WO2019159233A1 - 電磁継電器診断装置 - Google Patents

電磁継電器診断装置 Download PDF

Info

Publication number
WO2019159233A1
WO2019159233A1 PCT/JP2018/004901 JP2018004901W WO2019159233A1 WO 2019159233 A1 WO2019159233 A1 WO 2019159233A1 JP 2018004901 W JP2018004901 W JP 2018004901W WO 2019159233 A1 WO2019159233 A1 WO 2019159233A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
contact
electromagnetic relay
unit
operation time
Prior art date
Application number
PCT/JP2018/004901
Other languages
English (en)
French (fr)
Inventor
克彦 藤岡
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/957,230 priority Critical patent/US11488797B2/en
Priority to PCT/JP2018/004901 priority patent/WO2019159233A1/ja
Priority to JP2018524297A priority patent/JP6391899B1/ja
Priority to EP18906385.2A priority patent/EP3754687B1/en
Publication of WO2019159233A1 publication Critical patent/WO2019159233A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/181Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using coils without a magnetic core, e.g. Rogowski coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3277Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches
    • G01R31/3278Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches of relays, solenoids or reed switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/08Indicators; Distinguishing marks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/16Indicators for switching condition, e.g. "on" or "off"
    • H01H9/161Indicators for switching condition, e.g. "on" or "off" comprising light emitting elements

Definitions

  • the present invention relates to an electromagnetic relay diagnosis apparatus that diagnoses an abnormality by measuring an operation time of the electromagnetic relay.
  • a plurality of electromagnetic relays are used in the control circuit that controls the circuit breakers and disconnectors of the gas insulation equipment, and control is performed by combining a plurality of electromagnetic relays. If a failure or an operation delay occurs in any of the electromagnetic relays, the control circuit may not be able to perform a normal control operation, which may cause a control failure of the gas insulation device.
  • each device is operated and if the device operation is within the control range, each electromagnetic relay of the control circuit is judged to be normal, but this method does not check the electromagnetic relay itself, A malfunction may occur immediately after the inspection.
  • Defects caused by aging deterioration factors such as the mechanical relay's mechanical part are the time from when the current starts to flow to the wiring that leads to the coil of the electromagnetic relay until the energization state of the wiring that leads to the contact of the electromagnetic relay changes. It is effective to make a diagnosis by measuring the operation time and the contact off operation time, which is the time from when the current starts to flow to the wiring to the coil of the electromagnetic relay until the change in the energization state of the wiring to the contact of the electromagnetic relay is resolved.
  • the operation time and the contact off operation time which is the time from when the current starts to flow to the wiring to the coil of the electromagnetic relay until the change in the energization state of the wiring to the contact of the electromagnetic relay is resolved.
  • the measuring instrument since it takes time to install the measuring instrument, it is necessary to provide a simple measuring device.
  • Patent Document 1 discloses a device that photographs a relay with an operation indicator lamp in a relay control device with a camera with a high-speed shutter and observes the control state of the control device based on the lighting state of the relay with an operation indicator lamp. ing.
  • Patent Document 1 has only a function of recognizing whether the operation indicator light-equipped relay is in an operating state or a non-operating state, and does not have a means for detecting an operation delay state. Therefore, the invention disclosed in Patent Document 1 cannot measure the contact-on operation time and the contact-off operation time that are effective for diagnosing the presence or absence of defects due to aging of the electromagnetic relay.
  • the present invention has been made in view of the above, and an object thereof is to obtain an electromagnetic relay diagnostic apparatus capable of measuring a contact ON operation time and a contact OFF operation time.
  • the present invention includes a first operation detection unit including a first light-emitting unit that emits light when a current flows through a first wiring that leads to a coil of an electromagnetic relay.
  • the second operation detecting unit having the second light emitting unit that emits light when the current stops flowing to the first wiring, and the second light emitting unit that emits light when detecting a change in the energization state of the second wiring leading to the contact of the electromagnetic relay.
  • a third operation detection unit including a fourth light emission unit that emits light when it is detected that a change in the energization state of the second wiring has been eliminated.
  • the present invention provides a first motion detection unit, a second motion detection unit, a third motion detection unit, an imaging unit that captures a moving image of the fourth motion detection unit, The contact-on operation time from when the current starts to flow to the wiring until the energization state of the second wiring changes, and until the change of the energization state of the second wiring is resolved after the current stops flowing through the first wiring And a diagnostic unit for diagnosing whether or not an abnormality has occurred in the electromagnetic relay based on the calculated contact on operation time and contact off operation time.
  • the contact on operation time and the contact off operation time can be measured.
  • FIG. 1 The figure which shows the structure of the electromagnetic relay diagnostic apparatus which concerns on Embodiment 1 of this invention.
  • FIG. 1 The figure which shows the structure of the operation
  • FIG. 2 of this invention The figure which shows the structure of the electromagnetic relay diagnostic apparatus which concerns on Embodiment 2.
  • FIG. The figure which shows the structure of the electromagnetic relay diagnostic apparatus which concerns on Embodiment 4 of this invention.
  • FIG. FIG. 1 is a diagram showing a configuration of an electromagnetic relay diagnostic apparatus according to Embodiment 1 of the present invention.
  • the electromagnetic relay 5 to be diagnosed by the electromagnetic relay diagnostic apparatus 100 according to the first embodiment operates with a current flowing through the coil 51 through the wiring 52 that is the first wiring, and the contact 53 Is closed, and a current is passed through the wiring 54 as the second wiring.
  • the electromagnetic relay diagnostic apparatus 100 according to the first embodiment is connected to the Rogowski coils 3A and 3B that are electrically insulated and attached to the wiring 52 connected to the coil 51 of the electromagnetic relay 5 and the contact 53 of the electromagnetic relay 5.
  • the electromagnetic relay diagnostic apparatus 100 diagnoses whether the electromagnetic relay 5 is abnormal based on the image analysis unit 7 that processes the moving image captured by the imaging unit 6 and the moving image processed by the image analysis unit 7. And a diagnostic unit 8 for performing the above.
  • the operation detector 1 ⁇ / b> A is a first operation detector that detects that a current has started to flow through the wiring 52.
  • the operation detection unit 1 ⁇ / b> B is a second operation detection unit that detects that no current flows through the wiring 52.
  • the operation detection unit 2A is a third operation detection unit that detects that the energization state of the wiring 54 has changed.
  • the operation detection unit 2B is a fourth operation detection unit that detects that the change in the energization state of the wiring 54 has been eliminated.
  • the Rogowski coil 3 ⁇ / b> A is a first Rogowski coil for detecting that current has started to flow through the wiring 52.
  • the Rogowski coil 3 ⁇ / b> B is a second Rogowski coil for detecting that no current flows through the wiring 52.
  • the Rogowski coil 4 ⁇ / b> A is a third Rogowski coil for detecting that current has started to flow through the wiring 54.
  • the Rogowski coil 4 ⁇ / b> B is a fourth Rogowski coil for detecting that no current flows through the wiring 54.
  • the change in the energization state of the wiring 54 is that a current starts to flow through the wiring 54.
  • the fact that the change in the energization state of the wiring 54 is eliminated means that no current flows through the wiring 54.
  • FIG. 2 and 3 are diagrams showing the configuration of the operation detection unit of the electromagnetic relay diagnostic apparatus according to the first embodiment.
  • FIG. 2 shows a configuration of an operation detection unit 1A that is a first operation detection unit and an operation detection unit 2A that is a third operation detection unit
  • FIG. 3 shows an operation detection unit 1B that is a second operation detection unit.
  • movement detection part 2B which is a 4th operation
  • the operation detectors 1A, 1B, 2A, and 2B include a reference voltage generation circuit 12 that generates a reference voltage, a comparator 13 that compares the output voltage of the Rogowski coils 3A, 3B, 4A, and 4B with the reference voltage, and the Rogowski coil A light emitting unit 14 that is turned on when the output voltages of 3A, 3B, 4A, and 4B reach a reference voltage, and a battery 15 that supplies power to the reference voltage generation circuit 12, the comparator 13, and the light emitting unit 14 are provided.
  • a reference voltage generation circuit 12 that generates a reference voltage
  • a comparator 13 that compares the output voltage of the Rogowski coils 3A, 3B, 4A, and 4B with the reference voltage
  • the Rogowski coil A light emitting unit 14 that is turned on when the output voltages of 3A, 3B, 4A, and 4B reach a reference voltage
  • a battery 15 that supplies power to the reference voltage generation circuit 12, the comparator 13, and the light emitting unit
  • a motion detection unit 1A that is a first motion detection unit, a motion detection unit 2A that is a third motion detection unit, a motion detection unit 1B that is a second motion detection unit, and a motion detection that is a fourth motion detection unit.
  • the connection state of the Rogowski coils 3A, 3B, 4A, 4B and the comparator 13 is reversed.
  • Light emitting diodes can be applied to the light emitting units of the operation detecting units 1A, 1B, 2A, and 2B, but are not limited thereto.
  • the light emitting unit 14 of the operation detecting unit 1 ⁇ / b> A is a first light emitting unit that emits light when a current flows through the wiring 52.
  • the light emitting unit 14 of the operation detecting unit 1B is a second light emitting unit that emits light when no current flows through the wiring 52.
  • the light emitting unit 14 of the operation detecting unit 2 ⁇ / b> A is a third light emitting unit that emits light when a current flows through the wiring 54.
  • the light emitting unit 14 of the operation detecting unit 2B is a fourth light emitting unit that emits light when no current flows through the wiring 54.
  • the motion detectors 1A, 2A and the motion detectors 1B, 2B differ only in the connection state of the Rogowski coils 3A, 3B, 4A, 4B with respect to the comparator 13, so that the current starts to flow. It can be easily changed whether to use it or to detect that the current stops flowing.
  • the image analysis unit 7 processes the moving image captured by the imaging unit 6, and the first frame when the image of the light emitting unit 14 portion of the operation detection unit 1 ⁇ / b> A changes from the state before the electromagnetic relay 5 operates. The number is recorded, and the second frame number when the image of the light emitting unit 14 of the motion detecting unit 2A changes is recorded. In addition, the image analysis unit 7 processes the moving image captured by the imaging unit 6, and the third image when the image of the light emitting unit 14 of the operation detection unit 1 ⁇ / b> B changes from the state before the electromagnetic relay 5 operates. And the fourth frame number when the image of the light emitting unit 14 of the motion detecting unit 2B changes is recorded.
  • the diagnosis unit 8 Based on the difference between the first frame number and the second frame number recorded by the image analysis unit 7 and the frame rate, the diagnosis unit 8 starts the second wiring after the current starts to flow in the wiring 52 which is the first wiring.
  • the contact-on operation time until the current starts to flow through the wiring 54 is calculated, and compared with the management value of the contact-on operation time, if the management value is exceeded, the electromagnetic relay 5 is diagnosed as abnormal. Further, the diagnosis unit 8 determines that the current does not flow through the wiring 52 which is the first wiring from the difference between the third frame number and the fourth frame number recorded by the image analysis unit 7 and the frame rate.
  • the contact-off operation time until no current flows through the wiring 54, which is the second wiring, is calculated, and compared with the management value of the contact-off operation time, the electromagnetic relay 5 is diagnosed as abnormal when the management value is exceeded. .
  • the electromagnetic relay diagnostic apparatus 100 includes a trigger generation unit 9 that outputs a trigger signal when the imaging unit 6 starts imaging, and a switch drive unit 11 that closes the operation start switch 10 when the trigger signal is received. Transfer of the trigger signal between the trigger generation unit 9 and the switch drive unit 11 is performed by wireless communication.
  • the electromagnetic relay diagnostic apparatus 100 can easily measure the contact ON operation time and the contact OFF operation time of the electromagnetic relay 5 to diagnose the presence or absence of an abnormality in the electromagnetic relay 5.
  • the electromagnetic relay 5 itself is diagnosed as compared with the inspection method in which each electromagnetic relay in the control circuit is judged to be normal. This improves the reliability of inspection work.
  • FIG. FIG. 4 is a diagram showing the configuration of the electromagnetic relay diagnostic apparatus according to Embodiment 2 of the present invention.
  • the electromagnetic relay diagnostic apparatus 100 according to Embodiment 2 includes a split type current transformer instead of the Rogowski coil.
  • the electromagnetic relay diagnostic apparatus 100 according to the second embodiment includes split-type current transformers 16 ⁇ / b> A and 16 ⁇ / b> B that are electrically insulated and attached to the wiring 52 connected to the coil 51 of the electromagnetic relay 5, and the contact 53 of the electromagnetic relay 5.
  • An operation for detecting the operation of the electromagnetic relay 5 based on the output voltages of the split-type current transformers 17A, 17B and the split-type current transformers 16A, 16B, 17A, 17B that are electrically insulated from the connected wiring 54.
  • Detectors 18A, 18B, 19A, 19B are provided.
  • the imaging unit 6, the image analysis unit 7, and the diagnosis unit 8 are the same as those in the first embodiment.
  • the operation detector 18 ⁇ / b> A is a first operation detector that detects that a current has started to flow through the wiring 52.
  • the operation detection unit 18B is a second operation detection unit that detects that no current flows through the wiring 52.
  • the operation detection unit 19A is a third operation detection unit that detects that the energization state of the wiring 54 has changed.
  • the operation detection unit 19B is a fourth operation detection unit that detects that the change in the energization state of the wiring 54 has been eliminated.
  • the split-type current transformer 16A is a first split-type current transformer for detecting that a current has started to flow through the wiring 52.
  • the split-type current transformer 16B is a second split-type current transformer for detecting that no current flows through the wiring 52.
  • the split-type current transformer 17A is a third split-type current transformer for detecting that a current has started to flow through the wiring 54.
  • the split-type current transformer 17B is a fourth split-type current transformer for detecting that no current flows through the wiring 54.
  • the change in the energization state of the wiring 54 means that a current starts to flow through the wiring 54.
  • the fact that the change in the energization state of the wiring 54 is eliminated means that no current flows through the wiring 54.
  • FIG. 5 and 6 are diagrams illustrating the configuration of the operation detection unit of the electromagnetic relay diagnostic device according to the second embodiment.
  • FIG. 5 shows the configuration of an operation detection unit 18A that is a first operation detection unit and an operation detection unit 19A that is a third operation detection unit
  • FIG. 6 shows an operation detection unit 18B that is a second operation detection unit.
  • the operation detection units 18A, 18B, 19A, and 19B include a reference voltage generation circuit 12 that generates a reference voltage, and a resistor 21 that is connected to the comparator 13 in parallel with the divided current transformers 16A, 16B, 17A, and 17B.
  • the differential circuit 26 the comparator 13 that compares the output voltages of the divided current transformers 16A, 16B, 17A, and 17B with the reference voltage, and the output voltages of the divided current transformers 16A, 16B, 17A, and 17B become the reference voltage.
  • the light-emitting unit 14 that is turned on when it reaches, the reference voltage generation circuit 12, the comparator 13, and the battery 15 that supplies power to the light-emitting unit 14 are provided.
  • the connection state between the split-type current transformers 16A, 16B, 17A, and 17B and the comparator 13 is reversed in the part 19B.
  • Light emitting diodes can be applied to the light emitting units of the motion detectors 18A, 18B, 19A, 19B, but are not limited thereto.
  • the light emitting unit 14 of the operation detecting unit 18 ⁇ / b> A is a first light emitting unit that emits light when a current flows through the wiring 52.
  • the light emitting unit 14 of the operation detecting unit 18B is a second light emitting unit that emits light when no current flows through the wiring 52.
  • the light emitting unit 14 of the operation detecting unit 19 ⁇ / b> A is a third light emitting unit that emits light when a current flows through the wiring 54.
  • the light emitting unit 14 of the operation detecting unit 19B is a fourth light emitting unit that emits light when no current flows through the wiring 54.
  • the motion detectors 18A and 19A and the motion detectors 18B and 19B are different only in the connection state of the differentiation circuit 26 with respect to the comparator 13, so that they are used to detect that the current has started to flow or no current flows. It can be easily changed whether it is used to detect this.
  • the motion detectors 18A, 18B, 19A, and 19B have a waveform monitor terminal 20.
  • a waveform display device such as an oscilloscope
  • the waveform of the current flowing through the wirings 52 and 54 can be confirmed. Is possible.
  • the electromagnetic relay diagnostic apparatus 100 since the electromagnetic relay diagnostic apparatus 100 according to the second embodiment includes the split type current transformers 16A, 16B, 17A, and 17B, the current waveform that flows to the primary side is output to the secondary side according to the current transformation ratio. The Therefore, when a problem such as an operation delay of the electromagnetic relay 5 is found, the waveform monitor terminal 20 provided in the operation detectors 18A, 18B, 19A, 19B is checked for disturbance of the primary current waveform due to chattering of the operation start switch 10. It is possible to investigate the cause of the failure by checking using
  • FIG. FIG. 7 is a diagram showing the configuration of the electromagnetic relay diagnostic apparatus according to Embodiment 3 of the present invention.
  • the electromagnetic relay diagnostic apparatus 100 according to the third embodiment is different from the first embodiment in that it includes a storage unit 25 that accumulates data of contact ON operation time and contact OFF operation time.
  • the diagnosis unit 8 operates based on the operation time at the time of installation and past measurement and the operation time at the current measurement, in addition to the method of making a diagnosis by comparing the contact on operation time or the contact off operation time with each control value. Determine the trend of changes in time over time. For example, the diagnosis unit 8 obtains a change amount of the operation time per unit time by the least square method, and diagnoses that there is a sign of abnormality when the change amount of the operation time per unit time> the management value.
  • FIG. 8 is a flowchart showing an operation flow of the electromagnetic relay diagnostic apparatus according to the third embodiment.
  • the diagnosis unit 8 determines whether the contact-on operation time exceeds the management value. If the contact-on operation time exceeds the control value, Yes is made in step S1, and the process proceeds to step S5 to perform abnormality notification processing. If the contact-on operation time is equal to or less than the control value, No is determined in step S1, and the process proceeds to step S2.
  • step S ⁇ b> 2 the diagnosis unit 8 determines whether the contact-off operation time exceeds the management value. If the contact-off operation time exceeds the control value, the result of step S2 is Yes, and the process proceeds to step S5 to notify the abnormality. If the contact-off operation time is less than or equal to the control value, the result in step S2 is No, and the process proceeds to step S3.
  • step S ⁇ b> 3 the diagnosis unit 8 uses the operating time at the past measurement stored in the storage unit 25 and the operating time at the current measurement to tend to change the contact ON operation time and the contact OFF operation time with time. Ask for. That is, in step S3, the diagnosis unit 8 obtains a change amount per unit time of the contact ON operation time and the contact OFF operation time. In step S4, the diagnosis unit 8 determines whether the amount of change per unit time of the contact ON operation time or the contact OFF operation time exceeds the management value. If the amount of change per unit time of the contact ON operation time or the contact OFF operation time exceeds the control value, the result in Step S4 is Yes, and the process proceeds to Step S5 to notify the abnormality. If the change amount per unit time of the contact ON operation time or the contact OFF operation time is equal to or less than the control value, No is determined in step S4, and the process proceeds to step S6 to perform processing for notifying that there is no abnormality.
  • step S4 when the determination in step S4 is Yes and the process proceeds to step S5, the content of the notification may be different from the case where the determination in step S1 or step S2 is Yes and the process proceeds to step S5. That is, if the determination in step S4 is Yes and the process proceeds to step S5, the contact on operation time or the contact off operation time is less than the control value at the time of the determination. May be warned that it is expected to exceed the control value in the future.
  • the electromagnetic relay diagnostic apparatus 100 can diagnose that there is a sign of abnormality even when the operation time of the electromagnetic relay 5 is within a normal range. Therefore, in the case of a diagnosis result with a sign of occurrence of abnormality, the user can perform a detailed investigation before a failure occurs or perform maintenance to avoid the occurrence of the failure.
  • FIG. 9 is a diagram showing the configuration of the electromagnetic relay diagnostic apparatus according to Embodiment 4 of the present invention.
  • the electromagnetic relay diagnostic apparatus 100 according to the fourth embodiment includes the operation detectors 22A, 22B, 23A, 23B, and the like in all the electromagnetic relays 61, 62 in the control circuit 60 that performs control by combining a plurality of electromagnetic relays 61, 62. 24A and 24B are attached.
  • the diagnosis unit 8 diagnoses the contact ON operation time and the contact OFF operation time of each electromagnetic relay 61, 62, and measures the operation order of each electromagnetic relay 61, 62 and the operation time of the control sequence of the control circuit 60,
  • the control circuit 60 is diagnosed.
  • the control circuit 60 includes two control sequences.
  • One of the control sequences of the control circuit 60 is that when the operation start switch 10 is closed, a current flows to the coil 51 through the wiring 52 to operate the electromagnetic relay 61, the contact 53 is closed to flow a current to the wiring 54, and to the coil 55.
  • the electromagnetic relay 62 is operated by the current flowing, the contact 56 is closed and the current flows through the wiring 57, the motor 58 is operated, and the disconnector 59 is driven.
  • the operation start switch 10 when the operation start switch 10 is opened, no current flows through the coil 51 connected to the wiring 52, the electromagnetic relay 61 is restored, the contact 53 is opened, and no current flows through the wiring 54.
  • the current stops flowing through the coil 55 connected to the wiring 54, the electromagnetic relay 62 is restored, the contact 56 opens, the current stops flowing through the wiring 57, the motor 58 stops, and the disconnector 59 stops.
  • the operation detection unit 22A is a first operation detection unit that detects that a current starts to flow through the wiring 52, and the operation detection unit 22B includes the wiring 52
  • the motion detection unit 23A is a third motion detection unit that detects that the energization state of the wiring 54 has changed, and the motion detection unit 23B. These are the 4th operation
  • the operation detection unit 23A is a first operation detection unit that detects that a current has started to flow through the wiring 54, and the operation detection unit 23B includes the wiring 54
  • the operation detector 24A is a third operation detector that detects that the energization state of the wiring 57 has changed, and the operation detector 24B.
  • the change in the energization state of the wiring 54 is that a current starts to flow through the wiring 54.
  • the fact that the change in the energization state of the wiring 54 is eliminated means that no current flows through the wiring 54.
  • the change in the energization state of the wiring 57 means that a current starts to flow through the wiring 57.
  • the fact that the change in the energization state of the wiring 57 is eliminated means that no current flows through the wiring 57.
  • the change in the energization state of the wiring 57 means that no current flows through the wiring 57. That the change in the energization state of the wiring 57 is eliminated means that a current starts to flow through the wiring 57.
  • the electromagnetic relay diagnostic apparatus 100 can measure the operation time of the plurality of electromagnetic relays 61 and 62 in one measurement operation as long as it exists within the imaging range of the imaging unit 6.
  • the operation time of 60 control sequences can be diagnosed.
  • FIG. 10 is a diagram illustrating the operation of the electromagnetic relay diagnostic device according to the fourth embodiment.
  • the diagnosis unit 8 the operation time t1 of the control sequence from when the light emitting unit 14 of the operation detecting unit 22A is turned on to when the light emitting unit 14 of the operation detecting unit 24A is turned on and the light emitting unit 14 of the operation detecting unit 22B are turned on.
  • the control circuit 60 is diagnosed based on whether or not the operation time t2 of the control sequence from when the light emitting unit 14 of the operation detecting unit 24B is turned on exceeds the management value.
  • the operation time of the control sequence of the control circuit 60 When the operation time of the control sequence of the control circuit 60 is abnormal, which one of the electromagnetic relays 61 and 62 is affected by the operation time delay even if the operation time of each electromagnetic relay 61 and 62 is within the normal range.
  • the operation time of the control sequence of the control circuit 60 can be kept within the normal range by exchanging the electromagnetic relays 61 and 62 that are capable of discriminating and causing the abnormality.
  • the function of the diagnosis unit 8 according to the first to fourth embodiments is realized by a processing circuit.
  • the processing circuit may be dedicated hardware or an arithmetic device that executes a program stored in the storage device.
  • FIG. 11 is a diagram illustrating a configuration in which the function of the diagnosis unit according to the first to fourth embodiments is realized by hardware.
  • the processing circuit 29 incorporates a logic circuit 29 a that realizes the function of the diagnosis unit 8.
  • An example of hardware that implements the processing circuit 29 is a microcontroller.
  • the function of the diagnosis unit 8 is realized by software, firmware, or a combination of software and firmware.
  • FIG. 12 is a diagram illustrating a configuration in which the function of the diagnosis unit according to the first to fourth embodiments is realized by software.
  • the processing circuit 29 includes an arithmetic device 291 that executes the program 29b, a random access memory 292 that the arithmetic device 291 uses as a work area, and a storage device 293 that stores the program 29b.
  • the function of the diagnosis unit 8 is realized by the arithmetic device 291 developing and executing the program 29b stored in the storage device 293 on the random access memory 292.
  • Software or firmware is written in a program language and stored in the storage device 293.
  • the arithmetic unit 291 can be exemplified by a central processing unit, but is not limited thereto.
  • the processing circuit 29 realizes the function of the diagnosis unit 8 by reading and executing the program 29b stored in the storage device 293. It can be said that the program 29b causes the computer to execute a procedure and a method for realizing the function of the diagnosis unit 8.
  • processing circuit 29 may be realized by dedicated hardware, and part of it may be realized by software or firmware.
  • the processing circuit 29 can realize the above-described functions by hardware, software, firmware, or a combination thereof.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Relay Circuits (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

電磁継電器診断装置(100)は、電磁継電器(5)のコイル(51)に通じる配線(52)に電流が流れると発光する第1の発光部を備えた動作検出部(1A)と、配線(52)に電流が流れなくなると発光する第2の発光部を備えた動作検出部(1B)と、電磁継電器(5)の接点(53)に通じる配線(54)の通電状態の変化を検出すると発光する第3の発光部を備えた動作検出部(2A)と、配線(54)の通電状態の変化が解消したことを検出すると発光する第4の発光部を備えた動作検出部(2B)と、動作検出部(1A,1B,2A,2B)の動画像を撮像する撮像部(6)と、動画像を用いて、接点オン動作時間及び接点オフ動作時間を算出し、電磁継電器(5)に異常が発生しているか否かを診断する診断部(8)とを有する。

Description

電磁継電器診断装置
 本発明は、電磁継電器の動作時間を測定して異常を診断する電磁継電器診断装置に関するものである。
 ガス絶縁機器の遮断器及び断路器の制御を行う制御回路には、電磁継電器が複数使用されており、複数の電磁継電器を組み合わせて制御を行っている。電磁継電器のいずれかで故障又は動作遅延が生じると、制御回路は正規の制御動作ができずに、ガス絶縁機器の制御不良を招く場合がある。
 そのため、定期点検時に、各機器を動作させ、機器動作が管理範囲内であれば、制御回路の各電磁継電器も正常と判断しているが、この方法では電磁継電器そのものを点検していないため、点検直後に動作不良が発生する可能性がある。
 電磁継電器の機構部の固渋といった経年劣化要因で生じる不良は、電磁継電器のコイルに通じる配線に電流が流れ始めてから電磁継電器の接点に通じる配線の通電状態が変化するまでの時間である接点オン動作時間及び電磁継電器のコイルに通じる配線に電流が流れ始めてから電磁継電器の接点に通じる配線の通電状態の変化が解消するまでの時間である接点オフ動作時間の測定を行い診断することが有効であるが、測定器の取付け作業に時間を要するため、簡易な測定装置の提供が必要であった。
 特許文献1には、高速シャッター付カメラで、リレー制御装置内の動作表示灯付リレーを撮影し、動作表示灯付リレーの点灯状態に基づいて、制御装置の制御状態を観測する装置が開示されている。
特開平8-205128号公報
 特許文献1に開示される発明は、動作表示灯付リレーが動作する状態であるか動作しない状態であるかを認識する機能のみであり、動作の遅れ具合を検出する手段を有していない。したがって、特許文献1に開示される発明は、電磁継電器の経年劣化による不良の有無を診断するために有効な接点オン動作時間及び接点オフ動作時間の測定を行うことはできなかった。
 本発明は、上記に鑑みてなされたものであって、接点オン動作時間及び接点オフ動作時間を測定できる電磁継電器診断装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、電磁継電器のコイルに通じる第1の配線に電流が流れると発光する第1の発光部を備えた第1の動作検出部と、第1の配線に電流が流れなくなると発光する第2の発光部を備えた第2の動作検出部と、電磁継電器の接点に通じる第2の配線の通電状態の変化を検出すると発光する第3の発光部を備えた第3の動作検出部と、第2の配線の通電状態の変化が解消したことを検出すると発光する第4の発光部を備えた第4の動作検出部とを有する。本発明は、第1の動作検出部、第2の動作検出部、第3の動作検出部及び第4の動作検出部の動画像を撮像する撮像部と、動画像を用いて、第1の配線に電流が流れ始めてから第2の配線の通電状態が変化するまでの接点オン動作時間、及び第1の配線に電流が流れなくなってから第2の配線の通電状態の変化が解消されるまでの接点オフ動作時間を算出し、算出した接点オン動作時間及び接点オフ動作時間に基づいて、電磁継電器に異常が発生しているか否かを診断する診断部とを有する。
 本発明によれば、接点オン動作時間及び接点オフ動作時間を測定できるという効果を奏する。
本発明の実施の形態1に係る電磁継電器診断装置の構成を示す図 実施の形態1に係る電磁継電器診断装置の動作検出部の構成を示す図 実施の形態1に係る電磁継電器診断装置の動作検出部の構成を示す図 本発明の実施の形態2に係る電磁継電器診断装置の構成を示す図 実施の形態2に係る電磁継電器診断装置の動作検出部の構成を示す図 実施の形態2に係る電磁継電器診断装置の動作検出部の構成を示す図 本発明の実施の形態3に係る電磁継電器診断装置の構成を示す図 実施の形態3に係る電磁継電器診断装置の動作の流れを示すフローチャート 本発明の実施の形態4に係る電磁継電器診断装置の構成を示す図 実施の形態4に係る電磁継電器診断装置の動作を示す図 実施の形態1から実施の形態4に係る診断部の機能をハードウェアで実現した構成を示す図 実施の形態1から実施の形態4に係る診断部の機能をソフトウェアで実現した構成を示す図
 以下に、本発明の実施の形態に係る電磁継電器診断装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1に係る電磁継電器診断装置の構成を示す図である。実施の形態1に係る電磁継電器診断装置100の診断対象となる電磁継電器5は、動作開始スイッチ10が閉じると、第1の配線である配線52を通じてコイル51に電流が流れて動作し、接点53を閉じて第2の配線である配線54に電流を流す。実施の形態1に係る電磁継電器診断装置100は、電磁継電器5のコイル51に接続される配線52に電気的に絶縁して取り付けるロゴスキーコイル3A,3Bと、電磁継電器5の接点53に接続される配線54に電気的に絶縁して取り付けるロゴスキーコイル4A,4Bと、ロゴスキーコイル3A,3B,4A,4Bの出力電圧に基づいて電磁継電器5の動作を検出する動作検出部1A,1B,2A,2Bと、動作検出部1A,1B,2A,2Bの動画像を撮像する撮像部6とを備える。また、電磁継電器診断装置100は、撮像部6が撮像した動画像を処理する画像分析部7と、画像分析部7が処理した動画像に基づいて電磁継電器5が異常であるか否かを診断する診断部8とを備える。動作検出部1Aは、配線52に電流が流れ始めたことを検出する第1の動作検出部である。動作検出部1Bは、配線52に電流が流れなくなったことを検出する第2の動作検出部である。動作検出部2Aは、配線54の通電状態が変化したことを検出する第3の動作検出部である。動作検出部2Bは、配線54の通電状態の変化が解消されたことを検出する第4の動作検出部である。ロゴスキーコイル3Aは、配線52に電流が流れ始めたことを検出するための第1のロゴスキーコイルである。ロゴスキーコイル3Bは、配線52に電流が流れなくなったことを検出するための第2のロゴスキーコイルである。ロゴスキーコイル4Aは、配線54に電流が流れ始めたことを検出するための第3のロゴスキーコイルである。ロゴスキーコイル4Bは、配線54に電流が流れなくなったことを検出するための第4のロゴスキーコイルである。
 実施の形態1において、配線54の通電状態の変化とは、配線54に電流が流れ始めることである。配線54の通電状態の変化が解消されるとは、配線54に電流が流れなくなることである。なお、コイル51に電流が流れると接点53が開いて配線54に電流が流れなくなる電磁継電器5の場合には、配線54の通電状態の変化とは、配線54に電流が流れなくなることであり、配線54の通電状態の変化が解消されるとは、配線54に電流が流れ始めることである。
 図2及び図3は、実施の形態1に係る電磁継電器診断装置の動作検出部の構成を示す図である。図2は、第1の動作検出部である動作検出部1A及び第3の動作検出部である動作検出部2Aの構成を示し、図3は、第2の動作検出部である動作検出部1B及び第4の動作検出部である動作検出部2Bの構成を示す。動作検出部1A,1B,2A,2Bは、基準電圧を生成する基準電圧生成回路12と、ロゴスキーコイル3A,3B,4A,4Bの出力電圧を基準電圧と比較するコンパレータ13と、ロゴスキーコイル3A,3B,4A,4Bの出力電圧が基準電圧に達したら点灯する発光部14と、基準電圧生成回路12、コンパレータ13及び発光部14に電力を供給する電池15とを備える。第1の動作検出部である動作検出部1A及び第3の動作検出部である動作検出部2Aと、第2の動作検出部である動作検出部1B及び第4の動作検出部である動作検出部2Bとで、ロゴスキーコイル3A,3B,4A,4Bとコンパレータ13との接続状態が逆になっている。動作検出部1A,1B,2A,2Bの発光部には、発光ダイオードを適用可能であるが、これに限定はされない。動作検出部1Aの発光部14は、配線52に電流が流れると発光する第1の発光部である。動作検出部1Bの発光部14は、配線52に電流が流れなくなると発光する第2の発光部である。動作検出部2Aの発光部14は、配線54に電流が流れると発光する第3の発光部である。動作検出部2Bの発光部14は、配線54に電流が流れなくなると発光する第4の発光部である。
 動作検出部1A,2Aと動作検出部1B,2Bとは、コンパレータ13に対するロゴスキーコイル3A,3B,4A,4Bの接続状態が異なるだけであるので、電流が流れ始めたことを検出するために用いるか、電流が流れなくなったことを検出するために用いるかは、容易に変更可能である。
 画像分析部7は、撮像部6が撮像した動画像を処理し、動作検出部1Aの発光部14の部分の画像が、電磁継電器5が動作する前の状態から変化した時の第1のフレーム番号を記録するとともに、動作検出部2Aの発光部14の部分の画像が変化した時の第2のフレーム番号を記録する。また、画像分析部7は、撮像部6が撮像した動画像を処理し、動作検出部1Bの発光部14の部分の画像が、電磁継電器5が動作する前の状態から変化した時の第3のフレーム番号を記録するとともに、動作検出部2Bの発光部14の部分の画像が変化した時の第4のフレーム番号を記録する。
 診断部8は、画像分析部7が記録した第1のフレーム番号と第2のフレーム番号との差とフレームレートとから、第1の配線である配線52に電流が流れ始めてから第2の配線である配線54に電流が流れ始めるまでの接点オン動作時間を算出し、接点オン動作時間の管理値と比較して、管理値を上回る場合に電磁継電器5が異常であると診断する。また、診断部8は、画像分析部7が記録した第3のフレーム番号と第4のフレーム番号との差とフレームレートとから、第1の配線である配線52に電流が流れなくなってから第2の配線である配線54に電流が流れなくなるまでの接点オフ動作時間を算出し、接点オフ動作時間の管理値と比較して、管理値を上回る場合に電磁継電器5が異常であると診断する。
 電磁継電器診断装置100は、撮像部6が撮像を開始するとトリガ信号を出力するトリガ発生部9と、トリガ信号を受信すると、動作開始スイッチ10を閉じるスイッチ駆動部11とを有する。トリガ発生部9とスイッチ駆動部11との間でのトリガ信号の授受は、無線通信によって行われる。
 実施の形態1に係る電磁継電器診断装置100は、電磁継電器5の接点オン動作時間及び接点オフ動作時間を簡易に測定して電磁継電器5の異常の有無を診断できる。また、定期点検時に制御対象の機器を動作させ、機器動作が管理範囲内であれば、制御回路の各電磁継電器も正常と判断していた点検方法に比べ、電磁継電器5そのものの診断を行うため、点検作業の信頼性が向上する。
実施の形態2.
 図4は、本発明の実施の形態2に係る電磁継電器診断装置の構成を示す図である。実施の形態2に係る電磁継電器診断装置100は、ロゴスキーコイルの代わりに分割型変流器を備えている。実施の形態2に係る電磁継電器診断装置100は、電磁継電器5のコイル51に接続される配線52に電気的に絶縁して取り付ける分割型変流器16A,16Bと、電磁継電器5の接点53に接続される配線54に電気的に絶縁して取り付ける分割型変流器17A,17Bと、分割型変流器16A,16B,17A,17Bの出力電圧に基づいて電磁継電器5の動作を検出する動作検出部18A,18B,19A,19Bとを備える。撮像部6、画像分析部7及び診断部8は、実施の形態1と同様である。動作検出部18Aは、配線52に電流が流れ始めたことを検出する第1の動作検出部である。動作検出部18Bは、配線52に電流が流れなくなったことを検出する第2の動作検出部である。動作検出部19Aは、配線54の通電状態が変化したことを検出する第3の動作検出部である。動作検出部19Bは、配線54の通電状態の変化が解消されたことを検出する第4の動作検出部である。分割型変流器16Aは、配線52に電流が流れ始めたことを検出するための第1の分割型変流器である。分割型変流器16Bは、配線52に電流が流れなくなったことを検出するための第2の分割型変流器である。分割型変流器17Aは、配線54に電流が流れ始めたことを検出するための第3の分割型変流器である。分割型変流器17Bは、配線54に電流が流れなくなったことを検出するための第4の分割型変流器である。
 実施の形態2において、配線54の通電状態の変化とは、配線54に電流が流れ始めることである。配線54の通電状態の変化が解消されるとは、配線54に電流が流れなくなることである。なお、コイル51に電流が流れると接点53が開いて配線54に電流が流れなくなる電磁継電器5の場合には、配線54の通電状態の変化とは、配線54に電流が流れなくなることであり、配線54の通電状態の変化が解消されるとは、配線54に電流が流れ始めることである。
 図5及び図6は、実施の形態2に係る電磁継電器診断装置の動作検出部の構成を示す図である。図5は、第1の動作検出部である動作検出部18A及び第3の動作検出部である動作検出部19Aの構成を示し、図6は、第2の動作検出部である動作検出部18B及び第4の動作検出部である動作検出部19Bの構成を示す。動作検出部18A,18B,19A,19Bは、基準電圧を生成する基準電圧生成回路12と、コンパレータ13に対して分割型変流器16A,16B,17A,17Bと並列に接続される抵抗21と、微分回路26と、分割型変流器16A,16B,17A,17Bの出力電圧を基準電圧と比較するコンパレータ13と、分割型変流器16A,16B,17A,17Bの出力電圧が基準電圧に達したら点灯する発光部14と、基準電圧生成回路12、コンパレータ13及び発光部14に電力を供給する電池15とを備える。
 第1の動作検出部である動作検出部18A及び第3の動作検出部である動作検出部19Aと、第2の動作検出部である動作検出部18B及び第4の動作検出部である動作検出部19Bとで、分割型変流器16A,16B,17A,17Bとコンパレータ13との接続状態が逆になっている。動作検出部18A,18B,19A,19Bの発光部には、発光ダイオードを適用可能であるが、これに限定はされない。動作検出部18Aの発光部14は、配線52に電流が流れると発光する第1の発光部である。動作検出部18Bの発光部14は、配線52に電流が流れなくなると発光する第2の発光部である。動作検出部19Aの発光部14は、配線54に電流が流れると発光する第3の発光部である。動作検出部19Bの発光部14は、配線54に電流が流れなくなると発光する第4の発光部である。
 動作検出部18A,19Aと動作検出部18B,19Bとは、コンパレータ13に対する微分回路26の接続状態が異なるだけであるので、電流が流れ始めたことを検出するために用いるか、電流が流れなくなったことを検出するために用いるかは、容易に変更可能である。
 動作検出部18A,18B,19A,19Bは、波形モニタ端子20を備えており、波形モニタ端子20にオシロスコープのような波形表示装置を接続することで、配線52,54を流れる電流の波形を確認可能である。
 実施の形態2に係る電磁継電器診断装置100は、分割型変流器16A,16B,17A,17Bを備えているため、一次側に流れた電流波形が変流比に従って、二次側に出力される。したがって、電磁継電器5の動作遅延といった不具合が見つかった場合に、動作開始スイッチ10のチャタリングによる一次電流波形の乱れが無いかを、動作検出部18A,18B,19A,19Bに設けた波形モニタ端子20を用いて確認することで、不具合の原因を調査することが可能である。
実施の形態3.
 図7は、本発明の実施の形態3に係る電磁継電器診断装置の構成を示す図である。実施の形態3に係る電磁継電器診断装置100は、接点オン動作時間及び接点オフ動作時間のデータを蓄積する記憶部25を備える点で実施の形態1と相違する。診断部8は、接点オン動作時間又は接点オフ動作時間を各管理値と比較して診断する方法に加え、据付時及び過去測定時の動作時間と今回測定時の動作時間とに基づいて、動作時間の経時的な変化の傾向を求める。例えば、診断部8は、最小2乗法によって単位時間当たりの動作時間の変化量を求め、単位時間当たりの動作時間の変化量>管理値の場合、異常発生の兆候有りと診断する。
 図8は、実施の形態3に係る電磁継電器診断装置の動作の流れを示すフローチャートである。ステップS1において、診断部8は、接点オン動作時間が管理値を上回るかを判断する。接点オン動作時間が管理値を上回れば、ステップS1でYesとなり、ステップS5に進んで異常通知処理を行う。接点オン動作時間が管理値以下であれば、ステップS1でNoとなり、ステップS2に進む。ステップS2において、診断部8は、接点オフ動作時間が管理値を上回るかを判断する。接点オフ動作時間が管理値を上回れば、ステップS2でYesとなり、ステップS5に進んで異常を通知する処理を行う。接点オフ動作時間が管理値以下であれば、ステップS2でNoとなり、ステップS3に進む。
 ステップS3において、診断部8は、記憶部25に記憶されている過去測定時の動作時間と、今回測定時の動作時間とから、接点オン動作時間及び接点オフ動作時間の経時的な変化の傾向を求める。すなわち、診断部8は、ステップS3において、接点オン動作時間及び接点オフ動作時間の単位時間当たりの変化量を求める。ステップS4において、診断部8は、接点オン動作時間又は接点オフ動作時間の単位時間当たりの変化量が管理値を上回るかを判断する。接点オン動作時間又は接点オフ動作時間の単位時間当たりの変化量が管理値を上回れば、ステップS4でYesとなり、ステップS5に進んで異常を通知する処理を行う。接点オン動作時間又は接点オフ動作時間の単位時間当たりの変化量が管理値以下であれば、ステップS4でNoとなり、ステップS6に進んで、異常がないことを通知する処理を行う。
 なお、ステップS4の判定でYesとなってステップS5に進んだ場合は、ステップS1又はステップS2の判定でYesとなってステップS5に進んだ場合とでは、通知の内容が異なっても良い。すなわち、ステップS4の判定でYesとなってステップS5に進んだ場合は、判定の時点では接点オン動作時間及び接点オフ動作時間は管理値以下であることから、接点オン動作時間又は接点オフ動作時間が将来的に管理値を上回ることが見込まれることを警告してもよい。
 実施の形態3に係る電磁継電器診断装置100は、電磁継電器5の動作時間が正常範囲内であっても、異常発生の兆候があることを診断できる。したがって、ユーザは、異常発生の兆候がある診断結果の場合に、不具合が発生する前に詳細調査を行ったり、不具合発生を回避する保守を行ったりすることが実施できる。
実施の形態4.
 図9は、本発明の実施の形態4に係る電磁継電器診断装置の構成を示す図である。実施の形態4に係る電磁継電器診断装置100は、複数の電磁継電器61,62を組み合わせて制御を行う制御回路60において、全ての電磁継電器61,62に動作検出部22A,22B,23A,23B,24A,24Bが取付けられる。診断部8は、各電磁継電器61,62の接点オン動作時間及び接点オフ動作時間を診断するとともに、各電磁継電器61,62の動作順番と制御回路60の制御シーケンスの動作時間とを測定し、制御回路60を診断する。実施の形態4において、制御回路60は、二つの制御シーケンスを備える。制御回路60の制御シーケンスの一方は、動作開始スイッチ10が閉じると、配線52を通じてコイル51に電流が流れて電磁継電器61が動作し、接点53が閉じて配線54に電流を流れ、コイル55に電流が流れて電磁継電器62が動作し、接点56が閉じて配線57に電流が流れ、モータ58が動作して断路器59が駆動されるシーケンスである。制御回路60の制御シーケンスの他方は、動作開始スイッチ10が開くと、配線52に通じるコイル51に電流が流れなくなって電磁継電器61が復帰し、接点53が開いて配線54に電流が流れなくなり、配線54に通じるコイル55に電流が流れなくなって電磁継電器62が復帰し、接点56が開いて配線57に電流が流れなくなり、モータ58が止まって断路器59が停止するシーケンスである。
 なお、診断対象が電磁継電器61単体である場合には、動作検出部22Aは、配線52に電流が流れ始めたことを検出する第1の動作検出部であり、動作検出部22Bは、配線52に電流が流れなくなったことを検出する第2の動作検出部であり、動作検出部23Aは、配線54の通電状態が変化したことを検出する第3の動作検出部であり、動作検出部23Bは、配線54の通電状態の変化が解消されたことを検出する第4の動作検出部である。一方、診断対象が電磁継電器62単体である場合には、動作検出部23Aは、配線54に電流が流れ始めたことを検出する第1の動作検出部であり、動作検出部23Bは、配線54に電流が流れなくなったことを検出する第2の動作検出部であり、動作検出部24Aは、配線57の通電状態が変化したことを検出する第3の動作検出部であり、動作検出部24Bは、配線57の通電状態の変化が解消されたことを検出する第4の動作検出部である。
 実施の形態4において、配線54の通電状態の変化とは、配線54に電流が流れ始めることである。配線54の通電状態の変化が解消されるとは、配線54に電流が流れなくなることである。なお、コイル51に電流が流れると接点53が開いて配線54に電流が流れなくなる電磁継電器61の場合には、配線54の通電状態の変化とは、配線54に電流が流れなくなることであり、配線54の通電状態の変化が解消されるとは、配線54に電流が流れ始めることである。
 実施の形態4において、配線57の通電状態の変化とは、配線57に電流が流れ始めることである。配線57の通電状態の変化が解消されるとは、配線57に電流が流れなくなることである。なお、コイル55に電流が流れると接点56が開いて配線57に電流が流れなくなる電磁継電器62の場合には、配線57の通電状態の変化とは、配線57に電流が流れなくなることであり、配線57の通電状態の変化が解消されるとは、配線57に電流が流れ始めることである。
 実施の形態4に係る電磁継電器診断装置100は、撮像部6の撮影範囲内に存在すれば、1回の測定動作で複数の電磁継電器61,62の動作時間を測定することができ、制御回路60の制御シーケンスの動作時間の診断が行える。図10は、実施の形態4に係る電磁継電器診断装置の動作を示す図である。診断部8は、動作検出部22Aの発光部14が点灯してから動作検出部24Aの発光部14が点灯するまでの制御シーケンスの動作時間t1及び動作検出部22Bの発光部14が点灯してから動作検出部24Bの発光部14が点灯するまでの制御シーケンスの動作時間t2が、それぞれ管理値を上回るか否かに基づいて、制御回路60を診断する。
 制御回路60の制御シーケンスの動作時間が異常の場合、各電磁継電器61,62の動作時間は正常範囲内であっても、電磁継電器61,62のうちのどちらの動作時間遅れが影響しているか判別することができ、異常原因となっている電磁継電器61,62を交換することで、制御回路60の制御シーケンスの動作時間を正常範囲内に納めることができる。
 上記実施の形態1から実施の形態4に係る診断部8の機能は、処理回路により実現される。処理回路は、専用のハードウェアであっても、記憶装置に格納されるプログラムを実行する演算装置であってもよい。
 処理回路が専用のハードウェアである場合、処理回路は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、又はこれらを組み合わせたものが該当する。図11は、実施の形態1から実施の形態4に係る診断部の機能をハードウェアで実現した構成を示す図である。処理回路29には、診断部8の機能を実現する論理回路29aが組み込まれている。処理回路29を実現するハードウェアには、マイクロコントローラを例示できる。
 処理回路29が演算装置の場合、診断部8の機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。
 図12は、実施の形態1から実施の形態4に係る診断部の機能をソフトウェアで実現した構成を示す図である。処理回路29は、プログラム29bを実行する演算装置291と、演算装置291がワークエリアに用いるランダムアクセスメモリ292と、プログラム29bを記憶する記憶装置293を有する。記憶装置293に記憶されているプログラム29bを演算装置291がランダムアクセスメモリ292上に展開し、実行することにより、診断部8の機能が実現される。ソフトウェア又はファームウェアはプログラム言語で記述され、記憶装置293に格納される。演算装置291は、中央処理装置を例示できるがこれに限定はされない。
 処理回路29は、記憶装置293に記憶されたプログラム29bを読み出して実行することにより、診断部8の機能を実現する。プログラム29bは、診断部8の機能を実現する手順及び方法をコンピュータに実行させるものであるとも言える。
 なお、処理回路29は、一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。
 このように、処理回路29は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、上述の各機能を実現することができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1A,1B,2A,2B,18A,18B,19A,19B,22A,22B,23A,23B,24A,24B 動作検出部、3A,3B,4A,4B ロゴスキーコイル、5,61,62 電磁継電器、6 撮像部、7 画像分析部、8 診断部、9 トリガ発生部、10 動作開始スイッチ、11 スイッチ駆動部、12 基準電圧生成回路、13 コンパレータ、14 発光部、15 電池、16A,16B,17A,17B 分割型変流器、20 波形モニタ端子、21 抵抗、25 記憶部、26 微分回路、29 処理回路、29a 論理回路、29b プログラム、51,55 コイル、52,54,57 配線、53,56 接点、58 モータ、59 断路器、60 制御回路、100 電磁継電器診断装置、291 演算装置、292 ランダムアクセスメモリ、293 記憶装置。

Claims (7)

  1.  電磁継電器のコイルに通じる第1の配線に電流が流れると発光する第1の発光部を備えた第1の動作検出部と、
     前記第1の配線に電流が流れなくなると発光する第2の発光部を備えた第2の動作検出部と、
     前記電磁継電器の接点に通じる第2の配線の通電状態の変化を検出すると発光する第3の発光部を備えた第3の動作検出部と、
     前記第2の配線の通電状態の変化が解消したことを検出すると発光する第4の発光部を備えた第4の動作検出部と、
     前記第1の動作検出部、前記第2の動作検出部、前記第3の動作検出部及び前記第4の動作検出部の動画像を撮像する撮像部と、
     前記動画像を用いて、前記第1の配線に電流が流れ始めてから前記第2の配線の通電状態が変化するまでの接点オン動作時間、及び前記第1の配線に電流が流れなくなってから前記第2の配線の通電状態の変化が解消されるまでの接点オフ動作時間を算出し、算出した前記接点オン動作時間及び前記接点オフ動作時間に基づいて、前記電磁継電器に異常が発生しているか否かを診断する診断部とを有することを特徴とする電磁継電器診断装置。
  2.  前記診断部は、前記接点オン動作時間及び前記接点オフ動作時間の少なくとも一方が、管理値を上回る場合に、前記電磁継電器に異常が発生していると診断することを特徴とする請求項1に記載の電磁継電器診断装置。
  3.  前記診断部は、前記第1の発光部が発光した際の前記動画像のフレーム番号と前記第3の発光部が発光した際の前記動画像のフレーム番号との差と、フレームレートとから前記接点オン動作時間を算出し、
     前記第2の発光部が発光した際の前記動画像のフレーム番号と前記第4の発光部が発光した際の前記動画像のフレーム番号との差と、フレームレートとから前記接点オフ動作時間を算出することを特徴とする請求項1に記載の電磁継電器診断装置。
  4.  前記第1の動作検出部は、前記第1の配線に電流が流れ始めたことを検出するための第1のロゴスキーコイルを備え、
     前記第2の動作検出部は、前記第1の配線に電流が流れなくなったことを検出するための第2のロゴスキーコイルを備え、
     前記第3の動作検出部は、前記第2の配線の通電状態の変化を検出するための第3のロゴスキーコイルを備え、
     前記第4の動作検出部は、前記第2の配線の通電状態の変化が解消されたことを検出するための第4のロゴスキーコイルを備えることを特徴とする請求項1に記載の電磁継電器診断装置。
  5.  前記第1の動作検出部は、前記第1の配線に電流が流れ始めたことを検出するための第1の分割型変流器を備え、
     前記第2の動作検出部前記第1の配線に電流が流れなくなったことを検出するための第2の分割型変流器を備え、
     前記第3の動作検出部は、前記第2の配線の通電状態の変化を検出するための第3の分割型変流器を備え、
     前記第4の動作検出部は、前記第2の配線の通電状態の変化が解消されたことを検出するための第4の分割型変流器を備えることを特徴とする請求項1に記載の電磁継電器診断装置。
  6.  前記接点オン動作時間及び前記接点オフ動作時間の測定結果を記憶する記憶部を備え、
     前記診断部は、前記記憶部に記憶されている過去測定時の前記接点オン動作時間及び前記接点オフ動作時間と、今回測定時の前記接点オン動作時間及び前記接点オフ動作時間とから、前記接点オン動作時間及び前記接点オフ動作時間の経時的な増加量を求め、前記接点オン動作時間の経時的な増加量及び前記接点オフ動作時間の経時的な増加量の少なくとも一方が管理値を上回る場合に、前記電磁継電器に異常が発生していると診断することを特徴とする請求項1から5のいずれか1項に記載の電磁継電器診断装置。
  7.  前記診断部は、前記撮像部の撮像範囲内の複数の前記電磁継電器を含む制御回路の制御シーケンスの動作時間が、管理値を上回る場合に、前記制御回路に含まれる複数の前記電磁継電器の少なくともいずれかに異常が発生していると診断することを特徴とする請求項1から5のいずれか1項に記載の電磁継電器診断装置。
PCT/JP2018/004901 2018-02-13 2018-02-13 電磁継電器診断装置 WO2019159233A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/957,230 US11488797B2 (en) 2018-02-13 2018-02-13 Electromagnetic relay diagnostic device
PCT/JP2018/004901 WO2019159233A1 (ja) 2018-02-13 2018-02-13 電磁継電器診断装置
JP2018524297A JP6391899B1 (ja) 2018-02-13 2018-02-13 電磁継電器診断装置
EP18906385.2A EP3754687B1 (en) 2018-02-13 2018-02-13 Electromagnetic relay diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/004901 WO2019159233A1 (ja) 2018-02-13 2018-02-13 電磁継電器診断装置

Publications (1)

Publication Number Publication Date
WO2019159233A1 true WO2019159233A1 (ja) 2019-08-22

Family

ID=63579889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004901 WO2019159233A1 (ja) 2018-02-13 2018-02-13 電磁継電器診断装置

Country Status (4)

Country Link
US (1) US11488797B2 (ja)
EP (1) EP3754687B1 (ja)
JP (1) JP6391899B1 (ja)
WO (1) WO2019159233A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102402548B1 (ko) * 2021-11-15 2022-05-30 이에스피 주식회사 자동 감시 및 분석 구조의 전력 설비 보호 계통 진단 시스템

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113325306B (zh) * 2021-06-04 2022-11-04 广东电网有限责任公司 一种检测装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205128A (ja) 1995-01-25 1996-08-09 Nippon Steel Corp 制御シーケンス状態観測装置
JP2004220288A (ja) * 2003-01-14 2004-08-05 Isa Co Ltd 機器状態報知装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103872A (ja) * 1992-09-18 1994-04-15 Fujitsu Ltd 電磁継電器の接点異常検出方法及び電磁継電器
JP2002175751A (ja) * 2000-12-05 2002-06-21 Omron Corp リレー装置
EP2826053B1 (en) * 2012-03-12 2017-12-06 Eaton Corporation Relay including processor providing control and/or monitoring

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205128A (ja) 1995-01-25 1996-08-09 Nippon Steel Corp 制御シーケンス状態観測装置
JP2004220288A (ja) * 2003-01-14 2004-08-05 Isa Co Ltd 機器状態報知装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3754687A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102402548B1 (ko) * 2021-11-15 2022-05-30 이에스피 주식회사 자동 감시 및 분석 구조의 전력 설비 보호 계통 진단 시스템

Also Published As

Publication number Publication date
EP3754687B1 (en) 2022-02-23
US11488797B2 (en) 2022-11-01
EP3754687A4 (en) 2021-02-24
JPWO2019159233A1 (ja) 2020-02-27
US20200411266A1 (en) 2020-12-31
EP3754687A1 (en) 2020-12-23
JP6391899B1 (ja) 2018-09-19

Similar Documents

Publication Publication Date Title
US9910093B2 (en) Generator neutral ground monitoring device utilizing direct current component measurement and analysis
JP2008250594A (ja) 装置診断方法および装置診断用モジュールならびに装置診断用モジュールを実装した装置
JP4135494B2 (ja) 故障診断システム
US20130293237A1 (en) Test of a testing device for determining a voltage state of a high-voltage vehicle electrical system
JP6391899B1 (ja) 電磁継電器診断装置
TWI687647B (zh) 預測數據伺服器及x射線厚度測定系統
US20130173186A1 (en) Self-diagnostic apparatus and method for electric device
WO2019075612A1 (en) CIRCUIT BREAKER MONITORING METHOD AND APPARATUS AND INTERNET OF OBJECTS USING THE SAME
US7881430B2 (en) Automatic bus management
KR102025533B1 (ko) 변압기의 고장유형 자동 판별 장치
JP2009025141A (ja) リレー診断装置及び半導体試験装置
CN111366843A (zh) 一种断路器装置及分合闸检测方法和装置
JP2007288072A (ja) 負荷時タップ切換装置
KR102417253B1 (ko) 전력량계 고장 점검 조치 장치 및 방법
KR101239804B1 (ko) 제어봉제어계통 고장진단 장치 및 그 방법
EP3926771B1 (en) Switching equipment diagnostic device
EP2857851B1 (en) A device for diagnosing the condition of a fuse or a contact in a contactor and electromechanical assembly comprising such a diagnosing device
KR20160134551A (ko) 탑재형 전기 시스템을 모니터링하기 위한 방법
KR101722074B1 (ko) 전자파를 이용하여 배전반을 진단하는 배전반 진단 장치 및 방법
KR101669401B1 (ko) 검사기기 사전 경보시스템
WO2023171156A1 (ja) 異常検知装置および異常検知方法
KR20200028024A (ko) 예조 데이터 서버 및 x선 두께 측정 시스템
JP6400347B2 (ja) 検査装置
US11676477B2 (en) Fire alarm system
JP2018189495A (ja) 測定装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018524297

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018906385

Country of ref document: EP

Effective date: 20200914