WO2019159786A1 - Barrier coating composition and composite film - Google Patents

Barrier coating composition and composite film Download PDF

Info

Publication number
WO2019159786A1
WO2019159786A1 PCT/JP2019/004226 JP2019004226W WO2019159786A1 WO 2019159786 A1 WO2019159786 A1 WO 2019159786A1 JP 2019004226 W JP2019004226 W JP 2019004226W WO 2019159786 A1 WO2019159786 A1 WO 2019159786A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating composition
group
barrier coating
resin
composite film
Prior art date
Application number
PCT/JP2019/004226
Other languages
French (fr)
Japanese (ja)
Inventor
田中 宏樹
裕 松岡
Original Assignee
サカタインクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サカタインクス株式会社 filed Critical サカタインクス株式会社
Priority to CN201980012930.XA priority Critical patent/CN111712553A/en
Publication of WO2019159786A1 publication Critical patent/WO2019159786A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular

Definitions

  • the present invention relates to a barrier coating composition and a composite film having a coating layer formed using the barrier coating composition.
  • packaging bags that have a function of performing hot water treatment and can easily cook the contents of each bag are often manufactured.
  • the packaging bag for hot water treatment is an effective means for long-term storage in that the sterilization effect is high and the packaging bag is completely sealed, so that the contents are not easily spoiled.
  • the gas barrier property is not sufficient, oxygen enters the packaging bag during storage, and the contents are deteriorated and deteriorated. Therefore, how to suppress permeation of oxygen or the like in the hot water treatment packaging bag is a major factor that determines the value of the packaging bag.
  • a gas barrier film provided with a base film made of a plastic material, a vapor deposition layer made of a metal oxide, and a coating layer made of a resin has been studied.
  • a gas barrier film for example, a gas barrier film whose coating layer contains an aqueous polyurethane resin and a water-soluble polymer has been proposed (see, for example, Patent Document 1).
  • a transparent gas barrier film having a top coat layer containing a polyurethane-based resin and polyvinyl alcohol has been proposed (for example, see Patent Document 2).
  • a gas barrier film having a laminated structure requires not only excellent gas barrier properties but also excellent laminate strength.
  • laminate strength in particular, in the field of packaging bags used for packaging applications such as food and medicine, in addition to excellent gas barrier properties, not only laminate strength in dry conditions but also excellent laminate strength in watering conditions. It has come to be required.
  • the subject of this invention is providing the barrier coating composition which can obtain the composite film excellent in the laminate strength in a boil condition and watering conditions, seal strength, water vapor
  • the present inventors have applied a coating composition containing an aqueous polyurethane resin, a highly polar resin having an ethylene chain, and a silane coupling agent. Because it has excellent cohesiveness of the coating film and adhesion to the vapor-deposited film made of metal oxide, a composite film excellent in laminate strength, seal strength, water vapor barrier property and oxygen barrier property under boil conditions and watering conditions is obtained.
  • the present invention has been found out and the present invention has been completed.
  • the barrier coating composition of the present invention comprises an aqueous polyurethane resin, a highly polar resin having an ethylene chain, and a silane coupling agent.
  • the mass ratio of the high polarity resin having an ethylene chain to 100 parts by mass of the aqueous polyurethane resin is preferably 15 to 150 parts by mass.
  • the high polarity resin having an ethylene chain preferably has an ethylene chain ratio of 0.5 to 30 mol%.
  • the highly polar resin having an ethylene chain preferably has an ethylene chain in the main chain.
  • the silane coupling agent is preferably a silane coupling agent having an epoxy group.
  • the barrier coating composition of the present invention is preferably used for laminating.
  • this invention is a composite film which has a base film, a vapor deposition layer, and a coating layer in this order, Comprising:
  • the said coating layer shall be formed by apply
  • the vapor deposition layer is preferably one or more vapor deposition layers selected from the group consisting of silica and alumina.
  • the barrier coating composition and the composite film will be described in detail.
  • the barrier coating composition of the present invention contains an aqueous polyurethane resin, a highly polar resin having an ethylene chain, and a silane coupling agent.
  • the aqueous polyurethane resin preferably contains an acid group-containing polyurethane resin and a polyamine compound from the viewpoint of suitably expressing gas barrier properties.
  • the aqueous polyurethane resin may be a mixture of the acid group-containing polyurethane resin and the polyamine compound, or may be a copolymer.
  • the bond between the acid group of the acid group-containing polyurethane resin and the polyamine compound is not particularly limited, and may be an ionic bond (for example, an ionic bond between a carboxyl group and a tertiary amino group). It may be a bond (for example, an amide bond).
  • the acid group of the acid group-containing polyurethane resin is not limited as long as it can be bonded to the amino group (primary amino group, secondary amino group, tertiary amino group, etc.) of the polyamine compound. And sulfonic acid groups.
  • the acid group can usually be neutralized with a neutralizing agent (base) and may form a salt with the base.
  • base neutralizing agent
  • the acid group may be located at the end or the side chain of the acid group-containing polyurethane resin, but is preferably located at least in the side chain.
  • the acid value of the acid group-containing polyurethane resin is preferably 5 to 100 mgKOH / g, more preferably 10 to 70 mgKOH / g, from the viewpoint of favorably developing gas barrier properties and water resistance. More preferably, it is 15 to 60 mg KOH / g.
  • an acid value means the acid value measured by the method according to JISK0070.
  • the total of the urethane group concentration and the urea group (urea group) concentration of the acid group-containing polyurethane resin is preferably 15% by mass or more, and preferably 20 to 60% by mass from the viewpoint of suitably exhibiting gas barrier properties. Is more preferable.
  • the urethane group concentration means the ratio of the molecular weight (59 g / equivalent) of the urethane group to the molecular weight of the repeating structural unit of the polyurethane resin.
  • the urea group concentration is the ratio of the molecular weight of the urea group (primary amino group (amino group): 58 g / equivalent, secondary amino group (imino group): 57 g / equivalent) to the molecular weight of the repeating structural unit of the polyurethane resin. Means. When two or more kinds of mixtures are used as the acid group-containing polyurethane resin, the urethane group concentration and the urea group concentration can be calculated based on the charged base of the reaction component, that is, the use ratio of each component.
  • the acid group-containing polyurethane resin usually has at least rigid units (units composed of hydrocarbon rings) and short chain units (for example, units composed of hydrocarbon chains). That is, the structural unit of the acid group-containing polyurethane resin is usually derived from a polyisocyanate component, a polyhydroxy acid component, a polyol component or a chain extender component (especially at least a polyisocyanate component), and a hydrocarbon ring (aromatic And at least one of non-aromatic hydrocarbon rings).
  • the proportion of units composed of hydrocarbon rings in the structural units of the acid group-containing polyurethane resin is 10 to 70% by mass with respect to the total of all the structural units from the viewpoint of suitably expressing gas barrier properties and laminate strength. It is preferably 15 to 65% by mass, more preferably 20 to 60% by mass.
  • the number average molecular weight of the acid group-containing polyurethane resin can be appropriately selected, but is preferably from 800 to 1,000,000, more preferably from 800 to 200,000, and from 800 to 100,000. More preferably it is.
  • the viscosity of the barrier coating composition can be made suitable, and the gas barrier property of the coat layer can be suitably imparted.
  • the number average molecular weight is a value in terms of standard polystyrene measured by gel permeation chromatography (GPC).
  • the acid group-containing polyurethane resin may be crystalline in order to improve gas barrier properties.
  • the glass transition temperature (Tg) of the acid group-containing polyurethane resin is preferably from 100 to 200 ° C., more preferably from 110 to 180 ° C., and even more preferably from 115 to 150 ° C., from the viewpoint of suitably exhibiting gas barrier properties.
  • the glass transition temperature (Tg) is a value measured by differential scanning calorimetry (DSC).
  • the polyamine compound is preferably a compound having two or more basic nitrogen atoms.
  • the basic nitrogen atom is a nitrogen atom that can be bonded to the acid group of the acid group-containing polyurethane resin.
  • a nitrogen atom is mentioned.
  • the polyamine compound is not particularly limited as long as it can bond to the acid group of the acid group-containing polyurethane resin and improve the gas barrier property, and various compounds having two or more basic nitrogen atoms are used. be able to.
  • a polyamine compound having two or more amino groups selected from the group consisting of a primary amino group, a secondary amino group and a tertiary amino group is preferred.
  • polyamine compound examples include alkylene diamines, polyalkylene polyamines, silicon compounds having a plurality of basic nitrogen atoms, and the like.
  • alkylene diamines examples include alkylene diamines having 2 to 10 carbon atoms such as ethylene diamine, 1,2-propylene diamine, 1,3-propylene diamine, 1,4-butane diamine, and 1,6-hexamethylene diamine. Is mentioned.
  • polyalkylene polyamines examples include tetraalkylene polyamines.
  • Examples of the silicon compound having a plurality of basic nitrogen atoms include 2- [N- (2-aminoethyl) amino] ethyltrimethoxysilane, 3- [N- (2 And silane coupling agents having a plurality of basic nitrogen atoms, such as -aminoethyl) amino] propyltriethoxysilane.
  • the silane coupling agent corresponding to a polyamine compound shall not correspond to the said silane coupling agent.
  • the amine value of the polyamine compound is preferably 100 to 1900 mgKOH / g, more preferably 150 to 1900 mgKOH / g, and more preferably 200 to 1900 mgKOH from the viewpoint of suitably expressing gas barrier properties and the water dispersion stability of the aqueous polyurethane resin.
  • / G is more preferable, 200 to 1700 mg KOH / g is particularly preferable, and 300 to 1500 mg KOH / g is most preferable.
  • the amine value of the polyamine compound is measured by the following method. [Method for measuring amine value] Weigh 0.5-2 g of the sample accurately (sample amount Sg). 30 g of ethanol is added to a precisely weighed sample and dissolved.
  • the content of the polyamine compound is such that the molar ratio (acid group / basic nitrogen atom) between the acid group of the acid group-containing polyurethane resin and the basic nitrogen atom of the polyamine compound is 10/1.
  • An amount of from 0.1 to 0.1 / 1 is preferred, and an amount of from 5/1 to 0.2 / 1 is more preferred. If the acid group / basic nitrogen atom is within the above range, a crosslinking reaction between the acid group of the acid group-containing polyurethane and the polyamine compound occurs appropriately, and an excellent oxygen barrier property can be suitably expressed in the coat layer. .
  • the aqueous polyurethane resin is usually used in a state of being dispersed in an aqueous medium (aqueous dispersion).
  • aqueous medium include water, water-soluble or hydrophilic organic solvents, or a mixture thereof.
  • water-soluble or hydrophilic organic solvent include alcohols such as methanol, ethanol and isopropanol; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; cellosolves; carbitols; and nitriles such as acetonitrile. Etc.
  • aqueous medium what contains water or water as a main component is preferable.
  • the aqueous medium may or may not contain a neutralizing agent (base) that neutralizes the acid groups of the acid group-containing polyurethane resin. Usually a neutralizing agent is included.
  • the average particle diameter of the dispersed particles is not particularly limited, but the uniform dispersion between the dispersed particles and other materials and the dispersion stability of the barrier coating composition. From the viewpoint of ensuring the gas barrier properties and preferably exhibiting gas barrier properties, it is preferably 20 nm to 500 nm, more preferably 25 nm to 300 nm, and even more preferably 30 nm to 200 nm.
  • the average particle size is measured with a concentrated particle size analyzer (FPAR-10 manufactured by Otsuka Electronics Co., Ltd.) with a solid content concentration of 0.03 to 0.3% by mass (diluted with water). This is a measured value.
  • a commercially available product may be used as the aqueous polyurethane resin, or a product produced by a known production method may be used.
  • the manufacturing method of the said aqueous polyurethane resin is not specifically limited, The normal water-ization technology of a polyurethane resin, such as an acetone method and a prepolymer method, is used.
  • a urethanization catalyst such as an amine catalyst, a tin catalyst, or a lead catalyst may be used as necessary.
  • a polyisocyanate compound for example, in an inert organic solvent such as ketones such as acetone, ethers such as tetrahydrofuran, and nitriles such as acetonitrile, a polyisocyanate compound, a polyhydroxy acid, and, if necessary, a polyol component and a chain extender component
  • the acid group-containing polyurethane resin can be prepared by reacting at least one of them. More specifically, a polyisocyanate compound, a polyhydroxy acid, and a polyol component are reacted in an inert organic solvent (especially a hydrophilic or water-soluble organic solvent), and a prepolymer having an isocyanate group at the terminal is reacted.
  • a polymer is formed, neutralized with a neutralizing agent, dissolved or dispersed in an aqueous medium, added with a chain extender component, reacted to remove the organic solvent, thereby removing the aqueous solution of the acid group-containing polyurethane resin.
  • Dispersions can be prepared.
  • An aqueous polyurethane resin in the form of an aqueous dispersion can be prepared by adding the polyamine compound to the aqueous dispersion of the acid group-containing polyurethane resin thus obtained and heating as necessary. In the case of heating, the heating temperature is preferably 30 to 60 ° C.
  • the total content of the aqueous polyurethane resin and the high-polarity resin having an ethylene chain is preferably 0.5 to 30 parts by mass in solid content with respect to 100 parts by mass of the barrier coating composition of the present invention. It is more preferably 1 to 15 parts by mass.
  • the high polar resin having an ethylene chain means a resin having an ethylene chain and the following highly polar functional group.
  • the highly polar functional group include an amino group, an ester group, a carboxyl group, a sulfone group, a cyano group, a thiol group, and a hydroxyl group.
  • a hydroxyl group and a carboxyl group are preferable, and a hydroxyl group is more preferable from the viewpoint of suitably expressing gas barrier properties.
  • the highly polar resin having an ethylene chain is preferably a copolymer of ethylene and a compound having a vinyl group.
  • the copolymer of ethylene and a compound having a vinyl group include ethylene-vinyl alcohol copolymer, ethylene-acrylic acid copolymer, ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer, ethylene -Ethyl acrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate-maleic anhydride copolymer and the like.
  • ethylene-vinyl alcohol copolymer and ethylene-acrylic acid copolymer are preferable, and ethylene-vinyl alcohol copolymer is more preferable from the viewpoint of suitably expressing gas barrier properties.
  • the high polarity resin having an ethylene chain preferably has an ethylene ratio of 0.5 to 30 mol%. By setting it as the range of the said ethylene ratio, the solubility to water and alcohol can be made favorable.
  • the highly polar resin having an ethylene chain is more preferably 1.0 to 15 mol%.
  • the highly polar resin having an ethylene chain preferably has an ethylene chain in the main chain.
  • main chain refers to the longest chain forming a polymer.
  • the highly polar resin having an ethylene chain preferably has a saponification degree of 90 to 100%, more preferably 95 to 100%, and still more preferably 97 to 100%.
  • the high polarity resin having an ethylene chain preferably has an average degree of polymerization of 200 to 3000, more preferably 400 to 2000.
  • the average polymerization degree within the above range, the viscosity of the coating composition does not increase too much, and it is easy to uniformly mix with other components, and the gas barrier property of the coating layer and the peel strength from other layers Can be suitably provided.
  • the highly polar resin having an ethylene chain a commercially available resin may be used, or a resin satisfying the ethylene ratio, the saponification degree, the average polymerization degree and the like may be produced by a known production method.
  • the mass ratio (mass ratio of solid content) of the high polarity resin having an ethylene chain to 100 mass parts of the aqueous polyurethane resin is preferably 15 to 150 mass parts. By setting it as the said range, water resistance and gas barrier property can be made to make compatible both suitably.
  • Examples of the silane coupling agent include a compound represented by RSiX 3 (wherein R is an organic reactive group and X is an alkoxy group).
  • Examples of the organic reactive group include those having an amino group, a (meth) acryl group, an epoxy group, a vinyl group, a mercapto group, an isocyanate group, an isocyanurate group, and the like.
  • a (meth) acryl group shows both an acryl group and a methacryl group.
  • Examples of the alkoxy group include a methoxy group and an ethoxy group.
  • silane coupling agent examples include a silane coupling agent having a vinyl group, a silane coupling agent having an epoxy group, a silane coupling agent having an amino group, a silane coupling agent having a mercapto group, and (meth) acrylic.
  • examples thereof include a silane coupling agent having a group, a silane coupling agent having an isocyanate group, and a silane coupling agent having an isocyanurate group.
  • silane coupling agent having a vinyl group examples include vinyltrimethoxysilane and vinyltriethoxysilane.
  • silane coupling agent having an epoxy group 2 (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxy Examples thereof include propylmethyldimethoxysilane and 3-glycidoxypropylethyldiethoxysilane.
  • silane coupling agent having an amino group include 3-aminopropyltrimethoxysilane and 3-aminopropyltriethoxysilane.
  • silane coupling agent having a mercapto group examples include 3-mercaptopropyltrimethoxysilane and 3-mercaptopropylmethyldimethoxysilane.
  • silane coupling agent having a (meth) acryl group examples include 3-acryloxypropyltrimethoxysilane.
  • silane coupling agent having an isocyanate group examples include 3-isocyanatopropyltriethoxysilane.
  • silane coupling agent having an isocyanurate group examples include tris- (trimethoxysilylpropyl) isocyanurate. Any one of these silane coupling agents may be used alone, or two or more thereof may be used in combination.
  • silane coupling agent those having reactivity with other components in the barrier coating composition are preferably used. Especially, it is preferable that it is a silane coupling agent which has an epoxy group.
  • the epoxy group-containing silane coupling agent has good reactivity with the functional group of the water-based polyurethane resin and the high-polarity resin having the ethylene chain, and further has excellent reactivity with the vapor deposition layer described later.
  • the laminate strength and gas barrier properties can be preferably improved.
  • the silane coupling agent is preferably 1 to 30 parts by mass with respect to 100 parts by mass of the barrier coating composition of the present invention.
  • the barrier coating composition of the present invention preferably contains a solvent.
  • a solvent any of aqueous and non-aqueous solvents can be used as long as it can dissolve the aqueous polyurethane resin, the high-polarity resin having an ethylene chain, and the silane coupling agent.
  • the solvent it is preferable to use a mixed solvent of water and a lower alcohol.
  • the lower alcohol include lower ones having 1 to 4 carbon atoms such as methyl alcohol, ethyl alcohol, n-propyl alcohol, iso-propyl alcohol, n-butyl alcohol, iso-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol and the like. Alcohols are mentioned, and those containing at least one of these can be suitably used.
  • the solvent is preferably 5 to 60 parts by mass, more preferably 20 to 50 parts by mass with respect to 100 parts by mass of the barrier coating composition of the present invention.
  • the barrier coating composition of the present invention is generally known as an anti-blocking agent, and includes inorganic fine particles such as silica, talc, alumina, calcium carbonate, titanium oxide, magnesium carbonate, clay and kaolin, colloidal silica, surface activity and the like. You may mix
  • inorganic fine particles such as silica, talc, alumina, calcium carbonate, titanium oxide, magnesium carbonate, clay and kaolin, colloidal silica, surface activity and the like. You may mix
  • the barrier coating composition of the present invention has the above-described configuration, it can be suitably used as a laminate for packaging materials and the like.
  • the method for producing the barrier coating composition of the present invention is not particularly limited.
  • the solvent is added to the aqueous polyurethane resin, the high polarity resin having an ethylene chain, and the silane coupling agent.
  • a coating solution having a predetermined concentration can be prepared by sufficiently stirring and mixing at room temperature.
  • the silane coupling agent since there exists a possibility that it may aggregate if it adds at a stretch, it is preferable to add, stirring slowly.
  • Composite film A composite film having at least a base film, a vapor deposition layer, and a coat layer in this order, wherein the coat layer is formed by applying the barrier coating composition. Is also one aspect of the present invention.
  • the base film is not particularly limited as long as it is formed of a thermoplastic resin having a transparent film forming ability.
  • the resin used as the base film include polyethylene (low density, high density), ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, ethylene-octene copolymer, polypropylene, Polyolefin resins such as ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer, ionomer resin; Polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate; Nylon-6, Nylon-6, 6, Metaxylenediamine-adipic acid condensation polymer, amide resins such as polymethylmethacrylamide, acrylic resins such as polymethylmethacrylate; polystyrene, styrene-acrylonitrile copolymer, styrene-acrylon
  • the thickness of the substrate film is not particularly limited, but is preferably 0.5 to 1000 ⁇ m, more preferably 1 to 500 ⁇ m, still more preferably 1 to 100 ⁇ m, and particularly preferably 1 to 50 ⁇ m.
  • the vapor deposition layer is preferably formed on the substrate film by a vacuum process such as vacuum vapor deposition, sputtering, plasma vapor deposition (PVD method / CVD), etc., using an inorganic oxide.
  • the inorganic oxide include metals such as silicon, aluminum, zinc, tin, iron and manganese, and oxides such as inorganic compounds containing one or more of these metals.
  • the thickness of the vapor deposition layer is not particularly limited, but is preferably 0.1 to 500 nm, and more preferably 0.5 to 40 nm.
  • the coat layer can be formed by applying the barrier coating composition.
  • the coating method of the barrier coating composition is not particularly limited, but a roll coating method using a gravure cylinder, a doctor knife method, an air knife / nozzle coating method, a bar coating method, a spray coating method, a dip coating method, and The coating method etc. which combined these methods can be used.
  • the thickness of the coating layer is not particularly limited, but is preferably 0.01 to 5 ⁇ m, more preferably 0.1 to 2 ⁇ m. When the coating layer is thinner than 0.01 ⁇ m, it may be difficult to obtain high gas barrier properties, and even if the thickness exceeds 5 ⁇ m, no significant improvement in gas barrier properties may be observed.
  • the composite film of the present invention may have a printed layer.
  • printing layer printing layer for contents display and decoration function
  • organic solvent type printing ink composition water-based printing ink composition and the like conventionally used in soft packaging, usually gravure printing method and It can be formed by printing with a flexographic printing method.
  • organic solvent-type printing ink composition examples include, for example, an aromatic / non-aromatic mixed organic solvent-based printing ink composition containing a pigment and a polyurethane resin, and JP-A-01-261476 (pigment, polyurethane resin).
  • JP-B-07-113098 non-aromatic organic solvent-based printing ink composition containing pigment and polyurethane resin
  • examples thereof include organic solvent-based printing ink compositions disclosed in JP-A-07-324179 (pigments, polyurethane resins, non-aromatic / non-ketone organic solvent-based printing ink compositions), and the like.
  • water-based printing ink composition examples include, for example, Japanese Patent Application Laid-Open No. 06-155694 (water-based printing ink composition containing a pigment, an acrylic binder resin, and a hydrazine-based crosslinking agent), and Japanese Patent Application Laid-Open No. 06-206972 (pigment, water). And water-based printing ink compositions disclosed in water-based printing ink compositions containing polyurethane binder resins).
  • the barrier composite film of the present invention may have other functional layers such as an ultraviolet shielding layer, an antibacterial layer, an adhesive layer, and a sealant layer.
  • the adhesive layer is preferably formed between the base film and the vapor deposition layer or between the coat layer and the sealant layer.
  • the adhesive layer can be formed using various coating means by appropriately selecting an adhesive composition conventionally used in the production of composite laminate films for packaging.
  • the adhesive composition include various adhesives such as urethane, polyester, and acrylic, and various adhesives such as titanium, isocyanate, imine, and polybutadiene.
  • the sealant layer is a heat-fusible sheet material conventionally used in soft packaging, and examples thereof include a polyethylene film and a polypropylene film.
  • the sealant layer may be formed by laminating a hot-melt polymer such as low-density polyethylene, ethylene-vinyl acetate copolymer, polypropylene polymer or the like in a molten state, and forming into a film by cooling.
  • a base film may be a laminated
  • the said adhesive composition, barrier coating composition, and adhesive agent A method of obtaining a composite film by sequentially applying the composition and then laminating a sealant layer.
  • a base film may be a laminated
  • the said adhesive composition, barrier coating composition, and adhesive agent For example, a method of obtaining a barrier composite film by sequentially coating the composition, printing the ink composition to form a printed layer, and further laminating a sealant layer.
  • the roll coating method using a normal gravure cylinder etc. a doctor knife method, an air knife nozzle coating method, a bar coating method, a spray coating method, a dip coating method, and these The coating method etc. which combined these methods can be used.
  • a gravure printing system and a flexographic printing system can be used normally.
  • the thickness of the adhesive layer (after drying) is preferably 2 to 3 ⁇ m. If the thickness of the adhesive layer is less than 2 ⁇ m, the adhesion between the coat layer and the other layer may be reduced. On the other hand, if the thickness is greater than 3 ⁇ m, the increase in the adhesion commensurate with the increase in the thickness is not observed. In addition, when the composite film is used as a packaging bag, there is a possibility that good handleability cannot be obtained. In addition, when the coating film which has the film thickness in the said range is not obtained by one time of application
  • a barrier composite film suitable for the purpose can be produced by combining good means for providing each functional layer and the methods (a) to (d). .
  • the barrier coating composition of the present invention has the above-described configuration, a composite film excellent in laminate strength, seal strength, water vapor barrier property, and oxygen barrier property under boil conditions and watering conditions can be obtained. Moreover, the composite film of this invention can be used conveniently as a barrier film or a packaging material.
  • RS-2117 aqueous solution 10 parts by weight of EXEVAL RS-2117 was added to 90 parts by weight of purified water, followed by stirring at 95 ° C. for about 2 hours to obtain an RS-2117 aqueous solution (solid content 10%).
  • silica was evaporated by a heating method under a vacuum of 1 ⁇ 10 ⁇ 5 Torr using a vacuum vapor deposition apparatus, and a silica vapor deposition layer having a thickness of 20 nm was formed on the adhesive layer to obtain silica vapor deposition PET.
  • alumina-deposited PET> On one surface of a PET film (E5100, thickness 12 ⁇ m, manufactured by Toyobo Co., Ltd.), an isocyanate compound (“Coronate L” manufactured by Nippon Polyurethane Industry Co., Ltd.) and a saturated polyester (“Byron 300 manufactured by Toyobo Co., Ltd.) in a mass ratio of 1: 1. The blended mixture was applied and dried to form an adhesive layer having a thickness of 0.1 ⁇ m. Next, aluminum is evaporated using a vacuum deposition device, oxygen gas is supplied using a gas flow rate control device, deposition is performed at 1 ⁇ 10 ⁇ 4 Torr, and an alumina deposition layer having a thickness of 20 nm is formed on the adhesive layer. Formed, and alumina-deposited PET was obtained.
  • Example 1 While stirring 22.2 parts by mass of Takelac WPB-341, 28.5 parts by mass of an RS-2117 aqueous solution with a solid content of 10%, 30.9 parts by mass of ion-exchanged water, and 18.1 parts by mass of isopropyl alcohol were added. Thereafter, 0.3 parts by mass of KBM-403 was further added, and the mixture was sufficiently stirred and mixed at room temperature to obtain a coating composition 1. On the silica vapor deposition layer surface of silica vapor deposition PET produced above, coating composition 1 is No.2. The coating was applied with a 6 wire bar, dried with a dryer, and then aged at 60 ° C. for 1 day.
  • a polyurethane adhesive (Takelac A515 / Takenate A50, solid content 30%, manufactured by Mitsui Chemicals Co., Ltd.) was applied to the obtained coating layer (coating amount 0.8 g / m 2 after drying). Coating was performed with a 4-wire bar, and a sealant film (RXC-22, thickness 60 ⁇ m, manufactured by Mitsui Chemicals, Inc.) was laminated and aged at 40 ° C. for 3 days to obtain a composite film.
  • a sealant film RXC-22, thickness 60 ⁇ m, manufactured by Mitsui Chemicals, Inc.
  • Example 2 A composite film was obtained in the same manner as in Example 1 except that the base film was changed to the alumina-deposited PET produced above.
  • Example 3 Comparative Examples 1 to 3
  • Coating compositions 2 to 5 were prepared according to the formulation shown in Table 1, and composite films were obtained in the same manner as in Example 1.
  • the barrier coating composition of the present invention has the above-described configuration, a composite film excellent in laminate strength, seal strength, water vapor barrier property, and oxygen barrier property under boil conditions and watering conditions can be obtained. Moreover, the composite film of this invention can be used conveniently as a barrier film or a packaging material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

Provided is a barrier coating composition that can produce a composite film that exhibits an excellent lamination strength under boiling conditions and water-attachment conditions and exhibits an excellent seal strength, water vapor barrier performance, and oxygen barrier performance. Also provided is a composite film obtained using this barrier coating composition. The invention relates to a barrier coating composition that characterized by containing a water-based polyurethane resin, a high-polarity resin having an ethylene chain, and a silane coupling agent.

Description

バリア性コーティング組成物、及び、複合フィルムBarrier coating composition and composite film
本発明は、バリア性コーティング組成物、及び、該バリア性コーティング組成物を用いて形成されるコート層を有する複合フィルムに関する。 The present invention relates to a barrier coating composition and a composite film having a coating layer formed using the barrier coating composition.
食品包装用途で利用される包装袋の分野では、熱水処理ができる機能を持たせて、袋ごと内容物の調理も簡単にできる包装袋が製造される場合が多くなっている。
熱水処理用包装袋は、殺菌効果が高く、包装袋が完全密封されている事から、内容物の腐敗を起こしにくいという点で、長期保存に有効な手段である。しかし、ガスバリア性が充分でないと、保存の間に酸素が包装袋の中に入り込み、内容物の変質・劣化が起こる。従って、熱水処理用包装袋において、いかに酸素等の透過を抑えられるかが、包装袋の価値を決める大きな要因となる。
In the field of packaging bags used for food packaging applications, packaging bags that have a function of performing hot water treatment and can easily cook the contents of each bag are often manufactured.
The packaging bag for hot water treatment is an effective means for long-term storage in that the sterilization effect is high and the packaging bag is completely sealed, so that the contents are not easily spoiled. However, if the gas barrier property is not sufficient, oxygen enters the packaging bag during storage, and the contents are deteriorated and deteriorated. Therefore, how to suppress permeation of oxygen or the like in the hot water treatment packaging bag is a major factor that determines the value of the packaging bag.
従来、食品、医療等の包装用途に使用される包装袋では、酸素や水蒸気等のガスを遮断するために、種々のガスバリア層を設ける方法が考えられている。とりわけ、高いガスバリア性を有する材料として利用されてきたのは、印刷基材フィルム等に蒸着方式により積層される金属や金属酸化物である。そして、上記の熱水処理用包装袋においても、長期保存用には、アルミニウム蒸着フィルムやアルミ自体の箔をラミネートした熱水処理用包装袋が主流になっている。しかしながら、これらの材料を利用した複合ラミネートフィルムは総じて高価である。また、透明性が要求される分野で利用できないという問題を有している。 2. Description of the Related Art Conventionally, in packaging bags used for packaging applications such as food and medicine, various gas barrier layers have been considered in order to block gases such as oxygen and water vapor. In particular, metals and metal oxides that have been laminated on a printing substrate film or the like by a vapor deposition method have been used as materials having high gas barrier properties. And also in the said hot water treatment packaging bag, the hot water treatment packaging bag which laminated | stacked the aluminum vapor deposition film and the foil of aluminum itself has become the mainstream for long-term preservation | save. However, the composite laminate film using these materials is generally expensive. Moreover, it has a problem that it cannot be used in a field where transparency is required.
近年は、プラスチック材料からなる基材フィルム、金属酸化物からなる蒸着層、樹脂からなる被覆層を設けたガスバリア性フィルムの利用が検討されている。
このようなガスバリア性フィルムとしては、例えば、被覆層が水性ポリウレタン樹脂と、水溶性高分子とを含むガスバリア性フィルムが提案されている(例えば、特許文献1参照)。また、例えば、ポリウレタン系樹脂、及びポリビニルアルコールを含むトップコート層を有する透明ガスバリアフイルムが提案されている(例えば、特許文献2参照)。
In recent years, utilization of a gas barrier film provided with a base film made of a plastic material, a vapor deposition layer made of a metal oxide, and a coating layer made of a resin has been studied.
As such a gas barrier film, for example, a gas barrier film whose coating layer contains an aqueous polyurethane resin and a water-soluble polymer has been proposed (see, for example, Patent Document 1). Further, for example, a transparent gas barrier film having a top coat layer containing a polyurethane-based resin and polyvinyl alcohol has been proposed (for example, see Patent Document 2).
積層構造のガスバリア性フィルムでは、優れたガスバリア性だけではなく、優れたラミネート強度も求められる。特に、食品、医療等の包装用途に使用される包装袋の分野では、優れたガスバリア性に加えて、乾燥(ドライ)条件におけるラミネート強度だけで無く、水付け条件におけるラミネート強度にも優れることが求められるようになっている。 A gas barrier film having a laminated structure requires not only excellent gas barrier properties but also excellent laminate strength. In particular, in the field of packaging bags used for packaging applications such as food and medicine, in addition to excellent gas barrier properties, not only laminate strength in dry conditions but also excellent laminate strength in watering conditions. It has come to be required.
特開2012-020433号公報JP 2012-020433 A 特開2017-222151号公報JP 2017-222151 A
そこで、本発明の課題は、ボイル条件及び水付け条件におけるラミネート強度、シール強度、水蒸気バリア性及び酸素バリア性に優れた複合フィルムを得ることができるバリア性コーティング組成物を提供すること、及び、該バリア性コーティング組成物を用いて得られる複合フィルムを提供することである。 Then, the subject of this invention is providing the barrier coating composition which can obtain the composite film excellent in the laminate strength in a boil condition and watering conditions, seal strength, water vapor | steam barrier property, and oxygen barrier property, and It is to provide a composite film obtained using the barrier coating composition.
本発明者らは、研究を重ねた結果、水性ポリウレタン樹脂、エチレン鎖を有する高極性樹脂、及び、シランカップリング剤を含有するコーティング組成物を用いることにより、該コーティング組成物を塗布した際に塗膜の凝集力、及び、金属酸化物からなる蒸着膜との密着性に極めて優れるため、ボイル条件及び水付け条件におけるラミネート強度、シール強度、水蒸気バリア性及び酸素バリア性に優れる複合フィルムを得ることができることを見出し、本発明を完成させたものである。 As a result of repeated research, the present inventors have applied a coating composition containing an aqueous polyurethane resin, a highly polar resin having an ethylene chain, and a silane coupling agent. Because it has excellent cohesiveness of the coating film and adhesion to the vapor-deposited film made of metal oxide, a composite film excellent in laminate strength, seal strength, water vapor barrier property and oxygen barrier property under boil conditions and watering conditions is obtained. The present invention has been found out and the present invention has been completed.
すなわち、本発明のバリア性コーティング組成物は、水性ポリウレタン樹脂、エチレン鎖を有する高極性樹脂、及び、シランカップリング剤を含有することを特徴とする。 That is, the barrier coating composition of the present invention comprises an aqueous polyurethane resin, a highly polar resin having an ethylene chain, and a silane coupling agent.
本発明のバリア性コーティング組成物においては、上記水性ポリウレタン樹脂100質量部に対する上記エチレン鎖を有する高極性樹脂の質量比率が、15~150質量部であることが好ましい。
上記エチレン鎖を有する高極性樹脂は、エチレン鎖比率が0.5~30mol%であることが好ましい。
上記エチレン鎖を有する高極性樹脂は、主鎖にエチレン鎖を有することが好ましい。
上記シランカップリング剤は、エポキシ基を有するシランカップリング剤であることが好ましい。
本発明のバリア性コーティング組成物は、ラミネート用であることが好ましい。
また、本発明は、少なくとも基材フィルム、蒸着層、及び、コート層をこの順に有する複合フィルムであって、上記コート層は、上記バリア性コーティング組成物を塗布して形成されたものであることを特徴とする複合フィルムでもある。
本願発明の複合フィルムにおいては、蒸着層は、シリカ及びアルミナからなる群より選ばれる1種以上の蒸着層であることが好ましい。
以下、バリア性コーティング組成物、及び、複合フィルムについて詳細に説明する。
In the barrier coating composition of the present invention, the mass ratio of the high polarity resin having an ethylene chain to 100 parts by mass of the aqueous polyurethane resin is preferably 15 to 150 parts by mass.
The high polarity resin having an ethylene chain preferably has an ethylene chain ratio of 0.5 to 30 mol%.
The highly polar resin having an ethylene chain preferably has an ethylene chain in the main chain.
The silane coupling agent is preferably a silane coupling agent having an epoxy group.
The barrier coating composition of the present invention is preferably used for laminating.
Moreover, this invention is a composite film which has a base film, a vapor deposition layer, and a coating layer in this order, Comprising: The said coating layer shall be formed by apply | coating the said barrier coating composition. It is also a composite film characterized by
In the composite film of the present invention, the vapor deposition layer is preferably one or more vapor deposition layers selected from the group consisting of silica and alumina.
Hereinafter, the barrier coating composition and the composite film will be described in detail.
〔バリア性コーティング組成物〕
先ず、本発明のバリア性コーティング組成物について説明する。
本発明のバリア性コーティング組成物は、水性ポリウレタン樹脂、エチレン鎖を有する高極性樹脂、及び、シランカップリング剤を含有する。
[Barrier coating composition]
First, the barrier coating composition of the present invention will be described.
The barrier coating composition of the present invention contains an aqueous polyurethane resin, a highly polar resin having an ethylene chain, and a silane coupling agent.
上記水性ポリウレタン樹脂は、ガスバリア性を好適に発現させる観点から、酸基含有ポリウレタン樹脂及びポリアミン化合物を含むことが好ましい。
上記水性ポリウレタン樹脂は、上記酸基含有ポリウレタン樹脂及び上記ポリアミン化合物の混合物であっても良いし、共重合体であってもよい。
上記酸基含有ポリウレタン樹脂の酸基と上記ポリアミン化合物との結合としては、特に限定されず、イオン結合(例えば、カルボキシル基と第3級アミノ基とのイオン結合等)であってもよく、共有結合(例えば、アミド結合等)であってもよい。
The aqueous polyurethane resin preferably contains an acid group-containing polyurethane resin and a polyamine compound from the viewpoint of suitably expressing gas barrier properties.
The aqueous polyurethane resin may be a mixture of the acid group-containing polyurethane resin and the polyamine compound, or may be a copolymer.
The bond between the acid group of the acid group-containing polyurethane resin and the polyamine compound is not particularly limited, and may be an ionic bond (for example, an ionic bond between a carboxyl group and a tertiary amino group). It may be a bond (for example, an amide bond).
上記酸基含有ポリウレタン樹脂の酸基としては、上記ポリアミン化合物のアミノ基(第1級アミノ基、第2級アミノ基、第3級アミノ基等)と結合可能であればよく、例えば、カルボキシル基、スルホン酸基等が挙げられる。上記酸基は、通常、中和剤(塩基)により中和可能であり、塩基と塩を形成していてもよい。
上記酸基は、上記酸基含有ポリウレタン樹脂の末端に位置してもよく側鎖に位置してもよいが、少なくとも側鎖に位置していることが好ましい。
The acid group of the acid group-containing polyurethane resin is not limited as long as it can be bonded to the amino group (primary amino group, secondary amino group, tertiary amino group, etc.) of the polyamine compound. And sulfonic acid groups. The acid group can usually be neutralized with a neutralizing agent (base) and may form a salt with the base.
The acid group may be located at the end or the side chain of the acid group-containing polyurethane resin, but is preferably located at least in the side chain.
上記酸基含有ポリウレタン樹脂の酸価としては、ガスバリア性を好適に発現させる観点、耐水性の観点から、5~100mgKOH/gであることが好ましく、10~70mgKOH/gであることがより好ましく、15~60mgKOH/gであることが更に好ましい。
なお、本明細書において、酸価は、JIS  K  0070に準じた方法により測定した酸価を意味する。
The acid value of the acid group-containing polyurethane resin is preferably 5 to 100 mgKOH / g, more preferably 10 to 70 mgKOH / g, from the viewpoint of favorably developing gas barrier properties and water resistance. More preferably, it is 15 to 60 mg KOH / g.
In addition, in this specification, an acid value means the acid value measured by the method according to JISK0070.
上記酸基含有ポリウレタン樹脂のウレタン基濃度及びウレア基(尿素基)濃度の合計は、ガスバリア性を好適に発現させる観点から、15質量%以上であることが好ましく、20~60質量%であることがより好ましい。
上記ウレタン基濃度とは、ポリウレタン樹脂の繰り返し構成単位の分子量に対する、ウレタン基の分子量(59g/当量)の割合を意味する。
また、ウレア基濃度とは、ポリウレタン樹脂の繰り返し構成単位の分子量に対する、ウレア基の分子量(一級アミノ基(アミノ基):58g/当量、二級アミノ基(イミノ基):57g/当量)の割合を意味する。
なお、酸基含有ポリウレタン樹脂として2種以上の混合物を用いる場合、ウレタン基濃度およびウレア基濃度は反応成分の仕込みベース、すなわち、各成分の使用割合をベースとして算出できる。
The total of the urethane group concentration and the urea group (urea group) concentration of the acid group-containing polyurethane resin is preferably 15% by mass or more, and preferably 20 to 60% by mass from the viewpoint of suitably exhibiting gas barrier properties. Is more preferable.
The urethane group concentration means the ratio of the molecular weight (59 g / equivalent) of the urethane group to the molecular weight of the repeating structural unit of the polyurethane resin.
The urea group concentration is the ratio of the molecular weight of the urea group (primary amino group (amino group): 58 g / equivalent, secondary amino group (imino group): 57 g / equivalent) to the molecular weight of the repeating structural unit of the polyurethane resin. Means.
When two or more kinds of mixtures are used as the acid group-containing polyurethane resin, the urethane group concentration and the urea group concentration can be calculated based on the charged base of the reaction component, that is, the use ratio of each component.
上記酸基含有ポリウレタン樹脂は、通常、少なくとも剛直な単位(炭化水素環で構成された単位)と短鎖単位(例えば、炭化水素鎖で構成された単位)とを有している。すなわち、上記酸基含有ポリウレタン樹脂の構成単位は、通常、ポリイソシアネート成分、ポリヒドロキシ酸成分、ポリオール成分や鎖伸長剤成分(特に、少なくともポリイソシアネート成分)に由来して、炭化水素環(芳香族および非芳香族炭化水素環のうち少なくとも1つ)を含んでいる。上記酸基含有ポリウレタン樹脂の構成単位における炭化水素環で構成された単位の割合は、ガスバリア性とラミネート強度を好適に発現させる観点から、全構成単位の合計に対し、10~70質量%であることが好ましく、15~65質量%であることがより好ましく、20~60質量%であることが更に好ましい。 The acid group-containing polyurethane resin usually has at least rigid units (units composed of hydrocarbon rings) and short chain units (for example, units composed of hydrocarbon chains). That is, the structural unit of the acid group-containing polyurethane resin is usually derived from a polyisocyanate component, a polyhydroxy acid component, a polyol component or a chain extender component (especially at least a polyisocyanate component), and a hydrocarbon ring (aromatic And at least one of non-aromatic hydrocarbon rings). The proportion of units composed of hydrocarbon rings in the structural units of the acid group-containing polyurethane resin is 10 to 70% by mass with respect to the total of all the structural units from the viewpoint of suitably expressing gas barrier properties and laminate strength. It is preferably 15 to 65% by mass, more preferably 20 to 60% by mass.
上記酸基含有ポリウレタン樹脂の数平均分子量は、適宜選択可能であるが、800~1,000,000であることが好ましく、800~200,000であることがより好ましく、800~100,000であることが更に好ましい。上記酸基含有ポリウレタン樹脂の数平均分子量が上記範囲内であれば、バリア性コーティング組成物の粘度を好適なものとすることができ、コート層のガスバリア性を好適に付与することができる。
なお、本明細書において、数平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定される標準ポリスチレン換算の値である。
The number average molecular weight of the acid group-containing polyurethane resin can be appropriately selected, but is preferably from 800 to 1,000,000, more preferably from 800 to 200,000, and from 800 to 100,000. More preferably it is. When the number average molecular weight of the acid group-containing polyurethane resin is within the above range, the viscosity of the barrier coating composition can be made suitable, and the gas barrier property of the coat layer can be suitably imparted.
In the present specification, the number average molecular weight is a value in terms of standard polystyrene measured by gel permeation chromatography (GPC).
上記酸基含有ポリウレタン樹脂は、ガスバリア性を高めるため、結晶性であってもよい。
上記酸基含有ポリウレタン樹脂のガラス転移温度(Tg)は、ガスバリア性を好適に発現させる観点から、100~200℃が好ましく、110~180℃がより好ましく、115~150℃が更に好ましい。
なお、本明細書において、ガラス転移温度(Tg)は、示差走査熱量測定(DSC)により測定した値である。
The acid group-containing polyurethane resin may be crystalline in order to improve gas barrier properties.
The glass transition temperature (Tg) of the acid group-containing polyurethane resin is preferably from 100 to 200 ° C., more preferably from 110 to 180 ° C., and even more preferably from 115 to 150 ° C., from the viewpoint of suitably exhibiting gas barrier properties.
In this specification, the glass transition temperature (Tg) is a value measured by differential scanning calorimetry (DSC).
上記ポリアミン化合物としては、2以上の塩基性窒素原子を有する化合物であることが好ましい。
上記塩基性窒素原子としては、上記酸基含有ポリウレタン樹脂の酸基と結合し得る窒素原子であり、例えば、第1級アミノ基、第2級アミノ基、第3級アミノ基等のアミノ基における窒素原子が挙げられる。
上記ポリアミン化合物としては、上記酸基含有ポリウレタン樹脂の酸基と結合し、ガスバリア性を向上できるものであれば特に限定されるものではなく、2以上の塩基性窒素原子を有する種々の化合物を用いることができる。
上記ポリアミン化合物としては、第1級アミノ基、第2級アミノ基および第3級アミノ基からなる群から選択される少なくとも1種のアミノ基を2以上有するポリアミン化合物が好ましい。
The polyamine compound is preferably a compound having two or more basic nitrogen atoms.
The basic nitrogen atom is a nitrogen atom that can be bonded to the acid group of the acid group-containing polyurethane resin. For example, in the amino group such as a primary amino group, a secondary amino group, and a tertiary amino group A nitrogen atom is mentioned.
The polyamine compound is not particularly limited as long as it can bond to the acid group of the acid group-containing polyurethane resin and improve the gas barrier property, and various compounds having two or more basic nitrogen atoms are used. be able to.
As the polyamine compound, a polyamine compound having two or more amino groups selected from the group consisting of a primary amino group, a secondary amino group and a tertiary amino group is preferred.
上記ポリアミン化合物の具体例としては、例えば、アルキレンジアミン類、ポリアルキレンポリアミン類、複数の塩基性窒素原子を有するケイ素化合物等が挙げられる。上記アルキレンジアミン類としては、例えば、エチレンジアミン、1,2-プロピレンジアミン、1,3-プロピレンジアミン、1,4-ブタンジアミン、1,6-ヘキサメチレンジアミン等の炭素数2~10のアルキレンジアミン等が挙げられる。上記ポリアルキレンポリアミン類としては、例えば、テトラアルキレンポリアミン等が挙げられる。上記複数の塩基性窒素原子(アミノ基などの窒素原子を含む)を有するケイ素化合物としては、例えば2-〔N-(2-アミノエチル)アミノ〕エチルトリメトキシシラン、3-〔N-(2-アミノエチル)アミノ〕プロピルトリエトキシシラン等の、複数の塩基性窒素原子を有するシランカップリング剤等が挙げられる。
なお、ポリアミン化合物に該当するシランカップリング剤は、上記シランカップリング剤には該当しないものとする。
Specific examples of the polyamine compound include alkylene diamines, polyalkylene polyamines, silicon compounds having a plurality of basic nitrogen atoms, and the like. Examples of the alkylene diamines include alkylene diamines having 2 to 10 carbon atoms such as ethylene diamine, 1,2-propylene diamine, 1,3-propylene diamine, 1,4-butane diamine, and 1,6-hexamethylene diamine. Is mentioned. Examples of the polyalkylene polyamines include tetraalkylene polyamines. Examples of the silicon compound having a plurality of basic nitrogen atoms (including nitrogen atoms such as amino groups) include 2- [N- (2-aminoethyl) amino] ethyltrimethoxysilane, 3- [N- (2 And silane coupling agents having a plurality of basic nitrogen atoms, such as -aminoethyl) amino] propyltriethoxysilane.
In addition, the silane coupling agent corresponding to a polyamine compound shall not correspond to the said silane coupling agent.
上記ポリアミン化合物のアミン価は、ガスバリア性を好適に発現させる観点、上記水性ポリウレタン樹脂の水分散安定性の観点から、100~1900mgKOH/gが好ましく、150~1900mgKOH/gがより好ましく、200~1900mgKOH/gが更に好ましく、200~1700mgKOH/gが特に好ましく、300~1500mgKOH/gが最も好ましい。上記ポリアミン化合物のアミン価は、以下の方法により測定される。
〔アミン価の測定方法〕
試料を0.5~2g精秤する(試料量Sg)。精秤した試料にエタノール30gを加え溶解させる。得られた溶液に指示薬としてブロモフェノールブルーを加え0.2mol/Lのエタノール性塩酸溶液(力価f)で滴定を行なう。溶液の色が緑から黄の間の色に変化した点を終点とし、このときの滴定量(AmL)を用い以下の計算式1を用いアミン価を求める。
  計算式1:アミン価=A×f×0.2×56.108/S〔mgKOH/g〕
The amine value of the polyamine compound is preferably 100 to 1900 mgKOH / g, more preferably 150 to 1900 mgKOH / g, and more preferably 200 to 1900 mgKOH from the viewpoint of suitably expressing gas barrier properties and the water dispersion stability of the aqueous polyurethane resin. / G is more preferable, 200 to 1700 mg KOH / g is particularly preferable, and 300 to 1500 mg KOH / g is most preferable. The amine value of the polyamine compound is measured by the following method.
[Method for measuring amine value]
Weigh 0.5-2 g of the sample accurately (sample amount Sg). 30 g of ethanol is added to a precisely weighed sample and dissolved. Bromophenol blue is added as an indicator to the resulting solution and titrated with a 0.2 mol / L ethanolic hydrochloric acid solution (titer f). The point at which the color of the solution has changed from green to yellow is taken as the end point, and the amine value is determined using the following calculation formula 1 using the titration amount (AmL).
Calculation formula 1: Amine number = A × f × 0.2 × 56.108 / S [mg KOH / g]
上記水性ポリウレタン樹脂において、上記ポリアミン化合物の含有量は、上記酸基含有ポリウレタン樹脂の酸基と、上記ポリアミン化合物の塩基性窒素原子とのモル比(酸基/塩基性窒素原子)が10/1~0.1/1となる量が好ましく、5/1~0.2/1となる量がより好ましい。酸基/塩基性窒素原子が上記範囲であれば、上記酸基含有ポリウレタンの酸基と上記ポリアミン化合物の架橋反応が適切に起こり、コート層に優れた酸素バリア性を好適に発現することができる。 In the aqueous polyurethane resin, the content of the polyamine compound is such that the molar ratio (acid group / basic nitrogen atom) between the acid group of the acid group-containing polyurethane resin and the basic nitrogen atom of the polyamine compound is 10/1. An amount of from 0.1 to 0.1 / 1 is preferred, and an amount of from 5/1 to 0.2 / 1 is more preferred. If the acid group / basic nitrogen atom is within the above range, a crosslinking reaction between the acid group of the acid group-containing polyurethane and the polyamine compound occurs appropriately, and an excellent oxygen barrier property can be suitably expressed in the coat layer. .
上記水性ポリウレタン樹脂は、通常、水性媒体に分散した状態(水性分散体)の形態で用いられる。
上記水性媒体としては、水、水溶性又は親水性の有機溶剤、または、これらの混合物が挙げられる。上記水溶性又は親水性の有機溶剤としては、例えば、メタノール、エタノール、イソプロパノール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;テトラヒドロフラン等のエーテル類;セロソルブ類;カルビトール類;アセトニトリル等のニトリル類等が挙げられる。
上記水性媒体としては、水又は水を主成分として含むものが好ましい。上記水性媒体中の水の含有量は、70質量%以上が好ましく、80質量%以上がより好ましい。
上記水性媒体は、上記酸基含有ポリウレタン樹脂の酸基を中和する中和剤(塩基)を含んでもよく、含まなくてもよい。通常は中和剤が含まれる。
The aqueous polyurethane resin is usually used in a state of being dispersed in an aqueous medium (aqueous dispersion).
Examples of the aqueous medium include water, water-soluble or hydrophilic organic solvents, or a mixture thereof. Examples of the water-soluble or hydrophilic organic solvent include alcohols such as methanol, ethanol and isopropanol; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; cellosolves; carbitols; and nitriles such as acetonitrile. Etc.
As said aqueous medium, what contains water or water as a main component is preferable. 70 mass% or more is preferable and, as for content of the water in the said aqueous medium, 80 mass% or more is more preferable.
The aqueous medium may or may not contain a neutralizing agent (base) that neutralizes the acid groups of the acid group-containing polyurethane resin. Usually a neutralizing agent is included.
上記水性ポリウレタン樹脂の水性分散体において、分散粒子(ポリウレタン樹脂粒子)の平均粒子径は、特に限定されないが、上記分散粒子と他の材料との均一分散性やバリア性コーティング組成物の分散安定性を担保し、ガスバリア性を好適に発現させる観点から、20nm~500nm好ましく、25nm~300nmより好ましく、30nm~200nmであることが更に好ましい。
なお、本明細書において、平均粒子径は、固形分濃度が0.03~0.3質量%の状態で(水で希釈して)濃厚系粒径アナライザー(大塚電子社製  FPAR-10)にて計測される値である。
In the aqueous dispersion of the aqueous polyurethane resin, the average particle diameter of the dispersed particles (polyurethane resin particles) is not particularly limited, but the uniform dispersion between the dispersed particles and other materials and the dispersion stability of the barrier coating composition. From the viewpoint of ensuring the gas barrier properties and preferably exhibiting gas barrier properties, it is preferably 20 nm to 500 nm, more preferably 25 nm to 300 nm, and even more preferably 30 nm to 200 nm.
In the present specification, the average particle size is measured with a concentrated particle size analyzer (FPAR-10 manufactured by Otsuka Electronics Co., Ltd.) with a solid content concentration of 0.03 to 0.3% by mass (diluted with water). This is a measured value.
上記水性ポリウレタン樹脂は、市販のものを用いてもよく、公知の製造方法により製造したものを用いてもよい。
上記水性ポリウレタン樹脂の製造方法は、特に限定されるものではなく、アセトン法、プレポリマー法等の、通常のポリウレタン樹脂の水性化技術が用いられる。ウレタン化反応では、必要に応じてアミン系触媒、錫系触媒、鉛系触媒等のウレタン化触媒を用いてもよい。
例えば、アセトン等のケトン類、テトラヒドロフラン等のエーテル類、アセトニトリル等のニトリル類等の不活性有機溶媒中において、ポリイソシアネート化合物と、ポリヒドロキシ酸と、必要に応じて、ポリオール成分及び鎖伸長剤成分のうち少なくとも1つと、を反応させることにより、上記酸基含有ポリウレタン樹脂を調製できる。より具体的には、不活性有機溶媒(特に、親水性または水溶性の有機溶媒)中、ポリイソシアネート化合物と、ポリヒドロキシ酸と、ポリオール成分と、を反応させて、末端にイソシアネート基を有するプレポリマーを生成し、中和剤で中和して水性媒体に溶解または分散させた後、鎖伸長剤成分を添加して反応させ、有機溶媒を除去することにより、上記酸基含有ポリウレタン樹脂の水性分散体を調製できる。
このようにして得られた上記酸基含有ポリウレタン樹脂の水性分散体に上記ポリアミン化合物を添加し、必要に応じて加熱することにより、水分散体の形態の水性ポリウレタン樹脂を調製できる。
なお、加熱する場合、加熱温度は、30~60℃が好ましい。
A commercially available product may be used as the aqueous polyurethane resin, or a product produced by a known production method may be used.
The manufacturing method of the said aqueous polyurethane resin is not specifically limited, The normal water-ization technology of a polyurethane resin, such as an acetone method and a prepolymer method, is used. In the urethanization reaction, a urethanization catalyst such as an amine catalyst, a tin catalyst, or a lead catalyst may be used as necessary.
For example, in an inert organic solvent such as ketones such as acetone, ethers such as tetrahydrofuran, and nitriles such as acetonitrile, a polyisocyanate compound, a polyhydroxy acid, and, if necessary, a polyol component and a chain extender component The acid group-containing polyurethane resin can be prepared by reacting at least one of them. More specifically, a polyisocyanate compound, a polyhydroxy acid, and a polyol component are reacted in an inert organic solvent (especially a hydrophilic or water-soluble organic solvent), and a prepolymer having an isocyanate group at the terminal is reacted. A polymer is formed, neutralized with a neutralizing agent, dissolved or dispersed in an aqueous medium, added with a chain extender component, reacted to remove the organic solvent, thereby removing the aqueous solution of the acid group-containing polyurethane resin. Dispersions can be prepared.
An aqueous polyurethane resin in the form of an aqueous dispersion can be prepared by adding the polyamine compound to the aqueous dispersion of the acid group-containing polyurethane resin thus obtained and heating as necessary.
In the case of heating, the heating temperature is preferably 30 to 60 ° C.
上記水性ポリウレタン樹脂と上記エチレン鎖を有する高極性樹脂の合計の含有量は、本発明のバリア性コーティング組成物100質量部に対して、固形分で0.5~30質量部であることが好ましく、1~15質量部であることがより好ましい。 The total content of the aqueous polyurethane resin and the high-polarity resin having an ethylene chain is preferably 0.5 to 30 parts by mass in solid content with respect to 100 parts by mass of the barrier coating composition of the present invention. It is more preferably 1 to 15 parts by mass.
上記エチレン鎖を有する高極性樹脂とは、エチレン鎖と、以下の高極性の官能基を有する樹脂を意味する。
上記高極性の官能基としては、アミノ基、エステル基、カルボキシル基、スルホン基、シアノ基、チオール基、ヒドロキシル基等が挙げられる。
なかでも、ガスバリア性を好適に発現させる観点から、ヒドロキシル基、カルボキシル基が好ましく、ヒドロキシル基であることがより好ましい。
The high polar resin having an ethylene chain means a resin having an ethylene chain and the following highly polar functional group.
Examples of the highly polar functional group include an amino group, an ester group, a carboxyl group, a sulfone group, a cyano group, a thiol group, and a hydroxyl group.
Of these, a hydroxyl group and a carboxyl group are preferable, and a hydroxyl group is more preferable from the viewpoint of suitably expressing gas barrier properties.
上記エチレン鎖を有する高極性樹脂としては、エチレンとビニル基を有する化合物との共重合体であることが好ましい。
上記エチレンとビニル基を有する化合物との共重合体としては、エチレン-ビニルアルコール共重合体、エチレン-アクリル酸共重合体、エチレン-酢酸ビニル共重合体、エチレン-メチルメタアクリレート共重合体、エチレン-エチルアクリレート共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート-無水マレイン酸共重合体等が挙げられる。
なかでも、ガスバリア性を好適に発現させる観点から、エチレン-ビニルアルコール共重合体、エチレン-アクリル酸共重合体が好ましく、エチレン-ビニルアルコール共重合体であることがより好ましい。
The highly polar resin having an ethylene chain is preferably a copolymer of ethylene and a compound having a vinyl group.
Examples of the copolymer of ethylene and a compound having a vinyl group include ethylene-vinyl alcohol copolymer, ethylene-acrylic acid copolymer, ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer, ethylene -Ethyl acrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate-maleic anhydride copolymer and the like.
Of these, ethylene-vinyl alcohol copolymer and ethylene-acrylic acid copolymer are preferable, and ethylene-vinyl alcohol copolymer is more preferable from the viewpoint of suitably expressing gas barrier properties.
上記エチレン鎖を有する高極性樹脂は、エチレン比率が0.5~30mol%であることが好ましい。
上記エチレン比率の範囲とすることにより、水及びアルコールへの溶解性を良好なものとすることができる。
上記エチレン鎖を有する高極性樹脂は、1.0~15mol%であることがより好ましい。
The high polarity resin having an ethylene chain preferably has an ethylene ratio of 0.5 to 30 mol%.
By setting it as the range of the said ethylene ratio, the solubility to water and alcohol can be made favorable.
The highly polar resin having an ethylene chain is more preferably 1.0 to 15 mol%.
上記エチレン鎖を有する高極性樹脂は、主鎖にエチレン鎖を有することが好ましい。
主鎖にエチレン鎖を有することにより、耐水性を向上させることができる。
なお、本発明において、「主鎖」とは、ポリマーを形成する最も長い鎖のことをいう。
The highly polar resin having an ethylene chain preferably has an ethylene chain in the main chain.
By having an ethylene chain in the main chain, water resistance can be improved.
In the present invention, “main chain” refers to the longest chain forming a polymer.
上記エチレン鎖を有する高極性樹脂は、ケン化度が90~100%あることが好ましく、95~100%であることがより好ましく、97~100%であることが更に好ましい。 The highly polar resin having an ethylene chain preferably has a saponification degree of 90 to 100%, more preferably 95 to 100%, and still more preferably 97 to 100%.
上記エチレン鎖を有する高極性樹脂は、平均重合度が200~3000であることが好ましく、400~2000であることがより好ましい。
上記平均重合度の範囲とすることにより、コーティング組成物の粘度が上がりすぎることが無く、他の成分と均一に混合することが容易であり、コート層のガスバリア性や他の層との剥離強度を好適に付与することができる。
The high polarity resin having an ethylene chain preferably has an average degree of polymerization of 200 to 3000, more preferably 400 to 2000.
By setting the average polymerization degree within the above range, the viscosity of the coating composition does not increase too much, and it is easy to uniformly mix with other components, and the gas barrier property of the coating layer and the peel strength from other layers Can be suitably provided.
上記エチレン鎖を有する高極性樹脂は、市販のものを用いてもよく、公知の製造方法により上記エチレン比率、ケン化度、平均重合度等を満たすものを製造してもよい。 As the highly polar resin having an ethylene chain, a commercially available resin may be used, or a resin satisfying the ethylene ratio, the saponification degree, the average polymerization degree and the like may be produced by a known production method.
上記水性ポリウレタン樹脂100質量部に対する上記エチレン鎖を有する高極性樹脂の質量比率(固形分の質量比率)が、15~150質量部であることが好ましい。
上記範囲とすることにより、耐水性とガスバリア性とを好適に両立することができる。
The mass ratio (mass ratio of solid content) of the high polarity resin having an ethylene chain to 100 mass parts of the aqueous polyurethane resin is preferably 15 to 150 mass parts.
By setting it as the said range, water resistance and gas barrier property can be made to make compatible both suitably.
上記シランカップリング剤としては、例えば、RSiX(ここで、Rは有機反応基であり、Xはアルコキシ基である。)で表される化合物が挙げられる。
上記有機反応基としては、例えば、アミノ基、(メタ)アクリル基、エポキシ基、ビニル基、メルカプト基、イソシアネート基、イソシアヌレート基等を有するものが挙げられる。
なお、本明細書において、(メタ)アクリル基は、アクリル基およびメタアクリル基の両方を示す。
また、 上記アルコキシ基としては、例えばメトキシ基、エトキシ基等が挙げられる。
Examples of the silane coupling agent include a compound represented by RSiX 3 (wherein R is an organic reactive group and X is an alkoxy group).
Examples of the organic reactive group include those having an amino group, a (meth) acryl group, an epoxy group, a vinyl group, a mercapto group, an isocyanate group, an isocyanurate group, and the like.
In addition, in this specification, a (meth) acryl group shows both an acryl group and a methacryl group.
Examples of the alkoxy group include a methoxy group and an ethoxy group.
上記シランカップリング剤としては、例えば、ビニル基を持つシランカップリング剤、エポキシ基を持つシランカップリング剤、アミノ基を持つシランカップリング剤、メルカプト基を持つシランカップリング剤、(メタ)アクリル基を持つシランカップリング剤、イソシアネート基を持つシランカップリング剤、及び、イソシアヌレート基を持つシランカップリング剤等が挙げられる。
上記ビニル基を持つシランカップリング剤として、ビニルトリメトキシシラン、ビニルトリエトキシシラン等が挙げられる。上記エポキシ基を持つシランカップリング剤として、2(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルエチルジエトキシシラン等が挙げられる。上記アミノ基を持つシランカップリング剤として、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン等が挙げられる。上記メルカプト基を持つシランカップリング剤として、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン等が挙げられる。上記(メタ)アクリル基を持つシランカップリング剤として、3-アクリロキシプロピルトリメトキシシラン等が挙げられる。上記イソシアネート基を持つシランカップリング剤として、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。上記イソシアヌレート基を持つシランカップリング剤として、トリス-(トリメトキシシリルプロピル)イソシアヌレート等が挙げられる。
これらのシランカップリング剤は、いずれか1種を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
Examples of the silane coupling agent include a silane coupling agent having a vinyl group, a silane coupling agent having an epoxy group, a silane coupling agent having an amino group, a silane coupling agent having a mercapto group, and (meth) acrylic. Examples thereof include a silane coupling agent having a group, a silane coupling agent having an isocyanate group, and a silane coupling agent having an isocyanurate group.
Examples of the silane coupling agent having a vinyl group include vinyltrimethoxysilane and vinyltriethoxysilane. As the above silane coupling agent having an epoxy group, 2 (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxy Examples thereof include propylmethyldimethoxysilane and 3-glycidoxypropylethyldiethoxysilane. Examples of the silane coupling agent having an amino group include 3-aminopropyltrimethoxysilane and 3-aminopropyltriethoxysilane. Examples of the silane coupling agent having a mercapto group include 3-mercaptopropyltrimethoxysilane and 3-mercaptopropylmethyldimethoxysilane. Examples of the silane coupling agent having a (meth) acryl group include 3-acryloxypropyltrimethoxysilane. Examples of the silane coupling agent having an isocyanate group include 3-isocyanatopropyltriethoxysilane. Examples of the silane coupling agent having an isocyanurate group include tris- (trimethoxysilylpropyl) isocyanurate.
Any one of these silane coupling agents may be used alone, or two or more thereof may be used in combination.
上記シランカップリング剤としては、バリア性コーティング組成物中の他の成分と反応性を持つものが好ましく使用される。なかでも、エポキシ基を有するシランカップリング剤であることが好ましい。
上記エポキシ基を有するシランカップリング剤は、上記水性ポリウレタン樹脂や、上記エチレン鎖を有する高極性樹脂が持つ官能基と良好な反応性を持ち、更に、後述する蒸着層との反応性に優れるため、ラミネート強度及びガスバリア性を好適に向上することができる。
As the silane coupling agent, those having reactivity with other components in the barrier coating composition are preferably used. Especially, it is preferable that it is a silane coupling agent which has an epoxy group.
The epoxy group-containing silane coupling agent has good reactivity with the functional group of the water-based polyurethane resin and the high-polarity resin having the ethylene chain, and further has excellent reactivity with the vapor deposition layer described later. The laminate strength and gas barrier properties can be preferably improved.
上記シランカップリング剤は、本発明のバリア性コーティング組成物100質量部に対して、1~30質量部であることが好ましい。 The silane coupling agent is preferably 1 to 30 parts by mass with respect to 100 parts by mass of the barrier coating composition of the present invention.
本発明のバリア性コーティング組成物は、溶剤を含有することが好ましい。上記溶剤としては、上記水性ポリウレタン樹脂、上記エチレン鎖を有する高極性樹脂、及び、上記シランカップリング剤を溶解し得るものであれば、水性及び非水性のどちらの溶剤でも使用することができる。
上記溶剤としては、水と低級アルコールとの混合溶剤を用いることが好ましい。
上記低級アルコールとしては、メチルアルコール、エチルアルコール、n-プロピルアルコール、iso-プロピルアルコール、n-ブチルアルコール、iso-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール等の炭素数1~4の低級アルコール挙げられ、これらのうち、少なくとも1種類含有するものを好適に用いることができる。
The barrier coating composition of the present invention preferably contains a solvent. As the solvent, any of aqueous and non-aqueous solvents can be used as long as it can dissolve the aqueous polyurethane resin, the high-polarity resin having an ethylene chain, and the silane coupling agent.
As the solvent, it is preferable to use a mixed solvent of water and a lower alcohol.
Examples of the lower alcohol include lower ones having 1 to 4 carbon atoms such as methyl alcohol, ethyl alcohol, n-propyl alcohol, iso-propyl alcohol, n-butyl alcohol, iso-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol and the like. Alcohols are mentioned, and those containing at least one of these can be suitably used.
上記溶剤は、本発明のバリア性コーティング組成物100質量部に対して、5~60質量部であることが好ましく、20~50質量部であることがより好ましい。 The solvent is preferably 5 to 60 parts by mass, more preferably 20 to 50 parts by mass with respect to 100 parts by mass of the barrier coating composition of the present invention.
本発明のバリア性コーティング組成物は、一般にアンチブロッキング剤として知られている、シリカ、タルク、アルミナ、炭酸カルシウム、酸化チタン、炭酸マグネシウム、クレー、カオリンなどの無機微粒子、コロイダルシリカ、界面活性等を配合してもよい。 The barrier coating composition of the present invention is generally known as an anti-blocking agent, and includes inorganic fine particles such as silica, talc, alumina, calcium carbonate, titanium oxide, magnesium carbonate, clay and kaolin, colloidal silica, surface activity and the like. You may mix | blend.
本発明のバリア性コーティング組成物は、上述した構成から成るため、包装用材料等のラミネート用として好適に用いることができる。 Since the barrier coating composition of the present invention has the above-described configuration, it can be suitably used as a laminate for packaging materials and the like.
〔バリア性コーティング組成物の製造方法〕
本発明のバリア性コーティング組成物の製造方法としては、特に限定されないが、例えば、上記水性ポリウレタン樹脂、上記エチレン鎖を有する高極性樹脂、及び、上記シランカップリング剤とに上記溶剤を添加し、常温で充分に攪拌、混合することにより所定濃度の塗布液を調製することができる。
なお、上記シランカップリング剤を添加する際には、一気に加えると凝集するおそれがあるので、ゆっくりと攪拌しながら添加するのが好ましい。
[Method for producing barrier coating composition]
The method for producing the barrier coating composition of the present invention is not particularly limited. For example, the solvent is added to the aqueous polyurethane resin, the high polarity resin having an ethylene chain, and the silane coupling agent. A coating solution having a predetermined concentration can be prepared by sufficiently stirring and mixing at room temperature.
In addition, when adding the said silane coupling agent, since there exists a possibility that it may aggregate if it adds at a stretch, it is preferable to add, stirring slowly.
〔複合フィルム〕
少なくとも基材フィルム、蒸着層、及び、コート層をこの順に有する複合フィルムであって、上記コート層は、上記バリア性コーティング組成物を塗布して形成されたものであることを特徴とする複合フィルムも本発明の一つである。
[Composite film]
A composite film having at least a base film, a vapor deposition layer, and a coat layer in this order, wherein the coat layer is formed by applying the barrier coating composition. Is also one aspect of the present invention.
上記基材フィルムとしては、透明なフィルム形成能を有する熱可塑性樹脂等により形成されてなるものであれば、特に制限はない。
上記基材フィルムとして用いられる樹脂としては、ポリエチレン(低密度、高密度)、エチレン-プロピレン共重合体、エチレン-ブテン共重合体、エチレン-ヘキセン共重合体、エチレン-オクテン共重合体、ポリプロピレン、エチレン-酢酸ビニル共重合体、エチレン-メチルメタクリレート共重合体、アイオノマー樹脂等のポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ナイロン-6、ナイロン-6,6、メタキシレンジアミン-アジピン酸縮重合体、ポリメチルメタクリルイミド等のアミド系樹脂、ポリメチルメタクリレート等のアクリル系樹脂;ポリスチレン、スチレン-アクリロニトリル共重合体、スチレン-アクリロニトリル-ブタジエン共重合体、ポリアクリロニトリル等のスチレン、アクリロニトリル系樹脂;トリ酢酸セルロース、ジ酢酸セルロース等の疎水化セルロース系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、テフロン(登録商標)等のハロゲン含有樹脂;ポリビニルアルコール、エチレン-ビニルアルコール共重合体、セルロース誘導体等の水素結合性樹脂;ポリカーボネート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンオキシド樹脂、ポリメチレンオキシド樹脂、液晶樹脂等のエンジニアリングプラスチック系樹脂等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
上記基材フィルムは、上記蒸着層、上記コート層を設けられる側に、プラズマ処理やコロナ放電処理等の表面処理が施されていることが好ましい。
The base film is not particularly limited as long as it is formed of a thermoplastic resin having a transparent film forming ability.
Examples of the resin used as the base film include polyethylene (low density, high density), ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, ethylene-octene copolymer, polypropylene, Polyolefin resins such as ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer, ionomer resin; Polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate; Nylon-6, Nylon-6, 6, Metaxylenediamine-adipic acid condensation polymer, amide resins such as polymethylmethacrylamide, acrylic resins such as polymethylmethacrylate; polystyrene, styrene-acrylonitrile copolymer, styrene-acrylonitrile-buta Styrene such as ene copolymer, polyacrylonitrile, acrylonitrile resin; Hydrophobized cellulose resin such as cellulose triacetate and cellulose diacetate; Halogen such as polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, Teflon (registered trademark) Containing resin; hydrogen bonding resin such as polyvinyl alcohol, ethylene-vinyl alcohol copolymer, cellulose derivative; polycarbonate resin, polysulfone resin, polyether sulfone resin, polyether ether ketone resin, polyphenylene oxide resin, polymethylene oxide resin, Examples include engineering plastic resins such as liquid crystal resins. These may be used alone or in combination of two or more.
The base film is preferably subjected to surface treatment such as plasma treatment or corona discharge treatment on the side where the vapor deposition layer and the coat layer are provided.
上記基材フィルムの厚みは特に限定されないが、0.5~1000μmが好ましく、1~500μmがより好ましく、1~100μm更に好ましく、1~50μmが特に好ましい。 The thickness of the substrate film is not particularly limited, but is preferably 0.5 to 1000 μm, more preferably 1 to 500 μm, still more preferably 1 to 100 μm, and particularly preferably 1 to 50 μm.
上記蒸着層は、無機酸化物を真空蒸着法、スパッタリング法、プラズマ気相成長法(PVD法・CVD法)等の真空プロセスにより、上記基材フィルム上に形成されることが好ましい。
上記無機酸化物としては、例えば、ケイ素、アルミニウム、亜鉛、スズ、鉄、マンガン等の金属、これらの金属の1種以上を含む無機化合物等の酸化物が挙げられる。
なかでも、本発明のバリア性コーティング組成物を塗布して形成されたコート層との密着性に優れることから、シリカ及びアルミナからなる群より選ばれる1種以上の蒸着層であることが好ましい。
The vapor deposition layer is preferably formed on the substrate film by a vacuum process such as vacuum vapor deposition, sputtering, plasma vapor deposition (PVD method / CVD), etc., using an inorganic oxide.
Examples of the inorganic oxide include metals such as silicon, aluminum, zinc, tin, iron and manganese, and oxides such as inorganic compounds containing one or more of these metals.
Especially, since it is excellent in adhesiveness with the coating layer formed by apply | coating the barrier coating composition of this invention, it is preferable that it is 1 or more types of vapor deposition layers chosen from the group which consists of a silica and an alumina.
上記蒸着層の厚みは特に限定されないが、0.1~500nmが好ましく、0.5~40nmがより好ましい。 The thickness of the vapor deposition layer is not particularly limited, but is preferably 0.1 to 500 nm, and more preferably 0.5 to 40 nm.
上記コート層としては、上記バリア性コーティング組成物を塗工することにより形成することができる。
上記バリア性コーティング組成物の塗工方法は、特に限定されないが、グラビアシリンダー等を用いたロールコーティング法、ドクターナイフ法やエアーナイフ・ノズルコーティング法、バーコーティング法、スプレーコーティング法、ディップコーティング法及びこれらの方法を組み合わせたコーティング法等を用いることができる。
The coat layer can be formed by applying the barrier coating composition.
The coating method of the barrier coating composition is not particularly limited, but a roll coating method using a gravure cylinder, a doctor knife method, an air knife / nozzle coating method, a bar coating method, a spray coating method, a dip coating method, and The coating method etc. which combined these methods can be used.
上記コート層の厚みは、特に限定されないが、0.01~5μmが好ましく、0.1~2μmがより好ましい。
上記コート層が0.01μmより薄くなると、高いガスバリア性を得ることが困難となることがあり、5μmを超えても顕著なガスバリア性の向上が見られないことがある。
The thickness of the coating layer is not particularly limited, but is preferably 0.01 to 5 μm, more preferably 0.1 to 2 μm.
When the coating layer is thinner than 0.01 μm, it may be difficult to obtain high gas barrier properties, and even if the thickness exceeds 5 μm, no significant improvement in gas barrier properties may be observed.
本発明の複合フィルムは、印刷層を有してもよい。
上記印刷層(内容物表示や装飾機能のための印刷層)としては、従来から軟包装で使用されている有機溶剤型印刷インキ組成物、水性印刷インキ組成物等を、通常、グラビア印刷方式やフレキソ印刷方式にて印刷することにより形成することができる。
The composite film of the present invention may have a printed layer.
As the above-mentioned printing layer (printing layer for contents display and decoration function), organic solvent type printing ink composition, water-based printing ink composition and the like conventionally used in soft packaging, usually gravure printing method and It can be formed by printing with a flexographic printing method.
上記有機溶剤型印刷インキ組成物としては、例えば、顔料とポリウレタン樹脂とを含む芳香族・非芳香族混合系有機溶剤性印刷インキ組成物の他、特開平01-261476号公報(顔料、ポリウレタン樹脂、塩素化ポリプロピレンを含む芳香族・非芳香族混合系有機溶剤性印刷インキ組成物)、特公平07-113098号公報(顔料、ポリウレタン樹脂を含む非芳香族系有機溶剤性印刷インキ組成物)、特開平07-324179号公報(顔料、ポリウレタン樹脂、非芳香族系・非ケトン系有機溶剤性印刷インキ組成物)等で開示された有機溶剤性印刷インキ組成物等が挙げられる。 Examples of the organic solvent-type printing ink composition include, for example, an aromatic / non-aromatic mixed organic solvent-based printing ink composition containing a pigment and a polyurethane resin, and JP-A-01-261476 (pigment, polyurethane resin). , Aromatic / non-aromatic mixed organic solvent-based printing ink composition containing chlorinated polypropylene), JP-B-07-113098 (non-aromatic organic solvent-based printing ink composition containing pigment and polyurethane resin), Examples thereof include organic solvent-based printing ink compositions disclosed in JP-A-07-324179 (pigments, polyurethane resins, non-aromatic / non-ketone organic solvent-based printing ink compositions), and the like.
上記水性印刷インキ組成物としては、例えば、特開平06-155694号公報(顔料、アクリル系バインダー樹脂、ヒドラジン系架橋剤を含む水性印刷インキ組成物)、特開平06-206972号公報(顔料、水、ポリウレタン系バインダー樹脂を含む水性印刷インキ組成物)等で開示された水性印刷インキ組成物等が挙げられる。 Examples of the water-based printing ink composition include, for example, Japanese Patent Application Laid-Open No. 06-155694 (water-based printing ink composition containing a pigment, an acrylic binder resin, and a hydrazine-based crosslinking agent), and Japanese Patent Application Laid-Open No. 06-206972 (pigment, water). And water-based printing ink compositions disclosed in water-based printing ink compositions containing polyurethane binder resins).
最近では、環境対応インキとして、水性タイプの印刷インキ組成物や、有機溶剤系印刷インキ組成物であっても芳香族及びケトン系有機溶剤を極力使用しないタイプのものが使用されており、本発明でも、これらを好適に用いることができる。
更に、本発明のバリア性複合フィルムにおいては、他の機能層、例えば、紫外線遮蔽層、抗菌層、接着層、シーラント層等を有していてもよい。
Recently, as environmentally friendly inks, water-based printing ink compositions and organic solvent-based printing ink compositions have been used that do not use aromatic and ketone-based organic solvents as much as possible. However, these can be preferably used.
Furthermore, the barrier composite film of the present invention may have other functional layers such as an ultraviolet shielding layer, an antibacterial layer, an adhesive layer, and a sealant layer.
上記接着層は、上記基材フィルムと上記蒸着層との間や、上記コート層と上記シーラント層との間等に形成することが好ましい。
上記接着層としては、従来から包装用複合ラミネートフィルムの製造に用いられている接着剤組成物を適宜選択し、各種塗工手段を用いて形成することができる。
上記接着剤組成物としては、例えばウレタン系、ポリエステル系、アクリル系等の各種接着剤、チタン系、イソシアネート系、イミン系、ポリブタジエン系等の各種接着剤等を挙げることができる。
The adhesive layer is preferably formed between the base film and the vapor deposition layer or between the coat layer and the sealant layer.
The adhesive layer can be formed using various coating means by appropriately selecting an adhesive composition conventionally used in the production of composite laminate films for packaging.
Examples of the adhesive composition include various adhesives such as urethane, polyester, and acrylic, and various adhesives such as titanium, isocyanate, imine, and polybutadiene.
上記シーラント層としては、従来から軟包装で使用されている熱融着性のシート材料であり、例えば、ポリエチレンフィルム、ポリプロピレンフィルム等が挙げられる。
上記シーラント層は、低密度ポリエチレン、エチレン-酢酸ビニル共重合体、ポリプロピレンポリマー等の熱溶融ポリマーを溶融状態で積層して、冷却によりフィルム状に成形したものであってもよい。
The sealant layer is a heat-fusible sheet material conventionally used in soft packaging, and examples thereof include a polyethylene film and a polypropylene film.
The sealant layer may be formed by laminating a hot-melt polymer such as low-density polyethylene, ethylene-vinyl acetate copolymer, polypropylene polymer or the like in a molten state, and forming into a film by cooling.
〔複合フィルムの製造方法〕
本発明の複合フィルムを製造する方法としては、特に限定されず、従来の方法を適宜選択して用いることができる。
例えば、以下(a)~(d)の方法が挙げられる。
(a)基材フィルム(基材フィルムは蒸着層を有する積層フィルムであってもよい)に、上述した方法により蒸着層を形成した後、上記バリア性コーティング組成物、接着剤組成物を順次塗工した後、シーラント層を積層することにより、複合フィルムを得る方法。
(b)基材フィルム(基材フィルムは蒸着層を有する積層フィルムであってもよい)に、上述した方法により蒸着層を形成した後、上記接着剤組成物、バリア性コーティング組成物、接着剤組成物を順次塗工した後、シーラント層を積層することにより複合フィルムを得る方法。
(c)基材フィルム(基材フィルムは蒸着層を有する積層フィルムであってもよい)に、上述した方法により蒸着層を形成した後、先にインキ組成物を印刷して印刷層を形成した後、上記接着剤組成物、バリア性コーティング組成物、接着剤組成物を順次塗工した後、シーラント層を積層することにより複合フィルムを得る方法。
(d)基材フィルム(基材フィルムは蒸着層を有する積層フィルムであってもよい)に、上述した方法により蒸着層を形成した後、上記接着剤組成物、バリア性コーティング組成物、接着剤組成物を順次塗工した後、インキ組成物を印刷して印刷層を形成し、更にシーラント層を積層することによりバリア性複合フィルムを得る方法等である。
[Production method of composite film]
It does not specifically limit as a method to manufacture the composite film of this invention, A conventional method can be selected suitably and can be used.
For example, the following methods (a) to (d) may be mentioned.
(A) After forming a vapor deposition layer on the base film (the base film may be a laminated film having a vapor deposition layer) by the above-described method, the barrier coating composition and the adhesive composition are sequentially applied. A method of obtaining a composite film by laminating a sealant layer after processing.
(B) After forming a vapor deposition layer by the method mentioned above to a base film (a base film may be a laminated | multilayer film which has a vapor deposition layer), the said adhesive composition, barrier coating composition, and adhesive agent A method of obtaining a composite film by sequentially applying the composition and then laminating a sealant layer.
(C) After forming a vapor deposition layer by the method mentioned above on the base film (The substrate film may be a laminated film having a vapor deposition layer), the ink composition was first printed to form a printing layer. Then, after apply | coating the said adhesive composition, barrier coating composition, and adhesive composition one by one, the composite film is obtained by laminating | stacking a sealant layer.
(D) After forming a vapor deposition layer by the method mentioned above in a base film (a base film may be a laminated | multilayer film which has a vapor deposition layer), the said adhesive composition, barrier coating composition, and adhesive agent For example, a method of obtaining a barrier composite film by sequentially coating the composition, printing the ink composition to form a printed layer, and further laminating a sealant layer.
なお、上記接着剤組成物の塗工方法については、通常のグラビアシリンダー等を用いたロールコーティング法、ドクターナイフ法やエアーナイフ・ノズルコーティング法、バーコーティング法、スプレーコーティング法、ディップコーティング法及びこれらの方法を組み合わせたコーティング法等を用いることができる。
また、上記印刷層を形成するには、通常、グラビア印刷方式やフレキソ印刷方式が使用できる。
In addition, about the coating method of the said adhesive composition, the roll coating method using a normal gravure cylinder etc., a doctor knife method, an air knife nozzle coating method, a bar coating method, a spray coating method, a dip coating method, and these The coating method etc. which combined these methods can be used.
Moreover, in order to form the said printing layer, a gravure printing system and a flexographic printing system can be used normally.
本発明の複合フィルムにおいて、接着層の膜厚(乾燥後)は、2~3μmであることが好ましい。
上記接着層の膜厚が2μmより薄くなると、コート層と他層との接着性が低下するおそれがあり、一方、3μmより厚くなると、膜厚の増加に見合った接着性の増加が見られず、また、複合フィルムを包装袋として用いたときに、良好な取扱い性を得ることができないおそれがある。
尚、1回の塗工により上記範囲内の膜厚を有する塗膜が得られない場合は、多数回の塗工を行うことも可能である。
In the composite film of the present invention, the thickness of the adhesive layer (after drying) is preferably 2 to 3 μm.
If the thickness of the adhesive layer is less than 2 μm, the adhesion between the coat layer and the other layer may be reduced. On the other hand, if the thickness is greater than 3 μm, the increase in the adhesion commensurate with the increase in the thickness is not observed. In addition, when the composite film is used as a packaging bag, there is a possibility that good handleability cannot be obtained.
In addition, when the coating film which has the film thickness in the said range is not obtained by one time of application | coating, it is also possible to perform many times of application.
他の機能層を設ける場合も、それぞれの機能層を設けるための良好な手段と、上記(a)~(d)の方法を組み合わせて、目的にあったバリア性複合フィルムを製造することができる。 In the case of providing other functional layers, a barrier composite film suitable for the purpose can be produced by combining good means for providing each functional layer and the methods (a) to (d). .
本発明のバリア性コーティング組成物は、上述した構成からなるので、ボイル条件及び水付け条件におけるラミネート強度、シール強度、水蒸気バリア性及び酸素バリア性に優れた複合フィルムを得ることができる。
また、本発明の複合フィルムは、バリアフィルム又は包装材料等として好適に使用することができる。
Since the barrier coating composition of the present invention has the above-described configuration, a composite film excellent in laminate strength, seal strength, water vapor barrier property, and oxygen barrier property under boil conditions and watering conditions can be obtained.
Moreover, the composite film of this invention can be used conveniently as a barrier film or a packaging material.
以下に実施例をあげて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「%」は「質量%」を意味し、「部」は「質量部」を意味する。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Unless otherwise specified, “%” means “% by mass”, and “part” means “part by mass”.
(バリア性コーティング組成物)
<水性ポリウレタン樹脂>
タケラック WPB-341(固形分30%、ガラス転移温度115℃、三井化学社製)
<エチレン鎖を有する高極性樹脂>
エクセバール RS-2117(平均重合度1700、ケン化度97.5~99.0%、エチレン比率3.0mol%、主鎖にエチレン鎖を有する、クラレ社製)
ソアノール SG525(ケン化度99.0~100%、エチレン比率26mol%、主鎖にエチレン鎖を有する、日本合成化学社製)
<エチレン鎖を有さない高極性樹脂>
ゴーセノール NH-18(平均重合度1800、ケン化度98.0~99.0%、エチレン比率0mol%、日本合成化学社製)
<シランカップリング剤>
KBM-403(3-グリシドキシプロピルトリメトキシシラン、信越化学工業社製)
<溶剤>
イオン交換水
イソプロピルアルコール
(Barrier coating composition)
<Water-based polyurethane resin>
Takelac WPB-341 (solid content 30%, glass transition temperature 115 ° C., manufactured by Mitsui Chemicals)
<High polarity resin having ethylene chain>
EXEVAL RS-2117 (average polymerization degree 1700, saponification degree 97.5-99.0%, ethylene ratio 3.0 mol%, main chain having ethylene chain, manufactured by Kuraray Co., Ltd.)
Soarnol SG525 (saponification degree 99.0-100%, ethylene ratio 26 mol%, main chain having ethylene chain, manufactured by Nippon Synthetic Chemical Co., Ltd.)
<High polarity resin without ethylene chain>
Gohsenol NH-18 (average polymerization degree 1800, saponification degree 98.0 to 99.0%, ethylene ratio 0 mol%, manufactured by Nippon Synthetic Chemical Co., Ltd.)
<Silane coupling agent>
KBM-403 (3-glycidoxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.)
<Solvent>
Ion exchange water isopropyl alcohol
<RS-2117水溶液の調製>
精製水90質量部にエクセバール RS-2117を10質量部加え、95℃で約2時間撹拌し、RS-2117水溶液(固形分10%)を得た。
<Preparation of RS-2117 aqueous solution>
10 parts by weight of EXEVAL RS-2117 was added to 90 parts by weight of purified water, followed by stirring at 95 ° C. for about 2 hours to obtain an RS-2117 aqueous solution (solid content 10%).
<SG525溶液の調整>
精製水44.2質量部、n-プロピルアルコール(NPA)71.996質量部の混合溶媒に、ソアノール SG525を15質量部、濃度が30%の過酸化水素水13質量部、FeSOを0.004質量部添加し、攪拌下で80℃に加温し、2時間反応させた。
その後、冷却してカタラーゼを3000ppmになるように添加し、残存過酸化水素を除去し、ほぼ透明なSG525水溶液(固形分15%)を得た。
<Preparation of SG525 solution>
In a mixed solvent of 44.2 parts by mass of purified water and 71.996 parts by mass of n-propyl alcohol (NPA), 15 parts by mass of Soarnol SG525, 13 parts by mass of hydrogen peroxide having a concentration of 30%, and FeSO 4 of 0. 004 parts by mass was added, and the mixture was heated to 80 ° C. with stirring and reacted for 2 hours.
Then, it cooled and the catalase was added so that it might become 3000 ppm, the residual hydrogen peroxide was removed, and substantially transparent SG525 aqueous solution (solid content 15%) was obtained.
<NH-18水溶液の調整>
精製水90質量部にゴーセノール NH-18を10質量部加え、95℃で約2時間撹拌し、NH-18水溶液(固形分10%)を得た。
<Preparation of NH-18 aqueous solution>
10 parts by mass of Gohsenol NH-18 was added to 90 parts by mass of purified water and stirred at 95 ° C. for about 2 hours to obtain an NH-18 aqueous solution (solid content 10%).
<シリカ蒸着PETの作製>
PETフィルム(E5100、厚み12μm、東洋紡社製)の片側表面に、イソシアネート化合物(日本ポリウレタン工業社製「コロネートL」)と飽和ポリエステル(東洋紡社製「バイロン300」)とを1:1質量比で配合した混合物を塗布乾燥して厚み0.1μmの接着層を形成した。次いで、真空蒸着装置を使用して1×10-5Torrの真空下でシリカを加熱方式で蒸発させ、接着層上に厚み20nmのシリカ蒸着層を形成し、シリカ蒸着PETを得た。
<Preparation of silica-deposited PET>
On one surface of a PET film (E5100, thickness 12 μm, manufactured by Toyobo Co., Ltd.), an isocyanate compound (“Coronate L” manufactured by Nippon Polyurethane Industry Co., Ltd.) and a saturated polyester (“Byron 300 manufactured by Toyobo Co., Ltd.) in a mass ratio of 1: 1. The blended mixture was applied and dried to form an adhesive layer having a thickness of 0.1 μm. Next, the silica was evaporated by a heating method under a vacuum of 1 × 10 −5 Torr using a vacuum vapor deposition apparatus, and a silica vapor deposition layer having a thickness of 20 nm was formed on the adhesive layer to obtain silica vapor deposition PET.
<アルミナ蒸着PETの作製>
PETフィルム(E5100、厚み12μm、東洋紡社製)の片側表面に、イソシアネート化合物(日本ポリウレタン工業社製「コロネートL」)と飽和ポリエステル(東洋紡社製「バイロン300」)とを1:1質量比で配合した混合物を塗布乾燥して厚み0.1μmの接着層を形成した。次いで、真空蒸着装置を使用してアルミニウムを蒸発させ、ガス流量制御装置を使用して酸素ガスを供給し、1×10-4Torrで蒸着を行い、接着層上に厚み20nmのアルミナ蒸着層を形成し、アルミナ蒸着PETを得た。
<Production of alumina-deposited PET>
On one surface of a PET film (E5100, thickness 12 μm, manufactured by Toyobo Co., Ltd.), an isocyanate compound (“Coronate L” manufactured by Nippon Polyurethane Industry Co., Ltd.) and a saturated polyester (“Byron 300 manufactured by Toyobo Co., Ltd.) in a mass ratio of 1: 1. The blended mixture was applied and dried to form an adhesive layer having a thickness of 0.1 μm. Next, aluminum is evaporated using a vacuum deposition device, oxygen gas is supplied using a gas flow rate control device, deposition is performed at 1 × 10 −4 Torr, and an alumina deposition layer having a thickness of 20 nm is formed on the adhesive layer. Formed, and alumina-deposited PET was obtained.
(実施例1)
タケラック WPB-341を22.2質量部撹拌しながら、固形分10%のRS-2117水溶液を28.5質量部、イオン交換水を30.9質量部、イソプロピルアルコールを18.1質量部加えた後、更に、KBM-403を0.3質量部加え、常温で充分に撹拌及び混合することにより、コーティング組成物1を得た。
上記で作製したシリカ蒸着PETのシリカ蒸着層面上へ、コーティング組成物1をNo.6ワイヤバーにて塗布し、ドライヤーにて乾燥後、60℃にて1日エージング処理した。
得られたコート層(乾燥後塗布量0.8g/m)上にポリウレタン接着剤(タケラックA515/タケネートA50、固形分30%、三井化学社製)をNo.4ワイヤバーにて塗布、シーラントフィルム(RXC-22、厚み60μm、三井化学東セロ社製)をラミネートし、40℃にて3日エージング処理し、複合フィルムを得た。
Example 1
While stirring 22.2 parts by mass of Takelac WPB-341, 28.5 parts by mass of an RS-2117 aqueous solution with a solid content of 10%, 30.9 parts by mass of ion-exchanged water, and 18.1 parts by mass of isopropyl alcohol were added. Thereafter, 0.3 parts by mass of KBM-403 was further added, and the mixture was sufficiently stirred and mixed at room temperature to obtain a coating composition 1.
On the silica vapor deposition layer surface of silica vapor deposition PET produced above, coating composition 1 is No.2. The coating was applied with a 6 wire bar, dried with a dryer, and then aged at 60 ° C. for 1 day.
A polyurethane adhesive (Takelac A515 / Takenate A50, solid content 30%, manufactured by Mitsui Chemicals Co., Ltd.) was applied to the obtained coating layer (coating amount 0.8 g / m 2 after drying). Coating was performed with a 4-wire bar, and a sealant film (RXC-22, thickness 60 μm, manufactured by Mitsui Chemicals, Inc.) was laminated and aged at 40 ° C. for 3 days to obtain a composite film.
(実施例2)
実施例1において、基材フィルムを上記で作製したアルミナ蒸着PETに変更した以外は同様の手法にて複合フィルムを得た。
(Example 2)
A composite film was obtained in the same manner as in Example 1 except that the base film was changed to the alumina-deposited PET produced above.
(実施例3、比較例1~3)
表1の配合に従いコーティング組成物2~5を調整し、実施例1と同様の手法にて複合フィルムを得た。
(Example 3, Comparative Examples 1 to 3)
Coating compositions 2 to 5 were prepared according to the formulation shown in Table 1, and composite films were obtained in the same manner as in Example 1.
(比較例4~5)
実施例1~2において、コーティング組成物を用いなかった以外は同様の手法にて複合フィルムを得た。
(Comparative Examples 4 to 5)
A composite film was obtained in the same manner as in Examples 1 and 2, except that the coating composition was not used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
〔評価〕
<ラミネート強度測定(N/15mm)>
(1)通常条件
(ドライ条件)
実施例1~3及び比較例1~5の各複合フィルムを15mm幅に切断した。
T型剥離強度を、剥離試験機(安田精機社製)を用いて、剥離速度300mm/minの条件にて、ラミネート強度を測定した。その結果を表2に示した。
(ボイル条件)
実施例1~3及び比較例1~5の各複合フィルムを90℃の熱水中に30分間浸漬した後に15mm幅に切断した以外は、ドライ条件と同様の手法にてラミネート強度を測定した。その結果を表2に示した。
(2)水付け条件
(ドライ条件)
実施例1~3及び比較例1~5の各複合フィルムを15mm幅に切断した。
各試料片の剥離面に水を付けた脱脂綿を当てながら、T型剥離強度を剥離試験機(安田精機社製)を用いて、剥離速度300mm/minの条件にて、ラミネート強度を測定した。その結果を表2に示した。
(ボイル条件)
実施例1~3及び比較例1~5の各複合フィルムを90℃の熱水中に30分間浸漬した後に15mm幅に切断した以外は、ドライ条件と同様の手法にてラミネート強度を測定した。その結果を表2に示した。
なお、表2中の数字にFが付されているものは、その数字の強度において、複合フィルムが剥離せずに破断したことを意味する。
[Evaluation]
<Measurement of laminate strength (N / 15mm)>
(1) Normal conditions (dry conditions)
Each composite film of Examples 1 to 3 and Comparative Examples 1 to 5 was cut to a width of 15 mm.
The laminate strength was measured for the T-type peel strength using a peel tester (manufactured by Yasuda Seiki Co., Ltd.) at a peel rate of 300 mm / min. The results are shown in Table 2.
(Boil condition)
The laminate strength was measured in the same manner as in the dry condition except that each of the composite films of Examples 1 to 3 and Comparative Examples 1 to 5 was immersed in hot water at 90 ° C. for 30 minutes and then cut to a width of 15 mm. The results are shown in Table 2.
(2) Watering conditions (dry conditions)
Each composite film of Examples 1 to 3 and Comparative Examples 1 to 5 was cut to a width of 15 mm.
The laminate strength was measured using a peel tester (manufactured by Yasuda Seiki Co., Ltd.) at a peel rate of 300 mm / min while applying absorbent cotton with water on the peel surface of each sample piece. The results are shown in Table 2.
(Boil condition)
The laminate strength was measured in the same manner as in the dry condition except that each of the composite films of Examples 1 to 3 and Comparative Examples 1 to 5 was immersed in hot water at 90 ° C. for 30 minutes and then cut to a width of 15 mm. The results are shown in Table 2.
In addition, what attached | subjected F to the number in Table 2 means that the composite film fractured | ruptured without peeling in the intensity | strength of the number.
<シール強度(kg/15mm)>
実施例1~3及び比較例1~5の各複合フィルムを、インパルスシーラー(富士インパルスシーラ社製)を用いて製袋し、剥離試験機(安田精機社製)を用いて剥離速度300mm/minの条件にて、シール強度を測定した。その結果を表2に示した。
なお、表2中の数字にFが付されているものは、その数字の強度において、複合フィルムが剥離せずに破断したことを意味する。
<Seal strength (kg / 15mm)>
Each composite film of Examples 1 to 3 and Comparative Examples 1 to 5 is formed into a bag using an impulse sealer (manufactured by Fuji Impulse Sealer), and a peeling speed of 300 mm / min using a peeling tester (manufactured by Yasuda Seiki) The seal strength was measured under the following conditions. The results are shown in Table 2.
In addition, what attached | subjected F to the number in Table 2 means that the composite film fractured | ruptured without peeling in the intensity | strength of the number.
<酸素透過率(cc/m/day/atm)>
実施例1~3及び比較例1~5の複合フィルム(酸素透過率試験用)を25℃、90%RHの雰囲気下に72時間放置後、JIS  K7126  B法に準じて、酸素透過率測定装置(Mocon社製、製品名:OX-TRAN1/50)を用いて、酸素透過率(OTR値)を測定した。
なお、測定は、25℃において、90%RHの雰囲気下で行った。その結果を表2に示した。
<Oxygen transmission rate (cc / m 2 / day / atm)>
The composite films of Examples 1 to 3 and Comparative Examples 1 to 5 (for oxygen permeability test) were allowed to stand in an atmosphere of 25 ° C. and 90% RH for 72 hours, and then an oxygen permeability measuring device according to JIS K7126 B method The oxygen permeability (OTR value) was measured using a product (manufactured by Mocon, product name: OX-TRAN 1/50).
Note that the measurement was performed at 25 ° C. in an atmosphere of 90% RH. The results are shown in Table 2.
<水蒸気透過率(g/m/day)>
実施例1~3及び比較例1~5の複合フィルム(水蒸気透過率試験用)をJIS Z0222に準じて、次のように水蒸気透過率(WVTR値)を測定した。
実施例1~3及び比較例1~5の各複合フィルムについて、10cm×10cmの大きさのものを用いて同容積となるように製袋し、塩化カルシウム15gを詰めた後に溶封した。この袋を40℃、90%RHの恒温恒湿装置に入れ、5日おきに質量を測定した。3日目以降の経過時間と袋質量との回帰直線の傾きから水蒸気透過率を算出した。その結果を表2に示した。
<Water vapor transmission rate (g / m 2 / day)>
The composite films of Examples 1 to 3 and Comparative Examples 1 to 5 (for water vapor transmission rate test) were measured for water vapor transmission rate (WVTR value) as follows according to JIS Z0222.
Each of the composite films of Examples 1 to 3 and Comparative Examples 1 to 5 was made into a bag with the same volume using a size of 10 cm × 10 cm, packed with 15 g of calcium chloride, and sealed. This bag was placed in a constant temperature and humidity apparatus at 40 ° C. and 90% RH, and the mass was measured every 5 days. The water vapor transmission rate was calculated from the slope of the regression line between the elapsed time after the third day and the bag mass. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
本発明のバリア性コーティング組成物を用い、複合フィルムを作製した実施例1~3では、ボイル条件及び水付け条件におけるラミネート強度、シール強度、水蒸気バリア性及び酸素バリア性の何れにも優れていた。
一方、エチレン鎖を有する高極性樹脂を含有しないコーティング組成物3を用い、複合フィルムを作製した比較例1では、ガスバリア性において劣っており、エチレン鎖を有さない高極性樹脂を含有するコーティング組成物4を用い、複合フィルムを作製した比較例2では、水付け条件におけるラミネート強度に劣っており、シランカップリング剤を含有しないコーティング組成物5を用い、複合フィルムを作製した比較例3においても、水付け条件におけるラミネート強度に劣っていた。
また、コーティング組成物を用いないで複合フィルムを作製した比較例4及び5では、ボイル条件及び水付け条件におけるラミネート強度、シール強度、水蒸気バリア性及び酸素バリア性の何れかにおいて劣っていた。
In Examples 1 to 3 in which composite films were prepared using the barrier coating composition of the present invention, the laminate strength, seal strength, water vapor barrier property, and oxygen barrier property were excellent in boil conditions and watering conditions. .
On the other hand, in Comparative Example 1 in which a composite film was prepared using the coating composition 3 containing no ethylene chain and having a high polarity resin, the gas barrier property was inferior, and the coating composition containing a high polarity resin having no ethylene chain In Comparative Example 2 in which the composite film was prepared using the product 4, the laminate strength was poor in the watering condition, and also in Comparative Example 3 in which the composite film was prepared using the coating composition 5 containing no silane coupling agent. The laminate strength under watering conditions was inferior.
Moreover, in Comparative Examples 4 and 5 in which the composite film was produced without using the coating composition, the laminate strength, seal strength, water vapor barrier property, and oxygen barrier property in the boil condition and watering condition were inferior.
本発明のバリア性コーティング組成物は、上述した構成からなるので、ボイル条件及び水付け条件におけるラミネート強度、シール強度、水蒸気バリア性及び酸素バリア性に優れた複合フィルムを得ることができる。
また、本発明の複合フィルムは、バリアフィルム又は包装材料等として好適に使用することができる。
Since the barrier coating composition of the present invention has the above-described configuration, a composite film excellent in laminate strength, seal strength, water vapor barrier property, and oxygen barrier property under boil conditions and watering conditions can be obtained.
Moreover, the composite film of this invention can be used conveniently as a barrier film or a packaging material.

Claims (8)

  1. 水性ポリウレタン樹脂、エチレン鎖を有する高極性樹脂、及び、シランカップリング剤を含有することを特徴とするバリア性コーティング組成物。 A barrier coating composition comprising an aqueous polyurethane resin, a highly polar resin having an ethylene chain, and a silane coupling agent.
  2. 水性ポリウレタン樹脂100質量部に対するエチレン鎖を有する高極性樹脂の質量比率が、15~150質量部である請求項1記載のバリア性コーティング組成物。 The barrier coating composition according to claim 1, wherein the mass ratio of the high polarity resin having an ethylene chain to 100 parts by mass of the aqueous polyurethane resin is 15 to 150 parts by mass.
  3. エチレン鎖を有する高極性樹脂は、エチレン鎖比率が0.5~30mol%である請求項1又は2記載のバリア性コーティング組成物。 The barrier coating composition according to claim 1 or 2, wherein the highly polar resin having an ethylene chain has an ethylene chain ratio of 0.5 to 30 mol%.
  4. エチレン鎖を有する高極性樹脂は、主鎖にエチレン鎖を有する請求項1~3の何れかに記載のバリア性コーティング組成物。 4. The barrier coating composition according to claim 1, wherein the highly polar resin having an ethylene chain has an ethylene chain in the main chain.
  5. シランカップリング剤は、エポキシ基を有するシランカップリング剤である請求項1~4の何れかに記載のバリア性コーティング組成物。 The barrier coating composition according to any one of claims 1 to 4, wherein the silane coupling agent is a silane coupling agent having an epoxy group.
  6. ラミネート用である請求項1~5の何れかに記載のバリア性コーティング組成物。 The barrier coating composition according to any one of claims 1 to 5, which is used for laminating.
  7. 少なくとも基材フィルム、蒸着層、及び、コート層をこの順に有する複合フィルムであって、前記コート層は、請求項1~6の何れかに記載のバリア性コーティング組成物を塗布して形成されたものであることを特徴とする複合フィルム。 A composite film having at least a base film, a vapor deposition layer, and a coat layer in this order, wherein the coat layer is formed by applying the barrier coating composition according to any one of claims 1 to 6. A composite film characterized by being a thing.
  8. 蒸着層は、シリカ及びアルミナからなる群より選ばれる1種以上の蒸着層である請求項7記載の複合フィルム。 The composite film according to claim 7, wherein the vapor deposition layer is one or more vapor deposition layers selected from the group consisting of silica and alumina.
PCT/JP2019/004226 2018-02-16 2019-02-06 Barrier coating composition and composite film WO2019159786A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980012930.XA CN111712553A (en) 2018-02-16 2019-02-06 Barrier coating composition and composite film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018026062A JP7113628B2 (en) 2018-02-16 2018-02-16 Barrier coating composition and composite film
JP2018-026062 2018-02-16

Publications (1)

Publication Number Publication Date
WO2019159786A1 true WO2019159786A1 (en) 2019-08-22

Family

ID=67618977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004226 WO2019159786A1 (en) 2018-02-16 2019-02-06 Barrier coating composition and composite film

Country Status (3)

Country Link
JP (1) JP7113628B2 (en)
CN (1) CN111712553A (en)
WO (1) WO2019159786A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7319800B2 (en) * 2019-03-28 2023-08-02 サカタインクス株式会社 Barrier coating composition and composite film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001058383A (en) * 1999-06-15 2001-03-06 Toray Ind Inc Resin coated polyester film and production thereof
JP2003268309A (en) * 2002-03-20 2003-09-25 Jsr Corp Gas barrier coating composition and method for producing the same
JP2007076005A (en) * 2005-09-09 2007-03-29 Kobe Steel Ltd Resin coated metal sheet
JP2012020433A (en) * 2010-07-13 2012-02-02 Reiko Co Ltd Transparent gas barrier film
WO2016013624A1 (en) * 2014-07-25 2016-01-28 三菱樹脂株式会社 Gas barrier multilayer film
JP2017213789A (en) * 2016-06-01 2017-12-07 株式会社麗光 Transparent gas barrier film, and laminated film using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60312924T2 (en) * 2002-06-04 2007-09-06 Mitsubishi Gas Chemical Co., Inc. Polyurethane with gas barrier Properties as an adhesive for laminates and films and paints made from them
CN102229765B (en) * 2011-04-28 2013-01-23 贵州大学 Composite heat insulation thin layer emulsion paint for building exterior wall
CN103045066B (en) * 2013-01-15 2014-05-28 中南大学 Compound material capable of efficiently resisting ultraviolet and preparation method thereof
JP6191221B2 (en) 2013-04-25 2017-09-06 凸版印刷株式会社 Water-based coating agent and gas barrier film
CN107960093B (en) 2015-04-22 2020-05-26 凸版印刷株式会社 Coating agent and gas barrier film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001058383A (en) * 1999-06-15 2001-03-06 Toray Ind Inc Resin coated polyester film and production thereof
JP2003268309A (en) * 2002-03-20 2003-09-25 Jsr Corp Gas barrier coating composition and method for producing the same
JP2007076005A (en) * 2005-09-09 2007-03-29 Kobe Steel Ltd Resin coated metal sheet
JP2012020433A (en) * 2010-07-13 2012-02-02 Reiko Co Ltd Transparent gas barrier film
WO2016013624A1 (en) * 2014-07-25 2016-01-28 三菱樹脂株式会社 Gas barrier multilayer film
JP2017213789A (en) * 2016-06-01 2017-12-07 株式会社麗光 Transparent gas barrier film, and laminated film using the same

Also Published As

Publication number Publication date
JP2019143000A (en) 2019-08-29
JP7113628B2 (en) 2022-08-05
CN111712553A (en) 2020-09-25

Similar Documents

Publication Publication Date Title
JP6760270B2 (en) Coating agent for gas barrier film formation and gas barrier film
TWI627240B (en) Water-based coating agent and gas barrier film for gravure printing
US20090148640A1 (en) Gas barrier composite film for hydrothermally processable package and packaging bag obtained by using same
WO2014175277A1 (en) Aqueous coating agent and gas barrier film
KR20140130138A (en) Aqueous coating agent and gas barrier film
JP2014231365A (en) Gas barrier packaging material
AU755942B2 (en) Vapor deposition film and packaging material
JP2009101684A (en) Gas barrier laminate
WO2019159786A1 (en) Barrier coating composition and composite film
JP7319800B2 (en) Barrier coating composition and composite film
JP2015044943A (en) Aqueous coating agent for gravure printing and gas barrier film
JP3736130B2 (en) Strong adhesion gas barrier transparent laminate and packaging body using the same
JP2017071693A (en) Coating agent and gas barrier film
JP2006192901A (en) Vapor deposition film for boil sterilization and retort sterilization, and for packaging container which holds contents including moisture, and packaging material using this vapor deposition film
JP4169629B2 (en) Gas barrier composite film
JP7110709B2 (en) gas barrier film
JP2017171799A (en) Barrier coating composition for lamination, and barrier composite film for lamination
JP6524781B2 (en) Coating agent and gas barrier film
EP4324644A1 (en) Gas barrier film, packaging material, and packaging bag
JP7230641B2 (en) gas barrier film
JP2020168834A (en) Gas barrier film
WO2023195474A1 (en) Gas barrier laminate, packaging film, packaging container, and packaged product
JP3797039B2 (en) Vapor deposition film and packaging material using the vapor deposition film
JP2018076444A (en) Barrier coating composition for laminate and barrier composite film for laminate
JP2006188067A (en) Vapour deposition film and packaging material using it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754960

Country of ref document: EP

Kind code of ref document: A1