WO2019158796A1 - Sistema portatil de paneles fotovoltaicos con estructura de seguimiento solar de 2 ejes y sistema de plegado para su almacenamiento y transporte - Google Patents

Sistema portatil de paneles fotovoltaicos con estructura de seguimiento solar de 2 ejes y sistema de plegado para su almacenamiento y transporte Download PDF

Info

Publication number
WO2019158796A1
WO2019158796A1 PCT/ES2019/070085 ES2019070085W WO2019158796A1 WO 2019158796 A1 WO2019158796 A1 WO 2019158796A1 ES 2019070085 W ES2019070085 W ES 2019070085W WO 2019158796 A1 WO2019158796 A1 WO 2019158796A1
Authority
WO
WIPO (PCT)
Prior art keywords
azimuth
gear
substructure
solar tracking
photovoltaic panels
Prior art date
Application number
PCT/ES2019/070085
Other languages
English (en)
French (fr)
Inventor
Luis CASLA URTEAGA
Original Assignee
Xizan Energy Efficiency S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xizan Energy Efficiency S.L. filed Critical Xizan Energy Efficiency S.L.
Priority to CN201980013822.4A priority Critical patent/CN112514244A/zh
Priority to US16/968,776 priority patent/US11165386B2/en
Priority to EP19717503.7A priority patent/EP3754841A1/en
Publication of WO2019158796A1 publication Critical patent/WO2019158796A1/es

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/40Mobile PV generator systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/20Collapsible or foldable PV modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention belongs to the renewable energy sector and, more specifically, to the photovoltaic power generation facilities, comprising the panels containing the photovoltaic cells and the solar support and tracking structures.
  • the object of the present invention is a system comprising a portable solar tracking structure with 2-axis orientation motors (elevation and azimuth), which integrates light solar panels of semi-flexible technology with a specific design that aims to maintain the maximum lightness and manageability of the system.
  • the complete system is portable and foldable, and the orientation of the motors is controlled by an electronic system.
  • US2010043866 proposes a large turntable in the azimuthal plane consisting of a circular base guide with central foundation on which a large network of metal profiles is supported by means of motorized wheels and that supports the posts on which Support 2 rows of panels.
  • the Spanish patent ES2368402 proposes a single-axis modular solution consisting of a horizontal structure formed by transverse profiles and axes on which the respective rows of solar panels are tilted.
  • the axes of the rows are joined by means of transmission bars that communicate the pivoting movement of a single actuator, which is intended to be arranged on a grounded post, to withstand the resulting great tension.
  • US patent US2003172922A1 proposes a modular solution more easily adaptable to mobility requirements consisting of a swivel bar with 2 easel-shaped support points that divide 3 spaces for the panels, but it does not result in a compact volume to be transportable.
  • Patent application WO 2012/013827 A1 advances further in the search for compact and easily transportable and installable solutions by means of a structure design in 2 folding parts, one of support of the panel and another of support on the floor with fixation to it by means of nails or wheels.
  • the solution comprises a large number of articulated arms that, although raised in light metal materials, for example, aluminum, greatly increase the weight, making it uncomfortable for transport.
  • the present invention solves the aforementioned drawbacks through a very manageable design, even in operation, and easily removable and foldable in a compact volume for storage and transport.
  • the present invention comprises a portable solar tracking structure with 2-axis orientation motors (elevation and azimuth), which integrates light solar panels of semi-flexible technology with a specific design for the system consisting of 4 subpanels slightly separated at their junctions and forming a pyramidal contour that aims to maintain maximum lightness and manageability of it.
  • the complete system is portable and foldable, and the orientation of the motors is controlled by an electronic system.
  • the tracking structure that supports and guides the panels is constituted by three substructures (a lower substructure, an intermediate substructure and an upper substructure), which are coupled by means of articulations and which, in turn, comprise a plurality of elements that They have different functions.
  • the lower substructure (1) of the base in the form of a tripod, is in permanent contact with the ground by means of supports at its ends and remains fixed during the solar tracking process.
  • the intermediate substructure (2) rests horizontally on the lower structure and rotates with respect to it in the horizontal plane (solar azimuth) by means of a vertical pivot axis joint.
  • the upper substructure (3) where the panel is assembled, rests vertically on the intermediate structure and rotates with respect to it in the vertical plane (solar elevation) by means of a horizontal pivot axis joint.
  • the tracking structure is removable quickly and easily using a minimum number of tools, and the resulting exploded view is folded into a compact volume for storage and transport.
  • the design of the same is conceived in plastic for its great lightness, but also so that it can be manufactured in any place where a 3D printer is available.
  • the movement of the system around the 2 axes of solar orientation is achieved by 2 sets of straight cylindrical gears, a set for azimuth and a set for lifting, of internal cylindrical wheels with a high transmission ratio.
  • the design and size of the teeth allows a very reduced friction and, this aspect, together with the high transmission ratio, allows the movement of the gears with cheap motors of very low power.
  • Each gear set comprises a larger gear (one of azimuth and one of elevation) and a smaller gear (one of azimuth and another of elevation).
  • the tracking structure is self-sustaining by means of an anti-tip system consisting of a tripod-shaped base, in the lower substructure (1), which concentrates a large part of the total mass of the structure (thus lowering its center of gravity), and of very separated support ends to maximize the absorption capacity of moments.
  • the extreme supports of the legs are removable manually, which allows to easily attach supports of different designs and the joint with the leg is designed to self-fit by means of a double inclined rod (1.13) that converts the shear stress present in the together in a compression between their faces stabilizing the support.
  • the internal transmission of moments from the panel to the tripod supports through the substructures is achieved according to a single structural principle, which consists in taking advantage of the presence of the greater cylindrical gear in each of the joints and supporting the ends of both faces in bearings attached to the substructure to which to transmit the moment.
  • the larger gear of the azimuth located at the base of the intermediate substructure (2), is fixed in its center by the axis of the lower joint and is supported by its lower and upper parts in bearings contained respectively in the legs and in an upper clamping ring connected in solidarity with the legs of the lower substructure (1).
  • the lifting gear for its part located in the upper substructure (3), is contained in a framework composed of two parallel flyers with transverse joints that join the upper end of the mast of the intermediate substructure (2) by means of the horizontal axis of the lifting joint, and which supports the ends of said steering wheels on the inside in bearings contained in said mast.
  • the position of the gears is controlled by means of standard motors which, in turn, are controlled by SW from an electronic plate located at the base of the structure.
  • the solar panel (4) uses semi-flexible technology to favor the lightness and manageability of the system, and is assembled by means of screws with the structure through the frame of the upper substructure (3).
  • the design of the panel is pyramidal, to favor the stability of the complete system, and is divided into 4 separable subpanels.
  • the design used for the cells of the panels is a standard type based on squares with corners in chamfer, which allows to open gaps between inner cells of the panels for the fastening screws with the frame.
  • the end of each subpanel in the central meeting of the 4 subpanels has the trimmed edge, so that a space is opened for the passage of the handle of a retractable handle whose rods fold back into the structure behind the panel.
  • the structure has a curved lower handle that is attached to the mast of the intermediate structure (2) and allows the manipulation of the system from below. Both handles are close to the center of gravity of the assembled system, which allows its transport maintaining its verticality and avoiding joint tensions.
  • the separable parts and wiring sections in which the complete system is decomposed are designed to be collected and folded into a compact grouping of minimum volume to fit into a packing box for storage and transport. The folding is organized in 4 layers of elements that each occupy an area of the same order of magnitude with the following distribution of elements applicable to any preferred embodiment:
  • the first layer contains the upper subpanels joined by their front faces
  • the second layer contains the lower subpanels also joined by their front faces
  • the third layer contains the complete fixation frame of the upper substructure
  • the fourth layer contains in the center the lower structure (1) complete next to the large azimuth gear of the intermediate substructure (2), on one side the framework of the compacted lifting gear of the upper substructure (3) and in the opposite side the mast with the lower handle collected from the intermediate structure (2).
  • the tracking structure is self-supporting. This means that, unlike current installations, which are mostly fixed and require some type of foundation, this system is based on a very light plastic structure that, thanks to an anti-tip design, can operate without fixing to the soil in conditions little exposed to the wind.
  • the extreme supports of the legs which are removable manually, allow you to select designs with different degrees of fixation to the ground, to respond to more exposed situations.
  • the ground fixing mechanisms are always operable manually or with simple tools, and are not required to be operated by specialized installers.
  • the complete system is portable, in the sense that it is designed to be moved as many times as desired in operation within the available area of sun exposure (terrace, garden, balcony, etc.), thus avoiding areas of shade throughout the day and therefore maximizing the performance of the panels.
  • the structure includes 2 handles both close to the center of gravity of the assembled system, designed to handle the entire system both from above and from below and to be transported maintaining its verticality avoiding joint tensions.
  • the solar panel uses semi-flexible technology to favor the lightness and manageability of the system, and it is assembled with the upper substructure frame by means of manually operable screws (without tools).
  • the panel is divided into 4 separable subpanels that make up a pyramidal design to favor the stability of the entire system.
  • the semi-flexible technology and the separation of the panel into 4 subpanels offers 4 outstanding advantages:
  • the central opening in the horizontal meeting of the subpanels (which is also slightly increased by reducing the margin of the subpanel edges) allows the introduction of a retractable handle in its center (close to the center of gravity) , which allows the manipulation of the panel from above for transport without creating movements that deconfigure the position of the panel or the verticality of the structure
  • the system as a whole, including panels, tracking structure and complete wiring, is also easily removable, allowing complete installation or uninstallation in just a few minutes.
  • the pieces that They are designed to be collected and folded in a compact grouping of minimum volume to fit into a packaging box for storage and transport.
  • the system as a whole has been designed to be attractive and non-invasive from an aesthetic point of view, so that, unlike current structures that may be spatially invasive, it can coexist with users without disabling passable spaces.
  • the structure has been designed in plastic, a lightweight and warmer textured material that is also cheap and easily manufactured with the advent of 3D printing.
  • the described design allows several preferred embodiments combining on one hand the height of the mast, the length of the slats of the frame and the legs of the tripod and their respective sections, and on the other the number of cells per subpanel according to the configuration of the installation with which you work.
  • Figure 1 - shows rear and front views in perspective of the complete system representing the panel and substructures, and indicating with arrows (a) the vertical turn in elevation and (b) the horizontal turn in azimuth.
  • Figure 2 - shows upper and lower views of the lower substructure indicating the parts that compose it.
  • Figure 3 - shows rear and front views of the intermediate substructure indicating the parts that compose it.
  • Figure 4 - shows rear and front views of the upper substructure indicating the parts that compose it.
  • Figure 5 - shows front and rear views of the panel indicating the parts that compose it.
  • Figure 6 - shows a view of the azimuth gears.
  • Figure 7 - shows in detail the base of the mast indicating the position of the circular base disk and its design characteristics.
  • Figure 8 - shows in detail the large gear of the azimuth indicating the inner and outer rings and the radial tabs of the inner ring for the support of the circular disk of the base of the mast.
  • Figure 9 - shows in detail the lattice fit of the lifting gear with the mast indicating the position of the gears, and the characteristics of the lattice design.
  • Figure 10 - shows in detail the retractable upper handle in its folded and unfolded positions indicating the characteristics of its design
  • Figure 11 - shows a view of the system folded in a compact volume next to the front and top elevation, indicating the position of the layers and the pieces into which it decomposes.
  • the complete monitoring structure is essentially constituted by three substructures that are coupled: a lower substructure (1) base that is in permanent contact with the ground; an intermediate substructure (2) that rotates with respect to the lower structure (1) in the horizontal plane (solar azimuth) by means of a vertical rotation axis joint; and an upper substructure (3) where the panel (4) that rotates with respect to the intermediate structure (2) in the vertical plane (solar elevation) is assembled by means of a horizontal rotation axis joint.
  • the lower substructure (1) of base is the part of the structure that remains fixed in the solar tracking movement and is responsible for providing support and stability to the entire structure while allowing the azimuth turn of the intermediate substructure (2) .
  • This lower substructure (1) is designed as a tripod to provide stability to the structure through extreme supports (1.6) of radial legs (1.2).
  • the lower substructure (1) represented in detail in Figure 2, is thus composed of 3 radial legs (1.2) in the form of a tripod that are joined in a central cylindrical part
  • each radial leg (1.2) includes a space for a lower bearing (1.9) for the larger gear of the azimuth (2.3) of the intermediate substructure and is completed with a stirrup (1.5) rigidly connected to the ring of clamping (1.1).
  • the clamping ring (1.1) is intended to give superior support to the larger gear of the azimuth (2.3) of the intermediate substructure through upper bearing bearings (1.10).
  • the lower part of the central cylindrical part (1.3) shown in figure 2 has a central recess for the electronic control plate (1.11) of the motors with a depth sufficient to cover it with a protective cover.
  • the upper part of the central cylindrical part (1.3) has a recess (1.12) to give space to a wiring loop (from the intermediate substructure (2)) long enough to allow the complete rotation of the structure without tension or hooks .
  • a column that acts as a lower articulation axis (1.4) between the lower structure (1) and the intermediate one (2), and which fits through of the lower center hole (2.11) of the mast (2.1) shown in Figure 7.
  • One of the radial legs (1.2) is oriented in the polar direction (1.2 '), and includes the hole for the insertion of the azimuth motor (1.7), on whose axis the minor gear of the azimuth (1.8) is inserted, which, as you can shown in Figure 6, it is coupled to the larger gear of the azimuth (2.3) of the intermediate substructure (2).
  • the end supports (1.6) of the radial legs (1.2) are removable.
  • the assembly is manual and the joint with the radial leg (1.2) is designed to auto-fit by means of a double inclined rod (1.13) that converts the shear stress present in the joint into a compression between its faces stabilizing the extreme support ( 1.6).
  • the external supports (1.6), removable manually, allow to easily attach different designs with different degrees of fixing to the ground to respond to the different conditions of each environment. In any case, the ground fixing mechanism is always operable manually or with simple tools.
  • the intermediate structure (2) is the part of the system that rotates in azimuth, supporting the upper structure (3) and leaning horizontally on the lower structure (1).
  • the union with the upper structure (3) is made by means of a horizontal axis of rotation articulation and with the inferior one through a vertical axis of rotation.
  • the intermediate structure (2) represented in figure 3, is composed of 3 main elements: the mast (2.1), the lower handle (2.2) and the larger gear of the azimuth (2.3).
  • the larger gear of the azimuth (2.3) is coupled to the small gear of the azimuth (1.8), which in turn is solidly attached to the axis of the azimuth motor (1.7) contained in the radial leg (1.2) ') of the lower structure (1).
  • the two azimuth gears (1.8, 2.3) form a toothed gear system with a transmission ratio of 12 (72 teeth the major gear of the azimuth (2.3) and 6 teeth the minor gear of the azimuth (1.8)).
  • the azimuth engine (1.7) It acts on the smaller gear of the azimuth (1.8) and takes advantage of the high transmission ratio to have control over the larger gear of the azimuth (2.3), which requires a slow and very precise movement.
  • the larger gear of the azimuth (2.3), represented in detail in Figure 8, is composed of an outer ring (2.12) and an inner ring (2.13), both joined by 6 spokes.
  • the teeth of the main gear of the azimuth (2.3) are located in the lower part of the outer ring (2.12) T facing inwards to protect the motor from the azimuth (1.7), which is thus hidden.
  • the outer ring (2.12) also serves as support for the upper bearing bearings (1.10) of the clamping ring (1.1) and for the lower bearing bearings (1.9) of the radial legs (1.2) of the lower structure (1) .
  • the inner ring (2.13) maintains the same section as the outer ring (2.12) and its inner space is occupied by a lower circular disk (2.9) of the base of the mast (2.1) that can be seen in detail in Figure 7.
  • the union of the mast (2.1) and the major gear of the azimuth (2.3) is done by means of 3 radial tabs (2.14) projected towards the inside of the inner ring (2.13), and represented in figure 8, which fit in the base of the lower circular disk (2.9) of the mast (2.1) and are adjusted by screws.
  • the mast (2.1) is the vertical column that rests at its base on the inner ring (2.13) of the main gear of the azimuth (2.3) and contains, at its lower base, the lower central hollow (2.11) for the axis of the lower joint of the azimuth (1.4) of the lower substructure (1) and, at its upper end, the axis of the elevation joint (2.7) of the upper substructure (3).
  • the design includes in its central part the hole for the lifting motor (2.4) and that of the bearings (2.6).
  • the lower lifting gear (2.5) is in charge of the orientation of the larger lifting gear (3.3) that is supported by the mentioned bearings (2.6).
  • the support of the mast (2.1) in the main gear of the azimuth (2.3) is strengthened with 2 side buttresses (2.8) that are attached to the inner ring (2.13) of the main gear of azimuth (2.3) by means of tongue and groove joints and that they absorb the buckling effort of the mast in the lateral directions of the panel.
  • the lower circular disk (2.9) of the mast (2.1), which is shown in detail in Figure 7, rests on the 3 radial tabs (2.14) of the inner ring (2.13) of the larger azimuth gear (2.3) and is crossed at its center along the axis of the lower azimuth joint (1.4) of the lower substructure (1).
  • the lower part of the lower circular disk (2.9) of the mast (2.1) has a central recess (2.10) equivalent to the recess (1.13) of the upper part of the central cylindrical part (1.3) of the lower structure (1) that serves as It is mentioned in the previous section as said to pick up a sufficiently long wiring loop that allows the complete rotation of the structure without tension or hooks.
  • the lower handle (2.2) confers portability from below to the system when it is in an elevated place, or more generally when the position of the center of the panel is above the user's hands, and has been designed so that the handle be as close to the center of gravity of the complete system and bend 180 degrees on itself to increase the grip angles.
  • the two ends of the resulting curved lower handle (2.2) are rigidly connected to the mast (2.1) around its center and other support projects from the lower end to the steering wheel radius of the larger azimuth gear (2.3).
  • the lower handle (2.2) also fulfills a very important structural function because it absorbs most of the buckling tension of the mast (2.1) in the direction of greatest effort that is perpendicular to the panel (4 ). To reinforce this function the 3 ends are joined by means of a tongue and groove joint and screw.
  • the upper substructure (3) is connected to the intermediate substructure (2) by means of a horizontal axis of rotation articulation that allows the upper substructure (3) to rotate in elevation with respect to the intermediate structure (2), with the which turns jointly in azimuth.
  • the complete structure gives the panel (4) therefore 2 degrees of freedom, in azimuth and elevation, since said panel (4) is jointly and severally connected to this upper substructure (3) through a clamping frame (3.1).
  • the upper structure (3) is composed of 3 elements: the clamping frame (3.1) of the panel (4), the framework (3.2) of the major lifting gear (3.3) and the upper handle (3.4).
  • the fastening frame (3. 1) of the panel (4) serves to fix the solar panels (4) to the structure.
  • the fixing is done by screws (4.3) that have been designed to be operable manually (without tools) and that fit into threaded holes (3.5) along the front of the transverse and lateral bars of the clamping frame (3.1) and through holes (4.2) made in the panels (4).
  • the transverse bars have in their design an extension in their ends to provide the maximum possible support to the subpanels and contain in their central rear part the recesses for the union with the framework (3.2) of the major lifting gear (3.3) by means of tongue and groove joints (3.6).
  • the lattice (3.2) of the major lifting gear (3.3), represented in detail in Figure 9, is composed of two parallel flywheels (3.13) of two outer rings each, one inside that runs 180 degrees and another outside covering 100 , which are joined by means of a peripheral crossbar (3.14) in the center of the outer rings.
  • the ends of the outer rings are joined in solidarity with the clamping frame (3.1) by means of tongue and groove joints (3.6) and the center of the flywheels (3.13) has a section of hollow cylinders that joins that of the upper end of the mast ( 2.1) by means of the horizontal axis (3.7) of the lifting joint (2.7) thus allowing the rotation of the framework (3.2) around it.
  • the inner part of the outer rings of the handwheels (3.13) is supported by the bearings (2.6) of the mast (2.1) in its elevation, thus transmitting the moments of the upper substructure (3) to the intermediate substructure ( two).
  • the major lifting gear (3.3) is contained in the lower half of the outer ring of the right handwheel and is coupled to the lower lifting gear (2.5), which in turn is solidly attached to the axis of the lifting motor (2.4) contained in the mast (2.1) of the intermediate structure (2).
  • These 2 elements form a gear system that, like the azimuth system, maintains a transmission ratio of 12, but retaining only 20 of the 72 teeth of the large gear. These 20 teeth therefore cover 100 degrees of circumference that are sufficient to cover the maximum range of solar elevation (0 to 90 degrees).
  • the design of both lifting gears (3.3, 2.5) and the control of the lifting motor (2.4) involved in its movement are equivalent to those already described in those corresponding to azimuth.
  • the upper handle (3.4) shown in detail in Figure 10 confers portability from above to the system when it is resting on the floor, or more generally when the position of the center of the panel is below the user's hands.
  • This upper handle (3.4) composed of an articulated handle (3.8) and two parallel rods (3.9), has been designed as a retractable handle, so that its rods (3.9) can be deployed towards the front of the panels ( 4) thus making the operable handle (3.4 ') when the system needs to be moved, and can be folded into the tubular cavities (3.11) thus clearing the front part exposed to the radiation of the panels (4) once the panel (4) has been placed in the desired position.
  • each tubular cavity (3.11) is adjusted to the size of the rods (3.9) so that they can slide to a threaded stop (3.12) located at its ends.
  • An articulated ball joint (3.10) at the lower end of the pop-up part of the rods (3.9) allows the upper handle (3.4) to be rotated in a block until it is vertical.
  • the position of the tubular cavities (3.11) and the kneecaps (3.10) have been designed so that they are closest to the center of gravity of the complete system so that it can be transported maintaining its verticality avoiding tensions in the joints
  • the solar panel (4) uses semi-flexible technology to favor the lightness and manageability of the system and is assembled by means of fixing screws (4.3) with the structure through the frame (3.1) of the upper substructure (3).
  • the design of the panel (4) is pyramidal to favor the stability of the complete system and is divided into 4 separable subpanels.
  • the upper subpanels have their cells (4.1) distributed symmetrically in 2 lower rows of 3 cells and an upper one of 2.
  • the lower subpanels have a distribution of 2 unique rows of 4 cells each.
  • the design used for the cells (4.1) of the panels (4) is a standard type based on squares of 12.5cm side with chamfer corners which allows gaps to be opened between inner cells of the panels for fixing screws (4.3 ) with the framework (3.1).
  • each subpanel in the central encounter of the 4 subpanels has the trimmed edge (4.4) so that a space for the folding handle of the upper handle (3.4) is opened.
  • the junction box (4.5) of each subpanel has been designed in a position close to the corner of the central meeting of the four subpanels and with a reduced size so that they are inside the area between the transverse and lateral slats of the frame ( 3.1) of the upper substructure (3). In this way, the interconnection wiring sections between the subpanels are reduced, which are removable and connected in parallel.
  • FIG. 11 represents this compact grouping comprising 4 layers with the following elements:
  • the first layer contains the upper subpanels (4) joined by their front faces
  • the second layer contains the lower subpanels (4) also joined by their front faces;

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

La presente invención comprende una estructura portátil de seguimiento solar con motores de orientación en 2 ejes (elevación y azimut) que integra paneles solares ligeros de tecnología semi-flexible con un diseño específico que tiene como objetivo mantener la máxima ligereza y manejabilidad del sistema. El sistema completo es portátil y plegable, y la orientación de los motores se controla por un sistema electrónico.La estructura de seguimiento está constituida por tres subestructuras acopladas: una subestructura inferior de base (1) en contacto permanente con el suelo; una subestructura intermedia (2) que gira respecto a la estructura inferior (1) en el plano horizontal (azimut); y una subestructura superior( 3) que gira respecto a la estructura intermedia (2) en el plano vertical (elevación). El plegado de las piezas que componen el sistema se organiza para su almacenamiento y transporte en 4 capas que ocupan cada una un área del mismo orden.

Description

Figure imgf000003_0001
SISTEMA PORTATIL DE PANELES FOTOVOLTAICOS CON ESTRUCTURA DE SEGUIMIENTO SOLAR DE 2 EJES Y SISTEMA DE PLEGADO PARA SU ALMACENAMIENTO Y TRANSPORTE
SECTOR DE LA TECNICA
La presente invención pertenece al sector de la energía renovable y, mas concretamente, al de las instalaciones de generación de energía fotovoltaica, comprendiendo los paneles que contienen las células fotovoltaicas y las estructuras de soporte y seguimiento solar.
El objeto de la presente invención es un sistema que comprende una estructura portátil de seguimiento solar con motores de orientación en 2 ejes (elevación y azimut), que integra paneles solares ligeros de tecnología semi-flexible con un diseño específico que tiene como objetivo mantener la máxima ligereza y manejabilidad del sistema. El sistema completo es portátil y plegable, y la orientación de los motores se controla por un sistema electrónico.
ANTECEDENTES DE LA INVENCIÓN
Existen numerosas estructuras de seguimiento solar para paneles fotovoltaicos y térmicos reveladas públicamente, que permiten su orientación en la posición más perpendicular a los rayos del sol, con el fin de aprovechar al máximo su energía. Estas estructuras de seguimiento han tenido que resolver los numerosos desafíos técnicos (estructurales, mecánicos y electrónicos) que conllevan el posicionamiento de elementos de gran superficie y pesos significativos. Por esta razón, las estructuras de seguimiento han resultado en general de una complejidad y costo relativamente altos, que se han tratado de compensar aumentando el tamaño de la instalación, con el objetivo lógico de que una única estructura pueda integrar el número más alto posible de paneles. La contrapartida es que estas soluciones son casi exclusivamente instalaciones fijas y de gran peso, requiriendo con frecuencia trabajo de acondicionamiento del terreno y cimentaciones, y casi siempre un gran trabajo de montaje, mantenimiento y operación que necesariamente requiere personal especializado. Esto hace que la viabilidad de soluciones de este tipo sea solo planteable, si acaso, en grandes plantas de generación.
Como antecedentes de estructuras con estas características, se puede citar la patente española ES2345078, que presenta un gran bastidor basculante para fijación de varias hileras de paneles, y que se soporta por una columna de gran sección y una cimentación, ambas diseñadas con perfiles metálicos.
Otro ejemplo, en línea con este mecanismo complejo y de grandes proporciones, sería la solución de la patente estadounidense US6123067, que comprende un marco giratorio que gira alrededor del pedestal, accionado por dos cilindros hidráulicos.
Se pueden mencionar también varios antecedentes que han buscado la extensión espacial antes mencionada. La patente americana US2010043866 plantea una gran plataforma giratoria en el plano azimutal consistente en una guía circular de base con cimentación central sobre la que se apoya un gran entramado de perfiles metálicos por medio de ruedas motorizadas y que da soporte a los postes sobre los que se apoyan 2 hileras de paneles.
La patente española ES2368402 plantea una solución modular de un solo eje consistente en una estructura horizontal formada por perfiles transversales y unos ejes sobre los que basculan las respectivas filas de paneles solares. Los ejes de las filas están unidos por medio de barras de trasmisión que comunican el movimiento pivotante de un único actuador, que está previsto que se disponga en un poste cimentado, para soportar la gran tensión resultante.
Son muy pocos los antecedentes de estructuras más sencillas que permitan cierta facilidad a la hora de su montaje, manipulación, y transporte.
La patente americana US2003172922A1 plantea una solución modular más fácilmente adaptable a requerimientos de movilidad consistente en una barra giratoria con 2 puntos de apoyo en forma de caballete que divide 3 espacios para los paneles, pero no resulta un volumen compacto para que sea transportable.
La solicitud de patente WO 2012/013827 A1 avanza más en la búsqueda de soluciones compactas y fácilmente transportables e instalables mediante un diseño de estructura en 2 partes plegables, una de soporte del panel y otra de soporte sobre el suelo con fijación al mismo mediante clavos o ruedas. La solución sin embargo comprende un gran número de brazos articulados que, aunque estén planteados en materiales metálicos ligeros, por ejemplo, aluminio, incrementan mucho el peso, haciéndola incómoda para su transporte.
La presente invención resuelve los inconvenientes mencionados mediante un diseño muy manejable, incluso en operación, y fácilmente desmontable y plegable en un volumen compacto para su almacenamiento y transporte.
EXPLICACIÓN DE LA INVENCIÓN
La presente invención comprende una estructura portátil de seguimiento solar con motores de orientación en 2 ejes (elevación y azimut), que integra paneles solares ligeros de tecnología semi-flexible con un diseño específico para el sistema consistente en 4 subpaneles ligeramente separados en sus uniones y conformando un contorno piramidal que tiene como objetivo mantener la máxima ligereza y manejabilidad del mismo. El sistema completo es portátil y plegable, y la orientación de los motores se controla por un sistema electrónico.
La estructura de seguimiento que soporta y orienta los paneles está constituida por tres subestructuras (una subestructura inferior, una subestructura intermedia y una subestructura superior), que se encuentran acopladas por medio de articulaciones y que, a su vez, comprenden una pluralidad de elementos que presentan distintas funciones.
La subestructura inferior (1) de base, en forma de trípode, se encuentra en contacto permanente con el suelo por medio de apoyos en sus extremos y permanece fija durante el proceso de seguimiento solar.
La subestructura intermedia (2) se apoya horizontalmente en la estructura inferior y gira respecto a ella en el plano horizontal (azimut solar) por medio de una articulación de eje de giro vertical. La subestructura superior (3), donde se ensambla el panel, se apoya verticalmente en la estructura intermedia y gira respecto a ella en el plano vertical (elevación solar) por medio de una articulación de eje de giro horizontal.
La estructura de seguimiento es desmontable de una manera rápida y fácil utilizando un número mínimo de herramientas, y el despiece resultante se pliega en un volumen compacto para su almacenamiento y transporte. Además, el diseño de la misma está concebido en plástico por su gran ligereza, pero también para que pueda fabricarse en cualquier lugar en donde se disponga de una impresora 3D.
El movimiento del sistema alrededor de los 2 ejes de orientación solar (elevación y azimut) se consigue mediante 2 juegos de engranajes cilindricos rectos, un juego para azimut y un juego para elevación, de ruedas cilindricas internas con una alta relación de transmisión. El diseño y tamaño de los dientes permite una fricción muy reducida y, este aspecto, junto a la alta relación de transmisión, permite el movimiento de los engranajes con motores baratos de muy baja potencia. Cada juego de engranajes comprende un engranaje mayor (uno de azimut y otro de elevación) y un engranaje menor (uno de azimut y otro de elevación).
La estructura de seguimiento se autosustenta mediante un sistema anti-vuelco consistente en una base en forma de trípode, en la subestructura inferior (1), que concentra gran parte de la masa total de la estructura (bajando así su centro de gravedad), y de extremos de apoyo muy separados para maximizar la capacidad de absorción de momentos. Los apoyos extremos de las patas son extraíbles manualmente, lo que permite acoplar con facilidad apoyos de diferentes diseños y la junta con la pata está diseñada para que auto-encaje mediante un doble vástago inclinado (1.13) que convierte el esfuerzo de cizalladura presente en la junta en una compresión entre sus caras estabilizando el apoyo.
La transmisión interna de momentos desde el panel a los apoyos del trípode a través de las subestructuras se consigue según un único principio estructural, que consiste en aprovechar la presencia del engranaje cilindrico mayor en cada una de las articulaciones y apoyar los extremos de ambas caras en rodamientos unidos a la subestructura a la que trasmitir el momento. Para ello, el engranaje mayor del azimut, situado en la base de la subestructura intermedia (2), queda fijo en su centro por el eje de la articulación inferior y se apoya por sus partes inferior y superior en rodamientos contenidos respectivamente en las patas y en un anillo de sujeción superior conectado solidariamente a las patas de la subestructura inferior (1). El engranaje de elevación, por su parte situado en la subestructura superior (3), está contenido en un entramado compuesto por dos volantes paralelos con uniones trasversales que se une al extremo superior del mástil de la subestructura intermedia (2) por medio del eje horizontal de la articulación de elevación, y que apoya los extremos de dichos volantes por su parte interior en rodamientos contenidos en dicho mástil.
La posición de los engranajes se controla por medio de motores estándar que, a su vez, se controlan por SW desde una placa electrónica situada en la base de la estructura.
El panel solar (4) utiliza tecnología semi-flexible para favorecer la ligereza y manejabilidad del sistema, y se ensambla por medio de tornillos con la estructura a través del marco de la subestructura superior (3). El diseño del panel es piramidal, para favorecer la estabilidad del sistema completo, y está dividido en 4 subpaneles separables.
El diseño utilizado para las células de los paneles es un tipo estándar basado en cuadrados con esquinas en chaflán, lo cual permite abrir huecos entre células interiores de los paneles para los tornillos de sujeción con el marco. El extremo de cada subpanel en el encuentro central de los 4 subpaneles presenta el borde recortado, de manera que se abra un espacio para el paso del mango de un asa retráctil cuyas varillas se repliegan en la estructura por detrás del panel.
Además de esta asa superior, que permite la manipulación del sistema desde arriba, la estructura dispone de un asa inferior curvo que queda unido al mástil de la estructura intermedia (2) y que permite la manipulación del sistema desde abajo. Ambas asas están próximas al centro de gravedad del sistema ensamblado, lo cual permite su transporte manteniendo la verticalidad del mismo y evitando tensiones en las articulaciones. Las piezas y los tramos de cableado separables en los que se descompone el sistema completo están diseñados para ser recogidos y plegados en una agrupación compacta de mínimo volumen para su encaje en una caja de embalaje para su almacenamiento y transporte. El plegado se organiza en 4 capas de elementos que ocupan cada una un área del mismo orden de magnitud con la siguiente distribución de elementos aplicable a cualquier realización preferente:
• la capa primera contiene los subpaneles superiores unidos por sus caras frontales,
• la capa segunda contiene los subpaneles inferiores unidos también por sus caras frontales,
• la capa tercera contiene el marco de fijación completo de la subestructura superior
(3),
• y la capa cuarta contiene en el centro la estructura inferior (1) completa junto al engranaje grande del azimut de la subestructura intermedia (2), en un lado el entramado del engranaje de elevación compactado de la subestructura superior (3) y en el lado opuesto el mástil con el asa inferior recogida de la estructura intermedia (2).
Las ventajas principales de esta invención, respecto a los antecedentes mencionados, son las siguientes:
• En primer lugar, la estructura de seguimiento es autoportante. Esto significa que, a diferencia de las instalaciones actuales, que en su mayoría son fijas y requieren algún tipo de cimentación, este sistema se basa en una estructura de plástico muy ligero que, gracias a un diseño anti-vuelco, puede funcionar sin fijación al suelo en condiciones poco expuestas al viento. Los apoyos extremos de las patas, que son extraíbles manualmente, permiten que se puedan seleccionar diseños con diferentes grados de fijación al suelo, para responder a situaciones mas expuestas. En cualquier caso, los mecanismos de fijación al suelo son siempre accionables manualmente o con herramientas simples, y no se requiere que sean operados por instaladores especializados.
• Como se ha mencionado, el sistema completo es portátil, en el sentido de que está concebido para ser trasladado cuantas veces se desee en operación dentro del área disponible de exposición al sol (terraza, jardín, balcón, etc.), evitando así zonas de sombra a lo largo del día y maximizando por tanto el rendimiento de los paneles. Para ello la estructura incluye 2 asas próximas ambas al centro de gravedad del sistema ensamblado, pensadas para manipular el sistema completo tanto desde arriba como desde abajo y para ser transportado manteniendo la verticalidad del mismo evitando tensiones en las articulaciones.
• El panel solar utiliza tecnología semi-flexible para favorecer la ligereza y manejabilidad del sistema, y se ensambla con el marco de la subestructura superior por medio de tornillos operables manualmente (sin herramientas). El panel está dividido en 4 subpaneles separables que conforman un diseño piramidal para favorecer la estabilidad del sistema completo. La tecnología semi-flexible y la separación del panel en 4 subpaneles ofrece 4 ventajas destacadas:
o En primer lugar, las células fotovoltaicas tradicionales son muy quebradizas y, por esta razón, se fabrican siempre ensambladas en paneles con un armazón metálico en su parte trasera. Este armazón es necesariamente de gran sección para evitar cualquier vibración que pueda fracturar las células, y aunque el material utilizado es siempre aluminio (uno de los más ligeros) esto no evita que el peso resultante de los paneles sea elevado. El uso de tecnología semi- flexible (basada en células no quebradizas) permite conformar las células sin armazón en paneles de un grosor inferior a medio centímetro. Esto aligera muy significativamente el peso a soportar por la estructura (un factor clave para una estructura portátil), permitiendo un aumento considerable del tamaño del panel respecto al tamaño de la estructura.
o En segundo lugar, la división del panel en 4 subpaneles y la separación de unos centímetros en sus encuentros reduce significativamente la resistencia al viento permitiendo así de nuevo un aumento en el área total del panel respecto al tamaño de la estructura.
o En tercer lugar, la abertura central en el encuentro horizontal de los subpaneles (que además se incrementa ligeramente mediante la reducción del margen de los bordes de los subpaneles) permite la introducción de un asa retráctil en su centro (cercano al centro de gravedad), que permite la manipulación del panel desde arriba para su transporte sin crear movimientos que desconfiguren la posición del panel ni la verticalidad de la estructura
e En cuarto lugar, la división en 4 partes del panel y su reducido espesor permite el agrupamiento de los mismos al ser desinstalados, lo que reduce considerablemente el volumen para su almacenamiento y transporte
• El sistema en su conjunto, comprendiendo paneles, estructura de seguimiento y el cableado completo, es asimismo fácilmente desmontable, permitiendo la instalación o desinstalación completa en solo unos minutos. Las piezas que lo componen están diseñadas para ser recogidas y plegadas en una agrupación compacta de mínimo volumen para su encaje en una caja de embalaje para su almacenamiento y transporte.
• El sistema en su conjunto se ha diseñado para que resulte atractivo y no invasivo desde un punto de vista estético, para que, a diferencia de las estructuras actuales que pueden resultar espacialmente invasivas, pueda coexistir con los usuarios sin inutilizar espacios transitables.
• Además, a diferencia del resto de estructuras, que son en general metálicas y en línea, con el objetivo de mantener un diseño amigable, la estructura se ha diseñado en plástico, un material ligero y de textura más cálida que, además resulta barato y fácilmente fabricable con el advenimiento de la impresión 3D.
• Por otro lado, el movimiento del sistema alrededor de los 2 ejes de orientación solar (elevación y azimut) se consigue mediante 2 juegos de 2 engranajes con una alta relación de transmisión accionados por un motor estándar de baja potencia. Esto tiene 2 ventajas importantes respecto a los sistemas de seguimiento actuales basados en general en actuadores lineales.
o En primer lugar, la alta relación de transmisión permite el movimiento de los engranajes con motores baratos de muy baja potencia
e En segundo lugar, la presencia de un engranaje grande permite hacer uso del mismo como un importante elemento estructural, con una gran capacidad de transmisión de momentos entre subestructuras. Esto es lo que permite hacer uso de materiales plásticos de menor dureza porque, de otro modo, las solicitaciones de esfuerzos estructurales solo permitirían el uso de materiales metálicos.
El diseño descrito permite varias realizaciones preferentes combinando por un lado la altura del mástil, la longitud de los listones del marco y de las patas del trípode y de sus respectivas secciones, y por otro el número de células por subpanel según la configuración de la instalación con la que se trabaje.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con el objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de la realización práctica del mismo, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
Figura 1 - muestra vistas trasera y delantera en perspectiva del sistema completo representando el panel y las subestructuras, e indicando con flechas (a) el giro vertical en elevación y (b) el giro horizontal en azimut.
Figura 2 - muestra vistas superior e inferior de la subestructura inferior indicando las piezas que la componen.
Figura 3 - muestra vistas trasera y delantera de la subestructura intermedia indicando las piezas que la componen.
Figura 4 - muestra vistas trasera y delantera de la subestructura superior indicando las piezas que la componen.
Figura 5 - muestra vistas delantera y trasera del panel indicando las piezas que la componen.
Figura 6 - muestra una vista de los engranajes del azimut.
Figura 7 - muestra en detalle la base del mástil indicando la posición del disco circular de base y sus características de diseño.
Figura 8 - muestra en detalle el engranaje grande del azimut indicando los anillos interior y exterior y las pestañas radiales del anillo interior para el apoyo del disco circular de la base del mástil.
Figura 9 - muestra en detalle el encaje del entramado del engranaje de elevación con el mástil indicando la posición de los engranajes, y las características del diseño del entramado.
Figura 10 - muestra en detalle el asa superior retráctil en sus posiciones plegada y desplegada indicando las características de su diseño Figura 11 - muestra una vista del sistema plegado en un volumen compacto junto al alzado frontal y superior, indicando la posición de las capas y las piezas en las que se descompone.
A continuación, se proporciona una lista de las numeraciones de los distintos elementos representados en las figuras para facilitar su identificación:
1. Subestructura inferior
1.1 Anillo de sujeción
1.2 Patas radiales
1.2’ Pata orientación polar
1.3 Pieza cilindrica central
1.4 Eje articulación inferior del azimut
1.5 Estribo
1.6 Apoyos extremo (extraíbles) de las patas radiales
1.7 Motor del azimut
1.8 Engranaje menor del azimut
1.9 Rodamientos de apoyo inferiores
1.10 Rodamientos de apoyo superiores
1.11 Placa electrónica
1.12 Ahuecamiento central para lazo cableado
1.13 Junta con doble vástago inclinado
2. Subestructura intermedia
2.1 Mástil
2.2 Asa inferior
2.3 Engranaje mayor del azimut
2.4 Motor de elevación
2.5 Engranaje menor de elevación
2.6 Rodamiento
2.7 Hueco eje articulación superior
2.8 Contrafuertes laterales
2.9 Disco circular inferior
2.10 Ahuecamiento central para lazo cableado
2.11 Hueco eje articulación inferior 2.12 Anillo exterior engranaje
2.13 Anillo interior engranaje
2.14 Pestañas radiales de unión con mástil 3. Subestructura superior
3.1 Marco de sujeción
3.2 Entramado engranaje mayor de elevación
3.3 Engranaje mayor de elevación
3.4 Asa superior (plegada)
3.4’Asa superior (desplegada)
3.5 Huecos roscados para tornillos
3.6 Juntas machihembradas de entramado con marco
3.7 Eje articulación superior
3.8 Mango articulado asa superior
3.9 Varillas asa superior
3.10 Rótula varillas
3.11 Cavidad tubular
3.12 Tope roscado varilla
3.13 Volantes paralelos entramado
3.14 Travesaño periférico de unión de volantes
4. Panel
4.1 Células fotovoltaicas
4.2 Orificios para fijación
4.3 Tornillos de fijación
4.4 Ensanchamiento para asa superior
4.5 Cajas de conexión de paneles
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
A la vista de las mencionadas figuras, y de acuerdo con la numeración adoptada, se puede observar en ellas un ejemplo de realización preferente de la invención que consiste en un panel compuesto por 4 subpaneles de 8 celdas una potencia nominal máxima de 100W, con su correspondiente estructura de seguimiento. La realización mencionada comprende las partes y elementos que se indican y describen en detalle a continuación.
La estructura de seguimiento completa se encuentra fundamentalmente constituida por tres subestructuras que se encuentran acopladas: una subestructura inferior (1) de base que se encuentra en contacto permanente con el suelo; una subestructura intermedia (2) que gira respecto a la estructura inferior (1) en el plano horizontal (azimut solar) por medio de una articulación de eje giro vertical; y una subestructura superior (3) donde se ensambla el panel (4) que gira respecto a la estructura intermedia (2) en el plano vertical (elevación solar) por medio de una articulación de eje de giro horizontal.
La subestructura inferior (1) de base es la parte de la estructura que permanece fija en el movimiento de seguimiento solar y se encarga de dar soporte y estabilidad a la estructura completa permitiendo al mismo tiempo el giro en azimut de la subestructura intermedia (2). Esta subestructura inferior (1) está diseñada en forma de trípode para proporcionar estabilidad a la estructura a través de apoyos extremos (1.6) de patas radiales (1.2).
La subestructura inferior (1), representada en detalle en la figura 2, se compone así de 3 patas radiales (1.2) en forma de trípode que se unen en una pieza cilindrica central
(1.3). El diseño de cada pata radial (1.2) incluye un espacio para un rodamiento de apoyo inferior (1.9) para el engranaje mayor del azimut (2.3) de la subestructura intermedia y se completa con un estribo (1.5) de unión rígida con el anillo de sujeción (1.1). El anillo de sujeción (1.1) tiene por objeto dar apoyo superior al engranaje mayor del azimut (2.3) de la subestructura intermedia a través de rodamientos de apoyo superiores (1.10).
La parte inferior de la pieza cilindrica central (1.3) representada en la figura 2 presenta un ahuecamiento central para la placa electrónica (1.11) de control de los motores con una profundidad suficiente para su cubrición con una tapa de protección.
La parte superior de la pieza cilindrica central (1.3) presenta un ahuecamiento (1.12) para dar espacio a un lazo de cableado (proveniente de la subestructura intermedia (2)) lo suficientemente largo para permitir el giro completo de la estructura sin tensión ni enganches. En el centro de la parte superior de la pieza cilindrica central (1.3), se sitúa una columna que hace de eje de articulación inferior (1.4) entre la estructura inferior (1) y la intermedia (2), y que se encaja a través del hueco central inferior (2.11) del mástil (2.1) representado en la figura 7.
Una de las patas radiales (1.2) queda orientada en dirección polar (1.2’), e incluye el hueco para la inserción del motor del azimut (1.7), en cuyo eje se inserta el engranaje menor del azimut (1.8) que, como puede apreciarse en la figura 6 se acopla al engranaje mayor del azimut (2.3) de la subestructura intermedia (2).
Como se representa en la figura 2, los apoyos extremos (1.6) de las patas radiales (1.2) son extraíbles. El ensamblaje es manual y la junta con la pata radial (1.2) está diseñada para que auto-encaje mediante un doble vástago inclinado (1.13) que convierte el esfuerzo de cizalladura presente en la junta en una compresión entre sus caras estabilizando el apoyo extremo (1.6). Los apoyos externos (1.6), extraíbles manualmente, permiten acoplar con facilidad diseños diferentes con diferentes grados de fijación al suelo para responder a las diferentes condiciones de cada entorno. En cualquier caso, el mecanismo de fijación al suelo es siempre accionable manualmente o con herramientas simples.
La estructura intermedia (2) es la parte del sistema que gira en azimut, dando soporte a la estructura superior (3) y apoyándose horizontalmente en la estructura inferior (1). La unión con la estructura superior (3) se hace por medio de una articulación de eje de giro horizontal y con la inferior a través de una de eje de giro vertical.
La estructura intermedia (2), representada en la figura 3, se compone de 3 elementos principales: el mástil (2.1), el asa inferior (2.2) y el engranaje mayor del azimut (2.3). Como se aprecia en la figura 6 el engranaje mayor del azimut (2.3) queda acoplado al engranaje pequeño del azimut (1.8), que a su vez se encuentra unido sólidamente al eje del motor del azimut (1.7) contenido en la pata radial (1.2’) de la estructura inferior (1). Los dos engranajes del azimut (1.8, 2.3) forman un sistema de engranajes dentados con una relación de transmisión de 12 (72 dientes el engranaje mayor del azimut (2.3) y 6 dientes el engranaje menor del azimut (1.8)). El motor del azimut (1.7) actúa sobre el engranaje menor del azimut (1.8) y aprovecha la alta relación de transmisión para tener control sobre el engranaje mayor del azimut (2.3), que requiere un movimiento lento y muy preciso.
El engranaje mayor del azimut (2.3), representado en detalle en la figura 8 está compuesto por un anillo exterior (2.12) y un anillo interior (2.13), unidos ambos mediante 6 radios. Los dientes del engranaje mayor del azimut (2.3) se sitúan en la parte inferior del anillo exterior (2.12)T orientados hacia su interior para proteger el motor del azimut (1.7), que queda así oculto. El anillo exterior (2.12) sirve además de apoyo para los rodamientos de apoyo superiores (1.10) del anillo de sujeción (1.1) y para los rodamientos de apoyo inferiores (1.9) de las patas radiales (1.2) de la estructura inferior (1).
El anillo interior (2.13) mantiene la misma sección que el anillo exterior (2.12) y su espacio interior es ocupado por un disco circular inferior (2.9) de la base del mástil (2.1) que se puede ver en detalle en la figura 7. La unión del mástil (2.1) y el engranaje mayor del azimut (2.3) se hace por medio de 3 pestañas radiales (2.14) proyectadas hacia el interior del anillo interior (2.13), y representadas en la figura 8, que encajan en la base del disco circular inferior (2.9) del mástil (2.1) y se ajustan mediante tornillos.
El mástil (2.1) es la columna vertical que se apoya en su base en el anillo interior (2.13) del engranaje mayor del azimut (2.3) y contiene, en su base inferior, el hueco central inferior (2.11) para el eje de la articulación inferior del azimut (1.4) de la subestructura inferior (1) y, en su extremo superior, el eje de la articulación de la elevación (2.7) de la subestructura superior (3). El diseño incluye en su parte central el hueco para el motor de elevación (2.4) y el los de los rodamientos (2.6). En el eje del motor de elevación (2.4) se acopla el engranaje menor de elevación (2.5) encargado de la orientación del engranaje mayor de elevación (3.3) que se apoya en los mencionados rodamientos (2.6).
El apoyo del mástil (2.1) en el engranaje mayor del azimut (2.3) se fortalece con 2 contrafuertes laterales (2.8) que se unen al anillo interior (2.13) del engranaje mayor de azimut (2.3) mediante juntas machihembradas y tornillo, y que absorben el esfuerzo de pandeo del mástil en las direcciones laterales del panel. El disco circular inferior (2.9) del mástil (2.1), que se representa en detalle en la figura 7, se apoya en las 3 pestañas radiales (2.14) del anillo interior (2.13) del engranaje mayor del azimut (2.3) y es atravesado en su centro por el eje de la articulación inferior del azimut (1.4) de la subestructura inferior (1). La parte inferior del disco circular inferior (2.9) del mástil (2.1) presenta un ahuecamiento central (2.10) equivalente al ahuecamiento (1.13) de la parte superior de la pieza cilindrica central (1.3) de la estructura inferior (1) que sirve como se menciona en la sección previa como se ha dicho para recoger un lazo de cableado suficientemente largo que permita el giro completo de la estructura sin tensión ni enganches.
El asa inferior (2.2) confiere portabilidad desde abajo al sistema cuando se encuentre en un sitio elevado, o de manera más general cuando la posición del centro del panel quede por encima de las manos del usuario, y se ha diseñado de manera que el mango esté lo más próximo al centro de gravedad del sistema completo y se curve 180 grados sobre sí mismo para aumentar los ángulos de agarre. Los dos extremos del asa inferior (2.2) curvo resultantes se conectan rígidamente al mástil (2.1) alrededor de su centro y otro apoyo se proyecta desde el extremo inferior al radio del volante del engranaje mayor del azimut (2.3). Mediante este diseño de 3 puntos de apoyo el asa inferior (2.2) cumple además una función estructural muy importante porque absorbe la mayor parte de la tensión de pandeo del mástil (2.1) en la dirección de mayor esfuerzo que es la perpendicular al panel (4). Para reforzar esta función los 3 extremos están unidos por medio de una junta machihembrada y tornillo.
La subestructura superior (3) queda unida a la subestructura intermedia (2) por medio de una articulación de eje de giro horizontal que permite el giro en elevación de la subestructura superior (3) con respecto a la estructura intermedia (2), con la cual gira solidariamente en azimut. La estructura completa confiere al panel (4) por tanto 2 grados de libertad, en azimut y elevación, ya que dicho panel (4) está unido solidariamente a esta subestructura superior (3) a través de un marco de sujeción (3.1).
La estructura superior (3) está compuesta por 3 elementos: el marco de sujeción (3.1) del panel (4), el entramado (3.2) del engranaje mayor de elevación (3.3) y el asa superior (3.4). El marco de sujeción (3. 1) del panel (4) sirve para fijar solidariamente los paneles (4) solares a la estructura. La fijación se hace mediante tornillos (4.3) que han sido diseñados para ser operables manualmente (sin herramientas) y que encajan en huecos roscados (3.5) a lo largo de la parte delantera de las barras trasversales y laterales del marco de sujeción (3.1) y a través de orificios (4.2) practicados en los paneles (4). Las barras trasversales presentan en su diseño una prolongación en sus extremos para proporcionar el máximo apoyo posible a los subpaneles y contienen en su parte central trasera los ahuecamientos para la unión con el entramado (3.2) del engranaje mayor de elevación (3.3) por medio de juntas machihembradas (3.6).
El entramado (3.2) del engranaje mayor de elevación (3.3), representado en detalle en la figura 9, está compuesto por dos volantes (3.13) paralelos de dos anillos exteriores cada uno, uno interior que recorre 180 grados y otro exterior que cubre 100, que se unen por medio de un travesaño periférico (3.14) en el centro de los anillos exteriores. Los extremos de los anillos exteriores se unen solidariamente con el marco de sujeción (3.1) por medio de juntas machihembradas (3.6) y el centro de los volantes (3.13) presenta un tramo de cilindros huecos que se une al del extremo superior del mástil (2.1) por medio del eje horizontal (3.7) de la articulación de elevación (2.7) permitiendo así el giro del entramado (3.2) a su alrededor. Finalmente, la parte interior de los anillos exteriores de los volantes (3.13) se apoya en los rodamientos (2.6) del mástil (2.1) en su giro en elevación, transmitiendo así los momentos de la subestructura superior (3) a la subestructura intermedia (2).
Como se aprecia en la figura 9 el engranaje mayor de elevación (3.3) está contenido en la mitad inferior del anillo exterior del volante derecho y queda acoplado al engranaje menor de elevación (2.5), que a su vez se encuentra unido sólidamente al eje del motor de elevación (2.4) contenido en el mástil (2.1) de la estructura intermedia (2). Estos 2 elementos forman un sistema de engranajes dentados que, al igual que el sistema del azimut, mantienen una relación de transmisión de 12, pero conservando únicamente 20 de los 72 dientes del engranaje grande. Estos 20 dientes cubren por tanto 100 grados de circunferencia que son suficientes para recorrer el rango máximo de elevación solar (0 a 90 grados). El diseño de ambos engranajes de elevación (3.3, 2.5) y el control del motor de elevación (2.4) involucrado en su movimiento son equivalentes a los ya descritos en los correspondientes al azimut. El asa superior (3.4) representado en detalle en la figura 10 confiere portabilidad desde arriba al sistema cuando éste se encuentre apoyado en el suelo, o de manera más general cuando la posición del centro del panel quede por debajo de las manos del usuario. Esta asa superior (3.4), compuesta por un mango articulado (3.8) y dos varillas (3.9) paralelas, se ha diseñado como un asa retráctil, de tal manera que sus varillas (3.9) puedan desplegarse hacia la parte frontal de los paneles (4) haciendo así el asa operable (3.4’) cuando el sistema requiera ser desplazado, y puedan ser replegadas en las cavidades tubulares (3.11) despejando por tanto la parte frontal expuesta a la radiación de los paneles (4) una vez que el panel (4) haya sido situado en la posición deseada. El tamaño de cada cavidad tubular (3.11) está ajustado al tamaño de las varillas (3.9) de manera que éstas puedan deslizarse hasta un tope roscado (3.12) situado en sus extremos. Una rótula articulable (3.10) en el extremo inferior de la parte emergente de las varillas (3.9) permite rotar el asa superior (3.4) en bloque hasta adquirir posición vertical. La posición de las cavidades tubulares (3. 11) y las rótulas (3.10) se han diseñado de manera que éstas queden lo más próximas al centro de gravedad del sistema completo para que pueda ser transportado manteniendo la verticalidad de la misma evitando tensiones en las articulaciones.
El panel solar (4) utiliza tecnología semi-flexible para favorecer la ligereza y manejabilidad del sistema y se ensambla por medio de tornillos de fijación (4.3) con la estructura a través del marco (3.1) de la subestructura superior (3). El diseño del panel (4) es piramidal para favorecer la estabilidad del sistema completo y está dividido en 4 subpaneles separables. Los subpaneles superiores presentan sus células (4.1) distribuidas de manera simétrica en 2 filas inferiores de 3 células y una superior de 2. Los subpaneles inferiores presentan una distribución de 2 únicas filas de 4 células cada una.
El diseño utilizado para las células (4.1) de los paneles (4) es un tipo estándar basado en cuadrados de 12,5cm de lado con esquinas en chaflán lo cual permite abrir huecos entre células interiores de los paneles para los tornillos de fijación (4.3) con el marco (3.1).
El extremo de cada subpanel en el encuentro central de los 4 subpaneles presenta el borde recortado (4.4) de manera que se abra un espacio para el mango replegable del asa superior (3.4). La caja de conexiones (4.5) de cada subpanel se ha diseñado en una posición próxima a la esquina del encuentro central de los cuatro subpaneles y con un tamaño reducido para que queden en el interior del área comprendida entre los listones trasversales y laterales del marco (3.1) de la subestructura superior (3). De esta manera se reducen los tramos del cableado de interconexión entre los subpaneles, que son extraíbles y que se conectan en paralelo.
Las piezas y los tramos de cableado separables en los que se descompone el sistema completo están diseñados para ser recogidos y plegados en una agrupación compacta de mínimo volumen para su encaje en una caja de embalaje para su almacenamiento y transporte. La figura 11 representa esta agrupación compacta que comprende 4 capas con los siguientes elementos:
• la primera capa contiene los subpaneles (4) superiores unidos por sus caras frontales;
« la segunda capa contiene los subpaneles (4) inferiores unidos también por sus caras frontales;
• la tercera capa contiene el marco de fijación (3.1) completo;
• y la cuarta capa contiene en el centro la estructura inferior (1) completa junto al engranaje mayor de azimut (2.3), en un lado el entramado del engranaje de elevación (3.2) compactado (§4) y en el lado opuesto el mástil (2.1) con el asa inferior (2.2) recogido.

Claims

REIVINDICACIONES
1. Sistema portátil de paneles (4) fotovoltaicos con estructura de seguimiento solar de 2 ejes caracterizado porque comprende:
· una subestructura inferior (1) de base que se compone de 3 patas radiales (1.2) en forma de trípode con apoyos extremos extraíbles (1.6) unidos a las patas radiales
(1.2) mediante juntas de doble vástago inclinado (1.13), una pieza cilindrica central
(1.3) a la que se unen las patas radiales (1.2) y que contiene a su vez en su centro el eje (1.4) de una articulación de eje de giro vertical en azimut, y un anillo de sujeción (1.1) superior que se une a las patas radiales (1.2) por sus extremos a través de estribos (1.5);
• una subestructura intermedia (2) que se une a la subestructura inferior (1) por medio de la articulación de giro en azimut, y que comprende un mástil (2.1), un asa inferior (2.2) y un sistema de engranajes de azimut (2.3, 1.8) compuesto por un engranaje mayor del azimut (2.3) y un engranaje menor del azimut (1.8);
• una subestructura superior (3) que se une a la subestructura intermedia (2) por medio de una articulación de eje de giro horizontal en elevación, y que comprende un marco de sujeción (3.1) de panel (4), un asa superior (3.4) retráctil y un entramado (3.2) que integra un sistema de engranajes de elevación (3.3, 2.5) compuesto por un engranaje mayor de elevación (3.3) y un engranaje menor de elevación (2.5); y
• un panel solar (4) compuesto por 4 subpaneles de tecnología semi-flexible que se une a la subestructura superior (3) a través del marco (3.1) por medio de tornillos de fijación (4.3) y que consiste en 4 subpaneles en conformación piramidal con huecos entre células interiores (4.2) para inserción de los tornillos de fijación (4.3), y diseñados con borde recortado (4.4) en cada encuentro central de los subpaneles, de manera que se abre un espacio para desplegar el asa superior
(3.4) retráctil, y con cajas de conexión (4.5) en las esquinas próximas al encuentro central.
2. Sistema portátil de paneles (4) fotovoltaicos con estructura de seguimiento solar de 2 ejes según la reivindicación 1 , que se caracteriza porque utiliza para cada orientación de elevación y de azimut un sistema de 2 engranajes cilindricos paralelos de dentado recto compuesto por un engranaje menor (1.8 y 2.5) motorizado y un engranaje mayor (2.3 y 3.3) de dientes internos.
3. Sistema portátil de paneles (4) fotovoltaicos con estructura de seguimiento solar de 2 ejes según la reivindicación 1 que se caracteriza porque una pata radial (1.2) que presenta orientación polar (1.2’) y el mástil (2.1) incluyen sendos huecos (1.7 y 2.4) para la inserción de los motores en cuyos ejes se insertan los engranajes pequeños de azimut (1.8) y de elevación (2.5) respectivamente.
4. Sistema portátil de paneles (4) fotovoltaicos con estructura de seguimiento solar de 2 ejes según la reivindicación 1 que se caracteriza porque el anillo de sujeción (1.1) y las patas radiales (1.2) incluyen espacio para rodamientos de apoyo superiores (1.10) e inferiores (1.9) respectivamente para soporte del engranaje mayor del azimut (2.3).
5. Sistema portátil de paneles (4) fotovoltaicos con estructura de seguimiento solar de 2 ejes según la reivindicación 1 que se caracteriza porque el engranaje mayor del azimut (2.3) está compuesto por un anillo exterior (2.12) y un anillo interior (2.13) que contiene 3 pestañas radiales (2.14) proyectadas hacia el interior.
6. Sistema portátil de paneles (4) fotovoltaicos con estructura de seguimiento solar de 2 ejes según la reivindicación 1 que se caracteriza porque el mástil (2.1) incluye 2 huecos laterales para rodamientos (2.6) de apoyo del entramado (2.3) del engranaje de elevación (3.2).
7. Sistema portátil de paneles (4) fotovoltaicos con estructura de seguimiento solar de 2 ejes según la reivindicación 1 que se caracteriza porque el mástil (2.1) contiene, en su base inferior, un hueco cilindrico vertical (2.11) para el eje de la articulación inferior del azimut (1.4) de la subestructura inferior (1) y, en su extremo superior, un hueco cilindrico horizontal (2.7) para el eje de la articulación de la elevación (3.7) de la subestructura superior (3).
8. Sistema portátil de paneles (4) fotovoltaicos con estructura de seguimiento solar de 2 ejes según la reivindicación 5 que se caracteriza porque el mástil (2.1) presenta en su base 2 contrafuertes laterales (2.8) que se unen mediante juntas al anillo interior (2.13) del engranaje mayor del azimut (2.3), y un disco circular inferior (2.9) que se apoya en las pestañas radiales (2.14) del mismo engranaje mayor del azimut (2.3).
9. Sistema portátil de paneles (4) fotovoltaicos con estructura de seguimiento solar de 2 ejes según la reivindicación 8 que se caracteriza porque la parte superior de la pieza cilindrica central (1.3) y la parte inferior del disco circular inferior (2.9) del mástil presentan ambos un ahuecamiento (1.12) y (2.10) respectivamente para dar espacio a un lazo de cableado suficientemente largo para permitir el giro completo de la estructura intermedia (2) sobre la estructura inferior (1).
10. Sistema portátil de paneles (4) fotovoltaicos con estructura de seguimiento solar de 2 ejes según la reivindicación 1 que se caracteriza porque el asa inferior (2.2) consiste en un mango que se curva 180 grados y que proyecta 2 apoyos rígidos hacia el mástil (2.1) alrededor de su centro y un tercer apoyo hacia uno de los radios del engranaje mayor del azimut (2.3).
11. Sistema portátil de paneles (4) fotovoltaicos con estructura de seguimiento solar de 2 ejes según la reivindicación 1 que se caracteriza porque el marco de sujeción (3.1) del panel (4) está compuesto por 2 barras laterales y 2 trasversales con prolongaciones en sus extremos para soporte de los paneles (4) y que comprenden huecos roscados (3.5) a lo largo de sus partes delanteras para el encaje de tornillos (4.3) de fijación de los paneles (4).
12. Sistema portátil de paneles (4) fotovoltaicos con estructura de seguimiento solar de 2 ejes según la reivindicación 1 que se caracteriza porque el entramado (3.2) del engranaje mayor de elevación (3.3) está compuesto por dos volantes (3.13) paralelos de dos anillos cada uno, uno interior que recorre 180 grados y otro exterior que cubre 100 grados y que se unen entre sí por medio de un travesaño periférico (3.14) en el centro de los anillos exteriores (2.12).
13. Sistema portátil de paneles (4) fotovoltaicos con estructura de seguimiento solar de 2 ejes según la reivindicación 1 que se caracteriza porque el asa superior (3.4) retráctil está compuesta por un mango articulado (3.8) y dos varillas paralelas (3.9) cada una con una rótula articulable (3.10) en el extremo inferior de la parte emergente y un tope roscado (3.12) en su extremo.
14. Sistema de plegado para almacenamiento y transporte de un sistema portátil de paneles (4) fotovoltaicos con estructura de seguimiento solar de 2 ejes de acuerdo con las reivindicaciones 1 a 13 que se caracteriza porque las piezas que componen el sistema se organizan en 4 capas que ocupan cada una un área del mismo orden de magnitud con los siguientes elementos por cada capa:
• la primera capa contiene los subpaneles (4) superiores unidos por sus caras frontales;
· la segunda capa contiene los subpaneles (4) inferiores unidos también por sus caras frontales;
• la tercera capa contiene el marco de fijación (3.1) completo;
• y la cuarta capa contiene en el centro la estructura inferior (1) completa junto al engranaje mayor de azimut (2.3), en un lado el entramado del engranaje de elevación (3.2) compactado y en el lado opuesto el mástil (2.1) con el asa inferior (2.2) recogido.
PCT/ES2019/070085 2018-02-16 2019-02-15 Sistema portatil de paneles fotovoltaicos con estructura de seguimiento solar de 2 ejes y sistema de plegado para su almacenamiento y transporte WO2019158796A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980013822.4A CN112514244A (zh) 2018-02-16 2019-02-15 具有两轴太阳能跟踪结构的光伏面板便携式系统及用于其运输和存储的折叠系统
US16/968,776 US11165386B2 (en) 2018-02-16 2019-02-15 Portable system of photovoltaic panels with biaxial solar tracking structure
EP19717503.7A EP3754841A1 (en) 2018-02-16 2019-02-15 Portable system of photovoltaic panels with biaxial solar tracking structure and folding system for its transport and storage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201830143A ES2723199A1 (es) 2018-02-16 2018-02-16 Sistema portatil de paneles fotovoltaicos con estructura de seguimiento solar de 2 ejes y sistema de plegado para su almacenamiento y transporte
ESP201830143 2018-02-16

Publications (1)

Publication Number Publication Date
WO2019158796A1 true WO2019158796A1 (es) 2019-08-22

Family

ID=66175429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070085 WO2019158796A1 (es) 2018-02-16 2019-02-15 Sistema portatil de paneles fotovoltaicos con estructura de seguimiento solar de 2 ejes y sistema de plegado para su almacenamiento y transporte

Country Status (5)

Country Link
US (1) US11165386B2 (es)
EP (1) EP3754841A1 (es)
CN (1) CN112514244A (es)
ES (1) ES2723199A1 (es)
WO (1) WO2019158796A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110723058A (zh) * 2019-09-26 2020-01-24 南京欧泰物联网科技有限公司 一种冷链物流智能运输环境监管装置及其监管系统、方法
CN111371386A (zh) * 2020-03-07 2020-07-03 张文浩 一种太阳能电池
CN111969935A (zh) * 2020-08-31 2020-11-20 浙江广厦建设职业技术大学 一种光伏安装支架
US11165386B2 (en) 2018-02-16 2021-11-02 Xtzan Energy Efficiency S.L. Portable system of photovoltaic panels with biaxial solar tracking structure

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220149778A1 (en) * 2020-11-06 2022-05-12 ArmorForge, LLC Modular hardened solar electronics platform
US11626832B2 (en) * 2020-12-14 2023-04-11 San Francisco Module clip
US12003209B2 (en) * 2021-05-19 2024-06-04 Gamechange Solar Corp. Pre-assembly based installation for a single axis solar tracker
RU2767718C1 (ru) * 2021-08-10 2022-03-18 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Солнечная фотоэнергоустановка
CN114465569B (zh) * 2022-04-14 2022-06-14 国网甘肃省电力公司营销服务中心 一种可根据太阳位置自动调节角度的太阳能发电装置
US11764725B1 (en) * 2022-08-13 2023-09-19 Yonghua Wang Foldable portable load distributed dual axes lightweight solar tracker

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080163921A1 (en) * 2007-01-05 2008-07-10 Solyndra, Inc., A Delaware Corporation Three-legged solar cell support assembly
WO2008155652A2 (en) * 2007-06-19 2008-12-24 Enermill Energie Rinnovabili S.R.L. Orientable solar module panel
DE202011050132U1 (de) * 2011-05-13 2011-08-04 Huang Yih Gear Industry Co., Ltd. Sonnennachführer
US8046961B1 (en) * 2008-05-27 2011-11-01 Solarcraft, Inc. Tactical solar power system
DE102010037776A1 (de) * 2010-09-24 2012-03-29 Torsten Michael Speck Vorrichtung und Verfahren zur leistungsaufnahmebasierten Solarmodulpositionsnachführung
WO2013115832A2 (en) * 2011-04-07 2013-08-08 Steven Polk Solar energy collector
US20140238467A1 (en) * 2013-02-28 2014-08-28 Solar Power Innovations, LLC. Solar powered container
US20160261226A1 (en) * 2015-03-06 2016-09-08 Instant Solar LLC Portable solar power generation devices for permanent or temporary installations and methods thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6123067A (en) 1999-03-31 2000-09-26 Amonix, Inc. Solar collector tracking system
CZ20022831A3 (cs) 2000-01-27 2003-12-17 Michael Bohumir Haber Mechanismus naklánění souboru sad solárních panelů
ES1065033Y (es) 2007-03-09 2007-09-01 De La Rocha Justino Magan Seguidor solar a dos ejes sobre plataforma rodante, con dos tableros portapaneles
ES2345078B1 (es) 2008-04-17 2011-07-18 Sun Nest, S.L.U. Estructura para seguidor solar y procedimiento de instalacion.
CN102035434B (zh) * 2009-10-08 2013-08-28 陈永胜 自动跟踪太阳能发电装置
US20120085387A1 (en) * 2010-04-23 2012-04-12 French Development Enterprises Truck mounted solar panel system
WO2012013827A1 (es) 2010-07-28 2012-02-02 Energías Renovables Integrales, S.L. Seguidor solar plegable y procedimiento de operación
US20130037080A1 (en) * 2011-08-10 2013-02-14 Ron HELFAN Transportable solar harvester system and method
ES2368402B1 (es) 2011-09-20 2012-05-31 Grupo Clavijo Elt, S.L. Seguidor solar.
DE102011056583A1 (de) * 2011-12-19 2013-06-20 DEGERenergie GmbH Bewegungseinrichtung, Aufbau, Nachführvorrichtung, Solarsystem und Herstellverfahren
KR20130090013A (ko) * 2012-02-03 2013-08-13 김홍근 이동식 솔라 트래커
CN103956966A (zh) * 2014-01-09 2014-07-30 北京万阳天力新能源科技有限公司 一种太阳能电池发电双轴跟踪支架装置
US9520825B2 (en) * 2014-07-11 2016-12-13 Lob Cheung Portable solar panel tracking device
CN204168217U (zh) * 2014-11-13 2015-02-18 成都大学 一种机械式太阳跟踪装置
CN104967401A (zh) * 2015-06-13 2015-10-07 陈永胜 折叠便携式跟踪太阳能发电机组
CN105871321A (zh) * 2016-06-02 2016-08-17 太原工业学院 自动跟随太阳调整的便携式太阳能供电设备
ES2723199A1 (es) 2018-02-16 2019-08-22 Xizan Energy Efficiency S L Sistema portatil de paneles fotovoltaicos con estructura de seguimiento solar de 2 ejes y sistema de plegado para su almacenamiento y transporte

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080163921A1 (en) * 2007-01-05 2008-07-10 Solyndra, Inc., A Delaware Corporation Three-legged solar cell support assembly
WO2008155652A2 (en) * 2007-06-19 2008-12-24 Enermill Energie Rinnovabili S.R.L. Orientable solar module panel
US8046961B1 (en) * 2008-05-27 2011-11-01 Solarcraft, Inc. Tactical solar power system
DE102010037776A1 (de) * 2010-09-24 2012-03-29 Torsten Michael Speck Vorrichtung und Verfahren zur leistungsaufnahmebasierten Solarmodulpositionsnachführung
WO2013115832A2 (en) * 2011-04-07 2013-08-08 Steven Polk Solar energy collector
DE202011050132U1 (de) * 2011-05-13 2011-08-04 Huang Yih Gear Industry Co., Ltd. Sonnennachführer
US20140238467A1 (en) * 2013-02-28 2014-08-28 Solar Power Innovations, LLC. Solar powered container
US20160261226A1 (en) * 2015-03-06 2016-09-08 Instant Solar LLC Portable solar power generation devices for permanent or temporary installations and methods thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11165386B2 (en) 2018-02-16 2021-11-02 Xtzan Energy Efficiency S.L. Portable system of photovoltaic panels with biaxial solar tracking structure
CN110723058A (zh) * 2019-09-26 2020-01-24 南京欧泰物联网科技有限公司 一种冷链物流智能运输环境监管装置及其监管系统、方法
CN111371386A (zh) * 2020-03-07 2020-07-03 张文浩 一种太阳能电池
CN111969935A (zh) * 2020-08-31 2020-11-20 浙江广厦建设职业技术大学 一种光伏安装支架

Also Published As

Publication number Publication date
US11165386B2 (en) 2021-11-02
US20200403560A1 (en) 2020-12-24
ES2723199A1 (es) 2019-08-22
CN112514244A (zh) 2021-03-16
EP3754841A1 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
WO2019158796A1 (es) Sistema portatil de paneles fotovoltaicos con estructura de seguimiento solar de 2 ejes y sistema de plegado para su almacenamiento y transporte
ES2232837T3 (es) Sistema de concentracion de energia solar, y tejado con tal sistema integrado.
ES2727278T3 (es) Concentrar la energía solar con invernaderos
ES2283233B1 (es) Seguidor solar.
ES2663012T3 (es) Una caja de transporte para equipo técnico
ES2304116B1 (es) Seguidor solar.
ES2350071A1 (es) Seguidor solar de un solo eje e instalacion de energia solar.
ES2492697T3 (es) Instalación con una estructura de alojamiento regulable en un eje alrededor de un eje horizontal para el alojamiento de uno o varios paneles solares o módulos fotovoltaicos o similares
ES1061617U (es) Seguidor solar lineal para instalacion fotovoltaica.
ES1065033U (es) Seguidor solar a dos ejes sobre plataforma rodante, con dos tableros portapaneles.
ES2376562A1 (es) Contenedor mar�?timo adaptable.
WO2014114836A1 (es) Arquitectura de alojamiento adaptable modular
ES2389798A1 (es) Seguidor solar para la orientación de paneles solares
ES2658390A1 (es) Mecanismo de giro azimutal y de elevación para seguidor solar
ES1061185U (es) Seguidor solar perfeccionado.
ES2322527B2 (es) Seguidor solar fotovoltaico.
ES2446890A1 (es) Estructura soporte para colector solar cilíndrico de concentración y colector solar que comprende la mencionada estructura
ES2300222B1 (es) Seguidor solar.
ES1063906U (es) Seguidor solar a dos ejes, sobre plataforma rodante.
ES2403545B1 (es) Sistema compacto de instalación de paneles solares fotovoltaicos
ES2326769B2 (es) Dispositivo de absorcion acustica.
ES2344492B1 (es) Mejoras introducidas en la patente de invencion p.200603326/3 por: seguidor solar bidireccional.
ES1059590U (es) Dispositivo de orientacion de un conjunto de paneles solares.
ES2757974B2 (es) Generador movil autonomo de energia fotovoltaica y procedimiento de plegado/desplegado de los paneles solares
ES2398983A1 (es) Seguidor solar a dos ejes de múltiples módulos fotovoltaicos.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19717503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019717503

Country of ref document: EP

Effective date: 20200916