン、2,5,7-トリアミノナフタレン、2,4,6-トリアミノピリジン、1,2,7,8-テトラミノナフタレン、1,4,5,8-テトラミノナフタレン等が挙げられる。これらは1種又は2種以上を用いることができる。
 添加するポリアミンは、第1級アミノ基(-NH)及び/又は第2級アミノ基(-NH-)を複数有する化合物であればよく、例えば、ポリアルキレンイミン、ポリアルキレンポリアミン、ポリビニルアミン、ポリアリルアミン等が挙げられる。これらは1種又は2種以上を用いることができる。活性水素を備えたアミノ基は、ポリアミンの反応点である。
 ポリアルキレンイミンは、エチレンイミン、プロピレンイミン等のアルキレンイミンをイオン重合させる方法、或いは、アルキルオキサゾリンを重合させた後、該重合体を部分加水分解又は完全加水分解させる方法等で製造される。ポリアルキレンポリアミンとしては、例えば、ジエチレントリアミン、トリエチレンテトラミン、ペンタエチレンヘキサミン、或いは、エチレンジアミンと多官能化合物との反応物等が挙げられる。ポリビニルアミンは、例えば、N-ビニルホルムアミドを重合させてポリ(N-ビニルホルムアミド)とした後、該重合体を塩酸等の酸で部分加水分解又は完全加水分解することにより得られる。ポリアリルアミンは、一般に、アリルアミンモノマーの塩酸塩を重合させた後、塩酸を除去することにより得られる。これらは1種又は2種以上を用いることができる。これらの中でも、ポリアルキレンイミンが好ましい。
 ポリアルキレンイミンとしては、エチレンイミン、プロピレンイミン、1,2-ブチレンイミン、2,3-ブチレンイミン、1,1-ジメチルエチレンイミン等の炭素原子数2以上8以下のアルキレンイミンの1種又は2種以上を常法により重合して得られる単独重合体及び/又は共重合体が挙げられる。これらは1種又は2種以上を用いることができる。これらの中でも、ポリエチレンイミンがより好ましい。ポリアルキレンイミンは、アルキレンイミンを原料として、これを開環重合させて得られる1級アミン、2級アミン、及び3級アミンを含む分岐型ポリアルキレンイミン、あるいはアルキルオキサゾリンを原料とし、これを重合させて得られる1級アミンと2級アミンのみを含む直鎖型ポリアルキレンイミン、三次元状に架橋された構造のいずれであってもよい。更に、エチレンジアミン、プロピレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジプロピレントリアミン、トリプロピレンテトラミン、ジヘキサメチレントリアミン、アミノプロピルエチレンジアミン、ビスアミノプロピルエチレンジアミン等の単量体を共重合させたものであってもよい。ポリアルキレンイミンは、通常、含まれる窒素原子上の活性水素原子の反応性に由来して、第3級アミノ基の他、活性水素原子をもつ第1級アミノ基及び/又は第2級アミノ基(イミノ基)を有する。
 ポリアルキレンイミン中の窒素原子数は特に制限されず、4以上3,000であることが好ましく、8以上1,500以下であることがより好ましく、11以上500以下であることが更に好ましい。また、ポリアルキレンイミンの数平均分子量は、100以上20,000以下であることが好ましく、200以上10,000以下であることがより好ましく、500以上8,000以下であることが更に好ましい。
 一方、添加するカルボン酸類としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、カプリン酸、ペラルゴン酸、ウンデカン酸、ラウリル酸、トリデカン酸、ミリスチン酸、ミリストレイン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、アラキン酸、ベヘン酸、エルカ酸等の脂肪族モノカルボン酸;シクロヘキサンカルボン酸、メチルシクロヘキサンカルボン酸等の脂環式モノカルボン酸;安息香酸、トルイン酸、エチル安息香酸、フェニル酢酸等の芳香族モノカルボン酸;マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、ヘキサデカン二酸、ヘキサデセン二酸、オクタデカン二酸、オクタデセン二酸、エイコサン二酸、エイコセン二酸、ドコサン二酸、ジグリコール酸、2,2,4-トリメチルアジピン酸、2,4,4-トリメチルアジピン酸等の脂肪族ジカルボン酸;1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、ノルボルナンジカルボン酸等の脂環式ジカルボン酸;テレフタル酸、イソフタル酸、フタル酸、m-キシリレンジカルボン酸、p-キシリレンジカルボン酸、1,4-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸等の芳香族ジカルボン酸;1,2,4-ブタントリカルボン酸、1,3,5-ペンタントリカルボン酸、1,2,6-ヘキサントリカルボン酸、1,3,6-ヘキサントリカルボン酸、1,3,5-シクロヘキサントリカルボン酸、トリメシン酸等のトリカルボン酸が挙げられる。これらは1種又は2種以上を用いることができる。
 添加されるアミン類の使用量は、製造しようとするポリアミド(A1)及びポリアミド(A2)の末端アミノ基濃度、末端カルボキシル基濃度、及び相対粘度を考慮して、公知の方法により適宜決められる。通常、ポリアミド原料1モルに対して(繰り返し単位を構成する単量体又は単量体ユニット1モル)、アミン類の添加量は、十分な反応性を得ることと、所望の粘度を有するポリアミドの製造を容易とする観点から、0.5meq/モル以上20meq/モル以下であることが好ましく、1meq/モル以上10meq/モル以下であることがより好ましい(アミノ基の当量(eq)は、カルボキシル基と1:1(モル比)で反応してアミド基を形成するアミノ基の量を1当量とする。)。
 ポリアミド(A1)及びポリアミド(A2)においては、前記例示のアミン類のうち、末端基濃度の条件を満たすために、ジアミン及び/又はポリアミンを重合時に添加することが好ましく、ゲル発生抑制という観点から、脂肪族ジアミン、脂環式ジアミン、及びポリアルキレンイミンからなる群より選ばれる少なくとも1種を重合時に添加することがより好ましい。
 [エラストマー重合体(A3)]
 脂肪族ポリアミド組成物(A)は、カルボキシル基及び/又は酸無水物基を有する不飽和化合物から誘導される構成単位を含有するエラストマー重合体(A3)を含有する(以下、エラストマー重合体(A3)と称する場合がある。)。
 エラストマー重合体(A3)としては、カルボキシル基及び/又は酸無水物基を有する不飽和化合物から誘導される構成単位を含有する、(エチレン及び/又はプロピレン)/α-オレフィン系共重合体、(エチレン及び/又はプロピレン)/(α,β-不飽和カルボン酸エステル)系共重合体、芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体が挙げられ、これらは1種又は2種以上を用いることができる。
 前記(エチレン及び/又はプロピレン)/α-オレフィン系共重合体は、エチレン及び/又はプロピレンと炭素原子数3以上のα-オレフィンを共重合した重合体であり、炭素原子数3以上のα-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、9-メチル-1-デセン、11-メチル-1-ドデセン、12-エチル-1-テトラデセン等が挙げられる。これらは1種又は2種以上を用いることができる。また、1,4-ペンタジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、1,4-オクタジエン、1,5-オクタジエン、1,6-オクタジエン、1,7-オクタジエン、2-メチル-1,5-ヘキサジエン、6-メチル-1,5-ヘプタジエン、7-メチル-1,6-オクタジエン、4-エチリデン-8-メチル-1,7-ノナジエン、4,8-ジメチル-1,4,8-デカトリエン(DMDT)、ジシクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、5-ビニルノルボルネン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、6-クロロメチル-5-イソプロペニル-2-ノルボルネン、2,3-ジイソプロピリデン-5-ノルボルネン、2-エチリデン-3-イソプロピリデン-5-ノルボルネン、2-プロペニル-2,5-ノルボルナジエン等の非共役ジエンのポリエンを共重合してもよい。これらは1種又は2種以上を用いることができる。
 前記(エチレン及び/又はプロピレン)/(α,β-不飽和カルボン酸エステル)系共重合体は、エチレン及び/又はプロピレンとα,β-不飽和カルボン酸エステル単量体とを共重合した重合体であり、α,β-不飽和カルボン酸エステル単量体としては、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸プロピル、メタクリル酸プロピル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸ペンチル、メタクリル酸ペンチル、アクリル酸ヘキシル、メタクリル酸ヘキシル、アクリル酸ヘプチル、メタクリル酸ヘプチル、アクリル酸オクチル、メタクリル酸オクチル、アクリル酸ノニル、メタクリル酸ノニル、アクリル酸デシル、メタクリル酸デシル、アクリル酸2-エチルヘキシル、メタクリル酸2-エチルヘキシル、アクリル酸ヒドロキシエチル、メタクリル酸ヒドロキシエチル、マレイン酸モノメチル、イタコン酸モノメチル、マレイン酸ジメチル、イタコン酸ジメチル等が挙げられる。これらは1種又は2種以上を用いることができる。
 また、前記芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体は、芳香族ビニル化合物系重合体ブロックと共役ジエン化合物系重合体ブロックからなるブロック共重合体であり、芳香族ビニル化合物系重合体ブロックを少なくとも1個と、共役ジエン化合物系重合体ブロックを少なくとも1個有するブロック共重合体が用いられる。前記ブロック共重合体では、共役ジエン化合物系重合体ブロックにおける不飽和結合が水素添加されていてもよい。
 芳香族ビニル化合物系重合体ブロックは、芳香族ビニル化合物に由来する単位から主としてなる重合体ブロックである。その場合の芳香族ビニル化合物としては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、1,5-ジメチルスチレン、2,4-ジメチルスチレン、ビニルナフタレン、ビニルアントラセン、4-プロピルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン等が挙げられ、これらは1種又は2種以上を用いることができる。また、芳香族ビニル化合物系重合体ブロックは、場合により少量の他の不飽和単量体からなる単位を有していてもよい。
 共役ジエン化合物系重合体ブロックは、1,3-ブタジエン、クロロプレン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、4-メチル-1,3-ペンタジエン、1,3-ヘキサジエン等の共役ジエン系化合物の1種又は2種以上から形成された重合体ブロックであり、水素添加した芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体では、その共役ジエン化合物系重合体ブロックにおける不飽和結合部分の一部又は全部が水素添加により飽和結合になっている。
 芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体及びその水素添加物の分子構造は、直鎖状、分岐状、放射状、又はそれら任意の組み合わせのいずれであってもよい。これらの中でも、芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体及び/又はその水素添加物として、1個の芳香族ビニル化合物重合体ブロックと1個の共役ジエン化合物系重合体ブロックが直鎖状に結合したジブロック共重合体、芳香族ビニル化合物系重合体ブロック-共役ジエン化合物系重合体ブロック-芳香族ビニル化合物系重合体ブロックの順に3つの重合体ブロックが直鎖状に結合しているトリブロック共重合体、及びそれらの水素添加物の1種又は2種以上が好ましく用いられ、未水添又は水添スチレン/ブタジエンブロック共重合体、未水添又は水添スチレン/イソプレンブロック共重合体、未水添又は水添スチレン/ブタジエン/スチレンブロック共重合体、未水添又は水添スチレン/イソプレン/スチレンブロック共重合体、未水添又は水添スチレン/(エチレン/ブタジエン)/スチレンブロック共重合体、未水添又は水添スチレン/(イソプレン/ブタジエン)/スチレンブロック共重合体等が挙げられる。これらは1種又は2種以上を用いることができる。
 エラストマー重合体(A3)の構成単位を形成するカルボキシル基を有する不飽和化合物としては、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、メサコン酸、シトラコン酸、グルタコン酸、シス-4-シクロヘキセン-1,2-ジカルボン酸、エンドビシクロ-[2.2.1]-5-ヘプテン-2,3-ジカルボン酸、及びこれらカルボン酸の金属塩等のα,β-不飽和カルボン酸が挙げられる。これらは1種又は2種以上を用いることができる。エラストマー重合体(A3)の構成単位を形成する酸無水物基を有する不飽和化合物としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸、エンドビシクロ-[2.2.1]-5-ヘプテン-2,3-ジカルボン酸無水物等のα,β-不飽和結合を有するジカルボン酸無水物が挙げられる。これらは1種又は2種以上を用いることができる。これらの中でも、α,β-不飽和結合を有するジカルボン酸無水物が好ましく、無水マレイン酸、無水イタコン酸がより好ましい。
 エラストマー重合体(A3)におけるカルボキシル基及び/又は酸無水物基濃度は、低温耐衝撃性の改良効果、後記ビニルアルコール系重合体組成物(B)との層間接着性及びその耐久性を十分に得るとともに、得られる脂肪族ポリアミド組成物(A)の流動性の観点から、25μeq/g以上200μeq/g以下であることが好ましく、50μeq/g以上150μeq/g以下であることがより好ましい。
 尚、エラストマー重合体(A3)におけるカルボキシル基及び/又は酸無水物基濃度は、該エラストマー重合体をトルエン溶液に溶解し、更に、エタノールを加えて調製した試料溶液を用いて、フェノールフタレインを指示薬とし、0.1NのKOHエタノール溶液で滴定して測定することができる。
 脂肪族ポリアミド組成物(A)中のポリアミド(A1)の含有量は、脂肪族ポリアミド組成物(A)100質量%に対して、40質量%以上85質量%以下であり、42質量%以上80質量%以下であることが好ましく、45質量%以上75質量%以下であることがより好ましい。ポリアミド(A1)の含有量が前記の値未満であると、得られる積層チューブの機械的特性及び低温耐衝撃性が劣ることがあり、一方、前記の値を超えると、得られる積層チューブの層間接着性及びその耐久性が劣ることがある。
 脂肪族ポリアミド組成物(A)中のポリアミド(A2)の含有量は、脂肪族ポリアミド組成物(A)100質量%に対して、10質量%以上35質量%以下であり、12質量%以上32質量%以下であることが好ましく、15質量%以上30質量%以下であることがより好ましい。ポリアミド(A2)の含有量が前記の値未満であると、得られる積層チューブの層間接着性及びその耐久性が劣ることがあり、一方、前記の値を超えると、得られる積層チューブの機械的特性及び耐薬品性が劣ることがある。
 脂肪族ポリアミド組成物(A)中のエラストマー重合体(A3)の含有量は、脂肪族ポリアミド組成物(A)100質量%に対して、5質量%以上25質量%以下であり、8質量%以上23質量%以下であることが好ましく、10質量%以上20質量%以下であることがより好ましい。エラストマー重合体(A3)の含有量が前記の値未満であると、得られる積層チューブの低温耐衝撃性、層間接着性及びその耐久性が劣ることがあり、一方、前記の値を超えると、得られる積層チューブの機械的特性及び得られる脂肪族ポリアミド組成物(A)の流動性が劣ることがある。
 ポリアミド(A1)及びポリアミド(A2)とエラストマー重合体(A3)を混合する方法は、特に制限されず、必要に応じて各種添加剤を配合し、従来から知られている各種の方法を採用することができる。例えば、両者をタンブラー及び/又はミキサーを用いて、ポリアミド(A1)、ポリアミド(A2)、及びエラストマー重合体(A3)のペレット同士を前記の混合割合になるように均一にドライブレンドする方法、両者を必要に応じて添加される他の成分と共に、成形時に使用する濃度で予めドライブレンドし、溶融混練する方法等により製造することができる。溶融混練は、単軸押出機、二軸押出機、ニーダー、バンバリーミキサー等の混練機を使用して行うことができる。
 脂肪族ポリアミド組成物(A)は、その他の熱可塑性樹脂との混合物であってもよい。脂肪族ポリアミド組成物(A)100質量%に対して、ポリアミド(A1)、ポリアミド(A2)、及びエラストマー重合体(A3)の合計含有量は、80質量%以上であることが好ましく、85質量%以上であることがより好ましい。
 混合するその他の熱可塑性樹脂としては、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、超高分子量ポリエチレン(UHMWPE)、ポリプロピレン(PP)、ポリブテン(PB)、ポリメチルペンテン(TPX)、後記未変性エチレン/ビニルエステル系共重合体ケン化物(未変性EVOH系重合体)等のポリオレフィン系樹脂;ポリスチレン(PS)、シンジオタクチックポリスチレン(SPS)、メタクリル酸メチル/スチレン共重合体(MS)、メタクリル酸メチル/スチレン/ブタジエン共重合体(MBS)等のポリスチレン系樹脂;カルボキシル基及びその塩、酸無水物基、エポキシ基等の官能基が含有された前記ポリオレフィン系樹脂及びポリスチレン系樹脂;ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリエチレンイソフタレート(PEI)、ポリ(エチレンテレフタレート/エチレンイソフタレート)共重合体(PET/PEI)、ポリトリメチレンテレフタレート(PTT)、ポリシクロヘキサンジメチレンテレフタレート(PCT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリアリレート(PAR)、液晶ポリエステル(LCP)、ポリ乳酸(PLA)、ポリグリコール酸(PGA)等のポリエステル系樹脂;ポリアセタール(POM)、ポリフェニレンエーテル(PPO)等のポリエーテル系樹脂;ポリサルホン(PSU)、ポリエーテルスルホン(PESU)、ポリフェニルサルホン(PPSU)等のポリサルホン系樹脂;ポリフェニレンスルフィド(PPS)、ポリチオエーテルサルホン(PTES)等のポリチオエーテル系樹脂;ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルエーテルエーテルケトン(PEEEK)、ポリエーテルエーテルケトンケトン(PEEKK)、ポリエーテルケトンケトンケトン(PEKKK)、ポリエーテルケトンエーテルケトンケトン(PEKEKK)等のポリケトン系樹脂;ポリアクリロニトリル(PAN)、ポリメタクリロニトリル、アクリロニトリル/スチレン共重合体(AS)、メタクリロニトリル/スチレン共重合体、アクリロニトリル/ブタジエン/スチレン共重合体(ABS)、アクリロニトリル/ブタジエン共重合体(NBR)等のポリニトリル系樹脂;ポリメタクリル酸メチル(PMMA)、ポリメタクリル酸エチル(PEMA)等のポリメタクリレート系樹脂;ポリビニルアルコール(PVA)、ポリ塩化ビニリデン(PVDC)、ポリ塩化ビニル(PVC)、塩化ビニル/塩化ビニリデン共重合体、塩化ビニリデン/アクリル酸メチル共重合体等のポリビニル系樹脂;酢酸セルロース、酪酸セルロース等のセルロース系樹脂;ポリカーボネート(PC)等のポリカーボネート系樹脂;熱可塑性ポリイミド(TPI)、ポリエーテルイミド、ポリエステルイミド、ポリアミドイミド(PAI)、ポリエステルアミドイミド等のポリイミド系樹脂;熱可塑性ポリウレタン系樹脂;ポリアミドエラストマー、ポリウレタンエラストマー、ポリエステルエラストマー等が挙げられ、場合により、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、ポリテトラフルオロエチレン(PTFE)、ポリクロルフルオロエチレン(PCTFE)、テトラフルオロエチレン/エチレン共重合体(ETFE)、エチレン/クロロトリフルオロエチレン共重合体(ECTFE)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/ヘキサフルオロプロピレン/ビニリデンフルオライド共重合体(THV)、テトラフルオロエチレン/ヘキサフルオロプロピレン/フッ化ビニリデン/パーフルオロ(アルキルビニルエーテル)共重合体、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン/パーフルオロ(アルキルビニルエーテル)共重合体、クロロトリフルオロエチレン/パーフルオロ(アルキルビニルエーテル)/テトラフルオロエチレン共重合体(CPT)等のフッ素系樹脂が挙げられる。これらは1種又は2種以上を用いることができる。
 更に、脂肪族ポリアミド組成物(A)には、必要に応じて、酸化防止剤、熱安定剤、紫外線吸収剤、光安定化剤、滑剤、無機充填剤、帯電防止剤、難燃剤、結晶化促進剤、着色剤等を添加してもよい。
 2.(b)層
 積層チューブの(b)層は、ビニルアルコール系重合体組成物(B)を含む。
 [ビニルアルコール系重合体組成物(B)]
 ビニルアルコール系重合体組成物(B)は、下記(1)式で表わされる側鎖1,2-ジオール単位を含有するビニルアルコール系重合体(B1)及びエラストマー重合体(B2)を含み、側鎖1,2-ジオール単位を含有するビニルアルコール系重合体(B1)は、ビニルアルコール系重合体組成物(B)中に、60質量%以上95質量%以下含まれ、エラストマー重合体(B2)は、カルボキシル基及び/又は酸無水物基を有する不飽和化合物から誘導される構成単位を含有し、ビニルアルコール系重合体組成物(B)中に、5質量%以上40質量%以下含まれる(以下、ビニルアルコール系重合体組成物(B)と称する場合がある。)。
Figure JPOXMLDOC01-appb-C000003
 [一般式(1)において、R、R、及びRは、それぞれ独立して水素原子又は有機基を示し、Xは、単結合又は結合鎖を示し、R、R、及びRは、それぞれ独立して水素原子又は有機基を示す。]
 [側鎖1,2-ジオール単位を含有するビニルアルコール系重合体(B1)]
 側鎖1,2-ジオール単位を含有するビニルアルコール系重合体(B1)は、下記(1)式で示される側鎖1,2-ジオール単位を含有する(以下、側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)と称する場合がある。)。かかる重合体は、必要に応じてその他の共重合単量体に由来する単位を含有してもよい。
Figure JPOXMLDOC01-appb-C000004
 [一般式(1)において、R、R、及びRは、それぞれ独立して水素原子又は有機基を示し、Xは、単結合又は結合鎖を示し、R、R、及びRは、それぞれ独立して水素原子又は有機基を示す。]
 (1)式において、RからRは、それぞれ独立して水素原子又は有機基を表す。前記有機基としては、特に限定されるものではないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基等の飽和炭化水素基、フェニル基、ベンジル基等の芳香族炭化水素基が挙げられ、必要に応じて、ハロゲン基、水酸基、アシルオキシ基、アルコキシカルボニル基、カルボキシル基、スルホン酸基等の置換基を有していてもよい。これらの中でも、炭素原子数1以上30以下の飽和炭化水素基又は水素原子が好ましく、炭素原子数1以上15以下の飽和炭化水素基又は水素原子がより好ましく、炭素原子数1以上4以下の飽和炭化水素基又は水素原子が更に好ましく、水素原子が特に好ましい。RからRのすべてが水素原子であることが最も好ましい。
 (1)式において、Xは、単結合又は結合鎖であり、薬液バリア性を好適に維持する観点等から、単結合であることが好ましい。前記結合鎖としては、特に限定されないが、アルキレン、アルケニレン、アルキニレン、フェニレン、ナフチレン等の炭化水素鎖(これらの炭化水素はフッ素、塩素、臭素等のハロゲン等で置換されていても良い。)の他、-O-、-(CHO)-、-(OCH-、-(CHO)CH-等のエーテル結合部位を含む単位;-CO-、-COCO-、-CO(CHCO-、-CO(C)CO-等のカルボニル基を含む単位;-S-、-CS-、-SO-、-SO-等の硫黄原子を含む単位;-NR-、-CONR-、-NRCO-、-CSNR-、-NRCS-、-NRNR-等の窒素原子を含む単位;-HPO-等のリン原子を含む単位等のヘテロ原子を含む単位;-Si(OR)-、-OSi(OR)-、-OSi(OR)O-等の珪素原子を含む単位;-Ti(OR)-、-OTi(OR)-、-OTi(OR)O-等のチタン原子を含む単位;-Al(OR)-、-OAl(OR)-、-OAl(OR)O-等のアルミニウム原子等の金属原子を含む単位等が挙げられる(これらの単位中、Rは、各々独立して任意の置換基であり、水素原子、アルキル基が好ましい。また、mは、自然数であり、通常、1以上30以下であり、1以上15以下であることが好ましく、1以上10以下であることがより好ましい。)。これらは1種又は2種以上を用いることができる。これらの中でも、製造時あるいは使用時の安定性の観点から、炭素原子数1以上10以下の炭化水素鎖がより好ましく、炭素原子数1以上6以下の炭化水素鎖が更に好ましく、炭素原子数1の炭化水素鎖が特に好ましい。
 前記(1)式で表される側鎖1,2-ジオール単位における最も好ましい構造は、RからRのすべてが水素原子であり、Xが単結合である構造単位である。即ち、下記式(1a)で示される構造単位が最も好ましい。
Figure JPOXMLDOC01-appb-C000005
 側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)中の側鎖1,2-ジオール単位の含有量は、良好な低温耐衝撃性、環境応力負荷耐性、特に環境応力負荷後の低温耐衝撃性、及び溶融成形性を確保する観点から、側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)の全単量体単位100モル%に対して、0.1モル%以上30モル%以下であることが好ましく、0.5モル%以上20モル%以下であることがより好ましく、1モル%以上15モル%以下であることが更に好ましい。ここで、側鎖1、2-ジオール単位の含有量は、H-NMRの測定結果より算出することができる。
 側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)を構成するビニルアルコール系重合体は、ビニルエステル系重合体のケン化物としてのポリビニルアルコール系重合体(以下、PVA系重合体と称する場合がある。)及び/又はエチレン/ビニルエステル系共重合体ケン化物(以下、EVOH系重合体と称する場合がある。)を含む概念である。即ち、側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)としては、前記(1)式で表わされる側鎖1,2-ジオール単位を含有するポリビニルアルコール系重合体(B11)及び/又は前記(1)式で表わされる側鎖1,2-ジオール単位を含有するエチレン/ビニルエステル系共重合体ケン化物系重合体(B12)が挙げられる(以下、それぞれ側鎖1,2-ジオール単位含有PVA系重合体(B11)、側鎖1,2-ジオール単位含有EVOH系重合体(B12)と称する場合がある。)。
 側鎖1,2-ジオール単位を含有していないビニルアルコール系重合体を側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)と区別するため、未変性ビニルアルコール系重合体と称する場合があり、側鎖1,2-ジオール単位を含有していないPVA系重合体を側鎖1,2-ジオール単位含有PVA系重合体(B11)と区別するため、未変性PVA系重合体と称する場合があり、側鎖1,2-ジオール単位を含有していないEVOH系重合体を側鎖1,2-ジオール単位含有EVOH系重合体(B12)と区別するため、未変性EVOH系重合体と称する場合がある。
 側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)は、側鎖1,2-ジオール単位を含有していないビニルアルコール系重合体と比較して融点が低く、熱分解開始温度との差が大きく、溶融成形性に優れる。特に、ビニルエステル系重合体のケン化物としての側鎖1,2-ジオール単位を含有していないポリビニルアルコール系重合体(未変性PVA系重合体)は、ビニルアルコール単位以外の含有量は、通常、10モル%以下であり、融点と熱分解温度の差が小さく、溶融成形できない。しかしながら、側鎖1,2-ジオール単位含有PVA系重合体(B11)は、未変性PVA系重合体と比較して融点が低く、熱分解開始温度との差が大きく、溶融成形可能温度範囲が広くなり、溶融成形可能という利点がある。
 前記側鎖1,2-ジオール単位含有PVA系重合体(B11)は、ビニルエステル系単量体、側鎖1,2-ジオール単位となる単量体、及びPVA系重合体としての特性を損なわない範囲で含まれ得るビニルエステル系単量体と共重合可能な単量体との重合体のケン化物であり、ビニルアルコール単位、側鎖1,2-ジオール単位、共重合可能な単量体に由来する単位、及び残存したビニルエステル単位を有する。
 側鎖1,2-ジオール単位含有PVA系重合体(B11)中のビニルアルコール単位及び側鎖1,2-ジオール単位の合計含有量は、薬液バリア性を好適に維持する観点から、側鎖1,2-ジオール単位含有PVA系重合体(B11)の全単量体単位100モル%に対して、60モル%以上100モル%以下であることが好ましく、80モル%以上100モル%以下であることがより好ましい。
 前記側鎖1,2-ジオール単位含有EVOH系重合体(B12)は、エチレン、ビニルエステル系単量体、側鎖1,2-ジオール単位となる単量体、及びEVOH系重合体としての特性を損なわない範囲で含まれ得るビニルエステル系単量体及び/又はエチレンと共重合可能な単量体との共重合体のケン化物であり、エチレン単位、ビニルアルコール単位、側鎖1,2-ジオール単位、共重合可能な単量体に由来する単位、及び残存したビニルエステル単位を有する。
 側鎖1,2-ジオール単位含有EVOH系重合体(B12)中のエチレン単位の含有量は、薬液バリア性を好適に維持する観点から、側鎖1,2-ジオール単位含有EVOH系重合体(B12)の全単量体単位100モル%に対して、10モル%以上40モル%以下であることが好ましく、12モル%以上35モル%以下であることがより好ましく、15モル%以上30モル%以下であることが更に好ましい。ここで、エチレン単位の含有量は、H-NMRの測定結果より算出することができる。
 また、側鎖1,2-ジオール単位含有EVOH系重合体(B12)中のビニルアルコール単位及び側鎖1,2-ジオール単位の合計含有量は、薬液バリア性を好適に維持する観点から、側鎖1,2-ジオール単位含有EVOH系重合体(B12)の全単量体単位100モル%に対して、60モル%以上90モル%以下であることが好ましく、65モル%以上88モル%以下であることがより好ましく、70モル%以上85モル%以下であることが更に好ましい。
 前記ビニルエステル系単量体としては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、イタコン酸ビニル、カプロン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、2-エチルヘキサン酸ビニル、ネオノナン酸ビニル、ネオデカン酸ビニル、バーサチック酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、オレイン酸ビニル、酢酸イソプロペニル、酢酸1-ブテニル、クロロ酢酸ビニル、トリフルオロ酢酸ビニル、メタクリル酸ビニル、クロトン酸ビニル、アジピン酸ビニル、ソルビン酸ビニル、シクロヘキサンカルボン酸ビニル等の脂肪族ビニルエステル;安息香酸ビニル、p-t-ブチル安息香酸ビニル、アセチルサリチル酸ビニル、桂皮酸ビニル等の芳香族ビニルエステルが挙げられる。これらは1種又は2種以上を用いることができる。これらの中でも、入手の容易さ及び製造時の不純物処理効率の観点から、酢酸ビニルが好ましい。
 側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)には、得られる積層チューブの優れた諸特性を損なわない範囲内であれば、他の単量体を共重合することも可能である。他の単量体としては、例えば、プロピレン、1-ブテン、イソブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-ドデセン、1-オクタデセン等のα-オレフィン類;スチレン、α-メチルスチレン等のスチレン類;アクリル酸、メタクリル酸、クロトン酸、フタル酸、(無水)マレイン酸、(無水)イタコン酸等の不飽和酸類又はその塩の不飽和酸類又はその塩、又は炭素原子数1以上18以下のモノ又はジアルキルエステル類;(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド等の炭素原子数1以上18以下のN-アルキル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-(メタ)アクリルアミドプロパンスルホン酸又はその塩、(メタ)アクリルアミドプロピルジメチルアミン又はその酸塩又はその4級塩等の(メタ)アクリルアミド類;N-ビニル-2-ピロリドン、N-ビニル-3-プロピル-2-ピロリドン、N-ビニル-5-メチル-2-ピロリドン、N-ビニル-5,5-ジメチル-2-ピロリドン、N-ビニル-3,5-ジメチル-2-ピロリドン、N-アリル-2-ピロリドン、N-ビニルホルムアミド、N-ビニルアセトアミド等のN-ビニルアミド類;N-メチロール(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、ジメチロール(メタ)アクリルアミド、トリメチロールプロパントリ(メタ)アクリレート等メチロール基含有不飽和単量体;アクリルニトリル、メタクリルニトリル等のシアン化ビニル類;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等の炭素原子数1以上18以下のアルキルビニルエーテル、ヒドロキシアルキルビニルエーテル、アルコキシアルキルビニルエーテル等のビニルエーテル類;塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン、臭化ビニル等のハロゲン化ビニル類;酢酸アリル、塩化アリル、アリル(メタ)アクリレート、トリアリルオキシエチレン、ジアリルマレアート、トリアリルシアヌレート、トリアリルイソシアヌレート、テトラアリルオキシエタン、ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート、アリルグリシジルエーテル、ジアリルシアナミド等のアリル化合物類;2-プロペン-1-オール(アリルアルコール)、3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、6-ヘプテン-1-オール、7-オクテン-1-オール、8-ノネン-1-オール、9-デセン-1-オール、10-ウンデセン-1-オール、10-ドデセン-1-オール、12-トリデセン-2-オール、2-メチル-2-プロペン-1-オール(イソプロペニルアリルアルコール)、1,1-ジメチル-2-プロペン-1-オール(ジメチルアリルアルコール)、3-メチル-3-ブテン-1-オール、2-メチル-3-ブテン-1-オール、1-フェニルエテン-1-オール、2-メチレンプロパン-1,3-ジオール、3-メチレンペンタン-2,4-ジオール、3-メチレン-2,4-ジメチルペンタン-2,4-ジオール、3-メチレン-2,4-ジエチルペンタン-2,4-ジオール、4-メチレンヘプタン-3,5-ジオール、4-メチレン-3,5-ジメチルヘプタン-3,5-ジオール、4-メチレン-3,5-ジエチルヘプタン-3,5-ジオール、5-メチレンノナン-4,6-ジオール、5-メチレン-4,6-ジメチルノナン-4,6-ジオール、5-メチレン-4,6-ジエチルノナン-4,6-ジオール、ヒドロキシメチルビニルエーテル、ヒドロキシエチルビニルエーテル、ヒドロキシプロビルビニルエーテル、ヒドロキシブチルビニルエーテル、ヒドロキシペンチルビニルエーテル、ヒドロキシヘキシルビニルエーテル、ジエチレングリコールモノビニルエーテル、ポリエチレングリコールモノビニルエーテル、1,4-シクロヘキサンジメタノールビニルエーテル等のヒドロキシ基含有不飽和単量体;アリルアセテート、ジメチルアリルアセテート、イソプロペニルアリルアセテート等のアセチル基含有不飽和単量体;N,N-ジメチルアリルアミン、N-アリルプペラジン、3-ピペリジンアクリル酸エチルエステル、2-ビニルピリジン、4-ビニルピリジン、2-メチル-6-ビニルピリジン、5-エチル-2-ビニルピリジン、5-ブテニルピリジン、4-ペンテニルピリジン、2-(4-ピリジル)アリルアルコール等のアミン系不飽和単量体;ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジエトキシシラン、ビニルジメチルエトキシシラン、ビニルイソブチルジメトキシシラン、ビニルエチルジメトキシシラン、ビニルメトキシジブトキシシラン、ビニルジメトキシブトキシシラン、ビニルトリブトキシシラン、ビニルメトキシジヘキシロキシシラン、ビニルジメトキシヘキシロキシシラン、ビニルトリヘキシロキシシラン、ビニルメトキシジオクチロキシシラン、ビニルジメトキシオクチロキシシラン、ビニルトリオクチロキシシラン、ビニルメトキシジラウリロキシシラン、ビニルジメトキシラウリロキシシラン等のビニルシラン類;N-アクリルアミドメチルトリメチルアンモニウムクロライド、N-アクリルアミドエチルトリメチルアンモニウムクロライド、N-アクリルアミドプロピルトリメチルアンモニウムクロライド、2-アクリロキシエチルトリメチルアンモニウムクロライド、2-メタクリロキシエチルトリメチルアンモニウムクロライド、2-ヒドロキシ-3-メタクリロイルオキシプロピルトリメチルアンモニウムクロライド、アリルトリメチルアンモニウムクロライド、メタアリルトリメチルアンモニウムクロライド、3-ブテントリメチルアンモニウムクロライド、ジメチルジアリルアンモニウムクロリド、ジエチルジアリルアンモニウムクロライド、トリメチル-(3-アクリルアミド-3-ジメチルプロピル)-アンモニウムクロリド等のカチオン基含有不飽和化合物類;アセト酢酸ビニルエステル、アセト酢酸アリルエステル、ジアセト酢酸アリルエステル、(メタ)アクリルアセトアセテート、ビニルアセトアセテート等のアセトアセチル基含有不飽和化合物類;アセトアセトキシエチル(メタ)アクリレート、2-シアノアセトアセトキシエチル(メタ)アクリレート、アセトアセトキシプロピル(メタ)アクリレート等のアセトアセトキシアルキル(メタ)アクリレート類;アセトアセトキシエチルクロトナート、アセトアセトキシプロピルクロトナート等のアセトアセトキシアルキルクロトナート類;エチレングリコールジ(メタ)アクリレート、1,2-プロピレングリコールジ(メタ)アクリレート、1,3-プロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等のアルキレングリコール(メタ)アクリレート類;2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)等のオレフィンスルホン酸あるいはその塩;グリシジル(メタ)アクリレート、グリシジルアリルエーテル、グリシジルメタアリルエーテル、3,4-エポキシシクロヘキシル(メタ)アクリレート、グリシジルビニルエーテル等のグリシジル基含有不飽和単量体;1,3-ジアセトキシ-2-メチレンプロパン(2-メチレン-1,3-プロパンジオールジアセテート)、1,3-ジプロピオニルオキシ-2-メチレンプロパン(2-メチレン-1,3-プロパンジオールジプロピオネート)、1,3-ジブチロニルオキシ-2―メチレンプロパン(2-メチレン-1,3-プロパンジオールジブチレート)、2,4-ジアセトキシ-3-メチレンペンタン(3-メチレン-2,4-ペンタンジオールジアセテート)、2,4-ジプロピオニルオキシ-3-メチレンペンタン(3-メチレン-2,4-ペンタンジオールジプロピオネート)、2,4-ジブチロニルオキシ-3-メチレンペンタン(3-メチレン-2,4-ペンタンジオールジブチレート)、3,5-ジアセトキシ-4-メチレンヘプタン(4-メチレン-3,5-ヘプタンジオールジアセテート)、3,5-ジプロピオニルオキシ-4-メチレンヘプタン(4-メチレン-3,5-ヘプタンジオールジプロピオネート)、3,5-ジブチロニルオキシ-4-メチレンヘプタン(4-メチレン-3,5-ヘプタンジオールジブチレート)、4,6--ジアセトキシ-5-メチレンノナン(5-メチレン-4,6-ノナンジオールジアセテート)、4,6-ジプロピオニルオキシ-5-メチレンノナン(4-メチレン-4,6-ノナンジオールジプロピオネート)、4,6-ジブチロニルオキシ-5-メチレンノナン(4-メチレン-4,6-ノナンジオールジブチレート)等のヒドロキシメチルビニリデンジアセテート類;2,3-ジアセトキシ-1-ビニルオキシプロパン、2,3-ジプロピオニルオキシ-1-ビニルオキシ-プロパン、2-アセトキシ-3-プロピオニルオキシ-1-ビニルオキシプロパン、3-アセトキシ-2-プロピオニルオキシ-1-ビニルオキシプロパン、1,2-アセトキシ-4-ビニルオキシブタン、2,3-ジプロピオニルオキシ-1-ビニルオキシ-プロパン、2-アセトキシ-3-プロピオニルオキシ-1-ビニルオキシプロパン、3-アセトキシ-2-プロピオニルオキシ-1-ビニルオキシプロパン等のビニルオキシアルカンジオールジエステル類;1-アリルオキシ-2,3-ジプロピオニルオキシ-プロパン、2-アセトキシ-1-アリルオキシ-3-プロピオニルオキシプロパン、1-アリルオキシ-3-アセトキシ-2-プロピオニルオキシプロパン、1,2-アセトキシ-4-アリルオキシ-ブタン等のアリルオキシアルカンジオールジエステル類等が挙げられる。これらは1種又は2種以上を用いることができる。これら他の単量体単位の含有量は、側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)の全単量体単位100モル%に対して、5モル%以下であることが好ましく、3モル%以下であることがより好ましく、2モル%以下であることが更に好ましい。
 このような側鎖1,2-ジオール単位は、特に限定されないが、[1]下記一般式(2)で示される単量体とビニルエステル系単量体(側鎖1,2-ジオール単位含有EVOH系重合体(B12)の場合には更にエチレン)と共重合して共重合体を得た後、次いでこれをケン化する方法、[2]側鎖1,2-ジオール単位を供給できる単量体として、下記一般式(3)で示されるビニルエチレンカーボネート等とビニルエステル系単量体(側鎖1,2-ジオール単位含有EVOH系重合体(B12)の場合には更にエチレン)と共重合して共重合体を得た後、次いでこれをケン化、脱炭酸する方法、[3]側鎖1,2-ジオール単位を供給できる単量体として、下記一般式(4)で示される2,2-ジアルキル-4-ビニル-1,3-ジオキソラン等とビニルエステル系単量体(側鎖1,2-ジオール単位含有EVOH系重合体(B12)の場合には更にエチレン)と共重合して共重合体を得た後、次いでケン化、脱アセタール化する方法等により製造することができる。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 前記(2)、(3)、(4)式中、RからR、及びXは、いずれも前記(1)式の場合と同様であり、RからRは、それぞれ独立して水素原子又は有機基を示し、Xは、単結合又は結合鎖を示す。R及びRは、それぞれ独立して水素原子又はR-CO-(式中、Rは、炭素原子数1以上20以下アルキル基)である。R10及びR11は、それぞれ独立して水素原子又は有機基を示す。
 一般式(2)で示される化合物において、RからR、及びXは、いずれも前記(1)式の場合と同様であり、R及びRは、それぞれ独立して水素原子又はR-CO-(式中、Rは、アルキル基)であり、該アルキル基としては、特に限定されず、通常、炭素原子数1以上20以下であり、メチル基、プロピル基、ブチル基、ヘキシル基、オクチル基等の炭素原子数1以上8以下のアルキル基が好ましく、炭素原子数1以上4以下のアルキル基がより好ましい。かかるアルキル基は、共重合反応性等を阻害しない範囲内において、ハロゲン基、水酸基、エステル基、カルボン酸基、スルホン酸基等の置換基を有していてもよい。
 一般式(2)で表される化合物としては、Xが単結合である場合、3,4-ジオール-1-ブテン、3,4-ジアシロキシ-1-ブテン、3-アシロキシ-4-オール-1-ブテン、4-アシロキシ-3-オール-1-ブテン、3,4-ジアシロキシ-2-メチル-1-ブテン等が挙げられ、Xがアルキレン基である場合、4,5-ジオール-1-ペンテン、4,5-ジアシロキシ-1-ペンテン、4,5-ジオール-3-メチル-1-ペンテン、4,5-ジアシロキシ-3-メチル-1-ペンテン、4,5-ジオール-3-エチル-1-ペンテン、4,5-ジアシロキシ-3-エチル-1-ペンテン、5,6-ジオール-1-ヘキセン、5,6-ジアシロキシ-1-ヘキセン、5,6-ジオール-3-メチル-1-ヘキセン、5,6-ジアシロキシ-3-メチル-1-ヘキセン、5,6-ジオール-4-メチル-1-ヘキセン、5,6-ジアシロキシ-4-メチル-1-ヘキセン等が挙げられ、Xが-CHOCH-又は-OCH-である場合、グリセリンモノアリルエーテル、2,3-ジアセトキシ-1-アリルオキシプロパン、2-アセトキシ-1-アリルオキシ-3-ヒドロキシプロパン、3-アセトキシ-1-アリルオキシ-2-ヒドロキシプロパン、グリセリンモノビニルエーテル、グリセリンモノイソプロペニルエーテル等が挙げられる。これらは1種又は2種以上を用いることができる。
 これらの中でも、共重合反応性及び工業的な取り扱いに優れるという点で、Xが単結合であり、3,4-ジオール-1-ブテン、3,4-ジアシロキシ-1-ブテン、3-アシロキシ-4-オール-1-ブテン、4-アシロキシ-3-オール-1-ブテン、3,4-ジアシロキシ-2-メチル-1-ブテンが好ましく、RからRが水素原子、Xが単結合、R及びRがR-CO-であり、Rがアルキル基である3,4-ジアシロキシ-1-ブテンがより好ましく、Rがメチル基である3,4-ジアセトキシ-1-ブテンが更に好ましい。
 一般式(3)で示される化合物において、RからR、及びXは、いずれも前記(1)式の場合と同様である。これらの中でも、入手の容易さ、良好な共重合性を有する点で、RからRが水素原子で、RからRが水素原子又は炭素原子数1以上4以下のアルキル基で、Xが単結合であるビニルエチレンカーボネート(4-ビニルエチレンカーボネート,4-ビニル-1,3-ジオキソラン-2-オン)、4-メチル-4-ビニルエチレンカーボネート、5-メチル-4-ビニルエチレンカーボネート、4,5-ジメチル-4-ビニルエチレンカーボネート、5,5-ジメチル-4-ビニルエチレンカーボネート、4,5,5-トリメチル-4-ビニルエチレンカーボネート、4-エチル-4-ビニルエチレンカーボネート、4-n-プロピル-4-ビニルエチレンカーボネート、4-ブチル-4-ビニルエチレンカーボネートが好ましく、RからRが水素原子で、Xが単結合であるビニルエチレンカーボネートがより好ましい。
 一般式(4)で示される化合物において、RからR、及びXは、いずれも前記(1)式の場合と同様であり、R10及びR11は、それぞれ独立して水素原子又はアルキル基であり、該アルキル基としては、特に限定されないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基等の炭素原子数1以上4以下のアルキル基が好ましい。かかるアルキル基は、共重合反応性等を阻害しない範囲内において、ハロゲン基、水酸基、エステル基、カルボン酸基、スルホン酸基等の置換基を有していてもよい。これらの中でも、入手の容易さ及び良好な共重合性を有する点で、RからRが水素原子で、Xが単結合、R10及びR11がアルキル基である2,2-ジアルキル-4-ビニル-1,3-ジオキソランが好ましく、RからRが水素原子で、Xが単結合、R10及びR11がメチル基である2,2-ジメチル-4-ビニル-1,3-ジオキソランがより好ましい。
 [1]、[2]、及び[3]の方法については、例えば、特開2004-359965号公報、特開2006-096815号公報等に記載の方法を採用できる。これらの製造方法のうち、[1]の方法を採用することが好ましく、共重合反応性を考慮すると、式(2)中のR及びRは、それぞれR-CO-であることが好ましい。R-CO-は、炭素原子数1以上20以下のアルキル基であり、工業生産性の観点から、炭素原子数1以上10以下のアルキル基であることが好ましく、炭素原子数1以上5以下のアルキル基であることがより好ましく、メチル基であることが更に好ましい。
 即ち、3,4-ジアシロキシ-1-ブテン及びビニルエステル系単量体(側鎖1,2-ジオール単位含有EVOH系重合体(B12)の場合には更にエチレン)を共重合して得られた共重合体をケン化する方法が好ましく、3,4-ジアシロキシ-1-ブテンとして、3,4-ジアセトキシ-1-ブテン及びビニルエステル系単量体(側鎖1,2-ジオール単位含有EVOH系重合体(B12)の場合には更にエチレン)を共重合して得られた共重合体をケン化する方法がより好ましい。かかる製造方法によれば、重合が良好に進行し、側鎖1,2-ジオール単位をビニルアルコール系重合体の主鎖中に均一に導入しやすく、結果として未反応モノマーが少なくなり、不純物を減らすことができるという利点がある。
 具体的に説明すると、酢酸ビニルと3,4-ジアセトキシ-1-ブテンを共重合させた際の各単量体の反応性比は、r(酢酸ビニル)=0.71、r(3,4-ジアセトキシ-1-ブテン)=0.70である。これは[2]のビニルエチレンカーボネートを用いた場合の各単量体の反応性比、r(酢酸ビニル)=0.85、r(ビニルエチレンカーボネート)=5.4と比較すると、3,4-ジアセトキシ-1-ブテンの方が酢酸ビニルとの共重合反応性に優れている。
 また、3,4-ジアセトキシ-1-ブテンの連鎖移動定数は、Cx(3,4-ジアセトキシ-1-ブテン)=0.003(65℃)である。[2]の方法で用いるビニルエチレンカーボネートのCx(ビニルエチレンカーボネート)=0.005(65℃)や、[3]の方法で用いる2,2-ジメチル-4-ビニル-1,3-ジオキソランのCx(2,2-ジメチル-4-ビニル-1,3-ジオキソラン)=0.023(65℃)と比較すると、3,4-ジアセトキシ-1-ブテンの連鎖移動定数が小さく、重合度が上がり易く、重合速度低下の原因となりにくい。
 更に、3,4-ジアセトキシ-1-ブテンを用いた場合、得られる共重合体をケン化したときに生成される副生物は、ビニルエステル系単量体として多用される酢酸ビニル単位に由来する副生物と同一である。したがって、3,4-ジアセトキシ-1-ブテンを用いる[1]の方法では、後処理に特別な装置や工程を設ける必要がないという工業的利点もある。
 尚、上記の3,4-ジアセトキシ-1-ブテンは、例えば、国際公開第2000/24702号、米国特許第5623086号明細書、米国特許第6072079号明細書等に記載されたエポキシブテン誘導体を経由する合成方法や、1,4-ブタンジオール製造工程の中間生成物である1,4-ジアセトキシ-1-ブテンを塩化パラジウム等の金属触媒を用いて異性化する反応によって製造することができる。
 尚、[1]の方法の原料として用いる3,4-ジオール-1-ブテンは、イーストマンケミカル社から、3,4-ジアセトキシ-1-ブテンは工業生産用ではイーストマンケミカル社、試薬レベルではアクロス社の製品を市場から入手することができる。1,4-ブタンジオール製造工程中の副生成物として得られる3,4-ジアセトキシ-1-ブテンを利用することも出来る。原料として用いられる3,4-ジアセトキシ-1-ブテンには、少量の不純物として3,4-ジアセトキシ-1-ブタン、1,4-ジアセトキシ-1-ブテン、1,4-ジアセトキシ-1-ブタン等を含んでいても良い。
 一方、[2]の製法により製造された側鎖1,2-ジオール単位を含有するビニルアルコール系重合体は、ケン化度が低い場合や、脱炭酸が不充分な場合には、側鎖にカーボネート環が残存し、溶融成形時に脱炭酸され、樹脂が発泡する原因となる傾向がある。また、[3]により製造された側鎖1,2-ジオール単位を含有するビニルアルコール系重合体も、製造方法[2]によるものと同様に、側鎖に残存した単量体由来の官能基(アセタール環)が溶融成形時に脱離して、臭気が発生する傾向があるため、これに留意して使用する必要がある。
 側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)の重合は、公知の任意の重合方式、例えば、回分重合、半回分重合、連続重合、半連続重合等により行うことができる。重合方法としては、公知の任意の重合方法、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等の公知の方法を採用できる。無溶媒又はアルコール等の溶媒中で重合を進行させる塊状重合法又は溶液重合法が、通常採用される。高重合度の側鎖1,2-ジオール単位含有EVOH系重合体(B12)を得る場合には、乳化重合法の採用が選択肢の一つとなる。
 側鎖1,2-ジオール単位含有EVOH系重合体(B12)の場合、エチレンガス加圧下において、ビニルエステル系単量体と前記の方法にて重合する。溶液重合法において用いられる溶媒は特に限定されないが、アルコールが好ましく、例えば、メタノール、エタノール、プロパノール等の低級アルコールがより好ましい。重合反応液における溶媒の使用量は、目的とする側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)の重合度及び溶媒の連鎖移動を考慮して選択すればよい。
 側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)の重合する際に使用される重合開始剤は、公知の重合開始剤、例えば、アゾ系開始剤、過酸化物系開始剤、レドックス系開始剤等が挙げられる。重合開始剤は重合方法に応じて選択される。アゾ系開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等が挙げられる。過酸化物系開始剤としては、例えば、ジイソプロピルパーオキシジカーボネート、ジ-n-プロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジエトキシエチルパーオキシジカーボネート、ビス-(4-t-ブチルシクロヘキシル)パーオキシ-ジ-カーボネート等のパーカーボネート系化合物;t-ブチルパーオキシネオデカネート、t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、α-クミルパーオキシネオデカネート等のパーエステル化合物;イソブチラルパーオキサイド、アセチルパーオキシド、ジ-ラウロイルパーオキシド、ジ-デカノイルパーオキシド、ジ-オクタノイルパーオキシド、ジ-プロピルパーオキシド、ベンゾイルパーオキサイド等のパーオキシド化合物;アセチルシクロヘキシルスルホニルパーオキシ、2,4,4-トリメチルペンチル-2-パーオキシフェノキシアセテート等が挙げられる。これらは1種又は2種以上を用いることができる。また、過硫酸カリウム、過硫酸アンモニウム、過酸化水素等を上記開始剤に組み合わせて使用してもよい。レドックス系開始剤は、例えば、上記の過酸化物系開始剤と亜硫酸水素ナトリウム、炭酸水素ナトリウム、酒石酸、L-アスコルビン酸、ロンガリット等の還元剤とを組み合わせた重合開始剤である。これらは1種又は2種以上を用いることができる。重合開始剤の使用量は、重合触媒により異なるために一概には決められないが、重合速度に応じて調整される。重合開始剤の使用量は、ビニルエステル系単量体に対して、0.01モル%以上0.2モル%以下であることが好ましく、0.02モル%以上0.15モル%以下であることがより好ましい。重合温度は特に限定されないが、室温以上150℃以下であることが好ましく、30℃以上使用する溶媒の沸点以下であることがより好ましい。
 側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)の重合する際には、本発明の効果が阻害されない範囲であれば、連鎖移動剤の存在下で共重合してもよい。連鎖移動剤としては、例えば、アセトアルデヒド、プロピオンアルデヒド等のアルデヒド類;アセトン、メチルエチルケトン等のケトン類;2-ヒドロキシエタンチオール等のメルカプタン類;ホスフィン酸ナトリウム一水和物等のホスフィン酸塩類等が挙げられる。これらは1種又は2種以上を用いることができる。これらの中でも、アルデヒド類及び/又はケトン類が好ましい。重合反応液への連鎖移動剤の添加量は、連鎖移動剤の連鎖移動係数及び目的とする側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)の重合度に応じて決定されるが、一般に、ビニルエステル系単量体100質量部に対して、0.1質量部以上10質量部以下であることが好ましい
 得られたビニルエステル系共重合体のケン化についても、公知のケン化方法を採用することができる。ケン化反応は、通常、アルコール又は含水アルコールの溶液中で行われる。このとき使用されるアルコールは、メタノール、エタノール等の低級アルコールが好ましく、メタノールがより好ましい。ケン化反応に使用されるアルコール又は含水アルコールは、その質量の40質量%以下であれば、アセトン、酢酸メチル、酢酸エチル、ベンゼン等の他の溶媒を含んでもよい。ケン化に使用される触媒としては、例えば、水酸化カリウム、水酸化ナトリウム、ナトリウムメチラート、ナトリウムエチラート、カリウムメチラート、リチウムメチラート等のアルカリ金属の水酸化物、アルコラート等のアルカリ触媒;硫酸、塩酸、硝酸、鉱酸、メタスルフォン酸、ゼオライト、カチオン交換樹脂等の酸触媒が挙げられる。これらは1種又は2種以上を用いることができる。前記アルカリ触媒を使用する際、ケン化を行う温度は限定されないが、20℃以上120℃以下であることが好ましい。
 側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)のケン化度(ビニルアルコール系重合体中のビニルエステル単位のうち、ケン化によりビニルアルコール単位となっているものの含有量)は特に限定されないが、薬液バリア性を好適に維持する観点から、90モル%以上100モル%以下であることが好ましく、95モル%以上100モル%以下であることがより好ましく、99モル%以上100モル%以下であることが更に好ましい。ここで、ケン化度は、H-NMRの測定結果や、JIS K 6726に準拠して、前記一般式(2)から(4)で示される単量体、ビニルエステル系単量体等の残存したビニルエステル系単量体の加水分解に要するアルカリ消費量より算出することができる。
 側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)の融点は、100℃以上220℃以下であることが好ましく、130℃以上200℃以下であることがより好ましく、150℃以上190℃以下であることが更に好ましい。
 更に、側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)の210℃、荷重2160gにおけるメルトフローレート(MFR)は、溶融時の粘度を適正範囲にして望ましい成形性を確保し、溶融張力を過度に低下させず、成形時にドローダウン等の問題の発生を防止する観点から、0.1g/10分以上200g/10分以下であることが好ましく、1g/10分以上100g/10分以下であることがより好ましく、2g/10分以上50g/10分以下であることが更に好ましい。
 側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)は、1種類だけでなく、ケン化度が異なる側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)、分子量が異なる側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)、他の共重合単量体の種類が異なっている側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)等、2種類以上の側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)を組み合わせて用いてもよい。
 側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)として、側鎖1,2-ジオール単位含有EVOH系重合体(B12)を用いる場合、エチレン単位の含有量が異なるものを併せて用いてもよい。エチレン単位の含有量が異なるものを併せて用いる場合、その他の単位は同じであっても異なっていてもよいが、そのエチレン含有量差は1モル%以上であることが好ましく、2モル%以上であることがより好ましく、2モル%以上20モル%以下であることが更に好ましい。
 更に、側鎖1,2-ジオール単位を含有していないPVA系重合体(未変性PVA系重合体)及び/又は側鎖1,2-ジオール単位を含有していないEVOH系重合体(未変性EVOH系重合体)が混合されていてもよい。側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)及び側鎖1,2-ジオール単位を含有していないビニルアルコール系重合体との混合物の場合、混合物中の側鎖1,2-ジオール単位の含有量は、混合質量比から算出される値として、混合物の全単量体単位100モル%に対して、0.1モル%以上30モル%以下であることが好ましく、0.5モル%以上25モル%以下であることがより好ましく、0.75モル%以上20モル%以下であることが更に好ましい。
 また、側鎖1,2-ジオール単位含有PVA系重合体(B11)及び側鎖1,2-ジオール単位含有EVOH系重合体(B12)を組み合わせて用いてもよい。
 異なる2種以上の側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)をブレンドして用いる場合、並びに側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)及び側鎖1,2-ジオール単位を含有していないビニルアルコール系重合体をブレンドして用いる場合、そのブレンド物の製造方法は、特に限定されない。例えば、ケン化前のビニルエステル系共重合体の各ペーストを混合後ケン化する方法、ケン化後の各ビニルアルコール系重合体をアルコール又は水とアルコールの混合溶媒に溶解させた溶液を混合する方法、各ビニルアルコール系重合体のペレット又は粉体を混合した後、溶融混練する方法等が挙げられる。
 ビニルアルコール系重合体組成物(B)は、カルボキシル基及び/又は酸無水物基を有する不飽和化合物から誘導される構成単位を含有するエラストマー重合体(B2)を含有する。エラストマー重合体(B2)は、前記脂肪族ポリアミド組成物(A)に含まれるエラストマー重合体(A3)の説明で記載した通りである。エラストマー重合体(B2)としては、エラストマー重合体(A3)と同じものを用いてもよく、異なるものを用いてもよい。これらは1種又は2種以上を用いることができる。
 ビニルアルコール系重合体組成物(B)中の側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)の含有量は、ビニルアルコール系重合体組成物(B)100質量%に対して、60質量%以上95質量%以下であり、65質量%以上93質量%以下であることが好ましく、70質量%以上90質量%以下であることがより好ましい。側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)の含有量が前記の値未満であると、得られる積層チューブの薬液バリア性が劣り、一方、前記の値を超えると、得られる積層チューブの低温衝撃性及び環境応力負荷後の低温耐衝撃性が劣る。
 ビニルアルコール系重合体組成物(B)中のエラストマー重合体(B2)の含有量は、ビニルアルコール系重合体組成物(B)100質量%に対して、5質量%以上40質量%以下であり、7質量%以上35質量%以下であることが好ましく、10質量%以上30質量%以下であることがより好ましい。エラストマー重合体(B2)の含有量が前記の値未満であると、得られる積層チューブの低温耐衝撃性、環境応力負荷後の低温耐衝撃性、層間接着性、及びその耐久性が劣り、一方、前記の値を超えると、得られる積層チューブの機械的特性、薬液バリア性、及び得られるビニルアルコール系重合体組成物(B)の流動性が劣る。
 側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)及びエラストマー重合体(B2)を混合する方法は、前記脂肪族ポリアミド組成物(A)の説明で記載した公知の方法が挙げられる。
 ビニルアルコール系重合体組成物(B)には、得られる積層チューブの優れた諸特性を損なわない範囲内であれば、ビニルアルコール系重合体以外の他の熱可塑性樹脂、各種添加剤、更に、不可避的に含有されるビニルアルコール系重合体製造のためのモノマー残渣、モノマーのケン化物等、いわゆる不純物が含まれていてもよい。
 不可避的不純物としては、具体的には、3,4-ジアセトキシ-1-ブテン、3,4-ジオール-1-ブテン、3,4-ジアセトキシ-1-ブテン、3-アセトキシ-4-オール-1-ブテン、4-アセトキシ-3-オール-1-ブテン等が挙げられる。
 添加剤としては、例えば、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジオクチル、リン酸エステル等の可塑剤;ペンタエリスリットモノステアレート、ソルビタンモノパルミテート、硫酸化ポリオレフィン類;エチレングリコール、グリセリン、ヘキサンジオール等の脂肪族多価アルコール類等の帯電防止剤;ステアリン酸アミド等の飽和脂肪酸アミド、オレイン酸アミド等の不飽和脂肪酸アミド;エチレンビスステアリン酸アミド等のビス脂肪酸アミド;ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛、ステアリン酸アルミニウム等の脂肪酸金属塩;ワックス、流動パラフィン、分子量500以上10,000以下程度の低分子量ポリエチレン、低分子量ポリプロピレン等低分子量ポリオレフィン等の滑剤;酢酸、プロピオン酸、ステアリン酸等の有機酸;ホウ酸化合物、リン酸化合物等の無機酸系化合物;ハイドロタルサイト類の金属塩等の安定剤;還元鉄粉類、亜硫酸カリウム、アスコルビン酸、ハイドロキノン、没食子酸等の酸素吸収剤;カーボンブラック、フタロシアニン、キナクリドン、インドリン、アゾ系顔料、ベンガラ等の着色剤;グラスファイバー、アスベスト、バラストナイト、マイカ、セリサイト、タルク、シリカ、カオリン、ケイ酸カルシウム、モンモリロナイト等の充填剤;2,5-ジ-t-ブチルハイドロキノン、2,6-ジ-t-ブチル-p-クレゾール、4,4’-チオビス(6-t-ブチル-m-クレゾール)、4,4’-チオビス(6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチフェノール)、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、n-オクタデシル-β-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシヒドロシンナミド)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキベンジル)ベンゼン、テトラキス[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]、ベンゼンエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリス(2,4-ジ-t-ブチルフェニル)、ジ(2,4-ジ-t-ブチルフェニル)-ペンタエリストール-ジホスファイト等の酸化防止剤;エチレン-2-シアノ-3,3’-ジフェニルアクリレート、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-ヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン等の紫外線吸収剤等が挙げられる。これらは1種又は2種以上を用いることができる。
 前記添加剤以外に、溶融成形時の熱安定性等の各種物性を向上させるために、得られる積層チューブの優れた諸特性を損なわない範囲内であれば、ハイドロタルサイト類の金属塩等の安定剤、ヒンダードフェノール系等の酸化防止剤の1種又は2種以上を、側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)100質量部に対して、0.01質量部以上1質量部以下添加することが好ましい。
 更に、前記添加剤以外に、溶融成形時の熱安定性等の各種物性を向上させるために、酸、プロピオン酸、酪酸、ラウリル酸、ステアリン酸、オレイン酸、ベヘニン酸等の有機酸類;又はこれらのアルカリ金属塩(ナトリウム、カリウム等)、アルカリ土類金属塩(カルシウム、マグネシウム等)等の塩;硫酸、亜硫酸、炭酸、リン酸、ホウ酸等の無機酸類、又はこれらのアルカリ金属塩(ナトリウム、カリウム等)、アルカリ土類金属塩(カルシウム、マグネシウム等)等の塩等を添加してもよい。これらは1種又は2種以上を用いることができる。これらの中でも、酢酸、ホウ酸及びその塩を含むホウ素化合物、酢酸塩、リン酸塩を添加することが好ましい。
 酢酸の含有量は、その含有効果を十分に確保し、均一な肉厚を有するチューブを得る観点から、側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)100質量部に対して、0.001質量部以上1質量部以下であることが好ましく、0.005質量部以上0.2質量部以下であることがより好ましく、0.01質量部以上0.1質量部以下であることが更に好ましい。
 ホウ素化合物の含有量は、その含有効果を十分に確保し、均一な肉厚を有するチューブを得る観点から、側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)100質量部に対して、ホウ素元素換算(灰化後、ICP発光分析法にて分析)で0.001質量部以上1質量部以下であることが好ましく、0.002質量部以上0.2質量部以下であることがより好ましく、0.005質量部以上0.1質量部以下であることが更に好ましい。
 また、酢酸塩、リン酸塩(リン酸水素塩を含む)の含有量は、その含有効果を十分に確保し、均一な肉厚を有するチューブを得る観点から、側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)100質量部に対して、金属元素換算(灰化後、ICP発光分析法にて分析)で、0.0005質量部以上0.1質量部以下であることが好ましく、0.001質量部以上0.05質量部以下であることがより好ましく、0.002質量部以上0.03質量部以下であることが更に好ましい。尚、ビニルアルコール系重合体組成物(B)に2種以上の塩を添加する場合は、その総計が前記の範囲であることが好ましい。
 側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)にホウ素化合物、酢酸塩、及びリン酸塩を添加する方法については、特に限定されず、i)含水率20質量%以上80質量%以下の側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)の多孔性析出物を、添加物の水溶液と接触させて、添加物を含有させてから乾燥する方法、ii)側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)の均一溶液(水/アルコール溶液等)に添加物を含有させた後、凝固液中にストランド状に押し出し、次いで得られたストランドを切断してペレットとして、更に乾燥処理をする方法、iii)側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)、エラストマー重合体(B2)、及び添加物を一括して混合してから押出機等で溶融混練する方法、iv)側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)の製造時において、ケン化工程で使用したアルカリ(水酸化ナトリウム、水酸化カリウム等)を酢酸等の有機酸類で中和して、残存する酢酸等の有機酸類や副生成する塩の量を水洗処理により調整する方法等が挙げられる。本発明の効果をより顕著に得るためには、添加物の分散性に優れるi)、ii)の方法、有機酸及びその塩を含有させる場合はiv)の方法が好ましい。
 以上のように、ビニルアルコール系重合体組成物(B)は、更に必要に応じて添加される他のポリマー、添加剤等を添加し、溶融混練することにより調製できるが、ビニルアルコール系重合体組成物(B)の特性を十分に確保する観点から、ビニルアルコール系重合体組成物(B)中における側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)及びエラストマー重合体(B2)の合計含有量は、全組成物に対して、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。従って、前記添加剤の含有量は、総量で30質量%未満であることが好ましく、20質量%未満であることがより好ましく、10質量%未満であることが更に好ましい。
 ビニルアルコール系重合体組成物(B)は、他の熱可塑性樹脂との混合物であってもよい。他の熱可塑性樹脂としては、前記脂肪族ポリアミド組成物(A)の場合と同様の樹脂が挙げられる。これらは1種又は2種以上を用いることができる。更に、得られる積層チューブの柔軟性及び伸びを十分に確保する観点から、前記脂肪族ポリアミド組成物(A)に含まれるポリアミド(A1)及び/又はポリアミド(A2)の説明で記載したポリアミドとの混合物であることも好ましい。また、ポリエーテルエステルアミドエラストマー、ポリエーテルアミドエラストマー等のポリアミド系エラストマー、ポリエステルエラストマーを含むことも好ましい。ビニルアルコール系重合体組成物(B)中の側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)及びエラストマー重合体(B2)の合計含有量は、70質量%以上であることが好ましく、80質量%以上であることがより好ましい。従って、他の熱可塑性樹脂の含有量は、総量で30質量%未満であることが好ましく、20質量%未満であることがより好ましい。
 3.(c)層
 積層チューブは、更に(c)層を有することが好ましい。
 積層チューブの(c)層は、ポリアミド組成物(C)を含む。
 前記ポリアミド組成物(C)は、ポリアミド(C1)及びエラストマー重合体(C2)を含み、ポリアミド(C1)は、メチレン基数のアミド基数に対する比が8.0以上の脂肪族ポリアミド以外のポリアミドであり、前記ポリアミド組成物(C)中に70質量%以上95質量%以下含まれ、エラストマー重合体(C2)は、カルボキシル基及び/又は酸無水物基を有する不飽和化合物から誘導される構成単位を含有し、前記ポリアミド組成物(C)中に5質量%以上30質量%以下含まれる(以下、ポリアミド組成物(C)と称する場合がある。)。
 また、ポリアミド組成物(C)は、長時間燃料に接触・浸漬した後及び/又は短時間の熱処理後における層間接着性の耐久性の観点から可塑剤を含有しないことが好ましい。
 ポリアミド(C1)は、前記脂肪族ポリアミド組成物(A)に含まれるポリアミド(A2)の説明で記載した通りである。ポリアミド(C1)としては、ポリアミド(A2)と同じものを用いてもよく、異なるものを用いてもよい。これらは1種又は2種以上を用いることができる。
 ポリアミド組成物(C)中のポリアミド(C1)の含有量は、ポリアミド組成物(C)100質量%に対して、70質量%以上95質量%以下であり、75質量%以上93質量%以下であることが好ましく、80質量%以上90質量%以下であることがより好ましい。ポリアミド(C1)の含有量が前記の値未満であると、得られる積層チューブの機械的物性が劣ることがあり、一方、前記の値を超えると、得られる積層チューブの低温耐衝撃性及び耐薬品性が劣ることがある。
 エラストマー重合体(C2)は、前記脂肪族ポリアミド組成物(A)に含まれるエラストマー重合体(A3)の説明で記載した通りである。エラストマー重合体(C2)としては、エラストマー重合体(A3)と同じものを用いてもよく、異なるものを用いてもよい。これらは1種又は2種以上を用いることができる。
 ポリアミド組成物(C)中のエラストマー重合体(C2)の含有量は、ポリアミド組成物(C)100質量%に対して、5質量%以上30質量%以下であり、7質量%以上25質量%以下であることが好ましく、10質量%以上20質量%以下であることがより好ましい。エラストマー重合体(C2)の含有量が前記の値未満であると、得られる積層チューブの低温耐衝撃性、層間接着性、及びその耐久性が劣ることがあり、一方、前記の値を超えると、得られる積層チューブの機械的特性及び得られるポリアミド組成物(C)の流動性が劣ることがある。
 ポリアミド(C1)とエラストマー重合体(C2)を混合する方法は、前記脂肪族ポリアミド組成物(A)の説明で記載した公知の方法が挙げられる。
 ポリアミド組成物(C)は、その他の熱可塑性樹脂を含有していてもよい。その他の熱可塑性樹脂としては、前記脂肪族ポリアミド組成物(A)の場合と同様の樹脂が挙げられる。これらは1種又は2種以上を用いることができる。ポリアミド組成物(C)中のポリアミド(C1)及びエラストマー重合体(C2)の合計含有量は、80質量%以上であることが好ましく、90質量%以上であることがより好ましい。 
更に、ポリアミド組成物(C)には、必要に応じて、酸化防止剤、熱安定剤、紫外線吸収剤、光安定化剤、滑剤、無機質充填剤、帯電防止剤、難燃剤、結晶化促進剤、着色剤、潤滑剤等を添加してもよい。
 4.(d)層
 積層チューブは、更に(d)層を有することが好ましい。
 積層チューブの(d)層は、半芳香族ポリアミド組成物(D)を含む。
 [半芳香族ポリアミド組成物(D)]
 半芳香族ポリアミド組成物(D)は、半芳香族ポリアミド(D1)及び/又は半芳香族ポリアミド(D2)を含み、前記半芳香族ポリアミド組成物(D)中に、前記半芳香族ポリアミド(D1)及び/又は前記半芳香族ポリアミド(D2)が60質量%以上含まれ、半芳香族ポリアミド(D1)は、半芳香族ポリアミド(D1)の全ジアミン単位に対して、炭素原子数4以上12以下の脂肪族ジアミン単位を50モル%以上含み、半芳香族ポリアミド(D1)の全ジカルボン酸単位に対して、テレフタル酸単位、イソフタル酸単位、及びナフタレンジカルボン酸単位からなる群より選ばれる少なくとも1種を含むジカルボン酸単位を50モル%以上含み、半芳香族ポリアミド(D2)は、半芳香族ポリアミド(D2)の全ジアミン単位に対して、キシリレンジアミン単位及び/又はビス(アミノメチル)ナフタレン単位を50モル%以上含み、半芳香族ポリアミド(D2)の全ジカルボン酸単位に対して、炭素原子数4以上12以下の脂肪族ジカルボン酸単位を50モル%以上含む(以下、半芳香族ポリアミド組成物(D)と称する場合がある。)。
 [半芳香族ポリアミド(D1)]
 半芳香族ポリアミド組成物(D)は、半芳香族ポリアミド(D1)を含む態様があり(以下、半芳香族ポリアミド(D1)と称する場合がある。)、半芳香族ポリアミド(D1)は、半芳香族ポリアミド(D1)の全ジアミン単位に対して、炭素原子数4以上12以下の脂肪族ジアミン単位を50モル%以上含むジアミン単位と、半芳香族ポリアミド(D1)の全ジカルボン酸単位に対して、テレフタル酸単位、イソフタル酸単位、及びナフタレンジカルボン酸単位からなる群より選ばれる少なくとも1種を含むジカルボン酸単位を50モル%以上含むジカルボン酸単位を含有する。
 半芳香族ポリアミド(D1)中の炭素原子数4以上12以下の脂肪族ジアミン単位の含有量は、得られる積層チューブの耐熱性、耐薬品性、耐衝撃性、薬液バリア性等の諸物性を十分に確保する観点から、半芳香族ポリアミド(D1)の全ジアミン単位に対して、50モル%以上であり、55モル%以上であることが好ましく、60モル%以上であることがより好ましい。
 炭素原子数4以上12以下の脂肪族ジアミン単位としては、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-へプタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン1,11-ウンデカンジアミン、1,12-ドデカンジアミン等から誘導される単位が挙げられる。炭素原子数が前記を満たす限り、1-ブチル-1,2-エタンジアミン、1,1-ジメチル-1,4-ブタンジアミン、1-エチル-1,4-ブタンジアミン、1,2-ジメチル-1,4-ブタンジアミン、1,3-ジメチル-1,4-ブタンジアミン、1,4-ジメチル-1,4-ブタンジアミン、2,3-ジメチル-1,4-ブタンジアミン、2-メチル-1,5-ペンタンジアミン、3-メチル-1,5-ペンタンジアミン、2,2,4-トリメチル-1,6-ヘキサンジアミン、2,4,4-トリメチル-1,6-ヘキサンジアミン、2,4-ジエチル-1,6-ヘキサンジアミン、2,2-ジメチル-ヘプタンジアミン、2,3-ジメチル-ヘプタンジアミン、2,4-ジメチル-ヘプタンジアミン、2,5-ジメチル-ヘプタンジアミン、2-メチル-1,8-オクタンジアミン、3-メチル-1,8-オクタンジアミン、4-メチル-1,8-オクタンジアミン、1,3-ジメチル-1,8-オクタンジアミン、1,4-ジメチル-1,8-オクタンジアミン、2,2-ジメチル-1,8-オクタンジアミン、2,4-ジメチル-1,8-オクタンジアミン、3,3-ジメチル-1,8-オクタンジアミン、3,4-ジメチル-1,8-オクタンジアミン、4,4-ジメチル-1,8-オクタンジアミン、4,5-ジメチル-1,8-オクタンジアミン、5-メチル-1,9-ノナンジアミン等の分岐鎖状脂肪族ジアミンから誘導される単位を含有していても構わない。これらは1種又は2種以上を用いることができる。
 前記炭素原子数4以上12以下の脂肪族ジアミン単位の中でも、入手の容易さ及び経済性の観点から、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、2-メチル-1,5-ペンタンジアミン、1,9-ノナンジアミン、2-メチル-1,8-オクタンジアミン、1,10-デカンジアミン、1,12-ドデカンジアミンから誘導される単位が好ましい。更に、1,6-ヘキサンジアミンと2-メチル-1,5-ペンタンジアミンを併用する場合、1,6-ヘキサンジアミン単位と2-メチル-1,5-ペンタンジアミン単位のモル比は、成形性と耐衝撃性のバランスの観点から、30:70~98:2(モル比)であることが好ましく、40:60~95:5(モル比)であることがより好ましく、1,9-ノナンジアミンと2-メチル-1,8-オクタンジアミンを併用する場合、1,9-ノナンジアミン単位と2-メチル-1,8-オクタンジアミン単位のモル比は、成形性と耐衝撃性のバランスの観点から、30:70~98:2(モル比)であることが好ましく、40:60~95:5(モル比)であることがより好ましい。
 半芳香族ポリアミド(D1)中のジアミン単位は、得られる積層チューブの優れた諸特性を損なわない範囲内であれば、炭素原子数4以上12以下の脂肪族ジアミン単位以外の他のジアミン単位を含んでいてもよい。他のジアミン単位としては、1,2-エタンジアミン、1,3-プロパンジアミン、1,13-トリデカンジアミン等の脂肪族ジアミンから誘導される単位;1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、2,2-ビス(3-メチル-4-アミノシクロヘキシル)プロパン、5-アミノ-2,2,4-トリメチル-1-シクロペンタンメチルアミン、5-アミノ-1,3,3-トリメチルシクロヘキサンメチルアミン、ビス(アミノプロピル)ピペラジン、ビス(アミノエチル)ピペラジン、2,5-ビス(アミノメチル)ノルボルナン、2,6-ビス(アミノメチル)ノルボルナン、3,8-ビス(アミノメチル)トリシクロデカン、4,9-ビス(アミノメチル)トリシクロデカン等の脂環式ジアミンから誘導される単位;m-フェニレンジアミン、p-フェニレンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,4-ビス(アミノメチル)ナフタレン、1,5-ビス(アミノメチル)ナフタレン、2,6-ビス(アミノメチル)ナフタレン、2,7-ビス(アミノメチル)ナフタレン、4,4’-ジアミノジフェニルメタン、2,2-ビス(4-アミノフェニル)プロパン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテル等の芳香族ジアミンから誘導される単位が挙げられ、これらは1種又は2種以上を用いることができる。これら他のジアミン単位の含有量は、半芳香族ポリアミド(D1)の全ジアミン単位に対して、50モル%未満であり、45モル%以下であることが好ましく、40モル%以下であることがより好ましい。
 また、半芳香族ポリアミド(D1)中のテレフタル酸単位、イソフタル酸単位、及びナフタレンジカルボン酸単位からなる群より選ばれる少なくとも1種を含むジカルボン酸単位の含有量は、得られる積層チューブの耐熱性、耐薬品性、薬液バリア性等の諸物性を十分に確保する観点から、半芳香族ポリアミド(D1)の全ジカルボン酸単位に対して、50モル%以上であり、55モル%以上であることが好ましく、60モル%以上であることがより好ましい。
 ナフタレンジカルボン酸単位としては、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸等から誘導される単位が挙げられる。これらは1種又は2種以上を用いることができる。前記ナフタレンジカルボン酸単位の中でも、経済性及び入手の容易さを考慮して、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸から誘導される単位が好ましい。
 半芳香族ポリアミド(D1)中のジカルボン酸単位は、得られる積層チューブの優れた諸特性を損なわない範囲内であれば、テレフタル酸単位、イソフタル酸単位、及びナフタレンジカルボン酸単位以外の他のジカルボン酸単位を含んでいてもよい。他のジカルボン酸単位としては、シュウ酸、マロン酸、ジメチルマロン酸、コハク酸、グルタル酸、アジピン酸、2-メチルアジピン酸、ピメリン酸、2,2-ジメチルグルタル酸、2,2-ジエチルコハク酸、スベリン酸、アゼライン酸、2,2,4-トリメチルアジピン酸、2,4,4-トリメチルアジピン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ヘキサデカン二酸、オクタデカン二酸、エイコサン二酸等の脂肪族ジカルボン酸から誘導される単位;1,3-シクロペンタンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸から誘導される単位;フタル酸、1,3-フェニレンジオキシジ酢酸、1,4-フェニレンジオキシジ酢酸、4,4’-オキシジ安息香酸、ジフェニルメタン-4,4’-ジカルボン酸、ジフェニルエタン-4,4’-ジカルボン酸、ジフェニルプロパン-4,4’-ジカルボン酸、ジフェニルエーテル-4,4’-ジカルボン酸、ジフェニルスルホン-4,4’-ジカルボン酸、4,4’-ビフェニルジカルボン酸、4,4’-トリフェニルジカルボン酸等の芳香族ジカルボン酸から誘導される単位が挙げられ、これらは1種又は2種以上を用いることができる。これらの中でも、芳香族ジカルボン酸から誘導される単位が好ましい。これら他のジカルボン酸単位の含有量は、半芳香族ポリアミド(D1)の全ジカルボン酸単位に対して、50モル%未満であり、45モル%以下であることが好ましく、40モル%以下であることがより好ましい。更に、トリメリット酸、トリメシン酸、ピロメリット酸等の多価カルボン酸を溶融成形が可能な範囲内で用いることもできる。
 半芳香族ポリアミド(D1)には、得られる積層チューブの優れた諸特性を損なわない範囲内であれば、ジカルボン酸単位及びジアミン単位以外のその他の単位を含んでいてもよい。その他の単位としては、カプロラクタム、エナントラクタム、ウンデカンラクタム、ドデカンラクタム、α-ピロリドン、α-ピペリドン等のラクタムから誘導される単位;6-アミノカプロン酸、7-アミノヘプタン酸、9-アミノノナン酸、11-アミノウンデカン酸、12-アミノドデカン酸等の脂肪族アミノカルボン酸;p-アミノメチル安息香酸等の芳香族アミノカルボン酸のアミノカルボン酸から誘導される単位が挙げられる。これらは1種又は2種以上を用いることができる。その他の単位の含有量は、半芳香族ポリアミド(D1)の全重合単位に基づいて、45モル%以下であることが好ましく、40モル%以下であることがより好ましく、35モル%以下であることが更に好ましい。
 半芳香族ポリアミド(D1)の具体例としては、ポリテトラメチレンテレフタラミド(ポリアミド4T)、ポリテトラメチレンイソフタラミド(ポリアミド4I)、ポリテトラメチレンナフタラミド(ポリアミド4N)、ポリペンタメチレンテレフタラミド(ポリアミド5T)、ポリペンタメチレンイソフタラミド(ポリアミド5I)、ポリペンタメチレンナフタラミド(ポリアミド5N)、ポリヘキサメチレンテレフタラミド(ポリアミド6T)、ポリヘキサメチレンイソフタラミド(ポリアミド6I)、ポリヘキサメチレンナフタラミド(ポリアミド6N)、ポリ(2-メチルペンタメチレンテレフタラミド)(ポリアミドM5T)、ポリ(2-メチルペンタメチレンイソフタラミド)(ポリアミドM5I)、ポリ(2-メチルペンタメチレンナフタラミド(ポリアミドM5N)、ポリノナメチレンテレフタラミド(ポリアミド9T)、ポリノナメチレンイソフタラミド(ポリアミド9I)、ポリノナメチレンナフタラミド(ポリアミド9N)、ポリ(2-メチルオクタメチレンテレフタラミド)(ポリアミドM8T)、ポリ(2-メチルオクタメチレンイソフタラミド)(ポリアミドM8I)、ポリ(2-メチルオクタメチレンナフタラミド)(ポリアミドM8N)、ポリトリメチルヘキサメチレンテレフタラミド(ポリアミドTMHT)、ポリトリメチルヘキサメチレンイソフタラミド(ポリアミドTMHI)、ポリトリメチルヘキサメチレンナフタラミド(ポリアミドTMHN)、ポリデカメチレンテレフタラミド(ポリアミド10T)、ポリデカメチレンイソフタラミド(ポリアミド10I)、ポリデカメチレンナフタラミド(ポリアミド10N)、ポリウンデカメチレンテレフタラミド(ポリアミド11T)、ポリウンデカメチレンイソフタラミド(ポリアミド11I)、ポリウンデカメチレンナフタラミド(ポリアミド11N)、ポリドデカメチレンテレフタラミド(ポリアミド12T)、ポリドデカメチレンイソフタラミド(ポリアミド12I)、ポリドデカメチレンナフタラミド(ポリアミド12N)の単独重合体、及び/又はこれらポリアミドの原料単量体、並び/若しくは前記ポリアミド(A1)及びポリアミド(A2)の原料単量体を数種用いた共重合体等が挙げられる。これらは1種又は2種以上を用いることができる。
 これらの中でも、入手の容易さ、得られる積層チューブの耐熱性、耐薬品性、耐衝撃性、薬液バリア性等の諸物性を十分に確保する観点から、半芳香族ポリアミド(D1)としては、ポリ(ヘキサメチレンテレフタラミド/ヘキサメチレンイソフタラミド)共重合体(ポリアミド6T/6I)、ポリ(ヘキサメチレンテレフタラミド/2-メチルペンタメチレンテレフタラミド)共重合体(ポリアミド6T/M5T)、ポリ(ヘキサメチレンテレフタラミド/カプロアミド)共重合体(ポリアミド6T/6)、ポリ(ヘキサメチレンテレフタラミド/ヘキサメチレンアジパミド)共重合体(ポリアミド6T/66)、ポリ(ヘキサメチレンテレフタラミド/ヘキサメチレンセバカミド)共重合体(ポリアミド6T/610)、ポリ(ヘキサメチレンテレフタラミド/ヘキサメチレンドデカミド)共重合体(ポリアミド6T/612)、ポリ(ヘキサメチレンテレフタラミド/ヘキサメチレンイソフタラミド/ヘキサメチレンアジパミド)共重合体(ポリアミド6T/6I/66)、ポリ(ヘキサメチレンテレフタラミド/ヘキサメチレンイソフタラミド/ヘキサメチレンセバカミド)共重合体(ポリアミド6T/6I/610)、ポリ(ヘキサメチレンテレフタラミド/ヘキサメチレンイソフタラミド/ヘキサメチレンドデカミド)共重合体(ポリアミド6T/6I/612)、ポリノナメチレンテレフタラミド(ポリアミド9T)、ポリ(ノナメチレンテレフタラミド/2-メチルオクタメチレンテレフタラミド)共重合体(ポリアミド9T/M8T)、ポリ(ノナメチレンテレフタラミド/2-メチルオクタメチレンテレフタラミド/ウンデカンアミド)共重合体(ポリアミド9T/M8T/11)、ポリ(ノナメチレンテレフタラミド/2-メチルオクタメチレンテレフタラミド/ドデカンアミド)共重合体(ポリアミド9T/M8T/12)、ポリ(ノナメチレンテレフタラミド/2-メチルオクタメチレンテレフタラミド/ノナメチレンイソフタラミド/2-メチルオクタメチレンイソフタラミド)共重合体(ポリアミド9T/M8T/9I/M8I)、ポリノナメチレンナフタラミド(ポリアミド9N)、ポリ(ノナメチレンナフタラミド/2-メチルオクタメチレンナフタラミド)共重合体(ポリアミド9N/M8N)、ポリ(ノナメチレンナフタラミド/2-メチルオクタメチレンナフタラミド/ウンデカンアミド)共重合体(ポリアミド9N/M8N/11)、ポリ(ノナメチレンナフタラミド/2-メチルオクタメチレンナフタラミド/ドデカンアミド)共重合体(ポリアミド9N/M8N/12)、ポリデカメチレンテレフタラミド(ポリアミド10T)、ポリ(デカメチレンテレフタラミド/ウンデカンアミド)共重合体(ポリアミド10T/11)、ポリ(デカメチレンテレフタラミド/ドデカンアミド)共重合体(ポリアミド10T/12)、ポリ(デカメチレンテレフタラミド/デカメチレンセバカミド)共重合体(ポリアミド10T/1010)、ポリ(デカメチレンテレフタラミド/デカメチレンドデカミド)共重合体(ポリアミド10T/1012)、ポリ(デカメチレンテレフタラミド/デカメチレンイソフタラミド/ウンデカンアミド)共重合体(ポリアミド10T/10I/11)、ポリ(デカメチレンテレフタラミド/デカメチレンイソフタラミド/ドデカンアミド)共重合体(ポリアミド10T/10I/12)、ポリ(デカメチレンテレフタラミド/デカメチレンイソフタラミド/デカメチレンセバカミド)共重合体(ポリアミド10T/10I/1010)、ポリ(デカメチレンテレフタラミド/デカメチレンイソフタラミド/デカメチレンドデカミド)共重合体(ポリアミド10T/10I/1012)、ポリデカメチレンナフタラミド(ポリアミド10N)、ポリ(デカメチレンナフタラミド/ウンデカンアミド)共重合体(ポリアミド10N/11)、ポリ(デカメチレンナフタラミド/ドデカンアミド)共重合体(ポリアミド10N/12)、ポリ(デカメチレンナフタラミド/デカメチレンセバカミド)共重合体(ポリアミド10N/1010)、ポリ(デカメチレンナフタラミド/デカメチレンドデカミド)共重合体(ポリアミド10N/1012)、ポリ(デカメチレンテレフタラミド/デカメチレンナフタラミド/ウンデカンアミド)共重合体(ポリアミド10T/10N/11)、ポリ(デカメチレンテレフタラミド/デカメチレンナフタラミド/ドデカンアミド)共重合体(ポリアミド10T/10N/12)、ポリ(デカメチレンテレフタラミド/デカメチレンナフタラミド/デカメチレンセバカミド)共重合体(ポリアミド10T/10N/1010)、ポリ(デカメチレンテレフタラミド/デカメチレンナフタラミド/デカメチレンドデカミド)共重合体(ポリアミド10T/10N/1012)、ポリドデカメチレンテレフタラミド(ポリアミド12T)、ポリ(ドデカメチレンテレフタラミド/ウンデカンアミド)共重合体(ポリアミド12T/11)、ポリ(ドデカメチレンテレフタラミド/ドデカンアミド)共重合体(ポリアミド12T/12)、ポリ(ドデカメチレンテレフタラミド/ドデカメチレンセバカミド)共重合体(ポリアミド12T/1210)、ポリ(ドデカメチレンテレフタラミド/ドデカメチレンドデカミド)共重合体(ポリアミド12T/1212)、ポリ(ドデカメチレンテレフタラミド/ドデカメチレンイソフタラミド/ウンデカンアミド)共重合体(ポリアミド12T/12I/11)、ポリ(ドデカメチレンテレフタラミド/ドデカメチレンイソフタラミド/ドデカンアミド)共重合体(ポリアミド12T/12I/12)、ポリ(ドデカメチレンテレフタラミド/ドデカメチレンイソフタラミド/ドデカメチレンセバカミド)共重合体(ポリアミド12T/12I/1210)、ポリ(ドデカメチレンテレフタラミド/ドデカメチレンイソフタラミド/ドデカメチレンドデカミド)共重合体(ポリアミド12T/12I/1212)、ポリドデカメチレンナフタラミド(ポリアミド12N)、ポリ(ドデカメチレンナフタラミド/ウンデカンアミド)共重合体(ポリアミド12N/11)、ポリ(ドデカメチレンナフタラミド/ドデカンアミド)共重合体(ポリアミド12N/12)、ポリ(ドデカメチレンナフタラミド/ドデカメチレンセバカミド)共重合体(ポリアミド12N/1210)、ポリ(ドデカメチレンナフタラミド/ドデカメチレンドデカミド)共重合体(ポリアミド12N/1212)、ポリ(ドデカメチレンテレフタラミド/ドデカメチレンナフタラミド/ウンデカンアミド)共重合体(ポリアミド12T/12N/11)、ポリ(ドデカメチレンテレフタラミド/ドデカメチレンナフタラミド/ドデカンアミド)共重合体(ポリアミド12T/12N/12)、ポリ(ドデカメチレンテレフタラミド/ドデカメチレンナフタラミド/ドデカメチレンセバカミド)共重合体(ポリアミド12T/12N/1210)、ポリ(ドデカメチレンテレフタラミド/ドデカメチレンナフタラミド/ドデカメチレンドデカミド)共重合体(ポリアミド12T/12N/1212)、及びこれらの混合物が好ましく、
 ポリ(ヘキサメチレンテレフタラミド/ヘキサメチレンイソフタラミド)共重合体(ポリアミド6T/6I)、ポリ(ヘキサメチレンテレフタラミド/2-メチルペンタメチレンテレフタラミド)共重合体(ポリアミド6T/M5T)、ポリ(ヘキサメチレンテレフタラミド/カプロアミド)共重合体(ポリアミド6T/6)、ポリ(ヘキサメチレンテレフタラミド/ヘキサメチレンドデカミド)共重合体(ポリアミド6T/610)、ポリ(ヘキサメチレンテレフタラミド/ヘキサメチレンドデカミド)共重合体(ポリアミド6T/612)、ポリ(ヘキサメチレンテレフタラミド/ヘキサメチレンセバカミド)共重合体(ポリアミド6T/610)、ポリ(ヘキサメチレンテレフタラミド/ヘキサメチレンドデカミド)共重合体(ポリアミド6T/612)、ポリ(ヘキサメチレンテレフタラミド/ヘキサメチレンイソフタラミド/ヘキサメチレンアジパミド)共重合体(ポリアミド6T/6I/66)、ポリ(ヘキサメチレンテレフタラミド/ヘキサメチレンイソフタラミド/ヘキサメチレンセバカミド)共重合体(ポリアミド6T/6I/610)、ポリ(ヘキサメチレンテレフタラミド/ヘキサメチレンイソフタラミド/ヘキサメチレンドデカミド)共重合体(ポリアミド6T/6I/612)、ポリノナメチレンテレフタラミド(ポリアミド9T)、ポリ(ノナメチレンテレフタラミド/2-メチルオクタメチレンテレフタラミド)共重合体(ポリアミド9T/M8T)、ポリノナメチレンナフタラミド(ポリアミド9N)、ポリ(ノナメチレンナフタラミド/2-メチルオクタメチレンナフタラミド)共重合体(ポリアミド9N/M8N)、ポリデカメチレンテレフタラミド(ポリアミド10T)、ポリ(デカメチレンテレフタラミド/ウンデカンアミド)共重合体(ポリアミド10T/11)、ポリ(デカメチレンテレフタラミド/ドデカンアミド)共重合体(ポリアミド10T/12)、ポリ(デカメチレンテレフタラミド/デカメチレンセバカミド)共重合体(ポリアミド10T/1010)、ポリ(デカメチレンテレフタラミド/デカメチレンドデカミド)共重合体(ポリアミド10T/1012)、ポリ(デカメチレンテレフタラミド/デカメチレンイソフタラミド/ウンデカンアミド)共重合体(ポリアミド10T/10I/11)、ポリ(デカメチレンテレフタラミド/デカメチレンイソフタラミド/ドデカンアミド)共重合体(ポリアミド10T/10I/12)、ポリ(デカメチレンテレフタラミド/デカメチレンイソフタラミド/デカメチレンセバカミド)共重合体(ポリアミド10T/10I/1010)、ポリ(デカメチレンテレフタラミド/デカメチレンイソフタラミド/デカメチレンドデカミド)共重合体(ポリアミド10T/10I/1012)、ポリデカメチレンナフタラミド(ポリアミド10N)、ポリ(デカメチレンナフタラミド/ウンデカンアミド)共重合体(ポリアミド10N/11)、ポリ(デカメチレンナフタラミド/ドデカンアミド)共重合体(ポリアミド10N/12)、ポリ(デカメチレンナフタラミド/デカメチレンセバカミド)共重合体(ポリアミド10N/1010)、ポリ(デカメチレンナフタラミド/デカメチレンドデカミド)共重合体(ポリアミド10N/1012)、ポリ(デカメチレンテレフタラミド/デカメチレンナフタラミド/ウンデカンアミド)共重合体(ポリアミド10T/10N/11)、ポリ(デカメチレンテレフタラミド/デカメチレンナフタラミド/ドデカンアミド)共重合体(ポリアミド10T/10N/12)、ポリ(デカメチレンテレフタラミド/デカメチレンナフタラミド/デカメチレンセバカミド)共重合体(ポリアミド10T/10N/1010)、ポリ(デカメチレンテレフタラミド/デカメチレンナフタラミド/デカメチレンドデカミド)共重合体(ポリアミド10T/10N/1012)、ポリドデカメチレンテレフタラミド(ポリアミド12T)、ポリ(ドデカメチレンテレフタラミド/ウンデカンアミド)共重合体(ポリアミド12T/11)、ポリ(ドデカメチレンテレフタラミド/ドデカンアミド)共重合体(ポリアミド12T/12)、ポリ(ドデカメチレンテレフタラミド/ドデカメチレンドデカミド)共重合体(ポリアミド12T/1212)、ポリドデカメチレンナフタラミド(ポリアミド12N)、ポリ(ドデカメチレンナフタラミド/ウンデカンアミド)共重合体(ポリアミド12N/11)、ポリ(ドデカメチレンナフタラミド/ドデカンアミド)共重合体(ポリアミド12N/12)、ポリ(ドデカメチレンナフタラミド/ドデカメチレンドデカミド)共重合体(ポリアミド12N/1212)、及びこれらの混合物がより好ましい。
 更に、半芳香族ポリアミド(D1)の製造装置としては、バッチ式反応釜、一槽式ないし多槽式の連続反応装置、管状連続反応装置、一軸型混練押出機、二軸型混練押出機等の混練反応押出機等、公知のポリアミド製造装置が挙げられる。重合方法としては、溶融重合、溶液重合、固相重合等の公知の方法を用い、常圧、減圧、加圧操作を繰り返して重合することができる。これらの重合方法は、単独で、あるいは適宜、組合せて用いることができる。
 半芳香族ポリアミド(D1)を製造する際、触媒として、リン酸、亜リン酸、次亜リン酸、それらの塩又はエステル等を添加することができる。リン酸、亜リン酸、次亜リン酸の塩又はエステルとしては、例えば、リン酸、亜リン酸、又は次亜リン酸とカリウム、ナトリウム、マグネシウム、バナジウム、カルシウム、亜鉛、コバルト、マンガン、錫、タングステン、ゲルマニウム、チタン、アンチモン等の金属との金属塩、リン酸、亜リン酸、又は次亜リン酸のアンモニウム塩、リン酸、亜リン酸、又は次亜リン酸のエチルエステル、イソプロピルエステル、ブチルエステル、へキシルエステル、イソデシルエステル、デシルエステル、ステアリルエステル、フェニルエステル等が挙げられる。これらは1種又は2種以上を用いることができる。
 [半芳香族ポリアミド(D2)]
 半芳香族ポリアミド組成物(D)は、半芳香族ポリアミド(D2)を含む態様があり(以下、半芳香族ポリアミド(D2)と称する場合がある。)、半芳香族ポリアミド(D2)は、半芳香族ポリアミド(D2)の全ジアミン単位に対して、キシリレンジアミン単位及び/又はビス(アミノメチル)ナフタレン単位を50モル%以上含むジアミン単位と、半芳香族ポリアミド(D2)の全ジカルボン酸単位に対して、炭素原子数4以上12以下の脂肪族ジカルボン酸単位を50モル%以上含むジカルボン酸単位を含有する。
 半芳香族ポリアミド(D2)中のキシリレンジアミン単位及び/又はビス(アミノメチル)ナフタレン単位の含有量は、得られる積層チューブの耐熱性、耐薬品性、耐衝撃性、薬液バリア性等の諸物性を十分に確保する観点から、半芳香族ポリアミド(D2)の全ジアミン単位に対して、50モル%以上であり、55モル%以上であることが好ましく、60モル%以上であることがより好ましい。
 キシリレンジアミン単位としては、o-キシリレンジアミン、m-キシリレンジアミン、p-キシリレンジアミンから誘導される単位が挙げられる。これらは1種又は2種以上を用いることができる。前記キシリレンジアミン単位の中でも、経済性及び入手の容易さを考慮して、m-キシリレンジアミン、p-キシリレンジアミンから誘導される単位が好ましい。
 m-キシリレンジアミンとp-キシリレンジアミンを併用する場合、m-キシリレンジアミン単位とp-キシリレンジアミン単位のモル比は、成形性と耐衝撃性のバランスの観点から、10:90~99:1(モル比)であることが好ましく、50:50~99:1(モル比)であることがより好ましく、65:35~99:1(モル比)であることが更に好ましい。
 ビス(アミノメチル)ナフタレン単位としては、1,4-ビス(アミノメチル)ナフタレン、1,5-ビス(アミノメチル)ナフタレン、2,6-ビス(アミノメチル)ナフタレン、2,7-ビス(アミノメチル)ナフタレン等から誘導される単位が挙げられる。これらは1種又は2種以上を用いることができる。前記ビス(アミノメチル)ナフタレン単位の中でも、経済性及び入手の容易さを考慮して、1,5-ビス(アミノメチル)ナフタレン、2,6-ビス(アミノメチル)ナフタレンから誘導される単位が好ましい。
 半芳香族ポリアミド(D2)中のジアミン単位は、得られる積層チューブの優れた諸特性を損なわない範囲内であれば、キシリレンジアミン単位及び/又はビス(アミノメチル)ナフタレン単位以外の他のジアミン単位を含んでいてもよい。他のジアミン単位としては、1,2-エタンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミン、1,13-トリデカンジアミン、1,14-テトラデカンジアミン、1,15-ペンタデカンジアミン、1,16-ヘキサデカンジアミン、1,17-ヘプタデカンジアミン、1,18-オクタデカンジアミン、1,19-ノナデカンジアミン、1,20-エイコサンジアミン、2-メチル-1,5-ペンタンジアミン、3-メチル-1,5-ペンタンジアミン、2-メチル-1,8-オクタンジアミン、2,2,4-トリメチル-1,6-ヘキサンジアミン、2,4,4-トリメチル-1,6-ヘキサンジアミン、5-メチル-1,9-ノナンジアミン等の脂肪族ジアミンから誘導される単位;1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、2,2-ビス(3-メチル-4-アミノシクロヘキシル)プロパン、5-アミノ-2,2,4-トリメチル-1-シクロペンタンメチルアミン、5-アミノ-1,3,3-トリメチルシクロヘキサンメチルアミン、ビス(アミノプロピル)ピペラジン、ビス(アミノエチル)ピペラジン、2,5-ビス(アミノメチル)ノルボルナン、2,6-ビス(アミノメチル)ノルボルナン、3,8-ビス(アミノメチル)トリシクロデカン、4,9-ビス(アミノメチル)トリシクロデカン等の脂環式ジアミンから誘導される単位;m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、2,2-ビス(4-アミノフェニル)プロパン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテル等の芳香族ジアミンから誘導される単位が挙げられ、これらは1種又は2種以上を用いることができる。これらの中でも、芳香族ジアミンから誘導される単位が好ましい。これら他のジアミン単位の含有量は、半芳香族ポリアミド(D2)の全ジアミン単位に対して、50モル%未満であり、45モル%以下であることが好ましく、40モル%以下であることがより好ましい。
 炭素原子数4以上12以下の脂肪族ジカルボン酸単位としては、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸等から誘導される単位が挙げられる。炭素原子数が前記を満たす限り、メチルマロン酸、ジメチルマロン酸、エチルマロン酸、ジメチルマロン酸、メチルコハク酸、メチルエチルマロン酸、2,2-ジメチルコハク酸、2,3-ジメチルコハク酸、2-メチルグルタル酸、3-メチルグルタル酸、2-メチルアジピン酸、2,2-ジメチルグルタル酸、2,2-ジエチルコハク酸、2,2,4-トリメチルアジピン酸、2,4,4-トリメチルアジピン酸、2-ブチルスベリン酸等の分岐鎖状脂肪族ジカルボン酸から誘導される単位を含有していても構わない。これらは1種又は2種以上を用いることができる。前記炭素原子数4以上12以下の脂肪族ジカルボン酸単位の中でも、入手の容易さ及び経済性の観点から、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸から誘導される単位が好ましく、アジピン酸、セバシン酸、ドデカン二酸から誘導される単位がより好ましく、アジピン酸、セバシン酸から誘導される単位が更に好ましい。
 アジピン酸とセバシン酸を併用する場合、アジピン酸単位とセバシン酸単位のモル比は、成形性と耐衝撃性のバランスの観点から、60:40~90:10(モル比)であることが好ましく、65:30~85:15(モル比)であることがより好ましく、70:30~85:15(モル比)であることが更に好ましい。
 また、半芳香族ポリアミド(D2)中の炭素原子数4以上12以下の脂肪族ジカルボン酸単位の含有量は、得られる積層チューブの耐熱性、耐薬品性、薬液バリア性等の諸物性を十分に確保する観点から、半芳香族ポリアミド(D2)の全ジカルボン酸単位に対して、50モル%以上であり、55モル%以上であることが好ましく、60モル%以上であることがより好ましい。
 半芳香族ポリアミド(D2)中のジカルボン酸単位は、得られる積層チューブの優れた諸特性を損なわない範囲内であれば、炭素原子数4以上12以下の脂肪族ジカルボン酸単位以外の他のジカルボン酸単位を含んでいてもよい。他のジカルボン酸単位としては、シュウ酸、マロン酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ヘキサデカン二酸、オクタデカン二酸、エイコサン二酸等の脂肪族ジカルボン酸から誘導される単位;1,3-シクロペンタンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸から誘導される単位;テレフタル酸、イソフタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,3-フェニレンジオキシジ酢酸、1,4-フェニレンジオキシジ酢酸、4,4’-オキシジ安息香酸、ジフェニルメタン-4,4’-ジカルボン酸、ジフェニルエタン-4,4’-ジカルボン酸、ジフェニルプロパン-4,4’-ジカルボン酸、ジフェニルエーテル-4,4’-ジカルボン酸、ジフェニルスルホン-4,4’-ジカルボン酸、4,4’-ビフェニルジカルボン酸、4,4’-トリフェニルジカルボン酸等の芳香族ジカルボン酸から誘導される単位が挙げられ、これらは1種又は2種以上を用いることができる。これら他のジカルボン酸単位の含有量は、半芳香族ポリアミド(D2)の全ジカルボン酸単位に対して、50モル%未満であり、45モル%以下であることが好ましく、40モル%以下であることがより好ましい。更に、トリメリット酸、トリメシン酸、ピロメリット酸等の多価カルボン酸を溶融成形が可能な範囲内で用いることもできる。
 半芳香族ポリアミド(D2)には、得られる積層チューブの優れた諸特性を損なわない範囲内であれば、ジカルボン酸単位及びジアミン単位以外のその他の単位を含んでいてもよい。その他の単位としては、半芳香族ポリアミド(D1)の説明で記載したラクタムから誘導される単位及び/又はアミノカルボン酸から誘導される単位が挙げられる。これらは1種又は2種以上を用いることができる。その他の単位の含有量は、半芳香族ポリアミド(D2)の全重合単位に基づいて、45モル%以下であることが好ましく、40モル%以下であることがより好ましく、35モル%以下であることが更に好ましい。
 半芳香族ポリアミド(D2)の具体例としては、ポリメタキシリレンスクシナミド(ポリアミドMXD4)、ポリメタキシリレングルタミド(ポリアミドMXD5)、ポリメタキシリレンアジパミド(ポリアミドMXD6)、ポリメタキシリレンスベラミド(ポリアミドMXD8)、ポリメタキシリレンアゼラミド(ポリアミドMXD9)、ポリメタキシリレンセバカミド(ポリアミドMXD10)、ポリメタキシリレンドデカミド(ポリアミドMXD12)、ポリパラキシリレンスクシナミド(ポリアミドPXD4)、ポリパラキシリレングルタミド(ポリアミドPXD5)、ポリパラキシリレンアジパミド(ポリアミドPXD6)、ポリパラキシリレンスベラミド(ポリアミドPXD8)、ポリパラキシリレンアゼラミド(ポリアミドPXD9)、ポリパラキシリレンセバカミド(ポリアミドPXD10)、ポリパラキシリレンドデカミド(ポリアミドPXD12)、ポリ(2,6-ナフタレンジメチレンスクシナミド)(ポリアミド2,6-BAN4)、ポリ(2,6-ナフタレンジメチレングルタミド)(ポリアミド2,6-BAN5)、ポリ(2,6-ナフタレンジメチレンアジパミド)(ポリアミド2,6-BAN6)、ポリ(2,6-ナフタレンジメチレンスベラミド)(ポリアミド2,6-BAN8)、ポリ(2,6-ナフタレンジメチレンアゼラミド)(ポリアミド2,6-BAN9)、ポリ(2,6-ナフタレンジメチレンセバカミド)(ポリアミド2,6-BAN10)、ポリ(2,6-ナフタレンジメチレンドデカミド)(ポリアミド2,6-BAN12)の単独重合体、及び/又はこれらポリアミドの原料単量体を数種用いた共重合体、並び/若しくはポリメタキシリレンテレフタラミド(ポリアミドMXDT)、ポリメタキシリレンイソフタラミド(ポリアミドMXDI)、ポリメタキシリレンナフタラミド(ポリアミドMXDN)、ポリパラキシリレンテレフタラミド(ポリアミドPXDT)、ポリパラキシリレンイソフタラミド(ポリアミドPXDI)、ポリパラキシリレンナフタラミド(ポリアミドPXDN)、ポリ(2,6-ナフタレンジメチレンテレフタラミド)(ポリアミド2,6-BANT)、ポリ(2,6-ナフタレンジメチレンイソフタラミド)(ポリアミド2,6-BANI)、ポリ(2,6-ナフタレンジメチレンナフタラミド)(ポリアミド2,6-BANN)等を形成する原料単量体を数種用いた共重合体等が挙げられる。これらは1種又は2種以上を用いることができる。
 これらの中でも、入手の容易さ、得られる積層チューブの耐熱性、耐薬品性、耐衝撃性、薬液バリア性等の諸物性を十分に確保する観点から、半芳香族ポリアミド(D2)としては、ポリメタキシリレンアジパミド(ポリアミドMXD6)、ポリパラキシリレンアジパミド(ポリアミドPXD6)、ポリ(メタキシリレンアジパミド/メタキシリレンテレフタラミド)共重合体(ポリアミドMXD6/MXDT)、ポリ(メタキシリレンアジパミド/メタキシリレンイソフタラミド)共重合体(ポリアミドMXD6/MXDI)、ポリ(メタキシリレンアジパミド/メタキシリレンテレフタラミド/メタキシリレンイソフタラミド)共重合体(ポリアミドMXD6/MXDT/MXDI)、ポリ(パラキシリレンアジパミド/パラキシリレンテレフタラミド)共重合体(ポリアミドPXD6/PXDT)、ポリ(パラキシリレンアジパミド/パラキシリレンイソフタラミド)共重合体(ポリアミドPXD6/PXDI)、ポリ(パラキシリレンアジパミド/パラキシリレンテレフタラミド/パラキシリレンイソフタラミド)共重合体(ポリアミドPXD6/PXDT/PXDI)、ポリ(メタキシリレンアジパミド/パラキシリレンアジパミド)共重合体(ポリアミドMXD6/PXD6)、ポリ(メタキシリレンアジパミド/パラキシリレンアジパミド/メタキシリレンテレフタラミド/パラキシリレンテレフタラミド)共重合体(ポリアミドMXD6/PXD6/MXDT/PXDT)、ポリ(メタキシリレンアジパミド/パラキシリレンアジパミド/メタキシリレンイソフタラミド/パラキシリレンイソフタラミド)共重合体(ポリアミドMXD6/PXD6/MXDI/PXDI)、ポリ(メタキシリレンアジパミド/パラキシリレンアジパミド/メタキシリレンテレフタラミド/パラキシリレンテレフタラミド/メタキシリレンイソフタラミド/パラキシリレンイソフタラミド)共重合体(ポリアミドMXD6/PXD6/MXDT/PXDT/MXDI/PXDI)、ポリメタキシリレンセバカミド(ポリアミドMXD10)、ポリパラキシリレンセバカミド(ポリアミドPXD10)、ポリ(メタキシリレンセバカミド/メタキシリレンテレフタラミド)共重合体(ポリアミドMXD10/MXDT)、ポリ(メタキシリレンセバカミド/メタキシリレンイソフタラミド)共重合体(ポリアミドMXD10/MXDI)、ポリ(メタキシリレンセバカミド/メタキシリレンテレフタラミド/メタキシリレンイソフタラミド)共重合体(ポリアミドMXD10/MXDT/MXDI)、ポリ(パラキシリレンセバカミド/パラキシリレンテレフタラミド)共重合体(ポリアミドPXD10/PXDT)、ポリ(パラキシリレンセバカミド/パラキシリレンイソフタラミド)共重合体(ポリアミドPXD10/PXDI)、ポリ(パラキシリレンセバカミド/パラキシリレンテレフタラミド/パラキシリレンイソフタラミド)共重合体(ポリアミドPXD10/PXDT/PXDI)、ポリ(メタキシリレンセバカミド/パラキシリレンセバカミド)共重合体(ポリアミドMXD10/PXD10)、ポリ(メタキシリレンセバカミド/パラキシリレンセバカミド/メタキシリレンテレフタラミド/パラキシリレンテレフタラミド)共重合体(ポリアミドMXD10/PXD10/MXDT/PXDT)、ポリ(メタキシリレンセバカミド/パラキシリレンセバカミド/メタキシリレンイソフタラミド/パラキシリレンイソフタラミド)共重合体(ポリアミドMXD10/PXD10/MXDI/PXDI)、ポリ(メタキシリレンセバカミド/パラキシリレンセバカミド/メタキシリレンテレフタラミド/パラキシリレンテレフタラミド/メタキシリレンイソフタラミド/パラキシリレンイソフタラミド)共重合体(ポリアミドMXD10/PXD10/MXDT/PXDT/MXDI/PXDI)、及びこれらの混合物が好ましく、
 ポリメタキシリレンアジパミド(ポリアミドMXD6)、ポリパラキシリレンアジパミド(ポリアミドPXD6)、ポリ(メタキシリレンアジパミド/メタキシリレンイソフタラミド)共重合体(ポリアミドMXD6/MXDI)、ポリ(パラキシリレンアジパミド/パラキシリレンイソフタラミド)共重合体(ポリアミドPXD6/PXDI)、ポリ(メタキシリレンアジパミド/パラキシリレンアジパミド)共重合体(ポリアミドMXD6/PXD6)、ポリ(メタキシリレンアジパミド/パラキシリレンアジパミド/メタキシリレンイソフタラミド/パラキシリレンイソフタラミド)共重合体(ポリアミドMXD6/PXD6/MXDI/PXDI)、ポリメタキシリレンセバカミド(ポリアミドMXD10)、ポリパラキシリレンセバカミド(ポリアミドPXD10)、ポリ(メタキシリレンセバカミド/メタキシリレンイソフタラミド)共重合体(ポリアミドMXD10/MXDI)、ポリ(パラキシリレンセバカミド/パラキシリレンイソフタラミド)共重合体(ポリアミドPXD10/PXDI)、ポリ(メタキシリレンセバカミド/パラキシリレンセバカミド)共重合体(ポリアミドMXD10/PXD10)、ポリ(メタキシリレンセバカミド/パラキシリレンセバカミド/メタキシリレンイソフタラミド/パラキシリレンイソフタラミド)共重合体(ポリアミドMXD10/PXD10/MXDI/PXDI)、及びこれらの混合物がより好ましく、
 ポリメタキシリレンアジパミド(ポリアミドMXD6)、ポリ(メタキシリレンアジパミド/パラキシリレンアジパミド)共重合体(ポリアミドMXD6/PXD6)、ポリメタキシリレンセバカミド(ポリアミドMXD10)、ポリ(メタキシリレンセバカミド/パラキシリレンセバカミド)共重合体(ポリアミドMXD10/PXD10)、及びこれらの混合物が更に好ましい。
 ポリメタキシリレンアジパミド(ポリアミドMXD6)及び/又はポリ(メタキシリレンアジパミド/パラキシリレンアジパミド)共重合体(ポリアミドMXD6/PXD6)とポリメタキシリレンセバカミド(ポリアミドMXD10)及び/又はポリ(メタキシリレンセバカミド/パラキシリレンセバカミド)共重合体(ポリアミドMXD10/PXD10)の混合物である場合、ポリメタキシリレンアジパミド(ポリアミドMXD6)及び/又はポリ(メタキシリレンアジパミド/パラキシリレンアジパミド)共重合体(ポリアミドMXD6/PXD6)とポリメタキシリレンセバカミド(ポリアミドMXD10)及び/又はポリ(メタキシリレンセバカミド/パラキシリレンセバカミド)共重合体(ポリアミドMXD10/PXD10)の質量比は、55:45~85:15(質量比)であることが好ましく、60:40~80:20(質量比)であることがより好ましく、65:35~75:25(質量比)であることが更に好ましい。
 半芳香族ポリアミド(D2)の製造装置としては、バッチ式反応釜、一槽式ないし多槽式の連続反応装置、管状連続反応装置、一軸型混練押出機、二軸型混練押出機等の混練反応押出機等、公知のポリアミド製造装置が挙げられる。半芳香族ポリアミド(D2)の製造方法としては、溶融重合、溶液重合、固相重合等の公知の方法があり、これらの方法を用い、常圧、減圧、加圧操作を繰り返して半芳香族ポリアミド(D2)を製造することができる。これらの製造方法は、単独で、あるいは適宜、組合せて用いることができ、これらの中でも、溶融重合法が好ましい。例えば、キシリレンジアミン及び/又はビス(アミノメチル)ナフタレンと炭素原子数4以上12以下の脂肪族ジカルボン酸からなるナイロン塩を水の存在下で、加圧、昇温し、加えた水及び縮合水を除きながら溶融状態で重合させる方法により製造される。また、キシリレンジアミン及び/又はビス(アミノメチル)ナフタレンを溶融状態の炭素原子数4以上12以下の脂肪族ジカルボン酸に直接加えて、常圧下で重縮合する方法によっても製造される。この場合、反応系を均一な液状状態に保つために、キシリレンジアミン及び/又はビス(アミノメチル)ナフタレンを炭素原子数4以上12以下の脂肪族ジカルボン酸に連続的に加え、その間、反応系の温度が生成するオリゴアミド及びポリアミドの融点以上になるように反応系を昇温しつつ、重合が進められる。半芳香族ポリアミド(D2)は、溶融重合法により製造された後に、固相重合を行ってもよい。
 半芳香族ポリアミド(D2)には、触媒として、あるいは溶融成形時の加工安定性を高め、着色を防止するためにリン原子含有化合物を添加することができる。リン原子含有化合物としては、次亜リン酸、亜リン酸、リン酸、ピロリン酸、メタリン酸、亜ホスホン酸、及びこれらの誘導体、即ち、次亜リン酸のアルカリ土類金属塩、亜リン酸のアルカリ金属塩、亜リン酸のアルカリ土類金属塩、リン酸のアルカリ金属塩、リン酸のアルカリ土類金属塩、ピロリン酸のアルカリ金属塩、ピロリン酸のアルカリ土類金属塩、メタリン酸のアルカリ金属塩、メタリン酸のアルカリ土類金属塩、亜ホスホン酸のアルカリ金属塩、亜ホスホン酸のアルカリ土類金属塩、ホスホン酸のアルカリ金属塩、ホスホン酸のアルカリ土類金属塩等が挙げられる。これらは1種又は2種以上を用いることができる。
 リン原子含有化合物の具体例としては、ホスフィン酸(次亜リン酸)、次亜リン酸エチル、ジメチルホスフィン酸、フェニルメチルホスフィン酸、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム、次亜リン酸カルシウム、次亜リン酸マグネシウム、亜リン酸、亜リン酸トリエチル、亜リン酸トリフェニル、亜リン酸ナトリウム、亜リン酸水素ナトリウム、亜リン酸カリウム、亜リン酸水素カリウム、亜リン酸リチウム、亜リン酸水素リチウム、亜リン酸マグネシウム、亜リン酸水素マグネシウム、亜リン酸カルシウム、亜リン酸水素カルシウム、ピロ亜リン酸、リン酸、リン酸ナトリウム、リン酸水素二ナトリウム、リン酸二水素ナトリウム、リン酸カリウム、リン酸水素二カリウム、リン酸二水素カリウム、リン酸マグネシウム、リン酸水素二マグネシウム、リン酸二水素マグネシウム、リン酸カルシウム、リン酸水素二カルシウム、リン酸二水素カルシウム、リン酸リチウム、リン酸水素二リチウム、リン酸二水素リチウム、ピロリン酸ナトリウム、ピロリン酸カリウム、ピロリン酸マグネシウム、ピロリン酸カルシウム、ピロリン酸リチウム、メタリン酸ナトリウム、メタリン酸カリウム、メタリン酸マグネシウム、メタリン酸カルシウム、メタリン酸リチウム、亜ホスホン酸、亜ホスホン酸ナトリウム、亜ホスホン酸リチウム、亜ホスホン酸カリウム、亜ホスホン酸マグネシウム、亜ホスホン酸カルシウム、フェニル亜ホスホン酸エチル、フェニル亜ホスホン酸ナトリウム、フェニル亜ホスホン酸カリウム、フェニル亜ホスホン酸リチウム、ホスホン酸、ホスホン酸ナトリウム、ホスホン酸カリウム、ホスホン酸リチウム、ホスホン酸カリウム、ホスホン酸マグネシウム、ホスホン酸カルシウム、フェニルホスホン酸、エチルホスホン酸、フェニルホスホン酸ナトリウム、フェニルホスホン酸カリウム、フェニルホスホン酸リチウム、フェニルホスホン酸ジエチル、エチルホスホン酸ナトリウム、エチルホスホン酸カリウム等が挙げられる。これらは1種又は2種以上を用いることができる。
 これらの中でも、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム、次亜リン酸カルシウム、次亜リン酸マグネシウム、亜リン酸カルシウム、亜リン酸水素カルシウム、リン酸二水素カルシウム、亜リン酸ナトリウム、亜リン酸ナトリウム、亜リン酸水素ナトリウム、亜リン酸カリウム、亜リン酸水素カリウム、亜リン酸リチウム、亜リン酸水素リチウム、亜リン酸マグネシウム、亜リン酸水素マグネシウム、亜リン酸カルシウム、亜リン酸水素カルシウムが好ましく、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム、次亜リン酸カルシウム、次亜リン酸マグネシウムがより好ましい。尚、これらのリン原子含有化合物は水和物であってもよい。
 リン原子含有化合物の含有量は、重合時の触媒効果、着色防止効果の十分な確保、及びゲルの発生を抑制の観点から、半芳香族ポリアミド(D2)100質量部に対して、リン原子濃度換算で0.03質量部以上0.3質量部以下であることが好ましく、0.05質量部以上0.2質量部以下であることがより好ましく、0.07質量部以上0.15質量部以下であることが更に好ましい。
 これらのリン原子含有化合物の添加方法は、半芳香族ポリアミド(D2)の原料であるナイロン塩水溶液、ジアミン、又はジカルボン酸に添加する方法、溶融状態にあるジカルボン酸に添加する方法、溶融重合中に添加する方法等が挙げられるが、半芳香族ポリアミド(D2)中に均一に分散させることが可能であれば、いかなる方法でも良く、これらに限定されるものではない。
 半芳香族ポリアミド(D2)には、リン原子含有化合物と併用して、アルカリ金属化合物及び/又はアルカリ土類金属化合物を添加することができる。尚、このアルカリ金属塩及び/又はアルカリ土類金属塩は、前記リン原子含有化合物以外の化合物をいう。重縮合中のポリアミドの着色を防止するため、リン原子含有化合物を十分な量存在させる必要があるが、場合によっては、ポリアミドのゲル化を招く恐れがあるため、アミド化反応速度を調整するためにも、アルカリ金属化合物及び/又はアルカリ土類金属化合物を共存させることが好ましい。アルカリ金属化合物及びアルカリ土類金属化合物としては、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属酢酸塩、アルカリ土類金属酢酸塩、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩、アルカリ金属アルコキシド、アルカリ土類金属アルコキシド等が挙げられる。これらは1種又は2種以上を用いることができる。これらの中でも、アルカリ金属水酸化物及び/又はアルカリ金属酢酸塩がより好ましい。
 アルカリ金属化合物及びアルカリ土類金属化合物の具体例としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム等のアルカリ金属/アルカリ土類金属の水酸化物;酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸ルビジウム、酢酸セシウム、酢酸マグネシウム、酢酸カルシウム、酢酸ストロンチウム、酢酸バリウムのアルカリ金属/アルカリ土類金属の酢酸塩;炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウム、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム等のアルカリ金属/アルカリ土類金属の炭酸塩;ナトリウムメトキシド、ナトリウムエトキド、ナトリウムプロポキシド、ナトリウムブトキシド、カリウムメトキシド、リチウムメトキシド、マグネシウムメトキシド、カルシウムメトキシド等のアルカリ金属/アルカリ土類金属のアルコキシド等が挙げられる。これらは1種又は2種以上を用いることができる。これらの中でも、経済性の観点から、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、酢酸ナトリウム、酢酸カリウムが好ましい。
 半芳香族ポリアミド(D2)の重縮合系内にアルカリ金属化合物及び/又はアルカリ土類金属化合物を添加する場合、該化合物のモル数を前記リン原子含有化合物のリン原子換算モル数で除した値は、アミド化反応の促進と抑制のバランスの観点から、0.3以上2以下であることが好ましく、0.4以上1.9以下であることがより好ましく、0.5以上1.8以下であることが更に好ましい。
 これらのアルカリ金属化合物及び/又はアルカリ土類金属化合物の添加方法は、半芳香族ポリアミド(D2)の原料であるナイロン塩水溶液、ジアミン、又はジカルボン酸に添加する方法、溶融状態にあるジカルボン酸に添加する方法、溶融重合中に添加する方法等が挙げられるが、半芳香族ポリアミド(D2)中に均一に分散させることが可能であればいかなる方法でも良く、これらに限定されるものではない。
 JIS K-6920に準拠して、96%硫酸、ポリマー濃度1%、25℃の条件下にて測定した半芳香族ポリアミド(D1)及び半芳香族ポリアミド(D2)の相対粘度は、得られる積層チューブの機械的性質を確保することと、溶融時の粘度を適正範囲にして積層チューブの望ましい成形性を確保する観点から、1.5以上4.0以下であることが好ましく、1.6以上3.5以下であることがより好ましく、1.8以上3.0以下であることが更に好ましい。
 尚、半芳香族ポリアミド(D1)及び半芳香族ポリアミド(D2)の末端基の種類、末端基濃度、及び分子量分布に特別の制約は無い。分子量調節及び成形加工時の溶融安定化のため、モノアミン、ジアミン、ポリアミン、モノカルボン酸、ジカルボン酸のうちの1種あるいは2種以上を適宜組合せて添加することができる。例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等の脂肪族モノアミン;シクロヘキシルアミン、ジシクロヘキシルアミン等の脂環式モノアミン;アニリン、トルイジン、ジフェニルアミン、ナフチルアミン等の芳香族モノアミン;1,2-エタンジアミン、1,3-プロパンジアミン、1,13-トリデカンジアミン等の脂肪族ジアミン;シクロヘキサンジアミン、ビス(アミノメチル)シクロヘキサン、5-アミノ-1,3,3-トリメチルシクロヘキサンメチルアミン等の脂環式ジアミン;m-フェニレンジアミン、p-フェニレンジアミン等の芳香族ジアミン;ポリアルキレンイミン、ポリアルキレンポリアミン、ポリビニルアミン、ポリアリルアミン等のポリアミン;酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、イソ酪酸等の脂肪族モノカルボン酸;シクロヘキサンカルボン酸等の脂環式モノカルボン酸;安息香酸、トルイル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、メチルナフタレンカルボン酸、フェニル酢酸等の芳香族モノカルボン酸;シュウ酸、マロン酸、トリデカン二酸、テトラデカン二酸等の脂肪族ジカルボン酸、1,3-シクロペンタンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸;フタル酸、イソフタル酸等の芳香族ジカルボン酸が挙げられる。これらは1種又は2種以上を用いることができる。これら分子量調節剤の使用量は、分子量調節剤の反応性及び重合条件により異なるが、最終的に得ようとするポリアミドの相対粘度が前記の範囲になるように適宜決められる。
 溶融安定性を考慮すると、半芳香族ポリアミド(D1)及び半芳香族ポリアミド(D2)の分子鎖の末端が末端封止剤により封止されていることが好ましく、末端基の10%以上が封止されていることがより好ましく、末端基の20%以上が封止されていることが更に好ましい。末端封止剤としては、ポリアミド末端のアミノ基又はカルボキシル基と反応性を有する単官能性の化合物であれば特に制限はないが、反応性、封止末端の安定性等の観点から、モノカルボン酸又はモノアミンが好ましく、取扱いの容易さ等の観点から、モノカルボン酸がより好ましい。その他、無水フタル酸等の酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類等も使用できる。
 末端封止剤として使用されるモノカルボン酸としては、アミノ基との反応性を有するものであれば特に制限はないが、前記脂肪族モノカルボン酸、脂環式モノカルボン酸、芳香族モノカルボン酸等が挙げられる。これらは1種又は2種以上を用いることができる。これらの中でも、反応性、封止末端の安定性、価格等の観点から、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチン酸、パルミチン酸、ステアリン酸、安息香酸が好ましい。末端封止剤として使用されるモノアミンとしては、カルボキシル基との反応性を有するものであれば特に制限はないが、前記脂肪族モノアミン、脂環式モノアミン、芳香族モノアミン等が挙げられる。これらは1種又は2種以上を用いることができる。これらの中でも、反応性、沸点、封止末端の安定性、価格等の観点から、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、シクロヘキシルアミン、アニリンが好ましい。
 末端封止剤の使用量は、用いる末端封止剤の反応性、沸点、反応装置、反応条件等を考慮して、適宜選択することができる。重合度の調整の観点から、原料成分であるジカルボン酸とジアミンの総モル数に対して、0.1モル%以上15モル%以下であることが好ましい。
 半芳香族ポリアミド組成物(D)には、半芳香族ポリアミド(D1)及び半芳香族ポリアミド(D2)の低温耐衝撃性を改良するために、衝撃改良材を添加することが好ましく、カルボキシル基及び/又は酸無水物基を有する不飽和化合物から誘導される構成単位を含有するエラストマー重合体(D3)を添加することがより好ましい。エラストマー重合体(D3)は、前記脂肪族ポリアミド組成物(A)に含まれるエラストマー重合体(A3)の説明で記載した通りである。エラストマー重合体(D3)としては、エラストマー重合体(A3)と同じものを用いてもよく、異なるものを用いてもよい。これらは1種又は2種以上を用いることができる。前記エラストマー重合体(D3)は、カルボキシル基及び/又は酸無水物基を有する不飽和化合物から誘導される構成単位を含有していないと、衝撃改良効果が不十分となる場合がある。
 衝撃改良材の含有量は、得られる積層チューブの機械的強度及び低温耐衝撃性を十分に確保する観点から、主成分の半芳香族ポリアミド(D1)及び/又は半芳香族ポリアミド(D2)100質量部に対して、1質量部以上30質量部以下であることが好ましく、3質量部以上25質量部以下であることがより好ましい。
 半芳香族ポリアミド組成物(D)には、半芳香族ポリアミド(D1)及び/又は半芳香族ポリアミド(D2)とともに、他の熱可塑性樹脂を含有していてもよい。他の熱可塑性樹脂としては、前記脂肪族ポリアミド組成物(A)の場合と同様の樹脂が挙げられる。これらは1種又は2種以上を用いることができる。更に、得られる積層チューブの層間接着性、柔軟性、及び溶融加工安定性の観点から、前記脂肪族ポリアミド組成物(A)に含まれるポリアミド(A1)及び/又はポリアミド(A2)の説明で記載したポリアミドとの混合物であることも好ましい。半芳香族ポリアミド組成物(D)中の半芳香族ポリアミド(D1)及び/又は半芳香族ポリアミド(D2)の含有量は、60質量%以上であり、70質量%以上であることが好ましい。
 更に、半芳香族ポリアミド組成物(D)には、必要に応じて、導電性フィラー、酸化防止剤、熱安定剤、紫外線吸収剤、光安定化剤、滑剤、無機質充填剤、帯電防止剤、難燃剤、結晶化促進剤、着色剤、潤滑剤等を添加してもよい。
 5.(e)層
 積層チューブは、更に(e)層を有することが好ましい。
 積層チューブの(e)層は、アミノ基に対して反応性を有する官能基が分子鎖中に導入された含フッ素系重合体(E)(以下、含フッ素系重合体(E)と称する場合がある。)を含む。
 [含フッ素系重合体(E)]
 含フッ素系重合体(E)は、アミノ基に対して反応性を有する官能基が分子鎖中に導入された含フッ素系重合体である。
 含フッ素系重合体(E)は、少なくとも1種の含フッ素単量体から誘導される繰り返し単位を有する重合体(単独重合体又は共重合体)である。熱溶融加工可能な含フッ素系重合体であれば特に限定されるものではない。
 ここで、含フッ素単量体としては、テトラフルオロエチレン(TFE)、トリフルオロエチレン、フッ化ビニリデン(VDF)、フッ化ビニル(VF)、クロロトリフルオロエチレン(CTFE)、トリクロロフルオロエチレン、ヘキサフルオロプロピレン(HFP)、CF=CFORf1(ここで、Rf1は、炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキル基を表す。)、CF=CF-OCH-Rf2(ここで、Rf2は、炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキレン基を表す。)、CF=CF(CFOCF=CF(ここで、pは、1又は2である。)、CH=CX(CF(ここで、X及びXは、互いに独立に水素原子又はフッ素原子を表し、nは、2以上10以下の整数である。)等が挙げられる。これらは1種又は2種以上を用いることができる。
 前記一般式CF=CFORf1の具体例としては、CF=CFOCF(パーフルオロ(メチルビニルエーテル):PMVE)、CF=CFOCFCF(パーフルオロ(エチルビニルエーテル):PEVE)、CF=CFOCFCFCF(パーフルオロ(プロピルビニルエーテル):PPVE)、CF=CFOCFCFCFCF(パーフルオロ(ブチルビニルエーテル):PBVE)、CF=CFO(CFF(パーフルオロ(オクチルビニルエーテル):POVE)等のパーフルオロ(アルキルビニルエーテル)(以下、PAVEと称する場合がある。)が挙げられる。これらは1種又は2種以上を用いることができる。これらの中でも、CF=CFOCF、CF=CFOCFCFCFが好ましい。
 また、前記一般式CH=CX(CF(ここで、X及びXは、互いに独立に水素原子又はフッ素原子を表し、nは、2以上10以下の整数である。)で表される化合物中のnは、含フッ素系重合体の改質(例えば、共重合体の成形時及び成形品のクラック発生の抑制)効果に確保し、十分な重合反応性を得る観点から、2以上10以下の整数である。具体的には、CH=CF(CFF、CH=CF(CFF、CH=CF(CFF、CH=CF(CFF、CH=CF(CFF、CH=CF(CFH、CH=CF(CFH、CH=CF(CFH、CH=CF(CFH、CH=CF(CFH、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFH、CH=CH(CFH、CH=CH(CFH、CH=CH(CFH、CH=CH(CFH等が挙げられる。これらは1種又は2種以上を用いることができる。
 これらの中でも、含フッ素系重合体(E)の薬液バリア性と耐環境応力亀裂性のバランスの観点から、CH=CH(CFF又はCH=CF(CFHで表される化合物が好ましく、式中のnは、2以上4以下であることがより好ましい。
 含フッ素系重合体(E)は、前記含フッ素単量体に加えて、更に、非フッ素含有単量体に基づく重合単位を含有してもよい。非フッ素含有単量体としては、エチレン、プロピレン、イソブテン等の炭素原子数2以上4以下のオレフィン;塩化ビニル、塩化ビニリデン、酢酸ビニル、クロロ酢酸ビニル、乳酸ビニル、酪酸ビニル、ピバル酸ビニル、安息香酸ビニル、クロトン酸ビニル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、クロトン酸メチル等のビニルエステル;メチルビニルエーテル(MVE)、エチルビニルエーテル(EVE)、ブチルビニルエーテル(BVE)、イソブチルビニルエーテル(IBVE)、シクロへキシルビニルエーテル(CHVE)、グリシジルビニルエーテル等のビニルエーテル等が挙げられる。これらは1種又は2種以上を用いることができる。これらの中でも、エチレン、プロピレン、酢酸ビニルが好ましく、エチレンがより好ましい。
 含フッ素系重合体(E)の中でも、耐熱性、耐薬品性、及び薬液バリア性の観点から、少なくとも、フッ化ビニリデン単位(VDF単位)からなる重合体(E1)、少なくとも、テトラフルオロエチレン単位(TFE単位)及びエチレン単位(E単位)からなる共重合体(E2)、少なくとも、テトラフルオロエチレン単位(TFE単位)、ヘキサフルオロプロピレン単位(HFP単位)、及び/又は前記一般式CF=CFORf1(ここで、Rf1は、炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキル基を表す。)で表されるPAVEに由来するPAVE単位からなる共重合体(E3)、少なくとも、クロロトリフルオロエチレン単位(CTFE単位)からなる共重合体(E4)、少なくとも、クロロトリフルオロエチレン単位(CTFE単位)及びテトラフルオロエチレン単位(TFE単位)からなる共重合体(E5)であることが好ましい。
 少なくとも、フッ化ビニリデン単位(VDF単位)からなる重合体(E1)(以下、VDF共重合体(E1)と称する場合がある。)としては、例えば、フッ化ビニリデン単独重合体(ポリフッ化ビニリデン(PVDF))(E1-1)、
 VDF単位及びTFE単位とからなる共重合体であって、後記の官能基含有単量体を除く単量体全体に対して、VDF単位の含有量が30モル%以上99モル%以下、及びTFE単位の含有量が1モル%以上70モル%以下である共重合体(E1-2)、
 VDF単位、TFE単位、及びトリクロロフルオロエチレン単位からなる共重合体であって、後記の官能基含有単量体を除く単量体全体に対して、VDF単位の含有量が10モル%以上90モル%以下、TFE単位の含有量が0モル%以上90モル%以下、及びトリクロロフルオロエチレン単位の含有量が0モル%以上30モル%以下である共重合体(E1-3)、
 VDF単位、TFE単位、及びHFP単位からなる共重合体であって、後記の官能基含有単量体を除く単量体全体に対して、VDF単位の含有量が10モル%以上90モル%以下、TFE単位の含有量が0モル%以上90モル%以下、及びHFP単位の含有量が0モル%以上30モル%以下である共重合体(E1-4)等が挙げられる。
 前記共重合体(E1-4)において、後記の官能基含有単量体を除く単量体全体に対して、VDF単位の含有量は、15モル%以上84モル%以下、TFE単位の含有量は、15モル%以上84モル%以下、及びHFP単位の含有量は、0モル%以上30モル%以下であることが好ましい。
 少なくとも、テトラフルオロエチレン単位(TFE単位)及びエチレン単位(E単位)からなる共重合体(E2)としては(以下、TFE共重合体(E2)と称する場合がある。)、例えば、後記の官能基含有単量体を除く単量体全体に対して、TFE単位の含有量が20モル%以上である重合体が挙げられ、更には、後記の官能基含有単量体を除く単量体全体に対して、TFE単位の含有量が20モル%以上80モル%以下、E単位の含有量が20モル%以上80モル%以下、及びこれらと共重合可能な単量体に由来する単位の含有量が0モル%以上60モル%以下である共重合体等が挙げられる。
 前記共重合可能な単量体としては、ヘキサフルオロプロピレン(HFP)、前記一般式CF=CFORf1(ここで、Rf1は、炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキル基を表す。)、前記一般式CH=CX(CF(ここで、X及びXは、互いに独立に水素原子又はフッ素原子を表し、nは、2以上10以下の整数である。)等が挙げられる。これらは1種又は2種以上を用いることができる。
 TFE共重合体(E2)としては、例えば、
 TFE単位、E単位、及び前記一般式CH=CX(CF(ここで、X及びXは、互いに独立に水素原子又はフッ素原子を表し、nは、2以上10以下の整数である。)で表されるフルオロオレフィンに由来するフルオロオレフィン単位からなる共重合体であって、後記の官能基含有単量体を除く単量体全体に対して、TFE単位の含有量が30モル%以上70モル%以下、E単位の含有量が20モル%以上55モル%以下、及び前記一般式CH=CX(CF(ここで、X及びXは、互いに独立に水素原子又はフッ素原子を表し、nは、2以上10以下の整数である。)で表されるフルオロオレフィンに由来するフルオロオレフィン単位の含有量が0モル%以上10モル%以下である共重合体(E2-1)、
 TFE単位、E単位、HFP単位、及びこれらと共重合可能な単量体に由来する単位からなる共重合体であって、後記の官能基含有単量体を除く単量体全体に対して、TFE単位の含有量が30モル%以上70モル%以下、E単位の含有量が20モル%以上55モル%以下、HFP単位の含有量が1モル%以上30モル%以下、及びこれらと共重合可能な単量体に由来する単位の含有量が0モル%以上10モル%以下である共重合体(E2-2)、
 TFE単位、E単位、及び前記一般式CF=CFORf1(ここで、Rf1は、炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキル基を表す。)で表されるPAVEに由来するPAVE単位からなる共重合体であって、後記の官能基含有単量体を除く単量体全体に対して、TFE単位の含有量が30モル%以上70モル%以下、E単位の含有量が20モル%以上55モル%以下、及び前記一般式CF=CFORf1(ここで、Rf1は、炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキル基を表す。)で表されるPAVEに由来するPAVE単位の含有量が0モル%以上10モル%以下である共重合体(E2-3)等が挙げられる。
 少なくとも、テトラフルオロエチレン単位(TFE単位)、ヘキサフルオロプロピレン単位(HFP単位)、及び/又は前記一般式CF=CFORf1(ここで、Rf1は、炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキル基を表す。)で表されるPAVEに由来するPAVE単位からなる共重合体(E3)(以下、TFE共重合体(E3)と称する場合がある。)としては、例えば、
 TFE単位及びHFP単位からなる共重合体であって、後記の官能基含有単量体を除く単量体全体に対して、TFE単位の含有量が70モル%以上95モル%以下であり、好ましくは85モル%以上93モル%以下であり、HFP単位の含有量が5モル%以上30モル%以下であり、好ましくは7モル%以上15モル%以下である共重合体(E3-1)、
 TFE単位及び前記一般式CF=CFORf1(ここで、Rf1は、炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキル基を表す。)で表されるPAVEに由来する1種又は2種以上のPAVE単位からなる共重合体であって、後記の官能基含有単量体を除く単量体全体に対して、TFE単位の含有量が70モル%以上95モル%以下、及び前記一般式CF=CFORf1(ここで、Rf1は、炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキル基を表す。)で表されるPAVEに由来する1種又は2種以上のPAVE単位の含有量が5モル%以上30モル%以下である共重合体(E3-2)、
 TFE単位、HFP単位、及び前記一般式CF=CFORf1(ここで、Rf1は、炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキル基を表す。)で表されるPAVEに由来する1種又は2種以上のPAVE単位からなる共重合体であって、後記の官能基含有単量体を除く単量体全体に対して、TFE単位の含有量が70モル%以上95モル%以下、HFP単位と前記一般式CF=CFORf1(ここで、Rf1は、炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキル基を表す。)で表されるPAVEに由来する1種又は2種以上のPAVE単位の合計含有量が5モル%以上30モル%以下である共重合体(E3-3)等が挙げられる。
 少なくとも、クロロトリフルオロエチレン単位(CTFE単位)からなる共重合体とは、CTFE単位[-CFCl-CF-]、更に、エチレン単位(E単位)及び/又は含フッ素単量体単位から構成されるクロロトリフルオロエチレン共重合体(E4)である(以下、CTFE共重合体(E4)と称する場合がある。)。
 前記CTFE共重合体(E4)における含フッ素単量体としては、CTFE以外のものであれば特に限定されないが、フッ化ビニリデン(VDF)、ヘキサフルオロプロピレン(HFP)、前記一般式CF=CFORf1(ここで、Rf1は、炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキル基を表す。)で表されるPAVE、前記一般式CH=CX(CF(ここで、X及びXは、互いに独立に水素原子又はフッ素原子を表し、nは、2以上10以下の整数である。)で表されるフルオロオレフィン等が挙げられる。これらは1種又は2種以上を用いることができる。
 CTFE共重合体(E4)としては、特に限定されず、例えば、CTFE/PAVE共重合体、CTFE/VDF共重合体、CTFE/HFP共重合体、CTFE/E共重合体、CTFE/PAVE/E共重合体、CTFE/VDF/E共重合体、CTFE/HFP/E共重合体等が挙げられる。これらは1種又は2種以上を用いることができる。
 CTFE共重合体(E4)におけるCTFE単位の含有量は、後記の官能基含有単量体を除く単量体全体に対して、15モル%以上70モル%以下であることが好ましく、18モル%以上65モル%以下であることがより好ましい。一方、E単位及び/又は含フッ素単量体単位の含有量は、30モル%以上85モル%以下であることが好ましく、35モル%以上82モル%以下であることがより好ましい。
 少なくとも、クロロトリフルオロエチレン単位(CTFE単位)及びテトラフルオロエチレン単位(TFE単位)からなる共重合体(E5)は、CTFE単位[-CFCl-CF-]、TFE単位[-CF-CF-]、並びにCTFE及びTFEと共重合可能な単量体単位から構成されるクロロトリフルオロエチレン共重合体である(以下、CTFE/TFE共重合体(E5)と称する場合がある。)。
 前記CTFE/TFE共重合体(E5)における共重合可能な単量体としては、CTFE及びTFE以外のものであれば特に限定されないが、フッ化ビニリデン(VDF)、ヘキサフルオロプロピレン(HFP)、前記一般式CF=CFORf1(ここで、Rf1は、炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキル基を表す。)で表されるPAVE、前記一般式CH=CX(CF(ここで、X及びXは、互いに独立に水素原子又はフッ素原子を表し、nは、2以上10以下の整数である。)で表されるフルオロオレフィン等の含フッ素単量体;エチレン、プロピレン、イソブテン等の炭素原子数2以上4以下のオレフィン;酢酸ビニル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等のビニルエステル;メチルビニルエーテル(MVE)、エチルビニルエーテル(EVE)、ブチルビニルエーテル(BVE)等のビニルエーテル等の非フッ素含有単量体が挙げられる。これらは1種又は2種以上を用いることができる。これらの中でも、前記一般式CF=CFORf1(ここで、Rf1は、炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキル基を表す。)で表されるPAVEであることが好ましく、パーフルオロ(メチルビニルエーテル)(PMVE)、パーフルオロ(プロビルビニルエーテル)(PPVE)がより好ましく、耐熱性の観点から、PPVEが更に好ましい。
 CTFE/TFE共重合体(E5)としては、特に限定されず、例えば、CTFE/TFE共重合体、CTFE/TFE/HFP共重合体、CTFE/TFE/VDF共重合体、CTFE/TFE/PAVE共重合体、CTFE/TFE/E共重合体、CTFE/TFE/HFP/PAVE共重合体、CTFE/TFE/VDF/PAVE共重合体等が挙げられる。これらは1種又は2種以上を用いることができる。これらの中でも、CTFE/TFE/PAVE共重合体、CTFE/TFE/HFP/PAVE共重合体が好ましい。
 CTFE/TFE共重合体(E5)中におけるCTFE単位及びTFE単位の合計含有量は、良好な成形性、耐環境応力亀裂性、薬液バリア性、耐熱性、及び機械的特性を確保する観点から、後記の官能基含有単量体を除く単量体全体に対して、90モル%以上99.9モル%以下であることが好ましく、前記CTFE及びTFEと共重合可能な単量体単位の含有量は、0.1モル%以上10モル%以下であることが好ましい。
 CTFE/TFE共重合体(E5)中のおけるCTFE単位の含有量は、良好な成形性、耐環境応力亀裂性、及び薬液バリア性を確保する観点から、前記CTFE単位及びTFE単位の合計量100モル%に対して、15モル%以上80モル%以下であることが好ましく、17モル%以上70モル%以下であることがより好ましく、19モル%以上65モル%以下であることが更に好ましい。
 CTFE/TFE共重合体(E5)において、前記CTFE及びTFEと共重合可能な単量体がPAVEである場合、PAVE単位の含有量は、後記の官能基含有単量体を除く単量体全体に対して、0.5モル%以上7モル%以下であることが好ましく、1モル%以上5モル%以下であることがより好ましい。
 CTFE/TFE共重合体(E5)において、前記CTFE及びTFEと共重合可能な単量体がHFP及びPAVEである場合、HFP単位及びPAVE単位の合計含有量は、後記の官能基含有単量体を除く単量体全体に対して、0.5モル%以上7モル%以下であることが好ましく、1モル%以上5モル%以下であることがより好ましい。
 TFE共重合体(E3)、CTFE共重合体(E4)、及びCTFE/TFE共重合体(E5)は、薬液バリア性、特に含アルコールガソリンに対するバリア性に卓越して優れる。含アルコールガソリン透過係数は、イソオクタン、トルエン、及びエタノールを45:45:10の容積比で混合したイソオクタン/トルエン/エタノール混合溶媒を投入した透過係数測定用カップに測定対象樹脂から得たシートを入れ、60℃において測定した質量変化から算出される値である。TFE共重合体(E3)、CTFE共重合体(E4)、及びCTFE/TFE共重合体(E5)の前記含アルコールガソリン透過係数は、1.5g・mm/(m・day)以下であることが好ましく、0.01g・mm/(m・day)以上1g・mm/(m・day)以下であることがより好ましく、0.02g・mm/(m・day)以上0.8g・mm/(m・day)以下であることが更に好ましい。
 含フッ素系重合体(E)は、重合体を構成する単量体を使用し、従来からの重合方法で(共)重合することによって得ることができる。その中でも、主としてラジカル重合による方法が用いられる。即ち、重合を開始するには、ラジカル的に進行するものであれば手段は何ら制限されないが、例えば、有機、無機ラジカル重合開始剤、熱、光、電離放射線等によって開始される。
 含フッ素系重合体(E)の製造方法は、特に制限はなく、一般に用いられているラジカル重合開始剤を使用する重合方法が用いられる。重合方法としては、塊状重合、フッ化炭化水素、塩化炭化水素、フッ化塩化炭化水素、アルコール、炭化水素等の有機溶媒を使用する溶液重合、水性媒体及び必要に応じて適当な有機溶剤を使用する懸濁重合、水性媒体及び乳化剤を使用する乳化重合等、公知の方法を採用できる。
 また、重合は、一槽ないし多槽式の攪拌型重合装置、管型重合装置等を使用して、回分式又は連続式操作として実施することができる。
 ラジカル重合開始剤としては、半減期が10時間である分解温度が0℃以上100℃以下であることが好ましく、20℃以上90℃以下であることがより好ましい。具体例としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビスイソ酪酸ジメチル、2,2’-アゾビス[2-(ヒドロキシメチル)プロピオニトリル]、4,4’-アゾビス(4-シアノペンテン酸)等のアゾ化合物;過酸化水素、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等のハイドロパーオキサイド;ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド等のジアルキルパーオキサイド;アセチルパーオキサイド、イソブチリルパーオキサイド、オクタノイルパーオキサイド、ベンゾイルパーオキサイド、ラウロイルパーオキサイド等の非フッ素系ジアシルパーオキサイド;メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等のケトンパーオキサイド;ジイソプロピルパーオキシジカーボネート等のパーオキシジカーボネート;t-ブチルパーオキシピバレート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシアセテート等のパーオキシエステル;(Z(CFCOO)(ここで、Zは、水素原子、フッ素原子、又は塩素原子であり、pは、1以上10以下の整数である。)で表される化合物等の含フッ素ジアシルパーオキサイド;過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の無機過酸化物等が挙げられる。これらは1種又は2種以上を用いることができる。
 また、含フッ素系重合体(E)の製造に際しては、分子量調整のために、通常の連鎖移動剤を使用することも好ましい。連鎖移動剤としては、メタノール、エタノール等のアルコール;1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン、1,1-ジクロロ-1-フルオロエタン、1,2-ジクロロ-1,1,2,2-テトラフルオロエタン、1,1-ジクロロ-1-フルオロエタン、1,1,2-トリクロロ-1,2,2-トリフルオロエタン等のクロロフルオロハイドロカーボン;ペンタン、ヘキサン、シクロヘキサン等のハイドロカーボン;四塩化炭素、クロロホルム、塩化メチレン、塩化メチル等のクロロハイドロカーボンが挙げられる。これらは1種又は2種以上を用いることができる。
 重合条件については特に限定されず、重合温度は、0℃以上100℃以下であることが好ましく、20℃以上90℃以下であることがより好ましい。重合体中のエチレン-エチレン連鎖生成による耐熱性の低下を避けるためには、一般に、低温が好ましい。重合圧力は、用いる溶媒の種類、量、蒸気圧、重合温度等の他の重合条件に応じて適宜定められるが、0.1MPa以上10MPa以下であることが好ましく、0.5MPa以上3MPa以下であることがより好ましい。重合時間は、1時間以上30時間以下であることが好ましい。
 含フッ素系重合体(E)の分子量は、特に限定されないが、室温で固体の重合体であり、それ自体、熱可塑性樹脂、エラストマー等として使用できるものが好ましい。また、分子量は、重合に用いる単量体の濃度、重合開始剤の濃度、連鎖移動剤の濃度、温度等によって制御される。
 含フッ素系重合体(E)を、前記脂肪族ポリアミド組成物(A)、ビニルアルコール系重合体組成物(B)、ポリアミド組成物(C)、半芳香族ポリアミド組成物(D)等と共押出する場合、これらの著しい劣化を伴わない混練温度及び成形温度範囲で、充分な溶融流動性を確保するためには、含フッ素系重合体(E)の融点より50℃高い温度及び5kg荷重におけるメルトフローレートは、0.5g/10分以上200g/10分以下であることが好ましく、1g/10分以上100g/10分以下であることがより好ましい。
 また、含フッ素系重合体(E)は、含フッ素単量体、その他の単量体の種類、組成比等を選ぶ事によって、重合体の融点、ガラス転移点等を調節することができる。
 含フッ素系重合体(E)の融点は、目的、用途、使用方法等により適宜選択されるが、前記脂肪族ポリアミド組成物(A)、ビニルアルコール系重合体組成物(B)、ポリアミド組成物(C)、半芳香族ポリアミド組成物(D)等と共押出する場合、当該樹脂の成形温度に近いことが好ましい。そのため、前記含フッ素単量体、その他の単量体、及び後記の官能基含有単量体の割合を適宜調節し、含フッ素系重合体(E)の融点を最適化することが好ましい。
 ここで、融点とは、示差走査熱量測定装置を用いて、試料を予想される融点以上の温度に加熱し、次に、この試料を1分間あたり10℃の速度で降温し、30℃まで冷却、そのまま約1分間放置したのち、1分間あたり10℃の速度で昇温することにより測定される融解曲線のピーク値の温度を融点と定義するものとする。
 含フッ素系重合体(E)は、アミノ基に対して反応性を有する官能基が分子構造内に導入されており、その官能基は、含フッ素系重合体(E)の分子末端、側鎖又は主鎖のいずれに導入されていても構わない。また、その官能基は、含フッ素系重合体(E)中に単独又は2種類以上のものが併用されていてもよい。その官能基の種類及び含有量は、含フッ素系重合体(E)に積層される相手材の種類、形状、用途、要求される層間接着性、接着方法、官能基導入方法等により適宜決定される。
 アミノ基に対して反応性を有する官能基としては、カルボキシル基、酸無水物基又はカルボン酸塩、スルホ基又はスルホン酸塩、エポキシ基、シアノ基、カーボネート基、及びハロホルミル基から群より選ばれる少なくとも1種が挙げられる。これらの中でも、カルボキシル基、酸無水物基又はカルボン酸塩、エポキシ基、カーボネート基、及びハロホルミル基からなる群より選ばれる少なくとも1種が好ましい。
 含フッ素系重合体(E)に、アミノ基に対して反応性を有する官能基を導入する方法としては、(i)含フッ素系重合体(E)の重合時、官能基を有する共重合可能な単量体を共重合する方法、(ii)重合開始剤、連鎖移動剤等により、重合時に含フッ素系重合体(E)の分子末端に官能基を導入する方法、(iii)反応性を有する官能基をグラフト化が可能な官能基とを有する化合物(グラフト化合物)を含フッ素系重合体にグラフトさせる方法等が挙げられる。これらの導入方法は、単独で、あるいは適宜、組合せて用いることができる。得られる積層チューブにおける層間接着性を考慮した場合、前記(i)、(ii)から製造される含フッ素系重合体(E)が好ましい。(iii)については、特開平7-18035号公報、特開平7-25952号公報、特開平7-25954号公報、特開平7-173230号公報、特開平7-173446号公報、特開平7-173447号公報、特表平10-503236号公報による製造法を参照されたい。以下、(i)含フッ素系重合体の重合時、官能基を有する共重合可能な単量体を共重合する方法、(ii)重合開始剤等により含フッ素系重合体の分子末端に官能基を導入する方法について説明する。
 (i)含フッ素系重合体(E)の製造時、官能基を有する共重合可能な単量体(以下、官能基含有単量体と略記する場合がある。)を共重合する方法において、カルボキシル基、酸無水物基又はカルボン酸塩、ヒドロキシル基、スルホ基又はスルホン酸塩、エポキシ基、及びシアノ基からなる群より選ばれる少なくとも1種の官能基含有単量体を重合単量体して用いる。官能基含有単量体としては、官能基含有非フッ素単量体、官能基含有含フッ素単量体等が挙げられる。
 官能基含有非フッ素単量体としては、アクリル酸、ハロゲン化アクリル酸(但し、フッ素は除く)、メタクリル酸、ハロゲン化メタクリル酸(但し、フッ素は除く)、マレイン酸、ハロゲン化マレイン酸(但し、フッ素は除く)、フマル酸、ハロゲン化フマル酸(但し、フッ素は除く)、イタコン酸、シトラコン酸、クロトン酸、エンドビシクロ-[2.2.1]-5-ヘプテン-2,3-ジカルボン酸等の不飽和カルボン酸及びそのエステル等誘導体;無水マレイン酸、無水イタコン酸、無水コハク酸、無水シトラコン酸、エンドビシクロ-[2.2.1]-5-ヘプテン-2,3-ジカルボン酸無水物等のカルボキシル基含有単量体;グリシジルアクリレート、グリシジルメタクリレート、グリシジルエーテル等のエポキシ基含有単量体等が挙げられる。これらは1種又は2種以上を用いることができる。官能基含有非フッ素単量体は、使用する含フッ素単量体との共重合反応性を考慮して決定される。適当な官能基含有非フッ素単量体を選択することにより、重合が良好に進行し、官能基含有非フッ素単量体の主鎖中に均一に導入しやすく、結果として、未反応モノマーが少なくなり、不純物を減らすことができるという利点がある。
 官能基含有含フッ素単量体としては、一般式CX=CX-(R-Y(ここで、Yは、-COOM(Mは、水素原子又はアルカリ金属を表す。)、カルボキシル基由来基、-SOM(Mは、水素原子又はアルカリ金属を表す。)、スルホン酸由来基、エポキシ基、及び-CNからなる群より選択される官能基を表し、X、X、及びXは、同一又は異なって、水素原子又はフッ素原子を表し(但し、X、X、及びXが同一に水素原子の場合、n=1であり、Rにフッ素原子を含む。)、Rは、炭素原子数1以上40以下のアルキレン基、炭素原子数1以上40以下の含フッ素オキシアルキレン基、エーテル結合を有する炭素原子数1以上40以下の含フッ素アルキレン基、又は、エーテル結合を有する炭素原子数1以上40以下の含フッ素オキシアルキレン基を表し、nは、0又は1である。)で表される不飽和化合物等が挙げられる。
 前記一般式におけるYであるカルボキシル基由来基としては、例えば、一般式-C(=O)Q(式中、Qは、-OR、-NH、F、Cl、Br、又はIを表し、Rは、炭素原子数1以上20以下のアルキル基又は炭素原子数6以上22以下のアリール基を表す。)で表される官能基等が挙げられる。
 前記一般式におけるYであるスルホン酸由来基としては、例えば、一般式-SO(式中Qは、-OR、-NH、F、Cl、Br、又はIを表し、Rは、炭素原子数1以上20以下のアルキル基又は炭素原子数6以上22以下のアリール基を表す。)で表される官能基等が挙げられる。
 前記Yは、-COOH、-SOH、-SONa、-SOF、又は-CNが好ましい。
 官能基含有含フッ素単量体としては、例えば、カルボニル基を有する官能基である場合、パーフルオロアクリル酸フルオライド、1-フルオロアクリル酸フルオライド、アクリル酸フルオライド、1-トリフルオロメタクリル酸フルオライド、パーフルオロブテン酸等が挙げられる。これらは1種又は2種以上を用いることができる。
 含フッ素系重合体(E)中の官能基含有単量体の含有量は、十分な層間接着性を確保し、使用環境条件により、層間接着性の低下を招かず、耐熱性を十分に確保し、高温での加工時、接着不良、着色、発泡、高温での使用時、分解による剥離、着色、発泡、溶出等の発生を防止する観点から、含フッ素系重合体(E)の全重合単位に対して、0.01モル%以上5モル%以下であることが好ましく、0.015モル%以上4モル%以下であることがより好ましく、0.02モル%以上3モル%以下であることが更に好ましい。含フッ素系重合体(E)中の官能基含有単量体の含有量が前記の範囲にあると、製造時の重合速度が低下せず、かつ含フッ素系重合体(E)は積層される相手材との接着性に優れたものとなる。官能基含有単量体の添加法は、特に限定されず、重合開始時に一括添加してもよいし、重合中に連続添加してもよい。添加方法は、重合開始剤の分解反応性と重合温度により適宜選択されるが、重合中に、官能基含有単量体が重合で消費されるに従って、消費された量を連続的又は断続的に重合槽内に供給し、当該官能基含有単量体の濃度をこの範囲に維持することが好ましい。
 尚、含フッ素系重合体(E)中の官能基含有単量体の含有量としては、含フッ素系重合体(E)の全重合単位に対して、0.01モル%とは、含フッ素系重合体(E)中の官能基残基の含有量が含フッ素系重合体(E)の主鎖炭素原子数1×10個に対して、100個であることに相当する。また、含フッ素系重合体(E)中の全重合単位に対して、5モル%とは、含フッ素系重合体(E)中の官能基残基の含有量が含フッ素系重合体(E)の主鎖炭素原子数1×10個に対して、50,000個であることに相当する。
 前記含有量を満たす限りにおいて、官能基が導入された含フッ素系重合体と、官能基が導入されていない含フッ素系重合体の混合物であっても構わない。
 (ii)重合開始剤等により含フッ素系重合体の分子末端に官能基を導入する方法において、官能基は、含フッ素系重合体の分子鎖の片末端又は両末端に導入される。末端に導入される官能基としては、カーボネート基及び/又はハロホルミル基が好ましい。
 含フッ素系重合体(E)の末端基として導入されるカーボネート基は、一般に、-OC(=O)O-の結合を有する基であり、具体的には、-OC(=O)O-R10基[R10は、水素原子、有機基(例えば、炭素原子数1以上20以下アルキル基、エーテル結合を有する炭素原子数2以上20以下アルキル基等)、又はI、II、VII族元素である。]の構造のもので、-OC(=O)OCH、-OC(=O)OC、-OC(=O)OC17、-OC(=O)OCHCHOCHCH等が挙げられる。ハロホルミル基は、具体的には、-COZ[Zは、ハロゲン元素である。]の構造のもので、-COF、-COCl等が挙げられる。
 また、重合体の分子末端にカーボネート基を導入するためには、重合開始剤及び/又は連鎖移動剤を使用した種々の方法を採用できるが、パーオキサイド、特にパーオキシカーボネート及び/又はパーオキシエステルを重合開始剤として用いる方法が、経済性、耐熱性、耐薬品性等の性能の観点から好ましく採用できる。この方法によれば、パーオキサイドに由来するカルボニル基、例えば、パーオキシカーボネートに由来するカーボネート基、パーオキシエステルに由来するエステル基、これらの官能基を変換してなるハロホルミル基等を重合体末端に導入することができる。これらの重合開始剤のうち、パーオキシカーボネートを用いることが、重合温度を低くすることができ、開始反応に副反応を伴わないことからより好ましい。
 重合体の分子末端にハロホルミル基を導入するためには、種々の方法を採用できるが、例えば、前記カーボネート基を末端に有する含フッ素系重合体のカーボネート基を加熱させ、熱分解(脱炭酸)させることにより得ることができる。
 パーオキシカーボネートとしては、ジイソプロピルパーオキシカーボネート、ジ-n-プロピルパーオキシカーボネート、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシメタクリロイロキシエチルカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート等が挙げられる。これらは1種又は2種以上を用いることができる。
 パーオキシカーボネートの使用量は、目的とする重合体の種類(組成等)、分子量、重合条件、使用する開始剤の種類等によって異なるが、重合速度を適正に制御し、十分な重合速度を確保する観点から、重合によって得られる全重合体100質量部に対して、0.05質量部以上20質量部以下であることが好ましく、0.1質量部以上10質量部以下であることがより好ましい。重合体の分子末端のカーボネート基含有量は、重合条件を調整することによって制御できる。重合開始剤の添加法は、特に限定されず、重合開始時に一括添加してもよいし、重合中に連続添加してもよい。添加方法は、重合開始剤の分解反応性及び重合温度により適宜選択される。
 含フッ素系重合体(E)中の主鎖炭素原子数10個に対する末端官能基数は、十分な層間接着性を確保し、使用環境条件により、層間接着性の低下を招かず、耐熱性を十分に確保し、高温での加工時、接着不良、着色、発泡、高温での使用時、分解による剥離、着色、発泡、溶出等の発生を防止する観点から、150個以上3,000個以下であることが好ましく、200個以上2,000個以下であることがより好ましく、300個以上1,000個以下であることが更に好ましい。また、前記官能基数を満たす限りにおいて、官能基が導入された含フッ素系重合体と、官能基が導入されていない含フッ素系重合体の混合物であっても構わない。
 以上のように、含フッ素系重合体(E)は、アミノ基に対して反応性を有する官能基が分子鎖中に導入された含フッ素系重合体である。前記の通り、官能基が導入された含フッ素系重合体(E)は、それ自体、含フッ素系重合体特有の耐熱性、耐水性、低摩擦性、耐薬品性、耐候性、防汚性、薬液バリア性等の優れた特性を維持することが可能であり、生産性及びコストの面で有利である。
 更に、アミノ基に対して反応性を有する官能基が分子鎖中に導入されることにより、積層チューブにおいて、層間接着性が不充分又は不可能であった種々の材料に対し、表面処理等特別な処理及び/又は接着性樹脂の被覆等を行なわず、直接、他の基材との優れた層間接着性を付与することができる。
 含フッ素系重合体(E)は、目的、用途等に応じてその性能を損なわない範囲で、無機質粉末、ガラス繊維、炭素繊維、金属酸化物、カーボン等の種々の充填剤を添加できる。また、充填剤以外に、顔料、紫外線吸収剤、その他任意の添加剤を混合できる。添加剤以外に、他のフッ素系樹脂、他の熱可塑性樹脂等の樹脂、合成ゴム等を添加することもでき、機械的特性の改善、耐候性の改善、意匠性の付与、静電防止、成形性改善等が可能となる。
 [積層チューブ]
 積層チューブの第一態様は、(a)層及び(b)層の少なくとも2層を含み、少なくとも1組の(a)層と(b)層とが隣接して配置される。
 第一態様の積層チューブにおいて、(b)層を含むことは必須であり、積層チューブの環境応力負荷後の低温耐衝撃性が良好となる。更に、(a)層と(b)層とが隣接して配置されることにより、層間接着性及びその耐久性に優れた積層チューブを得ることが可能となる。
 好ましい実施態様としては、(a)層に対して内側に配置される少なくとも1層の(b)層を有する。この場合、少なくとも1組の(a)層と(b)層とが隣接している限り、(a)層に対して内側に配置される(b)層は、(a)層と隣接するように配置されていてもよく、(a)層と(b)層の間に他の層が配置されていてもよい。例えば、最外層(a)層及び最内層(a)層との間に中間層(b)層を1層含んだ3層構造の場合、隣接した(a)層及び(b)層としては、最外層(a)層と中間層(b)層との組み合わせと、最内層(a)層と中間層(b)層との組み合わせがあるが、2つの組み合わせの中で、少なくとも一方において、(b)層は、(a)層に対して内側に配置されているため、前記要件を満たす。
 より好ましい実施態様としては、(a)層は、積層チューブの最外層に配置される。(a)層が最外層に配置されることにより、耐薬品性及び柔軟性に優れた積層チューブを得ることが可能となる。
 更に好ましい実施態様としては、(a)層は、積層チューブの最内層に配置される。(a)層が最内層に配置されることにより、耐薬品性に優れる積層チューブが得ることが可能となる。即ち、(a)層が最外層と最内層に配置される積層チューブが更に好ましい。
 また、第一態様の積層チューブにおいて、更に導電性フィラーを含有させた脂肪族ポリアミド組成物(A)を含む導電層が、積層チューブの最内層に配置されると、耐劣化燃料性に優れるとともに、燃料配管チューブとして使用された場合、配管内を循環する燃料の内部摩擦あるいは管壁との摩擦によって発生したスパークが燃料に引火することを防止することが可能となる。その際、導電性を有しない脂肪族ポリアミド組成物(A)を含む層が、前記導電層に対して外側に配置されることにより、低温耐衝撃性と導電性を両立することが可能であり、また、経済的にも有利である。
 導電性とは、例えば、ガソリンのような引火性の流体が樹脂のような絶縁体に連続的に接触した場合、静電気が蓄積して引火する可能性があるが、この静電気が蓄積しない程度の電気特性を有することを言う。これにより、燃料等の流体の搬送時に発生する静電気による爆発防止が可能となる。
 導電性フィラーは、樹脂に導電性能を付与するために添加されるすべての充填剤が包含され、粒状、フレーク状、繊維状フィラー等が挙げられる。
 粒状フィラーとしては、カーボンブラック、グラファイト等が挙げられる。フレーク状フィラーとしては、アルミフレーク、ニッケルフレーク、ニッケルコートマイカ等が挙げられる。また、繊維状フィラーとしては、炭素繊維、炭素被覆セラミック繊維、カーボンウィスカー、カーボンナノチューブ、アルミ繊維、銅繊維、黄銅繊維、ステンレス繊維等の金属繊維等が挙げられる。これらは1種又は2種以上を用いることができる。これらの中でも、カーボンナノチューブ、カーボンブラックが好ましい。
 カーボンナノチューブは、中空炭素フィブリルと称されるものであり、該フィブリルは、規則的に配列した炭素原子の本質的に連続的な多数層からなる外側領域と、内部中空領域とを有し、各層と中空領域とが該フィブリルの円柱軸の周囲に実質的に同心に配置されている本質的に円柱状のフィブリルである。更に、前記外側領域の規則的に配列した炭素原子が黒鉛状であり、前記中空領域の直径が2nm以上20nm以下であることが好ましい。カーボンナノチューブの外径は、樹脂中への十分な分散性及び得られる樹脂成形体の良好な導電性を付与する観点から、3.5nm以上70nm以下であることが好ましく、4nm以上60nm以下であることがより好ましい。カーボンナノチューブのアスペクト比(長さ/外径の比)は、5以上であることが好ましく、100以上であることがより好ましく、500以上であることが更に好ましい。該アスペクト比を満たすことにより、導電性ネットワークを形成しやすく、少量添加で優れた導電性を発現することができる。
 カーボンブラックは、導電性付与に一般的に使用されているカーボンブラックがすべて包含され、好ましいカーボンブラックとしては、アセチレンガスを不完全燃焼して得られるアセチレンブラック、原油を原料にファーネス式不完全燃焼によって製造されるケッチェンブラック等のファーネスブラック、オイルブラック、ナフタリンブラック、サーマルブラック、ランプブラック、チャンネルブラック、ロールブラック、ディスクブラック等が挙げられるが、これらに限定されるものではない。これらは1種又は2種以上を用いることができる。これらの中でも、アセチレンブラック、ファーネスブラックがより好ましい。
 また、カーボンブラックは、その粒子径、表面積、DBP吸油量、灰分等の特性の異なる種々のカーボン粉末が製造されている。該カーボンブラックの特性に制限は無いが、良好な鎖状構造を有し、凝集密度の大きいものが好ましい。カーボンブラックの多量配合は、耐衝撃性の観点から好ましくなく、より少量で優れた電気伝導度を得る観点から、平均粒径は、500nm以下であることが好ましく、5nm以上100nm以下であることがより好ましく、10nm以上70nm以下であることが更に好ましく、表面積(BET法)は、10m/g以上であることが好ましく、30m/g以上であることがより好ましく、50m/g以上であることが更に好ましく、更に、DBP(ジブチルフタレート)吸油量は、50ml/100g以上であることが好ましく、100ml/100gであることがより好ましく、150ml/100g以上であることが更に好ましい。灰分は、0.5質量%以下であることが好ましく、0.3質量%以下であることがより好ましい。ここでいうDBP吸油量は、ASTM D-2414に定められた方法で測定した値である。また、カーボンブラックの揮発分含量は、1質量%未満であることが好ましい。
 これら、導電性フィラーはチタネート系、アルミ系、シラン系等の表面処理剤で表面処理を施されていてもよい。更に、溶融混練作業性を向上させるために造粒されたものを用いることも可能である。
 導電性フィラーの含有量は、用いる導電性フィラーの種類により異なるため、一概に規定はできないが、導電性、流動性、機械的強度等とのバランスの観点から、脂肪族ポリアミド組成物(A)100質量部に対して、一般に、3質量部以上30質量部以下であることが好ましい。
 また、かかる導電性フィラーは、十分な帯電防止性能を得る観点から、溶融押出物の表面固有抵抗値が10Ω/square以下であることが好ましく、10Ω/square以下であることがより好ましい。但し、前記導電性フィラーの添加は、強度、流動性の悪化を招きやすい。そのため、目標とする導電レベルが得られれば、前記導電性フィラーの含有量はできるだけ少ない方が望ましい。
 第一態様の積層チューブでは、各層の厚みは特に制限されず、各層を構成する重合体の種類、積層チューブにおける全体の層数、用途等に応じて調節し得るが、それぞれの層の厚みは、積層チューブの薬液バリア性、低温耐衝撃性、柔軟性等の特性を考慮して決定される。一般には、(a)層及び(b)層の厚みは、積層チューブ全体の厚みに対して、それぞれ3%以上90%以下であることが好ましい。低温耐衝撃性と薬液バリア性のバランスを考慮して、(b)層の厚みは、積層チューブ全体の厚みに対して、5%以上30%以下であることがより好ましく、7%以上20%以下であることが更に好ましい。
 また、第一態様の積層チューブにおける全体の層数は、(a)層及び(b)層を有する、少なくとも2層である限り、特に限定されない。更に、第一態様の積層チューブは、(a)層及び(b)層の2層以外に、更なる機能を付与、あるいは経済的に有利な積層チューブを得るために、他の熱可塑性樹脂を含む層を1層又は2層以上を有していてもよい。第一態様の積層チューブの層数は2層以上であるが、チューブ製造装置の機構から判断して8層以下であることが好ましく、3層以上7層以下であることがより好ましい。
 積層チューブの第二態様は、第一態様に、更に(c)層を有する、少なくとも3層を含み、少なくとも1組の(b)層と(c)層とが隣接して配置される。
 第二態様の積層チューブにおいて、(b)層を含むことは必須であり、積層チューブの環境応力負荷後の低温耐衝撃性が良好となる。また、(c)層を含むことも必須であり、積層チューブの機械的物性が良好となる。更に、(a)層と(b)層及び(b)層と(c)層とが隣接して配置されることにより、層間接着性及びその耐久性に優れた積層チューブを得ることが可能となる。
 好ましい実施態様としては、(b)層に対して内側に配置される少なくとも1層の(c)層を有する。また、(b)層は、(a)層と(c)層との間に配置される。この場合、少なくとも1組の(a)層と(b)層及び(b)層と(c)層とが隣接している限り、(a)層と(c)層との間に配置される(b)層は、(a)層及び/又は(c)層と隣接するように配置されていてもよく、(a)層と(b)層及び(b)層と(c)層の間に他の層が配置されていてもよい。
 より好ましい実施態様としては、(a)層は、積層チューブの最外層に配置される。(a)層が最外層に配置されることにより、耐薬品性及び柔軟性に優れた積層チューブを得ることが可能となる。
 更に好ましい実施態様としては、(c)層は、積層チューブの最内層に配置される。(c)層が最内層に配置されることにより、含アルコールガソリンとの接触によるモノマー、オリゴマー等低分子量成分の溶出を抑制することが可能となる。即ち、(a)層が最外層に配置され、(b)層が中間層に配置され、(c)層が最内層に配置される積層チューブが更に好ましい。
 また、第二態様の積層チューブにおいて、更に導電性フィラーを含有させたポリアミド組成物(C)を含む導電層が、積層チューブの最内層に配置されると、モノマー、オリゴマーの耐溶出性に優れるとともに、燃料配管チューブとして使用された場合、配管内を循環する燃料の内部摩擦あるいは管壁との摩擦によって発生したスパークが燃料に引火することを防止することが可能となる。その際、導電性を有しないポリアミド組成物(C)を含む層が、前記導電層に対して外側に配置されることにより、低温耐衝撃性と導電性を両立することが可能であり、また、経済的にも有利である。
 導電性及び導電性フィラーの詳細は、第一態様の積層チューブと同様である。
 導電性フィラーの含有量は、用いる導電性フィラーの種類により異なるため、一概に規定はできないが、導電性、流動性、機械的強度等とのバランスの観点から、ポリアミド組成物(C)100質量部に対して、一般に、3質量部以上30質量部以下であることが好ましい。
 また、かかる導電性フィラーは、十分な帯電防止性能を得る観点から、溶融押出物の表面固有抵抗値が10Ω/square以下であることが好ましく、10Ω/square以下であることがより好ましい。但し、前記導電性フィラーの添加は、強度、流動性の悪化を招きやすい。そのため、目標とする導電レベルが得られれば、前記導電性フィラーの含有量はできるだけ少ない方が望ましい。
 第二態様の積層チューブでは、各層の厚みは特に制限されず、各層を構成する重合体の種類、積層チューブにおける全体の層数、用途等に応じて調節し得るが、それぞれの層の厚みは、積層チューブの薬液バリア性、低温耐衝撃性、柔軟性等の特性を考慮して決定される。一般には、(a)層、(b)層、及び(c)層の厚みは、積層チューブ全体の厚みに対して、それぞれ3%以上90%以下であることが好ましい。低温耐衝撃性と薬液バリア性のバランスを考慮して、(b)層の厚みは、積層チューブ全体の厚みに対して、それぞれ5%以上30%以下であることがより好ましく、7%以上20%以下であることが更に好ましい。
 また、第二態様の積層チューブにおける全体の層数は、(a)層、(b)層、及び(c)層を有する、少なくとも3層である限り、特に限定されない。更に、第二態様の積層チューブは、(a)層、(b)層、及び(c)層の3層以外に、更なる機能を付与、あるいは経済的に有利な積層チューブを得るために、他の熱可塑性樹脂を含む層を1層又は2層以上を有していてもよい。第二態様の積層チューブの層数は3層以上であるが、チューブ製造装置の機構から判断して8層以下であることが好ましく、3層以上7層以下であることがより好ましい。
 積層チューブの第三態様は、第一態様又は第二態様に、更に(d)層を有する、少なくとも3層((c)層を有する場合は少なくとも4層)を含み、(d)層は、(a)層に対して内側に配置される。
 第三態様の積層チューブにおいて、(b)層及び(d)層を含むことは必須であり、(b)層を含むことにより、積層チューブの環境応力負荷後の低温耐衝撃性が良好となり、(d)層を含むことにより、積層チューブの薬液バリア性、特に炭化水素バリア性がより良好となる。また、(a)層と(b)層とが隣接して配置されることにより、層間接着性及びその耐久性に優れた積層チューブを得ることが可能となる。更に、(d)層が(a)層に対して内側に配置されることにより、積層チューブの耐薬品性がより良好となる。この場合、(d)層は、(a)層と接するように配置されていてもよく、(a)層と(d)層の間に他の層が配置されていてもよい。
 好ましい実施態様としては、(b)層と(d)層の間に、(a)層及び/又は(c)層が配置される。この場合、少なくとも1組の(a)層と(b)層とが隣接している限り、(b)層と(d)層の間に配置される(a)層及び/又は(c)層は、(b)層及び/又は(d)層と隣接するように配置されていてもよく、(b)層と(d)層の間に(a)層や(c)層以外の他の層が配置されていてもよい。
 より好ましい実施態様としては、(a)層は、積層チューブの最外層に配置される。(a)層が最外層に配置されることにより、耐薬品性及び柔軟性に優れた積層チューブを得ることが可能となる。
 更に好ましい実施態様としては、(d)層は、積層チューブの最内層に配置される。(d)層が最内層に配置されることにより、耐劣化燃料性に優れる積層チューブが得られるとともに、含アルコールガソリンとの接触によるモノマー、オリゴマー等低分子量成分の溶出を抑制することが可能となる。即ち、(a)層が最外層に配置され、(b)層が中間層に配置され、(a)層が内層に配置され、(d)層が最内層に配置される積層チューブ、又は(a)層が最外層に配置され、(b)層が中間層に配置され、(c)層が内層に配置され、(d)層が最内層に配置される積層チューブが更に好ましい。
 また、第三態様の積層チューブにおいて、更に導電性フィラーを含有させた半芳香族ポリアミド組成物(D)を含む導電層が、積層チューブの最内層に配置されると、薬液バリア性、耐劣化燃料性、及びモノマー、オリゴマーの耐溶出性に優れるとともに、燃料配管チューブとして使用された場合、配管内を循環する燃料の内部摩擦あるいは管壁との摩擦によって発生したスパークが燃料に引火することを防止することが可能となる。その際、導電性を有しない半芳香族ポリアミド組成物(D)を含む層が、前記導電層に対して外側に配置されることにより、低温耐衝撃性と導電性を両立することが可能であり、また、経済的にも有利である。
 導電性及び導電性フィラーの詳細は、第一態様の積層チューブと同様である。
 導電性フィラーの含有量は、用いる導電性フィラーの種類により異なるため、一概に規定はできないが、導電性、流動性、機械的強度等とのバランスの観点から、半芳香族ポリアミド組成物(D)100質量部に対して、一般に、3質量部以上30質量部以下であることが好ましい。
 また、かかる導電性フィラーは、十分な帯電防止性能を得る観点から、溶融押出物の表面固有抵抗値が10Ω/square以下であることが好ましく、10Ω/square以下であることがより好ましい。但し、前記導電性フィラーの添加は、強度、流動性の悪化を招きやすい。そのため、目標とする導電レベルが得られれば、前記導電性フィラーの含有量はできるだけ少ない方が望ましい。
 第三態様の積層チューブでは、各層の厚みは特に制限されず、各層を構成する重合体の種類、積層チューブにおける全体の層数、用途等に応じて調節し得るが、それぞれの層の厚みは、積層チューブの薬液バリア性、低温耐衝撃性、柔軟性等の特性を考慮して決定される。一般には、(a)層、(b)層、及び(d)層又は(a)層、(b)層、(c)層、及び(d)層の厚みは、積層チューブ全体の厚みに対して、それぞれ3%以上90%以下であることが好ましい。低温耐衝撃性と薬液バリア性のバランスを考慮して、(b)層及び(d)層の厚みは、積層チューブ全体の厚みに対して、それぞれ5%以上50%以下であることがより好ましく、7%以上30%以下であることが更に好ましい。
 また、第三態様の積層チューブにおける全体の層数は、(a)層、(b)層、及び(d)層又は(a)層、(b)層、(c)層、及び(d)層を有する、少なくとも3層((c)層を有する場合は少なくとも4層)である限り、特に限定されない。更に、第三態様の積層チューブは、(a)層、(b)層、及び(d)層の3層以外、又は(a)層、(b)層、(c)層、及び(d)層の4層以外に、更なる機能を付与、あるいは経済的に有利な積層チューブを得るために、他の熱可塑性樹脂を含む層を1層又は2層以上を有していてもよい。第三態様の積層チューブの層数は3層以上((c)層を有する場合は4層以上)であるが、チューブ製造装置の機構から判断して8層以下であることが好ましく、4層以上7層以下であることがより好ましい。
 積層チューブの第四態様は、第一態様又は第二態様に、更に(e)層を有する、少なくとも3層((c)層を有する場合は少なくとも4層)を含み、(e)層は、(a)層に対して内側に配置される。
 第四態様の積層チューブにおいて、(b)層及び(e)層を含むことは必須であり、(b)層を含むことにより、積層チューブの環境応力負荷後の低温耐衝撃性が良好となり、(e)層を含むことにより、積層チューブの薬液バリア性、特にアルコールバリア性及び高濃度アルコール含有ガソリンに対するバリア性が良好となる。また、(a)層と(b)層とが隣接して配置されることにより、層間接着性及びその耐久性に優れた積層チューブを得ることが可能となる。更に、(e)層が(a)層に対して内側に配置されることにより、積層チューブの耐薬品性がより良好となる。この場合、(e)層は、(a)層と接するように配置されていてもよく、(a)層と(e)層の間に他の層が配置されていてもよい。
 好ましい実施態様としては、(b)層と(e)層の間に、(a)層及び/又は(c)層が配置される。この場合、少なくとも1組の(a)層と(b)層とが隣接している限り、(b)層と(e)層の間に配置される(a)層及び/又は(c)層は、(b)層及び/又は(e)層と隣接するように配置されていてもよく、(b)層と(e)層の間に(a)層や(c)層以外の他の層が配置されていてもよい。
 より好ましい実施態様としては、(a)層は、積層チューブの最外層に配置される。(a)層が最外層に配置されることにより、耐薬品性及び柔軟性に優れた積層チューブを得ることが可能となる。
 更に好ましい実施態様としては、(e)層は、積層チューブの最内層に配置される。(e)層が最内層に配置されることにより、耐劣化燃料性に優れる積層チューブが得られるとともに、含アルコールガソリンとの接触によるモノマー、オリゴマー等低分子量成分の溶出を抑制することが可能となる。即ち、(a)層が最外層に配置され、(b)層が中間層に配置され、(a)層が内層に配置され、(e)層が最内層に配置される積層チューブ、又は(a)層が最外層に配置され、(b)層が中間層に配置され、(c)層が内層に配置され、(e)層が最内層に配置される積層チューブが更に好ましい。
 また、第四態様の積層チューブにおいて、更に導電性フィラーを含有させた含フッ素系重合体組成物を含む導電層が、積層チューブの最内層に配置されると、薬液バリア性、耐劣化燃料性、及びモノマー、オリゴマーの耐溶出性に優れるとともに、燃料配管チューブとして使用された場合、配管内を循環する燃料の内部摩擦あるいは管壁との摩擦によって発生したスパークが燃料に引火することを防止することが可能となる。その際、導電性を有しない含フッ素系重合体を含む層が、前記導電層に対して外側に配置されることにより、低温耐衝撃性と導電性を両立することが可能であり、また、経済的にも有利である。更に、ここでいう、含フッ素系重合体は、アミノ基に対して反応性を有する官能基が分子鎖中に導入された含フッ素系重合体(E)も包含し、後記アミノ基に対して反応性を有する官能基を含有しない含フッ素系重合体も指す。
 導電性及び導電性フィラーの詳細は、第一態様の積層チューブと同様である。
 導電性フィラーの含有量は、用いる導電性フィラーの種類により異なるため、一概に規定はできないが、導電性、流動性、機械的強度等とのバランスの観点から、含フッ素系重合体100質量部に対して、一般に、3質量部以上30質量部以下であることが好ましい。
 また、かかる導電性フィラーは、十分な帯電防止性能を得る観点から、溶融押出物の表面固有抵抗値が10Ω/square以下であることが好ましく、10Ω/square以下であることがより好ましい。但し、前記導電性フィラーの添加は、強度、流動性の悪化を招きやすい。そのため、目標とする導電レベルが得られれば、前記導電性フィラーの含有量はできるだけ少ない方が望ましい。
 第四態様の積層チューブでは、各層の厚みは特に制限されず、各層を構成する重合体の種類、積層チューブにおける全体の層数、用途等に応じて調節し得るが、それぞれの層の厚みは、積層チューブの薬液バリア性、低温耐衝撃性、柔軟性等の特性を考慮して決定される。一般には、(a)層、(b)層、及び(e)層又は(a)層、(b)層、(c)層、及び(e)層の厚みは、積層チューブ全体の厚みに対して、それぞれ3%以上90%以下であることが好ましい。低温耐衝撃性と薬液バリア性のバランスを考慮して、(b)層及び(e)層の厚みは、積層チューブ全体の厚みに対して、それぞれ5%以上50%以下であることがより好ましく、7%以上30%以下であることが更に好ましい。
 また、第四態様の積層チューブにおける全体の層数は、(a)層、(b)層、及び(e)層又は(a)層、(b)層、(c)層、及び(e)層を有する、少なくとも3層((c)層を有する場合は少なくとも4層)である限り、特に限定されない。更に、第四態様の積層チューブは、(a)層、(b)層、及び(e)層の3層以外、又は(a)層、(b)層、(c)層、及び(e)層の4層以外に、更なる機能を付与、あるいは経済的に有利な積層チューブを得るために、他の熱可塑性樹脂を含む層を1層又は2層以上を有していてもよい。第四態様の積層チューブの層数は3層以上((c)層を有する場合は4層以上)であるが、チューブ製造装置の機構から判断して8層以下であることが好ましく、4層以上7層以下であることがより好ましい。
 積層チューブの第五態様は、第三態様に、更に(e)層を有する、少なくとも4層((c)層を有する場合は少なくとも5層)を含み、前記(e)層は、前記(d)層に対して内側に配置される。
 第五態様の積層チューブにおいて、(b)層、(d)層、及び(e)層を含むことは必須であり、(b)層を含むことにより、積層チューブの環境応力負荷後の低温耐衝撃性が良好となり、(d)層を含むことにより、積層チューブの薬液バリア性、特に炭化水素バリア性がより良好となり、(e)層を含むことにより、積層チューブの薬液バリア性、特にアルコールバリア性及び高濃度アルコール含有ガソリンに対するバリア性が良好となる。また、(a)層と(b)層とが隣接して配置されることにより、層間接着性及びその耐久性に優れた積層チューブを得ることが可能となる。更に、(e)層が(a)層に対して内側に配置されることにより、積層チューブの耐薬品性がより良好となる。この場合、(e)層は、(a)層と接するように配置されていてもよく、(a)層と(e)層の間に他の層が配置されていてもよい。
 好ましい実施態様としては、(e)層は、(d)層に対して内側に配置され、少なくとも1組の(d)層と(e)層とが隣接して配置される。また、(b)層は、(a)層と(e)層との間に配置される。この場合、少なくとも1組の(a)層と(b)層及び(d)層と(e)層とが隣接している限り、(a)層と(e)層との間に配置される(b)層は、(a)層及び/又は(d)層と隣接するように配置されていてもよく、(a)層と(b)層及び(b)層と(d)層の間に他の層が配置されていてもよい。
 より好ましい実施態様としては、(a)層は、積層チューブの最外層に配置される。(a)層が最外層に配置されることにより、耐薬品性及び柔軟性に優れた積層チューブを得ることが可能となる。
 更に好ましい実施態様としては、(e)層は、積層チューブの最内層に配置される。(e)層が最内層に配置されることにより、耐劣化燃料性に優れる積層チューブが得られるとともに、含アルコールガソリンとの接触によるモノマー、オリゴマー等低分子量成分の溶出を抑制することが可能となる。即ち、(a)層が最外層に配置され、(b)層が外層に配置され、(a)層が中間層に配置され、(d)層が内層に配置され、(e)層が最内層に配置される積層チューブ、又は(a)層が最外層に配置され、(b)層が外層に配置され、(c)層が中間層に配置され、(d)層が内層に配置され、(e)層が最内層に配置される積層チューブが更に好ましい。
 また、第五態様の積層チューブにおいて、更に導電性フィラーを含有させた含フッ素系重合体組成物を含む導電層が、積層チューブの最内層に配置されると、薬液バリア性、耐劣化燃料性、及びモノマー、オリゴマーの耐溶出性に優れるとともに、燃料配管チューブとして使用された場合、配管内を循環する燃料の内部摩擦あるいは管壁との摩擦によって発生したスパークが燃料に引火することを防止することが可能となる。その際、導電性を有しない含フッ素系重合体を含む層が、前記導電層に対して外側に配置されることにより、低温耐衝撃性と導電性を両立することが可能であり、また、経済的にも有利である。更に、ここでいう、含フッ素系重合体は、アミノ基に対して反応性を有する官能基が分子鎖中に導入された含フッ素系重合体(E)も包含し、後記アミノ基に対して反応性を有する官能基を含有しない含フッ素系重合体も指す。
 導電性及び導電性フィラーの詳細は、第一態様の積層チューブと同様である。
 導電性フィラーの含有量は、用いる導電性フィラーの種類により異なるため、一概に規定はできないが、導電性、流動性、機械的強度等とのバランスの観点から、含フッ素系重合体100質量部に対して、一般に、3質量部以上30質量部以下であることが好ましい。
 また、かかる導電性フィラーは、十分な帯電防止性能を得る観点から、溶融押出物の表面固有抵抗値が10Ω/square以下であることが好ましく、10Ω/square以下であることがより好ましい。但し、前記導電性フィラーの添加は、強度、流動性の悪化を招きやすい。そのため、目標とする導電レベルが得られれば、前記導電性フィラーの含有量はできるだけ少ない方が望ましい。
 第五態様の積層チューブでは、各層の厚みは特に制限されず、各層を構成する重合体の種類、積層チューブにおける全体の層数、用途等に応じて調節し得るが、それぞれの層の厚みは、積層チューブの薬液バリア性、低温耐衝撃性、柔軟性等の特性を考慮して決定される。一般には、(a)層、(b)層、(d)層、及び(e)層又は(a)層、(b)層、(c)層、(d)層、及び(e)層の厚みは、積層チューブ全体の厚みに対して、それぞれ3%以上90%以下であることが好ましい。低温耐衝撃性と薬液バリア性のバランスを考慮して、(b)層、(d)層、及び(e)層の厚みは、積層チューブ全体の厚みに対して、それぞれ5%以上50%以下であることがより好ましく、7%以上40%以下であることが更に好ましい。
 また、第五態様の積層チューブにおける全体の層数は、(a)層、(b)層、(d)層、及び(e)層又は(a)層、(b)層、(c)層、(d)層、及び(e)層を有する、少なくとも4層((c)層を有する場合は少なくとも5層)である限り、特に限定されない。更に、第五態様の積層チューブは、(a)層、(b)層、(d)層、及び(e)層の4層以外、又は(a)層、(b)層、(c)層、(d)層、及び(e)層の5層以外に、更なる機能を付与、あるいは経済的に有利な積層チューブを得るために、他の熱可塑性樹脂を含む層を1層又は2層以上を有していてもよい。第五態様の積層チューブの層数は4層以上((c)層を有する場合は5層以上)であるが、チューブ製造装置の機構から判断して8層以下であることが好ましく、5層以上7層以下であることがより好ましい。
 第一態様、第二態様、第三態様、第四態様、及び第五態様の積層チューブにおける他の熱可塑性樹脂としては、ポリアミド(A1)、ポリアミド(A2)、半芳香族ポリアミド(D1)、及び半芳香族ポリアミド(D2)以外のポリメタキシリレンテレフタラミド(ポリアミドMXDT)、ポリメタキシリレンイソフタラミド(ポリアミドMXDI)、ポリメタキシリレンヘキサヒドロテレフタラミド(ポリアミドMXDT(H))、ポリメタキシリレンナフタラミド(ポリアミドMXDN)、ポリパラキシリレンテレフタラミド(ポリアミドPXDT)、ポリパラキシリレンイソフタラミド(ポリアミドPXDI)、ポリパラキシリレンヘキサヒドロテレフタラミド(ポリアミドPXDT(H))、ポリパラキシリレンナフタラミド(ポリアミドPXDN)、ポリパラフェニレンテレフタラミド(PPTA)、ポリパラフェニレンイソフタラミド(PPIA)、ポリメタフェニレンテレフタラミド(PMTA)、ポリメタフェニレンイソフタラミド(PMIA)、ポリ(2,6-ナフタレンジメチレンテレフタラミド)(ポリアミド2,6-BANT)、ポリ(2,6-ナフタレンジメチレンイソフタラミド)(ポリアミド2,6-BANI)、ポリ(2,6-ナフタレンジメチレンヘキサヒドロテレフタラミド)(ポリアミド2,6-BANT(H))、ポリ(2,6-ナフタレンジメチレンナフタラミド)(ポリアミド2,6-BANN)、ポリ(1,3-シクロヘキサンジメチレンアジパミド)(ポリアミド1,3-BAC6)、ポリ(1,3-シクロヘキサンジメチレンスベラミド(ポリアミド1,3-BAC8)、ポリ(1,3-シクロヘキサンジメチレンアゼラミド)(ポリアミド1,3-BAC9)、ポリ(1,3-シクロヘキサンジメチレンセバカミド)(ポリアミド1,3-BAC10)、ポリ(1,3-シクロヘキサンジメチレンドデカミド)(ポリアミド1,3-BAC12)、ポリ(1,3-シクロヘキサンジメチレンテレフタラミド)(ポリアミド1,3-BACT)、ポリ(1,3-シクロヘキサンジメチレンイソフタラミド)(ポリアミド1,3-BACI)、ポリ(1,3-シクロヘキサンジメチレンヘキサヒドロテレフタラミド)(ポリアミド1,3-BACT(H))、ポリ(1,3-シクロヘキサンジメチレンナフタラミド)(ポリアミド1,3-BACN)、ポリ(1,4-シクロヘキサンジメチレンアジパミド)(ポリアミド1,4-BAC6)、ポリ(1,4-シクロヘキサンジメチレンスベラミド)(ポリアミド1,4-BAC8)、ポリ(1,4-シクロヘキサンジメチレンアゼラミド)(ポリアミド1,4-BAC9)、ポリ(1,4-シクロヘキサンジメチレンセバカミド)(ポリアミド1,4-BAC10)、ポリ(1,4-シクロヘキサンジメチレンドデカミド)(ポリアミド1,4-BAC12)、ポリ(1,4-シクロヘキサンジメチレンテレフタラミド)(ポリアミド1,4-BACT)、ポリ(1,4-シクロヘキサンジメチレンイソフタラミド)(ポリアミド1,4-BACI)、ポリ(1,4-シクロヘキサンジメチレンヘキサヒドロテレフタラミド)(ポリアミド1,4-BACT(H))、ポリ(1,4-シクロヘキサンジメチレンナフタラミド)(ポリアミド1,4-BACN)、ポリ(4,4’-メチレンビスシクロヘキシレンアジパミド)(ポリアミドPACM6)、ポリ(4,4’-メチレンビスシクロヘキシレンスベラミド)(ポリアミドPACM8)、ポリ(4,4’-メチレンビスシクロヘキシレンアゼラミド)(ポリアミドPACM9)、ポリ(4,4’-メチレンビスシクロヘキシレンセバカミド)(ポリアミドPACM10)、ポリ(4,4’-メチレンビスシクロヘキシレンドデカミド)(ポリアミドPACM12)、ポリ(4,4’-メチレンビスシクロヘキシレンテトラデカミド)(ポリアミドPACM14)、ポリ(4,4’-メチレンビスシクロヘキシレンヘキサデカミド)(ポリアミドPACM16)、ポリ(4,4’-メチレンビスシクロヘキシレンオクタデカミド)(ポリアミドPACM18)、ポリ(4,4’-メチレンビスシクロヘキシレンテレフタラミド)(ポリアミドPACMT)、ポリ(4,4’-メチレンビスシクロヘキシレンイソフタラミド)(ポリアミドPACMI)、ポリ(4,4’-メチレンビスシクロヘキシレンヘキサヒドロテレフタラミド)(ポリアミドPACMT(H))、ポリ(4,4’-メチレンビスシクロヘキシレンナフタラミド)(ポリアミドPACMN)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)アジパミド)(ポリアミドMACM6)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)スベラミド)(ポリアミドMACM8)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)アゼラミド)(ポリアミドMACM9)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)セバカミド)(ポリアミドMACM10)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)ドデカミド)(ポリアミドMACM12)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)テトラデカミド)(ポリアミドMACM14)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)ヘキサデカミド)(ポリアミドMACM16)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)オクタデカミド)(ポリアミドMACM18)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)テレフタラミド)(ポリアミドMACMT)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)イソフタラミド)(ポリアミドMACMI)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)ヘキサヒドロテレフタラミド)(ポリアミドMACMT(H))、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)ナフタラミド)(ポリアミドMACMN)、ポリ(4,4’-プロピレンビスシクロヘキシレンアジパミド)(ポリアミドPACP6)、ポリ(4,4’-プロピレンビスシクロヘキシレンスベラミド)(ポリアミドPACP8)、ポリ(4,4’-プロピレンビスシクロヘキシレンアゼラミド)(ポリアミドPACP9)、ポリ(4,4’-プロピレンビスシクロヘキシレンセバカミド)(ポリアミドPACP10)、ポリ(4,4’-プロピレンビスシクロヘキシレンドデカミド)(ポリアミドPACP12)、ポリ(4,4’-プロピレンビスシクロヘキシレンテトラデカミド)(ポリアミドPACP14)、ポリ(4,4’-プロピレンビスシクロヘキシレンヘキサデカミド)(ポリアミドPACP16)、ポリ(4,4’-プロピレンビスシクロヘキシレンオクタデカミド)(ポリアミドPACP18)、ポリ(4,4’-プロピレンビスシクロヘキシレンテレフタラミド)(ポリアミドPACPT)、ポリ(4,4’-プロピレンビスシクロヘキシレンイソフタラミド)(ポリアミドPACPI)、ポリ(4,4’-プロピレンビスシクロヘキシレンヘキサヒドロテレフタラミド)(ポリアミドPACPT(H))、ポリ(4,4’-プロピレンビスシクロヘキシレンナフタラミド)(ポリアミドPACPN)、ポリイソホロンアジパミド(ポリアミドIPD6)、ポリイソホロンスベラミド(ポリアミドIPD8)、ポリイソホロンアゼラミド(ポリアミドIPD9)、ポリイソホロンセバカミド(ポリアミドIPD10)、ポリイソホロンドデカミド(ポリアミドIPD12)、ポリイソホロンテレフタラミド(ポリアミドIPDT)、ポリイソホロンイソフタラミド(ポリアミドIPDI)、ポリイソホロンヘキサヒドロテレフタラミド(ポリアミドIPDT(H))、ポリイソホロンナフタラミド(ポリアミドIPDN)、ポリテトラメチレンヘキサヒドロテレフタラミド(ポリアミド4T(H))、ポリペンタメチレンヘキサヒドロテレフタラミド(ポリアミド5T(H))、ポリヘキサメチレンヘキサヒドロテレフタラミド(ポリアミド6T(H))、ポリ(2-メチルペンタメチレンヘキサヒドロテレフタラミド)(ポリアミドM5T(H))、ポリノナメチレンヘキサヒドロテレフタラミド(ポリアミド9T(H))、ポリ(2-メチルオクタメチレンヘキサヒドロテレフタラミド)(ポリアミドM8T(H))、ポリトリメチルヘキサメチレンヘキサヒドロテレフタラミド(ポリアミドTMHT(H))、ポリデカメチレンヘキサヒドロテレフタラミド(ポリアミド10T(H))、ポリウンデカメチレンヘキサヒドロテレフタラミド(ポリアミド11T(H))、ポリドデカメチレンヘキサヒドロテレフタラミド(ポリアミド12T(H))、及びこれらポリアミドの原料単量体、並びに/又は前記ポリアミド(A1)及びポリアミド(A2)の原料単量体を数種用いた共重合体等のポリアミド系樹脂が挙げられる。これらは1種又は2種以上を用いることができる。
 また、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)/ヘキサフルオロプロピレン共重合体、エチレン/テトラフルオロエチレン共重合体(ETFE)、エチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(EFEP)、フッ化ビニリデン/テトラフルオロエチレン共重合体、フッ化ビニリデン/ヘキサフルオロプロピレン共重合体、フッ化ビニリデン/パーフルオロ(アルキルビニルエーテル)共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン/フッ化ビニリデン共重合体(THV)、フッ化ビニリデン/パーフルオロ(アルキルビニルエーテル)/テトラフルオロエチレン共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン/フッ化ビニリデン/パーフルオロ(アルキルビニルエーテル)共重合体、エチレン/クロロトリフルオロエチレン共重合体(ECTFE)、クロロトリフルオロエチレン/テトラフルオロエチレン共重合体、フッ化ビニリデン/クロロトリフルオロエチレン共重合体、クロロトリフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体、クロロトリフルオロエチレン/ヘキサフルオロプロピレン共重合体、クロロトリフルオロエチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、クロロトリフルオロエチレン/テトラフルオロエチレン/フッ化ビニリデン共重合体、クロロトリフルオロエチレン/パーフルオロ(アルキルビニルエーテル)/テトラフルオロエチレン共重合体(CPT)、クロロトリフルオロエチレン/パーフルオロ(アルキルビニルエーテル)/ヘキサフルオロプロピレン共重合体、クロロトリフルオロエチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン/パーフルオロ(アルキルビニルエーテル)共重合体、クロロトリフルオロエチレン/テトラフルオロエチレン/フッ化ビニリデン/パーフルオロ(アルキルビニルエーテル)共重合体、クロロトリフルオロエチレン/テトラフルオロエチレン/フッ化ビニリデン/ヘキサフルオロプロピレン共重合体、クロロトリフルオロエチレン/テトラフルオロエチレン/フッ化ビニリデン/パーフルオロ(アルキルビニルエーテル)/ヘキサフルオロプロピレン共重合体等のアミノ基に対して反応性を有する官能基を含有しない含フッ素系重合体が挙げられる。これらは1種又は2種以上を用いることができる。
 積層チューブが、(e)層を有する場合、(e)層に対して、アミノ基に対して反応性を有する官能基を含有しない含フッ素系重合体を含む層が内側に配置されることにより、低温耐衝撃性、薬液バリア性、及び耐環境応力亀裂性を両立することが可能であり、また、経済的にも有利である。
 更に、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、超高分子量ポリエチレン(UHMWPE)、ポリプロピレン(PP)、ポリブテン(PB)、ポリメチルペンテン(TPX)、エチレン/プロピレン共重合体(EPR)、エチレン/ブテン共重合体(EBR)、エチレン/酢酸ビニル共重合体(EVA)、エチレン/アクリル酸共重合体(EAA)、エチレン/メタクリル酸共重合体(EMAA)、エチレン/アクリル酸メチル共重合体(EMA)、エチレン/メタクリル酸メチル共重合体(EMMA)、エチレン/アクリル酸エチル共重合体(EEA)、前記未変性エチレン/ビニルエステル系共重合体ケン化物(未変性EVOH系重合体)等のポリオレフィン系樹脂;ポリスチレン(PS)、シンジオタクチックポリスチレン(SPS)、メタクリル酸メチル/スチレン共重合体(MS)、メタクリル酸メチル/スチレン/ブタジエン共重合体(MBS)、スチレン/ブタジエン共重合体(SBR)、スチレン/イソプレン共重合体(SIR)、スチレン/イソプレン/ブタジエン共重合体(SIBR)、スチレン/ブタジエン/スチレン共重合体(SBS)、スチレン/イソプレン/スチレン共重合体(SIS)、スチレン/エチレン/ブチレン/スチレン共重合体(SEBS)、スチレン/エチレン/プロピレン/スチレン共重合体(SEPS)等のポリスチレン系樹脂;アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、メサコン酸、シトラコン酸、グルタコン酸、シス-4-シクロヘキセン-1,2-ジカルボン酸、エンドビシクロ-[2.2.1]-5-ヘプテン-2,3-ジカルボン酸等のカルボキシル基、及びその金属塩(Na、Zn、K、Ca、Mg)、無水マレイン酸、無水イタコン酸、無水シトラコン酸、エンドビシクロ-[2.2.1]-5-ヘプテン-2,3-ジカルボン酸無水物等の酸無水物基;アクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジル、シトラコン酸グリシジル等のエポキシ基等の官能基が含有された前記ポリオレフィン系樹脂及びポリスチレン系樹脂;ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリエチレンイソフタレート(PEI)、ポリ(エチレンテレフタレート/エチレンイソフタレート)共重合体(PET/PEI)、ポリトリメチレンテレフタレート(PTT)、ポリシクロヘキサンジメチレンテレフタレート(PCT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリアリレート(PAR)、液晶ポリエステル(LCP)、ポリ乳酸(PLA)、ポリグリコール酸(PGA)等のポリエステル系樹脂;ポリアセタール(POM)、ポリフェニレンエーテル(PPO)等のポリエーテル系樹脂;ポリサルホン(PSU)、ポリエーテルスルホン(PESU)、ポリフェニルサルホン(PPSU)等のポリサルホン系樹脂;ポリフェニレンスルフィド(PPS)、ポリチオエーテルサルホン(PTES)等のポリチオエーテル系樹脂;ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルエーテルエーテルケトン(PEEEK)、ポリエーテルエーテルケトンケトン(PEEKK)、ポリエーテルケトンケトンケトン(PEKKK)、ポリエーテルケトンエーテルケトンケトン(PEKEKK)等のポリケトン系樹脂;ポリアクリロニトリル(PAN)、ポリメタクリロニトリル、アクリロニトリル/スチレン共重合体(AS)、メタクリロニトリル/スチレン共重合体、アクリロニトリル/ブタジエン/スチレン共重合体(ABS)、アクリロニトリル/ブタジエン共重合体(NBR)等のポリニトリル系樹脂;ポリメタクリル酸メチル(PMMA)、ポリメタクリル酸エチル(PEMA)等のポリメタクリレート系樹脂;ポリ酢酸ビニル(PVAc)等のポリビニルエステル系樹脂;ポリ塩化ビニリデン(PVDC)、ポリ塩化ビニル(PVC)、塩化ビニル/塩化ビニリデン共重合体、塩化ビニリデン/アクリル酸メチル共重合体等のポリ塩化ビニル系樹脂;酢酸セルロース、酪酸セルロース等のセルロース系樹脂;ポリカーボネート(PC)等のポリカーボネート系樹脂;熱可塑性ポリイミド(TPI)、ポリエーテルイミド、ポリエステルイミド、ポリアミドイミド(PAI)、ポリエステルアミドイミド等のポリイミド系樹脂;熱可塑性ポリウレタン系樹脂;ポリアミドエラストマー、ポリウレタンエラストマー、ポリエステルエラストマー等が挙げられる。これらは1種又は2種以上を用いることができる。
 尚、第一態様、第二態様、第三態様、第四態様、及び第五態様の積層チューブにおいては、溶融安定性及び成形安定性の観点から、前記例示の熱可塑性樹脂のうち、融点が290℃以下のポリエステル系樹脂、ポリアミド系樹脂、ポリチオエーテル系樹脂、ポリオレフィン系樹脂、及びアミノ基に対して反応性を有する官能基を含有しない含フッ素系重合体を使用することが好ましい。
 また、熱可塑性樹脂以外の任意の基材、例えば、紙、金属系材料、無延伸、一軸又は二軸延伸プラスチックフィルム又はシート、織布、不織布、金属綿、木材等を積層することも可能である。金属系材料としては、アルミニウム、鉄、銅、ニッケル、金、銀、チタン、モリブデン、マグネシウム、マンガン、鉛、錫、クロム、ベリリウム、タングステン、コバルト等の金属、金属化合物、及びこれら2種類以上からなるステンレス鋼等の合金鋼、アルミニウム合金、黄銅、青銅等の銅合金、ニッケル合金等の合金類等が挙げられる。これらは1種又は2種以上を用いることができる。
 積層チューブ製造法としては、層の数又は材料の数に対応する押出機を用いて、溶融押出し、ダイ内あるいは外において、同時に積層する方法(共押出成形法)、あるいは、一旦、単層チューブあるいは、前記の方法により製造された積層チューブを予め製造しておき、外側に順次、必要に応じては接着剤を使用し、樹脂を一体化せしめ積層する方法(コーティング法)が挙げられる。積層チューブは、各種材料を溶融状態で共押出し、両者を熱融着(溶融接着)し、一段階で積層構造のチューブを製造する共押出成形法により製造されることが好ましい。即ち、積層チューブの製造方法は、共押出成形することを含むことが好ましい。
 また、得られる積層チューブが複雑な形状である場合や、成形後に加熱曲げ加工を施して成形品とする場合は、成形品の残留歪みを除去するために、前記の積層チューブを形成した後、前記チューブを構成する樹脂の融点のうち最も低い融点未満の温度で、0.01時間以上10時間以下熱処理して、目的の成形品を得る事も可能である。
 積層チューブにおいては、波形領域を有するものであってもよい。波形領域とは、波形形状、蛇腹形状、アコーディオン形状、又はコルゲート形状等に形成した領域である。波形領域は、積層チューブ全長にわたり有するものだけではなく、途中の適宜の領域に部分的に有するものであってもよい。波形領域は、まず直管状のチューブを成形した後に、引き続いてモールド成形し、所定の波形形状等とすることにより容易に形成することができる。かかる波形領域を有することにより、衝撃吸収性を有し、取り付け性が容易となる。更に、例えば、コネクタ等の必要な部品を付加したり、曲げ加工したりすることによりL字、U字の形状等にすることが可能である。
 このように成形した積層チューブの外周の全部又は一部には、石ハネ、他部品との摩耗、及び耐炎性を考慮して、天然ゴム(NR)、ブタジエンゴム(BR)、イソプレンゴム(IR)、ブチルゴム(IIR)、クロロプレンゴム(CR)、カルボキシル化ブタジエンゴム(XBR)、カルボキシル化クロロプレンゴム(XCR)、エピクロルヒドリンゴム(ECO)、アクリロニトリルブタジエンゴム(NBR)、水素化アクリロニトリルブタジエンゴム(HNBR)、カルボキシル化アクリロニトリルブタジエンゴム(XNBR)、NBRとポリ塩化ビニルの混合物、アクリロニトリルイソプレンゴム(NIR)、塩素化ポリエチレンゴム(CM)、クロロスルホン化ポリエチレンゴム(CSM)、エチレンプロピレンゴム(EPR)、エチレンプロピレンジエンゴム(EPDM)、エチレン酢酸ビニルゴム(EVM)、NBRとEPDMの混合物ゴム、アクリルゴム(ACM)、エチレンアクリルゴム(AEM)、アクリレートブタジエンゴム(ABR)、スチレンブタジエンゴム(SBR)、カルボキシル化スチレンブタジエンゴム(XSBR)、スチレンイソプレンゴム(SIR)、スチレンイソプレンブタジエンゴム(SIBR)、ウレタンゴム、シリコーンゴム(MQ,VMQ)、フッ素ゴム(FKM,FFKM)、フルオロシリコーンゴム(FVMQ)、塩化ビニル系、オレフィン系、エステル系、ウレタン系、アミド系等の熱可塑性エラストマー等から構成するソリッド又はスポンジ状の保護部材(プロテクタ)を配設することができる。保護部材は、既知の手法によりスポンジ状の多孔体としてもよい。多孔体とすることにより、軽量で断熱性に優れた保護部を形成できる。また、材料コストも低減できる。あるいは、ガラス繊維等を添加して、その強度を改善してもよい。保護部材の形状は特に限定されないが、通常は、筒状部材又は積層チューブを受け入れる凹部を有するブロック状部材である。筒状部材の場合は、予め作製した筒状部材に積層チューブを後で挿入したり、あるいは積層チューブの上に筒状部材を被覆押出しし、両者を密着して作ることができる。両者を接着させるには、保護部材内面あるいは前記凹面に必要に応じ接着剤を塗布し、これに積層チューブを挿入又は嵌着し、両者を密着することにより、積層チューブと保護部材の一体化された構造体を形成する。また、金属等で補強することも可能である。
 積層チューブの外径は、薬液(例えば、含アルコールガソリン等の燃料)等の流量を考慮し、肉厚は薬液の透過性が増大せず、また、通常のチューブの破壊圧力を維持できる厚みで、かつ、チューブの組み付け作業容易性及び使用時の耐振動性が良好な程度の柔軟性を維持することができる厚みに設計されるが、限定されるものではない。外径は4mm以上300mm以下、内径は3mm以上250mm以下、肉厚は0.5mm以上25mm以下であることが好ましい。
 本実施形態の積層チューブは、自動車部品、内燃機関用途、電動工具ハウジング類等の機械部品を始め、工業材料、産業資材、電気・電子部品、医療、食品、家庭・事務用品、建材関係部品、家具用部品等各種用途に使用することが可能である。
 また、積層チューブは、薬液バリア性に優れるため、薬液搬送チューブとして好適である。薬液としては、例えば、ベンゼン、トルエン、キシレン、アルキルベンゼン類等の芳香族炭化水素溶媒;メタノール、エタノール、プロパノール、ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、ジエチレングリコール、フェノール、クレゾール、ポリエチレングリコール、ポリプロピレングリコール、ポリアルキレングリコ-ル等のアルコール;フェノール溶媒;ジメチルエーテル、ジプロピルエーテル、メチル-t-ブチルエーテル、エチル-t-ブチルエーテル、ジオキサン、テトラヒドロフラン、ポリオ-ルエステル類、ポリビニルエ-テル類等のエーテル溶媒;HFC-23(トリフルオロメタン)、HFC-32(ジフルオロメタン)、HFC-41(フルオロメタン)、HFC-123(2,2-ジクロロ-1,1,1-トリフルオロエタン)、HFC-125(1,1,1,2,2-ペンタフルオロエタン)、HFC-134(1,1,2,2-テトラフルオロエタン)、HFC-134a(1,1,1,2-テトラフルオロエタン)、HFC-143(1,1,2-トリフルオロエタン)、HFC-143a(1,1,1-トリフルオロエタン)、HFC-152(1,2-ジフルオロエタン)、HFC-152a(1,1-ジフルオロエタン)、HFC-161(フルオロエタン)、HFC-227ea(1,1,1,2,3,3,3-ヘプタフルオロプロパン)、HFC-227ca(1,1,2,2,3,3,3-ヘプタフルオロプロパン)、HFC-236fa(1,1,1,3,3,3-ヘキサフルオロプロパン)、HFC-236ea(1,1,1,2,3,3-ヘキサフルオロプロパン)、HFC-236cb(1,1,1,2,2,3-ヘキサフルオロプロパン)、HFC-236ca(1,1,2,2,3,3-ヘキサフルオロプロパン)、HFC-245ca(1,1,2,2,3-ペンタフルオロプロパン)、HFC-245ea(1,1,2,3,3-ペンタフルオロプロパン)、HFC-245eb(1,1,1,2,3-ペンタフルオロプロパン)、HFC-245fa(1,1,1,3,3-ペンタフルオロプロパン)、HFC-245cb(1,1,1,2,2-ペンタフルオロプロパン)、HFC-254eb(1,1,1,2-テトラフルオロプロパン)、HFC-254cb(1,1,2,2-テトラフルオロプロパン)、HFC-254ca(1,2,2,3-テトラフルオロプロパン)、HFC-263fb(1,1,1-トリフルオロプロパン)、HFC-263ca(1,2,2-トリフルオロプロパン)、HFC-272fb(1,1-ジフルオロプロパン)、HFC-272ea(1,2-ジフルオロプロパン)、HFC-272fa(1,3-ジフルオロプロパン)、HFC-272ca(2,2-ジフルオロプロパン)、HFC-281fa(1-フルオロプロパン)、HFC-281ea(2-フルオロプロパン)、HFC-329p(1,1,1,2,2,3,3,4,4-ノナフルオロブタン)、HFC-329mmz(1,1,1,3,3,3-ヘキサフルオロ-2-(トリフルオロ)プロパン)、HFC-338mf(1,1,1,3,3,4,4,4-オクタフルオロブタン)、HFC-338mcc(1,1,1,2,2,3,4,4-オクタフルオロブタン)、HFC-338pcc(1,1,2,2,3,3,4,4-オクタフルオロブタン)、HFC-347s(1,1,1,2,2,3,3-ヘプタフルオロブタン)、HFC-365mfc(1,1,1,3,3-ペンタフルオロブタン)、HFC-4310mee(1,1,1,2,3,4,4,5,5,5-デカフルオロペンタン)、HFC-1123(トリフルオロエチレン)、HFC-1132a(1,2-ジフルオロエチレン)、FC-1216(ヘキサフルオロ-1-プロペン)、HFC-1223(3,3,3-トリフルオロ-1-プロペン)、HFC-1225zc(1,1,3,3,3-ペンタフルオロ-1-プロペン)、HFC-1225ye(1,2,3,3,3-ペンタフルオロ-1-プロペン)、HFC-1225yc(1,1,2,3,3-ペンタフルオロ-1-プロペン)、HFC-1232xf(3,3-ジフルオロ-1-プロペン)、HFC-1234ye(1,2,3,3-テトラフルオロ-1-プロペン)、HFC-1234ze(1,3,3,3-テトラフルオロ-1-プロペン)、HFC-1234yf(2,3,3,3-テトラフルオロ-1-プロペン)、HFC-1234yc(1,1,2,3-テトラフルオロ-1-プロペン)、HFC-1234zc(1,1,3,3-テトラフルオロ-1-プロペン)、HFC-1243yf(2,3,3-トリフルオロ-1-プロペン)、HFC-1243zc(1,1,3-トリフルオロ-1-プロペン)、HFC-1243ye(1,2,3-トリフルオロ-1-プロペン)、HFC-1243ze(1,3,3-トリフルオロ-1-プロペン)、HFC-1243zf(3,3,3-トリフルオロ-1-プロペン)、HFC-1243yc(1,1,2-トリフルオロ-1-プロペン)、HFC-1261yf(2-フルオロプロペン)、FC-1318my(1,1,1,2,3,4,4,4-オクタフルオロ-2-ブテン)、FC-1318cy(1,1,2,3,3,4,4,4-オクタフルオロ-1-ブテン)、HFC-1327my(1,1,1,2,4,4,4-ヘプタフルオロ-2-ブテン)、HFC-1327ye(1,2,3,3,4,4,4-ヘプタフルオロ-1-ブテン)、HFC-1327py(1,1,1,2,3,4,4-ヘプタフルオロ-2-ブテン)、HFC-1327et(1,3,3,3-テトラフルオロ-2-(トリフルオロメチル)-1-プロペン)、HFC-1327cz(1,1,3,3,4,4,4-ヘプタフルオロ-1-ブテン)、HFC-1327cye(1,1,2,3,4,4,4-ヘプタフルオロ-1-ブテン)、HFC-1327cyc(1,1,2,3,3,4,4-ヘプタフルオロ-1-ブテン)、HFC-1336yf(2,3,3,4,4,4-ヘキサフルオロ-1-ブテン)、HFC-1336ze(1,3,3,4,4,4-ヘキサフルオロ-1-ブテン)、HFC-1336eye(1,2,3,4,4,4-ヘキサフルオロ-1-ブテン)、HFC-1336eyc(1,2,3,3,4,4-ヘキサフルオロ-1-ブテン)、HFC-1336pyy(1,1,2,3,4,4-ヘキサフルオロ-2-ブテン)、HFC-1336pz(1,1,1,2,4,4-ヘキサフルオロ-2-ブテン)、HFC-1336mzy(1,1,1,3,4,4-ヘキサフルオロ-2-ブテン)、HFC-1336mzz(1,1,1,4,4,4-ヘキサフルオロ-2-ブテン)、HFC-1336qc(1,1,2,3,3,4-ヘキサフルオロ-1-ブテン)、HFC-1336pe(1,1,2,3,4,4-ヘキサフルオロ-1-ブテン)、HFC-1336ft(3,3,3-トリフルオロ-2-(トリフルオロメチル)-1-プロペン)、HFC-1345qz(1,1,1,2,4-ペンタフルオロ-2-ブテン)、HFC-1345mzy(1,1,1,3,4-ペンタフルオロ-2-ブテン)、HFC-1345fz(3,3,4,4,4-ペンタフルオロ-1-ブテン)、HFC-1345mzz(1,1,1,4,4-ペンタフルオロ-2-ブテン)、HFC-1345sy(1,1,1,2,3-ペンタフルオロ-2-ブテン)、HFC-1345fyc(2,3,3,4,4-ペンタフルオロ-1-ブテン)、HFC-1345pyz(1,1,2,4,4-ペンタフルオロ-2-ブテン)、HFC-1345cyc(1,1,2,3,3-ペンタフルオロ-1-ブテン)、HFC-1345pyy(1,1,2,3,4-ペンタフルオロ-2-ブテン)、HFC-1345eyc(1,2,3,3,4-ペンタフルオロ-1-ブテン)、HFC-1345ctm(1,1,3,3,3-ペンタフルオロ-2-メチル-1-プロペン)、HFC-1345ftp(2-(ジフルオロメチル)-3,3,3-トリフルオロ-1-プロペン)、HFC1345fye(2,3,4,4,4-ペンタフルオロ-1-ブテン)、HFC-1345eyf(1,2,4,4,4-ペンタフルオロ-1-ブテン)、HFC-1345eze(1,3,4,4,4-ペンタフルオロ-1-ブテン)、HFC-1345ezc(1,3,3,4,4-ペンタフルオロ-1-ブテン)、HFC-1345eye(1,2,3,4,4-ペンタフルオロ-1-ブテン)、HFC-1354fzc(3,3,4,4-テトラフルオロ-1-ブテン)、HFC-1354ctp(1,1,3,3-テトラフルオロ-2-メチル-1-プロペン)、HFC-1354etm(1,3,3,3-テトラフルオロ-2-メチル-1-プロペン)、HFC-1354tfp(2-(ジフルオロメチル)-3,3-ジフルオロ-1-プロペン)、HFC-1354my(1,1,1,2-テトラフルオロ-2-ブテン)、HFC-1354mzy(1,1,1,3-テトラフルオロ-2-ブテン)、FC-141-10myy(1,1,1,2,3,4,4,5,5,5-デカフルオロ-2-ペンテン)、FC-141-10cy(1,1,2,3,3,4,4,5,5,5-デカフルオロ-1-ペンテン)HFC-1429mzt(1,1,1,4,4,4-ヘキサフルオロ-2-(トリフルオロメチル)-2-ブテン)、HFC-1429myz(1,1,1,2,4,4,5,5,5-ノナフルオロ-2-ペンテン)、HFC-1429mzy(1,1,1,3,4,4,5,5,5-ノナフルオロ-2-ペンテン)、HFC-1429eyc(1,2,3,3,4,4,5,5,5-ノナフルオロ-1-ペンテン)、HFC-1429czc(1,1,3,3,4,4,5,5,5-ノナフルオロ-1-ペンテン)、HFC-1429cycc(1,1,2,3,3,4,4,5,5-ノナフルオロ-1-ペンテン)、HFC-1429pyy(1,1,2,3,4,4,5,5,5-ノナフルオロ-2-ペンテン)、HFC-1429myyc(1,1,1,2,3,4,4,5,5-ノナフルオロ-2-ペンテン)、HFC-1429myye(1,1,1,2,3,4,5,5,5-ノナフルオロ-2-ペンテン)、HFC-1429eyym(1,2,3,4,4,4-ヘキサフルオロ-3-(トリフルオロメチル)-1-ブテン)、HFC-1429cyzm(1,1,2,4,4,4-ヘキサフルオロ-3-(トリフルオロメチル)-1-ブテン)、HFC-1429mzt(1,1,1,4,4,4-ヘキサフルオロ-2-(トリフルオロメチル)-2-ブテン)、HFC-1429czym(1,1,3,4,4,4-ヘキサフルオロ-3-(トリフルオロメチル)-1-ブテン)、HFC-1438fy(2,3,3,4,4,5,5,5-オクタフルオロ-1-ペンテン)、HFC-1438eycc(1,2,3,3,4,4,5,5-オクタフルオロ-1-ペンテン)、HFC-1438ftmc(3,3,4,4,4-ペンタフルオロ-2-(トリフルオロメチル)-1-ブテン)、HFC-1438czzm(1,1,4,4,4-ペンタフルオロ-3-(トリフルオロメチル)-1-ブテン)、HFC-1438ezym(1,3,4,4,4-ペンタフルオロ-3-(トリフルオロメチル)-1-ブテン)、HFC-1438ctmf(1,1,4,4,4-ペンタフルオロ-2-(トリフルオロメチル)-1-ブテン)、HFC-1447fzy(3,4,4,4-テトラフルオロ-3-(トリフルオロメチル)-1-ブテン)、HFC-1447fz(3,3,4,4,5,5,5-プタフルオロ-1-ペンテン)、HFC-1447fycc(2,3,3,4,4,5,5-ヘプタフルオロ-1-ペンテン)、HFC-1447cz(1,1,3,3,5,5,5-ヘプタフルオロ-1-ペンテン)、HFC-1447mytm(1,1,1,2,4,4,4ヘプタフルオロ-3-メチル-
2-ブテン)、HFC-1447fyz(2,4,4,4-テトラフルオロ-3-(トリフルオロメチル)-1-ブテン)、HFC-1447ezz(1,4,4,4-テトラフルオロ-3-(トリフルオロメチル)-1-ブテン)、HFC-1447qzt(1,4,4,4-テトラフルオロ-2-(トリフルオロメチル)-2-ブテン)、HFC-1447syt(2,4,4,4-テトラフルオロ-2-(トリフルオロメチル)-2-ブテン)、HFC-1456szt(3-(トリフルオロメチル)-4,4,4-トリフルオロ-2-ブテン)、HFC-1456szy(3,4,4,5,5,5ヘキサフルオロ-2-ペンテン)、HFC-1456mstz(1,1,1,4,4,4-ヘキサフルオロ-2-メチル-2-ブテン)、HFC-1456fzce(3,3,4,5,5,5-ヘキサフルオロ-1-ペンテン)、HFC-1456ftmf(4,4,4-トリフルオロ-2-(トリフルオロメチル)-1-ブテン)、FC-151-12c(1,1,2,3,3,4,4,5,5,6,6,6-ドデカ-1-ヘキセン、ペルフルオロ-1-ヘキセン)、FC-151-12mcy(1,1,1,2,2,3,4,5,5,6,6,6-ドデカ-3-ヘキセン、ペルフルオロ-3-ヘキセン)、FC-151-12mmtt(1,1,1,4,4,4-ヘキサフルオロ-2,3-ビス(トリフルオロメチル)-2-ブテン)、FC-151-12mmzz(1,1,1,2,3,4,5,5,5-ノナフルオロ-4-(トリフルオロメチル)-2-ペンテン)、HFC-152-11mmtz(1,1,1,4,4,5,5,5-オクタフルオロ-2-(トリフルオロメチル)-2-ペンテン)、HFC-152-11mmyyz(1,1,1,3,4,5,5,5-オクタフルオロ-4-(トリフルオロメチル)-2-ペンテン)、HFC-152-11mmyyz(1,1,1,3,4,5,5,5-オクタフルオロ-4-(トリフルオロメチル)-2-ペンテン)、HFC-1549fz(PFBE)(3,3,4,4,5,5,6,6,6-ノナフルオロ-1-ヘキセン、パ-フルオロブチル)、HFC-1549fztmm(4,4,4-トリフルオロ-3,3-ビス(トリフルオロメチル)-1-ブテン)、HFC-1549mmtts(1,1,1,4,4,4-ヘキサフルオロ-3-メチル-2-(トリフルオロメチル)-2-ブテン)、HFC-1549fycz(2,3,3,5,5,5-ヘキサフルオロ-4-(トリフルオロメチル)-1-ペンテン)、HFC-1549myts(1,1,1,2,4,4,5,5,5-ノナフルオロ-3-メチル-2-ペンテン)、HFC-1549mzzz(1,1,1,5,5,5-ヘキサフルオロ-4-(トリフルオロメチル)-2-ペンテン)、HFC-1558szy(3,4,4,5,5,6,6,6-オクタフルオロ-2-ヘキセン)、HFC-1558fzccc(3,3,4,4,5,5,6,6-オクタフルオロ-2-ヘキセン)、HFC-1558mmtzc(1,1,1,4,4-ペンタフルオロ-2-(トリフルオロメチル)-2-ペンテン)、HFC-1558ftmf(4,4,5,5,5-ペンタフルオロ-2-(トリフルオロメチル)-1-ペンテン)、HFC-1567fts(3,3,4,4,5,5,5-ヘプタフルオロ-2-メチル-1-ペンテン)、HFC-1567szz(4,4,5,5,6,6,6-ヘプタフルオロ-2-ヘキセン)、HFC-1567fzfc(4,4,5,5,6,6,6-ヘプタフルオロ-1-ヘキセン)、HFC-1567sfyy(1,1,1,2,2,3,4-ヘプタフルオロ-3-ヘキセン)、HFC-1567fzfy(4,5,5,5-テトラフルオロ-4-(トリフルオロメチル)-1-ペンテン)、HFC-1567myzzm(1,1,1,2,5,5,5-ヘプタフルオロ-4-メチル-2-ペンテン)、HFC-1567mmtyf(1,1,1,3-テトラフルオロ-2-(トリフルオロメチル)-2-ペンテン)、FC-161-14myy(1,1,1,2,3,4,4,5,5,6,6,7,7,7-テトラデカフルオロ-2-ヘプテン)、FC-161-14mcyy(1,1,1,2,2,3,4,5,5,6,6,7,7,7-テトラデカフルオロ-2-ヘプテン)、HFC-162-13mzy(1,1,1,3,4,4,5,5,6,6,7,7,7-トリデカフルオロ-2-ヘプテン)、HFC162-13myz(1,1,1,2,4,4,5,5,6,6,7,7,7-トリデカフルオロ-2-ヘプテン)、HFC-162-13mczy(1,1,1,2,2,4,5,5,6,6,7,7,7-トリデカフルオロ-3-ヘプテン)、HFC-162-13mcyz(1,1,1,2,2,3,5,5,6,6,7,7,7-トリデカフルオロ-3-ヘプテン)、CFC-11(フルオロトリクロロメタン)、CFC-12(ジクロロジフルオロメタン)、CFC-114(1,1,2,2-テトラフルオロ-1,2-ジクロロエタン)、CFC-114a(1,1,1,2-テトラフルオロ-2,2-ジクロロエタン)、CFC-115(1,1,1,2,2-ペンタフルオロ-2-ジクロロエタン)、HCFC-21(ジクロロフルオロメタン)、HCFC-22(クロロジフルオロメタン)、HCFC-122(1,1,2-トリクロロ-2,2-ジフルオロエタン)、HCFC-123(1,1,1-トリフルオロ-2,2-ジクロロエタン)、HCFC-124(1,1,1,2-テトラフルオロ-2-クロロエタン)、HCFC-124a(1,1,2,2-テトラフルオロ-2-クロロエタン)、HCFC-132(ジクロロジフルオロエタン)、HCFC-133a(1,1,1-トリフルオロ-2-クロロエタン)、HCFC-141b(1,1-ジクロロ-1-フルオロエタン)、HCFC-142(1,1-ジフルオロ-2-クロロエタン)、HCFC-142b(1,1-ジフルオロ-1-クロロエタン)、HCFC-225ca(3,3-ジクロロ-1,1,1,2,2-ペンタフルオロプロパン)、HCFC-225cb(1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン)、HCFC-240db(1,1,1,2,3-ペンタクロロプロパン)、HCFC-243db(1,1,1-トリフルオロ-2,3-ジクロロプロパン)、HCFC-243ab(1,1,1-トリフルオロ-2,2-ジクロロプロパン)、HCFC-244eb(1,1,1,2-テトラフルオロ-3-クロロプロパン)、HCFC-244bb(1,1,1,2-テトラフルオロ-2-クロロプロパン)、HCFC-244db(1,1,1,3-テトラフルオロ-2-クロロプロパン)、HCFC-1111(1,1,2-トリクロロ-2-フルオロエチレン)、HCFC-1113(1,1,2-トリフルオロ-2-クロロエチレン)、HCFC-1223xd(3,3,3-トリフルオロ-1,2-ジクロロプロペン)、HCFC-1224xe(1,3,3,3-テトラフルオロ-2-クロロプロペン)、HCFC-1232xf(3,3-ジフルオロ-1,3-ジクロロプロペン)、HCFC-1233xf(3,3,3-トリフルオロ-2-クロロプロペン)、HCFC-1233zd(3,3,3-トリフルオロ-1-クロロプロペン)、及びこれらの混合物等のハロオレフィン類;アセトン、メチルエチルケトン、ジエチルケトン、アセトフェノン等のケトン溶媒;鉱油類、シリコ-ン油類、天然パラフィン類、ナフテン類、合成パラフィン類、ポリアルファオレフィン類等、ガソリン、灯油、ディーゼルガソリン、菜種油メチルエステル、大豆油メチルエステル、パ-ム油メチルエステル、ココナツ油メチルエステル、ガス液化油(Gas To Liquid:GTL)、石炭液化油(Coal To Liquid:CTL)、バイオマス液化油(Biomass To Liquid: BTL)、含アルコールガソリン、エチル-t-ブチルエーテルブレンド含酸素ガソリン、含アミンガソリン、サワーガソリン、圧縮天然ガス(CNG)、液化石油ガス(LPG)、液化炭化水素ガス(LHG)、液化天然ガス(LNG)、燃料用ジメチルエーテル(DME)、ひまし油ベースブレーキ液、グリコールエーテル系ブレーキ液、ホウ酸エステル系ブレーキ液、極寒地用ブレーキ液、シリコーン油系ブレーキ液、鉱油系ブレーキ液、パワーステアリングオイル、含硫化水素オイル、ウインドウオッシャー液、エンジン冷却液、尿素溶液、医薬剤、インク、塗料等が挙げられる。積層チューブは、前記薬液を搬送するチューブとして好適であり、具体的には、フィードチューブ、リターンチューブ、エバポチューブ、フューエルフィラーチューブ、ORVRチューブ、リザーブチューブ、ベントチューブ等の燃料チューブ、燃料電池用水素搬送チュ-ブ、オイルチューブ、石油掘削チューブ、空圧、油圧チューブ、クラッチチューブ、ブレーキチューブ、ブレーキ負圧チューブ、サスペンションチューブ、エアーチューブ、ターボエアーチューブ、エアーダクトチューブ、ブローバイチューブ、EGRバルブコントロールチューブ、ウインドウオッシャー液用チューブ、エンジン冷却液(LLC)チューブ、リザーバータンクチューブ、尿素溶液搬送チューブ、冷却水、冷媒等用クーラーチューブ、エアコン冷媒用チューブ、ヒーターチューブ、ラジエータチューブ、ロードヒーティングチューブ、床暖房チューブ、インフラ供給用チューブ、消火器及び消火設備用チューブ、医療用冷却機材用チューブ、インク、塗料散布チューブ、その他薬液チューブが挙げられる。特に、燃料チューブとして好適である。即ち、本発明は、前記積層チューブの燃料チューブとしての使用を包含する。
 以下に、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は、これに限定されるものではない。
 尚、実施例及び比較例における分析及び物性の測定方法、並びに実施例及び比較例に用いた材料を示す。
 ポリアミドの特性は、以下の方法で測定した。
 [相対粘度]
 JIS K-6920に準じて、96%の硫酸中、ポリアミド濃度1%、温度25℃の条件下で測定した。
 [ポリアミド(A1)、ポリアミド(A2)の末端アミノ基濃度]
 活栓付三角フラスコに所定量のポリアミド試料を入れ、あらかじめ調整しておいた溶媒フェノール/メタノール(体積比9/1)の40mLを加えた後、マグネットスターラで攪拌溶解し、指示薬にチモールブルーを用いて0.05Nの塩酸で滴定を行い、末端アミノ基濃度を求めた。
 [ポリアミド(A1)、ポリアミド(A2)の末端カルボキシル基濃度]
 三つ口ナシ型フラスコに所定量のポリアミド試料を入れ、ベンジルアルコール40mLを加えた後、窒素気流下、180℃に設定したオイルバスに浸漬する。上部に取り付けた攪拌モータにより攪拌溶解し、指示薬にフェノールフタレインを用いて0.05Nの水酸化ナトリウム溶液で滴定を行い、末端カルボキシル基濃度を求めた。
 [エラストマー重合体(A3)のカルボキシル基及び酸無水物基の合計濃度]
 三つ口ナシ型フラスコに所定量のエラストマー重合体試料を入れ、トルエン170mLに溶解し、更に、エタノールを30mL加えて調製した試料溶液を用いて、フェノールフタレインを指示薬とし、0.1NのKOHエタノール溶液で滴定を行い、カルボキシル基及び酸無水物基の合計濃度を求めた。
 ビニルアルコール系重合体の特性は、以下の方法で測定した。
 [エチレン含有量及びケン化度]
 内部標準物質としてテトラメチルシランを含む重水素化ジメチルスルホキシドに溶解し、H-NMR(核磁気共鳴)測定(ブルカー・バイオスピン社製 AVANCE500)により得られたスペクトルから算出した。
 [側鎖1,2-ジオール単位の含有量]
 側鎖1,2-ジオール単位含有ビニルアルコール系重合体を使用して、テトラメチルシランを内部標準物質、重水素化ジメチルスルホキシドを溶媒とし、H-NMR(核磁気共鳴)測定(ブルカー・バイオスピン社製 AVANCE500)により得られたスペクトルから1,2-ジオール単位の含有量を算出した。
 含フッ素系重合体の特性は、以下の方法で測定した。
 [含フッ素系重合体の各構成単位含有量]
 溶融NMR(核磁気共鳴)分析、フッ素含有量分析により、各構成単位の割合(モル%)を求めた。
 [無水イタコン酸(IAH)に基づく構成単位の含有量]
 含フッ素系重合体をプレス成形して、200μmのフィルムを得た。赤外吸収スペクトルにおいて、含フッ素系重合体中のIAHに基づく構成単位に由来する吸収ピークは1870cm-1に現れる。該吸収ピークの吸光度を測定し、モデル化合物から求めたIAHのモル吸光係数237L/(mol・cm)を用いて、IAHに基づく構成単位の割合(モル%)を求めた。
 [5-ノルボルネン-2,3-ジカルボン酸無水物(NAH)に基づく構成単位の含有量]
 含フッ素系重合体をプレス成形して、200μmのフィルムを得た。赤外吸収スペクトルにおいて、含フッ素系重合体中のNAHに基づく構成単位に由来する吸収ピークは1778cm-1に現れる。該吸収ピークの吸光度を測定し、モデル化合物から求めたNAHのモル吸光係数20810L/(mol・cm)を用いて、NAHに基づく構成単位の割合(モル%)を求めた。
 [含フッ素系重合体中の末端カーボネート基数]
 含フッ素系重合体中の末端カーボネート基数は、赤外吸収スペクトル分析により、カーボネート基(-OC(=O)O-)のカルボニル基が帰属するピークが1810~1815cm-1の吸収波長に現われ、吸収ピークの吸光度を測定し、次式によって含フッ素系重合体中の主鎖炭素原子数10個に対するカーボネート基の個数を算出した。
[含フッ素系重合体中の主鎖炭素原子数10個に対するカーボネート基の個数]=500AW/εdf
A:カーボネート基(-OC(=O)O-)のピークの吸光度
ε:カーボネート基(-OC(=O)O-)のモル吸光度係数[cm-1・mol-1]。モデル化合物よりε=170とした。
W:モノマー組成から計算される組成平均分子量
d:フィルムの密度[g/cm
f:フィルムの厚み[mm]
 また、ポリアミド及び含フッ素系重合体の融点は、以下の方法で測定した。
 [融点]
 示差走査熱量測定装置を用いて、試料を予想される融点以上の温度に加熱し、次に、この試料を1分間あたり10℃の速度で降温し、30℃まで冷却、そのまま約1分間放置したのち、1分間あたり10℃の速度で昇温することにより測定される融解曲線のピーク値の温度を融点とした。
 積層チューブの各物性は、以下の方法で測定した。
 [耐薬品性(耐塩化亜鉛性)]
 チューブ端部に金属製継手を圧入し、SAE J-2260 7.12に記載の方法で、塩化亜鉛浸漬を実施した。その後、サンプルを取り出し、クラック発生有無を確認した。その後、SAE J-2260 7.5に記載の方法で、-40℃にて衝撃試験を実施した。
 [環境応力負荷耐性]
 500mmにカットしたチューブをR50の状態に曲げ加工し、チューブに応力が負荷されたままで、ヒートショック試験機(エスペック(株)製、型式:TSA-203EL)を使用し、-40℃で8時間放置した後、100℃ まで昇温して16時間放置した後、-40℃まで降温するというサイクルを20サイクル繰り返した。取り出したチューブを用い、SAE J-2260 7.5に記載の方法で、-40℃にて衝撃試験を実施した。
 [層間接着性(初期剥離強度)]
 200mmにカットしたチューブを更に、縦方向に半分にカットし、テストピースを作成した。万能材料試験機(オリエンテック社製、テンシロンUTMIII-200)を用い、50mm/minの引張速度にて90°剥離試験を実施した。S-Sカーブの極大点から剥離強度を読み取り、層間接着性を評価した。
 [層間接着性の耐久性(熱処理後剥離強度)]
 200mmにカットしたチューブを160℃のオーブンに入れ、30分処理した。取り出したチューブの層間接着性を前記の方法に従い評価した。熱処理後の剥離強度が3.0N/mm以上の場合、層間接着性の耐久性に優れていると判断した。
 [実施例及び比較例で用いた材料]
 ポリアミド(A1)
 ポリアミド12(A1-1)の製造
 内容積70リットルの攪拌機付き耐圧力反応容器に、ドデカンラクタム19.73kg(100.0モル)、5-アミノ-1,3,3-トリメチルシクロヘキサンメチルアミン45.0g(0.264モル)、及び蒸留水0.5Lを仕込み、重合槽内を窒素置換した後、180℃まで加熱し、この温度で反応系内が均一な状態になるように攪拌した。次いで重合槽内温度を270℃まで昇温させ、槽内圧力を3.5MPaに調圧しながら、2時間攪拌下に重合した。その後、約2時間かけて常圧に放圧し、次いで、53kPaまで減圧し、減圧下において5時間重合を行なった。次いで、窒素をオートクレーブ内に導入し、常圧に復圧後、反応容器の下部ノズルからストランドとして抜き出し、カッティングしてペレットを得た。このペレットを減圧乾燥し、相対粘度2.10、末端アミノ基濃度48μeq/g、末端カルボキシル基濃度24μeq/gのポリアミド12を得た(以下、このポリアミド12を(A1-1)という。)。ポリアミド12(A1-1)のメチレン基数のアミド基数に対する比[CH]/[NHCO]は11.0であり、8.0以上を満たす。ポリアミド12(A1-1)の溶解性パラメーターSP値は22.5(MPa)1/2である。
 ポリアミド1010(A1-2)の製造
 内容積70リットルの攪拌機付き耐圧力反応容器に、1,10-デカンジアミンとセバシン酸の等モル塩17.82kg(50.0モル)、1,10-デカンジアミン29.3g(0.17モル)、及び蒸留水5.0Lを仕込み、重合槽内を窒素置換した後、220℃まで加熱し、この温度で反応系内が均一な状態になるように攪拌した。次いで、重合槽内温度を270℃まで昇温させ、槽内圧力を1.7MPaに調圧しながら、2時間攪拌下に重合した。その後、約2時間かけて常圧に放圧し、次いで、53kPaまで減圧し、減圧下において4時間重合を行なった。次いで、窒素をオートクレーブ内に導入し、常圧に復圧後、反応容器の下部ノズルからストランドとして抜き出し、カッティングしてペレットを得た。このペレットを減圧乾燥し、相対粘度2.22、末端アミノ基濃度45μeq/g、末端カルボキシル基濃度28μeq/gのポリアミド1010を得た(以下、このポリアミド1010を(A1-2)という。)。ポリアミド1010(A1-2)のメチレン基数のアミド基数に対する比[CH]/[NHCO]は9.0であり、8.0以上を満たす。ポリアミド1010(A1-2)の溶解性パラメーターSP値は23.5(MPa)1/2である。
 ポリアミド612(A1-3)の製造
 ポリアミド1010(A1-2)の製造において、1,10-デカンジアミンとセバシン酸の等モル塩17.82kg(50.0モル)を1,6-ヘキサンジアミンとドデカン二酸の等モル塩16.42kg(50.0モル)、1,10-デカンジアミン29.3g(0.17モル)を1,6-ヘキサンジアミン16.3g(0.14モル)に変更した以外は、ポリアミド1010(A1-2)の製造と同様の方法にて、に変更した以外は、ポリアミド1010(A1-2)の製造と同様の方法にて、相対粘度2.48、末端アミノ基濃度50μeq/g、末端カルボキシル基濃度35μeq/gのポリアミド612を得た(以下、このポリアミド612を(A1-3)という。)。ポリアミド612(A1-3)のメチレン基数のアミド基数に対する比[CH]/[NHCO]は8.0であり、8.0以上を満たす。ポリアミド612(A1-3)の溶解性パラメーターSP値は24.1(MPa)1/2である。
 ポリアミド(A2)
 ポリアミド6/12(A2-1)の製造
 内容積70リットルの攪拌機付き耐圧力反応容器に、カプロラクタム9.90kg(87.5モル)、12-アミノドデカン酸2.69kg(12.5モル)、5-アミノ-1,3,3-トリメチルシクロヘキサンメチルアミン20.0g(0.12モル)、及び蒸留水2.0Lを入れ、100℃に加熱し、この温度で反応系内が均一な状態になるように攪拌した。引き続き、更に、温度を260℃まで昇温させ、2.5MPaの圧力下で1時間攪拌した。その後、放圧して水分を反応容器から揮散させながら常圧下、260℃で2時間重合反応を行い、更に、260℃、53kPaの減圧下で4時間重合反応させた。反応終了後、反応容器の下部ノズルからストランド状に取り出した反応物を水槽に導入して冷却し、カッティングして、ペレットを得た。このペレットを熱水中に浸漬し、未反応モノマーを抽出して除去した後、減圧乾燥し、相対粘度2.63、末端アミノ基濃度54μeq/g、末端カルボキシル基濃度40μeq/gのポリアミド6/12(カプロアミド単位/ドデカンアミド単位=87.5/12.5モル%)を得た(以下、このポリアミド6/12を(A2-1)という。)。ポリアミド6/12(A2-1)のメチレン基数のアミド基数に対する比[CH]/[NHCO]は5.75であり、8.0未満である。ポリアミド6/12(A2-1)の溶解性パラメーターSP値は26.4(MPa)1/2である。
 ポリアミド6(A2-2)の製造
 ポリアミド6/12(A2-1)の製造において、カプロラクタム9.90kg(87.5モル)、12-アミノドデカン酸2.69kg(12.5モル)をカプロラクタム11.32kg(100.0モル)に変更し、5-アミノ-1,3,3-トリメチルシクロヘキサンメチルアミン20.0g(0.12モル)を80.0g(0.47モル)に変更した以外は、ポリアミド6/12(A2-1)の製造と同様の方法にて、相対粘度2.50、末端アミノ基濃度112μeq/g、末端カルボキシル基濃度33μeq/gのポリアミド6を得た(以下、このポリアミド6を(A2-2)という。)。ポリアミド6(A2-2)のメチレン基数のアミド基数に対する比[CH]/[NHCO]は5.0であり、8.0未満である。ポリアミド6(A2-2)の溶解性パラメーターSP値は26.9(MPa)1/2である。
 ポリアミド6(A2-3)の製造
 ポリアミド6(A2-2)の製造において、5-アミノ-1,3,3-トリメチルシクロヘキサンメチルアミン80.0g(0.47モル)を使用しない以外は、ポリアミド6(A2-2)の製造と同様の方法にて、相対粘度3.50、末端アミノ基濃度38μeq/g、末端カルボキシル基濃度40μeq/gのポリアミド6を得た(以下、このポリアミド6を(A2-3)という。)。ポリアミド6(A2-3)のメチレン基数のアミド基数に対する比[CH]/[NHCO]は5.0であり、8.0未満である。ポリアミド6(A2-3)の溶解性パラメーターSP値は26.9(MPa)1/2である。
 ポリアミド610(A2-4)の製造
 ポリアミド1010(A1-2)の製造において、1,10-デカンジアミンとセバシン酸の等モル塩17.82kg(50.0モル)を1,6-ヘキサンジアミンとセバシン酸の等モル塩15.02kg(50.0モル)、1,10-デカンジアミン29.3g(0.17モル)を1,6-ヘキサンジアミン15.1g(0.13モル)に変更した以外は、ポリアミド1010(A1-2)の製造と同様の方法にて、相対粘度2.58、末端アミノ基濃度53μeq/g、末端カルボキシル基濃度33μeq/gのポリアミド610を得た(以下、このポリアミド610を(A2-4)という。)。ポリアミド610(A2-4)のメチレン基数のアミド基数に対する比[CH]/[NHCO]は7.0であり、8.0未満である。ポリアミド610(A2-4)の溶解性パラメーターSP値は24.9(MPa)1/2である。
 カルボキシル基及び/又は酸無水物基を有する不飽和化合物から誘導される構成単位を含有するエラストマー重合体(A3)
 無水マレイン酸変性エチレン/1-ブテン共重合体(A3-1)(三井化学(株)製、タフマーMH5010、酸無水物基濃度:50μeq/g)
 無水マレイン酸変性エチレン/1-ブテン共重合体(A3-2)(三井化学(株)製、タフマーMH5020、酸無水物基濃度:100μeq/g)
 無水マレイン酸変性水添スチレン/(エチレン/ブタジエン)/スチレンブロック共重合体(A3-3)(旭化成(株)製、タフマーMH1911、酸無水物基濃度:30μeq/g)
 無水マレイン酸変性水添スチレン/(エチレン/ブタジエン)/スチレンブロック共重合体(A3-4)(旭化成(株)製、タフマーMH1913、酸無水物基濃度:200μeq/g)
 その他のエラストマー重合体(A4)
 水添スチレン/(エチレン/ブタジエン)/スチレンブロック共重合体(A4-1)(旭化成(株)製、タフテックH1041)
 水添スチレン/(エチレン/ブタジエン)/スチレンブロック共重合体(A4-2)(旭化成(株)製、タフテックH1141)
 エチレン/1-ブテン共重合体(A4-3)(三井化学(株)製、タフマーA-0550)
 脂肪族ポリアミド組成物(A)
 ポリアミド12組成物(A-1)の製造
 ポリアミド12(A1-1)にポリアミド6/12(A2-1)、無水マレイン酸変性エチレン/1-ブテン共重合体(A3-1)、酸化防止剤としてトリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート](BASFジャパン社製、IRGANOX245)、及びリン系加工安定剤としてトリス(2,4-ジ-t-ブチルフェニル)ホスファイト(BASFジャパン社製、IRGAFOS168)をあらかじめ混合し、二軸溶融混練機((株)日本製鋼所製、型式:TEX44)に供給し、シリンダ温度180℃から270℃で溶融混練し、溶融樹脂をストランド状に押出した後、これを水槽に導入し、冷却、カット、真空乾燥して、ポリアミド12(A1-1)/ポリアミド6/12(A2-1)/無水マレイン酸変性エラストマー重合体(A3-1)=55.0/25.0/20.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなるポリアミド12組成物のペレットを得た(以下、このポリアミド12組成物を(A-1)という。)。ポリアミド(A1)とポリアミド(A2)との溶解性パラメーターSP値の差の絶対値[|(ポリアミド12(A1-1)のSP値)-(ポリアミド6/12(A2-1)のSP値)|]は、|22.5-26.4|=3.9(MPa)1/2であり、1.8以上4.5以下(MPa)1/2を満たす。また、ポリアミド12組成物(A-1)の末端アミノ基濃度[A](μeq/g)、末端カルボキシル基濃度[B](μeq/g)(脂肪族ポリアミド組成物(A)の1gあたりのポリアミド(A1)及びポリアミド(A2)のそれぞれの末端アミノ基濃度(μeq/g)、末端カルボキシル基濃度(μeq/g)とそれぞれの混合質量比から算出される値を脂肪族ポリアミド組成物(A)の1gあたりの末端アミノ基濃度[A](μeq/g)、末端カルボキシル基濃度[B](μeq/g)とする。以下同様。)は、[A]>[B]+10を満たす。
 ポリアミド12組成物(A-2)の製造
 ポリアミド12組成物(A-1)の製造において、ポリアミド12(A1-1)及びポリアミド6/12(A2-1)の添加量を変更した以外は、ポリアミド12組成物(A-1)の製造と同様の方法にて、ポリアミド12(A1-1)/ポリアミド6/12(A2-1)/無水マレイン酸変性エラストマー重合体(A3-1)=65.0/15.0/20.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなるポリアミド12組成物のペレットを得た(以下、このポリアミド12組成物を(A-2)という。)。ポリアミド(A1)とポリアミド(A2)との溶解性パラメーターSP値の差の絶対値[|(ポリアミド12(A1-1)のSP値)-(ポリアミド6/12(A2-1)のSP値)|]は、|22.5-26.4|=3.9(MPa)1/2であり、1.8以上4.5以下(MPa)1/2を満たす。また、ポリアミド12組成物(A-2)の末端アミノ基濃度[A](μeq/g)、末端カルボキシル基濃度[B](μeq/g)は、[A]>[B]+10を満たす。
 ポリアミド12組成物(A-3)の製造
 ポリアミド12組成物(A-1)の製造において、ポリアミド12(A1-1)及びポリアミド6/12(A2-1)の添加量を変更した以外は、ポリアミド12組成物(A-1)の製造と同様の方法にて、ポリアミド12(A1-1)/ポリアミド6/12(A2-1)/無水マレイン酸変性エラストマー重合体(A3-1)=60.0/20.0/20.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなるポリアミド12組成物のペレットを得た(以下、このポリアミド12組成物を(A-3)という。)。ポリアミド(A1)とポリアミド(A2)との溶解性パラメーターSP値の差の絶対値[|(ポリアミド12(A1-1)のSP値)-(ポリアミド6/12(A2-1)のSP値)|]は、|22.5-26.4|=3.9(MPa)1/2であり、1.8以上4.5以下(MPa)1/2を満たす。また、ポリアミド12組成物(A-3)の末端アミノ基濃度[A](μeq/g)、末端カルボキシル基濃度[B](μeq/g)は、[A]>[B]+10を満たす。
 ポリアミド12組成物(A-4)の製造
 ポリアミド12組成物(A-1)の製造において、ポリアミド6/12(A2-1)をポリアミド6(A2-2)に変更した以外は、ポリアミド12組成物(A-1)の製造と同様の方法にて、ポリアミド12(A1-1)/ポリアミド6(A2-2)/無水マレイン酸変性エラストマー重合体(A3-1)=55.0/25.0/20.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなるポリアミド12組成物のペレットを得た(以下、このポリアミド12組成物を(A-4)という。)。ポリアミド(A1)とポリアミド(A2)との溶解性パラメーターSP値の差の絶対値[|(ポリアミド12(A1-1)のSP値)-(ポリアミド6(A2-2)のSP値)|]は、|22.5-26.9|=4.4(MPa)1/2であり、1.8以上4.5以下(MPa)1/2を満たす。また、ポリアミド12組成物(A-4)の末端アミノ基濃度[A](μeq/g)、末端カルボキシル基濃度[B](μeq/g)は、[A]>[B]+10を満たす。
 ポリアミド12組成物(A-5)の製造
 ポリアミド12組成物(A-1)の製造において、ポリアミド6/12(A2-1)をポリアミド610(A2-4)に変更した以外は、ポリアミド12組成物(A-1)の製造と同様の方法にて、ポリアミド12(A1-1)/ポリアミド610(A2-4)/無水マレイン酸変性エラストマー重合体(A3-1)=50.0/30.0/20.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなるポリアミド12組成物のペレットを得た(以下、このポリアミド12組成物を(A-5)という。)。ポリアミド(A1)とポリアミド(A2)との溶解性パラメーターSP値の差の絶対値[|(ポリアミド12(A1-1)のSP値)-(ポリアミド610(A2-4)のSP値)|]は、|22.5-24.9|=2.4(MPa)1/2であり、1.8以上4.5以下(MPa)1/2を満たす。また、ポリアミド12組成物(A-5)の末端アミノ基濃度[A](μeq/g)、末端カルボキシル基濃度[B](μeq/g)は、[A]>[B]+10を満たす。
 ポリアミド12組成物(A-6)の製造
 ポリアミド12組成物(A-1)の製造において、無水マレイン酸変性エチレン/1-ブテン共重合体(A3-1)を(A3-2)に変更した以外は、ポリアミド12組成物(A-1)の製造と同様の方法にて、ポリアミド12(A1-1)/ポリアミド6/12(A2-1)/エラストマー重合体(A3-2)=55.0/25.0/20.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなるポリアミド12組成物のペレットを得た(以下、このポリアミド12組成物を(A-6)という。)。ポリアミド(A1)とポリアミド(A2)との溶解性パラメーターSP値の差の絶対値[|(ポリアミド12(A1-1)のSP値)-(ポリアミド6/12(A2-1)のSP値)|]は、|22.5-26.4|=3.9(MPa)1/2であり、1.8以上4.5以下(MPa)1/2を満たす。また、ポリアミド12組成物(A-6)の末端アミノ基濃度[A](μeq/g)、末端カルボキシル基濃度[B](μeq/g)は、[A]>[B]+10を満たす。
 ポリアミド1010組成物(A-7)の製造
 ポリアミド12組成物(A-1)の製造において、ポリアミド12(A1-1)をポリアミド1010(A1-2)に変更した以外は、ポリアミド12組成物(A-1)の製造と同様の方法にて、ポリアミド1010(A1-2)/ポリアミド6/12(A2-1)/無水マレイン酸変性エラストマー重合体(A3-1)=60.0/20.0/20.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなるポリアミド612組成物のペレットを得た(以下、このポリアミド1010組成物を(A-7)という。)。ポリアミド(A1)とポリアミド(A2)との溶解性パラメーターSP値の差の絶対値[|(ポリアミド1010(A1-2)のSP値)-(ポリアミド6/12(A2-1)のSP値)|]は、|23.5-26.4|=2.9(MPa)1/2であり、1.8以上4.5以下(MPa)1/2を満たす。また、ポリアミド12組成物(A-7)の末端アミノ基濃度[A](μeq/g)、末端カルボキシル基濃度[B](μeq/g)は、[A]>[B]+10を満たす。
 ポリアミド612組成物(A-8)の製造
 ポリアミド12組成物(A-1)の製造において、ポリアミド12(A1-1)をポリアミド612(A1-3)に変更した以外は、ポリアミド12組成物(A-1)の製造と同様の方法にて、ポリアミド612(A1-3)/ポリアミド6/12(A2-1)/無水マレイン酸変性エラストマー重合体(A3-1)=65.0/15.0/20.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなるポリアミド612組成物のペレットを得た(以下、このポリアミド612組成物を(A-8)という。)。ポリアミド(A1)とポリアミド(A2)との溶解性パラメーターSP値の差の絶対値[|(ポリアミド612(A1-2)のSP値)-(ポリアミド6/12(A2-1)のSP値)|]は、|24.1-26.4|=2.3(MPa)1/2であり、1.8以上4.5以下(MPa)1/2を満たす。また、ポリアミド612組成物(A-8)の末端アミノ基濃度[A](μeq/g)、末端カルボキシル基濃度[B](μeq/g)は、[A]>[B]+10を満たす。
 導電性ポリアミド12組成物(A-9)の製造
 ポリアミド12組成物(A-1)の製造において、導電性フィラーとしてカーボンブラック(キャボット社製、バルカンXC-72)を用い、シリンダ温度を270℃から290℃に変更した以外は、ポリアミド12組成物(A-1)の製造と同様の方法にて、ポリアミド12(A1-1)/ポリアミド6/12(A2-1)/無水マレイン酸変性エラストマー重合体(A3-1)/導電性フィラー=35.0/25.0/20.0/20.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる導電性ポリアミド12組成物のペレットを得た(以下、この導電性ポリアミド12組成物を(A-9)という。)。ポリアミド(A1)とポリアミド(A2)との溶解性パラメーターSP値の差の絶対値[|(ポリアミド12(A1-1)のSP値)-(ポリアミド6/12(A2-1)のSP値)|]は、|22.5-26.4|=3.9(MPa)1/2であり、1.8以上4.5以下(MPa)1/2を満たす。また、導電性ポリアミド12組成物(A-9)の末端アミノ基濃度[A](μeq/g)、末端カルボキシル基濃度[B](μeq/g)は、[A]>[B]+10を満たす。
 導電性ポリアミド612組成物(A-10)の製造
 導電性ポリアミド12組成物(A-9)の製造において、ポリアミド12(A1-1)をポリアミド612(A1-3)に変え、シリンダ温度を290℃から300℃に変更した以外は、導電性ポリアミド12組成物(A-9)の製造と同様の方法にて、ポリアミド12(A1-1)/ポリアミド6/12(A2-1)/無水マレイン酸変性エラストマー重合体(A3-1)/導電性フィラー=45.0/15.0/20.0/20.0(質量%)よりなる導電性ポリアミド612組成物のペレットを得た(以下、この導電性ポリアミド612組成物を(A-10)という。)。ポリアミド(A1)とポリアミド(A2)との溶解性パラメーターSP値の差の絶対値[|(ポリアミド612(A1-2)のSP値)-(ポリアミド6/12(A2-1)のSP値)|]は、|24.1-26.4|=2.3(MPa)1/2であり、1.8以上4.5以下(MPa)1/2を満たす。また、導電性ポリアミド612組成物(A-10)の末端アミノ基濃度[A](μeq/g)、末端カルボキシル基濃度[B](μeq/g)は、[A]>[B]+10を満たす。
 ポリアミド12組成物(A-11)の製造
 ポリアミド12組成物(A-1)の製造において、ポリアミド6/12(A2-1)を使用せず、二軸溶融混練機のシリンダの途中から、可塑剤としてベンゼンスルホン酸ブチルアミドを定量ポンプにより注入した以外は、ポリアミド12組成物(A-1)の製造と同様の方法にて、ポリアミド12(A1-1)/無水マレイン酸変性エラストマー重合体(A3-1)/可塑剤=87.5/10.0/2.5(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなるポリアミド12組成物のペレットを得た(以下、このポリアミド12組成物を(A-11)という。)。ポリアミド6/12(A2-1)を使用していないため、ポリアミド(A1)とポリアミド(A2)との溶解性パラメーターSP値の差の絶対値は算出できないが、便宜的にポリアミド(A2)の溶解性パラメーターSP値を0として算出すると、[|(ポリアミド12(A1-1)のSP値)-0]=|22.5-0|=22.5(MPa)1/2であり、1.8以上4.5以下(MPa)1/2を満たさない。また、ポリアミド12組成物(A-11)の末端アミノ基濃度[A](μeq/g)、末端カルボキシル基濃度[B](μeq/g)は、[A]>[B]+10を満たす。
 ポリアミド12組成物(A-12)の製造
 ポリアミド12組成物(A-1)の製造において、ポリアミド6/12(A2-1)を使用しないこと以外は、ポリアミド12組成物(A-1)の製造と同様の方法にて、ポリアミド12(A1-1)/無水マレイン酸変性エラストマー重合体(A3-1)=80.0/20.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなるポリアミド12組成物のペレットを得た(以下、このポリアミド12組成物を(A-12)という。)。ポリアミド6/12(A2-1)を使用していないため、ポリアミド(A1)とポリアミド(A2)との溶解性パラメーターSP値の差の絶対値は算出できないが、便宜的にポリアミド(A2)の溶解性パラメーターSP値を0として算出すると、[|(ポリアミド12(A1-1)のSP値)-0]=|22.5-0|=22.5(MPa)1/2であり、1.8以上4.5以下(MPa)1/2を満たさない。また、ポリアミド12組成物(A-12)の末端アミノ基濃度[A](μeq/g)、末端カルボキシル基濃度[B](μeq/g)は、[A]>[B]+10を満たす。
 ポリアミド12組成物(A-13)の製造
 ポリアミド12組成物(A-1)の製造において、ポリアミド6/12(A2-1)をポリアミド1010(A1-2)に変更した以外は、ポリアミド12組成物(A-1)の製造と同様の方法にて、ポリアミド12(A1-1)/ポリアミド1010(A1-2)/無水マレイン酸変性エラストマー重合体(A3-1)=60.0/20.0/20.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなるポリアミド12組成物のペレットを得た(以下、このポリアミド12組成物を(A-13)という。)。ポリアミド6/12(A2-1)を使用していないため、ポリアミド(A1)とポリアミド(A2)との溶解性パラメーターSP値の差の絶対値は算出できないが、ポリアミド1010(A1-2)をポリアミド(A2)とみなしてポリアミド(A1)とポリアミド(A2)との溶解性パラメーターSP値の差の絶対値を算出すると、[|(ポリアミド12(A1-1)のSP値)-(ポリアミド1010(A1-2)のSP値)|]は、|22.5-23.5|=1.0(MPa)1/2であり、1.8以上4.5以下(MPa)1/2を満たさない。また、ポリアミド12組成物(A-13)の末端アミノ基濃度[A](μeq/g)、末端カルボキシル基濃度[B](μeq/g)は、[A]>[B]+10を満たす。
 ポリアミド12組成物(A-14)の製造
 ポリアミド12組成物(A-1)の製造において、ポリアミド6/12(A2-1)をポリアミド6(A2-2)に変え、ポリアミド12(A1-1)及びポリアミド6(A2-2)の添加量を変更した以外は、ポリアミド12組成物(A-1)の製造と同様の方法にて、ポリアミド12(A1-1)/ポリアミド6(A2-2)/無水マレイン酸変性エラストマー重合体(A3-1)=30.0/50.0/20.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなるポリアミド12組成物のペレットを得た(以下、このポリアミド12組成物を(A-14)という。)。ポリアミド(A1)とポリアミド(A2)との溶解性パラメーターSP値の差の絶対値[|(ポリアミド12(A1-1)のSP値)-(ポリアミド6(A2-2)のSP値)|]は、|22.5-26.9|=4.4(MPa)1/2であり、1.8以上4.5以下(MPa)1/2を満たす。また、ポリアミド12組成物(A-14)の末端アミノ基濃度[A](μeq/g)、末端カルボキシル基濃度[B](μeq/g)は、[A]>[B]+10を満たす。
 側鎖1,2-ジオール単位含有ビニルアルコール系重合体(B1)
 側鎖1,2-ジオール単位含有EVOH系重合体(B12-1)の製造
 冷却コイルを備えた重合缶に酢酸ビニルを500.0kg、メタノール135.0kg、t-ブチルパーオキシネオデカネート344ppm(対酢酸ビニル)、クエン酸30ppm(対酢酸ビニル)、及び3,4-ジアセトキシ-1-ブテンを45.0kg仕込み、系を窒素ガスで一旦置換した後、次いでエチレンで置換して、エチレン圧が2.0MPaとなるまで圧入して、攪拌した後、67℃まで昇温し、重合率が61%になるまで7時間重合した。その後、重合反応を停止して、エチレン含有量16.7モル%のエチレン/酢酸ビニル/ジアセトキシブテン共重合体を得た。次いで、エチレン/酢酸ビニル/ジアセトキシブテン共重合体を含有する反応液を蒸留塔に供給し、塔下部からメタノール蒸気を導入することで未反応酢酸ビニルを除去し、エチレン/酢酸ビニル/ジアセトキシブテン共重合体のメタノール溶液を得た。
 該エチレン/酢酸ビニル/ジアセトキシブテン共重合体のメタノール溶液を棚段塔(ケン化塔)の塔上部より供給し、同時に該共重合体中の残存酢酸基に対して、150mmol当量の水酸化ナトリウムを含むメタノール溶液を塔上部より供給することによりケン化を行い、側鎖1,2-ジオール単位を含有するEVOHのメタノール溶液(側鎖1,2-ジオール単位含有EVOH系重合体30%、メタノール70%)を得た。かかる側鎖1,2-ジオール単位含有EVOH系重合体の酢酸ビニル成分のケン化度は、99.7モル%であった。
 次いで、得られた側鎖1,2-ジオール単位含有EVOH系重合体のメタノール溶液をメタノール/水溶液調整塔の塔上部から供給し、120℃のメタノール蒸気を塔下部から仕込み、塔頂部よりメタノールを留出させると同時に、ケン化で用いた水酸化ナトリウム量に対して、6当量の酢酸メチルを塔内温95℃から110℃の塔中部から仕込んで塔底部から側鎖1,2-ジオール単位含有EVOH系重合体の水/アルコール溶液(樹脂濃度35%)を得た。
 得られた側鎖1,2-ジオール単位含有EVOH系重合体の水/アルコール溶液を、孔径4mmのノズルより、冷水槽にストランド状に押し出して、凝固終了後、ストランド状物をカッターで切断し、直径3.8mm、長さ4mmの樹脂分35%の側鎖1,2-ジオール単位含有EVOH系重合体の多孔性ペレットを得た。
 該多孔性ペレット100部に対して、ナトリウム分0.08部となるまで水洗した後、側鎖1,2-ジオール単位含有EVOH系重合体100質量部に対して、酢酸0.5部、リン酸カルシウム0.004部(リン換算)、ホウ酸0.025部(ホウ素換算)を含有する水500部に4時間浸漬させた。更に、かかる多孔性ペレットを回分式通気箱型乾燥器にて、温度110℃、水分含有率0.6%の窒素気流下で乾燥を行って目的とする側鎖1,2-ジオール単位含有EVOH系重合体のペレットを得た(以下、この側鎖1,2-ジオール単位含有EVOH系重合体を(B12-1)という。)。かかるペレットは、側鎖1,2-ジオール単位含有EVOH系重合体100質量部に対して、ナトリウム分0.03部、リン酸根0.0005部(リン換算)、ホウ酸0.02部(ホウ素換算)を含有していた。また、側鎖1,2-ジオール単位含有EVOH系重合体(B12-1)のMFRは4.0g/10分(210℃、2160g荷重下)であり、側鎖1,2-ジオール単位の含有量は、3.7モル%であった。
 側鎖1,2-ジオール単位含有PVA系重合体(B11-2)の製造
 還流冷却器、撹拌機を備えた反応缶に、酢酸ビニル68.0kg、メタノール23.38kg、3,4-ジアセトキシ-1-ブテン8.2kgを仕込み、アゾビスイソブチロニトリルを0.3モル%(対仕込み酢酸ビニル)投入し、撹拌しながら窒素気流下で温度を上昇させ、重合を開始した。酢酸ビニルの重合率が90%となった時点で、重合禁止剤としてm-ジニトロベンゼン10ppm(対仕込み酢酸ビニル)を加え、重合を終了した。続いて、メタノール蒸気を吹き込む方法により未反応の酢酸ビニルモノマーを系外に除去し共重合体のメタノール溶液を得た。
 次いで、該メタノール溶液を更に、メタノールで希釈し、濃度45%に調整して、ニーダーに仕込み、溶液温度を35℃に保ちながら、水酸化ナトリウムの2%メタノール溶液を共重合体中の酢酸ビニル及び3,4-ジアセトキシ-1-ブテンの合計量1.0モルに対して、11.5ミリモルとなる割合で加えてケン化を行った。ケン化が進行すると共にケン化物が析出し、粒子状となった時点で濾別し、メタノールで十分い洗浄して、熱風乾燥機中で乾燥し、側鎖1,2-ジオール単位含有PVA系重合体を得た。
 この造粒物を、二軸溶融混練機を用いて、200℃、滞留時間2分で溶融し、側鎖1,2-ジオール単位含有PVA系重合体のペレットを得た(以下、この側鎖1,2-ジオール単位含有PVA系重合体を(B11-2)という。)。得られた側鎖1,2-ジオール単位含有PVA系重合体(B11-2)のMFRは3.5g/10分(210℃、2160g荷重下)であり、側鎖1,2-ジオール単位の含有量は、6.0モル%、ケン化度は、98.9モル%であった。
 側鎖1,2-ジオール単位含有PVA系重合体(B11-3)の製造
 側鎖1,2-ジオール単位含有PVA系重合体(B11-2)の製造において、酢酸ビニル68.0kg、メタノール23.38kg、3,4-ジアセトキシ-1-ブテン8.2kgを酢酸ビニル68.5k、メタノール20.5kg、3,4-ジアセトキシ-1-ブテン11.0kgに変更した以外は、側鎖1,2-ジオール単位含有PVA系重合体(B11-2)の製造と同様の方法にて、側鎖1,2-ジオール単位含有PVA系重合体のペレットを得た(以下、この側鎖1,2-ジオール単位含有PVA系重合体を(B11-3)という。)。得られた側鎖1,2-ジオール単位含有PVA系重合体(B11-3)のMFRは4.0g/10分(210℃、2160g荷重下)であり、側鎖1,2-ジオール単位の含有量は、8.0モル%、ケン化度は、98.5モル%であった。
 側鎖1,2-ジオール単位含有PVA系重合体(B11-4)の製造
 側鎖1,2-ジオール単位含有PVA系重合体(B11-2)の製造において、酢酸ビニル68.0kg、メタノール23.38kg、3,4-ジアセトキシ-1-ブテン8.2kgを酢酸ビニル68.6k、メタノール13.7kg、3,4-ジアセトキシ-1-ブテン4.0kgに変更した以外は、側鎖1,2-ジオール単位含有PVA系重合体(B11-2)の製造と同様の方法にて、側鎖1,2-ジオール単位含有PVA系重合体のペレットを得た(以下、この側鎖1,2-ジオール単位含有PVA系重合体を(B11-4)という。)。得られた側鎖1,2-ジオール単位含有PVA系重合体(B11-4)のMFRは3.8g/10分(210℃、2160g荷重下)であり、側鎖1,2-ジオール単位の含有量は、4.0モル%、ケン化度は、98.7モル%であった。
 未変性EVOH系重合体(B12-5)の製造
 側鎖1,2-ジオール単位含有EVOH系重合体(B12-1)の製造において、メタノール135.0kg、t-ブチルパーオキシネオデカネート344ppm(対酢酸ビニル)をメタノール80kg、アセチルパーオキシド300ppm(対酢酸ビニル)、クエン酸30ppm(対酢酸ビニル)に変え、3,4-ジアセトキシ-1-ブテンを使用せず、エチレン圧が4.2MPaとなるまで圧入した以外は、側鎖1,2-ジオール単位含有EVOH系重合体組成物(B12-1)と同様の方法にて、エチレン含有量32モル%のEVOHのペレットを得た(以下、この未変性EVOH系重合体を(B12-5)という。)。かかるペレットは、EVOH100質量部に対して、ナトリウム分0.03部、リン酸根0.0005部(リン換算)、ホウ酸0.02部(ホウ素換算)を含有していた。また、MFR 3.2g/10分(210℃、2160g荷重下)、側鎖1,2-ジオール単位の含有量は、0モル%、ケン化度は、99.5モル%であった。
 ビニルアルコール系重合体組成物(B)
 側鎖1,2-ジオール単位含有EVOH系重合体組成物(B-1)の製造
 側鎖1,2-ジオール単位含有EVOH系重合体(B12-1)に、無水マレイン酸変性水添スチレン/(エチレン/ブタジエン)/スチレンブロック共重合体(A3-3)、水添スチレン/(エチレン/ブタジエン)/スチレンブロック共重合体(A4-1)、酸化防止剤としてトリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート](BASFジャパン社製、IRGANOX245)、及びリン系加工安定剤としてトリス(2,4-ジ-t-ブチルフェニル)ホスファイト(BASFジャパン社製、IRGAFOS168)をあらかじめ混合し、二軸溶融混練機((株)日本製鋼所製、型式:TEX44)に供給し、シリンダ温度200℃から220℃で溶融混練し、溶融樹脂をストランド状に押出した後、これを水槽に導入し、冷却、カット、真空乾燥して、側鎖1,2-ジオール単位含有EVOH系重合体(B12-1)/無水マレイン酸変性エラストマー重合体(A3-1)/エラストマー重合体(A4-1)=85.0/7.5/7.5(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる側鎖1,2-ジオール単位含有EVOH系重合体組成物のペレットを得た(以下、この側鎖1,2-ジオール単位含有EVOH系重合体組成物を(B-1)という。)。
 側鎖1,2-ジオール単位含有PVA系重合体組成物(B-2)の製造
 側鎖1,2-ジオール単位含有EVOH系重合体組成物(B-1)の製造において、側鎖1,2-ジオール単位含有EVOH系重合体(B12-1)を側鎖1,2-ジオール単位含有PVA系重合体(B11-2)、無水マレイン酸変性水添スチレン/(エチレン/ブタジエン)/スチレンブロック共重合体(A3-3)を(A3-4)、水添スチレン/(エチレン/ブタジエン)/スチレンブロック共重合体(A4-1)を(A4-2)に変え、その添加量を変更した以外は、側鎖1,2-ジオール単位含有EVOH系重合体組成物(B-1)の製造と同様の方法にて、側鎖1,2-ジオール単位含有PVA系重合体(B11-2)/無水マレイン酸変性エラストマー重合体(A3-4)/エラストマー重合体(A4-2)=80.0/10.0/10.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる側鎖1,2-ジオール単位含有PVA系重合体組成物のペレットを得た(以下、この側鎖1,2-ジオール単位含有PVA系重合体組成物を(B-2)という。)。
 側鎖1,2-ジオール単位含有PVA系重合体組成物(B-3)の製造
 側鎖1,2-ジオール単位含有EVOH系重合体組成物(B-1)の製造において、側鎖1,2-ジオール単位含有EVOH系重合体(B12-1)を側鎖1,2-ジオール単位含有PVA系重合体(B11-3)、無水マレイン酸変性水添スチレン/(エチレン/ブタジエン)/スチレンブロック共重合体(A3-3)を(A3-4)、水添スチレン/(エチレン/ブタジエン)/スチレンブロック共重合体(A4-1)を(A4-2)に変え、その添加量を変更した以外は、側鎖1,2-ジオール単位含有EVOH系重合体組成物(B-1)の製造と同様の方法にて、側鎖1,2-ジオール単位含有PVA系重合体(B11-3)/無水マレイン酸変性エラストマー重合体(A3-4)/エラストマー重合体(A4-2)=80.0/10.0/10.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる側鎖1,2-ジオール単位含有PVA系重合体組成物のペレットを得た(以下、この側鎖1,2-ジオール単位含有PVA系重合体組成物を(B-3)という。)。
 側鎖1,2-ジオール単位含有PVA系重合体組成物(B-4)の製造
 側鎖1,2-ジオール単位含有EVOH系重合体組成物(B-1)の製造において、側鎖1,2-ジオール単位含有EVOH系重合体(B12-1)を側鎖1,2-ジオール単位含有PVA系重合体(B11-4)、無水マレイン酸変性水添スチレン/(エチレン/ブタジエン)/スチレンブロック共重合体(A3-3)を(A3-4)、水添スチレン/(エチレン/ブタジエン)/スチレンブロック共重合体(A4-1)を(A4-2)に変え、その添加量を変更した以外は、側鎖1,2-ジオール単位含有EVOH系重合体組成物(B-1)の製造と同様の方法にて、側鎖1,2-ジオール単位含有PVA系重合体(B11-4)/無水マレイン酸変性エラストマー重合体(A3-4)/エラストマー重合体(A4-2)=70.0/15.0/15.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる側鎖1,2-ジオール単位含有PVA系重合体組成物のペレットを得た(以下、この側鎖1,2-ジオール単位含有PVA系重合体組成物を(B-4)という。)。
 ポリアミド組成物(C) ポリアミド610組成物(C-1)の製造 ポリアミド12組成物(A-1)の製造において、ポリアミド12(A1-1)をポリアミド610(A2-4)に変更した以外は、ポリアミド12組成物(A-1)の製造と同様の方法にて、ポリアミド610(A2-4)/無水マレイン酸変性エラストマー重合体(A3-1)=80.0/20.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなるポリアミド610組成物のペレットを得た(以下、このポリアミド610組成物を(C-1)という。)。
 導電性ポリアミド610組成物(C-2)の製造
 導電性ポリアミド612組成物(A-10)の製造において、ポリアミド612(A1-3)をポリアミド610(A2-4)に変更した以外は、導電性ポリアミド612組成物(A-10)の製造と同様の方法にて、ポリアミド610(A2-4)/無水マレイン酸変性エラストマー重合体(A3-1)/導電性フィラー=60.0/20.0/20.0(質量%)よりなる導電性ポリアミド610組成物のペレットを得た(以下、この導電性ポリアミド610組成物を(C-2)という。)。
 ポリアミド6/12組成物(C-3)の製造 ポリアミド610組成物(C-1)の製造において、ポリアミド610(A2-4)をポリアミド6/12(A2-1)に変更した以外は、ポリアミド610組成物(C-1)の製造と同様の方法にて、ポリアミド6/12(A2-1)/無水マレイン酸変性エラストマー重合体(A3-1)=80.0/20.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなるポリアミド6組成物のペレットを得た(以下、このポリアミド6組成物を(C-3)という。)。
 ポリアミド6組成物(C-4)の製造 ポリアミド610組成物(C-1)の製造において、ポリアミド610(A2-4)をポリアミド6(A2-3)に変更した以外は、ポリアミド610組成物(C-1)の製造と同様の方法にて、ポリアミド6(A2-3)/無水マレイン酸変性エラストマー重合体(A3-1)=80.0/20.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなるポリアミド6組成物のペレットを得た(以下、このポリアミド6組成物を(C-4)という。)。
 半芳香族ポリアミド(D1)
 半芳香族ポリアミド(D1-1)の製造
 1,9-ノナンジアミン2.374kg(15.0モル)、2-メチル-1,8-オクタンジアミン2.374kg(15.0モル)、テレフタル酸4.939kg(29.7モル)、安息香酸65.9g(0.54モル)、次亜リン酸ナトリウム一水和物9.8g(原料に対して、0.1質量%)、及び蒸留水6.0Lをオートクレーブに入れ、窒素置換した。100℃で30分間攪拌し、2時間かけて内部温度を190℃に昇温した。この時、オートクレーブは2.0MPaまで昇圧した。そのまま1時間反応を続けた後230℃に昇温し、その後2時間、230℃に温度を保ち、水蒸気を徐々に抜いて圧力を2.0MPaに保ちながら重合させた。次に、30分かけて圧力を1.0MPaまで下げ、更に、1時間反応させて、プレポリマーを得た。これを、100℃、減圧下で12時間乾燥し、2mm以下の大きさまで粉砕し、210℃、0.013kPa下にて、8時間固相重合し、融点265℃、相対粘度2.38の半芳香族ポリアミド(ポリアミド9T/M8T=50.0/50.0モル%)を得た(以下、この半芳香族ポリアミドを(D1-1)という。)。
 半芳香族ポリアミド(D1-2)の製造
 半芳香族ポリアミド(D1-1)の製造において、1,9-ノナンジアミン2.374kg(15.0モル)と2-メチル-1,8-オクタンジアミン2.374kg(15.0モル)を1,9-ノナンジアミン4.036kg(25.5モル)と2-メチル-1,8-オクタンジアミン0.712kg(4.5モル)に変え、固相重合温度を210℃から240℃に変更した以外は、半芳香族ポリアミド(D1-1)の製造と同様の方法にて、融点305℃、相対粘度2.34の半芳香族ポリアミド(ポリアミド9T/M8T=85.0/15.0モル%)を得た(以下、この半芳香族ポリアミドを(D1-2)という。)。
 半芳香族ポリアミド(D1-3)の製造
 半芳香族ポリアミド(D1-1)の製造において、テレフタル酸4.939kg(29.7モル)を2,6-ナフタレンジカルボン酸6.427kg(29.7モル)に変更した以外は、半芳香族ポリアミド(D1-1)の製造と同様の方法にて、融点275℃、相対粘度2.37の半芳香族ポリアミド(ポリアミド9N/M8N=50.0/50.0モル%)を得た(以下、この半芳香族ポリアミドを(D1-3)という。)。
 半芳香族ポリアミド(D1-4)の製造
 半芳香族ポリアミド(D1-1)の製造において、1,9-ノナンジアミン2.374kg(15.0モル)と2-メチル-1,8-オクタンジアミン2.374kg(15.0モル)を1,10-デカンジアミン5.169kg(30.0モル)に変え、重合温度を230℃から270℃、固相重合温度を230℃から260℃に変更した以外は、半芳香族ポリアミド(D1-1)の製造と同様の方法にて、融点315℃、相対粘度2.33の半芳香族ポリアミド(ポリアミド10T=100.0モル%)を得た(以下、この半芳香族ポリアミドを(D1-4)という。)。
 半芳香族ポリアミド(D1-5)の製造
 半芳香族ポリアミド(D1-4)の製造において、1,10-デカンジアミン5.169kg(30.0モル)とテレフタル酸4.984kg(30.0モル)を1,10-デカンジアミン3.101kg(18.0モル)、テレフタル酸2.990kg(18.0モル)、及び11-アミノウンデカン酸2.416kg(12.0モル)に変え、重合温度を270℃から220℃、固相重合温度を260℃から200℃に変更した以外は、半芳香族ポリアミド(D1-4)の製造と同様の方法にて、融点255℃、相対粘度2.34の半芳香族ポリアミド(ポリアミド10T/11=60.0/40.0モル%)を得た(以下、この半芳香族ポリアミドを(D1-5)という。)。
 半芳香族ポリアミド(D1-6)の製造
 半芳香族ポリアミド(D1-4)の製造において、テレフタル酸4.984kg(30.0モル)をテレフタル酸3.324kg(20.0モル)とセバシン酸2.020kg(9.99モル)に変え、重合温度を270℃から240℃、固相重合温度を260℃から220℃に変更した以外は、半芳香族ポリアミド(D1-4)の製造と同様の方法にて、融点279℃、相対粘度2.37の半芳香族ポリアミド(ポリアミド10T/1010=67.0/33.0モル%)を得た(以下、この半芳香族ポリアミドを(D1-6)という。)。
 半芳香族ポリアミド(D1-7)の製造
 半芳香族ポリアミド(D1-1)の製造において、1,9-ノナンジアミン2.374kg(15.0モル)、2-メチル-1,8-オクタンジアミン2.374kg(15.0モル)、及びテレフタル酸4.939kg(29.7モル)を1,6-ヘキサンジアミン3.602kg(31.0モル)、テレフタル酸2.483kg(15.0モル)、イソフタル酸1.738kg(10.5モル)、及びアジピン酸0.655kg(4.5モル)に変更した以外は、半芳香族ポリアミド(D1-1)の製造と同様の方法にて、融点266℃、相対粘度2.28の半芳香族ポリアミド(ポリアミド6T/6I/66=50.0/35.0/15.0モル%)を得た(以下、この半芳香族ポリアミドを(D1-7)という。)。
 半芳香族ポリアミド(D1-8)の製造
 半芳香族ポリアミド(D1-1)の製造において、1,9-ノナンジアミン2.374kg(15.0モル)、2-メチル-1,8-オクタンジアミン2.374kg(15.0モル)、及びテレフタル酸4.939kg(29.7モル)を1,6-ヘキサンジアミン1.801kg(15.5モル)、2-メチル-1,5-ペンタンジアミン1.801kg(15.5モル)、及びテレフタル酸4.983kg(30.0モル)に変え、重合温度を230℃から260℃、固相重合温度を210℃から240℃に変更した以外は、半芳香族ポリアミド(D1-1)の製造と同様の方法にて、融点301℃、相対粘度2.35の半芳香族ポリアミド(ポリアミド6T/M5T=50.0/50.0モル%)を得た(以下、この半芳香族ポリアミドを(D1-8)という。)。
 半芳香族ポリアミド(D1-9)の製造
 半芳香族ポリアミド(D1-1)の製造において、1,9-ノナンジアミン2.374kg(15.0モル)、2-メチル-1,8-オクタンジアミン2.374kg(15.0モル)、及びテレフタル酸4.939kg(29.7モル)を1,6-ヘキサンジアミン2.522kg(21.7モル)、テレフタル酸3.489kg(21.0モル)、及びカプロラクタム1.018kg(9.0モル)に変え、重合温度を230℃から260℃、固相重合温度を210℃から240℃に変更した以外は、半芳香族ポリアミド(D1-1)の製造と同様の方法にて、融点295℃、相対粘度2.34の半芳香族ポリアミド(ポリアミド6T/6=70.0/30.0モル%)を得た(以下、この半芳香族ポリアミドを(D1-9)という。)。
 半芳香族ポリアミド(D1-10)の製造
 半芳香族ポリアミド(D1-1)の製造において、1,9-ノナンジアミン2.374kg(15.0モル)、2-メチル-1,8-オクタンジアミン2.374kg(15.0モル)、及びテレフタル酸4.939kg(29.7モル)を1,6-ヘキサンジアミン2.522kg(21.7モル)、1,10-デカンジアミン1.602kg(9.3モル)、テレフタル酸4.135kg(24.0モル)、及びイソフタル酸1.034kg(6.0モル)に変え、重合温度を230℃から260℃、固相重合温度を210℃から240℃に変更した以外は、半芳香族ポリアミド(D1-1)の製造と同様の方法にて、融点302℃、相対粘度2.32の半芳香族ポリアミド重合体(ポリアミド6T/6I/10T/10I=56.0/24.0/14.0/6.0モル%)を得た(以下、この半芳香族ポリアミド重合体を(D1-10)という。)。
 半芳香族ポリアミド(D1-11)の製造
 半芳香族ポリアミド(D1-1)の製造において、1,9-ノナンジアミン2.374kg(15.0モル)、2-メチル-1,8-オクタンジアミン2.374kg(15.0モル)、及びテレフタル酸4.939kg(29.7モル)を1,6-ヘキサンジアミン3.66kg(31.5モル)、テレフタル酸2.392kg(14.4モル)、イソフタル酸1.595kg(9.6モル)、及びセバシン酸1.213kg(6.0モル)に変え、重合温度を230℃から260℃、固相重合温度を210℃から240℃に変更した以外は、半芳香族ポリアミド(D1-1)の製造と同様の方法にて、融点289℃、相対粘度2.20の半芳香族ポリアミド(ポリアミド6T/6I/610=48.0/32.0/20.0モル%)を得た(以下、この半芳香族ポリアミドを(D1-11)という。)。
 半芳香族ポリアミド(D1-12)の製造
 半芳香族ポリアミド(D1-1)の製造において、1,9-ノナンジアミン2.374kg(15.0モル)、2-メチル-1,8-オクタンジアミン2.374kg(15.0モル)、及びテレフタル酸4.939kg(29.7モル)を1,6-ヘキサンジアミン3.66kg(31.5モル)、ドデカン二酸3.45kg(15.0モル)、及びテレフタル酸2.49kg(15.0モル)に変え、重合温度を230℃から250℃、固相重合温度を210℃から230℃に変更した以外は、半芳香族ポリアミド(D1-1)の製造と同様の方法にて、融点292℃、相対粘度2.20の半芳香族ポリアミド(ポリアミド6T/612=55.0/45.0モル%)を得た(以下、この半芳香族ポリアミドを(D1-12)という。)。
 半芳香族ポリアミド(D1-13)の製造
 半芳香族ポリアミド(D1-1)の製造において、固相重合時間を8時間から4時間に変更した以外は、半芳香族ポリアミド(D1-1)の製造と同様の方法にて、融点265℃、相対粘度2.08の半芳香族ポリアミド(ポリアミド9T/M8T=50.0/50.0モル%)を得た(以下、この半芳香族ポリアミドを(D1-13)という。)。
 半芳香族ポリアミド(D1-14)の製造
 半芳香族ポリアミド(D1-7)の製造において、固相重合時間を8時間から4時間に変更した以外は、半芳香族ポリアミド(D1-7)の製造と同様の方法にて、融点266℃、相対粘度2.05の半芳香族ポリアミド(ポリアミド6T/6I/66=50.0/35.0/15.0モル%)を得た(以下、この半芳香族ポリアミドを(D1-14)という。)。
 半芳香族ポリアミド(D2)
 半芳香族ポリアミド(D2-1)の製造
 攪拌機、温度計、トルクメータ、圧力計、ダイアフラムポンプを直結した原料投入口、窒素ガス導入口、放圧口、圧力調整装置、及びポリマー放出口を備えた内容積が70リットルの圧力容器に、セバシン酸6.068kg(30.0モル)、次亜リン酸カルシウム8.50g(0.049モル)、及び酢酸ナトリウム2.19g(0.025モル)を仕込み、圧力容器の内部の純度が99.9999%の窒素ガスで0.3MPaに加圧した後、次に常圧まで窒素ガスを放出する操作を5回繰返し、窒素置換を行った後、封圧下、攪拌しながら系内を昇温した。更に、少量の窒素気流下で、190℃まで昇温した後、m-キシリレンジアミン4.086kg(30.0モル)を撹拌下で160分を要して滴下した。この間、反応系内圧は0.5MPaに制御し、内温を連続的に295℃まで昇温させた。また、m-キシリレンジアミンの滴下とともに留出する水は、分縮器及び冷却器を通して系外に除いた。m-キシリレンジアミン滴下終了後、60分間かけて常圧まで降圧し、この間に、容器内の温度を250℃に保持して、10分間反応を継続した。その後、反応系内圧を79kPaまで減圧し、40分間溶融重合反応を継続した。その後、攪拌を止めて系内を窒素で0.2MPaに加圧して、重縮合物を圧力容器下部抜出口より紐状に抜き出した。紐状の重縮合物は直ちに冷却し、水冷した紐状の樹脂はペレタイザーによってペレット化し、その後、減圧乾燥を行い融点191℃、相対粘度2.46の半芳香族ポリアミド(ポリアミドMXD10=100.0モル%)を得た(以下、この半芳香族ポリアミドを(D2-1)という。)。
 半芳香族ポリアミド(D2-2)の製造
 半芳香族ポリアミド(D2-1)の製造において、m-キシリレンジアミン4.086kg(30.0モル)をm-キシリレンジアミンとp-キシリレンジアミンの7:3(モル比)の混合ジアミン4.086kg(30.0モル)に変え、重合温度を250℃から260℃に変更した以外は、半芳香族ポリアミド(D2-1)の製造と同様の方法にて、融点213℃、相対粘度2.40の半芳香族ポリアミド(ポリアミドMXD10/PXD10=70.0/30.0モル%)を得た(以下、この半芳香族ポリアミドを(D2-2)という。)。
 半芳香族ポリアミド(D2-3)の製造
 半芳香族ポリアミド(D2-1)の製造において、m-キシリレンジアミン4.086kg(30.0モル)をp-キシリレンジアミン4.086kg(30.0モル)に変え、重合温度を250℃から300℃に変更した以外は、半芳香族ポリアミド(D2-1)の製造と同様の方法にて、融点281、291℃(融点を2つ有する)、相対粘度2.42の半芳香族ポリアミド(ポリアミドPXD10=100.0モル%)を得た(以下、この半芳香族ポリアミドを(D2-3)という。)。
 半芳香族ポリアミド(D2-4)の製造
 半芳香族ポリアミド(D2-1)の製造において、セバシン酸6.068kg(30.0モル)をアジピン酸4.384kg(30.0モル)に変え、重合温度を250℃から275℃に変更した以外は、半芳香族ポリアミド(D2-1)の製造と同様の方法にて、融点243℃、相対粘度2.42の半芳香族ポリアミド(ポリアミドMXD6=100.0モル%)を得た(以下、この半芳香族ポリアミドを(D2-4)という。)。
 半芳香族ポリアミド(D2-5)の製造
 半芳香族ポリアミド(D2-2)の製造において、セバシン酸6.068kg(30.0モル)をアジピン酸4.384kg(30.0モル)に変え、重合温度を250℃から290℃に変更した以外は、半芳香族ポリアミド(D2-2)の製造と同様の方法にて、融点264℃、相対粘度2.32の半芳香族ポリアミド(ポリアミドMXD6/PXD6=70.0/30.0モル%)を得た(以下、この半芳香族ポリアミドを(D2-5)という。)。
 半芳香族ポリアミド(D2-6)の製造
 半芳香族ポリアミド(D2-1)の製造において、m-キシリレンジアミン4.086kg(30.0モル)を2,6-ビス(アミノメチル)ナフタレン5.588kg(30.0モル)に変え、重合温度を240℃から300℃に変更した以外は、半芳香族ポリアミド(D2-1)の製造と同様の方法にて、融点286℃、相対粘度2.25の半芳香族ポリアミド(ポリアミド2,6-BAN10=100.0モル%)を得た(以下、この半芳香族ポリアミドを(D2-6)という。)。
 半芳香族ポリアミド(D2-7)の製造
 半芳香族ポリアミド(D2-1)の製造において、溶融重合時間を40分から20分に変更した以外は、半芳香族ポリアミド(D2-1)の製造と同様の方法にて、融点191℃、相対粘度2.15の半芳香族ポリアミド(ポリアミドMXD10=100.0モル%)を得た(以下、この半芳香族ポリアミドを(D2-7)という。)。
 半芳香族ポリアミド(D2-8)の製造
 半芳香族ポリアミド(D2-4)の製造において、溶融重合時間を40分から20分に変更した以外は、半芳香族ポリアミド(D2-4)の製造と同様の方法にて、融点243℃、相対粘度2.10の半芳香族ポリアミド(ポリアミドMXD6=100.0モル%)を得た(以下、この半芳香族ポリアミドを(D2-8)という。)。
 半芳香族ポリアミド組成物(D)
 半芳香族ポリアミド組成物(D-1)の製造
 半芳香族ポリアミド(D1-1)に、衝撃改良材として無水マレイン酸変性エチレン/1-ブテン共重合体(A3-1)、酸化防止剤としてトリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート](BASFジャパン社製、IRGANOX245)、及びリン系加工安定剤としてトリス(2,4-ジ-t-ブチルフェニル)ホスファイト(BASFジャパン社製、IRGAFOS168)をあらかじめ混合し、二軸溶融混練機((株)日本製鋼所製、型式:TEX44)に供給し、シリンダ温度220℃から300℃で溶融混練し、溶融樹脂をストランド状に押出した後、これを水槽に導入し、冷却、カット、真空乾燥して、半芳香族ポリアミド(D1-1)/無水マレイン酸変性エラストマー重合体(A3-1)=90.0/10.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D-1)という。)。
 半芳香族ポリアミド組成物(D-2)の製造
 半芳香族ポリアミド組成物(D-1)の製造において、半芳香族ポリアミド(D1-1)を(D1-2)に変え、シリンダ温度を300℃から340℃に変更した以外は、半芳香族ポリアミド組成物(D-1)の製造と同様の方法にて、半芳香族ポリアミド(D1-2)/無水マレイン酸変性エラストマー重合体(A3-1)=90.0/10.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D-2)という。)。
 半芳香族ポリアミド組成物(D-3)の製造
 半芳香族ポリアミド組成物(D-1)の製造において、半芳香族ポリアミド(D1-1)を(D1-3)に変え、シリンダ温度を300℃から310℃に変更した以外は、半芳香族ポリアミド組成物(D-1)の製造と同様の方法にて、半芳香族ポリアミド(D1-3)/無水マレイン酸変性エラストマー重合体(A3-1)=90.0/10.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D-3)という。)。
 半芳香族ポリアミド組成物(D-4)の製造
 半芳香族ポリアミド組成物(D-1)の製造において、半芳香族ポリアミド(D1-1)を(D1-4)に変え、シリンダ温度を300℃から340℃に変更した以外は、半芳香族ポリアミド組成物(D-1)の製造と同様の方法にて、半芳香族ポリアミド(D1-4)/無水マレイン酸変性エラストマー重合体(A3-1)=90.0/10.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D-4)という。)。
 半芳香族ポリアミド組成物(D-5)の製造
 半芳香族ポリアミド組成物(D-1)の製造において、半芳香族ポリアミド(D1-1)を(D1-5)に変え、シリンダ温度を300℃から290℃に変更した以外は、半芳香族ポリアミド組成物(D-1)の製造と同様の方法にて、半芳香族ポリアミド(D1-5)/無水マレイン酸変性エラストマー重合体(A3-1)=90.0/10.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D-5)という。)。
 半芳香族ポリアミド組成物(D-6)の製造
 半芳香族ポリアミド組成物(D-1)の製造において、半芳香族ポリアミド(D1-1)を(D1-6)に変え、シリンダ温度を300℃から310℃に変更した以外は、半芳香族ポリアミド組成物(D-1)の製造と同様の方法にて、半芳香族ポリアミド(D1-6)/無水マレイン酸変性エラストマー重合体(A3-1)=90.0/10.0(質量%)10質量%の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D-6)という。)。
 半芳香族ポリアミド組成物(D-7)の製造
 半芳香族ポリアミド組成物(D-1)の製造において、半芳香族ポリアミド(D1-1)を(D1-7)に変更した以外は、半芳香族ポリアミド組成物(D-1)の製造と同様の方法にて、半芳香族ポリアミド(D1-7)/無水マレイン酸変性エラストマー重合体(A3-1)=85.0/15.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D-7)という。)。
 半芳香族ポリアミド組成物(D-8)の製造
 半芳香族ポリアミド組成物(D-1)の製造において、半芳香族ポリアミド(D1-1)を(D1-8)に変え、シリンダ温度を300℃から330℃に変更した以外は、半芳香族ポリアミド組成物(D-1)の製造と同様の方法にて、半芳香族ポリアミド(D1-8)/無水マレイン酸変性エラストマー重合体(A3-1)=85.0/15.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D-8)という。)。
 半芳香族ポリアミド組成物(D-9)の製造
 半芳香族ポリアミド組成物(D-1)の製造において、半芳香族ポリアミド(D1-1)を(D1-9)に変え、シリンダ温度を300℃から330℃に変更した以外は、半芳香族ポリアミド組成物(D-1)の製造と同様の方法にて、半芳香族ポリアミド(D1-9)/無水マレイン酸変性エラストマー重合体(A3-1)=85.0/15.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D-9)という。)。
 半芳香族ポリアミド組成物(D-10)の製造
 半芳香族ポリアミド組成物(D-1)の製造において、半芳香族ポリアミド(D1-1)を(D1-10)に変え、シリンダ温度を300℃から340℃に変更した以外は、半芳香族ポリアミド組成物(D-1)の製造と同様の方法にて、半芳香族ポリアミド(D1-10)/無水マレイン酸変性エラストマー重合体(A3-1)=85.0/15.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D-10)という。)。
 半芳香族ポリアミド組成物(D-11)の製造
 半芳香族ポリアミド組成物(D-1)の製造において、半芳香族ポリアミド(D1-1)を(D1-11)に変え、シリンダ温度を300℃から330℃に変更した以外は、半芳香族ポリアミド組成物(D-1)の製造と同様の方法にて、半芳香族ポリアミド(D1-11)/無水マレイン酸変性エラストマー重合体(A3-1)=85.0/15.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D-11)という。)。
 半芳香族ポリアミド組成物(D-12)の製造
 半芳香族ポリアミド組成物(D-1)の製造において、半芳香族ポリアミド(D1-1)を(D1-12)に変え、シリンダ温度を300℃から330℃に変更した以外は、半芳香族ポリアミド組成物(D-1)の製造と同様の方法にて、半芳香族ポリアミド(D1-12)/無水マレイン酸変性エラストマー重合体(A3-1)=85.0/15.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D-12)という。)。
 半芳香族ポリアミド組成物(D-13)の製造
 半芳香族ポリアミド組成物(D-1)の製造において、半芳香族ポリアミド(D1-1)と(D1-7)を併用した以外は、半芳香族ポリアミド組成物(D-1)の製造と同様の方法にて、半芳香族ポリアミド(D1-7)/半芳香族ポリアミド(D1-1)/無水マレイン酸変性エラストマー重合体(A3-1)=59.5/25.5/15.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D-13)という。)。
 半芳香族ポリアミド組成物(D-14)の製造
 半芳香族ポリアミド組成物(D-13)の製造において、半芳香族ポリアミド(D1-1)を(D1-5)に変更した以外は、半芳香族ポリアミド組成物(D-13)の製造と同様の方法にて、半芳香族ポリアミド(D1-7)/半芳香族ポリアミド(D1-5)/無水マレイン酸変性エラストマー重合体(A3-1)=59.5/25.5/15.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D-14)という。)。
 半芳香族ポリアミド組成物(D-15)の製造
 半芳香族ポリアミド組成物(D-1)の製造において、半芳香族ポリアミド(D1-1)を(D2-1)に変え、シリンダ温度を300℃から240℃に変更した以外は、半芳香族ポリアミド組成物(D-1)の製造と同様の方法にて、半芳香族ポリアミド(D2-1)/無水マレイン酸変性エラストマー重合体(A3-1)=90.0/10.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D-15)という。)。
 半芳香族ポリアミド組成物(D-16)の製造
 半芳香族ポリアミド組成物(D-15)の製造において、半芳香族ポリアミド(D2-1)を(D2-2)に変え、シリンダ温度を240℃から250℃に変更した以外は、半芳香族ポリアミド組成物(D-15)の製造と同様の方法にて、半芳香族ポリアミド(D2-2)/無水マレイン酸変性エラストマー重合体(A3-1)=90.0/10.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D-16)という。)。
 半芳香族ポリアミド組成物(D-17)の製造
 半芳香族ポリアミド組成物(D-15)の製造において、半芳香族ポリアミド(D2-1)を(D2-3)に変え、シリンダ温度を240℃から320℃に変更した以外は、半芳香族ポリアミド組成物(D-15)の製造と同様の方法にて、半芳香族ポリアミド(D2-3)/無水マレイン酸変性エラストマー重合体(A3-1)=90.0/10.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D-17)という。)。
 半芳香族ポリアミド組成物(D-18)の製造
 半芳香族ポリアミド組成物(D-15)の製造において、半芳香族ポリアミド(D2-1)を(D2-4)に変え、シリンダ温度を240℃から280℃に変更した以外は、半芳香族ポリアミド組成物(D-15)の製造と同様の方法にて、半芳香族ポリアミド(D2-4)/無水マレイン酸変性エラストマー重合体(A3-1)=85.0/15.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D-18)という。)。
 半芳香族ポリアミド組成物(D-19)の製造
 半芳香族ポリアミド組成物(D-15)の製造において、半芳香族ポリアミド(D2-1)を(D2-5)に変え、シリンダ温度を240℃から300℃に変更した以外は、半芳香族ポリアミド組成物(D-15)の製造と同様の方法にて、半芳香族ポリアミド(D2-5)/無水マレイン酸変性エラストマー重合体(A3-1)=85.0/15.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D-19)という。)。
 半芳香族ポリアミド組成物(D-20)の製造
 半芳香族ポリアミド組成物(D-15)の製造において、半芳香族ポリアミド(D2-1)を(D2-6)に変え、シリンダ温度を240℃から320℃に変更した以外は、半芳香族ポリアミド組成物(D-15)の製造と同様の方法にて、半芳香族ポリアミド(D2-6)/無水マレイン酸変性エラストマー重合体(A3-1)=85.0/15.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D-20)という。)。
 半芳香族ポリアミド組成物(D-21)の製造
 半芳香族ポリアミド組成物(D-15)の製造において、半芳香族ポリアミド(D2-1)と(D2-4)を併用し、シリンダ温度を240℃から280℃に変更した以外は、半芳香族ポリアミド組成物(D-15)の製造と同様の方法にて、半芳香族ポリアミド(D2-4)/半芳香族ポリアミド(D2-1)/無水マレイン酸変性エラストマー重合体(A3-1)=59.5/25.5/15.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D-21)という。)。
 半芳香族ポリアミド組成物(D-22)の製造
 半芳香族ポリアミド組成物(D-21)の製造において、半芳香族ポリアミド(D2-1)を(D2-2)に変更した以外は、半芳香族ポリアミド組成物(D-21)の製造と同様の方法にて、半芳香族ポリアミド(D2-4)/半芳香族ポリアミド(D2-2)/無水マレイン酸変性エラストマー重合体(A3-1)=59.5/25.5/15.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D-22)という。)。
 半芳香族ポリアミド組成物(D-23)の製造
 半芳香族ポリアミド組成物(D-21)の製造において、半芳香族ポリアミド(D2-1)を(D2-3)に変え、シリンダ温度を280℃から320℃に変更した以外は、半芳香族ポリアミド組成物(D-21)の製造と同様の方法にて、半芳香族ポリアミド(D2-4)/半芳香族ポリアミド(D2-3)/無水マレイン酸変性エラストマー重合体(A3-1)=59.5/25.5/15.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D-23)という。)。
 導電性半芳香族ポリアミド組成物(D-24)の製造
 半芳香族ポリアミド(D1-13)に、衝撃改良材として無水マレイン酸変性エチレン/1-ブテン共重合体(A3-1)とエチレン/1-ブテン共重合体(A4-3)、導電性フィラーとしてカーボンナノチューブ(ナノシル社製、NC7000)、酸化防止剤としてトリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート](BASFジャパン社製、IRGANOX245)、及びリン系加工安定剤としてトリス(2,4-ジ-t-ブチルフェニル)ホスファイト(BASFジャパン社製、IRGAFOS168)をあらかじめ混合し、二軸溶融混練機((株)日本製鋼所製、型式:TEX44)に供給し、シリンダ温度230℃から320℃で溶融混練し、溶融樹脂をストランド状に押出した後、これを水槽に導入し、冷却、カット、真空乾燥して、半芳香族ポリアミド(D1-13)/無水マレイン酸変性エラストマー重合体(A3-1)/エラストマー重合体(A4-3)/導電性フィラー=80.0/10.0/5.0/5.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる導電性半芳香族ポリアミド組成物のペレットを得た(以下、この導電性半芳香族ポリアミド組成物を(D-24)という。)。
 導電性半芳香族ポリアミド組成物(D-25)の製造
 導電性半芳香族ポリアミド組成物(D-24)の製造において、半芳香族ポリアミド(D1-13)を(D1-14)に変更した以外は、導電性半芳香族ポリアミド組成物(D-24)の製造と同様の方法にて、半芳香族ポリアミド(D1-14)/無水マレイン酸変性エラストマー重合体(A3-1)/エラストマー重合体(A4-3)/導電性フィラー=75.0/10.0/10.0/5.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる導電性半芳香族ポリアミド組成物のペレットを得た(以下、この導電性半芳香族ポリアミド組成物を(D-25)という。)。
 導電性半芳香族ポリアミド組成物(D-26)の製造
 導電性半芳香族ポリアミド組成物(D-24)の製造において、半芳香族ポリアミド(D1-13)と(D1-14)を併用した以外は、導電性半芳香族ポリアミド組成物(D-24)の製造と同様の方法にて、半芳香族ポリアミド(D1-14)/半芳香族ポリアミド(D1-13)/無水マレイン酸変性エラストマー重合体(A3-1)/エラストマー重合体(A4-3)/導電性フィラー=52.5/22.5/10.0/10.0/5.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる導電性半芳香族ポリアミド組成物のペレットを得た(以下、この導電性半芳香族ポリアミド組成物を(D-26)という。)。
 導電性半芳香族ポリアミド組成物(D-27)の製造
 導電性半芳香族ポリアミド組成物(D-24)の製造において、半芳香族ポリアミド(D1-13)を(D2-7)に変え、シリンダ温度を320℃から260℃に変更した以外は、導電性半芳香族ポリアミド組成物(D-24)の製造と同様の方法にて、半芳香族ポリアミド(D2-7)/無水マレイン酸変性エラストマー重合体(A3-1)/エラストマー重合体(A4-3)/導電性フィラー=80.0/7.5/7.5/5.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる導電性半芳香族ポリアミド組成物のペレットを得た(以下、この導電性半芳香族ポリアミド組成物を(D-27)という。)。
 導電性半芳香族ポリアミド組成物(D-28)の製造
 導電性半芳香族ポリアミド組成物(D-24)の製造において、半芳香族ポリアミド(D1-13)を(D2-8)に変え、シリンダ温度を320℃から300℃に変更した以外は、導電性半芳香族ポリアミド組成物(D-24)の製造と同様の方法にて、半芳香族ポリアミド(D2-8)/無水マレイン酸変性エラストマー重合体(A3-1)/エラストマー重合体(A4-3)/導電性フィラー=75.0/10.0/10.0/5.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる導電性半芳香族ポリアミド組成物のペレットを得た(以下、この導電性半芳香族ポリアミド組成物を(D-28)という。)。
 導電性半芳香族ポリアミド組成物(D-29)の製造
 導電性半芳香族ポリアミド組成物(D-24)の製造において、半芳香族ポリアミド(D1-13)を(D2-7)と(D2-8)に変え、シリンダ温度を320℃から300℃に変更した以外は、導電性半芳香族ポリアミド組成物(D-24)の製造と同様の方法にて、半芳香族ポリアミド(D2-8)/半芳香族ポリアミド(D2-7)/無水マレイン酸変性エラストマー重合体(A3-1)/エラストマー重合体(A4-3)/導電性フィラー=54.0/26.0/7.5/7.5/5.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる導電性半芳香族ポリアミド組成物のペレットを得た(以下、この導電性半芳香族ポリアミド組成物を(B-18)という。)。
 導電性半芳香族ポリアミド組成物(D-30)の製造
 導電性半芳香族ポリアミド組成物(D-24)の製造において、半芳香族ポリアミド(D1-13)を半芳香族ポリアミド(D2-7)、(D2-8)、及びポリアミド6/12(A2-1)に変え、シリンダ温度を320℃から300℃に変更した以外は、導電性半芳香族ポリアミド組成物(D-24)の製造と同様の方法にて、半芳香族ポリアミド(D2-8)/半芳香族ポリアミド(D2-7)/ポリアミド6/12(A2-1)/無水マレイン酸変性エラストマー重合体(A3-1)/エラストマー重合体(A4-3)/導電性フィラー=49.0/21.0/10.0/7.5/7.5/5.0(質量%)の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる導電性半芳香族ポリアミド組成物のペレットを得た(以下、この導電性半芳香族ポリアミド組成物を(D-30)という。)。
 含フッ素系重合体(E)
 含フッ素系重合体(E-1)の製造
 内容積が100Lの撹拌機付き重合槽を脱気し、1-ヒドロトリデカフルオロヘキサンの92.1kg、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン16.3kg、(パーフルオロエチル)エチレンCH=CH(CFF73g、無水イタコン酸(IAH)10.1gを仕込み、テトラフルオロエチレン(TFE)9.6kg、エチレン(E)0.7kgを圧入し、重合槽内を66℃に昇温し、重合開始剤としてt-ブチルペルオキシピバレート1質量%1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン溶液の433cmを仕込み、重合を開始させた。重合中圧力が一定になるようにTFE/E:60/40(モル比)のモノマー混合ガスを連続的に仕込んだ。また、重合中に仕込むTFEとEの合計モル数に対して、2.0モル%に相当する量の(パーフルオロエチル)エチレンと0.5モル%に相当する量のIAHを連続的に仕込んだ。重合開始5.5時間後、モノマー混合ガス8.0kg、IAHの63gを仕込んだ時点で、重合槽内温を室温まで降温し、パージして圧力を常圧とした。得られたスラリ状の含フッ素系重合体を、水75.0kgを仕込んだ200Lの造粒槽に投入し、次いで撹拌しながら105℃まで昇温し溶媒を留出除去しながら造粒した。得られた造粒物を150℃で5時間乾燥することにより、8.3kgの含フッ素系重合体が得られた。
 当該含フッ素系重合体の組成は、TFEに基づく重合単位/Eに基づく重合単位/CH=CH(CFFに基づく重合単位/IAHに基づく重合単位=58.5/39.0/2.0/0.5(モル%)であり、融点は240℃であった。この造粒物を、押出機を用いて、280℃、滞留時間2分で溶融し、含フッ素系重合体のペレットを得た(以下、この含フッ素系重合体を(E-1)という。)。
 導電性含フッ素系重合体組成物(E-2)の製造
 含フッ素系重合体(E-1)100質量部及びカーボンブラック(電気化学(株)製)13質量部をあらかじめ混合し、二軸溶融混練機(東芝機械(株)製、型式:TEM-48S)に供給し、シリンダ温度240℃から300℃で溶融混練し、溶融樹脂をストランド状に押出した後、これを水槽に導入し、吐出したストランドを水冷し、ペレタイザーでストランドを切断し、水分除去のために120℃の乾燥機で10時間乾燥し、導電性含フッ素系重合体組成物のペレットを得た(以下、この導電性含フッ素系重合体組成物を(E-2)という。)。
 含フッ素系重合体(E-3)の製造
 含フッ素系重合体(E-1)の製造において、無水イタコン酸(IAH)を仕込まない以外は、含フッ素系重合体(E-1)の製造と同様の方法にて、7.6kgの含フッ素系重合体を得た。
 当該含フッ素系重合体の組成は、TFEに基づく重合単位/Eに基づく重合単位/CH=CH(CFFに基づく重合単位=58.8/39.2/2.0(モル%)であり、融点は242℃であった。この造粒物を、押出機を用いて、280℃、滞留時間2分で溶融し、含フッ素系重合体のペレットを得た(以下、この含フッ素系重合体を(E-3)という。)。
 導電性含フッ素系重合体組成物(E-4)の製造
 導電性含フッ素系重合体組成物(E-2)の製造において、含フッ素系重合体(E-1)を(E-3)に変更した以外は、導電性含フッ素系重合体組成物(E-2)の製造と同様の方法にて、導電性含フッ素系重合体組成物のペレットを得た(以下、この導電性含フッ素系重合体組成物を(E-4)という。)。
 含フッ素系重合体(E-5)の製造
 内容積が100Lの撹拌機付き重合槽を脱気し、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン42.5kg、CF=CFOCFCFCF(パーフルオロ(プロピルビニルエーテル):PPVE)、1,1,2,4,4,5,5,6,6,6-デカフルオロ-3-オキサヘックス-1-エン)2.13kg、ヘキサフルオロプロピレン(HFP)51.0kgを仕込んだ。ついで重合槽内を50℃に昇温し、テトラフルオロエチレン(TFE)の4.25kgを仕込んで圧力を1.0MPa/Gまで昇圧した。重合開始剤溶液として(ペルフルオロブチリル)ペルオキシド0.3質量%1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン溶液の340cmを仕込み、重合を開始させ、以後10分毎に当該重合開始剤溶液の340cmを仕込んだ。重合中、圧力が1.0MPa/Gを保持するようにTFEを連続的に仕込んだ。また、重合中に仕込むTFEのモル数に対して、0.1モル%に相当する量の5-ノルボルネン-2,3-ジカルボン酸無水物(NAH)0.3質量%1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン溶液を連続的に仕込んだ。重合開始5時間後、TFE8.5kgを仕込んだ時点で、重合槽内温を室温まで降温するとともに常圧までパージした。得られたスラリ状の含フッ素系重合体を、水75.0kgを仕込んだ200Lの造粒槽に投入し、次いで撹拌しながら105℃まで昇温し溶媒を留出除去しながら造粒した。得られた造粒物を150℃で5時間乾燥することにより、7.5kgの含フッ素系重合体の造粒物が得られた。
 当該含フッ素系重合体の組成は、TFEに基づく重合単位/PPVEに基づく重合単位/HFPに基づく重合単位/NAHに基づく重合単位=91.2/1.5/7.2/0.1(モル%)であり、融点は262℃であった。この造粒物を、押出機を用いて、300℃、滞留時間2分で溶融し、含フッ素系重合体のペレットを得た(以下、この含フッ素系重合体を(E-5)という。)。
 含フッ素系重合体(E-6)の製造
 含フッ素系重合体(E-5)の製造において、5-ノルボルネン-2,3-ジカルボン酸無水物(NAH)0.3質量%1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン溶液を仕込まない以外は、含フッ素系重合体(E-5)の製造と同様の方法にて、7.6kgの含フッ素系重合体を得た。
 当該含フッ素系重合体の組成は、TFEに基づく重合単位/PPVEに基づく重合単位/HFPに基づく重合単位=91.5/1.5/7.0(モル%)であり、融点は257℃であった。この造粒物を、押出機を用いて、300℃、滞留時間2分で溶融し、含フッ素系重合体のペレットを得た(以下、この含フッ素系重合体を(E-6)という。)。
 導電性含フッ素系重合体組成物(E-7)の製造
 導電性含フッ素系重合体組成物(E-2)の製造において、含フッ素系重合体(E-1)を(E-6)、カーボンブラック13質量部を11質量部に変え、シリンダ温度を300℃から320℃に変更した以外は、導電性含フッ素系重合体組成物(E-2)の製造と同様の方法にて、導電性含フッ素系重合体組成物のペレットを得た(以下、この導電性含フッ素系重合体組成物を(E-7)という。)。
 含フッ素系重合体(E-8)の製造
 水174kgを収容できるジャケット付攪拌式重合槽に、脱ミネラルした純水 51.5kgを仕込み、内部空間を純窒素ガスで充分置換した後、窒素ガスを真空で排除した。次いでオクタフルオロシクロブタン40.6kg、クロロトリフルオロエチレン(CTFE)1.6kg、テトラフルオロエチレン(TFE)4.5kg、パーフルオロ(プロピルビニルエーテル)(PPVE)2.8kgを圧入した。連鎖移動剤としてn-プロピルアルコール0.090kgを添加して、温度を35℃に調節し、攪拌を開始した。ここへ重合開始剤としてジ-n-プロピルパーオキシジカーボネート50質量%メタノール溶液を0.44kg添加して重合を開始した。重合中には、所望の共重合体組成と同組成に調製した混合モノマーを、槽内圧力が0.66MPaを維持するように追加仕込みしながら重合した後、槽内の残存ガスを排気して生成したポリマーを取り出し、脱ミネラルした純水で洗浄し、乾燥させて30.5kgの粒状粉末の含フッ素系重合体を得た。
 当該含フッ素系重合体の組成は、CTFEに基づく重合単位/TFEに基づく重合単位/PPVEに基づく重合単位のモル比で24.4/73.1/2.5であり、含フッ素系重合体中の主鎖炭素原子数1×10個に対するカーボネート末端基の数は170個であった。また、融点は241℃であった。この造粒物を、押出機を用いて、290℃、滞留時間2分で溶融し、含フッ素系重合体のペレットを得た(以下、この含フッ素系重合体を(E-8)という。)。
 含フッ素系重合体(E-9)の製造
 含フッ素系重合体(E-8)の製造において、ジ-n-プロピルパーオキシジカーボネート50質量%メタノール溶液を仕込まない以外は、含フッ素系重合体(E-8)の製造と同様の方法にて、29.8kgの含フッ素系重合体を得た。
 当該含フッ素系重合体の組成は、CTFEに基づく重合単位/TFEに基づく重合単位/PPVEに基づく重合単位のモル比で24.4/73.1/2.5であり、融点は241℃であった。この造粒物を、押出機を用いて、290℃、滞留時間2分で溶融し、含フッ素系重合体のペレットを得た(以下、この含フッ素系重合体を(E-9)という。)。
 導電性含フッ素系重合体組成物(E-10)の製造
 導電性含フッ素系重合体組成物(E-7)の製造において、含フッ素系重合体(E-6)を(E-9)に変え、シリンダ温度を320℃から300℃に変更した以外は、導電性含フッ素系重合体組成物(E-7)の製造と同様の方法にて、導電性含フッ素系重合体組成物のペレットを得た(以下、この導電性含フッ素系重合体組成物を(E-10)という。)。
 実施例1
 前記に示すポリアミド12組成物(A-1)、側鎖1,2-ジオール単位含有EVOH系重合体組成物(B-1)を使用して、Plabor(プラスチック工学研究所(株)製)3層チューブ成形機にて、(A-1)を押出温度270℃、(B-1)を押出温度220℃にて別々に溶融させ、吐出された溶融樹脂をアダプタによって合流させ、積層管状体に成形した。引き続き、寸法制御するサイジングダイにより冷却し、引き取りを行い、(A-1)からなる(a)層(最外層、最内層)、(B-1)からなる(b)層(中間層)としたとき、層構成が(a)/(b)/(a)=0.45/0.15/0.40mmで内径6.0mm、外径8.0mmの積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
 実施例2
 実施例1において、最内層及び最外層に使用したポリアミド12組成物(A-1)を(A-2)に変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
 実施例3
 実施例1において、最内層及び最外層に使用したポリアミド12組成物(A-1)を(A-3)に変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
 実施例4
 実施例1において、最内層及び最外層に使用したポリアミド12組成物(A-1)を(A-4)に変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
 実施例5
 実施例1において、最内層及び最外層に使用したポリアミド12組成物(A-1)を(A-5)に変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
 実施例6
 実施例1において、最内層及び最外層に使用したポリアミド12組成物(A-1)を(A-6)に変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
 実施例7
 実施例1において、最内層及び最外層に使用したポリアミド12組成物(A-1)をポリアミド1010組成物(A-7)に変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
 実施例8
 実施例1において、最内層に使用したポリアミド12組成物(A-1)をポリアミド612組成物(A-8)に変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
 実施例9
 実施例1において、最内層に使用したポリアミド12組成物(A-1)を導電性ポリアミド12組成物(A-9)に変え、(A-9)の押出温度を290℃に変更し、各層厚みを(a)/(b)/(a)=0.60/0.15/0.25mm変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例10
 実施例9において、最内層に使用したポリアミド12組成物(A-9)を導電性ポリアミド612組成物(A-10)に変え、(A-10)の押出温度を300℃に変更した以外は、実施例9と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例11
 実施例1において、中間層に使用した側鎖1,2-ジオール単位含有EVOH系重合体組成物(B-1)を側鎖1,2-ジオール単位含有PVA系重合体組成物(B-2)に変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
 実施例12
 実施例1において、中間層に使用した側鎖1,2-ジオール単位含有EVOH系重合体組成物(B-1)を側鎖1,2-ジオール単位含有PVA系重合体組成物(B-3)に変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
 実施例13
 実施例1において、中間層に使用した側鎖1,2-ジオール単位含有EVOH系重合体組成物(B-1)を側鎖1,2-ジオール単位含有PVA系重合体(B-4)に変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
 実施例14
 実施例1において、最内層に使用したポリアミド12組成物(A-1)をポリアミド610組成物(C-1)に変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
 実施例15
 実施例9において、最内層に使用したポリアミド12組成物(A-9)を導電性ポリアミド610組成物(C-2)に変え、(C-2)の押出温度を300℃に変更した以外は、実施例9と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例16
 前記に示すポリアミド12組成物(A-1)、側鎖1,2-ジオール単位含有EVOH系重合体組成物(B-1)、半芳香族ポリアミド組成物(D-1)を使用して、Plabor(プラスチック工学研究所(株)製)4層チューブ成形機にて、(A-1)を押出温度270℃、(B-1)を押出温度220℃、(D-1)を押出温度300℃にて別々に溶融させにて、吐出された溶融樹脂をアダプタによって合流させ、積層管状体に成形した。引き続き、寸法制御するサイジングダイにより冷却し、引き取りを行い、(A-1)からなる(a)層(最外層、内層)、(B-1)からなる(b)層(中間層)、(D-1)からなる(d)層(最内層)としたとき、層構成が(a)/(b)/(a)/(d)=0.45/0.10/0.30/0.15mmで内径6.0mm、外径8.0mmの積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例17
 実施例16において、最内層に使用した半芳香族ポリアミド組成物(D-1)を(D-2)に変え、(D-2)の押出温度を340℃に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例18
 実施例16において、最内層に使用した半芳香族ポリアミド組成物(D-1)を(D-3)に変え、(D-3)の押出温度を310℃に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例19
 実施例16において、最内層に使用した半芳香族ポリアミド組成物(D-1)を(D-4)に変え、(D-4)の押出温度を340℃に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例20
 実施例16において、最内層に使用した半芳香族ポリアミド組成物(D-1)を(D-5)に変え、(D-5)の押出温度を290℃に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例21
 実施例16において、最内層に使用した半芳香族ポリアミド組成物(D-1)を(D-6)に変え、(D-6)の押出温度を310℃に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例22
 実施例16において、最内層に使用した半芳香族ポリアミド組成物(D-1)を(D-7)に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例23
 実施例16において、最内層に使用した半芳香族ポリアミド組成物(D-1)を(D-8)に変え、(D-8)の押出温度を330℃に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例24
 実施例16において、最内層に使用した半芳香族ポリアミド組成物(D-1)を(D-9)に変え、(D-9)の押出温度を330℃に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例25
 実施例16において、最内層に使用した半芳香族ポリアミド組成物(D-1)を(D-10)に変え、(D-10)の押出温度を340℃に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例26
 実施例16において、最内層に使用した半芳香族ポリアミド組成物(D-1)を(D-11)に変え、(D-11)の押出温度を330℃に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例27
 実施例16において、最内層に使用した半芳香族ポリアミド組成物(D-1)を(D-12)に変え、(D-12)の押出温度を330℃に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例28
 実施例16において、最内層に使用した半芳香族ポリアミド組成物(D-1)を(D-13)に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例29
 実施例16において、最内層に使用した半芳香族ポリアミド組成物(D-1)を(D-14)に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例30
 実施例16において、最内層に使用した半芳香族ポリアミド組成物(D-1)を(D-15)に変え、(D-15)の押出温度を240℃に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例31
 実施例16において、最内層に使用した半芳香族ポリアミド組成物(D-1)を(D-16)に変え、(D-16)の押出温度を250℃に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例32
 実施例16において、最内層に使用した半芳香族ポリアミド組成物(D-1)を(D-17)に変え、(D-17)の押出温度を320℃に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例33
 実施例16において、最内層に使用した半芳香族ポリアミド組成物(D-1)を(D-18)に変え、(D-18)の押出温度を280℃に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例34
 実施例16において、最内層に使用した半芳香族ポリアミド組成物(D-1)を(D-19)に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例35
 実施例16において、最内層に使用した半芳香族ポリアミド組成物(D-1)を(D-20)に変え、(D-20)の押出温度を320℃に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例36
 実施例16において、最内層に使用した半芳香族ポリアミド組成物(D-1)を(D-21)に変え、(D-21)の押出温度を280℃に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例37
 実施例16において、最内層に使用した半芳香族ポリアミド組成物(D-1)を(D-22)に変え、(D-22)の押出温度を280℃に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例38
 実施例16において、最内層に使用した半芳香族ポリアミド組成物(D-1)を(D-23)に変え、(D-23)の押出温度を320℃に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例39
 実施例16において、内層に使用したポリアミド12組成物(A-1)をポリアミド6/12組成物(C-3)に変え、(C-3)の押出温度を240℃に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例40
 実施例16において、内層に使用したポリアミド12組成物(A-1)をポリアミド6組成物(C-4)に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例41
 前記に示すポリアミド12組成物(A-1)、側鎖1,2-ジオール単位含有EVOH系重合体組成物(B-1)、半芳香族ポリアミド組成物(D-1)、導電性半芳香族ポリアミド組成物(D-24)を使用して、Plabor(プラスチック工学研究所(株)製)5層チューブ成形機にて、(A-1)を押出温度270℃、(B-1)を押出温度220℃、(D-1)を押出温度300℃、(D-24)を押出温度320℃にて別々に溶融させにて、吐出された溶融樹脂をアダプタによって合流させ、積層管状体に成形した。引き続き、寸法制御するサイジングダイにより冷却し、引き取りを行い、(A-1)からなる(a)層(最外層、中間層)、(B-1)からなる(b)層(外層)、(D-1)からなる(d)層(内層)、(D-24)からなる(d’)層(最内層)としたとき、層構成が(a)/(b)/(a)/(d)/(d’)=0.40/0.10/0.30/0.10/0.10mmで内径6.0mm、外径8.0mmの積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例42
 実施例41において、内層に使用した半芳香族ポリアミド組成物(D-1)を(D-7)、最内層に使用した導電性半芳香族ポリアミド組成物(D-24)を(D-25)に変更した以外は、実施例41と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例43
 実施例41において、内層に使用した半芳香族ポリアミド組成物(D-1)を(D-7)、最内層に使用した導電性半芳香族ポリアミド組成物(D-24)を(D-26)に変更した以外は、実施例41と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例44
 実施例41において、内層に使用した半芳香族ポリアミド組成物(D-1)を(D-15)、最内層に使用した導電性半芳香族ポリアミド組成物(D-24)を(D-27)に変え、(D-15)の押出温度を240℃、(D-27)の押出温度を270℃に変更した以外は、実施例41と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例45
 実施例41において、内層に使用した半芳香族ポリアミド組成物(D-1)を(D-18)、最内層に使用した導電性半芳香族ポリアミド組成物(D-24)を(D-28)に変え、(D-18)の押出温度を280℃、(D-28)の押出温度を300℃に変更した以外は、実施例41と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例46
 実施例41において、内層に使用した半芳香族ポリアミド組成物(D-1)を(D-18)、最内層に使用した導電性半芳香族ポリアミド組成物(D-24)を(D-29)に変え、(D-18)の押出温度を280℃、(D-29)の押出温度を300℃に変更した以外は、実施例41と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例47
 実施例41において、内層に使用した半芳香族ポリアミド組成物(D-1)を(D-18)、最内層に使用した導電性半芳香族ポリアミド組成物(D-24)を(D-30)に変え、(D-18)の押出温度を280℃、(D-30)の押出温度を300℃に変更した以外は、実施例41と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例48
 実施例41において、中間層に使用したポリアミド12組成物(A-1)をポリアミド6/12組成物(C-3)に変え、(C-3)の押出温度を240℃に変更した以外は、実施例41と同様の方法にて、表3電性に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。また、当該積層チューブの導をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例49
 実施例41において、中間層に使用したポリアミド12組成物(A-1)をポリアミド6組成物(C-4)に変更した以外は、実施例41と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例50
 実施例41において、内層に使用した半芳香族ポリアミド組成物(D-1)をポリアミド6/12組成物(C-3)に変え、(C-3)の押出温度を240℃に変更し、各層厚みを(a)/(b)/(a)/(c)/(d)=0.40/0.10/0.10/0.30/0.10mmに変更した以外は、実施例41と同様の方法にて成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した、表3に示す層構。
 実施例51
 実施例50において、内層に使用したポリアミド6/12組成物(C-3)をポリアミド6組成物(C-4)に変え、(C-4)の押出温度を270℃に変更した以外は、実施例50と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例52
 実施例41において、中間層に使用したポリアミド12組成物(A-1)をポリアミド6/12組成物(C-3)、内層に使用した半芳香族ポリアミド組成物(D-1)をポリアミド12組成物(A-1)に変え、(A-1)の押出温度を270℃、(C-3)の押出温度を240℃に変更した以外は、実施例41と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例53
 実施例41において、中間層に使用したポリアミド12組成物(A-1)をポリアミド6組成物(C-4)、内層に使用した半芳香族ポリアミド組成物(D-1)をポリアミド12組成物(A-1)に変え、(A-1)の押出温度を270℃に変更した以外は、実施例41と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例54
 実施例16において、最内層に使用した半芳香族ポリアミド組成物(D-1)を含フッ素系重合体(E-1)に変え、(E-1)の押出温度を290℃に変え、(A-1)からなる(a)層(最外層、内層)、(B-1)からなる(b)層(中間層)、(E-1)からなる(e)層(最内層)としたとき、層構成が(a)/(b)/(a)/(e)=0.50/0.10/0.30/0.10mmに変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例55
 実施例54において、最内層に使用した含フッ素系重合体(E-1)を導電性含フッ素系重合体(E-2)に変え、(E-2)の押出温度を310℃に変更した以外は、実施例54と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例56
 実施例54において、最内層に使用した含フッ素系重合体(E-1)を(E-5)に変え、(E-5)の押出温度を310℃に変更した以外は、実施例54と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例57
 実施例54において、最内層に使用した含フッ素系重合体(E-1)を(E-8)に変え、(E-8)の押出温度を300℃に変更した以外は、実施例54と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例58
 実施例54において、内層に使用したポリアミド12組成物(A-1)をポリアミド6/12組成物(C-3)に変え、(C-3)の押出温度を240℃に変更した以外は、実施例54と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例59
 実施例54において、内層に使用したポリアミド12組成物(A-1)をポリアミド6組成物(C-4)に変更した以外は、実施例54と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 実施例60
 実施例41において、内層に使用した半芳香族ポリアミド組成物(D-1)を含フッ素系重合体(E-1)、最内層に使用した導電性半芳香族ポリアミド組成物(D-24)を導電性含フッ素系重合体(E-2)に変え、(E-1)の押出温度を290℃、(E-2)の押出温度を310℃に変更した以外は、実施例41と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例61
 実施例60において、最内層に使用した導電性含フッ素系重合体(E-2)を含フッ素系重合体(E-3)に変え、(E-3)の押出温度を290℃に変更した以外は、実施例60と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。
 実施例62
 実施例60において、最内層に使用した導電性含フッ素系重合体(E-2)を(E-4)に変更した以外は、実施例60と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例63
 実施例60において、内層に使用した含フッ素系重合体(E-1)を(E-5)、最内層に使用した導電性含フッ素系重合体(E-2)を含フッ素系重合体(E-6)に変え、(E-5)の押出温度を310℃に変更した以外は、実施例60と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。
 実施例64
 実施例60において、内層に使用した含フッ素系重合体(E-1)を(E-5)、最内層に使用した導電性含フッ素系重合体(E-2)を(E-7)に変え、(E-5)の押出温度を310℃、(E-7)の押出温度を330℃に変更した以外は、実施例60と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例65
 実施例60において、内層に使用した含フッ素系重合体(E-1)を(E-8)、最内層に使用した導電性含フッ素系重合体(E-2)を含フッ素系重合体(E-9)に変更した以外は、実施例60と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。
 実施例66
 実施例60において、内層に使用した含フッ素系重合体(E-1)を(E-8)、最内層に使用した導電性含フッ素系重合体(E-2)を(E-10)に変更した以外は、実施例60と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例67
 実施例60において、中間層に使用したポリアミド12組成物(A-1)をポリアミド6/12組成物(C-3)に変え、(C-3)の押出温度を240℃に変更した以外は、実施例60と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例68
 実施例60において、中間層に使用したポリアミド12組成物(A-1)をポリアミド6組成物(C-4)に変更した以外は、実施例60と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例69
 実施例60において、内層に使用した含フッ素系重合体(E-1)をポリアミド6/12組成物(C-3)に変え、(C-3)の押出温度を240℃に変更し、各層厚みを(a)/(b)/(a)/(c)/(e)=0.40/0.10/0.10/0.30/0.10mmに変更した以外は、実施例60と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例70
 実施例69において、内層に使用したポリアミド6/12組成物(C-3)をポリアミド6組成物(C-4)に変え、(C-4)の押出温度を270℃に変更した以外は、実施例69と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例71
 実施例60において、中間層に使用したポリアミド12組成物(A-1)をポリアミド6/12組成物(C-3)、内層に使用した含フッ素系重合体(E-1)をポリアミド12組成物(A-1)に変え、(A-1)の押出温度を270℃、(C-3)の押出温度を240℃に変更した以外は、実施例60と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例72
 実施例60において、中間層に使用したポリアミド12組成物(A-1)をポリアミド6組成物(C-4)、内層に使用した含フッ素系重合体(E-1)をポリアミド12組成物(A-1)に変え、(A-1)の押出温度を270℃に変更した以外は、実施例60と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例73
 実施例41において、最内層に使用した導電性半芳香族ポリアミド組成物(D-24)を含フッ素系重合体(E-1)に変え、(E-1)の押出温度を290℃に変更した以外は、実施例41と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。
 実施例74
 実施例73において、最内層に使用した含フッ素系重合体(E-1)を導電性含フッ素系重合体(E-2)に変え、(E-2)の押出温度を310℃に変更した以外は、実施例73と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例75
 実施例73において、最内層に使用した含フッ素系重合体(E-1)を(E-5)に変え、(E-5)の押出温度を310℃に変更した以外は、実施例73と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。
 実施例76
 実施例73において、最内層に使用した含フッ素系重合体(E-1)を(E-8)に変え、(E-8)の押出温度を300℃に変更した以外は、実施例73と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。
 実施例77
 実施例74において、中間層に使用したポリアミド12組成物(A-1)をポリアミド6/12組成物(C-3)に変え、(C-3)の押出温度を240℃に変更した以外は、実施例74と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 実施例78
 実施例74において、中間層に使用したポリアミド12組成物(A-1)をポリアミド6組成物(C-4)に変更した以外は、実施例74と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10Ω/square以下であり、静電気除去性能に優れていることを確認した。
 比較例1
 実施例1において、最内層及び最外層に使用したポリアミド12組成物(A-1)を(A-11)に変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
 比較例2
 実施例1において、最内層及び最外層に使用したポリアミド12組成物(A-1)を(A-12)に変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
 比較例3
 実施例1において、最内層及び最外層に使用したポリアミド12組成物(A-1)を(A-13)に変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
 比較例4
 実施例1において、最内層及び最外層に使用したポリアミド12組成物(A-1)を(A-14)に変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
 比較例5
 実施例1において、中間層に使用した側鎖1,2-ジオール単位含有EVOH系重合体組成物(B-1)を未変性EVOH系重合体(B12-5)に変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
 比較例6
 実施例14において、最外層に使用したポリアミド12組成物(A-1)を(A-11)に変更した以外は、実施例14と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
 比較例7
 実施例14において、最外層に使用したポリアミド12組成物(A-1)を(A-12)に変更した以外は、実施例14と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
 比較例8
 実施例14において、最外層に使用したポリアミド12組成物(A-1)を(A-13)に変更した以外は、実施例14と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
 比較例9
 実施例14において、最外層に使用したポリアミド12組成物(A-1)を(A-14)に変更した以外は、実施例14と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
 比較例10
 実施例14において、中間層に使用した側鎖1,2-ジオール単位含有EVOH系重合体組成物(B-1)を未変性EVOH系重合体(B12-5)に変更した以外は、実施例14と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
 比較例11
 実施例16において、内層及び最外層に使用したポリアミド12組成物(A-1)を(A-11)に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 比較例12
 実施例16において、内層及び最外層に使用したポリアミド12組成物(A-1)を(A-12)に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 比較例13
 実施例16において、内層及び最外層に使用したポリアミド12組成物(A-1)を(A-13)に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 比較例14
 実施例16において、内層及び最外層に使用したポリアミド12組成物(A-1)を(A-14)に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 比較例15
 実施例16において、中間層に使用した側鎖1,2-ジオール単位含有EVOH系重合体組成物(B-1)を未変性EVOH系重合体(B12-5)に変更した以外は、実施例16と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 比較例16
 実施例41において、中間層及び最外層に使用したポリアミド12組成物(A-1)を(A-11)に変更した以外は、実施例41と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。
 比較例17
 実施例41において、中間層及び最外層に使用したポリアミド12組成物(A-1)を(A-12)に変更した以外は、実施例41と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。
 比較例18
 実施例41において、中間層及び最外層に使用したポリアミド12組成物(A-1)を(A-13)に変更した以外は、実施例41と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。
 比較例19
 実施例41において、中間層及び最外層に使用したポリアミド12組成物(A-1)を(A-14)に変更した以外は、実施例41と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。
 比較例20
 実施例41において、外層に使用した側鎖1,2-ジオール単位含有EVOH系重合体組成物(B-1)を未変性EVOH系重合体(B12-5)に変更した以外は、実施例41と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。
 比較例21
 実施例54において、内層及び最外層に使用したポリアミド12組成物(A-1)を(A-11)に変更した以外は、実施例54と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 比較例22
 実施例54において、内層及び最外層に使用したポリアミド12組成物(A-1)を(A-12)に変更した以外は、実施例54と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 比較例23
 実施例54において、内層及び最外層に使用したポリアミド12組成物(A-1)を(A-13)に変更した以外は、実施例54と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 比較例24
 実施例54において、内層及び最外層に使用したポリアミド12組成物(A-1)を(A-14)に変更した以外は、実施例54と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 比較例25
 実施例54において、中間層に使用した側鎖1,2-ジオール単位含有EVOH系重合体組成物(B-1)を未変性EVOH系重合体(B12-5)に変更した以外は、実施例54と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
 比較例26
 実施例60において、中間層及び最外層に使用したポリアミド12組成物(A-1)を(A-11)に変更した以外は、実施例60と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。
 比較例27
 実施例60において、中間層及び最外層に使用したポリアミド12組成物(A-1)を(A-12)に変更した以外は、実施例60と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。
 比較例28
 実施例60において、中間層及び最外層に使用したポリアミド12組成物(A-1)を(A-13)に変更した以外は、実施例60と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。
 比較例29
 実施例60において、中間層及び最外層に使用したポリアミド12組成物(A-1)を(A-14)に変更した以外は、実施例60と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。
 比較例30
 実施例60において、外層に使用した側鎖1,2-ジオール単位含有EVOH系重合体組成物(B-1)を未変性EVOH系重合体(B12-5)に変更した以外は、実施例60と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。
 比較例31
 実施例73において、中間層及び最外層に使用したポリアミド12組成物(A-1)を(A-11)に変更した以外は、実施例73と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。
 比較例32
 実施例73において、中間層及び最外層に使用したポリアミド12組成物(A-1)を(A-12)に変更した以外は、実施例73と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。
 比較例33
 実施例73において、中間層及び最外層に使用したポリアミド12組成物(A-1)を(A-13)に変更した以外は、実施例73と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。
 比較例34
 実施例73において、中間層及び最外層に使用したポリアミド12組成物(A-1)を(A-14)に変更した以外は、実施例73と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。
 比較例35
 実施例73において、外層に使用した側鎖1,2-ジオール単位含有EVOH系重合体組成物(B-1)を未変性EVOH系重合体(B12-5)に変更した以外は、実施例73と同様の方法にて、表3に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表1、2、及び3から明らかなように、本発明に規定のポリアミド(A2)を使用しておらず、便宜的に算出したポリアミド(A1)とポリアミド(A2)との溶解性パラメーターSP値の差の絶対値が本発明の規定範囲外の脂肪族ポリアミド組成物を含む(a)層を有する比較例1から2、6から7、11から12、16から17、21から22、26から27、及び31から32の積層チューブは、層間接着性の耐久性に劣っていた。本発明に規定のポリアミド(A2)以外のポリアミドを使用しており、ポリアミド(A1)とポリアミド(A2)との溶解性パラメーターSP値の差の絶対値が本発明の規定範囲外の脂肪族ポリアミド組成物を含む(a)層を有する比較例3、8、13、18、23、28、及び33の積層チューブは、層間接着性の耐久性に劣っていた。ポリアミド(A2)の添加量が本発明の規定範囲外の脂肪族ポリアミド組成物を含む(a)層を有する比較例4、9、14、19,24、29、及び34の積層チューブは、耐薬品性に劣っていた。本発明に規定以外のビニルアルコール系重合体組成物(B)を含む(b)層を有する比較例5、10、15、20、25、30、及び35の積層チューブは、ヒートショック後の低温衝撃性に劣っていた。
 一方、本発明に規定されている条件を満たす実施例1から78の積層チューブは、耐薬品性、環境応力負荷後の低衝撃温性、層間接着性、及びその耐久性等の諸特性が良好であることは明らかである。

Claims (18)

  1.  (a)層と(b)層とを含む2層以上の積層チューブであって、
     少なくとも1組の前記(a)層と前記(b)層とは、隣接して配置され、
     前記(a)層は、脂肪族ポリアミド組成物(A)を含み、
     前記(b)層は、ビニルアルコール系重合体組成物(B)を含み、
     前記脂肪族ポリアミド組成物(A)は、ポリアミド(A1)、ポリアミド(A2)、及びエラストマー重合体(A3)を含み、
     前記ポリアミド(A1)は、メチレン基数のアミド基数に対する比が8.0以上の脂肪族ポリアミドであり、前記脂肪族ポリアミド組成物(A)中に、40質量%以上85質量%以下含まれ、
     前記ポリアミド(A2)は、前記ポリアミド(A1)以外のポリアミドであり、前記脂肪族ポリアミド組成物(A)中に、10質量%以上35質量%以下含まれ、
     前記エラストマー重合体(A3)は、カルボキシル基及び/又は酸無水物基を有する不飽和化合物から誘導される構成単位を含有し、前記脂肪族ポリアミド組成物(A)中に、5質量%以上25質量%以下含まれ、
     前記ポリアミド(A1)と前記ポリアミド(A2)との溶解性パラメーターSP値の差の絶対値[|(ポリアミド(A1)のSP値)-(ポリアミド(A2)のSP値)|]は、1.8以上4.5以下(MPa)1/2であり、
     前記ビニルアルコール系重合体組成物(B)は、下記(1)式で表わされる側鎖1,2-ジオール単位を含有するビニルアルコール系重合体(B1)及びエラストマー重合体(B2)を含み、
     前記側鎖1,2-ジオール単位を含有するビニルアルコール系重合体(B1)は、前記ビニルアルコール系重合体組成物(B)中に、60質量%以上95質量%以下含まれ、
     前記エラストマー重合体(B2)は、カルボキシル基及び/又は酸無水物基を有する不飽和化合物から誘導される構成単位を含有し、前記ビニルアルコール系重合体組成物(B)中に5質量%以上40質量%以下含まれる積層チューブ。
    Figure JPOXMLDOC01-appb-C000001
     [一般式(1)において、R、R、及びRは、それぞれ独立して水素原子又は有機基を示し、Xは、単結合又は結合鎖を示し、R、R、及びRは、それぞれ独立して水素原子又は有機基を示す。]
  2.  前記ポリアミド(A1)が、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリノナメチレンドデカミド(ポリアミド912)、ポリデカメチレンセバカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、ポリドデカメチレンドデカミド(ポリアミド1212)、ポリウンデカンアミド(ポリアミド11)、及びポリドデカンアミド(ポリアミド12)からなる群より選ばれる少なくとも1種の単独重合体、並びに/又はこれらを形成する原料単量体を数種用いた少なくとも1種の共重合体である請求項1に記載の積層チューブ。
  3.  前記ポリアミド(A2)が、ポリカプロアミド(ポリアミド6)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリヘキサメチレンアゼラミド(ポリアミド69)、及びポリヘキサメチレンセバカミド(ポリアミド610)からなる群より選ばれる少なくとも1種の単独重合体、並びに/若しくはこれらを形成する原料単量体を数種用いた少なくとも1種の共重合体、又は、前記ポリカプロアミド(ポリアミド6)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリヘキサメチレンアゼラミド(ポリアミド69)、及びポリヘキサメチレンセバカミド(ポリアミド610)からなる群より選ばれる少なくとも1種を形成する原料単量体を主成分とし、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリノナメチレンドデカミド(ポリアミド912)、ポリデカメチレンセバカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、ポリドデカメチレンドデカミド(ポリアミド1212)、ポリウンデカンアミド(ポリアミド11)、及びポリドデカンアミド(ポリアミド12)からなる群より選ばれる少なくとも1種を形成する原料単量体を数種用いた少なくとも1種の共重合体である請求項1又は2に記載の積層チューブ。
  4.  脂肪族ポリアミド組成物(A)の1gあたりのポリアミド(A1)及びポリアミド(A2)のそれぞれの末端アミノ基濃度(μeq/g)、末端カルボキシル基濃度(μeq/g)にその混合質量比を乗じた値を合計した末端アミノ基濃度を[A](μeq/g)、末端カルボキシル基濃度を[B](μeq/g)とした時、[A]>[B]+10である請求項1から3のいずれか1項に記載の積層チューブ。
  5.  前記側鎖1,2-ジオール単位を含有するビニルアルコール系重合体(B1)中の上記(1)式で表される側鎖1,2-ジオール単位の含有量は、前記側鎖1,2-ジオール単位を含有するビニルアルコール系重合体(B1)の全単量体単位100モル%に対して、0.1モル%以上30モル%以下である請求項1から4のいずれか1項に記載の積層チューブ。
  6.  前記側鎖1,2-ジオール単位を含有するビニルアルコール系重合体(B1)は、上記(1)式で表される側鎖1,2-ジオール単位を含有するポリビニルアルコール系重合体(B11)及び/又は上記(1)式で表される側鎖1,2-ジオール単位を含有するエチレン/ビニルエステル系共重合体ケン化物(B12)である請求項1から5のいずれか1項に記載の積層チューブ。
  7.  前記側鎖1,2-ジオール単位を含有するケン化物(B12)中のエチレン単位の含有量は、前記側鎖1,2-ジオール単位を含有する含有エチレン/ビニルエステル系共重合体ケン化物(B12)の全単量体単位100モル%に対して、10モル%以上40モル%以下である請求項6に記載の積層チューブ。
  8.  前記(a)層に対して内側に配置される少なくとも1層の前記(b)層を有する請求項1から7のいずれか1項に記載の積層チューブ。
  9.  更に(c)層を含み、
     少なくとも1組の前記(b)層と前記(c)層とが隣接して配置され、
     前記(c)層は、ポリアミド組成物(C)を含み、
     前記ポリアミド組成物(C)は、ポリアミド(C1)及びエラストマー重合体(C2)を含み、
     前記ポリアミド(C1)は、メチレン基数のアミド基数に対する比が8.0以上の脂肪族ポリアミド以外のポリアミドであり、前記ポリアミド組成物(C)中に70質量%以上95質量%以下含まれ、
     前記エラストマー重合体(C2)は、カルボキシル基及び/又は酸無水物基を有する不飽和化合物から誘導される構成単位を含有し、前記ポリアミド組成物(C)中に5質量%以上30質量%以下含まれる請求項1から8のいずれか1項に記載の積層チューブ。
  10.  前記(b)層に対して内側に配置される少なくとも1層の前記(c)層を有する請求項9に記載の積層チューブ。
  11.  更に(d)層を含み、
     前記(d)層は、前記(a)層に対して内側に配置され、
     前記(d)層は、半芳香族ポリアミド組成物(D)を含み、
     前記半芳香族ポリアミド組成物(D)は、半芳香族ポリアミド(D1)及び/又は半芳香族ポリアミド(D2)を含み、
     前記半芳香族ポリアミド組成物(D)中に、前記半芳香族ポリアミド(D1)及び/又は前記半芳香族ポリアミド(D2)が60質量%以上含まれ、
     前記半芳香族ポリアミド(D1)は、前記半芳香族ポリアミド(D1)の全ジアミン単位に対して、炭素原子数4以上12以下の脂肪族ジアミン単位を50モル%以上含み、前記半芳香族ポリアミド(D1)の全ジカルボン酸単位に対して、テレフタル酸単位、イソフタル酸単位、及びナフタレンジカルボン酸単位からなる群より選ばれる少なくとも1種を含むジカルボン酸単位を50モル%以上含み、
     前記半芳香族ポリアミド(D2)は、前記半芳香族ポリアミド(D2)の全ジアミン単位に対して、キシリレンジアミン単位及び/又はビス(アミノメチル)ナフタレン単位を50モル%以上含み、前記半芳香族ポリアミド(D2)の全ジカルボン酸単位に対して、炭素原子数4以上12以下の脂肪族ジカルボン酸単位を50モル%以上含む請求項1から10のいずれか1項に記載の積層チューブ。
  12.  前記半芳香族ポリアミド組成物(D)が、エラストマー重合体(D3)を含み、前記エラストマー重合体(D3)は、カルボキシル基及び/又は酸無水物基を有する不飽和化合物から誘導される構成単位を含有する請求項11に記載の積層チューブ。
  13.  更に(e)層を含み、
     前記(e)層は、前記(a)層に対して内側に配置され、
     前記(e)層は、アミノ基に対して反応性を有する官能基が分子鎖中に導入された含フッ素系重合体(E)を含む請求項1から10のいずれか1項に記載の積層チューブ。
  14.  更に(e)層を含み、
     前記(e)層は、前記(d)層に対して内側に配置され、
     前記(e)層は、アミノ基に対して反応性を有する官能基が分子鎖中に導入された含フッ素系重合体(E)を含む請求項11又は12に記載の積層チューブ。
  15.  少なくとも1組の前記(d)層と前記(e)層とが隣接して配置される請求項14に記載の積層チューブ。
  16.  最内層が、導電性フィラーを含有させた熱可塑性樹脂組成物を含む導電層である請求項1から15のいずれか1項に記載の積層チューブ。
  17.  共押出成形により製造される請求項1から16のいずれか1項に記載の積層チューブ。
  18.  燃料チューブとして使用される請求項1から17のいずれか1項に記載の積層チューブ。
PCT/JP2019/004778 2018-02-15 2019-02-12 積層チューブ WO2019159861A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019537323A JP6614402B1 (ja) 2018-02-15 2019-02-12 積層チューブ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018024774 2018-02-15
JP2018-024774 2018-02-15

Publications (1)

Publication Number Publication Date
WO2019159861A1 true WO2019159861A1 (ja) 2019-08-22

Family

ID=67619205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004778 WO2019159861A1 (ja) 2018-02-15 2019-02-12 積層チューブ

Country Status (2)

Country Link
JP (1) JP6614402B1 (ja)
WO (1) WO2019159861A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224199A1 (en) * 2021-04-21 2022-10-27 Ti Automotive (Fuldabrueck) Gmbh Multilayer pipeline
EP4122671A4 (en) * 2020-03-19 2024-03-27 Ube Corp POLYAMIDE RESIN COMPOSITION

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014240132A (ja) * 2013-06-11 2014-12-25 宇部興産株式会社 積層チューブ
WO2015033982A1 (ja) * 2013-09-04 2015-03-12 宇部興産株式会社 積層チューブ
JP2016069481A (ja) * 2014-09-29 2016-05-09 日本合成化学工業株式会社 エチレン−ビニルエステル系共重合体ケン化物及び高圧ガス用ホース又は貯蔵容器
WO2017170985A1 (ja) * 2016-03-31 2017-10-05 宇部興産株式会社 積層チューブ
JP6455649B1 (ja) * 2017-09-29 2019-01-23 宇部興産株式会社 積層チューブ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021422A1 (ja) * 2012-08-02 2014-02-06 日本合成化学工業株式会社 高圧ガス用ホース又は貯蔵容器
JP6202255B2 (ja) * 2013-06-11 2017-09-27 宇部興産株式会社 積層チューブ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014240132A (ja) * 2013-06-11 2014-12-25 宇部興産株式会社 積層チューブ
WO2015033982A1 (ja) * 2013-09-04 2015-03-12 宇部興産株式会社 積層チューブ
JP2016069481A (ja) * 2014-09-29 2016-05-09 日本合成化学工業株式会社 エチレン−ビニルエステル系共重合体ケン化物及び高圧ガス用ホース又は貯蔵容器
WO2017170985A1 (ja) * 2016-03-31 2017-10-05 宇部興産株式会社 積層チューブ
JP6455649B1 (ja) * 2017-09-29 2019-01-23 宇部興産株式会社 積層チューブ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4122671A4 (en) * 2020-03-19 2024-03-27 Ube Corp POLYAMIDE RESIN COMPOSITION
WO2022224199A1 (en) * 2021-04-21 2022-10-27 Ti Automotive (Fuldabrueck) Gmbh Multilayer pipeline

Also Published As

Publication number Publication date
JP6614402B1 (ja) 2019-12-04
JPWO2019159861A1 (ja) 2020-02-27

Similar Documents

Publication Publication Date Title
JP6575524B2 (ja) 積層チューブ
JPWO2017170985A1 (ja) 積層チューブ
JP6658854B2 (ja) 積層チューブ
JP7157394B2 (ja) 積層チューブ
JP6970371B2 (ja) 積層チューブ
JP6614402B1 (ja) 積層チューブ
JP6455649B1 (ja) 積層チューブ
KR102490728B1 (ko) 적층 튜브
JP7124331B2 (ja) 積層チューブ
JP6455648B1 (ja) 積層チューブ
JP7331365B2 (ja) 積層チューブ
JP6856889B2 (ja) 積層チューブ
JP6255824B2 (ja) 積層チューブ
JP7124332B2 (ja) 積層チューブ
JP6347172B2 (ja) 積層チューブ
JP2017193101A (ja) 積層チューブ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019537323

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19753805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19753805

Country of ref document: EP

Kind code of ref document: A1