WO2019159374A1 - 通信方法、通信システムおよび通信制御サーバ - Google Patents

通信方法、通信システムおよび通信制御サーバ Download PDF

Info

Publication number
WO2019159374A1
WO2019159374A1 PCT/JP2018/005810 JP2018005810W WO2019159374A1 WO 2019159374 A1 WO2019159374 A1 WO 2019159374A1 JP 2018005810 W JP2018005810 W JP 2018005810W WO 2019159374 A1 WO2019159374 A1 WO 2019159374A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
slice
control server
communication control
smf
Prior art date
Application number
PCT/JP2018/005810
Other languages
English (en)
French (fr)
Inventor
拓也 下城
マラ レディ サマ
スリサクル タコルスリ
リカルド グエルゾーニ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2018/005810 priority Critical patent/WO2019159374A1/ja
Publication of WO2019159374A1 publication Critical patent/WO2019159374A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/12Reselecting a serving backbone network switching or routing node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/26Reselection being triggered by specific parameters by agreed or negotiated communication parameters

Definitions

  • the present invention relates to a communication method for performing handover control, a communication system, and a communication control server.
  • the non-patent document 1 does not assume that the communication control server for managing the session of the user terminal is switched (handover) as the user terminal moves.
  • the SMF Session Management Function: communication control server
  • the SMF Session Management Function: communication control server
  • the non-patent document 1 does not assume that the SMF is switched. Therefore, when the user terminal moves under the management of the destination SMF, a slice configured with the destination SMF may not satisfy the communication policy. For example, communication delay may not be acceptable.
  • an object of the present invention is to provide a communication method, a communication system, and a communication control server that can perform communication control considering switching of a communication control server such as an SMF. .
  • a communication method of the present invention is a communication method in a communication system that performs communication control that satisfies a communication request condition set for a slice that is a virtual network generated on a network infrastructure.
  • the user terminal When the user terminal is connected to an external network via a slice in one communication control server, the user terminal is under the management of one communication control server before switching and under the management of another communication control server after switching.
  • the one communication control server determines whether the communication that satisfies the communication request condition set for the slice in the other communication control server is possible, and the communication request condition If the communication satisfying the above condition is impossible, the other communication control server will manage the slice managed by the other communication control server. And a control step of controlling the communication connection path.
  • the communication policy set for the slice can be satisfied. Therefore, services using slices can be provided more comfortably.
  • communication satisfying the communication policy set in the slice can be performed.
  • FIG. 1 is a diagram illustrating a hardware configuration of an A-SMF 100.
  • FIG. 1 is a diagram illustrating a hardware configuration of an A-SMF 100.
  • FIG. 1 is a diagram showing a system configuration of a communication system according to the present embodiment.
  • the communication system includes A-SMF (Anchor-Session Management Function) 100, A-UPF (Anchor-User Plane Function) 200, RAN (Radio Access Network) 300, I-SMF (Intermediate-Session). Management Function) 100a, I-UPF (Intermediate-User Plane Function) 200a, RAN 300a, PCF (Policy Control Function) 400, AF 500 (Application Function), AMF 600, and UE (User Equipment) 700 are included.
  • A-SMF Anchor-Session Management Function
  • A-UPF Anchor-User Plane Function
  • RAN Radio Access Network
  • I-SMF Intermediate-Session
  • Management Function 100a
  • I-UPF Intermediate-User Plane Function
  • RAN 300a Radio Access Network
  • PCF (Policy Control Function) 400 Policy Control Function
  • AF 500 Application
  • the A-SMF 100 is an SMF that manages slices that constitute a movement source network when a UE 700 (mobile communication terminal) that is a user terminal moves to a movement destination.
  • the SMF is a communication control server having a session management function.
  • a slice is a virtual network or a service network that is logically generated on a network infrastructure by virtually separating links and node resources of a network device and combining the separated resources. Slices separate resources and do not interfere with each other.
  • the service refers to a service using network resources such as a communication service (private line service or the like) or an application service (service using a moving image distribution or sensor device such as an embedded device).
  • a slice is allocated for each service.
  • the A-UPF 200 is a node that constitutes a movement source slice of the UE 700, and is a node for transmitting and receiving user data.
  • the RAN 300 is an access network for communication connection between the source slice and the UE 700.
  • the I-SMF 100a, I-UPF 200a, and RAN 300a are destination SMF, UPF, and RAN, and have the same functions as the A-SMF 100, I-UPF 200, and RAN 300.
  • the A-SMF 100 and the A-UPF 200 constitute a slice at the movement source, and the I-SMF 100a and the I-UPF 200a constitute a slice at the movement destination. Further, the A-SMF 100 and the A-UPF 200, and the I-SMF 100a and the I-UPF 200a constitute one slice when the UE 700 performs a handover.
  • PCF 400 and AF 500 are nodes that control the communication policy.
  • the AF 500 stores the communication policy of each slice, and the PCF 400 transmits the communication policy managed by the AF 500 to each node (SMF).
  • SMF node
  • the AMF 600 is a communication control device that performs mobility control, and performs communication control for communicating the UE 700 with a communication connection destination via a core network (each UPF or the like).
  • UE 700 moves from the movement source area A1 to the movement destination area A2. Before moving (in area A1), UE 700 is connected to DNN (DATA Network Name) via RAN 300 and A-UPF 200 (see path P1).
  • DNN DATA Network Name
  • the UE 700 moves to the movement destination (area A2), the UE 700 establishes communication connection with the DNN via the RAN 300a, the I-UPF 200a, and the A-UPF 200 (see path P2 in FIG. 2).
  • the UE 700 is connected to a DNN that is an external network via the area A1 and the area A2. Therefore, since the data communication path becomes long, there is a possibility that a communication policy (communication request condition: communication band or communication delay, etc.) such as communication delay defined for each slice (that is, service) may not be satisfied.
  • a communication policy such as communication delay defined for each slice (that is, service)
  • the slice is set for each service so as to enable communication suitable for the service.
  • a delay or the like may occur.
  • the A-SMF 100 determines whether or not the communication policy is satisfied, and sets the communication path of the UE so as to satisfy the communication policy. Control.
  • FIG. 3 is a block diagram showing a functional configuration of the A-SMF and I-SMF 100a which are communication control servers of the present embodiment.
  • the A-SMF 100 includes a communication control unit 101 (transmission unit), a determination unit 102, and a storage unit 103.
  • the I-SMF 100a includes a communication control unit 201.
  • each configuration of the A-SMF 100 and the I-SMF 100a will be described.
  • the communication control unit 101 is a part for transmitting control information based on the communication policy transmitted from the PCF 400 and the result determined by the determination unit 102 to the I-SMF 100a together with session management of the UE 700 and the A-UPF 200.
  • This control information is, for example, instruction information for off-load processing in the I-UPF 200a, that is, for direct connection from the destination network to the external network or application server.
  • the determination unit 102 is a part that determines whether or not communication that satisfies the communication policy is enabled when the UE 700 moves to a destination. More specifically, when the UE 700 moves, the determination unit 102 determines whether a slice at the movement destination satisfies the communication policy. For example, the determination unit 102 may monitor whether the communication control unit 101 monitors the communication status after movement, and may determine whether the communication status satisfies a communication policy. In addition, during the movement process of the UE 700, area information (for example, PLMN: Public Land Mobile Network) is acquired from a destination server such as the I-SMF 100a, and it is determined how far the UE has moved based on the area information. You may make it do. When moving to predetermined area information, it is determined that the communication policy is not satisfied. For example, it is determined that the communication delay does not fall within the allowable range.
  • PLMN Public Land Mobile Network
  • the determination unit 102 determines that the communication via the destination slice does not satisfy the communication policy, the determination unit 102 further generates a communication path to satisfy the communication policy, thereby determining whether the communication policy may be satisfied. Determine whether.
  • the I-UPF 200a performs an offload process to determine whether or not the communication policy is satisfied.
  • the offload processing here is so-called edge processing, in which the I-UPF 200a performs processing for directly connecting to a DNN that is an external network without constructing the same slice as the A-UPF 200.
  • edge processing in which the I-UPF 200a performs processing for directly connecting to a DNN that is an external network without constructing the same slice as the A-UPF 200.
  • the I-UPF 200a can perform processing for directly connecting to a DNN that is an external network as edge processing.
  • the determination unit 102 determines that there is no means for satisfying the communication policy, for example, when the communication policy is not satisfied even if the offload processing is performed, the control for performing the communication disconnection processing using the slice is performed. I do.
  • the storage unit 103 stores the communication policy transmitted from the PCF 400 and the traffic information of each slice.
  • the communication control unit 101 constantly monitors the traffic state in the slice, and the storage unit 103 stores the traffic information.
  • the traffic information includes, for example, a delay state, a packet size, and a bandwidth usage situation.
  • the communication control unit 201 of the I-SMF 100a is a part that transmits the communication policy and control information transmitted from the A-SMF 100a to the I-UPF 200a together with session management of the UE 700 and the I-UPF 200a.
  • the I-UPF 200a performs communication path control processing based on the control information. For example, offload processing. More specifically, the I-UPF 200a does not use the A-UPF 200 as a user data communication connection destination, but directly performs communication connection to an application server in an external network or a movement destination network.
  • FIG. 4 is a diagram illustrating a processing sequence of the communication system.
  • the UE 700 shows processing after moving from the area A1 (under the management of the A-SMF 10) to the area A2 (under the management of the I-SMF 100a) (after handing over).
  • UE 700 is connected to an external network via slice 1 and slice 2 after moving.
  • Slice 1 and slice 2 are formed across region A1 and region a2, as shown in FIG.
  • the A-SMF 100, the I-SMF 100a, the A-UPF 200, and the I-UPF 200a form one slice 1 and slice 2 across the area A1 and the area A2.
  • Slice 1 and slice 2 are slices set in advance.
  • the AF 500 stores the communication policy of each slice, and transmits the communication policy to the PCF 400 (S102).
  • the AF 500 transmits Npcf_PolicyAuthorization_Create to the PCF 400 and receives Npcf_PolicyAuthorization_Create Response as a response.
  • the PCF 400 determines what processing is to be performed based on the communication policy. In the present embodiment, when slice 2 does not satisfy the communication policy, it is determined to perform offload processing (S103).
  • the PCF 400 transmits a communication policy and control information for performing offload processing (S104).
  • the PCF 400 transmits Npcf_SMPolicyControl_UpdateNotify (AF details, offload details e.g. DNAI, traffic type, etc: here further includes a communication policy) to the A-SMF 100.
  • the control information includes application request conditions, a threshold value for performing path change control including offload, connection destination domain information, and the like.
  • the A-SMF 100 determines whether or not the slice configured by the destination I-SMF 100a can satisfy the communication policy based on the communication policy and the control information for offload processing. For example, it is determined whether or not the communication delay of the slice 2 is within an allowable range. If it is within the allowable range, the communication via the slice 2 is continued as it is. That is, control for offload processing is not performed (S105).
  • the A-SMF 100 performs control for offload processing if the communication policy is satisfied by performing offload processing in the I-UPF 200a.
  • the A-SMF 100 performs control for disconnecting the communication connection using the slice 2.
  • the A-SMF 100 determines that the slice 2 satisfies the communication policy by performing the offload process, and transmits control information for the offload process to the I-SMF 100a (S106).
  • “Nsmf_PDUSession_UpdateSMContext” AF details, “offload” details “e.g.” DNAI, “traffic” type, “etc”. is transmitted.
  • the I-SMF 100a When the I-SMF 100a receives the control information for the offload process, the I-SMF 100a transmits the control information for the offload process to the I-UPF 200a (S107).
  • Nupf_PDUSession_UpdateUPFContext_Request AF details, offload details e.g. DNAI, traffic type, etc.
  • the I-UPF 200a performs offload processing according to the received control information (S108). Specifically, the I-UPF 200a stores the A-UPF 200 as a communication connection destination for configuring one slice.
  • the communication connection destination is an application server in the external network or the movement destination network. This makes it possible to perform offload processing.
  • slice 1 is not the target of the offload process. Therefore, slice 1 is configured with the nodes in area A1.
  • the I-SMF 100a and the I-UPF 200a perform offload processing so that the slice satisfies the communication policy. Allows communication connection of filled slices.
  • the UE 700 continues communication before moving to determine whether the communication policy is satisfied.
  • the present invention is not limited to this. It may be determined whether or not the communication policy is satisfied at the start of control of the movement process, that is, at the time when the handover process is started. Further, it may be determined whether or not the communication policy is continuously satisfied after the movement process. At that time, the communication policy may have a two-stage criterion, unlike the conventional communication policy. That is, the communication policy for continuously determining is different from the communication policy for determining when the UE 700 moves or after the movement is completed, and the reference value may be lowered in consideration of the possibility that the communication policy is not satisfied. Good. For example, if the allowable delay time is defined as a communication policy, the allowable delay time may be set shorter than the normal time.
  • the present invention is not limited to handover.
  • switching the SMF it may be determined whether or not a slice configured by the SMF that is the switching destination satisfies the communication policy, and an appropriate path switching process may be performed. For example, there may be a case where some user terminals (terminals corresponding to the UE 700) are moved to another SMF because the SMF being used is congested. In that case, it is necessary to switch the SMF, and the present invention can be applied to such a situation.
  • the communication system performs communication control that satisfies a communication request condition set for a slice that is a virtual network generated on a network infrastructure.
  • A-SMF 100 one communication control server
  • I-SMF 100a other communication control server
  • the determination unit 102 of the A-SMF 100 is set for the slice of the I-SMF 100a. It is determined whether or not communication satisfying the communication policy is possible.
  • the I-SMF 100a controls the communication connection path of the slice managed by the I-SMF 100a.
  • the communication policy set for the slice can be satisfied. Therefore, services using slices can be provided more comfortably.
  • the communication control unit 101 of the A-SMF 100 further controls the communication connection path of the slice in the I-SMF 100a and the I-UPF 200a when communication satisfying the communication policy is impossible.
  • the communication connection path of the slice is controlled.
  • the setting was made for the slice. Whether or not the communication policy is satisfied may be continuously determined.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
  • A-SMF100, I-SMF100a, A-UPF200, I-UPF200a in one embodiment of the present invention functions as a computer that performs the processing of this embodiment. Also good.
  • FIG. 5 is a diagram illustrating an example of a hardware configuration of the A-SMF 100 and the like according to the present embodiment.
  • the above-described A-SMF 100 or the like may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the A-SMF 100 or the like may be configured to include one or a plurality of devices illustrated in the figure, or may be configured not to include some devices.
  • Each function in the A-SMF 100 and the like is such that a predetermined software (program) is read on hardware such as the processor 1001 and the memory 1002 so that the processor 1001 performs an operation, and communication by the communication device 1004, memory 1002 and storage This is realized by controlling reading and / or writing of data in 1003.
  • a predetermined software program
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • the determination unit 102 may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, and data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • the program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the determination unit 102 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks.
  • the above-described various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and includes, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the communication control unit 101 described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the A-SMF100 and the like include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA).
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a part or all of each functional block may be realized by the hardware.
  • the processor 1001 may be implemented by at least one of these hardware.
  • notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods.
  • notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA Wideband
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand
  • the present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
  • Information etc. can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • the input / output information or the like may be stored in a specific location (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true / false value (Boolean: true or false), or may be performed by comparing numerical values (for example, a predetermined value) Comparison with the value).
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
  • software, instructions, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • DSL digital subscriber line
  • wireless technology such as infrared, wireless and microwave.
  • system and “network” used in this specification are used interchangeably.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by an index.
  • a mobile communication terminal is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, It may also be referred to as a wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
  • determining may encompass a wide variety of actions. “Judgment” and “decision” are, for example, judgment, calculation, calculation, processing, derivation, investigating, searching (looking up) (for example, table , Searching in a database or another data structure), considering ascertaining as “determining”, “deciding”, and the like.
  • determination and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as "determined” or "determined”.
  • determination and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
  • connection means any direct or indirect connection or coupling between two or more elements and It can include the presence of one or more intermediate elements between two “connected” or “coupled” elements.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof.
  • the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples
  • electromagnetic energy such as electromagnetic energy having a wavelength in the region, microwave region, and light (both visible and invisible) region, it can be considered to be “connected” or “coupled” to each other.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to the element does not generally limit the quantity or order of the elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, a reference to the first and second elements does not mean that only two elements can be employed there, or that in some way the first element must precede the second element.
  • DESCRIPTION OF SYMBOLS 100 ... A-SMF, 100a ... I-SMF, 200 ... A-UPF, 200a ... I-UPF, 300, 300a ... RAN, PCF400, AF500, AMF600, UE700, 101 ... Communication control part, 102 ... Judgment part, 103 ... Storage unit 201 ... Communication control unit.

Abstract

SMFなどの通信制御サーバの切替えに際して適切な通信を行うことができる通信方法、通信システムおよび通信制御サーバを提供することを目的とする。 ユーザ端末であるUE700が移動元(領域A1)の通信制御サーバであるA-SMF100におけるスライスを介して外部ネットワーク(DNN)と通信接続しているときにおいて、A-SMF100の管理下から、移動先の通信制御サーバであるI-SMF100aの管理下に移動すると、A-SMF100の判断部102は、I-SMF100aのスライスに対して設定された通信ポリシを満たした通信が可能か否かを判断する。そして、通信制御部101は、通信ポリシを満たした通信が不可である場合には、I-SMF100aは、I-SMF100aが管理するスライスの通信接続経路を制御する。

Description

通信方法、通信システムおよび通信制御サーバ
 本発明は、ハンドオーバ制御を行う通信方法、通信システムおよび通信制御サーバに関る。
下記文献には、RAN(Radio Access Network)間におけるハンドオーバ制御について、標準技術が規定されている。
3GPP TS23.501
 上記非特許文献1においては、ユーザ端末のセッション管理を行う通信制御サーバを、そのユーザ端末の移動に伴って切替えること(ハンドオーバ)は想定していない。
 ユーザ端末が、通信インフラ上に仮想的に構築されたスライスを用いて通信しているときに、移動すると、そのスライスの通信制御を行うSMF(Session Management Function:通信制御サーバ)を切替える(すなわち、移動先のSMFの通信管理下になる)ことを想定する必要があるが、上述非特許文献1には、そのSMFを切替えることは想定していない。したがって、ユーザ端末が移動先のSMFの管理下に移動した場合に、その移動先のSMFで構成しているスライスが、通信ポリシを満たさない場合がある。例えば、通信遅延が許容できない場合があり得る。
 そこで、上述の課題を解決するために、本発明は、SMFなどの通信制御サーバの切替えを考慮した通信制御を行うことができる通信方法、通信システムおよび通信制御サーバを提供することを目的とする。
 上述の課題を解決するために、本発明の通信方法は、ネットワークインフラ上に生成される仮想化ネットワークであるスライスに対して設定された通信要求条件を満たす通信制御を行う通信システムにおける通信方法において、ユーザ端末が、一の通信制御サーバにおけるスライスを介して外部ネットワークと通信接続しているときにおいて、切替前の一の通信制御サーバの管理下から、切替後の他の通信制御サーバの管理下に切替える場合、前記一の通信制御サーバは、前記他の通信制御サーバにおいて前記スライスに対して設定された通信要求条件を満たした通信が可能か否かを判断する判断ステップと、前記通信要求条件を満たした通信が不可である場合には、前記他の通信制御サーバは、当該他の通信制御サーバが管理するスライスの通信接続経路を制御する制御ステップと、を備える。
 この発明によれば、スライスに設定された通信ポリシを満たすことができる。したがって、より快適にスライスを用いたサービスを提供することができる。
 本発明によれば、スライスに設定された通信ポリシを満たした通信を行うことができる。
本実施形態の通信システムのシステム構成を示す図である。 ハンドオーバ後の通信経路を示す図である。 本実施形態の通信制御サーバであるA-SMFおよびI-SMF100aの機能構成を示すブロック図である。 通信システムの処理シーケンスを示す図である。 A-SMF100のハードウェア構成を示す図である。
 添付図面を参照しながら本発明の実施形態を説明する。可能な場合には、同一の部分には同一の符号を付して、重複する説明を省略する。
 図1は、本実施形態の通信システムのシステム構成を示す図である。図1に示されるとおり、通信システムは、A-SMF(Anchor-Session Management Function)100,A-UPF(Anchor-User Plane Function)200、RAN(Radio Access Network)300、I-SMF(Intermediate-Session Management Function)100a、I-UPF(Intermediate-User Plane Function)200a、RAN300a、PCF(Policy Control Function)400、AF500(Application Function)、AMF600、およびUE(User Equipment)700を含んでいる。
 A-SMF100は、ユーザ端末であるUE700(移動通信端末)が移動先に移動する際における、移動元のネットワークを構築しているスライスを管理するSMFである。SMFは、セッション管理機能を有する通信制御サーバである。
 ここで、スライスとは、ネットワーク装置のリンクとノードの資源を仮想的に切り分けて、切り分けた資源を結合し、ネットワークインフラ上に論理的に生成される仮想ネットワーク又はサービス網である。スライス同士は資源を分離しており、互いに干渉しない。サービスとは、通信サービス(専用線サービス等)やアプリケーションサービス(動画配信、エンベデッド装置等のセンサ装置を利用したサービス)等のネットワーク資源を用いたサービスをいう。スライスは、サービスごとに割当てられている。
 A-UPF200は、UE700の移動元のスライスを構成するノードであり、ユーザデータを送受信するためのノードである。
 RAN300は、移動元のスライスとUE700とを通信接続するためのアクセスネットワークである。
 I-SMF100a、I-UPF200a、およびRAN300aは、移動先のSMF、UPF、RANであり、A-SMF100、I-UPF200、およびRAN300と同機能を有する。
 本実施形態では、A-SMF100およびA-UPF200が移動元におけるスライスを構成しており、I-SMF100aおよびI-UPF200aが移動先におけるスライスを構成する。また、A-SMF100およびA-UPF200、並びにI-SMF100aおよびI-UPF200aで、UE700がハンドオーバをした際の一つのスライスを構成している。
 PCF400およびAF500は、通信ポリシを制御するノードである。AF500が、各スライスの通信ポリシを記憶しており、PCF400が、各ノード(SMF)にAF500が管理している通信ポリシを送信する。
 AMF600は、モビリティ制御を行う通信制御装置であり、UE700をコアネットワーク(各UPF等)を介して通信接続先と通信するための通信制御を行う。
 このように構成された通信システムにおいて、UE700が、移動元の領域A1から移動先の領域A2に移動したときを想定する。移動前においては(領域A1において)、UE700は、RAN300およびA-UPF200を介して、DNN(DATA Network Name)と通信接続している(パスP1参照)。
 その後、UE700は、移動先(領域A2)に移動すると、RAN300a、I-UPF200a、およびA-UPF200を介してDNNと通信接続する(図2のパスP2参照)。
 図2に示されるとおり、UE700は、領域A1および領域A2を介して、外部ネットワークであるDNNと通信接続している。したがって、データ通信の経路が長くなるため、スライス(すなわちサービス)ごとに規定されている、通信遅延など通信ポリシ(通信要求条件:通信帯域または通信遅延など)を満たさない可能性がある。例えば、スライスは、サービスごとに、そのサービスに適した通信を可能になるように設定されているが、スライスの経路が長くなると、遅延等が生じる可能性がある。
 そのために、A-SMF100は、UE700が、領域を跨いで移動(いわゆるハンドオーバ)した場合には、その通信ポリシを満たすか否かを判断し、その通信ポリシを満たすように、UEの通信経路を制御する。
 図3は、本実施形態の通信制御サーバであるA-SMFおよびI-SMF100aの機能構成を示すブロック図である。図3に示されるとおり、A-SMF100は、通信制御部101(送信部)、判断部102、および記憶部103を備えている。I-SMF100aは、通信制御部201を備えている。以下、A-SMF100およびI-SMF100aの各構成について説明する。
 通信制御部101は、UE700およびA-UPF200のセッション管理とともに、PCF400から送信された通信ポリシおよび判断部102において判断された結果に基づいた制御情報をI-SMF100aに送信する部分である。この制御情報は、例えばI-UPF200aにおいてオフロード処理、すなわち移動先ネットワークから直接外部ネットワークまたはアプリケーションサーバへの接続をするための指示情報である。
 判断部102は、UE700が移動先に移動すると、通信ポリシを満たした通信を可能にするか否かを判断する部分である。より具体的には、判断部102は、UE700が移動すると、その移動先におけるスライスが通信ポリシを満たすか否かを判断する。例えば、判断部102は、通信制御部101が移動後の通信状況を監視しており、その通信状況が通信ポリシを満たしたか否かを判断してもよい。また、UE700の移動処理時において、I-SMF100aなど移動先のサーバからエリア情報(例えばPLMN:Public Land Mobile Network)を取得しておき、そのエリア情報に基づいてどれぐらい遠距離に移動したか判断するようにしてもよい。所定のエリア情報に移動した場合には、通信ポリシを満たさないと判断する。例えば、通信遅延が許容範囲以内に収まらないと判断する。
 判断部102は、移動先のスライスを介した通信が通信ポリシを満たさないと判断すると、さらに、通信ポリシを満たすための通信経路の生成を行うことで、通信ポリシを満たす可能性があるか否かを判断する。例えば、I-UPF200aがオフロード処理を行うことで、通信ポリシを満たすか否かを判断する。ここでのオフロード処理とは、いわゆるエッジ処理であって、I-UPF200aは、A-UPF200と同じスライスを構築することなく、直接外部ネットワークであるDNNに通信接続するための処理を行うことをいう。I-UPF200aは、エッジ処理として、直接外部ネットワークであるDNNに通信接続するための処理を行うことができる。
 判断部102は、通信ポリシを満たすための手段がないと判断する場合、例えばオフロード処理をしたとしても通信ポリシを満たさない場合には、当該スライスを用いた通信の切断処理を行うための制御を行う。
記憶部103は、PCF400から送信された通信ポリシおよび各スライスのトラフィック情報を記憶している。通信制御部101は、スライスにおけるトラフィック状態を常に監視しており、記憶部103はそのトラフィック情報を記憶している。トラフィック情報は、例えば遅延状態、パケットサイズ、帯域利用状況を含む。
 I-SMF100aの通信制御部201は、UE700およびI-UPF200aのセッション管理とともに、A-SMF100aから送信された通信ポリシおよび制御情報をI-UPF200aに送信する部分である。I-UPF200aは、制御情報に基づいた通信経路の制御処理を行う。例えばオフロード処理である。より具体的には、I-UPF200aは、ユーザデータの通信接続先としてA-UPF200を宛先とするのではなく、直接外部ネットワークまたは移動先ネットワーク内のアプリケーションサーバに通信接続するための処理を行う。
 つぎに、本実施形態における通信システムの処理シーケンスについて説明する。図4は、通信システムの処理シーケンスを示す図である。図4において、UE700は、領域A1(A-SMF10の管理下)から領域A2(I-SMF100aの管理下)に移動した後(ハンドオーバした後)における処理を示している。
 UE700は、移動後、スライス1およびスライス2を介して外部ネットワークと通信接続している。スライス1およびスライス2は、図4に示したとおり、領域A1および領域a2を跨いで形成されている。A-SMF100、I-SMF100a、A-UPF200、およびI-UPF200aは、領域A1および領域A2を跨いで一つのスライス1およびスライス2を形成している。このスライス1およびスライス2は、事前にスライスの設定がなされたものである。
 一方で、AF500は、各スライスの通信ポリシを記憶しており、PCF400に対して、通信ポリシを送信する(S102)。図においては、AF500は、PCF400に対して、Npcf_PolicyAuthorization_Createを送信し、その応答として、Npcf_PolicyAuthorization_Create Responseを受信する。
PCF400は、通信ポリシに基づいてどのような処理を行うか判断する。本実施形態では、スライス2が通信ポリシを満たさない場合には、オフロード処理をする、との決定を行う(S103)。
 PCF400は、通信ポリシおよびオフロード処理を行うための制御情報を送信する(S104)。ここでは、PCF400は、Npcf_SMPolicyControl_UpdateNotify(AF details, offload details e.g. DNAI, traffic type, etc:ここにはさらに通信ポリシを含む)をA-SMF100に送信する。この制御情報には、アプリケーションの要求条件、オフロードを含む経路変更制御を行う閾値、接続先ドメイン情報などを含む。
 A-SMF100は、通信ポリシおよびオフロード処理のための制御情報に基づいて、移動先のI-SMF100aで構成するスライスが通信ポリシを充足可能かどうか判断する。例えば、そのスライス2の通信遅延が許容範囲内であるか否かを判断する。許容範囲であればそのままスライス2を介した通信を継続させる。すなわち、特にオフロード処理のための制御は行わない(S105)。
 また、A-SMF100は、I-UPF200aにおいてオフロード処理することで、通信ポリシを満たすのであれば、オフロード処理のための制御を行う。
 また、A-SMF100は、いずれにおいても通信ポリシを満たない場合には、スライス2を用いた通信接続を切断するための制御を行う。
 このシーケンスにおいては、A-SMF100は、オフロード処理を行うことでスライス2は通信ポリシを満たすと判断し、I-SMF100aに、オフロード処理のための制御情報を送信する(S106)。ここでは、 Nsmf_PDUSession_UpdateSMContext (AF details, offload details e.g. DNAI, traffic type, etc)を送信する。
 I-SMF100aは、オフロード処理のための制御情報を受信すると、I-UPF200aに対してオフロード処理のための制御情報を送信する(S107)。ここでは、 Nupf_PDUSession_UpdateUPFContext_Request(AF details, offload details e.g. DNAI, traffic type, etc)を送信する。
 I-UPF200aは、受信した制御情報に従って、オフロード処理を行う(S108)。具体的には、I-UPF200aは、一のスライスを構成するための通信接続先として、A-UPF200を記憶しているが、この通信接続先を外部ネットワークまたは移動先ネットワーク内のアプリケーションサーバにすることで、オフロード処理を行うことが可能となる。
 ステップS103の判断処理において、スライス1は、オフロード処理の対象にはなっていない。従って、スライス1は、領域A1内のノードとともに構成されることになる。
 このようにして、UE700がA-SMF100からI-SMF100aに移動しても、そのスライスが通信ポリシを満たすために、I-SMF100aおよびI-UPF200aにおいて、オフロード処理を行うことで、通信ポリシを満たしたスライスの通信接続を可能にする。
 なお、上述実施形態では、UE700が、移動後、通信ポリシを満たしているかの判断をする前に、通信を継続している例を示しているが、これに限るものではない。移動処理の制御開始時、すなわちハンドオーバ処理を開始した時点において、通信ポリシを満たすか否かを判断してもよい。また、移動処理後、継続的に通信ポリシを満たすか否かを判断してもよい。その際、通信ポリシは、従前の通信ポリシと異なり、二段階の基準を有してもよい。すなわち、継続的に判断するための通信ポリシは、UE700の移動時または移動完了後に判断するための通信ポリシと異なり、通信ポリシを満たさない可能性を考慮して、その基準値を低くしてもよい。例えば、通信ポリシとして遅延許容時間が規定されていれば、その遅延許容時間を通常時より短く設定してもよい。
 本実施形態においては、UE700が領域を移動してハンドオーバをした際においてSMFが切り替わるときを説明したが、ハンドオーバに限るものではない。SMFを切替えるときに、その切替え先となったSMFで構成するスライスが通信ポリシを満たしているか否かを判断し、適切な経路切替え処理を行ってもよい。例えば、利用中のSMFが混雑のため一部ユーザ端末(UE700に相当する端末)を別SMFに移動させるという場合が考えられる。その場合にSMFを切替える必要があり、そのような状況にも適用は可能である。
 つぎに、本実施形態の通信システムおよび通信方法の作用効果について説明する。本実施形態の通信システムは、ネットワークインフラ上に生成される仮想化ネットワークであるスライスに対して設定された通信要求条件を満たす通信制御を行う。
 ユーザ端末であるUE700が移動元(領域A1)の通信制御サーバであるA-SMF100におけるスライスを介して外部ネットワーク(DNN)と通信接続しているときにおいて、A-SMF100(一の通信制御サーバ)の管理下から、移動先の通信制御サーバであるI-SMF100a(他の通信制御サーバ)の管理下に移動すると、A-SMF100の判断部102は、I-SMF100aのスライスに対して設定された通信ポリシを満たした通信が可能か否かを判断する。
 そして、通信制御部101は、通信ポリシを満たした通信が不可である場合には、I-SMF100aは、I-SMF100aが管理するスライスの通信接続経路を制御する。
 この発明によれば、スライスに設定された通信ポリシを満たすことができる。したがって、より快適にスライスを用いたサービスを提供することができる。
 また、この通信システムにおいて、A-SMF100の通信制御部101は、通信ポリシを満たした通信が不可である場合において、さらに、I-SMF100aおよびI-UPF200aにおいて、スライスの通信接続経路を制御することでその通信ポリシを満たすことになる場合に、スライスの通信接続経路を制御する。
 これにより、オフロード処理などの通信接続経路を切替えるなどの制御を行うことで、スライスに設定された通信ポリシを満たした通信を可能にする。
 また、この通信システムにおいて、通信ポリシを満たした通信が不可である場合には、スライスの通信接続を切断する。これにより、通信ポリシを満たさない通信を不可とすることで、結果的にユーザにとって快適な通信を提供することができる。
 また、この通信システムにおいて、A-SMF100の管理下からI-SMF100aの管理下へ移動して、I-SMF100aにおけるスライスを介した通信を行っている最中において、当該スライスに対して設定された通信ポリシを満たすか否かを継続的に判断してもよい。
 これにより、継続的にスライスが通信ポリシを満たすか否かを判断することができ、快適な通信を提供することができる。
 上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施の形態におけるA-SMF100、I-SMF100a、A-UPF200、I-UPF200a(以下、A-SMF100等とする)などは、本実施形態の処理を行うコンピュータとして機能してもよい。図5は、本実施形態に係るA-SMF100等のハードウェア構成の一例を示す図である。上述のA-SMF100等は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。A-SMF100等のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 A-SMF100等における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信や、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、判断部102は、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュールやデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、判断部102は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、上述の通信制御部101は、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001やメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、A-SMF100等は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
 以上、本実施形態について詳細に説明したが、当業者にとっては、本実施形態が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本実施形態は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本実施形態に対して何ら制限的な意味を有するものではない。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 情報等は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。
 本明細書で使用する「システム」および「ネットワーク」という用語は、互換的に使用される。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的なものではない。さらに、これらのパラメータを使用する数式等は、本明細書で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素(例えば、TPCなど)は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
 移動通信端末は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどの電磁エネルギーを使用することにより、互いに「接続」又は「結合」されると考えることができる。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書で「第1の」、「第2の」などの呼称を使用した場合においては、その要素へのいかなる参照も、それらの要素の量または順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1および第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 「含む(include)」、「含んでいる(including)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 本明細書において、文脈または技術的に明らかに1つのみしか存在しない装置である場合以外は、複数の装置をも含むものとする。
100…A-SMF,100a…I-SMF、200…A-UPF、200a…I-UPF、300、300a…RAN、PCF400,AF500、AMF600、UE700、101…通信制御部、102…判断部、103…記憶部、201…通信制御部。

Claims (9)

  1.  ネットワークインフラ上に生成される仮想化ネットワークであるスライスに対する通信制御を行う通信システムにおける通信方法において、
     ユーザ端末が、一の通信制御サーバにおけるスライスを介して外部ネットワークと通信接続しているときにおいて、前記スライスを構成する他の通信制御サーバに切替える場合、前記スライスに対して設定された通信要求条件を満たした通信が可能か否かを判断する判断ステップと、
     前記通信要求条件を満たした通信が不可である場合には、当該他の通信制御サーバが管理するスライスの通信接続経路を制御する制御ステップと、
    を備える通信方法。
  2.  前記一の通信制御サーバから前記他の通信制御サーバに切替える場合とは、前記ユーザ端末がハンドオーバをする場合を含む、請求項1に記載の通信方法。
  3.  前記制御ステップにおいて、
     前記通信要求条件を満たした通信が不可である場合において、 前記スライスの通信接続経路を制御することにより前記通信要求条件を満たした通信が可能となる場合には、前記スライスの通信接続経路を制御する、請求項1または2に記載の通信方法。
  4.  前記制御ステップにおいて、
     前記他の通信制御サーバは、当該他の通信制御サーバのスライスを、前記一の通信制御サーバのスライスに通信接続させることなく、前記外部ネットワークと通信接続する制御を行う、請求項1~3のいずれか一項に記載の通信方法。
  5.  前記他の通信制御サーバは、オフロード処理を行う、請求項4に記載の通信方法。
  6.  前記制御ステップにおいて、
     前記通信要求条件を満たした通信が不可である場合には、前記スライスの通信接続を切断する、請求項1または2に記載の通信方法。
  7.  前記判断ステップにおいて、
     前記一の通信制御サーバから前記他の通信制御サーバに切替えて、前記他の通信制御サーバにおけるスライスを介した通信を行っている最中において、当該スライスに対して設定された通信要求条件を満たすか否かを継続的に判断する、請求項1に記載の通信方法。
  8.  ネットワークインフラ上に生成される仮想化ネットワークであるスライスに対して設定された通信要求条件を満たす通信制御を行う通信システムにおいて、
     ユーザ端末が、一の通信制御サーバにおけるスライスを介して外部ネットワークと通信接続しているときにおいて、前記スライスを構成する他の通信制御サーバに切替える場合、前記スライスに対して設定された通信要求条件を満たした通信が可能か否かを判断する判断部と、
     前記通信要求条件を満たした通信が不可である場合には、当該他の通信制御サーバが管理するスライスの通信接続経路を制御する制御部と、
    を備える通信方法。
  9.  ネットワークインフラ上に生成される仮想化ネットワークであるスライスに対する通信制御を行う通信制御サーバにおいて、
     ユーザ端末を、一の通信制御サーバにおけるスライスを介して外部ネットワークと通信接続しているときにおいて、前記スライスを構成する他の通信制御サーバに切替える場合、前記スライスに対して設定された通信要求条件を満たした通信が可能か否かを判断する判断部と、
     前記通信要求条件を満たした通信が不可である場合には、前記他の通信制御サーバに対して、通信要求条件を満たすために、前記他の通信制御サーバにおけるスライスの通信接続経路を制御するための指示を送る送信部と、
    を備える通信制御サーバ。
PCT/JP2018/005810 2018-02-19 2018-02-19 通信方法、通信システムおよび通信制御サーバ WO2019159374A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/005810 WO2019159374A1 (ja) 2018-02-19 2018-02-19 通信方法、通信システムおよび通信制御サーバ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/005810 WO2019159374A1 (ja) 2018-02-19 2018-02-19 通信方法、通信システムおよび通信制御サーバ

Publications (1)

Publication Number Publication Date
WO2019159374A1 true WO2019159374A1 (ja) 2019-08-22

Family

ID=67619799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005810 WO2019159374A1 (ja) 2018-02-19 2018-02-19 通信方法、通信システムおよび通信制御サーバ

Country Status (1)

Country Link
WO (1) WO2019159374A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170690A1 (ja) * 2016-04-01 2017-10-05 株式会社Nttドコモ スライス管理システム及びスライス管理方法
WO2018029930A1 (ja) * 2016-08-10 2018-02-15 日本電気株式会社 無線アクセスネットワークノード、無線端末、コアネットワークノード、及びこれらの方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170690A1 (ja) * 2016-04-01 2017-10-05 株式会社Nttドコモ スライス管理システム及びスライス管理方法
WO2018029930A1 (ja) * 2016-08-10 2018-02-15 日本電気株式会社 無線アクセスネットワークノード、無線端末、コアネットワークノード、及びこれらの方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO ET AL.: "Position of Network Slice Selection Function (NSSF) in overall architecture", SA WG2 MEETING #120 S2-171932, 21 March 2017 (2017-03-21), pages 6, XP051247669 *

Similar Documents

Publication Publication Date Title
JP6402253B2 (ja) 通信制御方法、通信制御装置、及び通信システム
US11102827B2 (en) Information notification method and mobile communication system
JPWO2019077801A1 (ja) 通信システム、通信制御装置、および通信方法
US20190116534A1 (en) Communication method
US10694458B2 (en) User equipment, radio communication system, and communication method
WO2018173564A1 (ja) スライス管理装置及びスライス管理方法
JP6941676B2 (ja) ネットワークアクセス方法及び通信システム
WO2018180496A1 (ja) 通信制御方法および通信端末
WO2019159372A1 (ja) 情報転送方法及びノード群
EP3911022B1 (en) Network node, and user device
WO2018034201A1 (ja) 通信方法
US10687385B2 (en) Communication control method and communication system
WO2019159374A1 (ja) 通信方法、通信システムおよび通信制御サーバ
JP7053846B2 (ja) 通信制御装置、選択装置、通信制御方法および選択方法
WO2019193764A1 (ja) 基地局装置および通信システム
JP2018186450A (ja) 通信制御方法
WO2020031328A1 (ja) スライス運用装置、通信システムおよびスライス運用方法
WO2019078212A1 (ja) 通信制御方法及び接続先変更方法
WO2019035404A1 (ja) ノード群及びマイグレーション方法
JP2020014173A (ja) 基地局および通信方法
JP2018085688A (ja) 通信制御装置
WO2020031303A1 (ja) 通信接続装置および通信接続方法
WO2020031326A1 (ja) 通信システム及び通信制御方法
WO2018173567A1 (ja) ノード及びマイグレーション方法
WO2018186270A1 (ja) 通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP