WO2019159704A1 - Substrate processing device, substrate processing method, and storage medium - Google Patents

Substrate processing device, substrate processing method, and storage medium Download PDF

Info

Publication number
WO2019159704A1
WO2019159704A1 PCT/JP2019/003476 JP2019003476W WO2019159704A1 WO 2019159704 A1 WO2019159704 A1 WO 2019159704A1 JP 2019003476 W JP2019003476 W JP 2019003476W WO 2019159704 A1 WO2019159704 A1 WO 2019159704A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
shift amount
region
substrate processing
abnormal
Prior art date
Application number
PCT/JP2019/003476
Other languages
French (fr)
Japanese (ja)
Inventor
晋一朗 三坂
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2020500387A priority Critical patent/JP6964176B2/en
Priority to KR1020207026242A priority patent/KR102626801B1/en
Priority to CN201980012530.9A priority patent/CN111699544B/en
Publication of WO2019159704A1 publication Critical patent/WO2019159704A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • H05B3/0038Heating devices using lamps for industrial applications
    • H05B3/0047Heating devices using lamps for industrial applications for semiconductor manufacture

Definitions

  • the present disclosure relates to a substrate processing apparatus, a substrate processing method, and a storage medium.
  • a configuration for performing heat treatment for example, a configuration in which a hot plate is heated by a temperature controller for each of a plurality of channels (regions) to apply heat to the substrate can be considered.
  • a temperature abnormality is detected by the temperature sensor, it cannot be specified which channel (region) of the heat plate causes the temperature abnormality due to a malfunction.
  • This disclosure has been made in view of the above circumstances, and an object of the present disclosure is to accurately identify an occurrence region of a defect causing a temperature abnormality when a temperature abnormality occurs in the heat treatment.
  • a substrate processing apparatus is provided corresponding to a plurality of regions of a hot plate that places a substrate and applies heat to the substrate, a temperature controller that heats the hot plate, and a hot plate.
  • a plurality of temperature sensors for measuring the temperature of the hot plate, and a control unit, the control unit for each of a plurality of areas, the temperature sensor measured temperature and the ideal temperature according to the setting of the temperature controller It is configured to calculate a temperature shift amount that is a difference, determine whether the temperature shift amount is within a predetermined normal range, and specify an abnormal region based on the determination result Has been.
  • temperature sensors are provided corresponding to a plurality of regions of the hot plate. Then, for each of the plurality of regions, it is determined whether or not the temperature shift amount that is the difference between the measured temperature and the ideal temperature is within the normal range, and the abnormal region is specified based on the result of the determination.
  • a temperature sensor is provided for each of a plurality of regions, and it is determined whether or not the temperature shift amount is within a normal range for each of the plurality of regions, and the determination result is used to identify an abnormal region.
  • An abnormal region can be identified in consideration of temperature conditions (such as whether or not a temperature abnormality has occurred) in each of the plurality of regions.
  • the abnormal area causing the temperature abnormality (defect occurrence area) can be accurately identified. can do.
  • the substrate processing apparatus of the present disclosure when a temperature abnormality occurs in the heat treatment, it is possible to accurately specify the occurrence region of the defect causing the temperature abnormality.
  • the control unit may specify the abnormal region in consideration of both the temperature shift amount in the region where the temperature shift amount is not within the normal range and the temperature shift amount in the region where the temperature shift amount is within the normal range. For example, consider a case where the measured temperature of one of the two regions is higher than the measured temperature of the other region, and it is determined that the temperature shift amount is not within the normal range for only one region. In this case, for example, it is estimated that the actual temperature is lower than that in the normal state in one of the two regions.
  • the temperature shift amount of the other region is within the normal range, and the other region
  • the above-mentioned state (one region) is not exerted excessively on one region, and control by the temperature controller is appropriately performed so that the temperature shift amount in one region is within the normal range. It is considered that the temperature shift amount is not stable in the normal range). Therefore, it is considered that the actual temperature does not decrease in the other region.
  • the actual temperature is reduced in one region (region in which the temperature shift amount is determined not to be within the normal range)
  • the temperature in one region is decreased according to the measured temperature in one region.
  • the actual temperature is raised by the heat effect of the other region, and the temperature is raised. Accordingly, the measured temperature may rise correspondingly, and the state where the temperature shift amount is not within the normal range may be continued. Therefore, in the case where the actual temperature is lowered, it is determined that the temperature shift amount of one region is not within the normal range, and the temperature shift amount of the other region is determined to be within the normal range, In this region, the actual temperature is lowered, and this one region can be identified as an abnormal region.
  • the abnormal region can be appropriately identified by considering the temperature shift amount of the region where the temperature shift amount is not within the normal range and the temperature shift amount of the region within the normal range.
  • the control unit may specify the abnormal region in consideration of the output amount of the temperature controller corresponding to each of the plurality of regions. For example, when temperature control is performed for an abnormal region, the temperature control affects the region other than the abnormal region, and the temperature shift amount in the region other than the abnormal region may be outside the normal range. When the temperature shift amount is outside the normal range for areas other than the abnormal area, the abnormal area cannot be uniquely identified from the temperature shift amount alone.
  • the output amount of the temperature controller changes according to the actual temperature of the hot plate. For this reason, when a control part considers the output amount of a temperature controller and specifies an abnormal area
  • the control unit identifies the region as an abnormal region when there is a region where the difference between the normal output amount and the normal value is greater than or equal to a predetermined value in a plurality of regions.
  • An area whose amount is not within the normal range may be specified as an abnormal area.
  • the case where the measured temperature is higher than the actual temperature Is considered to be a low case (measurement temperature drop case).
  • the temperature controller settings are changed (changed in the direction of decreasing the temperature) based on the measured temperature, and the measured temperature and actual temperature in the corresponding region (measured temperature rising region) Will be reduced. Then, when the influence of the actual temperature drop in the measured temperature rise region extends to the other regions, the measured temperature and the actual temperature in the other regions are slightly lowered (with a smaller width than the measured temperature rise region).
  • the measured temperature is higher in the measured temperature rise region than in the other regions, and the output amount is reduced as the actual temperature is lowered.
  • the measured temperature rise area and other areas are areas where the actual temperature is low and the output amount is small, so the difference in the output amount from the normal time is large in multiple areas. Does not exist.
  • the measured temperature rise region where the actual temperature is lower than the other regions and can become an abnormal region has a higher measured temperature and a larger temperature shift amount than the other regions. From the above, when there is no region where the difference in output amount from the normal time is large, by specifying a region with a large temperature shift amount (not within the normal range) as an abnormal region, a temperature abnormality occurs. Can be accurately identified.
  • the measured temperature is lowered, if the temperature controller setting is changed (changed in the direction of increasing the temperature) based on the measured temperature, the measured temperature in the region (measured temperature lowered region) corresponding to the temperature controller is changed. And the actual temperature will rise. Then, when the influence of the actual temperature rise in the measurement temperature reduction region extends to other regions, the measurement temperature and the actual temperature in the other regions also slightly increase (with a width smaller than that of the measurement temperature reduction region). As described above, in the measurement temperature reduction case, the measurement temperature is lower in the measurement temperature reduction region than in the other regions, and the output amount is increased by increasing the actual temperature. In the measurement temperature reduction case, the output amount of the measurement temperature reduction region that can be an abnormal region protrudes and becomes larger than other regions.
  • region is higher than a measured temperature fall area
  • the generated area can be specified with high accuracy.
  • the controller may start determining whether or not the temperature shift amount is within a normal range after the temperature of the hot plate reaches a steady state.
  • the temperature shift amount is not determined in a transition period or the like at the time of temperature rise control in which the amount of output applied from the temperature controller to the heat plate is intentionally changed, and a period in which an abnormal region needs to be identified ( The processing relating to the specification of the abnormal region can be performed only in the period of the steady state).
  • the control unit may set the normal range wider than the range that can vary as the difference between the measured temperature and the ideal temperature in the steady state of the hot plate operating normally.
  • the temperature shift amount is determined not to be within the normal range in a state where the measurement temperature varies greatly while in the normal operating state. This can be prevented. That is, it is possible to prevent a normal process from being hindered by the control described above.
  • the temperature controller is configured to heat a plurality of regions in accordance with a preset command temperature, and the control unit changes the command temperature related to the abnormal region, thereby changing the temperature shift amount of the abnormal region. It may be configured to further execute correction control so that is within the normal range. By changing the command temperature set in the temperature controller, the temperature shift amount in the abnormal region can be corrected easily and appropriately.
  • the control unit After the change of the command temperature, the control unit is in a first state in which the difference between the output amount of the temperature controller related to the abnormal region and the output amount of the temperature controller corresponding to the normal command temperature is smaller than a predetermined value. Until then, the change of the command temperature may be repeated. For example, when the measured temperature of the temperature sensor that is half-broken is deviated from the actual temperature of the hot plate, the measured temperature of the temperature sensor may not be accurate. Even in such a case, it is determined whether or not the output amount corresponding to the actual temperature is normal, and if it is not normal, the process of changing the command temperature is repeated, so that the measured temperature of the temperature sensor The temperature abnormality can be corrected without depending on the accuracy of.
  • the control unit may determine whether or not to continue the subsequent processing based on the measured temperature in the abnormal region after the first state is reached. After the temperature abnormality is corrected in the first state (that is, the actual temperature is accurate), it is determined whether or not the measured temperature of the temperature sensor in the region that has become the abnormal region is accurate. It is possible to appropriately determine whether or not it is possible to continue processing using.
  • the control unit may continuously determine whether the temperature shift amount is within a normal range while the temperature of the hot plate is in a steady state. Since the abnormal area is continuously detected during the steady state, a dedicated operation for detecting the abnormal area becomes unnecessary, and the abnormal area is detected without affecting the normal device operation recipe. Can do.
  • a substrate processing method calculates a temperature shift amount that is a difference between a measured temperature of a plurality of regions of a hot plate that applies heat to a substrate and an ideal temperature of the plurality of regions, and the temperature
  • the abnormal region is identified in consideration of both the temperature shift amount of the region where the temperature shift amount is not within the normal range and the temperature shift amount of the region where the temperature shift amount is within the normal range. May be.
  • the abnormal region may be specified in consideration of the output amount of the temperature controller corresponding to each of the plurality of regions.
  • the region is identified as an abnormal region.
  • a region where the temperature shift amount is not within the normal range may be specified as an abnormal region.
  • the step of determining may be started after the temperature of the hot plate reaches a steady state.
  • the determination process may be executed by setting the normal range wider than the range that can vary as the difference between the measured temperature and the ideal temperature in the steady state of the hot plate that operates normally.
  • the substrate processing method may further include a step of performing correction control so that the temperature shift amount in the abnormal region is within the normal range by changing the command temperature of the temperature controller that heats the hot plate.
  • a difference between the output amount of the temperature controller related to the abnormal region and the output amount of the temperature controller corresponding to the normal command temperature is smaller than a predetermined value. You may repeat change of command temperature until it will be in a state.
  • the subsequent processing it may be determined whether or not the subsequent processing can be continued based on the measured temperature in the abnormal region after the first state is reached.
  • a step of continuously determining may be executed.
  • the computer-readable medium stores a program for causing the apparatus to execute the substrate processing method described above.
  • the substrate processing apparatus when a temperature abnormality occurs in the heat treatment, it is possible to accurately identify the occurrence region of the defect that causes the temperature abnormality. .
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 2.
  • It is a schematic longitudinal cross-sectional view which shows an example of the heat processing unit.
  • It is a schematic diagram which shows arrangement
  • the substrate processing system 1 is a system for forming a photosensitive film, exposing the photosensitive film, and developing the photosensitive film on a substrate.
  • the substrate to be processed is, for example, a semiconductor wafer W.
  • the photosensitive film is, for example, a resist film.
  • the substrate processing system 1 includes a coating / developing device 2 and an exposure device 3.
  • the exposure apparatus 3 performs an exposure process on the resist film formed on the wafer W. Specifically, the exposure target portion of the resist film is irradiated with energy rays by a method such as immersion exposure.
  • the coating / developing apparatus 2 performs a process of forming a resist film on the surface of the wafer W before the exposure process by the exposure apparatus 3, and performs a development process of the resist film after the exposure process.
  • the coating / developing apparatus 2 includes a carrier block 4, a processing block 5, an interface block 6, and a controller 100.
  • the carrier block 4 introduces the wafer W into the coating / developing apparatus 2 and derives the wafer W from the coating / developing apparatus 2.
  • the carrier block 4 can support a plurality of carriers 11 for the wafer W and incorporates a delivery arm A1.
  • the carrier 11 accommodates a plurality of circular wafers W, for example.
  • the delivery arm A ⁇ b> 1 takes out the wafer W from the carrier 11 and delivers it to the processing block 5, receives the wafer W from the processing block 5, and returns it into the carrier 11.
  • the processing block 5 has a plurality of processing modules 14, 15, 16, and 17.
  • the processing modules 14, 15, 16, and 17 include a plurality of liquid processing units U1, a plurality of heat treatment units U2, and a transfer arm A3 that transfers the wafer W to these units.
  • the processing module 17 further includes a direct transfer arm A6 that transfers the wafer W without passing through the liquid processing unit U1 and the heat treatment unit U2.
  • the liquid processing unit U1 applies the processing liquid to the surface of the wafer W.
  • the heat treatment unit U2 includes, for example, a hot plate and a cooling plate, heats the wafer W with the hot plate, and cools the heated wafer W with the cooling plate to perform the heat treatment.
  • the processing module 14 forms a lower layer film on the surface of the wafer W by the liquid processing unit U1 and the heat treatment unit U2.
  • the liquid processing unit U1 of the processing module 14 applies a processing liquid for forming a lower layer film on the wafer W.
  • the heat treatment unit U2 of the processing module 14 performs various heat treatments associated with the formation of the lower layer film.
  • the processing module 15 forms a resist film on the lower layer film by the liquid processing unit U1 and the heat treatment unit U2.
  • the liquid processing unit U1 of the processing module 15 applies a processing liquid (coating liquid) for forming a resist film on the lower layer film.
  • the heat treatment unit U2 of the processing module 15 performs various heat treatments accompanying the formation of the resist film. Details of the liquid processing unit U1 of the processing module 15 will be described later.
  • the processing module 16 forms an upper layer film on the resist film by the liquid processing unit U1 and the heat treatment unit U2.
  • the liquid processing unit U1 of the processing module 16 applies a processing liquid for forming an upper layer film on the resist film.
  • the heat treatment unit U2 of the processing module 16 performs various heat treatments accompanying the formation of the upper layer film.
  • the processing module 17 develops the resist film after exposure by the liquid processing unit U1 and the heat treatment unit U2.
  • the liquid processing unit U1 of the processing module 17 applies a developing processing liquid (developing liquid) on the exposed surface of the wafer W, and then rinses it with a cleaning processing liquid (rinsing liquid) to thereby remove the resist.
  • the film is developed.
  • the heat treatment unit U2 of the processing module 17 performs various heat treatments associated with the development processing. Specific examples of the heat treatment include heat treatment before development processing (PEB: Post Exposure Bake), heat treatment after development processing (PB: Post Bake), and the like.
  • a shelf unit U10 is provided on the carrier block 4 side in the processing block 5.
  • the shelf unit U10 is partitioned into a plurality of cells arranged in the vertical direction.
  • An elevating arm A7 is provided in the vicinity of the shelf unit U10.
  • the raising / lowering arm A7 raises / lowers the wafer W between the cells of the shelf unit U10.
  • a shelf unit U11 is provided on the interface block 6 side in the processing block 5.
  • the shelf unit U11 is partitioned into a plurality of cells arranged in the vertical direction.
  • the interface block 6 delivers the wafer W to and from the exposure apparatus 3.
  • the interface block 6 includes a delivery arm A8 and is connected to the exposure apparatus 3.
  • the delivery arm A8 delivers the wafer W arranged on the shelf unit U11 to the exposure apparatus 3, receives the wafer W from the exposure apparatus 3, and returns it to the shelf unit U11.
  • the controller 100 controls the coating / developing apparatus 2 so as to execute the coating / developing process in the following procedure, for example.
  • the controller 100 controls the transfer arm A1 so as to transfer the wafer W in the carrier 11 to the shelf unit U10, and controls the lift arm A7 so as to place this wafer W in the cell for the processing module 14.
  • the controller 100 controls the transfer arm A3 so as to transfer the wafer W of the shelf unit U10 to the liquid processing unit U1 and the heat treatment unit U2 in the processing module 14, and forms a lower layer film on the surface of the wafer W.
  • the liquid processing unit U1 and the heat treatment unit U2 are controlled.
  • the controller 100 controls the transfer arm A3 so as to return the wafer W on which the lower layer film is formed to the shelf unit U10, and controls the lifting arm A7 so as to place the wafer W in the cell for the processing module 15.
  • the controller 100 controls the transfer arm A3 so as to transfer the wafer W of the shelf unit U10 to the liquid processing unit U1 and the heat treatment unit U2 in the processing module 15, and forms a resist film on the lower layer film of the wafer W.
  • the liquid processing unit U1 and the heat treatment unit U2 are controlled.
  • the controller 100 controls the transfer arm A3 so as to return the wafer W to the shelf unit U10, and controls the lift arm A7 so as to place the wafer W in the cell for the processing module 16.
  • the controller 100 controls the transfer arm A3 so as to transfer the wafer W of the shelf unit U10 to each unit in the processing module 16, and the liquid processing unit so as to form an upper layer film on the resist film of the wafer W.
  • U1 and heat treatment unit U2 are controlled.
  • the controller 100 controls the transfer arm A3 so as to return the wafer W to the shelf unit U10, and controls the lifting arm A7 so as to place the wafer W in the cell for the processing module 17.
  • the controller 100 directly controls the transfer arm A6 so as to transfer the wafer W of the shelf unit U10 to the shelf unit U11, and controls the transfer arm A8 so as to send this wafer W to the exposure apparatus 3. Thereafter, the controller 100 controls the transfer arm A8 so that the wafer W subjected to the exposure process is received from the exposure apparatus 3 and returned to the shelf unit U11.
  • the controller 100 controls the transfer arm A3 so as to transfer the wafer W of the shelf unit U11 to each unit in the processing module 17, and the liquid processing unit U1 and the processing unit U1 and the resist film of the wafer W are subjected to development processing.
  • the heat treatment unit U2 is controlled.
  • the controller 100 controls the transfer arm A3 to return the wafer W to the shelf unit U10, and controls the lift arm A7 and the delivery arm A1 to return the wafer W into the carrier 11.
  • the coating / developing process is completed.
  • the specific configuration of the substrate processing apparatus is not limited to the configuration of the coating / developing apparatus 2 exemplified above. Any substrate processing apparatus may be used as long as it includes a liquid processing unit U1 for forming a film (liquid processing unit U1 of the processing modules 14, 15, and 16) and a controller 100 that can control the unit. Good.
  • the heat treatment unit U2 of the processing module 15 includes a housing 90, a heating mechanism 30, a temperature adjustment mechanism 50, and a controller 100 (control unit).
  • the housing 90 is a processing container that houses the heating mechanism 30 and the temperature adjustment mechanism 50.
  • An entrance 91 for the wafer W is opened on the side wall of the housing 90.
  • a floor plate 92 that divides the inside of the housing 90 into an upper region that is a movement region of the wafer W and a lower region is provided in the housing 90.
  • the heating mechanism 30 is configured to heat the wafer W.
  • the heating mechanism 30 includes a support base 31, a top plate portion 32, a lifting mechanism 33, a heating plate 34, a support pin 35, a lifting mechanism 36, an exhaust duct 37, a heater 38 (temperature controller), And a temperature sensor 39 (specifically, a plurality of temperature sensors 39a to 39g (see FIG. 5)).
  • the support base 31 is a member having a cylindrical shape in which a concave portion is formed in the central portion.
  • the support base 31 supports the heat plate 34.
  • the top plate portion 32 is a disk-like member having a diameter similar to that of the support base 31.
  • the top plate portion 32 faces the support base 31 with a gap in a state where the top plate portion 32 is supported by, for example, the ceiling portion of the housing 90.
  • An exhaust duct 37 is connected to the top of the top plate portion 32. The exhaust duct 37 exhausts the inside of the chamber.
  • the elevating mechanism 33 is configured to elevate and lower the top plate portion 32 according to the control of the controller 100.
  • the chamber which is a space for performing the heat treatment of the wafer W, is opened, and when the top plate portion 32 is lowered, the chamber is closed. It becomes.
  • the hot plate 34 is a flat plate having a circular shape (see FIG. 5), and is fitted in the recess of the support base 31.
  • the hot plate 34 places the wafer W thereon and applies heat to the wafer W.
  • the hot plate 34 is heated by a heater 38.
  • the hot plate 34 is heated by a heater 38 for each of a plurality of channels (regions).
  • a plurality of temperature sensors 39a to 39g configured to measure the temperature of the hot plate 34 are provided for each of the plurality of channels described above.
  • the heater 38 is a temperature controller that heats the hot plate 34.
  • the heater 38 is composed of a resistance heating element, for example.
  • the heater 38 is configured to heat a plurality of channels of the hot plate 34 according to the command temperature set by the controller 100. That is, the heater 38 is set with a command temperature for each of a plurality of channels. The command temperature of each channel can be individually changed by the controller 100.
  • the heater 38 heats the hot plate 34 with an output amount corresponding to the actual temperature of the hot plate 34.
  • the plurality of temperature sensors 39a to 39g are provided in one-to-one correspondence with the plurality of channels (regions) of the hot plate 34, and measure the temperature of the hot plate 34 in the corresponding channel.
  • the plurality of temperature sensors 39a to 39g may be provided inside the hot plate 34 or may be provided on the lower surface of the hot plate 34.
  • FIG. 5 is a diagram schematically showing an example of the arrangement of the plurality of temperature sensors 39a to 39g on the hot plate.
  • a temperature sensor 39a is provided in the vicinity of the center of the circular hot plate 34, and four temperature sensors 39d, 39e, 39f are provided at substantially equal intervals in the circumferential direction near the outer edge of the hot plate 34.
  • a temperature sensor 39b is provided between the temperature sensor 39a and the temperature sensor 39d in the radial direction
  • a temperature sensor 39c is provided between the temperature sensor 39a and the temperature sensor 39f in the radial direction. It has been.
  • the support pins 35 are members that extend through the support base 31 and the hot plate 34 and support the wafer W from below.
  • the support pins 35 are moved up and down to place the wafer W at a predetermined position.
  • the support pins 35 are configured to deliver the wafer W to and from the temperature adjustment plate 51 that transports the wafer W.
  • three support pins 35 are provided at equal intervals in the circumferential direction.
  • the elevating mechanism 36 is configured to raise and lower the support pin 35 in accordance with the control of the controller 100.
  • the temperature adjusting mechanism 50 is configured to deliver (carry) the wafer W between the hot plate 34 and the external transfer arm A3 (see FIG. 3) and adjust the temperature of the wafer W to a predetermined temperature.
  • the temperature adjustment mechanism 50 includes a temperature adjustment plate 51 and a connection bracket 52.
  • the temperature adjustment plate 51 is a plate for adjusting the temperature of the mounted wafer W. Specifically, the temperature adjustment plate 51 is a plate for mounting the wafer W heated by the hot plate 34 and cooling the wafer W to a predetermined temperature. .
  • the temperature adjustment plate 51 is made of, for example, a metal having a high thermal conductivity, such as aluminum, silver, or copper, and may be made of the same material from the viewpoint of preventing deformation due to heat. Inside the temperature adjustment plate 51, a cooling flow path (not shown) for flowing cooling water and / or cooling gas is formed.
  • connection bracket 52 is connected to the temperature adjustment plate 51 and is driven by the drive mechanism 53 controlled by the controller 100 to move in the housing 90. More specifically, the connection bracket 52 is movable along a guide rail (not shown) extending from the carry-in port 91 of the housing 90 to the vicinity of the heating mechanism 30. The temperature adjustment plate 51 can be moved from the carry-in port 91 to the heating mechanism 30 by the connection bracket 52 moving along a guide rail (not shown).
  • the connection bracket 52 is made of, for example, a metal having a high thermal conductivity such as aluminum, silver, or copper.
  • the controller 100 sets a temperature shift amount, which is a difference between the display temperature of the temperature sensor 39 (measured temperature measured by the temperature sensor 39) and the ideal temperature according to the setting of the heater 38, for each of the plurality of channels of the hot plate 34. Calculate and determine whether or not the temperature shift amount is within a predetermined normal range, and specify an abnormal region based on the determination result (for example, there is a channel whose temperature shift amount is not within the normal range) In such a case, the channel is identified as an abnormal channel). The controller 100 identifies the abnormal region in consideration of both the temperature shift amount in the region where the temperature shift amount is not within the normal range and the temperature shift amount in the region where the temperature shift amount is within the normal range.
  • the controller 100 identifies an abnormal channel in consideration of the output amount of the heater 38 corresponding to each of the plurality of channels.
  • the controller 100 identifies the channel as an abnormal channel when there is a channel whose difference from the normal output amount is a predetermined value or more in a plurality of channels. A channel whose amount is not within the normal range is identified as an abnormal channel.
  • the controller 100 starts determining whether or not the temperature shift amount is within the normal range after the temperature of the hot plate 34 reaches a steady state.
  • the controller 100 continuously determines whether or not the temperature shift amount is within the above-described normal range while the temperature of the hot plate 34 is in a steady state.
  • the controller 100 sets the above-described normal range wider than a range that can vary as a difference between the display temperature of the temperature sensor 39 and the above-described ideal temperature in the steady state of the hot plate 34 that operates normally.
  • the controller 100 is configured to further execute correction control so that the temperature shift amount of the abnormal channel falls within the normal range by changing the command temperature of the heater 38 related to the abnormal channel. After the change in the command temperature, the controller 100 is in a first state in which the difference between the output amount of the heater 38 related to the abnormal channel and the output amount of the heater 38 corresponding to the command temperature at the normal time is smaller than a predetermined value. Repeat until the command temperature is changed. After entering the first state, the controller 100 determines whether or not to continue the subsequent processing based on the display temperature of the temperature sensor 39 in the abnormal channel.
  • the controller 100 includes a transport control unit 101, a determination unit 102, an abnormal channel identification unit 103, and a correction unit 104 as functional modules.
  • the transport control unit 101 controls the lifting mechanism 33 so that the chamber is opened and closed by lifting and lowering the top plate part 32. Further, the transfer control unit 101 controls the elevating mechanism 36 so that the wafer W is transferred between the temperature adjustment plate 51 and the support pins 35 by elevating the support pins 35. Further, the transport control unit 101 controls the drive mechanism 53 so that the temperature adjustment plate 51 moves in the housing 90.
  • the determination unit 102 calculates a temperature shift amount that is a difference between the display temperature of the temperature sensor 39 and the ideal temperature according to the setting of the heater 38 for each of the plurality of channels of the heat plate 34, and the temperature shift amount is predetermined. Is within a normal range (hereinafter referred to as “bandwidth”).
  • the determination unit 102 acquires display temperatures from the plurality of temperature sensors 39a to 39g at predetermined time intervals.
  • the ideal temperature according to the setting of the heater 38 is a temperature assumed as the temperature of the hot plate 34 (the temperature of the hot plate 34 in a normal state) according to the command temperature set in advance in the heater 38.
  • the determination unit 102 can vary the above-described bandwidth as a difference between the display temperature of the temperature sensor 39 and the ideal temperature in the steady state of the hot plate 34 that is operating normally (for example, it can be varied by opening / closing the chamber). Set a wider range.
  • the determination unit 102 starts determining whether or not the temperature shift amount is within the bandwidth after the temperature of the hot plate 34 reaches a steady state. In other words, the determination unit 102 does not determine the temperature shift amount in the transition period or the temperature decrease control during the temperature increase control in which the output amount applied to the heat plate 34 is intentionally changed at the start of the process. The determination is started after the temperature of 34 reaches a steady state. The determination unit 102 continuously determines whether or not the temperature shift amount is within the bandwidth while the temperature of the hot plate 34 is in a steady state.
  • the abnormal channel specifying unit 103 specifies the channel as an abnormal channel when there is a channel whose temperature shift amount is not within the bandwidth.
  • the abnormal channel specifying unit 103 specifies an abnormal channel in consideration of the output amount of the heater 38 corresponding to each of the plurality of channels. As described above, the abnormal channel specifying unit 103 specifies an abnormal channel in consideration of the temperature shift amount and the output amount of the heater 38.
  • the abnormal channel specifying unit 103 sets the channel as an abnormal channel when a plurality of channels have a channel whose difference from the normal output amount of the heater 38 is a predetermined value or more. If specified (specific processing 2) and does not exist, a channel whose temperature shift amount is not within the bandwidth is specified as an abnormal channel (specific processing 1).
  • FIG. 6A shows the display temperature (measured temperature measured by the temperature sensor 39a corresponding to CH1 and measured temperature measured by the temperature sensor 39b corresponding to CH2) for each of the two channels (CH1, CH2). And the actual temperature are shown, with the vertical axis representing temperature and the horizontal axis representing time.
  • FIG. 6A shows the normal state ST1, the rising first state ST2, and the rising second state ST3 along with the passage of time.
  • the display temperature and the actual temperature are about 400 ° C. for both channels. From this state, for example, when a half-break occurs in the temperature sensor 39a and the resistance value of the temperature sensor 39a increases, the display temperature of CH1 deviates from the actual temperature to around 430 ° C., and only the display temperature of CH1 rises. 1 state ST2. In such a case, since the command temperature corresponding to CH1 in the heater 38 is changed to a direction in which the temperature of CH1 is decreased by an increase, the second temperature state ST3 in which the display temperature and the actual temperature of CH1 are decreased is obtained. .
  • FIG. 6B For each of the two channels (CH1, CH2), the display temperature (the measured temperature measured by the temperature sensor 39a corresponding to CH1 and the measured temperature measured by the temperature sensor 39b corresponding to CH2) is shown. And the actual temperature are shown, with the vertical axis representing temperature and the horizontal axis representing time.
  • the normal state ST101 state shown on the left
  • the lowered first state ST102 the state shown in the middle
  • the lowered second state ST103 shown on the right
  • the display temperature and the actual temperature are about 400 ° C. for both channels. From this state, when the resistance value of the temperature sensor 39a decreases, the display temperature of CH1 deviates from the actual temperature and becomes around 370 ° C., and a first state ST102 in which only the display temperature of CH1 decreases is reached. In such a case, since the command temperature corresponding to CH1 in the heater 38 is changed to a direction in which the temperature of CH1 is increased by a decrease, the second temperature state ST103 in which the display temperature and the actual temperature of CH1 are increased is obtained. .
  • the actual temperature of CH1 rises greatly (becomes an abnormal channel), and the output amount of the heater 38 corresponding to CH1 protrudes and becomes large.
  • the display temperature of CH2 is higher than the display temperature of CH1 (that is, the temperature shift amount of CH2 is large). From the above, if there is a channel whose difference from the normal output amount is greater than or equal to a predetermined value, the specific process 2 is performed, and the channel with a large output amount is set as an abnormal channel instead of a channel with a large temperature shift amount. By specifying, an abnormal channel can be appropriately specified.
  • the identification of the abnormal channel when the identification process 1 and the identification process 2 are performed will be described with reference to FIG.
  • the seven channels (CH1 to CH7) shown in FIG. 7 correspond to CH1 to CH7 shown in FIG. That is, the temperature sensors 39 corresponding to CH1 to CH7 shown in FIG. 7 are the temperature sensors 39a to 39g shown in FIG.
  • “CH1 operation” shown in FIG. 7 refers to raising or lowering the actual temperature of CH1.
  • CH2 operation and “CH4 operation” refer to increasing or decreasing the actual temperature of CH2 (or CH4).
  • FIG. 7 shows nine graphs g1 to g9.
  • Graphs g1 to g3 show the amount of temperature shift of each channel when the actual temperature of each channel is changed. Specifically, the graph g1 shows the temperature shift amount of each channel when the actual temperature of CH1 is increased by 20 ° C. and when the actual temperature of CH1 is decreased by 20 ° C., and the graph g2 increases the actual temperature of CH2 by 20 ° C.
  • the graph g3 shows the temperature shift amount of each channel when the actual temperature of CH4 is raised by 20 ° C and when the actual temperature of CH4 is lowered by 20 ° C. ing.
  • Graphs g4 to g6 show the output amount of each channel when the actual temperature of each channel is changed (the output amount of the heater 38) and the output amount of each channel when the actual temperature is not changed. Show. Specifically, the graph g4 shows the output amount of each channel and the normal output amount when the actual temperature of CH1 is raised by 20 ° C. and lowered by 20 ° C., and the graph g5 shows the actual temperature of CH2. The graph shows the output amount of each channel when the temperature is increased by 20 ° C. and when the temperature is decreased by 20 ° C. and the output amount at normal time. Graph g6 shows the case where the actual temperature of CH4 is increased by 20 ° C. and the output amount is decreased by 20 ° C.
  • Graphs g7 to g9 show the output difference of each channel when the actual temperature of each channel is changed (output difference from the normal time when the temperature is not changed). Specifically, the graph g7 shows the output difference when the actual temperature of CH1 is increased by 20 ° C. and when the actual temperature of CH1 is decreased by 20 ° C., and the graph g8 is obtained when the actual temperature of CH2 is increased by 20 ° C. The output difference when lowered is shown, and the graph g9 shows the output difference when the actual temperature of CH4 is raised by 20 ° C and when lowered by 20 ° C.
  • the channel is changed to an abnormal channel by changing the actual temperature.
  • the temperature shift amount of is large. In the example shown in FIG. 7, for example, by setting the bandwidth to 1.5 ° C., it is possible to extract only the abnormal channel whose temperature actually changes.
  • the channel in which the actual temperature is changed The temperature shift amount other than is larger. For example, in the graph g1, the temperature shift amounts of CH2 and CH3 that are close to CH1 (see FIG. 5) are large. From this, it can be said that the abnormal channel may not be identified only from the temperature shift amount.
  • the abnormal channel specifying unit 103 specifies a channel as an abnormal channel when a plurality of channels have a channel whose difference from the normal output amount is a predetermined value or more ( If the identification process 2) does not exist, the abnormal channel can be identified with high accuracy by identifying the channel whose temperature shift amount is not within the bandwidth as the abnormal channel (identification process 1).
  • the correction unit 104 performs correction control so that the temperature shift amount of the abnormal channel is within the normal range by changing the command temperature of the heater 38 related to the abnormal channel. Specifically, the correction unit 104 acquires the temperature of the hot plate 34 from the temperature sensor 39 of the channel specified as the abnormal channel by the abnormal channel specifying unit 103, and changes the temperature so as to improve the temperature abnormality. 38 command temperature is changed. After the change of the command temperature described above, the correction unit 104 is in a first state where the difference between the output amount of the heater 38 related to the abnormal channel and the output amount of the heater 38 corresponding to the command temperature in the normal state is smaller than a predetermined value.
  • the command temperature change is repeated until The correction unit 104 determines whether or not to continue the subsequent processing based on the display temperature of the temperature sensor 39 in the abnormal channel after entering the first state described above. Specifically, the correction unit 104 continues the subsequent processing when the display temperature acquired from the temperature sensor 39 of the abnormal channel is close to the ideal temperature of the channel, and when the display temperature is not close Cancels the subsequent processing.
  • the fact that the display temperature of the temperature sensor 39 deviates from the ideal temperature despite the first state means that the temperature sensor Since 39 indicates that it cannot operate normally, the subsequent processing may be stopped.
  • the controller 100 includes one or a plurality of control computers.
  • the controller 100 includes a circuit 120 illustrated in FIG.
  • the circuit 120 includes one or more processors 121, a memory 122, a storage 123, an input / output port 124, and a timer 125.
  • the input / output port 124 inputs and outputs electrical signals to and from the elevating mechanisms 33 and 36, the drive mechanism 53, the temperature sensor 39, and the heater 38.
  • the timer 125 measures the elapsed time by, for example, counting a reference pulse with a fixed period.
  • the storage 123 includes a computer-readable recording medium such as a hard disk.
  • the recording medium records a program for executing a substrate processing procedure described later.
  • the recording medium may be a removable medium such as a nonvolatile semiconductor memory, a magnetic disk, and an optical disk.
  • the memory 122 temporarily records the program loaded from the recording medium of the storage 123 and the calculation result by the processor 121.
  • the processor 121 configures each functional module described above by executing the program in cooperation with the memory 122.
  • each functional module of the controller 100 may be configured by a dedicated logic circuit or an ASIC (Application Specific Integrated Circuit) in which the functional modules are integrated.
  • ASIC Application Specific Integrated Circuit
  • step S1 is first executed.
  • the controller 100 determines whether there is a channel (abnormal channel) in which the display temperature is abnormal. Specifically, the controller 100 calculates a temperature shift amount that is the difference between the display temperature of the temperature sensor 39 and the ideal temperature according to the setting of the heater 38 for each of the plurality of channels of the hot plate 34. It is determined whether the shift amount is within a predetermined bandwidth, and when there is a channel that is not within the bandwidth, it is determined that an abnormal channel exists.
  • step S2 is executed.
  • step S ⁇ b> 2 the controller 100 determines whether there is a channel with a large increase in the output amount. Specifically, the controller 100 determines whether or not a plurality of channels have channels whose difference from the normal output amount is a predetermined value or more. If it is determined in step S2 that there is a channel whose difference from the normal output amount is a predetermined value or more, step S3 is executed, and if it is determined that there is no channel, step S4 is executed.
  • step S3 the controller 100 identifies a channel having a large increase in output amount (a difference from the normal output amount being equal to or greater than a predetermined value) as an abnormal channel.
  • step S4 the controller 100 identifies a channel (temperature shift channel) that has been determined that the temperature shift amount is not within the bandwidth as an abnormal channel.
  • step S5 is executed.
  • the controller 100 executes correction control.
  • the above is an example of the substrate processing procedure.
  • step S51 is first executed.
  • the controller 100 changes the command temperature of the heater 38 related to the abnormal channel.
  • the correction unit 104 acquires the temperature of the hot plate 34 from the temperature sensor 39 of the channel specified as the abnormal channel by the abnormal channel specifying unit 103, and changes the temperature so as to improve the temperature abnormality. 38 command temperature is changed.
  • step S52 is executed.
  • the controller 100 determines whether or not a predetermined time has elapsed since the change of the command temperature in step S51 (waiting for a predetermined stable time). If it is determined in step S52 that the predetermined time has elapsed, step S53 is executed. If it is determined that the predetermined time has not elapsed, step S52 is executed again.
  • step S53 the controller 100 controls the heater 38 corresponding to the output amount (current output amount) MV of the heater 38 related to the abnormal channel and the normal command temperature (that is, the command temperature before the change in step S51). It is determined whether or not the difference from the output amount (normal output amount) MV ′ is in a first state smaller than a predetermined value. If it is determined in step S53 that the first state is not reached, the process of step S51 is executed again, and the command temperature is changed again. On the other hand, when it determines with it being in a 1st state in step S53, step S54 is performed.
  • step S54 the controller 100 determines whether or not the difference between the display temperature PV acquired from the temperature sensor 39 of the abnormal channel and the ideal temperature SV of the channel is smaller than a predetermined value.
  • the controller 100 determines that the process is normal and continues the subsequent process (step S55).
  • the controller 100 determines with an abnormal process and stops subsequent processes (step S56). The above is an example of the correction control process.
  • the heat treatment unit U2 is provided corresponding to a plurality of channels of the hot plate 34, a hot plate 34 for placing the wafer W and applying heat to the wafer W, a heater 38 for heating the hot plate 34, and the hot plate 34.
  • the controller 100 has a display temperature of the temperature sensor 39 and an ideal temperature corresponding to the setting of the heater 38 for each of a plurality of channels. And calculating whether or not the temperature shift amount is within a predetermined bandwidth, and specifying an abnormal region based on the determination result (for example, the temperature shift amount is When there is a channel that is not within the bandwidth, the channel is identified as an abnormal region).
  • temperature sensors 39 are provided corresponding to the plurality of channels of the hot plate 34, respectively. Then, for each of the plurality of channels, it is determined whether or not the temperature shift amount that is the difference between the display temperature and the ideal temperature is within the bandwidth, and the abnormal channel is specified based on the determination result. As described above, the temperature sensors 39a to 39g are provided for each of the plurality of channels, and it is determined whether or not the temperature shift amount is within the bandwidth for each of the plurality of channels, and the determination result is used to identify the abnormal channel. As a result, the abnormal channel can be identified in consideration of the temperature condition (the presence or absence of occurrence of temperature abnormality) in each of the plurality of channels. By taking into account the temperature conditions of each channel, for example, compared with a case where only one temperature sensor is provided as a whole, an abnormal channel (defect occurrence region) causing a temperature abnormality is accurately identified. be able to.
  • the controller 100 may specify an abnormal channel in consideration of both the temperature shift amount of the channel whose temperature shift amount is not within the bandwidth and the temperature shift amount of the channel whose temperature shift amount is within the bandwidth. For example, consider a case where the display temperature of one of the two channels is higher than the display temperature of the other channel, and it is determined that the temperature shift amount is not within the bandwidth for only one channel. In this case, for example, it is estimated that the actual temperature in either one of the two channels is lower than normal.
  • the temperature shift amount of the other channel is within the bandwidth, and the other channel Is not excessively exerted on one channel, and the control by the heater 38 is appropriately performed so that the temperature shift amount of one channel is within the bandwidth. It is considered that the temperature shift amount is not stable only in the bandwidth). Therefore, it is considered that the actual temperature does not decrease in the other channel. On the other hand, if the actual temperature is reduced in one channel (the channel for which the temperature shift amount is determined not to be within the bandwidth), the temperature of one channel is lowered according to the display temperature of one channel.
  • an abnormal channel can be appropriately identified by considering the temperature shift amount of a channel whose temperature shift amount is not within the bandwidth and the temperature shift amount of the channel within the bandwidth.
  • the controller 100 identifies an abnormal channel in consideration of the output amount of the heater 38 corresponding to each of the plurality of channels. For example, when temperature control is performed for an abnormal channel, the temperature control affects the region other than the abnormal channel, and the temperature shift amount of the channel other than the abnormal channel may be out of the bandwidth. When the temperature shift amount is outside the bandwidth other than the abnormal channel, the abnormal channel cannot be uniquely identified only from the temperature shift amount.
  • the output amount of the heater 38 changes according to the actual temperature of the heat plate 34. For this reason, the controller 100 can appropriately identify the channel (that is, the abnormal channel) in which the actual temperature is greatly changed by identifying the abnormal channel in consideration of the output amount of the heater 38. That is, by specifying the abnormal channel in consideration of the output amount, the channel in which the temperature abnormality has occurred can be specified with higher accuracy.
  • the controller 100 identifies the channel as an abnormal channel when there is a channel whose difference from the normal output amount is a predetermined value or more in a plurality of channels. A channel whose quantity is not within the bandwidth is identified as an abnormal channel.
  • a case where the display temperature is higher than the actual temperature (display temperature rising case) and a display temperature are A case where the temperature is lower than the actual temperature (display temperature drop case) is considered.
  • the setting of the heater 38 is changed (changes in the direction to lower the temperature) based on the display temperature, and the display temperature and actual temperature of the channel (display temperature rise channel) corresponding to the heater 38 are lowered. Will be.
  • the display temperature and the actual temperature of the other channels are slightly lowered (with a smaller width than the display temperature rise channel).
  • the display temperature increases in the display temperature increase channel, and the output amount decreases as the actual temperature decreases in the display temperature increase channel.
  • both the display temperature rise channel and other channels have a lower actual temperature and the output amount is smaller. Does not exist.
  • the display temperature increasing channel whose actual temperature is lower than the other channels and can become an abnormal channel has a higher display temperature and a larger temperature shift amount than the other channels.
  • a temperature abnormality occurs. Can be accurately identified.
  • the display temperature lowering case when the setting of the heater 38 is changed (changed in the direction of increasing the temperature) based on the display temperature, the display temperature and the actual temperature of the channel (display temperature lowering channel) corresponding to the heater 38 are changed. The temperature will rise. Then, the influence of the actual temperature rise in the display temperature lowering channel extends to the other channels, so that the display temperature and actual temperature of the other channels are slightly increased (with a smaller width than the display temperature lowering channel).
  • the display temperature is lower in the display temperature lowering channel than in the other channels, and the output amount is increased by increasing the actual temperature.
  • the output amount of the display temperature decrease channel that can be an abnormal channel is prominently larger than the other channels.
  • the display temperature of the other channel is higher than that of the display temperature lowering channel (that is, the temperature shift amount is large).
  • the controller 100 starts determining whether or not the temperature shift amount is within the normal range after the temperature of the hot plate 34 reaches a steady state.
  • the temperature shift amount is not determined in a transition period or the like at the time of temperature rise control in which the output amount applied from the heater 38 to the heat plate 34 is intentionally changed, and a period in which an abnormal channel needs to be identified ( The processing relating to the identification of the abnormal channel can be performed only in the period of the steady state).
  • the controller 100 sets the above-described normal range wider than a range that can vary as a difference between the display temperature of the temperature sensor 39 and the above-described ideal temperature in the steady state of the hot plate 34 that operates normally.
  • a range that can vary as a difference between the display temperature of the temperature sensor 39 and the above-described ideal temperature in the steady state of the hot plate 34 that operates normally For example, when the wafer W is loaded while the apparatus is operating after reaching the steady state (when the chamber is opened), the temperature shift amount in a state in which the display temperature varies greatly while in the normal operating state. Is determined not to be within the bandwidth. That is, it is possible to prevent a normal process from being hindered by the control described above.
  • the heater 38 is configured to heat a plurality of channels in accordance with a preset command temperature, and the controller 100 changes the temperature of the abnormal channel by changing the command temperature of the heater 38 related to the abnormal channel.
  • the correction control is further performed so that the amount falls within the normal range.
  • the controller 100 After the change in the command temperature, the controller 100 is in a first state in which the difference between the output amount of the heater 38 related to the abnormal channel and the output amount of the heater 38 corresponding to the command temperature at the normal time is smaller than a predetermined value. Repeat until the command temperature is changed. For example, when the display temperature of the temperature sensor 19 that has been partially disconnected deviates from the actual temperature of the hot plate 34, the display temperature of the temperature sensor 19 may not be accurate. Even in such a case, it is determined whether or not the output amount corresponding to the actual temperature is normal. If the output amount is not normal, the process of changing the command temperature is repeated to display the temperature sensor 19. Temperature anomalies can be corrected regardless of temperature accuracy.
  • the controller 100 determines whether or not to continue the subsequent processing based on the display temperature of the temperature sensor 39 in the abnormal channel after the controller 100 enters the first state. After the temperature abnormality is corrected in the first state (that is, the actual temperature is accurate), it is determined whether or not the display temperature of the temperature sensor 19 of the channel that has become the abnormal channel is accurate. It is possible to appropriately determine whether it is possible to continue processing using the sensor 19.
  • the controller 100 continuously determines whether or not the temperature shift amount is within the above-described normal range while the temperature of the hot plate 34 is in a steady state. By detecting abnormal channels continuously while in steady state, dedicated operation for detecting abnormal channels is unnecessary, and abnormal channels are detected without affecting the normal device recipe. Can do.
  • the abnormal channel is specified in consideration of the output amount of the heater 38 in consideration of the output amount of the heater 38 has been described.
  • the abnormal channel can always be specified only from the temperature shift amount, the temperature is not affected by the output amount of the heater 38.
  • An abnormal channel may be specified only from the shift amount.
  • Coating / developing device (substrate processing device), 34 ... hot plate, 38 ... heater (temperature controller), 39a, 39b, 39c, 39d, 39e, 39f, 39g ... temperature sensor, 100 ... controller (control unit) , W: Wafer (substrate).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Control Of Resistance Heating (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Debugging And Monitoring (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

According to the present invention, a heat treatment unit is provided with: a hot plate on which a wafer is placed and which applies heat to the wafer; a heater that heats the hot plate; a plurality of temperature sensors that are provided corresponding to a plurality of channels of the hot plate and that measure the temperature of the hot plate; and a controller. The controller is configured to: calculate, for each of the plurality of channels, a temperature shift amount which is the differences between a display temperature of the temperature sensor and the ideal temperature according to the settings of the heater, and determine whether the temperature shift amount is within a predetermined band width; and specify, as abnormal regions, the channels in which the temperature shift amount is not within the band width.

Description

基板処理装置、基板処理方法、及び記憶媒体Substrate processing apparatus, substrate processing method, and storage medium
 本開示は、基板処理装置、基板処理方法、及び記憶媒体に関する。 The present disclosure relates to a substrate processing apparatus, a substrate processing method, and a storage medium.
 熱板によって基板に熱を付与する熱処理では、熱板の温度を所定の目標温度に維持することが重要となる。例えば特許文献1に記載された技術では、加熱部材(上述した熱板に相当)の温度を検出する温度センサを設け、該温度センサによって加熱部材の温度異常を検出することにより、不具合の発生を検出している。 In the heat treatment in which heat is applied to the substrate by the hot plate, it is important to maintain the temperature of the hot plate at a predetermined target temperature. For example, in the technique described in Patent Document 1, a temperature sensor that detects the temperature of a heating member (corresponding to the above-described hot plate) is provided, and a malfunction is detected by detecting a temperature abnormality of the heating member by the temperature sensor. Detected.
特開2017-65126号公報JP 2017-65126 A
 熱処理を行う構成として、例えば、熱板が複数のチャネル(領域)毎にそれぞれ温調器に加熱されて基板に熱を付与する構成が考えられる。このような構成では、温度センサによって温度異常を検出した場合において、熱板のどのチャネル(領域)で発生した不具合によって温度異常が発生しているのかを特定することができない。 As a configuration for performing heat treatment, for example, a configuration in which a hot plate is heated by a temperature controller for each of a plurality of channels (regions) to apply heat to the substrate can be considered. In such a configuration, when a temperature abnormality is detected by the temperature sensor, it cannot be specified which channel (region) of the heat plate causes the temperature abnormality due to a malfunction.
 本開示は上記実情に鑑みてなされたものであり、熱処理において温度異常が発生している場合に、該温度異常を引き起こしている不具合の発生領域を精度よく特定することを目的とする。 This disclosure has been made in view of the above circumstances, and an object of the present disclosure is to accurately identify an occurrence region of a defect causing a temperature abnormality when a temperature abnormality occurs in the heat treatment.
 本開示の一態様に係る基板処理装置は、基板を載置すると共に基板に熱を付与する熱板と、熱板を加熱する温調器と、熱板の複数の領域に対応して設けられ、熱板の温度を測定する複数の温度センサと、制御部と、を備え、制御部は、複数の領域毎に、温度センサの測定温度と、温調器の設定に応じた理想温度との差異である温度シフト量を算出し、該温度シフト量が所定の正常範囲内であるか否かを判定することと、判定結果に基づいて異常領域を特定することと、を実行するように構成されている。 A substrate processing apparatus according to one embodiment of the present disclosure is provided corresponding to a plurality of regions of a hot plate that places a substrate and applies heat to the substrate, a temperature controller that heats the hot plate, and a hot plate. A plurality of temperature sensors for measuring the temperature of the hot plate, and a control unit, the control unit for each of a plurality of areas, the temperature sensor measured temperature and the ideal temperature according to the setting of the temperature controller It is configured to calculate a temperature shift amount that is a difference, determine whether the temperature shift amount is within a predetermined normal range, and specify an abnormal region based on the determination result Has been.
 本開示の一態様に係る基板処理装置では、熱板の複数の領域に対応してそれぞれ温度センサが設けられている。そして、複数の領域毎に、測定温度と理想温度との差異である温度シフト量が正常範囲内であるか否かが判定され、該判定の結果に基づき異常領域が特定される。このように、複数の領域毎に温度センサが設けられ、複数の領域毎に温度シフト量が正常範囲内であるか否かが判定され、該判定結果が異常領域の特定に用いられることにより、複数の領域それぞれにおける温度状況(温度異常の発生有無等)を考慮して異常領域を特定することができる。各領域の温度状況を考慮することにより、例えば全体で1つしか温度センサが用いられていないような場合と比較して、温度異常を引き起こしている異常領域(不具合の発生領域)を精度よく特定することができる。すなわち、本開示の基板処理装置によれば、熱処理において温度異常が発生している場合に、該温度異常を引き起こしている不具合の発生領域を精度よく特定することができる。 In the substrate processing apparatus according to one aspect of the present disclosure, temperature sensors are provided corresponding to a plurality of regions of the hot plate. Then, for each of the plurality of regions, it is determined whether or not the temperature shift amount that is the difference between the measured temperature and the ideal temperature is within the normal range, and the abnormal region is specified based on the result of the determination. Thus, a temperature sensor is provided for each of a plurality of regions, and it is determined whether or not the temperature shift amount is within a normal range for each of the plurality of regions, and the determination result is used to identify an abnormal region. An abnormal region can be identified in consideration of temperature conditions (such as whether or not a temperature abnormality has occurred) in each of the plurality of regions. By considering the temperature status of each area, for example, compared with the case where only one temperature sensor is used as a whole, the abnormal area causing the temperature abnormality (defect occurrence area) can be accurately identified. can do. In other words, according to the substrate processing apparatus of the present disclosure, when a temperature abnormality occurs in the heat treatment, it is possible to accurately specify the occurrence region of the defect causing the temperature abnormality.
 制御部は、温度シフト量が正常範囲内でない領域の温度シフト量、及び、温度シフト量が正常範囲内である領域の温度シフト量の双方を考慮して、異常領域を特定してもよい。例えば、2つの領域のうち一方の領域の測定温度が他方の領域の測定温度よりも高く、一方の領域についてのみ温度シフト量が正常範囲内でないと判定された場合を考える。この場合、例えば2つの領域のいずれか一方において実温度が正常時よりも低下していると推定される。上述した他方の領域(温度シフト量が正常範囲内であると判定されている領域)において実温度が低下しているとすると、他方の領域の温度シフト量は正常範囲内であり、他方の領域の熱影響が一方の領域に過度に及ぼされることはなく、一方の領域の温度シフト量が正常範囲内となるように温調器による制御が適切に行われるため、上述した状態(一方の領域の温度シフト量のみが正常範囲内でない状態)で安定することはないと考えられる。よって、他方の領域において実温度が低下していることはないと考えられる。一方で、一方の領域(温度シフト量が正常範囲内でないと判定されている領域)において実温度が低下しているとすると、一方の領域の測定温度に応じて一方の領域の温度を低下させるべく温調器による制御を行った場合(一方の領域に対応する温調器の出力を例えばゼロにした場合)であっても、他方の領域による熱影響で実温度が引き上げられ、その引き上げられた分に応じて測定温度も上がり、温度シフト量が正常範囲内でない状態が継続されることがあり得る。よって、実温度が低下しているケースにおいて一方の領域の温度シフト量が正常範囲内でないと判定され、他方の領域の温度シフト量が正常範囲内であると判定されている場合には、一方の領域において実温度が低下しており、該一方の領域を異常領域と特定することができる。このように、温度シフト量が正常範囲内でない領域の温度シフト量及び正常範囲内である領域の温度シフト量を考慮することによって、適切に異常領域を特定することができる。 The control unit may specify the abnormal region in consideration of both the temperature shift amount in the region where the temperature shift amount is not within the normal range and the temperature shift amount in the region where the temperature shift amount is within the normal range. For example, consider a case where the measured temperature of one of the two regions is higher than the measured temperature of the other region, and it is determined that the temperature shift amount is not within the normal range for only one region. In this case, for example, it is estimated that the actual temperature is lower than that in the normal state in one of the two regions. If the actual temperature is lowered in the above-mentioned other region (region where the temperature shift amount is determined to be within the normal range), the temperature shift amount of the other region is within the normal range, and the other region The above-mentioned state (one region) is not exerted excessively on one region, and control by the temperature controller is appropriately performed so that the temperature shift amount in one region is within the normal range. It is considered that the temperature shift amount is not stable in the normal range). Therefore, it is considered that the actual temperature does not decrease in the other region. On the other hand, if the actual temperature is reduced in one region (region in which the temperature shift amount is determined not to be within the normal range), the temperature in one region is decreased according to the measured temperature in one region. Even when the temperature controller is controlled as much as possible (when the output of the temperature controller corresponding to one region is set to zero, for example), the actual temperature is raised by the heat effect of the other region, and the temperature is raised. Accordingly, the measured temperature may rise correspondingly, and the state where the temperature shift amount is not within the normal range may be continued. Therefore, in the case where the actual temperature is lowered, it is determined that the temperature shift amount of one region is not within the normal range, and the temperature shift amount of the other region is determined to be within the normal range, In this region, the actual temperature is lowered, and this one region can be identified as an abnormal region. Thus, the abnormal region can be appropriately identified by considering the temperature shift amount of the region where the temperature shift amount is not within the normal range and the temperature shift amount of the region within the normal range.
 制御部は、複数の領域それぞれに対応する温調器の出力量を考慮して、異常領域を特定してもよい。例えば異常領域について温度制御を行った場合に、該温度制御の影響が異常領域以外の領域にも及び、異常領域以外の領域の温度シフト量が正常範囲外となる場合がある。異常領域以外について温度シフト量が正常範囲外となっている場合においては、温度シフト量のみから異常領域を一意に特定することができない。ここで、温調器の出力量は熱板の実温度に応じて変化する。このため、制御部が温調器の出力量を考慮して異常領域を特定することにより、実温度が大きく変化している領域(すなわち異常領域)を適切に特定することができる。すなわち、出力量を考慮して異常領域を特定することによって、より精度よく、温度異常が発生している領域を特定することができる。 The control unit may specify the abnormal region in consideration of the output amount of the temperature controller corresponding to each of the plurality of regions. For example, when temperature control is performed for an abnormal region, the temperature control affects the region other than the abnormal region, and the temperature shift amount in the region other than the abnormal region may be outside the normal range. When the temperature shift amount is outside the normal range for areas other than the abnormal area, the abnormal area cannot be uniquely identified from the temperature shift amount alone. Here, the output amount of the temperature controller changes according to the actual temperature of the hot plate. For this reason, when a control part considers the output amount of a temperature controller and specifies an abnormal area | region, the area | region (namely, abnormal area | region) where actual temperature is changing greatly can be specified appropriately. That is, by specifying the abnormal region in consideration of the output amount, it is possible to specify the region where the temperature abnormality has occurred more accurately.
 制御部は、複数の領域に、出力量の正常時との差分が所定値以上となっている領域が存在する場合には、該領域を異常領域として特定し、存在しない場合には、温度シフト量が正常範囲内でない領域を異常領域として特定してもよい。 The control unit identifies the region as an abnormal region when there is a region where the difference between the normal output amount and the normal value is greater than or equal to a predetermined value in a plurality of regions. An area whose amount is not within the normal range may be specified as an abnormal area.
 例えば温度センサに関する不具合等を理由として温度センサの測定温度が熱板の実温度から乖離する態様として、測定温度が実温度よりも高くなるケース(測定温度上昇ケース)と、測定温度が実温度よりも低くなるケース(測定温度低下ケース)とが考えられる。測定温度上昇ケースでは、該測定温度に基づいて温調器の設定が変更(温度を低下させる方向に変更)され、該温調器が対応する領域(測定温度上昇領域)の測定温度及び実温度が低下することとなる。そして、測定温度上昇領域における実温度低下の影響が他の領域にも及ぶことにより、他の領域の測定温度及び実温度も少し(測定温度上昇領域よりは小さい幅で)低下することとなる。このように、測定温度上昇ケースでは、測定温度上昇領域において、他の領域よりも、測定温度が高くなり、且つ、実温度が低下することによって出力量が小さくなる。測定温度上昇ケースでは、測定温度上昇領域及び他の領域のいずれも、実温度が低下しており出力量が小さくなっているため、複数の領域において正常時との出力量の差分が大きくなる領域は存在しない。そして、実温度が他の領域よりも低下し異常領域となりうる測定温度上昇領域は、他の領域よりも測定温度が高く温度シフト量が大きい。以上のことから、正常時との出力量の差分が大きくなる領域が存在しない場合に、温度シフト量が大きい(正常範囲内でない)領域を異常領域として特定することにより、温度異常が発生している領域を精度よく特定することができる。また、測定温度低下ケースでは、該測定温度に基づいて温調器の設定が変更(温度を上げる方向に変更)されると、該温調器が対応する領域(測定温度低下領域)の測定温度及び実温度が上がることとなる。そして、測定温度低下領域における実温度上昇の影響が他の領域にも及ぶことにより、他の領域の測定温度及び実温度も少し(測定温度低下領域よりは小さい幅で)上がることとなる。このように、測定温度低下ケースでは、測定温度低下領域において、他の領域よりも、測定温度が低くなり、且つ、実温度が上がることによって出力量が大きくなる。測定温度低下ケースでは、異常領域となりうる測定温度低下領域の出力量が他の領域と比較して突出して大きくなる。そして、他の領域の測定温度が測定温度低下領域よりも高い(すなわち温度シフト量が大きい)。以上のことから、出力量の差分が大きくなる領域が存在する場合に、温度シフト量が大きい領域ではなく正常時との出力量の差分が大きい領域を異常領域として特定することにより、温度異常が発生している領域を精度よく特定することができる。 For example, as a mode in which the measured temperature of the temperature sensor deviates from the actual temperature of the hot plate due to a malfunction related to the temperature sensor, the case where the measured temperature is higher than the actual temperature (measured temperature rising case) and the measured temperature is higher than the actual temperature. Is considered to be a low case (measurement temperature drop case). In the measured temperature rise case, the temperature controller settings are changed (changed in the direction of decreasing the temperature) based on the measured temperature, and the measured temperature and actual temperature in the corresponding region (measured temperature rising region) Will be reduced. Then, when the influence of the actual temperature drop in the measured temperature rise region extends to the other regions, the measured temperature and the actual temperature in the other regions are slightly lowered (with a smaller width than the measured temperature rise region). Thus, in the measured temperature rise case, the measured temperature is higher in the measured temperature rise region than in the other regions, and the output amount is reduced as the actual temperature is lowered. In the measured temperature rise case, the measured temperature rise area and other areas are areas where the actual temperature is low and the output amount is small, so the difference in the output amount from the normal time is large in multiple areas. Does not exist. The measured temperature rise region where the actual temperature is lower than the other regions and can become an abnormal region has a higher measured temperature and a larger temperature shift amount than the other regions. From the above, when there is no region where the difference in output amount from the normal time is large, by specifying a region with a large temperature shift amount (not within the normal range) as an abnormal region, a temperature abnormality occurs. Can be accurately identified. In the case where the measured temperature is lowered, if the temperature controller setting is changed (changed in the direction of increasing the temperature) based on the measured temperature, the measured temperature in the region (measured temperature lowered region) corresponding to the temperature controller is changed. And the actual temperature will rise. Then, when the influence of the actual temperature rise in the measurement temperature reduction region extends to other regions, the measurement temperature and the actual temperature in the other regions also slightly increase (with a width smaller than that of the measurement temperature reduction region). As described above, in the measurement temperature reduction case, the measurement temperature is lower in the measurement temperature reduction region than in the other regions, and the output amount is increased by increasing the actual temperature. In the measurement temperature reduction case, the output amount of the measurement temperature reduction region that can be an abnormal region protrudes and becomes larger than other regions. And the measured temperature of other area | region is higher than a measured temperature fall area | region (namely, the amount of temperature shifts is large). From the above, when there is a region where the difference in output amount is large, the region where the difference in output amount from the normal time is large is specified as the abnormal region instead of the region where the temperature shift amount is large. The generated area can be specified with high accuracy.
 制御部は、熱板の温度が定常状態となった後に、温度シフト量が正常範囲内であるか否かの判定を開始してもよい。これにより、温調器から熱板に加わる出力量が意図的に変化される昇温制御時の過渡期等において温度シフト量の判定が行われることがなく、異常領域の特定が必要な期間(定常状態の期間)に限定して異常領域の特定に係る処理を行うことができる。 The controller may start determining whether or not the temperature shift amount is within a normal range after the temperature of the hot plate reaches a steady state. Thus, the temperature shift amount is not determined in a transition period or the like at the time of temperature rise control in which the amount of output applied from the temperature controller to the heat plate is intentionally changed, and a period in which an abnormal region needs to be identified ( The processing relating to the specification of the abnormal region can be performed only in the period of the steady state).
 制御部は、正常範囲を、正常に稼働する熱板の定常状態における、測定温度と理想温度との差異として変動し得る範囲よりも広く設定してもよい。これにより、例えば定常状態に到達後の装置稼働中において基板が搬入される際等、正常な稼働状態でありながら測定温度が大きく変動する状態において、温度シフト量が正常範囲内でないと判定されることを防止することができる。すなわち、上述した制御によって正常なプロセスが妨げられることを防止することができる。 The control unit may set the normal range wider than the range that can vary as the difference between the measured temperature and the ideal temperature in the steady state of the hot plate operating normally. As a result, for example, when the substrate is carried in while the apparatus is operating after reaching the steady state, the temperature shift amount is determined not to be within the normal range in a state where the measurement temperature varies greatly while in the normal operating state. This can be prevented. That is, it is possible to prevent a normal process from being hindered by the control described above.
 温調器は、予め設定された指令温度に応じて複数の領域を加熱するように構成されており、制御部は、異常領域に係る指令温度を変更することによって、該異常領域の温度シフト量が正常範囲内となるように補正制御を行うことを更に実行するように構成されていてもよい。温調器に設定される指令温度を変更することによって、異常領域の温度シフト量を簡易且つ適切に補正することができる。 The temperature controller is configured to heat a plurality of regions in accordance with a preset command temperature, and the control unit changes the command temperature related to the abnormal region, thereby changing the temperature shift amount of the abnormal region. It may be configured to further execute correction control so that is within the normal range. By changing the command temperature set in the temperature controller, the temperature shift amount in the abnormal region can be corrected easily and appropriately.
 制御部は、指令温度の変更後において、異常領域に係る温調器の出力量と、正常時の指令温度に対応する温調器の出力量との差異が所定値より小さい第1状態となるまで、指令温度の変更を繰り返してもよい。例えば、半断線した温度センサの測定温度が熱板の実温度から乖離しているような場合には、温度センサの測定温度が正確でないことが考えられる。このような場合においても、実温度に対応した出力量が正常となっているか否かを判定し、正常となっていない場合には指令温度を変更する処理を繰り返すことにより、温度センサの測定温度の正確性によらずに温度異常を補正することができる。 After the change of the command temperature, the control unit is in a first state in which the difference between the output amount of the temperature controller related to the abnormal region and the output amount of the temperature controller corresponding to the normal command temperature is smaller than a predetermined value. Until then, the change of the command temperature may be repeated. For example, when the measured temperature of the temperature sensor that is half-broken is deviated from the actual temperature of the hot plate, the measured temperature of the temperature sensor may not be accurate. Even in such a case, it is determined whether or not the output amount corresponding to the actual temperature is normal, and if it is not normal, the process of changing the command temperature is repeated, so that the measured temperature of the temperature sensor The temperature abnormality can be corrected without depending on the accuracy of.
 制御部は、第1状態となった後において、異常領域の測定温度に基づいて、以降の処理の継続可否を判定してもよい。第1状態となり温度異常が補正された後(すなわち実温度が正確である状態)において、異常領域となっていた領域の温度センサの測定温度が正確か否かを判定することによって、当該温度センサを用いて継続して処理することが可能か否かを適切に判定することができる。 The control unit may determine whether or not to continue the subsequent processing based on the measured temperature in the abnormal region after the first state is reached. After the temperature abnormality is corrected in the first state (that is, the actual temperature is accurate), it is determined whether or not the measured temperature of the temperature sensor in the region that has become the abnormal region is accurate. It is possible to appropriately determine whether or not it is possible to continue processing using.
 制御部は、温度シフト量が正常範囲内であるか否かの判定を、熱板の温度が定常状態である間、継続的に行ってもよい。定常状態である間、継続的に異常領域の検知が行われることによって、異常領域の検知のための専用動作が不要となり、通常の装置稼働レシピに影響を与えることなく異常領域の検知を行うことができる。 The control unit may continuously determine whether the temperature shift amount is within a normal range while the temperature of the hot plate is in a steady state. Since the abnormal area is continuously detected during the steady state, a dedicated operation for detecting the abnormal area becomes unnecessary, and the abnormal area is detected without affecting the normal device operation recipe. Can do.
 本開示の一態様に係る基板処理方法は、基板に熱を付与する熱板の複数の領域の測定温度と、該複数の領域の理想温度との差異である温度シフト量を算出し、該温度シフト量が所定の正常範囲内であるか否かを判定する工程と、判定結果に基づいて異常領域を特定する工程と、を含む。 A substrate processing method according to an aspect of the present disclosure calculates a temperature shift amount that is a difference between a measured temperature of a plurality of regions of a hot plate that applies heat to a substrate and an ideal temperature of the plurality of regions, and the temperature A step of determining whether or not the shift amount is within a predetermined normal range, and a step of specifying an abnormal region based on the determination result.
 異常領域を特定する工程では、温度シフト量が正常範囲内でない領域の温度シフト量、及び、温度シフト量が正常範囲内である領域の温度シフト量の双方を考慮して、異常領域を特定してもよい。 In the step of identifying the abnormal region, the abnormal region is identified in consideration of both the temperature shift amount of the region where the temperature shift amount is not within the normal range and the temperature shift amount of the region where the temperature shift amount is within the normal range. May be.
 異常領域を特定する工程では、複数の領域それぞれに対応する温調器の出力量を考慮して、異常領域を特定してもよい。 In the step of specifying the abnormal region, the abnormal region may be specified in consideration of the output amount of the temperature controller corresponding to each of the plurality of regions.
 異常領域を特定する工程では、複数の領域に、出力量の正常時との差分が所定値以上である領域が存在する場合には、該領域を異常領域として特定し、存在しない場合には、温度シフト量が正常範囲内でない領域を異常領域として特定してもよい。 In the step of identifying an abnormal region, if there is a region where the difference between the output amount and the normal amount is a predetermined value or more in a plurality of regions, the region is identified as an abnormal region. A region where the temperature shift amount is not within the normal range may be specified as an abnormal region.
 熱板の温度が定常状態となった後に、判定する工程を開始してもよい。 The step of determining may be started after the temperature of the hot plate reaches a steady state.
 正常範囲を、正常に稼働する熱板の定常状態における、測定温度と理想温度との差異として変動し得る範囲よりも広く設定して、判定する工程を実行してもよい。 The determination process may be executed by setting the normal range wider than the range that can vary as the difference between the measured temperature and the ideal temperature in the steady state of the hot plate that operates normally.
 上記基板処理方法は、熱板を加熱する温調器の指令温度を変更することによって、異常領域の温度シフト量が正常範囲内となるように補正制御を行う工程を更に含んでいてもよい。 The substrate processing method may further include a step of performing correction control so that the temperature shift amount in the abnormal region is within the normal range by changing the command temperature of the temperature controller that heats the hot plate.
 補正制御を行う工程では、指令温度の変更後において、異常領域に係る温調器の出力量と、正常時の指令温度に対応する温調器の出力量との差異が所定値より小さい第1状態となるまで、指令温度の変更を繰り返してもよい。 In the step of performing the correction control, after the change of the command temperature, a difference between the output amount of the temperature controller related to the abnormal region and the output amount of the temperature controller corresponding to the normal command temperature is smaller than a predetermined value. You may repeat change of command temperature until it will be in a state.
 補正制御を行う工程では、第1状態となった後において、異常領域の測定温度に基づいて、以降の処理の継続可否を判定してもよい。 In the step of performing the correction control, it may be determined whether or not the subsequent processing can be continued based on the measured temperature in the abnormal region after the first state is reached.
 熱板の温度が定常状態である間、継続的に判定する工程を実行してもよい。 While the temperature of the hot plate is in a steady state, a step of continuously determining may be executed.
 本開示の一態様に係るコンピュータ読み取り可能な媒体は、上述した基板処理方法を装置に実行させるためのプログラムを記憶している。 The computer-readable medium according to an aspect of the present disclosure stores a program for causing the apparatus to execute the substrate processing method described above.
 本開示に係る基板処理装置、基板処理方法、及び記憶媒体によれば、熱処理において温度異常が発生している場合に、該温度異常を引き起こしている不具合の発生領域を精度よく特定することができる。 According to the substrate processing apparatus, the substrate processing method, and the storage medium according to the present disclosure, when a temperature abnormality occurs in the heat treatment, it is possible to accurately identify the occurrence region of the defect that causes the temperature abnormality. .
基板処理システムの概略構成を示す斜視図である。It is a perspective view which shows schematic structure of a substrate processing system. 図1中のII-II線に沿う断面図である。FIG. 2 is a cross-sectional view taken along line II-II in FIG. 図2中のIII-III線に沿う断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 2. 熱処理ユニットの一例を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows an example of the heat processing unit. 熱板における温度センサの配置を示す模式図である。It is a schematic diagram which shows arrangement | positioning of the temperature sensor in a hot platen. 温度シフトメカニズムを説明する図である。It is a figure explaining a temperature shift mechanism. 各チャネル毎の温度シフト量と出力量とを示すグラフである。It is a graph which shows the temperature shift amount and output amount for every channel. コントローラのハードウェア構成図である。It is a hardware block diagram of a controller. 基板処理のフローチャートである。It is a flowchart of a substrate process. 補正制御のフローチャートである。It is a flowchart of correction control.
 以下、実施形態について図面を参照しつつ詳細に説明する。説明において、同一要素又は同一機能を有する要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, embodiments will be described in detail with reference to the drawings. In the description, the same elements or elements having the same functions are denoted by the same reference numerals, and redundant description is omitted.
〔基板処理システム〕
 基板処理システム1は、基板に対し、感光性被膜の形成、当該感光性被膜の露光、及び当該感光性被膜の現像を施すシステムである。処理対象の基板は、例えば半導体のウェハWである。感光性被膜は、例えばレジスト膜である。
[Substrate processing system]
The substrate processing system 1 is a system for forming a photosensitive film, exposing the photosensitive film, and developing the photosensitive film on a substrate. The substrate to be processed is, for example, a semiconductor wafer W. The photosensitive film is, for example, a resist film.
 基板処理システム1は、塗布・現像装置2と露光装置3とを備える。露光装置3は、ウェハW上に形成されたレジスト膜の露光処理を行う。具体的には、液浸露光等の方法によりレジスト膜の露光対象部分にエネルギー線を照射する。塗布・現像装置2は、露光装置3による露光処理の前に、ウェハWの表面にレジスト膜を形成する処理を行い、露光処理後にレジスト膜の現像処理を行う。 The substrate processing system 1 includes a coating / developing device 2 and an exposure device 3. The exposure apparatus 3 performs an exposure process on the resist film formed on the wafer W. Specifically, the exposure target portion of the resist film is irradiated with energy rays by a method such as immersion exposure. The coating / developing apparatus 2 performs a process of forming a resist film on the surface of the wafer W before the exposure process by the exposure apparatus 3, and performs a development process of the resist film after the exposure process.
(塗布・現像装置)
 以下、基板処理装置の一例として、塗布・現像装置2の構成を説明する。図1~図3に示すように、塗布・現像装置2は、キャリアブロック4と、処理ブロック5と、インタフェースブロック6と、コントローラ100とを備える。
(Coating / developing equipment)
Hereinafter, the configuration of the coating / developing apparatus 2 will be described as an example of the substrate processing apparatus. As shown in FIGS. 1 to 3, the coating / developing apparatus 2 includes a carrier block 4, a processing block 5, an interface block 6, and a controller 100.
 キャリアブロック4は、塗布・現像装置2内へのウェハWの導入及び塗布・現像装置2内からのウェハWの導出を行う。例えばキャリアブロック4は、ウェハW用の複数のキャリア11を支持可能であり、受け渡しアームA1を内蔵している。キャリア11は、例えば円形の複数枚のウェハWを収容する。受け渡しアームA1は、キャリア11からウェハWを取り出して処理ブロック5に渡し、処理ブロック5からウェハWを受け取ってキャリア11内に戻す。 The carrier block 4 introduces the wafer W into the coating / developing apparatus 2 and derives the wafer W from the coating / developing apparatus 2. For example, the carrier block 4 can support a plurality of carriers 11 for the wafer W and incorporates a delivery arm A1. The carrier 11 accommodates a plurality of circular wafers W, for example. The delivery arm A <b> 1 takes out the wafer W from the carrier 11 and delivers it to the processing block 5, receives the wafer W from the processing block 5, and returns it into the carrier 11.
 処理ブロック5は、複数の処理モジュール14,15,16,17を有する。図2及び図3に示すように、処理モジュール14,15,16,17は、複数の液処理ユニットU1と、複数の熱処理ユニットU2と、これらのユニットにウェハWを搬送する搬送アームA3とを内蔵している。処理モジュール17は、液処理ユニットU1及び熱処理ユニットU2を経ずにウェハWを搬送する直接搬送アームA6を更に内蔵している。液処理ユニットU1は、処理液をウェハWの表面に塗布する。熱処理ユニットU2は、例えば熱板及び冷却板を内蔵しており、熱板によりウェハWを加熱し、加熱後のウェハWを冷却板により冷却して熱処理を行う。 The processing block 5 has a plurality of processing modules 14, 15, 16, and 17. As shown in FIGS. 2 and 3, the processing modules 14, 15, 16, and 17 include a plurality of liquid processing units U1, a plurality of heat treatment units U2, and a transfer arm A3 that transfers the wafer W to these units. Built-in. The processing module 17 further includes a direct transfer arm A6 that transfers the wafer W without passing through the liquid processing unit U1 and the heat treatment unit U2. The liquid processing unit U1 applies the processing liquid to the surface of the wafer W. The heat treatment unit U2 includes, for example, a hot plate and a cooling plate, heats the wafer W with the hot plate, and cools the heated wafer W with the cooling plate to perform the heat treatment.
 処理モジュール14は、液処理ユニットU1及び熱処理ユニットU2によりウェハWの表面上に下層膜を形成する。処理モジュール14の液処理ユニットU1は、下層膜形成用の処理液をウェハW上に塗布する。処理モジュール14の熱処理ユニットU2は、下層膜の形成に伴う各種熱処理を行う。 The processing module 14 forms a lower layer film on the surface of the wafer W by the liquid processing unit U1 and the heat treatment unit U2. The liquid processing unit U1 of the processing module 14 applies a processing liquid for forming a lower layer film on the wafer W. The heat treatment unit U2 of the processing module 14 performs various heat treatments associated with the formation of the lower layer film.
 処理モジュール15は、液処理ユニットU1及び熱処理ユニットU2により下層膜上にレジスト膜を形成する。処理モジュール15の液処理ユニットU1は、レジスト膜形成用の処理液(塗布液)を下層膜の上に塗布する。処理モジュール15の熱処理ユニットU2は、レジスト膜の形成に伴う各種熱処理を行う。処理モジュール15の液処理ユニットU1についての詳細は後述する。 The processing module 15 forms a resist film on the lower layer film by the liquid processing unit U1 and the heat treatment unit U2. The liquid processing unit U1 of the processing module 15 applies a processing liquid (coating liquid) for forming a resist film on the lower layer film. The heat treatment unit U2 of the processing module 15 performs various heat treatments accompanying the formation of the resist film. Details of the liquid processing unit U1 of the processing module 15 will be described later.
 処理モジュール16は、液処理ユニットU1及び熱処理ユニットU2によりレジスト膜上に上層膜を形成する。処理モジュール16の液処理ユニットU1は、上層膜形成用の処理液をレジスト膜の上に塗布する。処理モジュール16の熱処理ユニットU2は、上層膜の形成に伴う各種熱処理を行う。 The processing module 16 forms an upper layer film on the resist film by the liquid processing unit U1 and the heat treatment unit U2. The liquid processing unit U1 of the processing module 16 applies a processing liquid for forming an upper layer film on the resist film. The heat treatment unit U2 of the processing module 16 performs various heat treatments accompanying the formation of the upper layer film.
 処理モジュール17は、液処理ユニットU1及び熱処理ユニットU2により、露光後のレジスト膜の現像処理を行う。処理モジュール17の液処理ユニットU1は、露光済みのウェハWの表面上に現像用の処理液(現像液)を塗布した後、これを洗浄用の処理液(リンス液)により洗い流すことで、レジスト膜の現像処理を行う。処理モジュール17の熱処理ユニットU2は、現像処理に伴う各種熱処理を行う。熱処理の具体例としては、現像処理前の加熱処理(PEB:Post Exposure Bake)、現像処理後の加熱処理(PB:Post Bake)等が挙げられる。 The processing module 17 develops the resist film after exposure by the liquid processing unit U1 and the heat treatment unit U2. The liquid processing unit U1 of the processing module 17 applies a developing processing liquid (developing liquid) on the exposed surface of the wafer W, and then rinses it with a cleaning processing liquid (rinsing liquid) to thereby remove the resist. The film is developed. The heat treatment unit U2 of the processing module 17 performs various heat treatments associated with the development processing. Specific examples of the heat treatment include heat treatment before development processing (PEB: Post Exposure Bake), heat treatment after development processing (PB: Post Bake), and the like.
 処理ブロック5内におけるキャリアブロック4側には棚ユニットU10が設けられている。棚ユニットU10は、上下方向に並ぶ複数のセルに区画されている。棚ユニットU10の近傍には昇降アームA7が設けられている。昇降アームA7は、棚ユニットU10のセル同士の間でウェハWを昇降させる。処理ブロック5内におけるインタフェースブロック6側には棚ユニットU11が設けられている。棚ユニットU11は、上下方向に並ぶ複数のセルに区画されている。 A shelf unit U10 is provided on the carrier block 4 side in the processing block 5. The shelf unit U10 is partitioned into a plurality of cells arranged in the vertical direction. An elevating arm A7 is provided in the vicinity of the shelf unit U10. The raising / lowering arm A7 raises / lowers the wafer W between the cells of the shelf unit U10. A shelf unit U11 is provided on the interface block 6 side in the processing block 5. The shelf unit U11 is partitioned into a plurality of cells arranged in the vertical direction.
 インタフェースブロック6は、露光装置3との間でウェハWの受け渡しを行う。例えばインタフェースブロック6は、受け渡しアームA8を内蔵しており、露光装置3に接続される。受け渡しアームA8は、棚ユニットU11に配置されたウェハWを露光装置3に渡し、露光装置3からウェハWを受け取って棚ユニットU11に戻す。 The interface block 6 delivers the wafer W to and from the exposure apparatus 3. For example, the interface block 6 includes a delivery arm A8 and is connected to the exposure apparatus 3. The delivery arm A8 delivers the wafer W arranged on the shelf unit U11 to the exposure apparatus 3, receives the wafer W from the exposure apparatus 3, and returns it to the shelf unit U11.
 コントローラ100は、例えば以下の手順で塗布・現像処理を実行するように塗布・現像装置2を制御する。 The controller 100 controls the coating / developing apparatus 2 so as to execute the coating / developing process in the following procedure, for example.
 まずコントローラ100は、キャリア11内のウェハWを棚ユニットU10に搬送するように受け渡しアームA1を制御し、このウェハWを処理モジュール14用のセルに配置するように昇降アームA7を制御する。 First, the controller 100 controls the transfer arm A1 so as to transfer the wafer W in the carrier 11 to the shelf unit U10, and controls the lift arm A7 so as to place this wafer W in the cell for the processing module 14.
 次にコントローラ100は、棚ユニットU10のウェハWを処理モジュール14内の液処理ユニットU1及び熱処理ユニットU2に搬送するように搬送アームA3を制御し、このウェハWの表面上に下層膜を形成するように液処理ユニットU1及び熱処理ユニットU2を制御する。その後コントローラ100は、下層膜が形成されたウェハWを棚ユニットU10に戻すように搬送アームA3を制御し、このウェハWを処理モジュール15用のセルに配置するように昇降アームA7を制御する。 Next, the controller 100 controls the transfer arm A3 so as to transfer the wafer W of the shelf unit U10 to the liquid processing unit U1 and the heat treatment unit U2 in the processing module 14, and forms a lower layer film on the surface of the wafer W. Thus, the liquid processing unit U1 and the heat treatment unit U2 are controlled. Thereafter, the controller 100 controls the transfer arm A3 so as to return the wafer W on which the lower layer film is formed to the shelf unit U10, and controls the lifting arm A7 so as to place the wafer W in the cell for the processing module 15.
 次にコントローラ100は、棚ユニットU10のウェハWを処理モジュール15内の液処理ユニットU1及び熱処理ユニットU2に搬送するように搬送アームA3を制御し、このウェハWの下層膜上にレジスト膜を形成するように液処理ユニットU1及び熱処理ユニットU2を制御する。その後コントローラ100は、ウェハWを棚ユニットU10に戻すように搬送アームA3を制御し、このウェハWを処理モジュール16用のセルに配置するように昇降アームA7を制御する。 Next, the controller 100 controls the transfer arm A3 so as to transfer the wafer W of the shelf unit U10 to the liquid processing unit U1 and the heat treatment unit U2 in the processing module 15, and forms a resist film on the lower layer film of the wafer W. Thus, the liquid processing unit U1 and the heat treatment unit U2 are controlled. Thereafter, the controller 100 controls the transfer arm A3 so as to return the wafer W to the shelf unit U10, and controls the lift arm A7 so as to place the wafer W in the cell for the processing module 16.
 次にコントローラ100は、棚ユニットU10のウェハWを処理モジュール16内の各ユニットに搬送するように搬送アームA3を制御し、このウェハWのレジスト膜上に上層膜を形成するように液処理ユニットU1及び熱処理ユニットU2を制御する。その後コントローラ100は、ウェハWを棚ユニットU10に戻すように搬送アームA3を制御し、このウェハWを処理モジュール17用のセルに配置するように昇降アームA7を制御する。 Next, the controller 100 controls the transfer arm A3 so as to transfer the wafer W of the shelf unit U10 to each unit in the processing module 16, and the liquid processing unit so as to form an upper layer film on the resist film of the wafer W. U1 and heat treatment unit U2 are controlled. Thereafter, the controller 100 controls the transfer arm A3 so as to return the wafer W to the shelf unit U10, and controls the lifting arm A7 so as to place the wafer W in the cell for the processing module 17.
 次にコントローラ100は、棚ユニットU10のウェハWを棚ユニットU11に搬送するように直接搬送アームA6を制御し、このウェハWを露光装置3に送り出すように受け渡しアームA8を制御する。その後コントローラ100は、露光処理が施されたウェハWを露光装置3から受け入れて棚ユニットU11に戻すように受け渡しアームA8を制御する。 Next, the controller 100 directly controls the transfer arm A6 so as to transfer the wafer W of the shelf unit U10 to the shelf unit U11, and controls the transfer arm A8 so as to send this wafer W to the exposure apparatus 3. Thereafter, the controller 100 controls the transfer arm A8 so that the wafer W subjected to the exposure process is received from the exposure apparatus 3 and returned to the shelf unit U11.
 次にコントローラ100は、棚ユニットU11のウェハWを処理モジュール17内の各ユニットに搬送するように搬送アームA3を制御し、このウェハWのレジスト膜に現像処理を施すように液処理ユニットU1及び熱処理ユニットU2を制御する。その後コントローラ100は、ウェハWを棚ユニットU10に戻すように搬送アームA3を制御し、このウェハWをキャリア11内に戻すように昇降アームA7及び受け渡しアームA1を制御する。以上で塗布・現像処理が完了する。 Next, the controller 100 controls the transfer arm A3 so as to transfer the wafer W of the shelf unit U11 to each unit in the processing module 17, and the liquid processing unit U1 and the processing unit U1 and the resist film of the wafer W are subjected to development processing. The heat treatment unit U2 is controlled. Thereafter, the controller 100 controls the transfer arm A3 to return the wafer W to the shelf unit U10, and controls the lift arm A7 and the delivery arm A1 to return the wafer W into the carrier 11. Thus, the coating / developing process is completed.
 なお、基板処理装置の具体的な構成は、以上に例示した塗布・現像装置2の構成に限られない。基板処理装置は、被膜形成用の液処理ユニットU1(処理モジュール14,15,16の液処理ユニットU1)と、これを制御可能なコントローラ100とを備えていればどのようなものであってもよい。 The specific configuration of the substrate processing apparatus is not limited to the configuration of the coating / developing apparatus 2 exemplified above. Any substrate processing apparatus may be used as long as it includes a liquid processing unit U1 for forming a film (liquid processing unit U1 of the processing modules 14, 15, and 16) and a controller 100 that can control the unit. Good.
〔熱処理ユニット〕
 続いて、処理モジュール15の熱処理ユニットU2について詳細に説明する。図4に示すように、熱処理ユニットU2は、筐体90と、加熱機構30と、温度調整機構50と、コントローラ100(制御部)とを有する。
[Heat treatment unit]
Next, the heat treatment unit U2 of the processing module 15 will be described in detail. As shown in FIG. 4, the heat treatment unit U2 includes a housing 90, a heating mechanism 30, a temperature adjustment mechanism 50, and a controller 100 (control unit).
 筐体90は、加熱機構30及び温度調整機構50を収容する処理容器である。筐体90の側壁にはウェハWの搬入口91が開口されている。また、筐体90内には、筐体90内をウェハWの移動領域である上方領域と、下方領域とに区画する床板92が設けられている。 The housing 90 is a processing container that houses the heating mechanism 30 and the temperature adjustment mechanism 50. An entrance 91 for the wafer W is opened on the side wall of the housing 90. In addition, a floor plate 92 that divides the inside of the housing 90 into an upper region that is a movement region of the wafer W and a lower region is provided in the housing 90.
 加熱機構30は、ウェハWを加熱処理する構成である。加熱機構30は、支持台31と、天板部32と、昇降機構33と、熱板34と、支持ピン35と、昇降機構36と、排気ダクト37と、ヒータ38(温調器)と、温度センサ39(詳細には、複数の温度センサ39a~39g(図5参照))とを有する。 The heating mechanism 30 is configured to heat the wafer W. The heating mechanism 30 includes a support base 31, a top plate portion 32, a lifting mechanism 33, a heating plate 34, a support pin 35, a lifting mechanism 36, an exhaust duct 37, a heater 38 (temperature controller), And a temperature sensor 39 (specifically, a plurality of temperature sensors 39a to 39g (see FIG. 5)).
 支持台31は、中央部分に凹部が形成された円筒形状を呈する部材である。支持台31は、熱板34を支持する。天板部32は、支持台31と同程度の直径の円板状の部材である。天板部32は、例えば筐体90の天井部分に支持された状態で、支持台31と隙間を介して対向する。天板部32の上部には排気ダクト37が接続されている。排気ダクト37は、チャンバ内の排気を行う。 The support base 31 is a member having a cylindrical shape in which a concave portion is formed in the central portion. The support base 31 supports the heat plate 34. The top plate portion 32 is a disk-like member having a diameter similar to that of the support base 31. The top plate portion 32 faces the support base 31 with a gap in a state where the top plate portion 32 is supported by, for example, the ceiling portion of the housing 90. An exhaust duct 37 is connected to the top of the top plate portion 32. The exhaust duct 37 exhausts the inside of the chamber.
 昇降機構33は、コントローラ100の制御に応じて天板部32を昇降させる構成である。昇降機構33によって天板部32が上昇させられることにより、ウェハWの加熱処理を行う空間であるチャンバが開かれた状態となり、天板部32が下降させられることにより、チャンバが閉じられた状態となる。 The elevating mechanism 33 is configured to elevate and lower the top plate portion 32 according to the control of the controller 100. When the top plate portion 32 is raised by the elevating mechanism 33, the chamber, which is a space for performing the heat treatment of the wafer W, is opened, and when the top plate portion 32 is lowered, the chamber is closed. It becomes.
 熱板34は、円形状を呈する平板であり(図5参照)、支持台31の凹部に嵌合されている。熱板34は、ウェハWを載置すると共に該ウェハWに熱を付与する。熱板34は、ヒータ38によって加熱される。熱板34は、複数のチャネル(領域)毎にヒータ38によって加熱される。熱板34の内部には、上述した複数のチャネル毎に、熱板34の温度を測定するように構成された複数の温度センサ39a~39g(図5参照)が設けられている。 The hot plate 34 is a flat plate having a circular shape (see FIG. 5), and is fitted in the recess of the support base 31. The hot plate 34 places the wafer W thereon and applies heat to the wafer W. The hot plate 34 is heated by a heater 38. The hot plate 34 is heated by a heater 38 for each of a plurality of channels (regions). Inside the hot plate 34, a plurality of temperature sensors 39a to 39g (see FIG. 5) configured to measure the temperature of the hot plate 34 are provided for each of the plurality of channels described above.
 ヒータ38は、熱板34を加熱する温調器である。ヒータ38は例えば抵抗発熱体から構成されている。ヒータ38は、コントローラ100によって設定された指令温度に応じて、熱板34の複数のチャネルを加熱するように構成されている。すなわち、ヒータ38には、複数のチャネル毎に指令温度が設定されている。各チャネルの指令温度は、コントローラ100によって個別に変更可能とされている。ヒータ38は、熱板34の実温度に応じた出力量で、熱板34を加熱する。 The heater 38 is a temperature controller that heats the hot plate 34. The heater 38 is composed of a resistance heating element, for example. The heater 38 is configured to heat a plurality of channels of the hot plate 34 according to the command temperature set by the controller 100. That is, the heater 38 is set with a command temperature for each of a plurality of channels. The command temperature of each channel can be individually changed by the controller 100. The heater 38 heats the hot plate 34 with an output amount corresponding to the actual temperature of the hot plate 34.
 複数の温度センサ39a~39gは、それぞれ、熱板34の複数のチャネル(領域)に一対一で対応して設けられおり、対応するチャネルにおける熱板34の温度を測定する。複数の温度センサ39a~39gは、熱板34の内部に設けられていてもよいし、熱板34の下面に設けられていてもよい。図5は、熱板34における複数の温度センサ39a~39gの配置の一例を模式的に示した図である。図5に示す例では、円形状を呈する熱板34の中心付近に温度センサ39aが設けられており、熱板34の外縁付近において周方向に略等間隔で4つの温度センサ39d,39e,39f,39gが設けられており、径方向における温度センサ39aと温度センサ39dとの間に温度センサ39bが設けられており、径方向における温度センサ39aと温度センサ39fとの間に温度センサ39cが設けられている。 The plurality of temperature sensors 39a to 39g are provided in one-to-one correspondence with the plurality of channels (regions) of the hot plate 34, and measure the temperature of the hot plate 34 in the corresponding channel. The plurality of temperature sensors 39a to 39g may be provided inside the hot plate 34 or may be provided on the lower surface of the hot plate 34. FIG. 5 is a diagram schematically showing an example of the arrangement of the plurality of temperature sensors 39a to 39g on the hot plate. In the example shown in FIG. 5, a temperature sensor 39a is provided in the vicinity of the center of the circular hot plate 34, and four temperature sensors 39d, 39e, 39f are provided at substantially equal intervals in the circumferential direction near the outer edge of the hot plate 34. 39g, a temperature sensor 39b is provided between the temperature sensor 39a and the temperature sensor 39d in the radial direction, and a temperature sensor 39c is provided between the temperature sensor 39a and the temperature sensor 39f in the radial direction. It has been.
 支持ピン35は、支持台31及び熱板34を貫通するように延びウェハWを下方から支持する部材である。支持ピン35は、上下方向に昇降することにより、ウェハWを所定の位置に配置する。支持ピン35は、ウェハWを搬送する温度調整プレート51との間でウェハWの、受け渡しを行う構成である。支持ピン35は、例えば周方向等間隔に3本設けられている。昇降機構36は、コントローラ100の制御に応じて支持ピン35を昇降させる構成である。 The support pins 35 are members that extend through the support base 31 and the hot plate 34 and support the wafer W from below. The support pins 35 are moved up and down to place the wafer W at a predetermined position. The support pins 35 are configured to deliver the wafer W to and from the temperature adjustment plate 51 that transports the wafer W. For example, three support pins 35 are provided at equal intervals in the circumferential direction. The elevating mechanism 36 is configured to raise and lower the support pin 35 in accordance with the control of the controller 100.
 温度調整機構50は、熱板34と外部の搬送アームA3(図3参照)との間でウェハWを受け渡す(搬送する)と共に、ウェハWの温度を所定温度に調整する構成である。温度調整機構50は、温度調整プレート51と、連結ブラケット52とを有する。 The temperature adjusting mechanism 50 is configured to deliver (carry) the wafer W between the hot plate 34 and the external transfer arm A3 (see FIG. 3) and adjust the temperature of the wafer W to a predetermined temperature. The temperature adjustment mechanism 50 includes a temperature adjustment plate 51 and a connection bracket 52.
 温度調整プレート51は、載置されたウェハWの温度調整を行うプレートであり、詳細には、熱板34により加熱されたウェハWを載置し該ウェハWを所定温度に冷却するプレートである。温度調整プレート51は、例えば熱伝導率の高い、アルミ、銀、又は銅等の金属によって構成されており、熱による変形を防止する観点等から同一の材料で構成されていてもよい。温度調整プレート51の内部には、冷却水及び(又は)冷却気体を流通させるための冷却流路(不図示)が形成されている。 The temperature adjustment plate 51 is a plate for adjusting the temperature of the mounted wafer W. Specifically, the temperature adjustment plate 51 is a plate for mounting the wafer W heated by the hot plate 34 and cooling the wafer W to a predetermined temperature. . The temperature adjustment plate 51 is made of, for example, a metal having a high thermal conductivity, such as aluminum, silver, or copper, and may be made of the same material from the viewpoint of preventing deformation due to heat. Inside the temperature adjustment plate 51, a cooling flow path (not shown) for flowing cooling water and / or cooling gas is formed.
 連結ブラケット52は、温度調整プレート51に連結されると共に、コントローラ100によって制御される駆動機構53によって駆動させられ、筐体90内を移動する。より詳細には、連結ブラケット52は、筐体90の搬入口91から加熱機構30の近傍にまで延びるガイドレール(不図示)に沿って移動可能とされている。連結ブラケット52がガイドレール(不図示)に沿って移動することにより、温度調整プレート51が搬入口91から加熱機構30まで移動可能となっている。連結ブラケット52は、例えば熱伝導率の高い、アルミ、銀、又は銅等の金属によって構成されている。 The connection bracket 52 is connected to the temperature adjustment plate 51 and is driven by the drive mechanism 53 controlled by the controller 100 to move in the housing 90. More specifically, the connection bracket 52 is movable along a guide rail (not shown) extending from the carry-in port 91 of the housing 90 to the vicinity of the heating mechanism 30. The temperature adjustment plate 51 can be moved from the carry-in port 91 to the heating mechanism 30 by the connection bracket 52 moving along a guide rail (not shown). The connection bracket 52 is made of, for example, a metal having a high thermal conductivity such as aluminum, silver, or copper.
 コントローラ100は、熱板34の複数のチャネル毎に、温度センサ39の表示温度(温度センサ39が測定する測定温度)と、ヒータ38の設定に応じた理想温度との差異である温度シフト量を算出し、該温度シフト量が所定の正常範囲内であるか否かを判定することと、判定結果に基づいて異常領域を特定すること(例えば、温度シフト量が正常範囲内でないチャネルが存在する場合に、該チャネルを異常チャネルとして特定すること)と、を実行するように構成されている。コントローラ100は、温度シフト量が正常範囲内でない領域の温度シフト量、及び、温度シフト量が正常範囲内である領域の温度シフト量の双方を考慮して、異常領域を特定する。 The controller 100 sets a temperature shift amount, which is a difference between the display temperature of the temperature sensor 39 (measured temperature measured by the temperature sensor 39) and the ideal temperature according to the setting of the heater 38, for each of the plurality of channels of the hot plate 34. Calculate and determine whether or not the temperature shift amount is within a predetermined normal range, and specify an abnormal region based on the determination result (for example, there is a channel whose temperature shift amount is not within the normal range) In such a case, the channel is identified as an abnormal channel). The controller 100 identifies the abnormal region in consideration of both the temperature shift amount in the region where the temperature shift amount is not within the normal range and the temperature shift amount in the region where the temperature shift amount is within the normal range.
 コントローラ100は、複数のチャネルそれぞれに対応するヒータ38の出力量を考慮して、異常チャネルを特定する。コントローラ100は、複数のチャネルに、出力量の正常時との差分が所定値以上となっているチャネルが存在する場合には、該チャネルを異常チャネルとして特定し、存在しない場合には、温度シフト量が正常範囲内でないチャネルを異常チャネルとして特定する。 The controller 100 identifies an abnormal channel in consideration of the output amount of the heater 38 corresponding to each of the plurality of channels. The controller 100 identifies the channel as an abnormal channel when there is a channel whose difference from the normal output amount is a predetermined value or more in a plurality of channels. A channel whose amount is not within the normal range is identified as an abnormal channel.
 コントローラ100は、熱板34の温度が定常状態となった後に、温度シフト量が正常範囲内であるか否かの判定を開始する。コントローラ100は、温度シフト量が上述した正常範囲内であるか否かの判定を、熱板34の温度が定常状態である間、継続的に行う。 The controller 100 starts determining whether or not the temperature shift amount is within the normal range after the temperature of the hot plate 34 reaches a steady state. The controller 100 continuously determines whether or not the temperature shift amount is within the above-described normal range while the temperature of the hot plate 34 is in a steady state.
 コントローラ100は、上述した正常範囲を、正常に稼働する熱板34の定常状態における、温度センサ39の表示温度と上述した理想温度との差異として変動し得る範囲よりも広く設定する。 The controller 100 sets the above-described normal range wider than a range that can vary as a difference between the display temperature of the temperature sensor 39 and the above-described ideal temperature in the steady state of the hot plate 34 that operates normally.
 コントローラ100は、異常チャネルに係るヒータ38の指令温度を変更することによって、該異常チャネルの温度シフト量が正常範囲内となるように補正制御を行うことを更に実行するように構成されている。コントローラ100は、上記指令温度の変更後において、異常チャネルに係るヒータ38の出力量と、正常時の上記指令温度に対応するヒータ38の出力量との差異が所定値より小さい第1状態となるまで、指令温度の変更を繰り返す。コントローラ100は、第1状態となった後において、異常チャネルにおける温度センサ39の表示温度に基づいて、以降の処理の継続可否を判定する。 The controller 100 is configured to further execute correction control so that the temperature shift amount of the abnormal channel falls within the normal range by changing the command temperature of the heater 38 related to the abnormal channel. After the change in the command temperature, the controller 100 is in a first state in which the difference between the output amount of the heater 38 related to the abnormal channel and the output amount of the heater 38 corresponding to the command temperature at the normal time is smaller than a predetermined value. Repeat until the command temperature is changed. After entering the first state, the controller 100 determines whether or not to continue the subsequent processing based on the display temperature of the temperature sensor 39 in the abnormal channel.
 図4に示すように、コントローラ100は、機能モジュールとして、搬送制御部101と、判定部102と、異常チャネル特定部103と、補正部104とを有する。 As shown in FIG. 4, the controller 100 includes a transport control unit 101, a determination unit 102, an abnormal channel identification unit 103, and a correction unit 104 as functional modules.
 搬送制御部101は、天板部32の昇降によってチャンバが開閉するように、昇降機構33を制御する。また、搬送制御部101は、支持ピン35の昇降によって温度調整プレート51と支持ピン35との間でウェハWの受け渡しが行われるように、昇降機構36を制御する。また、搬送制御部101は、温度調整プレート51が筐体90内を移動するように、駆動機構53を制御する。 The transport control unit 101 controls the lifting mechanism 33 so that the chamber is opened and closed by lifting and lowering the top plate part 32. Further, the transfer control unit 101 controls the elevating mechanism 36 so that the wafer W is transferred between the temperature adjustment plate 51 and the support pins 35 by elevating the support pins 35. Further, the transport control unit 101 controls the drive mechanism 53 so that the temperature adjustment plate 51 moves in the housing 90.
 判定部102は、熱板34の複数のチャネル毎に、温度センサ39の表示温度と、ヒータ38の設定に応じた理想温度との差異である温度シフト量を算出し、該温度シフト量が所定の正常範囲(以下、「バンド幅」と記載)内であるか否かを判定する。判定部102は、所定の時間間隔で、複数の温度センサ39a~39gから表示温度を取得する。ヒータ38の設定に応じた理想温度とは、予めヒータ38に設定されている指令温度に応じて熱板34の温度(正常な状態の熱板34の温度)として想定される温度である。判定部102は、上述したバンド幅を、正常に稼働する熱板34の定常状態における、温度センサ39の表示温度と理想温度との差異として変動し得る範囲(例えば、チャンバの開閉によって変動し得る範囲)よりも広く設定する。 The determination unit 102 calculates a temperature shift amount that is a difference between the display temperature of the temperature sensor 39 and the ideal temperature according to the setting of the heater 38 for each of the plurality of channels of the heat plate 34, and the temperature shift amount is predetermined. Is within a normal range (hereinafter referred to as “bandwidth”). The determination unit 102 acquires display temperatures from the plurality of temperature sensors 39a to 39g at predetermined time intervals. The ideal temperature according to the setting of the heater 38 is a temperature assumed as the temperature of the hot plate 34 (the temperature of the hot plate 34 in a normal state) according to the command temperature set in advance in the heater 38. The determination unit 102 can vary the above-described bandwidth as a difference between the display temperature of the temperature sensor 39 and the ideal temperature in the steady state of the hot plate 34 that is operating normally (for example, it can be varied by opening / closing the chamber). Set a wider range.
 判定部102は、熱板34の温度が定常状態となった後に、温度シフト量がバンド幅内であるか否かの判定を開始する。すなわち、判定部102は、プロセスの開始時において意図的に熱板34に加わる出力量が変化される昇温制御時の過渡期や降温制御時において、温度シフト量の判定を行わず、熱板34の温度が定常状態となった後に当該判定を開始する。判定部102は、温度シフト量がバンド幅内であるか否かの判定を、熱板34の温度が定常状態である間、継続的に行う。 The determination unit 102 starts determining whether or not the temperature shift amount is within the bandwidth after the temperature of the hot plate 34 reaches a steady state. In other words, the determination unit 102 does not determine the temperature shift amount in the transition period or the temperature decrease control during the temperature increase control in which the output amount applied to the heat plate 34 is intentionally changed at the start of the process. The determination is started after the temperature of 34 reaches a steady state. The determination unit 102 continuously determines whether or not the temperature shift amount is within the bandwidth while the temperature of the hot plate 34 is in a steady state.
 異常チャネル特定部103は、温度シフト量がバンド幅内でないチャネルが存在する場合に、該チャネルを異常チャネルとして特定する。また、異常チャネル特定部103は、複数のチャネルそれぞれに対応するヒータ38の出力量を考慮して、異常チャネルを特定する。このように、異常チャネル特定部103は、温度シフト量及びヒータ38の出力量を考慮して異常チャネルを特定している。 The abnormal channel specifying unit 103 specifies the channel as an abnormal channel when there is a channel whose temperature shift amount is not within the bandwidth. The abnormal channel specifying unit 103 specifies an abnormal channel in consideration of the output amount of the heater 38 corresponding to each of the plurality of channels. As described above, the abnormal channel specifying unit 103 specifies an abnormal channel in consideration of the temperature shift amount and the output amount of the heater 38.
 具体的には、異常チャネル特定部103は、複数のチャネルに、ヒータ38の出力量の正常時との差分が所定値以上となっているチャネルが存在する場合には、該チャネルを異常チャネルとして特定し(特定処理2)、存在しない場合には、温度シフト量がバンド幅内でないチャネルを異常チャネルとして特定する(特定処理1)。 Specifically, the abnormal channel specifying unit 103 sets the channel as an abnormal channel when a plurality of channels have a channel whose difference from the normal output amount of the heater 38 is a predetermined value or more. If specified (specific processing 2) and does not exist, a channel whose temperature shift amount is not within the bandwidth is specified as an abnormal channel (specific processing 1).
 上述した特定処理1を行う場合の温度シフトメカニズムの一例について、図6(a)を参照して説明する。図6(a)では2つのチャネル(CH1、CH2)についてそれぞれ、表示温度(CH1に対応する温度センサ39aで測定される測定温度、及び、CH2に対応する温度センサ39bで測定される測定温度)と実温度とが示されており、縦軸が温度、横軸が時間を示している。図6(a)には、時間の経過に沿って、正常状態ST1、上昇第1状態ST2、及び上昇第2状態ST3を示している。 An example of a temperature shift mechanism when the above-described specific process 1 is performed will be described with reference to FIG. In FIG. 6A, the display temperature (measured temperature measured by the temperature sensor 39a corresponding to CH1 and measured temperature measured by the temperature sensor 39b corresponding to CH2) for each of the two channels (CH1, CH2). And the actual temperature are shown, with the vertical axis representing temperature and the horizontal axis representing time. FIG. 6A shows the normal state ST1, the rising first state ST2, and the rising second state ST3 along with the passage of time.
 図6(a)に示す正常状態ST1では、双方のチャネル共に表示温度と実温度とが400℃前後とされている。この状態から、例えば温度センサ39aにおいて半断線が発生し温度センサ39aの抵抗値が増加すると、CH1の表示温度が実温度から乖離して430℃前後となり、CH1の表示温度のみが上昇した上昇第1状態ST2となる。このような場合には、ヒータ38におけるCH1に対応する指令温度がCH1の温度を上昇分だけ低下させる方向に変更されるため、CH1の表示温度及び実温度が低下した上昇第2状態ST3となる。ただし、CH1に近接するCH2の温度が影響するため、上昇第2状態ST3においては、CH1の表示温度は元の400℃までは低下しない。また、上昇第2状態ST3においては、CH1の実温度低下の影響がCH2にも及ぶこととなり、CH2の表示温度及び実温度も少し(CH1よりは小さい幅で)低下する。 In the normal state ST1 shown in FIG. 6 (a), the display temperature and the actual temperature are about 400 ° C. for both channels. From this state, for example, when a half-break occurs in the temperature sensor 39a and the resistance value of the temperature sensor 39a increases, the display temperature of CH1 deviates from the actual temperature to around 430 ° C., and only the display temperature of CH1 rises. 1 state ST2. In such a case, since the command temperature corresponding to CH1 in the heater 38 is changed to a direction in which the temperature of CH1 is decreased by an increase, the second temperature state ST3 in which the display temperature and the actual temperature of CH1 are decreased is obtained. . However, since the temperature of CH2 adjacent to CH1 is affected, in the second rising state ST3, the display temperature of CH1 does not decrease to the original 400 ° C. Further, in the second rising state ST3, the effect of the actual temperature decrease of CH1 also affects CH2, and the display temperature and actual temperature of CH2 are slightly decreased (with a smaller width than CH1).
 上昇第2状態ST3では、正常状態ST1と比べて、CH1及びCH2共に実温度が低下しているため、実温度に応じて変化するヒータ38の出力量が突出して大きくなるチャネルは存在しない。また、上昇第2状態ST3では、CH1の表示温度が上昇しており(すなわち温度シフト量が大きくなっており)、且つ、実温度が大きく低下している(すなわち異常チャネルとなっている)。以上のことから、出力量の正常時との差分が所定値以上であるチャネルが存在しない場合には、特定処理1を行い、温度シフト量がバンド幅内でないチャネルを異常チャネルとして特定することによって、異常チャネルを適切に特定することができる。 In the rising second state ST3, since the actual temperatures of both CH1 and CH2 are lower than in the normal state ST1, there is no channel in which the output amount of the heater 38 that changes according to the actual temperature protrudes and becomes large. In the second rising state ST3, the display temperature of CH1 is rising (that is, the amount of temperature shift is large), and the actual temperature is greatly decreasing (that is, it is an abnormal channel). From the above, when there is no channel whose difference from the normal output amount is greater than or equal to the predetermined value, the identification process 1 is performed, and the channel whose temperature shift amount is not within the bandwidth is identified as an abnormal channel. An abnormal channel can be identified appropriately.
 上述した特定処理2を行う場合の温度シフトメカニズムの一例について、図6(b)を参照して説明する。図6(b)では2つのチャネル(CH1、CH2)についてそれぞれ、表示温度(CH1に対応する温度センサ39aで測定される測定温度、及び、CH2に対応する温度センサ39bで測定される測定温度)と実温度とが示されており、縦軸が温度、横軸が時間を示している。図6(b)には、時間の経過に沿って、正常状態ST101(左に示した状態)、低下第1状態ST102(真ん中に示した状態)、及び低下第2状態ST103(右に示した状態)を示している。 An example of the temperature shift mechanism when performing the above-described specific processing 2 will be described with reference to FIG. In FIG. 6B, for each of the two channels (CH1, CH2), the display temperature (the measured temperature measured by the temperature sensor 39a corresponding to CH1 and the measured temperature measured by the temperature sensor 39b corresponding to CH2) is shown. And the actual temperature are shown, with the vertical axis representing temperature and the horizontal axis representing time. In FIG. 6B, as time passes, the normal state ST101 (state shown on the left), the lowered first state ST102 (the state shown in the middle), and the lowered second state ST103 (shown on the right) State).
 図6(b)に示す正常状態ST101では、双方のチャネル共に表示温度と実温度とが400℃前後とされている。この状態から、温度センサ39aの抵抗値が減少すると、CH1の表示温度が実温度から乖離して370℃前後となり、CH1の表示温度のみが低下した低下第1状態ST102となる。このような場合には、ヒータ38におけるCH1に対応する指令温度がCH1の温度を低下分だけ上昇させる方向に変更されるため、CH1の表示温度及び実温度が上昇した低下第2状態ST103となる。ただし、CH1に近接するCH2の温度が影響するため、低下第2状態ST103においては、CH1の表示温度は元の400℃までは上昇しない。また、低下第2状態ST103においては、CH1の実温度上昇の影響がCH2にも及ぶこととなり、CH2の表示温度及び実温度も少し(CH1よりは小さい幅で)上昇する。 In the normal state ST101 shown in FIG. 6 (b), the display temperature and the actual temperature are about 400 ° C. for both channels. From this state, when the resistance value of the temperature sensor 39a decreases, the display temperature of CH1 deviates from the actual temperature and becomes around 370 ° C., and a first state ST102 in which only the display temperature of CH1 decreases is reached. In such a case, since the command temperature corresponding to CH1 in the heater 38 is changed to a direction in which the temperature of CH1 is increased by a decrease, the second temperature state ST103 in which the display temperature and the actual temperature of CH1 are increased is obtained. . However, since the temperature of CH2 adjacent to CH1 is affected, in the lowered second state ST103, the display temperature of CH1 does not increase to the original 400 ° C. Further, in the second lowered state ST103, the effect of the actual temperature increase of CH1 also reaches CH2, and the display temperature and actual temperature of CH2 also slightly increase (with a smaller width than CH1).
 低下第2状態ST103では、正常状態ST1と比べて、CH1の実温度が大きく上昇し(異常チャネルとなっており)、CH1に対応するヒータ38の出力量が突出して大きくなっている。また、低下第2状態ST103では、CH2の表示温度がCH1の表示温度よりも高くなっている(すなわちCH2の温度シフト量が大きくなっている)。以上のことから、出力量の正常時との差分が所定値以上であるチャネルが存在する場合には、特定処理2を行い、温度シフト量が大きいチャネルではなく出力量が大きいチャネルを異常チャネルとして特定することによって、異常チャネルを適切に特定することができる。 In the lowered second state ST103, compared with the normal state ST1, the actual temperature of CH1 rises greatly (becomes an abnormal channel), and the output amount of the heater 38 corresponding to CH1 protrudes and becomes large. In the lowered second state ST103, the display temperature of CH2 is higher than the display temperature of CH1 (that is, the temperature shift amount of CH2 is large). From the above, if there is a channel whose difference from the normal output amount is greater than or equal to a predetermined value, the specific process 2 is performed, and the channel with a large output amount is set as an abnormal channel instead of a channel with a large temperature shift amount. By specifying, an abnormal channel can be appropriately specified.
 特定処理1及び特定処理2を行う場合の異常チャネルの特定について、図7を参照して説明する。図7に示す7つのチャネル(CH1~CH7)は、図5に示すCH1~CH7に対応している。すなわち、図7に示すCH1~CH7に対応する温度センサ39は、それぞれ、図5に示す温度センサ39a~39gである。図7に示す「CH1操作」とは、CH1の実温度を上昇又は低下させることをいう。「CH2操作」及び「CH4操作」についても同様に、CH2(又はCH4)の実温度を上昇又は低下させることをいう。 The identification of the abnormal channel when the identification process 1 and the identification process 2 are performed will be described with reference to FIG. The seven channels (CH1 to CH7) shown in FIG. 7 correspond to CH1 to CH7 shown in FIG. That is, the temperature sensors 39 corresponding to CH1 to CH7 shown in FIG. 7 are the temperature sensors 39a to 39g shown in FIG. “CH1 operation” shown in FIG. 7 refers to raising or lowering the actual temperature of CH1. Similarly, “CH2 operation” and “CH4 operation” refer to increasing or decreasing the actual temperature of CH2 (or CH4).
 図7には、グラフg1~g9の9つのグラフを示している。グラフg1~グラフg3は、各チャネルの実温度を変化させた場合の各チャネルの温度シフト量を示している。詳細には、グラフg1はCH1の実温度を20℃上昇させた場合及び20℃低下させた場合の各チャネルの温度シフト量を示しており、グラフg2はCH2の実温度を20℃上昇させた場合及び20℃低下させた場合の各チャネルの温度シフト量を示しており、グラフg3はCH4の実温度を20℃上昇させた場合及び20℃低下させた場合の各チャネルの温度シフト量を示している。また、グラフg4~グラフg6は、各チャネルの実温度を変化させた場合の各チャネルの出力量(ヒータ38の出力量)、及び実温度を変化させない場合の正常時の各チャネルの出力量を示している。詳細には、グラフg4はCH1の実温度を20℃上昇させた場合及び20℃低下させた場合の各チャネルの出力量並びに正常時の出力量を示しており、グラフg5はCH2の実温度を20℃上昇させた場合及び20℃低下させた場合の各チャネルの出力量並びに正常時の出力量を示しており、グラフg6はCH4の実温度を20℃上昇させた場合及び20℃低下させた場合の各チャネルの出力量並びに正常時の出力量を示している。また、グラフg7~グラフg9は、各チャネルの実温度を変化させた場合の各チャネルの出力差分(温度を変化させない正常時との出力差分)を示している。詳細には、グラフg7はCH1の実温度を20℃上昇させた場合及び20℃低下させた場合の出力差分を示しており、グラフg8はCH2の実温度を20℃上昇させた場合及び20℃低下させた場合の出力差分を示しており、グラフg9はCH4の実温度を20℃上昇させた場合及び20℃低下させた場合の出力差分を示している。 FIG. 7 shows nine graphs g1 to g9. Graphs g1 to g3 show the amount of temperature shift of each channel when the actual temperature of each channel is changed. Specifically, the graph g1 shows the temperature shift amount of each channel when the actual temperature of CH1 is increased by 20 ° C. and when the actual temperature of CH1 is decreased by 20 ° C., and the graph g2 increases the actual temperature of CH2 by 20 ° C. The graph g3 shows the temperature shift amount of each channel when the actual temperature of CH4 is raised by 20 ° C and when the actual temperature of CH4 is lowered by 20 ° C. ing. Graphs g4 to g6 show the output amount of each channel when the actual temperature of each channel is changed (the output amount of the heater 38) and the output amount of each channel when the actual temperature is not changed. Show. Specifically, the graph g4 shows the output amount of each channel and the normal output amount when the actual temperature of CH1 is raised by 20 ° C. and lowered by 20 ° C., and the graph g5 shows the actual temperature of CH2. The graph shows the output amount of each channel when the temperature is increased by 20 ° C. and when the temperature is decreased by 20 ° C. and the output amount at normal time. Graph g6 shows the case where the actual temperature of CH4 is increased by 20 ° C. and the output amount is decreased by 20 ° C. The output amount of each channel and the output amount at normal time are shown. Graphs g7 to g9 show the output difference of each channel when the actual temperature of each channel is changed (output difference from the normal time when the temperature is not changed). Specifically, the graph g7 shows the output difference when the actual temperature of CH1 is increased by 20 ° C. and when the actual temperature of CH1 is decreased by 20 ° C., and the graph g8 is obtained when the actual temperature of CH2 is increased by 20 ° C. The output difference when lowered is shown, and the graph g9 shows the output difference when the actual temperature of CH4 is raised by 20 ° C and when lowered by 20 ° C.
 図7のグラフg1~g3に示すように、実温度を20℃低下させた場合(グラフg1~g3中において「20℃」で示される場合)では、実温度を変化させて異常チャネルとしたチャネルの温度シフト量が大きくなっている。図7に示す例では、例えば、バンド幅を1.5℃とすることによって、実際に温度が変化している異常チャネルのみを抽出することができる。一方で、図7のグラフg1~g3に示すように、実温度を20℃上昇させた場合(グラフg1~g3中において「-20℃」で示される場合)では、実温度を変化させたチャネル以外の温度シフト量が大きくなっている。例えばグラフg1では、CH1に近傍する(図5参照)、CH2及びCH3の温度シフト量が大きくなっている。このことから、温度シフト量のみから異常チャネルを特定することができない場合があると言える。 As shown in the graphs g1 to g3 in FIG. 7, when the actual temperature is lowered by 20 ° C. (indicated by “20 ° C.” in the graphs g1 to g3), the channel is changed to an abnormal channel by changing the actual temperature. The temperature shift amount of is large. In the example shown in FIG. 7, for example, by setting the bandwidth to 1.5 ° C., it is possible to extract only the abnormal channel whose temperature actually changes. On the other hand, as shown in the graphs g1 to g3 in FIG. 7, when the actual temperature is increased by 20 ° C. (indicated by “−20 ° C.” in the graphs g1 to g3), the channel in which the actual temperature is changed The temperature shift amount other than is larger. For example, in the graph g1, the temperature shift amounts of CH2 and CH3 that are close to CH1 (see FIG. 5) are large. From this, it can be said that the abnormal channel may not be identified only from the temperature shift amount.
 図7のグラフg4~g6に示すように、実温度を20℃上昇させた場合(グラフg4~g9中において「-20℃」で示される場合)では、実温度を変化させて異常チャネルとしたチャネルの出力量が大きくなっている。この場合には、図7のグラフg7~g9に示すように、正常時との出力量の差分についても、実温度を変化させて異常チャネルとしたチャネルが大きくなる。図7に示す例では、例えば出力量の正常値との差分が所定位以上となっているか否かを判定するための当該所定値を、出力量の20%程度とすることによって、実際に温度が変化している異常チャネルのみを抽出することができる(図7のグラフg7~g9参照)。 As shown in graphs g4 to g6 in FIG. 7, when the actual temperature is increased by 20 ° C. (indicated by “−20 ° C.” in the graphs g4 to g9), the actual temperature is changed to form an abnormal channel. The output amount of the channel is large. In this case, as shown in the graphs g7 to g9 in FIG. 7, the difference in the output amount from the normal time also increases the number of channels that are abnormal channels by changing the actual temperature. In the example shown in FIG. 7, for example, by setting the predetermined value for determining whether or not the difference from the normal value of the output amount is a predetermined level or more to about 20% of the output amount, It is possible to extract only abnormal channels in which are changed (see graphs g7 to g9 in FIG. 7).
 以上のことから、異常チャネル特定部103が、複数のチャネルに、出力量の正常時との差分が所定値以上となっているチャネルが存在する場合には、該チャネルを異常チャネルとして特定し(特定処理2)、存在しない場合には、温度シフト量がバンド幅内でないチャネルを異常チャネルとして特定する(特定処理1)ことにより、高精度に異常チャネルを特定することができる。 From the above, the abnormal channel specifying unit 103 specifies a channel as an abnormal channel when a plurality of channels have a channel whose difference from the normal output amount is a predetermined value or more ( If the identification process 2) does not exist, the abnormal channel can be identified with high accuracy by identifying the channel whose temperature shift amount is not within the bandwidth as the abnormal channel (identification process 1).
 補正部104は、異常チャネルに係るヒータ38の指令温度を変更することによって、該異常チャネルの温度シフト量が正常範囲内となるように補正制御を行う。具体的には、補正部104は、異常チャネル特定部103によって異常チャネルとして特定されたチャネルの温度センサ39から熱板34の温度を取得し、温度異常を改善する方向に温度変化するようにヒータ38の指令温度を変更する。補正部104は、上述した指令温度の変更後において、異常チャネルに係るヒータ38の出力量と、正常時の上記指令温度に対応するヒータ38の出力量との差異が所定値より小さい第1状態となるまで、指令温度の変更を繰り返す。補正部104は、上述した第1状態となった後において、異常チャネルにおける温度センサ39の表示温度に基づいて、以降の処理の継続可否を判定する。具体的には、補正部104は、異常チャネルの温度センサ39から取得した表示温度が、当該チャネルの理想温度に近接している場合には以降の処理を継続し、近接していない場合には以降の処理を中止する。第1状態となった(出力量が正常となり実温度が正しく補正されて理想温度に近づいた)にも関わらず温度センサ39の表示温度が理想温度から乖離しているということは、すなわち温度センサ39が正常に動作できないことを示しているため、その後の処理を中止してもよい。 The correction unit 104 performs correction control so that the temperature shift amount of the abnormal channel is within the normal range by changing the command temperature of the heater 38 related to the abnormal channel. Specifically, the correction unit 104 acquires the temperature of the hot plate 34 from the temperature sensor 39 of the channel specified as the abnormal channel by the abnormal channel specifying unit 103, and changes the temperature so as to improve the temperature abnormality. 38 command temperature is changed. After the change of the command temperature described above, the correction unit 104 is in a first state where the difference between the output amount of the heater 38 related to the abnormal channel and the output amount of the heater 38 corresponding to the command temperature in the normal state is smaller than a predetermined value. The command temperature change is repeated until The correction unit 104 determines whether or not to continue the subsequent processing based on the display temperature of the temperature sensor 39 in the abnormal channel after entering the first state described above. Specifically, the correction unit 104 continues the subsequent processing when the display temperature acquired from the temperature sensor 39 of the abnormal channel is close to the ideal temperature of the channel, and when the display temperature is not close Cancels the subsequent processing. The fact that the display temperature of the temperature sensor 39 deviates from the ideal temperature despite the first state (the output amount is normal and the actual temperature is correctly corrected and approaches the ideal temperature) means that the temperature sensor Since 39 indicates that it cannot operate normally, the subsequent processing may be stopped.
 コントローラ100は、一つ又は複数の制御用コンピュータにより構成される。例えばコントローラ100は、図8に示す回路120を有する。回路120は、一つ又は複数のプロセッサ121と、メモリ122と、ストレージ123と、入出力ポート124と、タイマー125とを有する。 The controller 100 includes one or a plurality of control computers. For example, the controller 100 includes a circuit 120 illustrated in FIG. The circuit 120 includes one or more processors 121, a memory 122, a storage 123, an input / output port 124, and a timer 125.
 入出力ポート124は、昇降機構33,36、駆動機構53、温度センサ39、及びヒータ38との間で電気信号の入出力を行う。タイマー125は、例えば一定周期の基準パルスをカウントすることで経過時間を計測する。ストレージ123は、例えばハードディスク等、コンピュータによって読み取り可能な記録媒体を有する。記録媒体は、後述の基板処理手順を実行させるためのプログラムを記録している。記録媒体は、不揮発性の半導体メモリ、磁気ディスク及び光ディスク等の取り出し可能な媒体であってもよい。メモリ122は、ストレージ123の記録媒体からロードしたプログラム及びプロセッサ121による演算結果を一時的に記録する。プロセッサ121は、メモリ122と協働して上記プログラムを実行することで、上述した各機能モジュールを構成する。 The input / output port 124 inputs and outputs electrical signals to and from the elevating mechanisms 33 and 36, the drive mechanism 53, the temperature sensor 39, and the heater 38. The timer 125 measures the elapsed time by, for example, counting a reference pulse with a fixed period. The storage 123 includes a computer-readable recording medium such as a hard disk. The recording medium records a program for executing a substrate processing procedure described later. The recording medium may be a removable medium such as a nonvolatile semiconductor memory, a magnetic disk, and an optical disk. The memory 122 temporarily records the program loaded from the recording medium of the storage 123 and the calculation result by the processor 121. The processor 121 configures each functional module described above by executing the program in cooperation with the memory 122.
 なお、コントローラ100のハードウェア構成は、必ずしもプログラムにより各機能モジュールを構成するものに限られない。例えばコントローラ100の各機能モジュールは、専用の論理回路又はこれを集積したASIC(Application Specific Integrated Circuit)により構成されていてもよい。 It should be noted that the hardware configuration of the controller 100 is not necessarily limited to that configuring each functional module by a program. For example, each functional module of the controller 100 may be configured by a dedicated logic circuit or an ASIC (Application Specific Integrated Circuit) in which the functional modules are integrated.
〔基板処理手順〕
 次に、基板処理方法の一例として、コントローラ100の制御に応じて熱処理ユニットU2が実行する基板処理手順を、図9を参照して説明する。図9に示す基板処理のシーケンスは、その他の基板処理と並行して実行され、熱板34の温度が定常状態である間、継続的に実行される。
[Substrate processing procedure]
Next, as an example of the substrate processing method, a substrate processing procedure executed by the heat treatment unit U2 under the control of the controller 100 will be described with reference to FIG. The sequence of the substrate processing shown in FIG. 9 is executed in parallel with other substrate processing, and is continuously executed while the temperature of the hot plate 34 is in a steady state.
 図9に示す処理では、最初にステップS1が実行される。ステップS1では、コントローラ100が、表示温度が異常となっているチャネル(異常チャネル)が存在するか否かを判定する。具体的には、コントローラ100は、熱板34の複数のチャネル毎に、温度センサ39の表示温度と、ヒータ38の設定に応じた理想温度との差異である温度シフト量を算出し、該温度シフト量が所定のバンド幅内であるか否かを判定し、バンド幅内でないチャネルが存在する場合に、異常チャネルが存在すると判定する。 In the process shown in FIG. 9, step S1 is first executed. In step S1, the controller 100 determines whether there is a channel (abnormal channel) in which the display temperature is abnormal. Specifically, the controller 100 calculates a temperature shift amount that is the difference between the display temperature of the temperature sensor 39 and the ideal temperature according to the setting of the heater 38 for each of the plurality of channels of the hot plate 34. It is determined whether the shift amount is within a predetermined bandwidth, and when there is a channel that is not within the bandwidth, it is determined that an abnormal channel exists.
 つづいて、ステップS2が実行される。ステップS2では、コントローラ100が、出力量の上昇度合いが大きいチャネルが存在するか否かを判定する。具体的には、コントローラ100は、複数のチャネルに、出力量の正常時との差分が所定値以上となっているチャネルが存在するか否かを判定する。ステップS2において出力量の正常時との差分が所定値以上となっているチャネルが存在すると判定した場合にはステップS3が実行され、存在しないと判定した場合にはステップS4が実行される。 Subsequently, step S2 is executed. In step S <b> 2, the controller 100 determines whether there is a channel with a large increase in the output amount. Specifically, the controller 100 determines whether or not a plurality of channels have channels whose difference from the normal output amount is a predetermined value or more. If it is determined in step S2 that there is a channel whose difference from the normal output amount is a predetermined value or more, step S3 is executed, and if it is determined that there is no channel, step S4 is executed.
 ステップS3では、コントローラ100が、出力量の上昇度合が大きい(出力量の正常時との差分が所定値以上となっている)チャネルを異常チャネルとして特定する。ステップS4では、コントローラ100が、温度シフト量がバンド幅内でないと判定したチャネル(温度シフトチャネル)を異常チャネルとして特定する。 In step S3, the controller 100 identifies a channel having a large increase in output amount (a difference from the normal output amount being equal to or greater than a predetermined value) as an abnormal channel. In step S4, the controller 100 identifies a channel (temperature shift channel) that has been determined that the temperature shift amount is not within the bandwidth as an abnormal channel.
 つづいて、ステップS5が実行される。ステップS5では、コントローラ100が補正制御を実行する。以上が基板処理手順の一例である。 Subsequently, step S5 is executed. In step S5, the controller 100 executes correction control. The above is an example of the substrate processing procedure.
 次に、上述した基板処理手順のステップ5(補正制御)について、図10を参照して詳細に説明する。図10に示す処理では、最初にステップS51が実行される。ステップS51では、コントローラ100が、異常チャネルに係るヒータ38の指令温度を変更する。具体的には、補正部104は、異常チャネル特定部103によって異常チャネルとして特定されたチャネルの温度センサ39から熱板34の温度を取得し、温度異常を改善する方向に温度変化するようにヒータ38の指令温度を変更する。 Next, step 5 (correction control) of the above-described substrate processing procedure will be described in detail with reference to FIG. In the process shown in FIG. 10, step S51 is first executed. In step S51, the controller 100 changes the command temperature of the heater 38 related to the abnormal channel. Specifically, the correction unit 104 acquires the temperature of the hot plate 34 from the temperature sensor 39 of the channel specified as the abnormal channel by the abnormal channel specifying unit 103, and changes the temperature so as to improve the temperature abnormality. 38 command temperature is changed.
 つづいて、ステップS52が実行される。ステップS52では、コントローラ100が、ステップS51における指令温度の変更から所定時間が経過しているか(所定の安定時間だけ待機したか)否かを判定する。ステップS52において所定時間が経過していると判定した場合にはステップS53が実行され、経過していないと判定した場合には再度ステップS52が実行される。 Subsequently, step S52 is executed. In step S52, the controller 100 determines whether or not a predetermined time has elapsed since the change of the command temperature in step S51 (waiting for a predetermined stable time). If it is determined in step S52 that the predetermined time has elapsed, step S53 is executed. If it is determined that the predetermined time has not elapsed, step S52 is executed again.
 ステップS53では、コントローラ100が、異常チャネルに係るヒータ38の出力量(現在の出力量)MVと、正常時の上記指令温度(すなわちステップS51において変更する前の指令温度)に対応するヒータ38の出力量(正常時の出力量)MV´との差異が所定値より小さい第1状態となっているか否かを判定する。ステップS53において第1状態となっていないと判定した場合には再度ステップS51の処理が実行され、再度指令温度が変更される。一方で、ステップS53において第1状態となっていると判定した場合にはステップS54が実行される。 In step S53, the controller 100 controls the heater 38 corresponding to the output amount (current output amount) MV of the heater 38 related to the abnormal channel and the normal command temperature (that is, the command temperature before the change in step S51). It is determined whether or not the difference from the output amount (normal output amount) MV ′ is in a first state smaller than a predetermined value. If it is determined in step S53 that the first state is not reached, the process of step S51 is executed again, and the command temperature is changed again. On the other hand, when it determines with it being in a 1st state in step S53, step S54 is performed.
 ステップS54では、コントローラ100が、異常チャネルの温度センサ39から取得した表示温度PVと、当該チャネルの理想温度SVとの差異が所定値より小さいか否かを判定する。ステップS54において所定値より小さい(すなわち表示温度PVが理想温度SVに近接する)と判定した場合には、コントローラ100が正常処理と判定しその後の処理を継続する(ステップS55)。一方で、ステップS54において所定値より小さくないと判定した場合には、コントローラ100が異常処理と判定しその後の処理を中止する(ステップS56)。以上が補正制御処理の一例である。 In step S54, the controller 100 determines whether or not the difference between the display temperature PV acquired from the temperature sensor 39 of the abnormal channel and the ideal temperature SV of the channel is smaller than a predetermined value. When it is determined in step S54 that the temperature is smaller than the predetermined value (that is, the display temperature PV is close to the ideal temperature SV), the controller 100 determines that the process is normal and continues the subsequent process (step S55). On the other hand, when it determines with it not being smaller than predetermined value in step S54, the controller 100 determines with an abnormal process and stops subsequent processes (step S56). The above is an example of the correction control process.
〔作用効果〕
 熱処理ユニットU2は、ウェハWを載置すると共にウェハWに熱を付与する熱板34と、熱板34を加熱するヒータ38と、熱板34の複数のチャネルに対応して設けられ、熱板34の温度を測定する複数の温度センサ39a~39gと、コントローラ100と、を備え、コントローラ100は、複数のチャネル毎に、温度センサ39の表示温度と、ヒータ38の設定に応じた理想温度との差異である温度シフト量を算出し、該温度シフト量が所定のバンド幅内であるか否かを判定することと、判定結果に基づいて異常領域を特定すること(例えば、温度シフト量がバンド幅内でないチャネルが存在する場合に、該チャネルを異常領域として特定すること)と、を実行するように構成されている。
[Function and effect]
The heat treatment unit U2 is provided corresponding to a plurality of channels of the hot plate 34, a hot plate 34 for placing the wafer W and applying heat to the wafer W, a heater 38 for heating the hot plate 34, and the hot plate 34. A plurality of temperature sensors 39a to 39g for measuring the temperature of 34, and a controller 100. The controller 100 has a display temperature of the temperature sensor 39 and an ideal temperature corresponding to the setting of the heater 38 for each of a plurality of channels. And calculating whether or not the temperature shift amount is within a predetermined bandwidth, and specifying an abnormal region based on the determination result (for example, the temperature shift amount is When there is a channel that is not within the bandwidth, the channel is identified as an abnormal region).
 当該熱処理ユニットU2では、熱板34の複数のチャネルに対応してそれぞれ温度センサ39が設けられている。そして、複数のチャネル毎に、表示温度と理想温度との差異である温度シフト量がバンド幅内であるか否かが判定され、該判定の結果に基づき異常チャネルが特定される。このように、複数のチャネル毎に温度センサ39a~39gが設けられ、複数のチャネル毎に温度シフト量がバンド幅内であるか否かが判定され、該判定結果が異常チャネルの特定に用いられることにより、複数のチャネルそれぞれにおける温度状況(温度異常の発生有無)を考慮して異常チャネルを特定することができる。各チャネルの温度状況を考慮することにより、例えば全体で1つしか温度センサが設けられていないような場合と比較して、温度異常を引き起こしている異常チャネル(不具合発生領域)を精度よく特定することができる。 In the heat treatment unit U2, temperature sensors 39 are provided corresponding to the plurality of channels of the hot plate 34, respectively. Then, for each of the plurality of channels, it is determined whether or not the temperature shift amount that is the difference between the display temperature and the ideal temperature is within the bandwidth, and the abnormal channel is specified based on the determination result. As described above, the temperature sensors 39a to 39g are provided for each of the plurality of channels, and it is determined whether or not the temperature shift amount is within the bandwidth for each of the plurality of channels, and the determination result is used to identify the abnormal channel. As a result, the abnormal channel can be identified in consideration of the temperature condition (the presence or absence of occurrence of temperature abnormality) in each of the plurality of channels. By taking into account the temperature conditions of each channel, for example, compared with a case where only one temperature sensor is provided as a whole, an abnormal channel (defect occurrence region) causing a temperature abnormality is accurately identified. be able to.
 コントローラ100は、温度シフト量がバンド幅内でないチャネルの温度シフト量、及び、温度シフト量がバンド幅内であるチャネルの温度シフト量の双方を考慮して、異常チャネルを特定してもよい。例えば、2つのチャネルのうち一方のチャネルの表示温度が他方のチャネルの表示温度よりも高く、一方のチャネルについてのみ温度シフト量がバンド幅内でないと判定された場合を考える。この場合、例えば2つのチャネルのいずれか一方において実温度が正常時よりも低下していると推定される。上述した他方のチャネル(温度シフト量がバンド幅内であると判定されているチャネル)において実温度が低下しているとすると、他方のチャネルの温度シフト量はバンド幅内であり、他方のチャネルの熱影響が一方のチャネルに過度に及ぼされることはなく、一方のチャネルの温度シフト量がバンド幅内となるようにヒータ38による制御が適切に行われるため、上述した状態(一方のチャネルの温度シフト量のみがバンド幅内でない状態)で安定することはないと考えられる。よって、他方のチャネルにおいて実温度が低下していることはないと考えられる。一方で、一方のチャネル(温度シフト量がバンド幅内でないと判定されているチャネル)において実温度が低下しているとすると、一方のチャネルの表示温度に応じて一方のチャネルの温度を低下させるべくヒータ38による制御を行った場合(一方のチャネルに対応するヒータ38の出力を例えばゼロにした場合)であっても、他方のチャネルによる熱影響で実温度が引き上げられ、その引き上げられた分に応じて表示温度も上がり、温度シフト量がバンド幅内でない状態が継続されることがあり得る。よって、実温度が低下しているケースにおいて一方のチャネルの温度シフト量がバンド幅内でないと判定され、他方のチャネルの温度シフト量がバンド幅内であると判定されている場合には、一方のチャネルにおいて実温度が低下しており、該一方のチャネルを異常チャネルと特定することができる。このように、温度シフト量がバンド幅内でないチャネルの温度シフト量及びバンド幅内であるチャネルの温度シフト量を考慮することによって、適切に異常チャネルを特定することができる。 The controller 100 may specify an abnormal channel in consideration of both the temperature shift amount of the channel whose temperature shift amount is not within the bandwidth and the temperature shift amount of the channel whose temperature shift amount is within the bandwidth. For example, consider a case where the display temperature of one of the two channels is higher than the display temperature of the other channel, and it is determined that the temperature shift amount is not within the bandwidth for only one channel. In this case, for example, it is estimated that the actual temperature in either one of the two channels is lower than normal. If the actual temperature of the other channel (the channel whose temperature shift amount is determined to be within the bandwidth) is decreasing, the temperature shift amount of the other channel is within the bandwidth, and the other channel Is not excessively exerted on one channel, and the control by the heater 38 is appropriately performed so that the temperature shift amount of one channel is within the bandwidth. It is considered that the temperature shift amount is not stable only in the bandwidth). Therefore, it is considered that the actual temperature does not decrease in the other channel. On the other hand, if the actual temperature is reduced in one channel (the channel for which the temperature shift amount is determined not to be within the bandwidth), the temperature of one channel is lowered according to the display temperature of one channel. Therefore, even when the control by the heater 38 is performed (when the output of the heater 38 corresponding to one channel is set to zero, for example), the actual temperature is raised by the heat effect of the other channel, Accordingly, the display temperature may rise, and the state where the temperature shift amount is not within the bandwidth may be continued. Therefore, in the case where the actual temperature is lowered, it is determined that the temperature shift amount of one channel is not within the bandwidth, and the temperature shift amount of the other channel is determined to be within the bandwidth, The actual temperature is decreased in one of the channels, and the one channel can be identified as an abnormal channel. Thus, an abnormal channel can be appropriately identified by considering the temperature shift amount of a channel whose temperature shift amount is not within the bandwidth and the temperature shift amount of the channel within the bandwidth.
 コントローラ100は、複数のチャネルそれぞれに対応するヒータ38の出力量を考慮して、異常チャネルを特定する。例えば異常チャネルについて温度制御を行った場合に、該温度制御の影響が異常チャネル以外の領域にも及び、異常チャネル以外のチャネルの温度シフト量がバンド幅外となる場合がある。異常チャネル以外について温度シフト量がバンド幅外となっている場合においては、温度シフト量のみから異常チャネルを一意に特定することができない。ここで、ヒータ38の出力量は熱板34の実温度に応じて変化する。このため、コントローラ100がヒータ38の出力量を考慮して異常チャネルを特定することにより、実温度が大きく変化しているチャネル(すなわち異常チャネル)を適切に特定することができる。すなわち、出力量を考慮して異常チャネルを特定することによって、より精度よく、温度異常が発生しているチャネルを特定することができる。 The controller 100 identifies an abnormal channel in consideration of the output amount of the heater 38 corresponding to each of the plurality of channels. For example, when temperature control is performed for an abnormal channel, the temperature control affects the region other than the abnormal channel, and the temperature shift amount of the channel other than the abnormal channel may be out of the bandwidth. When the temperature shift amount is outside the bandwidth other than the abnormal channel, the abnormal channel cannot be uniquely identified only from the temperature shift amount. Here, the output amount of the heater 38 changes according to the actual temperature of the heat plate 34. For this reason, the controller 100 can appropriately identify the channel (that is, the abnormal channel) in which the actual temperature is greatly changed by identifying the abnormal channel in consideration of the output amount of the heater 38. That is, by specifying the abnormal channel in consideration of the output amount, the channel in which the temperature abnormality has occurred can be specified with higher accuracy.
 コントローラ100は、複数のチャネルに、出力量の正常時との差分が所定値以上となっているチャネルが存在する場合には、該チャネルを異常チャネルとして特定し、存在しない場合には、温度シフト量がバンド幅内でないチャネルを異常チャネルとして特定する。 The controller 100 identifies the channel as an abnormal channel when there is a channel whose difference from the normal output amount is a predetermined value or more in a plurality of channels. A channel whose quantity is not within the bandwidth is identified as an abnormal channel.
 例えば温度センサ19に関する不具合等を理由として温度センサ19の測定温度が熱板34の実温度から乖離する態様として、表示温度が実温度よりも高くなるケース(表示温度上昇ケース)と、表示温度が実温度よりも低くなるケース(表示温度低下ケース)とが考えられる。表示温度上昇ケースでは、該表示温度に基づいてヒータ38の設定が変更(温度を低下させる方向に変更)され、該ヒータ38が対応するチャネル(表示温度上昇チャネル)の表示温度及び実温度が低下することとなる。そして、表示温度上昇チャネルにおける実温度低下の影響が他のチャネルにも及ぶことにより、他のチャネルの表示温度及び実温度も少し(表示温度上昇チャネルよりは小さい幅で)低下することとなる。このように、表示温度上昇ケースでは、表示温度上昇チャネルにおいて、他のチャネルよりも、表示温度が高くなり、且つ、実温度が低下することによって出力量が小さくなる。表示温度上昇ケースでは、表示温度上昇チャネル及び他のチャネルのいずれも、実温度が低下しており出力量が小さくなっているため、複数のチャネルにおいて正常時との出力量の差分が大きくなるチャネルは存在しない。そして、実温度が他のチャネルよりも低下し異常チャネルとなりうる表示温度上昇チャネルは、他のチャネルよりも表示温度が高く温度シフト量が大きい。以上のことから、正常時との出力量の差分が大きくなるチャネルが存在しない場合に、温度シフト量が大きい(バンド幅内でない)チャネルを異常チャネルとして特定することにより、温度異常が発生しているチャネルを精度よく特定することができる。また、表示温度低下ケースでは、該表示温度に基づいてヒータ38の設定が変更(温度を上げる方向に変更)されると、該ヒータ38が対応するチャネル(表示温度低下チャネル)の表示温度及び実温度が上がることとなる。そして、表示温度低下チャネルにおける実温度上昇の影響が他のチャネルにも及ぶことにより、他のチャネルの表示温度及び実温度も少し(表示温度低下チャネルよりは小さい幅で)上がることとなる。このように、表示温度低下ケースでは、表示温度低下チャネルにおいて、他のチャネルよりも、表示温度が低くなり、且つ、実温度が上がることによって出力量が大きくなる。表示温度低下ケースでは、異常チャネルとなりうる表示温度低下チャネルの出力量が他のチャネルと比較して突出して大きくなる。そして、他のチャネルの表示温度が表示温度低下チャネルよりも高い(すなわち温度シフト量が大きい)。以上のことから、出力量の差分が大きくなるチャネルが存在する場合に、温度シフト量が大きいチャネルではなく正常時との出力量の差分が大きいチャネルを異常チャネルとして特定することにより、温度異常が発生しているチャネルを精度よく特定することができる。 For example, as a mode in which the measured temperature of the temperature sensor 19 deviates from the actual temperature of the hot plate 34 due to a defect related to the temperature sensor 19 or the like, a case where the display temperature is higher than the actual temperature (display temperature rising case) and a display temperature are A case where the temperature is lower than the actual temperature (display temperature drop case) is considered. In the case where the display temperature rises, the setting of the heater 38 is changed (changes in the direction to lower the temperature) based on the display temperature, and the display temperature and actual temperature of the channel (display temperature rise channel) corresponding to the heater 38 are lowered. Will be. Then, when the influence of the actual temperature drop in the display temperature rise channel reaches the other channels, the display temperature and the actual temperature of the other channels are slightly lowered (with a smaller width than the display temperature rise channel). As described above, in the display temperature increase case, the display temperature increases in the display temperature increase channel, and the output amount decreases as the actual temperature decreases in the display temperature increase channel. In the case where the display temperature rises, both the display temperature rise channel and other channels have a lower actual temperature and the output amount is smaller. Does not exist. Then, the display temperature increasing channel whose actual temperature is lower than the other channels and can become an abnormal channel has a higher display temperature and a larger temperature shift amount than the other channels. Based on the above, when there is no channel where the difference in output amount from the normal time is large, by specifying a channel with a large temperature shift amount (not within the bandwidth) as an abnormal channel, a temperature abnormality occurs. Can be accurately identified. Further, in the display temperature lowering case, when the setting of the heater 38 is changed (changed in the direction of increasing the temperature) based on the display temperature, the display temperature and the actual temperature of the channel (display temperature lowering channel) corresponding to the heater 38 are changed. The temperature will rise. Then, the influence of the actual temperature rise in the display temperature lowering channel extends to the other channels, so that the display temperature and actual temperature of the other channels are slightly increased (with a smaller width than the display temperature lowering channel). Thus, in the display temperature lowering case, the display temperature is lower in the display temperature lowering channel than in the other channels, and the output amount is increased by increasing the actual temperature. In the display temperature decrease case, the output amount of the display temperature decrease channel that can be an abnormal channel is prominently larger than the other channels. The display temperature of the other channel is higher than that of the display temperature lowering channel (that is, the temperature shift amount is large). From the above, when there is a channel with a large difference in output amount, a channel with a large difference in output amount from the normal state is identified as an abnormal channel instead of a channel with a large temperature shift amount. The generated channel can be accurately identified.
 コントローラ100は、熱板34の温度が定常状態となった後に、温度シフト量が正常範囲内であるか否かの判定を開始する。これにより、ヒータ38から熱板34に加わる出力量が意図的に変化される昇温制御時の過渡期等において温度シフト量の判定が行われることがなく、異常チャネルの特定が必要な期間(定常状態の期間)に限定して異常チャネルの特定に係る処理を行うことができる。 The controller 100 starts determining whether or not the temperature shift amount is within the normal range after the temperature of the hot plate 34 reaches a steady state. Thus, the temperature shift amount is not determined in a transition period or the like at the time of temperature rise control in which the output amount applied from the heater 38 to the heat plate 34 is intentionally changed, and a period in which an abnormal channel needs to be identified ( The processing relating to the identification of the abnormal channel can be performed only in the period of the steady state).
 コントローラ100は、上述した正常範囲を、正常に稼働する熱板34の定常状態における、温度センサ39の表示温度と上述した理想温度との差異として変動し得る範囲よりも広く設定する。これにより、例えば定常状態に到達後の装置稼働中においてウェハWが搬入される際(チャンバが開放される際)等、正常な稼働状態でありながら表示温度が大きく変動する状態において、温度シフト量がバンド幅内でないと判定されることを防止することができる。すなわち、上述した制御によって正常なプロセスが妨げられることを防止することができる。 The controller 100 sets the above-described normal range wider than a range that can vary as a difference between the display temperature of the temperature sensor 39 and the above-described ideal temperature in the steady state of the hot plate 34 that operates normally. As a result, for example, when the wafer W is loaded while the apparatus is operating after reaching the steady state (when the chamber is opened), the temperature shift amount in a state in which the display temperature varies greatly while in the normal operating state. Is determined not to be within the bandwidth. That is, it is possible to prevent a normal process from being hindered by the control described above.
 ヒータ38は予め設定された指令温度に応じて複数のチャネルを加熱するように構成されており、コントローラ100は、異常チャネルに係るヒータ38の指令温度を変更することによって、該異常チャネルの温度シフト量が正常範囲内となるように補正制御を行うことを更に実行するように構成されている。ヒータ38に設定される指令温度を変更することによって、異常チャネルの温度シフト量を簡易且つ適切に補正することができる。 The heater 38 is configured to heat a plurality of channels in accordance with a preset command temperature, and the controller 100 changes the temperature of the abnormal channel by changing the command temperature of the heater 38 related to the abnormal channel. The correction control is further performed so that the amount falls within the normal range. By changing the command temperature set for the heater 38, the temperature shift amount of the abnormal channel can be corrected easily and appropriately.
 コントローラ100は、上記指令温度の変更後において、異常チャネルに係るヒータ38の出力量と、正常時の上記指令温度に対応するヒータ38の出力量との差異が所定値より小さい第1状態となるまで、指令温度の変更を繰り返す。例えば、半断線した温度センサ19の表示温度が熱板34の実温度から乖離しているような場合には、温度センサ19の表示温度が正確でないことが考えられる。このような場合においても、実温度に対応した出力量が正常となっているか否かを判定し、正常となっていない場合には指令温度を変更する処理を繰り返すことにより、温度センサ19の表示温度の正確性によらずに温度異常を補正することができる。 After the change in the command temperature, the controller 100 is in a first state in which the difference between the output amount of the heater 38 related to the abnormal channel and the output amount of the heater 38 corresponding to the command temperature at the normal time is smaller than a predetermined value. Repeat until the command temperature is changed. For example, when the display temperature of the temperature sensor 19 that has been partially disconnected deviates from the actual temperature of the hot plate 34, the display temperature of the temperature sensor 19 may not be accurate. Even in such a case, it is determined whether or not the output amount corresponding to the actual temperature is normal. If the output amount is not normal, the process of changing the command temperature is repeated to display the temperature sensor 19. Temperature anomalies can be corrected regardless of temperature accuracy.
 コントローラ100は、コントローラ100は、第1状態となった後において、異常チャネルにおける温度センサ39の表示温度に基づいて、以降の処理の継続可否を判定する。第1状態となり温度異常が補正された後(すなわち実温度が正確である状態)において、異常チャネルとなっていたチャネルの温度センサ19の表示温度が正確か否かを判定することによって、当該温度センサ19を用いて継続して処理することが可能か否かを適切に判定することができる。 The controller 100 determines whether or not to continue the subsequent processing based on the display temperature of the temperature sensor 39 in the abnormal channel after the controller 100 enters the first state. After the temperature abnormality is corrected in the first state (that is, the actual temperature is accurate), it is determined whether or not the display temperature of the temperature sensor 19 of the channel that has become the abnormal channel is accurate. It is possible to appropriately determine whether it is possible to continue processing using the sensor 19.
 コントローラ100は、温度シフト量が上述した正常範囲内であるか否かの判定を、熱板34の温度が定常状態である間、継続的に行う。定常状態である間、継続的に異常チャネルの検知が行われることによって、異常チャネルの検知のための専用動作が不要となり、通常の装置稼働レシピに影響を与えることなく異常チャネルの検知を行うことができる。 The controller 100 continuously determines whether or not the temperature shift amount is within the above-described normal range while the temperature of the hot plate 34 is in a steady state. By detecting abnormal channels continuously while in steady state, dedicated operation for detecting abnormal channels is unnecessary, and abnormal channels are detected without affecting the normal device recipe. Can do.
 以上、実施形態について説明したが、本開示は上記実施形態に限定されるものではない。 As mentioned above, although embodiment was described, this indication is not limited to the above-mentioned embodiment.
 例えば、ヒータ38の出力量を考慮して異常チャネルを特定する例を説明したが、常に温度シフト量のみから異常チャネルを特定することができる場合には、ヒータ38の出力量によらずに温度シフト量のみから異常チャネルを特定してもよい。 For example, the example in which the abnormal channel is specified in consideration of the output amount of the heater 38 has been described. However, when the abnormal channel can always be specified only from the temperature shift amount, the temperature is not affected by the output amount of the heater 38. An abnormal channel may be specified only from the shift amount.
 2…塗布・現像装置(基板処理装置)、34…熱板、38…ヒータ(温調器)、39a,39b,39c,39d,39e,39f,39g…温度センサ、100…コントローラ(制御部)、W…ウェハ(基板)。 2 ... Coating / developing device (substrate processing device), 34 ... hot plate, 38 ... heater (temperature controller), 39a, 39b, 39c, 39d, 39e, 39f, 39g ... temperature sensor, 100 ... controller (control unit) , W: Wafer (substrate).

Claims (21)

  1.  基板を載置すると共に基板に熱を付与する熱板と、
     前記熱板を加熱する温調器と、
     前記熱板の複数の領域に対応して設けられ、前記熱板の温度を測定する複数の温度センサと、
     制御部と、を備え、
     前記制御部は、
     前記複数の領域毎に、前記温度センサの測定温度と、前記温調器の設定に応じた理想温度との差異である温度シフト量を算出し、該温度シフト量が所定の正常範囲内であるか否かを判定することと、
     判定結果に基づいて異常領域を特定することと、を実行するように構成されている、基板処理装置。
    A heat plate for placing the substrate and applying heat to the substrate;
    A temperature controller for heating the hot plate;
    A plurality of temperature sensors provided corresponding to a plurality of regions of the hot plate and measuring the temperature of the hot plate;
    A control unit,
    The controller is
    For each of the plurality of regions, a temperature shift amount that is a difference between a measured temperature of the temperature sensor and an ideal temperature according to the setting of the temperature controller is calculated, and the temperature shift amount is within a predetermined normal range. Determining whether or not
    A substrate processing apparatus configured to execute the step of identifying an abnormal region based on a determination result.
  2.  前記制御部は、前記温度シフト量が前記正常範囲内でない領域の前記温度シフト量、及び、前記温度シフト量が前記正常範囲内である領域の前記温度シフト量の双方を考慮して、前記異常領域を特定する、請求項1記載の基板処理装置。 The controller considers both the temperature shift amount in a region where the temperature shift amount is not within the normal range and the temperature shift amount in a region where the temperature shift amount is within the normal range, and the abnormality The substrate processing apparatus according to claim 1, wherein the region is specified.
  3.  前記制御部は、前記複数の領域それぞれに対応する前記温調器の出力量を考慮して、前記異常領域を特定する、請求項1又は2記載の基板処理装置。 The substrate processing apparatus according to claim 1 or 2, wherein the control unit specifies the abnormal region in consideration of an output amount of the temperature controller corresponding to each of the plurality of regions.
  4.  前記制御部は、前記複数の領域に、前記出力量の正常時との差分が所定値以上となっている領域が存在する場合には、該領域を前記異常領域として特定し、存在しない場合には、前記温度シフト量が前記正常範囲内でない領域を前記異常領域として特定する、請求項3記載の基板処理装置。 The control unit identifies the region as the abnormal region when there is a region where the difference between the output amount and the normal value is equal to or greater than a predetermined value in the plurality of regions, and when the region does not exist 4. The substrate processing apparatus according to claim 3, wherein a region where the temperature shift amount is not within the normal range is specified as the abnormal region.
  5.  前記制御部は、前記熱板の温度が定常状態となった後に、前記温度シフト量が前記正常範囲内であるか否かの判定を開始する、請求項1~4のいずれか一項記載の基板処理装置。 The control unit according to any one of claims 1 to 4, wherein the controller starts determining whether or not the temperature shift amount is within the normal range after the temperature of the hot plate reaches a steady state. Substrate processing equipment.
  6.  前記制御部は、前記正常範囲を、正常に稼働する前記熱板の定常状態における、前記測定温度と前記理想温度との差異として変動し得る範囲よりも広く設定する、請求項1~5のいずれか一項記載の基板処理装置。 The control unit sets the normal range wider than a range that can vary as a difference between the measured temperature and the ideal temperature in a steady state of the hot plate operating normally. The substrate processing apparatus according to claim 1.
  7.  前記温調器は、予め設定された指令温度に応じて前記複数の領域を加熱するように構成されており、
     前記制御部は、
     前記異常領域に係る前記指令温度を変更することによって、該異常領域の前記温度シフト量が前記正常範囲内となるように補正制御を行うことを更に実行するように構成されている、請求項1~6のいずれか一項記載の基板処理装置。
    The temperature controller is configured to heat the plurality of regions according to a preset command temperature,
    The controller is
    The correction control is further performed by changing the command temperature related to the abnormal region so that the temperature shift amount of the abnormal region is within the normal range. The substrate processing apparatus according to any one of claims 1 to 6.
  8.  前記制御部は、前記指令温度の変更後において、前記異常領域に係る前記温調器の出力量と、正常時の前記指令温度に対応する前記温調器の出力量との差異が所定値より小さい第1状態となるまで、前記指令温度の変更を繰り返す、請求項7記載の基板処理装置。 After the change of the command temperature, the controller is configured such that a difference between an output amount of the temperature controller related to the abnormal region and an output amount of the temperature controller corresponding to the command temperature in a normal state is greater than a predetermined value. The substrate processing apparatus according to claim 7, wherein the command temperature is repeatedly changed until a small first state is reached.
  9.  前記制御部は、前記第1状態となった後において、前記異常領域の前記測定温度に基づいて、以降の処理の継続可否を判定する、請求項8記載の基板処理装置。 The substrate processing apparatus according to claim 8, wherein the control unit determines whether or not to continue the subsequent processing based on the measured temperature in the abnormal region after the first state is reached.
  10.  前記制御部は、前記温度シフト量が前記正常範囲内であるか否かの判定を、前記熱板の温度が定常状態である間、継続的に行う、請求項1~9のいずれか一項記載の基板処理装置。 10. The control unit according to claim 1, wherein the control unit continuously determines whether the temperature shift amount is within the normal range while the temperature of the hot plate is in a steady state. The substrate processing apparatus as described.
  11.  基板に熱を付与する熱板の複数の領域の測定温度と、該複数の領域の理想温度との差異である温度シフト量を算出し、該温度シフト量が所定の正常範囲内であるか否かを判定する工程と、
     判定結果に基づいて異常領域を特定する工程と、を含む基板処理方法。
    A temperature shift amount that is a difference between the measured temperature of the plurality of regions of the hot plate that applies heat to the substrate and the ideal temperature of the plurality of regions is calculated, and whether or not the temperature shift amount is within a predetermined normal range. Determining whether or not
    And a step of identifying an abnormal region based on the determination result.
  12.  前記異常領域を特定する工程では、前記温度シフト量が前記正常範囲内でない領域の前記温度シフト量、及び、前記温度シフト量が前記正常範囲内である領域の前記温度シフト量の双方を考慮して、前記異常領域を特定する、請求項11記載の基板処理方法。 In the step of identifying the abnormal region, both the temperature shift amount of the region where the temperature shift amount is not within the normal range and the temperature shift amount of the region where the temperature shift amount is within the normal range are considered. The substrate processing method according to claim 11, wherein the abnormal region is specified.
  13.  前記異常領域を特定する工程では、前記複数の領域それぞれに対応する温調器の出力量を考慮して、前記異常領域を特定する、請求項11又は12記載の基板処理方法。 The substrate processing method according to claim 11 or 12, wherein in the step of specifying the abnormal region, the abnormal region is specified in consideration of an output amount of a temperature controller corresponding to each of the plurality of regions.
  14.  前記異常領域を特定する工程では、前記複数の領域に、前記出力量の正常時との差分が所定値以上である領域が存在する場合には、該領域を前記異常領域として特定し、存在しない場合には、前記温度シフト量が前記正常範囲内でない領域を前記異常領域として特定する、請求項13記載の基板処理方法。 In the step of identifying the abnormal area, if there is an area where the difference between the output amount and the normal amount is a predetermined value or more in the plurality of areas, the area is identified as the abnormal area and does not exist 14. The substrate processing method according to claim 13, wherein a region where the temperature shift amount is not within the normal range is specified as the abnormal region.
  15.  前記熱板の温度が定常状態となった後に、前記判定する工程を開始する、請求項11~14のいずれか一項記載の基板処理方法。 15. The substrate processing method according to claim 11, wherein the determining step is started after the temperature of the hot plate reaches a steady state.
  16.  前記正常範囲を、正常に稼働する前記熱板の定常状態における、前記測定温度と前記理想温度との差異として変動し得る範囲よりも広く設定して、前記判定する工程を実行する、請求項11~15のいずれか一項記載の基板処理方法。 The step of determining is executed by setting the normal range wider than a range that can vary as a difference between the measured temperature and the ideal temperature in a steady state of the hot plate that operates normally. 16. The substrate processing method according to any one of items 15 to 15.
  17.  前記熱板を加熱する温調器の指令温度を変更することによって、前記異常領域の前記温度シフト量が前記正常範囲内となるように補正制御を行う工程を更に含む、請求項11~16のいずれか一項記載の基板処理方法。 The method further includes a step of performing correction control so that the temperature shift amount of the abnormal region is within the normal range by changing a command temperature of a temperature controller that heats the hot plate. The substrate processing method as described in any one of Claims.
  18.  前記補正制御を行う工程では、前記指令温度の変更後において、前記異常領域に係る前記温調器の出力量と、正常時の前記指令温度に対応する前記温調器の出力量との差異が所定値より小さい第1状態となるまで、前記指令温度の変更を繰り返す、請求項17記載の基板処理方法。 In the step of performing the correction control, after the change of the command temperature, the difference between the output amount of the temperature controller related to the abnormal region and the output amount of the temperature controller corresponding to the command temperature at normal time is The substrate processing method according to claim 17, wherein the change in the command temperature is repeated until the first state is smaller than a predetermined value.
  19.  前記補正制御を行う工程では、前記第1状態となった後において、前記異常領域の前記測定温度に基づいて、以降の処理の継続可否を判定する、請求項18記載の基板処理方法。 19. The substrate processing method according to claim 18, wherein, in the step of performing the correction control, whether or not to continue the subsequent processing is determined based on the measured temperature of the abnormal region after the first state.
  20.  前記熱板の温度が定常状態である間、継続的に前記判定する工程を実行する、請求項11~19のいずれか一項記載の基板処理方法。 20. The substrate processing method according to claim 11, wherein the determination step is continuously executed while the temperature of the hot plate is in a steady state.
  21.  請求項11~20のいずれか一項記載の基板処理方法を装置に実行させるためのプログラムを記憶したコンピュータ読み取り可能な記憶媒体。 A computer-readable storage medium storing a program for causing an apparatus to execute the substrate processing method according to any one of claims 11 to 20.
PCT/JP2019/003476 2018-02-14 2019-01-31 Substrate processing device, substrate processing method, and storage medium WO2019159704A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020500387A JP6964176B2 (en) 2018-02-14 2019-01-31 Substrate processing equipment, substrate processing method, and storage medium
KR1020207026242A KR102626801B1 (en) 2018-02-14 2019-01-31 Substrate processing apparatus, substrate processing method, and storage medium
CN201980012530.9A CN111699544B (en) 2018-02-14 2019-01-31 Substrate processing apparatus, substrate processing method, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-024198 2018-02-14
JP2018024198 2018-02-14

Publications (1)

Publication Number Publication Date
WO2019159704A1 true WO2019159704A1 (en) 2019-08-22

Family

ID=67620177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003476 WO2019159704A1 (en) 2018-02-14 2019-01-31 Substrate processing device, substrate processing method, and storage medium

Country Status (5)

Country Link
JP (1) JP6964176B2 (en)
KR (1) KR102626801B1 (en)
CN (1) CN111699544B (en)
TW (1) TWI791752B (en)
WO (1) WO2019159704A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143850A (en) * 1999-09-03 2001-05-25 Tokyo Electron Ltd Substrate heat treatment apparatus, substrate heat treatment method, substrate processing apparatus and substrate processing method
JP2004072000A (en) * 2002-08-09 2004-03-04 Matsushita Electric Ind Co Ltd Heating device
JP2006013445A (en) * 2004-05-26 2006-01-12 Matsushita Electric Ind Co Ltd Temperature abnormality detection method and semiconductor manufacturing apparatus
JP2017009848A (en) * 2015-06-24 2017-01-12 株式会社リコー Fixing device and image forming apparatus
WO2017057726A1 (en) * 2015-09-30 2017-04-06 芝浦メカトロニクス株式会社 Heater control device, heater control method, substrate processing device, and substrate processing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100700764B1 (en) * 1999-09-03 2007-03-27 동경 엘렉트론 주식회사 Substrate processing apparatus and substrate processing method
JP2005253412A (en) * 2004-03-15 2005-09-22 Masayasu Suzuki Microwell array chip, method for producing the same and method for assaying specimen
JP4664233B2 (en) * 2006-05-22 2011-04-06 東京エレクトロン株式会社 Heat treatment plate temperature setting method, program, computer-readable recording medium storing the program, and heat treatment plate temperature setting device
JP4699283B2 (en) * 2006-05-23 2011-06-08 東京エレクトロン株式会社 Heat treatment plate temperature control method, program, and heat treatment plate temperature control device
JP2012230023A (en) * 2011-04-27 2012-11-22 Tokyo Electron Ltd Temperature measurement device and temperature calibration device and method thereof
US10049905B2 (en) * 2014-09-25 2018-08-14 Tokyo Electron Limited Substrate heat treatment apparatus, substrate heat treatment method, storage medium and heat-treatment-condition detecting apparatus
JP6432458B2 (en) * 2015-07-07 2018-12-05 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method, and storage medium
JP6575861B2 (en) 2015-09-30 2019-09-18 株式会社リコー Heating device, drying device, fixing device, image forming apparatus and image forming system
JP6391558B2 (en) * 2015-12-21 2018-09-19 東京エレクトロン株式会社 Heat treatment apparatus, method for heat treatment of substrate, and computer-readable recording medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143850A (en) * 1999-09-03 2001-05-25 Tokyo Electron Ltd Substrate heat treatment apparatus, substrate heat treatment method, substrate processing apparatus and substrate processing method
JP2004072000A (en) * 2002-08-09 2004-03-04 Matsushita Electric Ind Co Ltd Heating device
JP2006013445A (en) * 2004-05-26 2006-01-12 Matsushita Electric Ind Co Ltd Temperature abnormality detection method and semiconductor manufacturing apparatus
JP2017009848A (en) * 2015-06-24 2017-01-12 株式会社リコー Fixing device and image forming apparatus
WO2017057726A1 (en) * 2015-09-30 2017-04-06 芝浦メカトロニクス株式会社 Heater control device, heater control method, substrate processing device, and substrate processing method

Also Published As

Publication number Publication date
CN111699544A (en) 2020-09-22
CN111699544B (en) 2024-03-22
KR102626801B1 (en) 2024-01-18
JP6964176B2 (en) 2021-11-10
TW201939639A (en) 2019-10-01
KR20200120699A (en) 2020-10-21
JPWO2019159704A1 (en) 2021-02-12
TWI791752B (en) 2023-02-11

Similar Documents

Publication Publication Date Title
US8242417B2 (en) Temperature control method of heat processing plate, computer storage medium, and temperature control apparatus of heat processing plate
JP4531778B2 (en) Temperature control method, temperature controller, and heat treatment apparatus
US8014895B2 (en) Temperature setting method of heat processing plate, temperature setting apparatus of heat processing plate, program, and computer-readable recording medium recording program thereon
US8138456B2 (en) Heat processing method, computer-readable storage medium, and heat processing apparatus
US10886151B2 (en) Heating apparatus and substrate processing apparatus
US20090060480A1 (en) Method and system for controlling bake plate temperature in a semiconductor processing chamber
JP5296022B2 (en) Heat treatment method, recording medium recording program for executing heat treatment method, and heat treatment apparatus
TWI643246B (en) Heat treatment device, abnormality detection method in heat treatment, and readable computer memory medium
JP2020129607A (en) Substrate processing apparatus and substrate processing method
JP7003260B2 (en) Substrate processing equipment, substrate processing method, and storage medium
US10340140B2 (en) Substrate processing apparatus and substrate processing method
WO2019159704A1 (en) Substrate processing device, substrate processing method, and storage medium
JP2000180071A (en) Heat-treating device
JP7186096B2 (en) Hot plate cooling method and heat treatment apparatus
JP6994424B2 (en) Substrate processing equipment, substrate processing method, and storage medium
WO2019225319A1 (en) Substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754861

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500387

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207026242

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19754861

Country of ref document: EP

Kind code of ref document: A1