WO2019159837A1 - 慣性力センサ - Google Patents

慣性力センサ Download PDF

Info

Publication number
WO2019159837A1
WO2019159837A1 PCT/JP2019/004610 JP2019004610W WO2019159837A1 WO 2019159837 A1 WO2019159837 A1 WO 2019159837A1 JP 2019004610 W JP2019004610 W JP 2019004610W WO 2019159837 A1 WO2019159837 A1 WO 2019159837A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
curved surface
sensor
electrode layer
curved
Prior art date
Application number
PCT/JP2019/004610
Other languages
English (en)
French (fr)
Inventor
崇宏 篠原
江田 和夫
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020500456A priority Critical patent/JPWO2019159837A1/ja
Priority to US16/958,838 priority patent/US20200371130A1/en
Publication of WO2019159837A1 publication Critical patent/WO2019159837A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/00743D packaging, i.e. encapsulation containing one or several MEMS devices arranged in planes non-parallel to the mounting board
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0006Interconnects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00523Etching material
    • B81C1/00547Etching processes not provided for in groups B81C1/00531 - B81C1/00539
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/023Housings for acceleration measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0242Gyroscopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/09Packages
    • B81B2207/091Arrangements for connecting external electrical signals to mechanical structures inside the package
    • B81B2207/094Feed-through, via
    • B81B2207/096Feed-through, via through the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/09Packages
    • B81B2207/091Arrangements for connecting external electrical signals to mechanical structures inside the package
    • B81B2207/098Arrangements not provided for in groups B81B2207/092 - B81B2207/097
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4845Details of ball bonds
    • H01L2224/48451Shape
    • H01L2224/48453Shape of the interface with the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond

Definitions

  • This disclosure relates to an inertial force sensor used for vehicle control and the like.
  • Patent Document 1 is known as a prior art document related to the present invention.
  • the above-described conventional configuration has a problem that the arrangement direction of the sensor is limited because electrical extraction can be performed only from the upper surface of the wiring-embedded glass substrate.
  • An object of the present disclosure is to provide an inertial force sensor that can increase the degree of freedom regarding the sensor arrangement direction.
  • an inertial force sensor includes a sensor element having a stacked structure of a first substrate, a second substrate, and a sensor substrate.
  • the first substrate includes a substrate body, a first wiring, an electrode layer, and a silicon member.
  • the first wiring is provided inside the substrate body.
  • the electrode layer is provided on the substrate body and is electrically connected to the first wiring.
  • the silicon member is provided at an end of the substrate body.
  • the silicon member has a curved portion and a straight portion connected to the curved portion in a sectional view.
  • the electrode layer is provided across the curved portion and the straight portion.
  • An inertial force sensor includes a sensor element having a stacked structure of a first substrate, a second substrate, and a sensor substrate.
  • a recess is provided at the end of the first substrate.
  • the concave portion has a first curved surface and a second curved surface connected to the first curved surface.
  • the first curved surface is a cylindrical curved surface.
  • the second curved surface is a curved surface having an opening that becomes wider as the distance from the first curved surface increases.
  • the electrode layer is provided across the first curved surface and the second curved surface.
  • FIG. 1 is a perspective view showing an internal configuration of the acceleration sensor according to the first embodiment.
  • FIG. 2 is a top view of the same acceleration sensor.
  • FIG. 3 is an exploded perspective view showing a schematic configuration of the acceleration sensor element included in the acceleration sensor.
  • FIG. 4A is a top view of a first substrate included in the acceleration sensor element of the same.
  • FIG. 4B is a front view of the first substrate.
  • FIG. 5A is a top view of a sensor substrate provided in the acceleration sensor element of the same.
  • FIG. 5B is a front view of the sensor substrate.
  • FIG. 6A is a top view of a second substrate provided in the acceleration sensor element.
  • FIG. 6B is a front view of the second substrate.
  • 7A and 7B are diagrams showing the acceleration sensor element after mounting.
  • FIG. 8A and FIG. 8B are diagrams showing an acceleration sensor element mounted on the acceleration sensor according to the second embodiment.
  • FIG. 9A is an enlarged view of a part of FIG. 8A.
  • FIG. 9B is a view of a part of FIG. 8A viewed from the A1 direction.
  • FIG. 10A is a diagram illustrating a process of etching a silicon member by a non-Bosch process.
  • FIG. 10B is a diagram illustrating the silicon member at the time when the etching process described in FIG. 8A is completed.
  • FIG. 10C is an enlarged view of a portion surrounded by a broken line R1 in FIG. 10B.
  • an acceleration sensor that detects acceleration as an example of an inertial force sensor will be described.
  • FIG. 1 is a perspective view showing an internal configuration of the acceleration sensor 100.
  • the package substrate 104 is mounted on the external substrate 106.
  • the lid that closes the opening of the package is not shown for the sake of simplicity.
  • an acceleration sensor element 101 and a detection circuit 103 that performs various calculations based on an output from the acceleration sensor element 101 and detects a physical quantity are mounted.
  • the lead terminal 105 is pulled out from the package substrate 104.
  • the lead terminals 105 drawn from the package substrate 104 are connected to the external substrate 106.
  • the acceleration sensor 100 is a sensor that detects capacitance type acceleration.
  • the acceleration sensor 100 is manufactured by MEMS technology.
  • FIG. 2 is a view of the acceleration sensor 100 as viewed from above.
  • the acceleration sensor element 101 is disposed such that the electrode layer 374 is exposed in a top view as shown in FIG. A metal wire 371 is connected to the electrode layer 374. Details of the electrode layer 374 will be described later.
  • FIG. 3 is an exploded perspective view showing a schematic configuration of the acceleration sensor element 101.
  • a part of the configuration of the acceleration sensor element 101 may be omitted.
  • the acceleration sensor element 101 has a structure in which a sensor substrate 130, a substrate 131a as a first substrate, and a substrate 131b as a second substrate are stacked.
  • the sensor substrate 130 has a structure sandwiched between the substrate 131a and the substrate 131b.
  • the direction in which the sensor substrate 130 and the substrates 131a and 131b are stacked is referred to as a stacking direction. That is, in FIG. 3, the Z-axis direction is the stacking direction.
  • the sensor substrate 130 includes a weight part 111 that detects acceleration in the X-axis direction, and beam parts 112a and 112b that support the weight part 111 on a support part 113.
  • a semiconductor substrate such as an SOI substrate can be used as the sensor substrate 130.
  • the substrate 131a includes a substrate main body 116, fixed electrodes 115a and 115c, and through wirings 114a, 114b, and 114c for extracting electric signals obtained from the fixed electrodes 115a and 115c to the outside.
  • a substrate body 116 a substrate including glass can be used as the substrate body 116.
  • each fixed electrode 115a, 115c for example, a metal thin film such as an Al—Si film can be used.
  • the substrate 131b is disposed on the package substrate 104.
  • a substrate including glass can be used as the substrate 131b.
  • the through wirings 114 a, 114 b and 114 c are provided through the substrate 131 a and are electrically connected to the fixed electrodes 115 a and 115 c or the acceleration sensor element 101. Although omitted in FIG. 3, an electrode layer 374 for connecting to the metal wire 371 is provided on the end faces of the through wirings 114 a, 114 b, and 114 c. In the following description, when the through wirings 114a, 114b, and 114c are not particularly distinguished, each of the through wirings 114a, 114b, and 114c is also referred to as a “through wiring 114”.
  • the acceleration sensor element 101 a capacitor whose capacitance changes according to acceleration is formed between the weight portion 111 and the fixed electrodes 115a and 115c. More specifically, when acceleration is applied to the weight portion 111, the beam portions 112a and 112b are twisted and the weight portion 111 is displaced. Thereby, the area and interval at which the fixed electrodes 115a and 115c and the weight portion 111 face each other change, and the capacitance of the capacitor changes.
  • the acceleration sensor element 101 can detect acceleration from the change in capacitance.
  • the inertial force sensor is the acceleration sensor 100 including the acceleration sensor element 101 that detects the acceleration in the X-axis direction.
  • the inertial force sensor may be an acceleration sensor including an acceleration sensor element that detects acceleration in the Y-axis direction or the Z-axis direction, for example.
  • the inertial force sensor may be an angular velocity sensor including an angular velocity sensor element that detects angular velocities around the X axis, the Y axis, and the Z axis.
  • the acceleration sensor element 101 is connected to the detection circuit 103 via a metal wire 371 (see FIG. 2).
  • FIG. 4A is a top view of the substrate 131a included in the acceleration sensor element 101
  • FIG. 4B is a front view of the substrate 131a
  • FIG. 5A is a top view of the sensor substrate 130 included in the acceleration sensor element 101
  • FIG. 5B is a front view of the sensor substrate 130
  • 6A is a top view of the substrate 131b included in the acceleration sensor element 101
  • FIG. 6B is a front view of the substrate 131b.
  • the fixed electrode 115a provided on the bonding surface side of the substrate body 116 with the sensor substrate 130 is electrically bonded to the through wiring 114a.
  • the fixed electrode 115c provided on the bonding surface side of the substrate body 116 with the sensor substrate 130 is electrically bonded to the through wiring 114c.
  • the first electrode 204 a and the second electrode 204 b are provided immediately above the insulating layer 202 a and the insulating layer 202 b in the recess 206 a of the sensor substrate 130.
  • the surfaces of the first electrode 204a and the second electrode 204b protrude slightly from the surface of the sensor substrate 130. It is preferable that the protruding height is approximately 1.0 ⁇ m or less. As a result, the first electrode 204a and the second electrode 204b are more reliably pressed when the sensor substrate 130 and the substrate 131a are joined together, and the connection between the sensor substrate 130 and the substrate 131a is improved. Reliability is improved.
  • the insulating layer (island portion) 202c is an island-shaped portion made of the same material as the sensor substrate 130 provided in the recess 206a of the sensor substrate 130.
  • the third electrode 204c provided immediately above the insulating layer 202c is connected to the through wiring 114b after the sensor substrate 130 and the substrate 131a are joined. That is, the through wiring 114 b supplies the potential of the sensor substrate 130.
  • the surface of the third electrode 204c slightly protrudes from the surface of the sensor substrate 130.
  • the protruding height is approximately 1.0 ⁇ m or less.
  • the third electrode 204c is press-contacted when the sensor substrate 130 and the substrate 131a are joined, and the electrical connection is made more reliably.
  • the first electrode 204a, the second electrode 204b, and the third electrode 204c are arranged to form a triangle when viewed from above. Thereby, since the symmetry of the sensor substrate 130 is improved, the temperature characteristics of the acceleration sensor element 101 are improved.
  • the insulating layers 202a to 202c and the first to third electrodes 204a to 204c are disposed in the recess 206a.
  • the outer portion of the recess 206a of the sensor substrate 130 is connected to the substrate 131a.
  • FIG. 7A and 7B are diagrams showing the acceleration sensor element 101 after mounting.
  • FIG. 7A shows a case where the acceleration sensor element 101 is placed vertically
  • FIG. 7B shows a case where the acceleration sensor element 101 is placed horizontally.
  • the acceleration sensor element 101 can pull out the metal wire 371 regardless of whether the acceleration sensor element 101 is disposed in the vertical or horizontal direction with respect to the external substrate 106. As a result, it is easy to take out an electrical signal to the outside, so that there is an effect that the degree of freedom with respect to the direction in which the sensor is arranged can be improved.
  • FIGS. 8A and 8B are diagrams showing the acceleration sensor element 201 after mounting according to the present embodiment.
  • 8A shows a case where the acceleration sensor element 201 is placed vertically
  • FIG. 8B shows a case where the acceleration sensor element 201 is placed horizontally.
  • the acceleration sensor element 201 can draw the metal wire 371 regardless of whether the acceleration sensor element 201 is arranged in the vertical or horizontal direction with respect to the external substrate 106. As a result, it is easy to take out an electrical signal to the outside, so that there is an effect that the degree of freedom with respect to the direction in which the sensor is arranged can be improved.
  • FIG. 9A is an enlarged view of a part X1 surrounded by a broken line in FIG. 8A
  • FIG. 9B is a view of the part X1 in FIG. 8A viewed from the A1 direction.
  • the substrate 131 a included in the acceleration sensor element 201 has a silicon member 376.
  • the silicon member 376 is provided at the end of the substrate 131a (the right end in FIG. 8A), and intersects the direction in which the substrates 131a and 131b and the sensor substrate 130 are stacked (the vertical direction in FIG. 8A) (the direction perpendicular to the plane of FIG. 8A). ) Has an L-shape when viewed in cross section. Further, the silicon member 376 includes a curved portion 378 and a straight portion 340 connected to the curved portion 378. As shown in FIG. 9A, the electrode layer 374 is provided across the curved portion 378 and the straight portion 340.
  • the acceleration sensor element 201 can also be described as follows.
  • the substrate 131a has a recess 382 provided at the end of the substrate body 116 (the right end in FIG. 8A).
  • the recess 382 has a first curved surface 386 and a second curved surface 384.
  • the first curved surface 386 and the second curved surface 384 are arranged in the stacking direction of the sensor substrate 130 and the substrates 131a and 131b.
  • the first curved surface 386 is a cylindrical curved surface along the stacking direction.
  • the “cylindrical curved surface” in the present disclosure refers to a part (for example, a half circumference) of the inner peripheral surface along the circumferential direction of the inner peripheral surface of the cylinder.
  • the second curved surface 384 is a curved surface whose opening becomes larger as the distance from the first curved surface 386 increases.
  • the second curved surface 384 is, for example, a funnel-shaped curved surface (funnel-shaped surface).
  • the “funnel-shaped curved surface” in the present disclosure refers to a part of the inner peripheral surface of the funnel (for example, a half circumference) of the inner peripheral surface along the circumferential direction.
  • the process of manufacturing the silicon member 376 of the acceleration sensor element 201 can include an etching process using a non-Bosch process and an etching process using a Bosch process.
  • the silicon member 376 embedded in the substrate 131a is etched.
  • a curved portion 378 of the silicon member 376, or in other words, a second curved surface 384 of the recess 382 is formed.
  • the silicon member 376 processed in the etching process using the non-Bosch process is further etched.
  • a curved portion 378 of the silicon member 376, or another expression, a second curved surface 384 is formed.
  • the straight portion 340 of the silicon member 376 in other words, the first curved surface 386 of the recess 382 is formed.
  • FIG. 10A is a diagram illustrating a process of etching the silicon member 376 embedded in the substrate 131a by a Bosch process.
  • FIG. 10B is a diagram illustrating the silicon member 376 at the time when the etching process described in FIG. 10A is completed.
  • FIG. 10C is an enlarged view of a portion surrounded by a broken line R1 in FIG. 10B.
  • the resist is etched while the silicon member 376 is being etched in the etching process using the Bosch process (in other words, while the silicon member 376 is being shaved in the direction of the arrow B1).
  • the resist 388 moves backward in the direction of the arrow C1).
  • the side surface (portion indicated by Q1 in FIG. 10B) of the silicon member 376 is etched by the amount that the resist 388 has retracted (region surrounded by the broken line P1 in FIG. 10B).
  • a hollow portion region surrounded by a broken line S1 in FIG. 10C) is generated on the side surface of the silicon member 376.
  • the electrode layer 374 is torn at the void portion when the electrode layer 374 is provided thereon by sputtering or the like. As described with reference to FIGS. 8A and 8B, the electrode layer 374 needs to be electrically connected to the through wirings 114a, 114b, and 114c. However, when the electrode layer 374 is torn at the above-mentioned gap, particularly when the structure of FIG. 8B is adopted, the electrical connection between the metal wire 371 and the through-wirings 114a, 114b, 114c cannot be made, and the acceleration sensor 100 Does not function as.
  • the etching process using the non-Bosch process is performed before the etching process using the Bosch process, and the silicon member 376 is undercut so that the side surface of the silicon member 376 can be removed. Can be suppressed. As a result, tearing of the electrode layer 374 can be suppressed.
  • the straight portion 340 (or the first curved surface 386) formed by the etching process using the Bosch process has a corrugated shape that is recognized on the shell surface of a scallop called scallop. Yes.
  • the electrode layer 374 is provided on the scallop, the adhesion of the electrode is deteriorated.
  • peeling of the wire may occur. Therefore, it is preferable that the straight portion 340 (or the first curved surface 386) be subjected to a TMAH process for smoothing the surface after the etching process using the Bosch process. This improves the adhesion of the electrodes. For this reason, when a metal wire is provided on the electrode layer 374 by wire bonding, peeling of the wire or the like can be suppressed.
  • the inertial force sensor (100) includes a sensor element (including a laminated structure of the first substrate (131a), the second substrate (131b), and the sensor substrate (130)). 101; 201).
  • the first substrate (131a) includes a substrate body (116), a first wiring (114) provided in the substrate body (116), and a first wiring (114) provided in the substrate body (116).
  • the silicon member (376) includes a curved portion (378) and a straight portion (340) connected to the curved portion (378) in a cross-sectional view.
  • the electrode layer (374) is provided across the curved portion (378) and the straight portion (340).
  • the electrode layer (374) is provided across the curved portion (378) and the straight portion (340), the degree of freedom of the drawing position of the metal wire (371) is improved, thereby It is possible to increase the degree of freedom regarding the sensor arrangement direction.
  • the curved portion (378) and the straight portion (340) include the first substrate (131a), the second substrate (131b), and The sensor substrates (130) are arranged in the stacking direction (for example, the Z-axis direction).
  • the electrode layer (374) is provided across the curved portion (378) and the straight portion (340), the degree of freedom of the drawing position of the metal wire (371) is improved, thereby It is possible to increase the degree of freedom regarding the sensor arrangement direction.
  • the silicon member (376) forms a curved portion (378) and a straight portion (340), and is L-shaped in a cross-sectional view. It has a part.
  • the electrode layer (374) is provided across the curved portion (378) and the straight portion (340), the degree of freedom of the drawing position of the metal wire (371) is improved, thereby It is possible to increase the degree of freedom regarding the sensor arrangement direction.
  • the inertial force sensor (100) includes a sensor element (101; 201) having a laminated structure of a first substrate (131a), a second substrate (131b), and a sensor substrate (130). .
  • a recess (382) is provided at the end of the first substrate (131a).
  • the recess (382) has a first curved surface (386) and a second curved surface (384) connected to the first curved surface (386).
  • the first curved surface (386) is a cylindrical curved surface.
  • the second curved surface (384) is a curved surface in which the opening increases as the distance from the first curved surface (386) increases.
  • the electrode layer (374) is provided across the first curved surface (386) and the second curved surface (384).
  • the electrode layer (374) is provided across the first curved surface (386) and the second curved surface (384), the degree of freedom of the drawing position of the metal wire (371) is improved.
  • the degree of freedom regarding the sensor arrangement direction can be increased.
  • the first curved surface (386) and the second curved surface (384) are the first substrate (131a) and the second substrate. (131b) and the sensor substrate (130) are arranged in the stacking direction.
  • the electrode layer (374) is provided across the first curved surface (386) and the second curved surface (384), the degree of freedom of the drawing position of the metal wire (371) is improved.
  • the degree of freedom regarding the sensor arrangement direction can be increased.
  • the second curved surface (384) has a funnel shape.
  • the electrode layer (374) is provided across the first curved surface (386) and the second curved surface (384), the degree of freedom of the drawing position of the metal wire (371) is improved.
  • the degree of freedom regarding the sensor arrangement direction can be increased.
  • the configurations according to the second, third, fifth, and sixth aspects are not essential to the inertial force sensor (100) and can be omitted as appropriate.
  • the present disclosure is useful as a wiring embedded glass substrate and an inertial force sensor using the glass substrate.
  • Acceleration sensor Inertial force sensor 101, 201 Acceleration sensor element 104 Package substrate 105 Lead terminal 106 External substrate 111 Weight portion 113 Support portions 112a, 112b Beam portions 114, 114a, 114b, 114c Through wiring (first wiring) 115a, 115c Fixed electrode 116 Substrate body 130 Sensor substrate 131a Substrate (first substrate) 131b Substrate (second substrate) 202a, 202b, 202c Insulating layer 204a First electrode 204b Second electrode 204c Third electrode 206a Recessed portion 371 Metal wire 374 Electrode layer 376 Silicon member 378 Curved portion 340 Straight portion 382 Recessed portion 384 Second curved surface 386 First curved surface 386 Curved 388 resist

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)

Abstract

本開示の課題は、外部への電気的信号の取出しを容易にする配線埋め込みガラス基板を用いた慣性力センサを提供することである。本開示に係る慣性力センサは、第1の基板、第2の基板及びセンサ基板の積層構造体を有するセンサ素子を備える。第1の基板は、基板本体と、第1の配線と、電極層(374)と、シリコン部材(376)と、を備える。第1の配線は、基板本体の内部に設けられる。電極層(374)は、基板本体に設けられ、第1の配線と電気的に接続される。シリコン部材(376)は、基板本体の端部に設けられる。シリコン部材(376)は、断面において、曲線部(378)と、曲線部(378)に接続される直線部(340)と、を有する。電極層(374)は、曲線部(378)と直線部(340)とに跨って設けられる。

Description

慣性力センサ
 本開示は、車両制御などに用いる慣性力センサに関する。
 従来、配線を埋め込んだガラス基板を用いて配線の引き回しを行う配線埋め込みガラス基板、及びその配線埋め込みガラス基板を用いたセンサが知られている。
 なお、この発明に関連する先行技術文献としては、例えば、特許文献1が知られている。
 しかしながら、上記従来の構成は、配線埋め込みガラス基板の上面からしか電気的な引き出しができないため、センサの配置方向が制限されるという課題があった。
特開2014-131830号公報
 本開示の目的は、センサの配置方向に関する自由度を高めることができる慣性力センサを提供することである。
 上記目的を解決するために本開示の一態様に係る慣性力センサは、第1の基板、第2の基板及びセンサ基板の積層構造体を有するセンサ素子を備える。前記第1の基板は、基板本体と、第1の配線と、電極層と、シリコン部材と、を備える。前記第1の配線は、前記基板本体の内部に設けられる。前記電極層は、前記基板本体に設けられ前記第1の配線と電気的に接続される。前記シリコン部材は、前記基板本体の端部に設けられる。前記シリコン部材は、断面視において、曲線部と、前記曲線部に接続される直線部と、を有する。前記電極層は、前記曲線部と前記直線部とに跨って設けられる。
 本開示の一態様に係る慣性力センサは、第1の基板、第2の基板及びセンサ基板の積層構造体を有するセンサ素子を備える。前記第1の基板の端部には凹部が設けられている。前記凹部は、第1の曲面と、前記第1の曲面に接続される第2の曲面と、を有する。前記第1の曲面は、円筒状の曲面である。前記第2の曲面は、前記第1の曲面から離れるほど開口が広くなるような曲面である前記電極層は、前記第1の曲面と前記第2の曲面とに跨って設けられる。
図1は、実施の形態1の加速度センサの内部の構成を示す斜視図である。 図2は、同上の加速度センサを上面から見た図である。 図3は、同上の加速度センサが備える加速度センサ素子の概略構成を示す分解斜視図である。 図4Aは、同上の加速度センサ素子が備える第1の基板の上面図である。図4Bは、同上の第1の基板の正面図である。 図5Aは、同上の加速度センサ素子が備えるセンサ基板の上面図である。図5Bは、同上のセンサ基板の正面図である。 図6Aは、同上の加速度センサ素子が備える第2の基板の上面図である。図6Bは、同上の第2の基板の正面図である。 図7A及び図7Bは、同上の加速度センサ素子の実装後を示す図である。 図8A及び図8Bは、実施の形態2の加速度センサが備える加速度センサ素子の実装後を示す図である。 図9Aは、図8Aの一部を拡大した図である。図9Bは、図8Aの一部をA1方向から見た図である。 図10Aは、シリコン部材をノンボッシュプロセスでエッチング加工する工程を説明する図である。図10Bは、図8Aで説明したエッチング工程が完了した時点におけるシリコン部材を示す図である。図10Cは、図10Bの破線R1で囲まれる部分を拡大した図である。
 以下図面を参照して、本開示の実施の形態を説明する。図面の記載において同一部分には同一符号を付している。
 (実施の形態1)
 図1を参照して、本実施の形態に係わる加速度センサ100の概略構成を説明する。
 本実施の形態では、慣性力センサの一例としての加速度を検出する加速度センサを説明する。
 図1は、加速度センサ100の内部の構成を示す斜視図である。
 図1に示すように、パッケージ基板104は外部基板106に実装されている。図1では、パッケージの開口部を塞ぐ蓋は、説明を簡単にするため図示していない。
 パッケージ基板104の上には、加速度センサ素子101と、加速度センサ素子101からの出力に基づいて各種の演算を行い、物理量を検出する検出回路103と、が搭載される。
 リード端子105は、パッケージ基板104から引き出される。パッケージ基板104から引き出されたリード端子105は外部基板106に接続される。
 加速度センサ100は、静電容量型の加速度を検出するセンサである。加速度センサ100はMEMS技術で製造される。
 図2は、加速度センサ100を上面から見た図である。
 加速度センサ素子101は、図2に示すように、電極層374が上面視で露出するように配置される。電極層374には、金属ワイヤ371が接続される。電極層374の詳細については後述する。
 図3は、加速度センサ素子101の概略構成を示す分解斜視図である。なお図3においては加速度センサ素子101の一部の構成が省略され得る。
 加速度センサ素子101は、図3に示すように、センサ基板130と、第1の基板としての基板131aと、第2の基板としての基板131bと、を積層した構造を有する。別の表現では、センサ基板130が基板131aと基板131bとの間に挟まれた構造を有する。以下の説明では、センサ基板130、基板131a、131bを積層する方向を積層方向という。つまり、図3では、Z軸方向が積層方向になる。
 センサ基板130は、X軸方向の加速度を検出する錘部111と、錘部111を支持部113に支持する梁部112a、112bと、を有している。センサ基板130は、SOI基板などの半導体基板を用いることができる。
 基板131aは、基板本体116と、固定電極115a、115cと、固定電極115a、115cのそれぞれから得られる電気信号を外部に引き出すための貫通配線114a、114b、114cと、を有している。基板本体116は、ガラスを含む基板を用いることができる。
 各固定電極115a、115cは、例えば、Al-Si膜などの金属薄膜を用いることができる。
 基板131bは、パッケージ基板104の上に配置される。基板131bは、ガラスを含む基板を用いることができる。
 貫通配線114a、114b、114cは、基板131aを貫通して設けられ、各固定電極115a、115c、あるいは加速度センサ素子101と電気的に接続される。図3では省略されているが、貫通配線114a、114b、114cの端面には、金属ワイヤ371と接続するための電極層374が設けられている。以下の説明において、貫通配線114a、114b、114cを特に区別しない場合には、貫通配線114a、114b、114cの各々を「貫通配線114」ともいう。
 加速度センサ素子101では、錘部111と固定電極115a、115cとの間に、加速度に応じて容量が変化するコンデンサが構成されている。より詳細には、錘部111に加速度が加わると、梁部112a、112bがねじれて、錘部111が変位する。これにより、固定電極115a、115cと錘部111とが対向する面積及び間隔が変化し、コンデンサの静電容量が変化する。加速度センサ素子101は、この静電容量の変化から加速度を検出することができる。
 なお、本実施の形態では、慣性力センサがX軸方向の加速度を検出する加速度センサ素子101を備える加速度センサ100である場合を説明したが、これに限らない。慣性力センサは、例えば、Y軸方向やZ軸方向の加速度を検出する加速度センサ素子を備える加速度センサであってもよい。あるいは、慣性力センサは、X軸、Y軸、Z軸周りの角速度を検出する角速度センサ素子を備える角速度センサであっても構わない。
 加速度センサ素子101は、金属ワイヤ371を介して検出回路103に接続されている(図2参照)。
 図4Aは、加速度センサ素子101が備える基板131aの上面図、図4Bは基板131aの正面図である。図5Aは、加速度センサ素子101が備えるセンサ基板130の上面図、図5Bはセンサ基板130の正面図である。図6Aは、加速度センサ素子101が備える基板131bの上面図、図6Bは基板131bの正面図である。
 基板本体116のセンサ基板130との接合面側に設けられた固定電極115aは、貫通配線114aと電気的に接合される。基板本体116のセンサ基板130との接合面側に設けられた固定電極115cは、貫通配線114cと電気的に接合される。第1の電極204aおよび第2の電極204bは、センサ基板130の凹部206a内の絶縁層202aおよび絶縁層202bの直上に設けられる。
 第1の電極204aおよび第2の電極204bの表面は、センサ基板130の表面からわずかに突出している高さが好ましい。その突出高さは概ね1.0um以下であることが好ましい。これにより、第1の電極204aおよび第2の電極204bは、センサ基板130と基板131aとの間が接合される時に、より確実に圧接されて、センサ基板130と基板131aとの間の接続の信頼性が向上する。
 絶縁層(島部)202cは、センサ基板130の凹部206a内に設けられた、センサ基板130と同材料でできた島形状の部分である。絶縁層202cの直上に設けられた第3の電極204cは、センサ基板130と基板131aの接合後に貫通配線114bと接続される。すなわち貫通配線114bはセンサ基板130の電位を供給する。
 第3の電極204cの表面はセンサ基板130の表面からわずかに突出している高さが好ましい。その突出高さは概ね1.0um以下である。第3の電極204cはセンサ基板130と基板131aの接合時に圧接されて、より確実に電気的接続がなされる。
 ここで、第1の電極204a、第2の電極204b、第3の電極204cは、上面視で三角形を構成するように配置している。これにより、センサ基板130の対称性が向上するので、加速度センサ素子101の温度特性が向上する。
 絶縁層202a~202c、及び第1~第3の電極204a~204cは凹部206aの中に配置される。センサ基板130の凹部206aの外側の部分は基板131aに接続される。
 図7A及び図7Bは、加速度センサ素子101の実装後を示す図である。図7Aは加速度センサ素子101を縦に置く場合、図7Bは加速度センサ素子101を横に置く場合、をそれぞれ示している。
 図7A及び図7Bに示すように、加速度センサ素子101は、外部基板106に対して縦、横のいずれの方向に配置しても、金属ワイヤ371を引き出すことができる。その結果、外部への電気的信号の取出しが容易になるので、センサの配置方向に対する自由度を向上することができるという効果を有する。
 (実施の形態2)
 次に、実施の形態2に係る加速度センサ100について、図8A~図10Cを参照して説明する。
 図8A及び図8Bは、本実施の形態に係る加速度センサ素子201の実装後を示す図である。図8Aは加速度センサ素子201を縦に置く場合、図8Bは加速度センサ素子201を横に置く場合、をそれぞれ示している。
 図8A及び図8Bに示すように、加速度センサ素子201は、外部基板106に対して縦、横のいずれの方向に配置しても、金属ワイヤ371を引き出すことができる。その結果、外部への電気的信号の取出しが容易になるので、センサの配置方向に対する自由度を向上することができるという効果を有する。
 図9Aは図8Aの破線で囲まれた一部X1を拡大した図、図9Bは図8Aの一部X1をA1方向から見た図である。
 加速度センサ素子201が備える基板131aはシリコン部材376を有する。
 シリコン部材376は、基板131aの端(図8Aの右端)に設けられ、基板131a、131b及びセンサ基板130の積層方向(図8Aの上下方向)と交差する方向(図8Aの紙面に垂直な方向)からの断面視においてL字状の形状を有する。さらに、シリコン部材376は、曲線部378と、曲線部378に接続される直線部340と、を有する。電極層374は、図9Aに示すように、曲線部378と直線部340とに跨って設けられている。
 加速度センサ素子201は以下のようにも説明され得る。
 基板131aは、基板本体116の端(図8Aの右端)に設けられた凹部382を有している。凹部382は、第1の曲面386と、第2の曲面384と、を有する。第1の曲面386と第2の曲面384とは、センサ基板130及び基板131a、131bの積層方向において並んでいる。第1の曲面386は、上記積層方向に沿った円筒状の曲面である。本開示でいう「円筒状の曲面」とは、円筒の内周面のうち周方向に沿った一部(例えば、半周分)の内周面をいう。第2の曲面384は、第1の曲面386から離れるほど開口が大きくなるような曲面である。第2の曲面384は、例えばじょうご状の曲面(funnel‐shaped surface)である。本開示でいう「じょうご状の曲面」とは、じょうごの内周面のうち周方向に沿った一部(例えば、半周分)の内周面をいう。
 加速度センサ素子201のシリコン部材376を製造する工程は、ノンボッシュプロセスを用いたエッチング工程と、ボッシュプロセスを用いたエッチング工程と、を含み得る。ノンボッシュプロセスを用いたエッチング工程では、基板131aに埋めこまれたシリコン部材376がエッチング加工される。これにより、シリコン部材376の曲線部378、別の表現では、凹部382の第2の曲面384が形成される。
 ボッシュプロセスを用いたエッチング工程では、上記のノンボッシュプロセスを用いたエッチング工程で加工されたシリコン部材376が更にエッチングされる。これにより、シリコン部材376の曲線部378、別の表現では、第2の曲面384が形成される。また、シリコン部材376の直線部340、別の表現では、凹部382の第1の曲面386が形成される。
 ところで、シリコン部材376を形成する際に、上述したノンボッシュプロセスを用いたエッチング工程を省略することもできる。このようにノンボッシュプロセスを用いたエッチング工程を省略した場合の、シリコン部材376を製造する工程を図10A~図10Cで説明する。図10Aは、基板131aに埋めこまれたシリコン部材376をボッシュプロセスでエッチング加工する工程を説明する図である。図10Bは、図10Aで説明したエッチング工程が完了した時点におけるシリコン部材376を示す図である。図10Cは、図10Bの破線R1で囲まれる部分を拡大した図である。
 図10Aに示すように、ボッシュプロセスを用いたエッチング工程でシリコン部材376をエッチングしている間(別の表現では、矢印B1の方向にシリコン部材376を削っている間)に、レジストがエッチングされて後退する(別の表現では、矢印C1の方向にレジスト388が後退する)ことが起きる場合がある。これが起きた場合、図10Aに示すように、レジスト388が後退した分(図10Bの破線P1で囲まれる領域)だけ、シリコン部材376の側面(図10BのQ1で示す部分)がエッチングされる。この時、シリコン部材376の側面にえぐれた部分(図10Cの破線S1で囲まれる領域)が生じる。このようなえぐれた部分が生じると、その上に電極層374をスパッタなどで設けた場合に、このえぐれた部分で電極層374が断裂する。図8A及び図8Bで説明した様に、電極層374は貫通配線114a、114b、114cまで電気的に接続される必要がある。しかし、上記のえぐれた部分で電極層374が断裂すると、特に図8Bの構造を採用した場合、金属ワイヤ371と貫通配線114a、114b、114cとの間の電気的接続ができず、加速度センサ100として機能しない。これに対して、ボッシュプロセスを用いたエッチング工程の前に、ノンボッシュプロセスを用いたエッチング工程を行い、シリコン部材376にアンダーカットを入れておくことで、シリコン部材376の側面がえぐれる事を抑制できる。結果、電極層374の断裂を抑制することができる。
 ところで、ボッシュプロセスを用いたエッチング工程で形成される直線部340(あるいは第1の曲面386)には、スカロップと呼ばれるホタテ貝の貝殻表面に認められるような波形の形状になることが知られている。このスカロップ上に電極層374を設けると、電極の密着性が悪化する。このため、電極層374の上にワイヤボンディングにより金属ワイヤを設ける際、ワイヤの剥離などが起きる事がある。そこで、直線部340(あるいは第1の曲面386)には、ボッシュプロセスを用いたエッチング加工の後に、表面を平滑にするためのTMAH処理を実施する事が好ましい。これにより電極の密着性が向上する。このため、電極層374の上にワイヤボンディングにより金属ワイヤを設ける際、ワイヤの剥離などを抑制する事ができる。
 (まとめ)
 以上説明したように、第1の態様に係る慣性力センサ(100)は、第1の基板(131a)、第2の基板(131b)及びセンサ基板(130)の積層構造体を有するセンサ素子(101;201)を備える。第1の基板(131a)は、基板本体(116)と、基板本体(116)の内部に設けられる第1の配線(114)と、基板本体(116)に設けられ第1の配線(114)と電気的に接続される電極層(374)と、基板本体(116)の端部に設けられるシリコン部材(376)と、を備える。シリコン部材(376)は、断面視において、曲線部(378)と、曲線部(378)に接続される直線部(340)と、を有する。電極層(374)は、曲線部(378)と直線部(340)とに跨って設けられる。
 この態様によれば、電極層(374)が曲線部(378)と直線部(340)とに跨って設けられているので、金属ワイヤ(371)の引出位置の自由度が向上し、これによりセンサの配置方向に関する自由度を高めることができる。
 第2の態様に係る慣性力センサ(100)では、第1の態様において、曲線部(378)と直線部(340)とは、第1の基板(131a)、第2の基板(131b)及びセンサ基板(130)の積層方向(例えば、Z軸方向)に並んでいる。
 この態様によれば、電極層(374)が曲線部(378)と直線部(340)とに跨って設けられているので、金属ワイヤ(371)の引出位置の自由度が向上し、これによりセンサの配置方向に関する自由度を高めることができる。
 第3の態様に係る慣性力センサ(100)では、第1又は2の態様において、シリコン部材(376)は、曲線部(378)と直線部(340)とを形成し断面視においてL字状の部分を有する。
 この態様によれば、電極層(374)が曲線部(378)と直線部(340)とに跨って設けられているので、金属ワイヤ(371)の引出位置の自由度が向上し、これによりセンサの配置方向に関する自由度を高めることができる。
 第4の態様に係る慣性力センサ(100)は、第1の基板(131a)、第2の基板(131b)及びセンサ基板(130)の積層構造体を有するセンサ素子(101;201)を備える。第1の基板(131a)の端部には凹部(382)が設けられている。凹部(382)は、第1の曲面(386)と、第1の曲面(386)に接続される第2の曲面(384)と、を有する。第1の曲面(386)は、円筒状の曲面である。第2の曲面(384)は、第1の曲面(386)から離れるほど開口が大きくなるような曲面である。慣性力センサ(100)では、第1の曲面(386)と第2の曲面(384)とに跨って電極層(374)が設けられる。
 この態様によれば、電極層(374)が第1の曲面(386)と第2の曲面(384)とに跨って設けられているので、金属ワイヤ(371)の引出位置の自由度が向上し、これによりセンサの配置方向に関する自由度を高めることができる。
 第5の態様に係る慣性力センサ(100)では、第4の態様において、第1の曲面(386)と第2の曲面(384)とは、第1の基板(131a)、第2の基板(131b)及びセンサ基板(130)の積層方向に並んでいる。
 この態様によれば、電極層(374)が第1の曲面(386)と第2の曲面(384)とに跨って設けられているので、金属ワイヤ(371)の引出位置の自由度が向上し、これによりセンサの配置方向に関する自由度を高めることができる。
 第6の態様に係る慣性力センサ(100)では、第4又は5の態様において、第2の曲面(384)は、じょうご状である。
 この態様によれば、電極層(374)が第1の曲面(386)と第2の曲面(384)とに跨って設けられているので、金属ワイヤ(371)の引出位置の自由度が向上し、これによりセンサの配置方向に関する自由度を高めることができる。
 第2、第3、第5、及び第6の態様に係る構成については、慣性力センサ(100)に必須の構成ではなく、適宜省略可能である。
 本開示は、配線埋め込みガラス基板およびこのガラス基板を用いた慣性力センサとして有用である。
100 加速度センサ(慣性力センサ)
101、201 加速度センサ素子
104 パッケージ基板
105 リード端子
106 外部基板
111 錘部
113 支持部
112a、112b 梁部
114、114a、114b、114c 貫通配線(第1の配線)
115a、115c 固定電極
116 基板本体
130 センサ基板
131a 基板(第1の基板)
131b 基板(第2の基板)
202a、202b、202c 絶縁層
204a 第1の電極
204b 第2の電極
204c 第3の電極
206a 凹部
371 金属ワイヤ
374 電極層
376 シリコン部材
378 曲線部
340 直線部
382 凹部
384 第2の曲面
386 第1の曲面
388 レジスト

Claims (6)

  1.  第1の基板、第2の基板及びセンサ基板の積層構造体を有するセンサ素子を備え、
     前記第1の基板は、
      基板本体と、
      前記基板本体の内部に設けられる第1の配線と、
      前記基板本体に設けられ前記第1の配線と電気的に接続される電極層と、
      前記基板本体の端部に設けられるシリコン部材と、を備え、
     前記シリコン部材は、断面視において、曲線部と、前記曲線部に接続される直線部と、を有し、
     前記電極層は、前記曲線部と前記直線部とに跨って設けられる、
     慣性力センサ。
  2.  前記曲線部と前記直線部とは、前記第1の基板、前記第2の基板及び前記センサ基板の積層方向に並んでいる、
     請求項1に記載の慣性力センサ。
  3.  前記シリコン部材は、前記曲線部と前記直線部とを形成し断面視においてL字状の部分を有する、
     請求項1又は2に記載の慣性力センサ。
  4.  第1の基板、第2の基板及びセンサ基板の積層構造体を有するセンサ素子を備え、
     前記第1の基板の端部には凹部が設けられており、
     前記凹部は、第1の曲面と、前記第1の曲面に接続される第2の曲面と、を有し、
     前記第1の曲面は、円筒状の曲面であり、
     前記第2の曲面は、前記第1の曲面から離れるほど開口が大きくなるような曲面であり、
     前記第1の曲面と前記第2の曲面とに跨って電極層が設けられる、
     慣性力センサ。
  5.  前記第1の曲面と前記第2の曲面とは、前記第1の基板、前記第2の基板及び前記センサ基板の積層方向に並んでいる、
     請求項4に記載の慣性力センサ。
  6.  前記第2の曲面は、じょうご状である、
     請求項4又は5に記載の慣性力センサ。
PCT/JP2019/004610 2018-02-19 2019-02-08 慣性力センサ WO2019159837A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020500456A JPWO2019159837A1 (ja) 2018-02-19 2019-02-08 慣性力センサ
US16/958,838 US20200371130A1 (en) 2018-02-19 2019-02-08 Inertial sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-026989 2018-02-19
JP2018026989 2018-02-19

Publications (1)

Publication Number Publication Date
WO2019159837A1 true WO2019159837A1 (ja) 2019-08-22

Family

ID=67620975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004610 WO2019159837A1 (ja) 2018-02-19 2019-02-08 慣性力センサ

Country Status (3)

Country Link
US (1) US20200371130A1 (ja)
JP (1) JPWO2019159837A1 (ja)
WO (1) WO2019159837A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311392A (ja) * 2006-05-16 2007-11-29 Denso Corp 電子装置
JP2010151614A (ja) * 2008-12-25 2010-07-08 Denso Corp センサチップおよびその製造方法並びに圧力センサ
US20110266673A1 (en) * 2010-04-29 2011-11-03 Hon Hai Precision Industry Co., Ltd. Integrated circuit package structure and method
WO2017010050A1 (ja) * 2015-07-15 2017-01-19 パナソニックIpマネジメント株式会社 配線埋め込みガラス基板と、それを用いた慣性センサ素子および慣性センサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311392A (ja) * 2006-05-16 2007-11-29 Denso Corp 電子装置
JP2010151614A (ja) * 2008-12-25 2010-07-08 Denso Corp センサチップおよびその製造方法並びに圧力センサ
US20110266673A1 (en) * 2010-04-29 2011-11-03 Hon Hai Precision Industry Co., Ltd. Integrated circuit package structure and method
WO2017010050A1 (ja) * 2015-07-15 2017-01-19 パナソニックIpマネジメント株式会社 配線埋め込みガラス基板と、それを用いた慣性センサ素子および慣性センサ

Also Published As

Publication number Publication date
JPWO2019159837A1 (ja) 2021-02-12
US20200371130A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
US8759927B2 (en) Hybrid intergrated component
US9550663B2 (en) MEMS device
JP5790920B2 (ja) 機能素子、センサー素子、電子機器、および機能素子の製造方法
JPH11344507A (ja) マイクロマシンの構成エレメント
US9266720B2 (en) Hybrid integrated component
US8796791B2 (en) Hybrid intergrated component and method for the manufacture thereof
US20170074653A1 (en) Physical quantity sensor
US20170138981A1 (en) Acceleration Sensor
WO2016113828A1 (ja) 複合センサ
JP5049253B2 (ja) 半導体素子
WO2019159837A1 (ja) 慣性力センサ
WO2011118785A1 (ja) シリコン配線埋込ガラス基板及びその製造方法
JP5775281B2 (ja) Memsセンサおよびその製造方法
JP2012028900A (ja) コンデンサマイクロホン
JP5843302B1 (ja) 複合センサデバイスの製造方法
JP5095930B2 (ja) Memsデバイスおよびその製造方法
JP2008241482A (ja) センサ装置
JP2011095010A (ja) 静電容量型センサ
WO2023037699A1 (ja) 圧力センサ
JP4665733B2 (ja) センサエレメント
JP6070787B2 (ja) 機能素子、センサー素子および電子機器
JP5240900B2 (ja) エレクトレット構造及びその形成方法並びにエレクトレット型静電容量センサ
JP2010223600A (ja) 半導体圧力センサ及びその製造方法
JP2016170100A (ja) シリコン配線埋め込みガラス基板およびそれを用いたセンサ
JP2007078444A (ja) 圧力センサ及び圧力センサの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19753802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500456

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19753802

Country of ref document: EP

Kind code of ref document: A1