WO2019158042A1 - 通信的方法和装置 - Google Patents

通信的方法和装置 Download PDF

Info

Publication number
WO2019158042A1
WO2019158042A1 PCT/CN2019/074832 CN2019074832W WO2019158042A1 WO 2019158042 A1 WO2019158042 A1 WO 2019158042A1 CN 2019074832 W CN2019074832 W CN 2019074832W WO 2019158042 A1 WO2019158042 A1 WO 2019158042A1
Authority
WO
WIPO (PCT)
Prior art keywords
code rate
uci
determining
threshold
data
Prior art date
Application number
PCT/CN2019/074832
Other languages
English (en)
French (fr)
Inventor
李华
曹永照
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP23204350.5A priority Critical patent/EP4333337A3/en
Priority to JP2020542771A priority patent/JP7182637B2/ja
Priority to EP19754080.0A priority patent/EP3742846B1/en
Publication of WO2019158042A1 publication Critical patent/WO2019158042A1/zh
Priority to US16/987,404 priority patent/US11700103B2/en
Priority to US17/940,765 priority patent/US20230006802A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/003Adaptive formatting arrangements particular to signalling, e.g. variable amount of bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communications, and more particularly to a method and apparatus for transmitting uplink control information, and a method and apparatus for receiving uplink control information.
  • the uplink control information UCI is mainly divided into three parts: hybrid automatic repeat request acknowledgement (HARQ-ACK), CSI part 1 and CSI part 2, in which the data volume of CSI part 2 has been greatly increased.
  • HARQ-ACK hybrid automatic repeat request acknowledgement
  • CSI part 1 CSI part 1
  • CSI part 2 CSI part 2
  • CSI part 2 When the base station schedules resources, the data of CSI part 2 may not be obtained in advance, which may result in insufficient resources for scheduling. At this time, CSI part 2 cannot perform effective bearer on the allocated resources, so it is necessary to discard the part of CSI part 2 or The total amount of data.
  • a code rate threshold of CSI part 2 is obtained according to the code rate and the ⁇ value of the uplink data. CSI part 2 discards according to a certain priority, and stops the discarding until the code rate of CSI part 2 falls below a certain threshold.
  • the present application provides a method and apparatus for transmitting uplink control information, and a method and apparatus for receiving uplink control information, which can ensure efficient transmission of UCI data and improve resource utilization.
  • a communication method comprising:
  • the terminal device may discard a part of the UCI according to the resource allocated by the network device, for example, part or all of the CSI part2, and only send the number of UCI bits that can be effectively carried. Therefore, the terminal device can allocate resources reasonably and ensure effective transmission of UCI data.
  • the terminal device may further send uplink control information and uplink data in parallel on the physical uplink channel, thereby improving resource utilization, and overall, facilitating improvement of the communication system. Transmission performance.
  • determining the threshold code rate according to the MCS identifier includes:
  • the MCS identifier is in the first range, determining a first code rate according to the one-to-one correspondence between the MCS identifier and the predefined MCS identifier and the first code rate; determining the first code rate as the threshold code rate; or The threshold code rate is determined according to the first code rate and the offset amount ⁇ , and the offset amount ⁇ is a value greater than or equal to 1.
  • the first range is an area where the MCS identifier is greater than or equal to 0 and less than 28.
  • the correspondence between the MCS identifier and the first code rate may be defined by a protocol, where the MCS identifier and the first code are used.
  • the rate is one-to-one correspondence, and a code rate corresponding to an MCS identifier is used as the first code rate for calculating the code rate threshold, and then the threshold code rate is obtained, so that part of the UCI may be discarded according to the resource allocation allocated by the network device, for example, part or all.
  • CSI part2 only sends the number of UCI bits that can be effectively carried, and improves the utilization of resources, which is beneficial to improving the transmission performance of the communication system.
  • determining the threshold code rate according to the MCS identifier includes:
  • the MCS identifier is in the second range, determining a modulation order according to the MCS identifier, and determining the first code rate according to the correspondence between the modulation order and the first code rate;
  • the threshold code rate is determined according to the first code rate and the offset amount ⁇ , and the offset amount ⁇ is a value greater than or equal to 1.
  • determining the first code rate according to the correspondence between the modulation order and the first code rate including:
  • the modulation order corresponds to the plurality of the first code rates, determining that a maximum code rate of the plurality of first code rates is the first code rate;
  • the modulation order corresponds to the plurality of the first code rates, determining that a minimum code rate of the plurality of first code rates is the first code rate;
  • the modulation order corresponds to the plurality of the first code rates, determining the first code rate according to the first indication information.
  • the correspondence between the MCS identifier and the modulation order may be defined, and according to the correspondence between the modulation order and the code rate, Determine the first code rate.
  • the modulation order has four values of 1, 2, 4, and 6. Each value corresponds to a plurality of code rates.
  • the modulation order corresponds to multiple codes. Rate, determining a maximum or minimum code rate of the plurality of code rates as the first code rate, or indicating a code rate as the first code rate by using the first indication information carried in the DCI, thereby improving transmission efficiency At the same time, improving the utilization of resources is conducive to improving the transmission performance of the communication system.
  • determining the threshold code rate according to the MCS identifier includes:
  • the threshold code rate is determined according to the first code rate and the offset amount ⁇ , and the offset amount ⁇ is a value greater than or equal to 1.
  • the second range is an area where the MCS identifier is greater than 28.
  • the MCS identifier is between 28 and 31 (including 28 and 31), it is defined as the case of data retransmission.
  • the embodiment of the present application defines the MCS identifier and the first code rate in the second scope by using a protocol. A one-to-one correspondence to determine a first code rate. This can improve the efficiency of transmission, and at the same time improve the utilization of resources, which is beneficial to improve the transmission performance of the communication system.
  • the method further includes: determining whether to send the UCI only on the physical uplink channel.
  • the resources scheduled by the network device through the information of the DCI can be used to transmit data and/or UCI, and the network device needs to let the terminal device know whether the uplink data needs to be transmitted. If only the UCI is transmitted and there is no need to transmit uplink data, the terminal device will not generate the TB block, but will distribute all the resources to the terminal device. If both uplink data and UCI are available, the terminal device needs to allocate resources to both the uplink data and the UCI.
  • the redundancy version RV indication and the new transmission data instruct the NDI to determine whether to transmit only the UCI on the physical uplink channel.
  • the indication information carried in the DCI for example, the indication information of the 1 bit or the MCS identifier, the redundancy version RV indication, and the new transmission data NDI.
  • the terminal device only transmits UCI, all the resources are allocated to the terminal device for transmitting UCI, which can improve the transmission efficiency, improve the resource utilization rate, and improve the transmission performance of the communication system.
  • a communication method including:
  • the network device may determine, according to the allocated resources, that the terminal device discards a part of the UCI, for example, part or all of the CSI part2, so that the network device can effectively receive the UCI bit number. It is beneficial to improve the reliability of data transmission and improve the utilization of resources. On the whole, it is beneficial to improve the transmission performance of the communication system.
  • determining the threshold code rate according to the MCS identifier includes:
  • the threshold code rate is determined according to the first code rate and the offset amount ⁇ , and the offset amount ⁇ is a value greater than or equal to 1.
  • the first range is an area where the MCS identifier is greater than or equal to 0 and less than 28.
  • determining the threshold code rate according to the MCS identifier includes: determining, when the MCS identifier is in the second range, determining a modulation order according to the MCS identifier, according to Corresponding relationship between the modulation order and the first code rate determines the first code rate;
  • the threshold code rate is determined according to the first code rate and the offset amount ⁇ , and the offset amount ⁇ is a value greater than or equal to 1.
  • the modulation order corresponds to the plurality of the first code rates, determining that a minimum code rate of the plurality of first code rates is the first code rate;
  • the modulation order corresponds to the plurality of the first code rates, determining the first code rate according to the first indication information.
  • determining the threshold code rate according to the MCS identifier includes: when the MCS identifier is in the second range, according to the predefined MCS identifier and the first code The one-to-one correspondence of the rates determines the first code rate,
  • the threshold code rate is determined according to the first code rate and the offset amount ⁇ , and the offset amount ⁇ is a value greater than or equal to 1.
  • the second range is an area where the MCS identifier is greater than 28.
  • the method further includes: determining whether the UCI is received only on the physical uplink channel.
  • the indication determines whether the UCI is only received on the physical upstream channel.
  • the terminal device may discard a part of the UCI according to the resource allocated by the network device, for example, part or all of the CSI part2, and only transmit the number of UCI bits that can be effectively carried. Therefore, the terminal device can allocate resources reasonably and ensure effective transmission of UCI data.
  • the terminal device may further send uplink control information and uplink data in parallel on the physical uplink channel, thereby improving resource utilization, and overall, facilitating improvement of the communication system. Transmission performance.
  • a terminal device having the function of implementing the terminal device in the method design of the above first aspect.
  • These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • a network device having the function of implementing the network device in the method design of the second aspect above.
  • These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • a terminal device including a transceiver, a processor, and a memory.
  • the processor is configured to control a transceiver transceiver signal for storing a computer program, the processor for calling and running the computer program from the memory, such that the terminal device performs any of the above first aspect and the first aspect A method in any of the possible implementations of the implementation.
  • a network device including a transceiver, a processor, and a memory.
  • the processor is configured to control a transceiver transceiver signal for storing a computer program for calling and running the computer program from the memory, such that the network device performs any of the second aspect and the second aspect described above.
  • a communication device which may be a terminal device in the above method design, or a chip disposed in the terminal device.
  • the communication device includes a processor coupled to the memory for executing instructions in the memory to implement the method of the first aspect and any one of the possible implementations of the first aspect.
  • the communication device further comprises a memory.
  • the communication device further includes a communication interface, the processor being coupled to the communication interface.
  • a communication device which may be a network device in the above method design or a chip disposed in a network device.
  • the communication device includes a processor coupled to the memory for executing instructions in the memory to implement the method performed by the network device in any of the possible implementations of the second aspect and the second aspect.
  • the communication device further comprises a memory.
  • the communication device further includes a communication interface, the processor being coupled to the communication interface.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, causing the computer to perform the method of the above aspects.
  • a computer readable medium storing program code for causing a computer to perform the method of the above aspects when the computer program code is run on a computer.
  • a chip system comprising a processor for supporting a terminal device to implement the functions involved in the above aspects, for example, generating, receiving, determining, transmitting, or processing the method involved in the above method Data and / or information.
  • the chip system further comprises a memory for storing necessary program instructions and data of the terminal device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • a chip system comprising a processor for supporting a network device to implement the functions involved in the above aspects, for example, generating, receiving, determining, transmitting, or processing the method involved in the above method Data and / or information.
  • the chip system further comprises a memory for storing necessary program instructions and data of the terminal device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of an example communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an example of information processing provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of resource mapping provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another example of information processing provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another resource mapping provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another resource mapping provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of an example communication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another example communication method provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of an example communication device according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of another example communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of an example terminal device according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of another example terminal device provided by an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of an example network device provided by an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of another example network device according to an embodiment of the present disclosure.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, an execution thread, a program.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • the “protocol” may refer to a standard protocol in the communication field, and may include, for example, the LTE protocol, the NR protocol, and related protocols used in a future communication system, which is not limited in this application.
  • pre-definition may be implemented by pre-storing corresponding codes, tables, or other manners that can be used to indicate related information in a device (for example, including a terminal device and a network device).
  • a device for example, including a terminal device and a network device.
  • pre-definition can be defined in the protocol.
  • reporting and “feedback” are often used interchangeably, but those skilled in the art can understand the meaning thereof.
  • the feedback CSI and the feedback CSI may all be substantially the CSI transmitted through the physical uplink channel. Therefore, in the embodiments of the present application, the meanings to be expressed are consistent when the distinction is not emphasized.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD LTE frequency division duplex
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G future fifth generation
  • 5G fifth generation
  • NR new radio
  • the wireless communication system 100 can include one or more network devices, such as the network device 101 shown in FIG. 1; the wireless communication system 100 can also include one or more terminal devices, for example, FIG. Terminal device #1 102, terminal device #2 103 are shown.
  • the wireless communication system 100 can support coordinated multiple points (CoMP), that is, multiple cells or multiple network devices can cooperatively participate in data transmission of one terminal device or jointly receive data transmitted by one terminal device, or Multiple cells or multiple network devices perform cooperative scheduling or cooperative beamforming.
  • the plurality of cells may belong to the same network device or different network devices, and may be selected according to channel gain or path loss, received signal strength, received signal command, and the like.
  • the network device in the wireless communication system may be any device having a wireless transceiver function or a chip that can be disposed on the device, including but not limited to: an evolved Node B (eNB), Radio network controller (RNC), Node B (NB), base station controller (BSC), Base Transceiver Station (BTS), home evolved NodeB or Home Node B, HNB), baseband unit (BBU), access point (AP) in wireless fidelity (WIFI) system, wireless relay node, wireless backhaul node, transmission Transmission point (TP) or transmission and reception point (TRP), etc., can also be 5G, such as NR, gNB in the system, or transmission point (TRP or TP), base station in 5G system One or a group (including multiple antenna panels) antenna panels, or, alternatively, a network node that constitutes a gNB or transmission point, such as a baseband unit (BBU), or a distributed unit (distributed un It, DU) and so on.
  • eNB evolved Node
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU implements radio resource control (RRC), the function of the packet data convergence protocol (PDCP) layer, and the DU implements the wireless chain.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU implements the wireless chain.
  • the functions of the radio link control (RLC), the media access control (MAC), and the physical (PHY) layer Since the information of the RRC layer eventually becomes information of the PHY layer or is transformed by the information of the PHY layer, high-level signaling, such as RRC layer signaling or PHCP layer signaling, can also be used in this architecture.
  • the network device can be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network devices in the access network RAN, and the CU may be divided into network devices in the core network CN, which is not limited herein.
  • the terminal equipment in the wireless communication system may also be referred to as user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, User terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal.
  • Equipment wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security ( A wireless terminal in a transportation safety, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • the embodiment of the present application does not limit the application scenario.
  • the foregoing terminal device and a chip that can be disposed in the foregoing terminal device are collectively referred to as a terminal device.
  • the network device may be a serving network device, and the serving network device may refer to providing an RRC connection, a non-access stratum (NAS) for the terminal device through a wireless air interface protocol.
  • Network device for at least one service in mobility management and security input.
  • the network device may also be a cooperative network device.
  • the serving network device may send control signaling to the terminal device, and the cooperative network device may send data to the terminal device; or the serving network device may send control signaling to the terminal device, where the serving network device and the cooperative network device may send data to the terminal device; Alternatively, both the serving network device and the cooperative network device may send control signaling to the terminal device, and both the serving network device and the cooperative network device may send data to the terminal device; or the cooperative network device may send control signaling to the terminal device, the service At least one of the network device and the cooperative network device may transmit data to the terminal device; or the cooperative network device may transmit control signaling and data to the terminal device.
  • This embodiment of the present application is not particularly limited.
  • network device and the terminal device are schematically illustrated in FIG. 1 for convenience of understanding, but this should not constitute any limitation to the present application, and a more or less number of network devices may be included in the wireless communication system.
  • a network device that can communicate with different terminal devices may be the same network device or a different network device, and the number of network devices that communicate with different terminal devices may be the same.
  • the present application is not limited thereto.
  • Physical Uplink Channel A channel that can be used to carry uplink control information and/or uplink data.
  • the physical uplink channel may include a physical uplink control channel (PUCCH) defined in the LTE protocol or the NR protocol, a physical uplink shared channel (PUSCH), and other uplinks having the foregoing functions defined as the network evolves. channel.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • Uplink control information can be used to carry CSI (channel state information), acknowledgement (ACK)/negative acknowledgement (NACK), and uplink scheduling request (SR). At least one.
  • DCI Downlink control information
  • Resource element or resource element.
  • One symbol can be corresponding to the time domain, and one subcarrier can be corresponding to the frequency domain.
  • the RE may be an example of a resource unit.
  • Resource block (RB) an RB occupies in the frequency domain. Continuous subcarriers. among them, Is a positive integer. For example, in the LTE protocol, Can be equal to 12.
  • the RB may be defined only from the frequency domain resource, that is, the number of time domain resources occupied by the RB in the time domain is not limited. In the embodiment of the present application, the RB may be another example of the resource unit.
  • the transmission object (that is, the uplink control information UCI) of the embodiment of the present application will be described in detail below.
  • the uplink control information UCI includes: HARQ-ACK, SR, CSI (CQI, PMI, RI).
  • the uplink control information may include, but is not limited to, one or more of the following information:
  • the uplink control information may include feedback information for downlink data.
  • the downlink data may be transmitted by using a feedback technique.
  • the feedback technology may include, for example, a hybrid automatic repeat request (HARQ) technology.
  • HARQ hybrid automatic repeat request
  • the HARQ technology is a technology formed by combining forward error correction (FEC) and automatic repeat request (ARQ).
  • FEC forward error correction
  • ARQ automatic repeat request
  • the receiving end after receiving data from the transmitting end, the receiving end can determine whether the data is accurately decoded. If the decoding is not possible, the receiving end may feed back the negative-acknowledge (NACK) information to the transmitting end, so that the transmitting end may determine that the receiving end does not accurately receive the data based on the NACK information, so that the retransmission processing may be performed; If the decoding can be accurately performed, the receiving end can feed back acknowledgement (ACK) information to the transmitting end, so that the transmitting end can determine that the receiving end accurately receives the data based on the ACK information, so that the data transmission can be determined to be completed.
  • NACK negative-acknowledge
  • ACK acknowledgement
  • the ACK information when the receiving end decodes successfully, the ACK information can be sent to the sending end, and when the decoding fails, the NACK information can be fed back to the sending end.
  • the uplink control information may include ACK information or NACK information in the HARQ technology.
  • the HARQ-ACK is used to feed back the downlink data channel PDSCH.
  • an ACK is sent.
  • a NACK is sent.
  • the base station determines the next scheduling policy according to the feedback information of the UE to the PDSCH channel, such as retransmission or new transmission.
  • the feedback information may further include discontinuous transmission (DTX) information, where the DTX information may be used to indicate that the terminal device does not receive downlink data.
  • DTX discontinuous transmission
  • the so-called CSI is the channel attribute of the communication link, and the CSI is the channel state information that the UE feeds back to the base station after measuring the channel state, and the information further includes information such as CQI/PMI/RI. It describes the weakening of the signal on each transmission path, ie the value of each element in the channel gain matrix H, such as signal scattering, multipath fading or shadowing fading, power decay of distance ) and other information.
  • CSI can adapt the communication system to current channel conditions, providing high reliability and high rate communication in multi-antenna systems.
  • the CQI may be used to reflect the channel quality of the physical downlink shared channel (PDSCH).
  • the CQI is channel quality indication information for direct feedback of channel quality.
  • the base station can further determine the modulation and coding strategy MCS used for transmitting the data according to the CQI.
  • the value of the feedback CQI is high, a higher coding modulation mode and a higher code rate can be used to carry more information on a limited resource, thereby increasing the data transmission rate.
  • the value of the feedback CQI is low, a lower code modulation mode and a lower code rate can be used, and more time-frequency resources are used to transmit data, thereby improving the reliability of data transmission.
  • the UE measures the CQI of different frequency domain resources, so that the base station can schedule the data on the frequency domain resource with good channel quality, thereby obtaining the frequency domain scheduling gain.
  • the channel quality of the PDSCH may be represented by 0-15. 0 indicates the worst channel quality and 15 indicates the best channel quality.
  • the terminal device may send CQI information to the network device on a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
  • the network device may determine the radio channel condition of the current PDSCH or the PUSCH according to the CQI information, and then complete the scheduling for the PDSCH.
  • the network device may determine adaptive modulation and coding based on the CQI information.
  • AMC modulation and coding scheme
  • MCS modulation and coding scheme
  • the RI is the rank indication information, and is used to feed back to the base station the number of layers that the channel can be separated. The more the number of layers, the larger the amount of data that can be simultaneously transmitted.
  • the RI information can be used to indicate the number of valid data layers of the PDSCH, or the RI information can be used to indicate the number of code words (CW) that the terminal device can currently support.
  • the PMI information may be used to indicate an index of a codebook set, and the PMI is a precoding matrix identifier of the transmission data that the UE feeds back to the base station according to the measured channel quality.
  • the base station may determine a corresponding precoding matrix according to the fed back PMI information. That is, in a multi-antenna technique, for example, a multiple-input multiple-output (MIMO) technique, precoding based precoding is performed in the baseband processing of the PDSCH physical layer.
  • MIMO multiple-input multiple-output
  • the terminal device can indicate the precoding matrix through the PMI information, thereby improving the signal quality of the PDSCH.
  • CRI CSI-RS resource indicator
  • the CSI sent by the receiving end device to the sending end device may include one or more of the above-mentioned enumeration, or may include other information for characterizing the CSI in addition to the above enumeration, which is not limited in this application.
  • the terminal device may be any terminal device that has a wireless connection relationship with one or more network devices in a wireless communication system. It can be understood that any one of the terminal devices in the wireless communication system can implement wireless communication based on the same technical solution. This application does not limit this.
  • the sending the uplink control information may refer to sending data or information carried on the uplink control channel PUCCH or the uplink shared channel PUSCH, where the data or information may refer to the channel-encoded data or information. This application does not limit this.
  • the sending the downlink control information may refer to sending data or information carried on a downlink uplink control channel (PDCCH) or a downlink shared channel (PDSCH), where the data or information may refer to Channel-encoded data or information.
  • PDCCH downlink uplink control channel
  • PDSCH downlink shared channel
  • the transmission of uplink control information can be transmitted using two channels: PUCCH and PUSCH.
  • PUCCH may be used to transmit UCI, and all resources may be allocated to UCI on the PUSCH channel, so that no data is transmitted.
  • UCI is multiplexed on the PUSCH, different information is handled differently.
  • the UE For data transmission, the UE generates a transport block (TB) from a media access control (MAC) layer, and performs cyclic redundancy check on the transport block according to the operation of S201.
  • Check, CRC) is added, wherein the division of the code block (CB) shown in S202 and the CRC addition of each code block are performed, and then S203 is entered into the encoder for encoding, and after encoding, according to the actual time frequency
  • the number of resources performs rate matching on the encoded data. For example, in S204, the rate matching is performed to perform cascading of S205 code blocks to synthesize a bit stream of a series of data.
  • the CQI needs to be multiplexed with the data after encoding.
  • the ACK and RI are encoded, they are interleaved with the CQI/data.
  • the ACK enters the interleaver by means of data loss.
  • the ACK is located next to the pilot of the PUSCH, and the RI is located next to the ACK, and the rate matching method is adopted. This placement is based on the fact that ACK can have better channel estimation performance, and RI has a certain effect on correctly receiving CQI/PMI.
  • FIG. 3 is a schematic diagram of information interleaving corresponding to a protocol.
  • the interleaving mapping of specific information is shown in Figure 3.
  • the ACK/NACK is mapped to the four symbols according to the black dot area in the figure, and the order from the bottom to the top in the order of the first time domain and the backward frequency domain.
  • the UE For data transmission, the UE generates a transport block TB from the MAC layer, and performs CRC addition on the transport block according to the operation of S401, where then the partitioning of the code block CB and the CRC addition of each code block are performed. Then, S403 is entered into the encoder for encoding. After encoding, the encoded data is rate-matched according to the actual time-frequency resources, such as S404, and the S405 code block is cascaded after the rate matching, and the bits of a string of data are synthesized. flow.
  • mapping process the HARQ-ACK information is mapped on the symbol of the first non-DMRS after the DMRS.
  • CSI part 1 and CSI part 2 are mapped from the first non-DMRS symbol.
  • mapping rules are as follows:
  • the mapping is performed according to the manner of dispersing the mapping in the frequency domain.
  • mapping CSI part 2 When mapping CSI part 2, the available REs need to remove the HARs that have been mapped by HARQ-ACK and CSI part 1.
  • the HARQ-ACK information needs different operation modes when the information bits are different.
  • the puncturing method is adopted in resource mapping; when the HARQ-ACK information is greater than 2 bits, the rate matching method is adopted in resource mapping.
  • the puncturing method is adopted, in order to prevent the RE of the HARQ-ACK from occupying the resources of the CSI part 1, a method of reserving resources is introduced.
  • the HARQ-ACK resource is reserved according to 2 bits, and the CSI-part1 cannot be mapped to the pre- Leave resources on to avoid being destroyed by HARQ-ACK resources.
  • the mapping of reserved resources can still adopt the method of isometric mapping on the available resources as described above, and the mapping of the resources to be transmitted on the reserved resources can still be adopted.
  • the real-transmitted HARQ-ACK resource is 3 REs, which are equidistantly distributed on the reserved HARQ-ACK resources.
  • the network device cannot know the resource size required for the feedback of the terminal device in advance, the corresponding resource cannot be configured to the physical uplink channel.
  • the terminal device may have insufficient feedback resources when the resources required for feedback are large.
  • the terminal device may also send uplink data while transmitting the UCI. For example, CSI and uplink data are transmitted on the PUSCH.
  • the network device cannot know in advance whether the terminal device transmits UCI or uplink data on the physical uplink channel, and thus cannot receive correctly, thereby causing a decrease in transmission reliability.
  • UCI is mainly divided into three parts: HARQ-ACK, CSI part 1 and CSI part 2, in which the data volume of CSI part 2 has been greatly increased.
  • the amount of data of CSI part 2 depends on CSI part 1.
  • the amount of data of CSI part 2 cannot be obtained, which may result in insufficient resources for scheduling.
  • CSI part 2 cannot be performed on the allocated resources.
  • the amount of data of CSI part 2 needs to be partially or completely discarded. The amount of data discarded must be calculated.
  • the prior art gives rules for CSI part 2 to discard on resources with data allocation.
  • the code rate is generally used to indicate the ratio between the number of bits before data encoding and the number of bits actually transmitted.
  • the following formula can generally be a TB block that has undergone CRC check.
  • the size, the denominator is the product of the actual number of REs allocated and the modulation order.
  • the base station can infer the size of the TB block by indicating the code rate and the modulation order corresponding to the UE.
  • Rate (TB + CRC) / (RE number * modulation order)
  • the parameters listed above for example, the modulation order, the number of bits of the CRC code, the minimum code rate, and the number of subcarriers and the number of symbols included in one RB may be predefined, or may be a signaling device of the network device.
  • the configuration is not limited in this application.
  • c MCS is the code rate of the data, and the code rate is indicated by DCI, and 5 bits are used in the DCI to indicate the modulation and coding mode of the scheduled uplink data. Specifically, the modulation and coding mode used by the corresponding PDSCH is indicated by DCI.
  • the UE may calculate the size of the corresponding transport block according to a predefined rule according to the scheduled resource and the Modulation and Coding Scheme (MCS) indication indicated by the PDCCH.
  • MCS Modulation and Coding Scheme
  • the second column is the modulation order, where 1 corresponds to Binary Phase Shift Keying (BPSK) and 2 corresponds to Quadrature Phase Shift
  • the keying modulation method QPSK corresponds to Quadrature Amplitude Modulation (16QAM), and 6 corresponds to Quadrature Amplitude Modulation (64QAM).
  • the third column is the corresponding code rate, ie the c MCS .
  • lines 28, 29, 30, and 31 are used to indicate that the data currently transmitted by the user equipment is retransmitted data.
  • the main function of the table is to let the UE determine the size of the transport block by the indicated MCS and code rate, since the size of the transport block of the retransmitted data is the same as the initial transmission, so the corresponding code rate is not defined in the table.
  • CSI part 2 there is also a corresponding code rate.
  • the numerator of the code rate is the number of bits of CSI part 2
  • the denominator is the product of the number of REs actually allocated and the modulation order.
  • the value may be indicated in the DCI or semi-statically configured.
  • the table of specific reference is shown in Table 2.
  • the high layer signaling may configure the values in the four tables to the UE, and then the DCI indicates which one of the four is specifically used.
  • the c MCS and A rate threshold c T of the corresponding CSI part 2 is determined, and then the degree of discarding of the CSI part 2 is determined by the threshold c T .
  • the specific discarding priority is defined by the protocol as shown in Table 3 below.
  • the CSI part 2 generated by the UE is now A bits, which are bits that have undergone CRC check.
  • the number of available resources RE of CSI part 2 is B, and the number of available resources is calculated by the base station and the UE in a predefined manner. If the UE finds that the value of A/B exceeds the code rate threshold c T , the content of the A bit is discarded in a priority manner until the value of A/B does not exceed the code rate threshold c T .
  • the formula (1) represents a resource of HARQ-ACK transmitted on the PUSCH.
  • O ACK represents the number of bits of the HARQ-ACK
  • L ACK represents the number of bits of the CRC check corresponding to the HARQ-ACK
  • denotes a value less than or equal to 1
  • ⁇ 0.5, 0.65, 0.8, 1 ⁇ , which is a parameter configured for higher layer signaling.
  • l 0 represents the first available non-DMRS symbol after the DMRS.
  • the formula (2) represents the resource of the CSI part 1 transmitted on the PUSCH
  • O CSI-1 represents the number of bits of the CSI part 1
  • L CSI-1 represents the CRC check corresponding to the CSI part 1
  • Number of bits Indicates the offset of the code rate of CSI part 1.
  • denotes a value less than or equal to 1
  • ⁇ 0.5, 0.65, 0.8, 1 ⁇ , which is a parameter configured for higher layer signaling.
  • the right side of the min function of the formula indicates that the upper bound of the resource occupied by CSI part 1 is the RE number of REs that do not exceed all available data except HARQ-ACK.
  • formula (3) represents the resource of CSI part 2 transmitted on the PUSCH
  • O CSI-2 represents the number of bits of CSI part 2
  • L CSI-2 represents the CRC check corresponding to CSI part 2
  • Number of bits Indicates the offset of the code rate of CSI part 2.
  • denotes a value less than or equal to 1
  • ⁇ 0.5, 0.65, 0.8, 1 ⁇ , which is a parameter configured for higher layer signaling.
  • the right side of the min function of the formula indicates that the upper bound of the resource occupied by CSI part 2 is the number of REs that do not exceed all available data, except for the number of REs occupied by HARQ-ACK and CSI part 1.
  • the above solution requires data scheduling and transmission.
  • the method cannot calculate the threshold of the code rate, and thus cannot determine the amount of CSI part 2 data that needs to be discarded.
  • the code rate threshold can be determined, thereby determining the UCI discarding rule.
  • the terminal device only sends uplink control information on the physical uplink channel is repeatedly mentioned. This description is relative to the uplink data, that is, in the Among the uplink data and the uplink control information, the terminal device transmits only the uplink control information without transmitting the uplink data. Therefore, “the terminal device only transmits uplink control information on the physical uplink channel” does not mean that the terminal device does not transmit other signals on the physical uplink channel, for example, a demodulation reference signal (DMRS) or the like.
  • DMRS demodulation reference signal
  • the network device cannot correctly receive the uplink control information.
  • the terminal device only sends uplink control information on the physical uplink channel
  • the present application does not exclude the possibility that the terminal device sends other reference signals than the DMRS on the physical uplink channel, for example, SRS and the like.
  • FIG. 7 is a schematic flowchart of a communication method 700 provided by an embodiment of the present application, which is shown from the perspective of device interaction. As shown, the method 700 shown in FIG. 7 can include steps 710 through 760. Method 700 is described in detail below in conjunction with FIG.
  • step 710 the network device sends downlink control information DCI. Accordingly, the terminal device receives the DCI sent by the network device, and acquires information in the DCI.
  • the DCI may include first indication information for determining the first code rate.
  • the DCI may further include second indication information, configured to indicate whether to send only UCI on the physical uplink channel, and the terminal device may determine, according to the second indication information, whether to send only UCI on the physical uplink channel.
  • the second indication information may be an information indication field carried in the DCI, and the indication field is used to determine whether to send only UCI on the physical uplink channel.
  • the DCI may further include a modulation and coding policy MCS domain, including an MCS identifier.
  • the first indication information and/or the second indication information may be information carried in the high layer signaling, for example, an RRC message or a MAC CE; or the first indication information and/or the second indication information may be Information carried in the physical layer signaling, for example, DCI.
  • the second indication information may indicate whether to send only uplink control information on the physical uplink channel by using a field added in the high layer signaling or the physical layer signaling.
  • the newly added field may be, for example, a UCI only (UCI only) field or a UE content field or the like.
  • the UE content field when the UE content field is set to “0”, it may indicate that only uplink control information is sent on the physical uplink channel; when the UE content field is set to “1”, it may indicate that the uplink control information and the uplink data are sent on the physical uplink channel.
  • the UE content field when the UE content field is set to "00”, it may indicate that only uplink control information is sent on the physical uplink channel; when the UE content field is set to "01”, it may indicate that the uplink control information and the uplink data are sent on the physical uplink channel;
  • the UE content field when the UE content field is set to "10”, it may indicate that the uplink data is sent on the physical uplink channel; the UE content field is set to "11" is the reserved state.
  • the above-mentioned signaling carrying the first indication information, the field carrying the first indication information, and the specific manner of indicating whether to transmit only the uplink control information on the physical uplink channel by using the above enumerated fields are merely exemplary. It should be noted that this application should not be construed as limiting. For example, the first indication information may also be indicated by other existing fields, which is not limited in this application.
  • step 720 the terminal device determines that the physical uplink channel only transmits UCI.
  • the network device determines that the physical uplink channel only transmits UCI.
  • the resources scheduled by the network device through the information of the DCI can be used to transmit data and/or UCI, and the network device needs to let the terminal device know whether the uplink data needs to be transmitted. If only UCI is transmitted and there is no need to transmit uplink data, the terminal device will not generate a TB block, but will allocate all resources to UCI. If both uplink data and UCI are available, the terminal device needs to allocate resources to both the uplink data and the UCI.
  • Network devices and terminal devices need to be consistent in their understanding of these two situations. If the network device tells the terminal device that the uplink data and the UCI are transmitted on the corresponding resource, the terminal device allocates resources to the data and the UCI according to the resources allocated by the network device and the agreed manner.
  • the terminal device may determine, according to the indication information carried in the DCI, whether to send only the UCI on the physical uplink channel. As an embodiment, for example, determining, according to the second indication information, whether to transmit only UCI on the physical uplink channel; or according to the MCS identifier, the redundancy version RV indication and the new transmission data NDI indication determining whether the physical uplink channel is Only the UCI is sent on.
  • 1 bit may be used in the DCI to indicate that only UCI is transmitted on the physical uplink channel.
  • determining, according to the MCS identifier, whether to transmit only UCI on the physical uplink channel Determining that only the UCI is sent on the physical uplink channel when the MCS identifier falls within a preset range (eg, a second range); otherwise, determining to send the UCI and the physical uplink channel Upstream data.
  • a preset range eg, a second range
  • the MCS corresponding to the identifier in the preset range is used to indicate retransmission, or the preset range is defined by a protocol.
  • the range of the number of rows MCS Index (I MCS ) in Table 1 is 0 to 27 (including 0 and 27) is divided into the first range, and the number of rows MCS Index (I MCS ) is 28
  • the range of 29, 30, 31 is divided into the second range, and it should be understood that the application is not limited thereto.
  • the MCS identifier included in the DCI is greater than or equal to 28, indicating that only UCI is transmitted on the physical uplink channel, that is, the number of rows MCS Index (I MCS ) in Table 1 is taken.
  • I MCS MCS Index
  • the new meaning can be added to the 28, 29, 30, and 31 lines.
  • it can also be used to indicate the location. The case where only UCI is transmitted on the physical uplink channel.
  • the RV indication and the NDI may also be used to indicate that only the UCI is sent on the physical uplink channel according to the MCS identifier.
  • the range indicated by the MCS identifier is 28-31, and the value of the RV is 0.
  • the value of the NDI is different from the value of the last transmission, that is, the NDI is reversed.
  • step 730 the terminal device determines the threshold code rate according to the MCS identifier, and correspondingly, the network device determines the threshold code rate according to the MCS identifier.
  • the first code rate is determined according to a one-to-one correspondence between the predefined MCS identifier and the first code rate. Determining the first code rate as the threshold code rate; or determining the threshold code rate according to the first code rate and the offset amount ⁇ , the offset amount ⁇ being a value greater than or equal to 1.
  • the correspondence between the MCS identifier and the first code rate may be defined by a protocol, where the MCS identifier and the first code rate
  • the one-to-one correspondence is, for example, the case shown in Table 1.
  • the MCS Index value is 8
  • the corresponding first code rate is 602
  • the terminal device reads the code corresponding to the code rate 602 corresponding to 8
  • the rate is determined as a first code rate of a code rate threshold, or the threshold code rate is determined according to the first code rate and the offset amount ⁇ , and the offset amount ⁇ is a value greater than or equal to 1. It should be understood that the embodiments of the present application are not limited thereto.
  • determining a modulation order according to the MCS identifier determining the first code rate according to a correspondence between a modulation order and a first code rate; A code rate is determined as the threshold code rate; or the threshold code rate is determined according to the first code rate and the offset amount ⁇ , and the offset amount ⁇ is a value greater than or equal to 1.
  • the correspondence between the MCS identifier and the modulation order may be defined, and according to the correspondence between the modulation order and the first code rate. Determining the first code rate.
  • the modulation order has four values of 1, 2, 4, and 6, each of which corresponds to a plurality of code rates.
  • determining a maximum code rate of the plurality of first code rates is the first code rate.
  • determining that a minimum code rate of the plurality of first code rates is the first code rate if the modulation order corresponds to the plurality of the first code rates, determining that a minimum code rate of the plurality of first code rates is the first code rate.
  • the modulation order corresponds to the plurality of the first code rates
  • determining the first code rate according to the first indication information if the modulation order corresponds to the plurality of the first code rates.
  • a one-to-one correspondence between the MCS identifier and the first code rate may be defined by a protocol, for example, when the MCS Index value is 29 Corresponding first code rate is 602, determining 602 as the first code rate, or determining the threshold code rate according to the first code rate and the offset ⁇ , where the offset ⁇ is greater than or A value equal to 1.
  • the terminal device determines the number of UCI bits to be transmitted according to the threshold code rate and the number of generated bits of the uplink control information UCI, and the number of bits of the UCI to be transmitted is less than or equal to the number of generated bits of the UCI.
  • the network device determines the number of UCI bits to be received according to the threshold code rate and the number of generated bits of the uplink control information UCI.
  • one possible implementation manner is to obtain the number of available resources of the transmitted UCI by the above formulas (1)-(3).
  • the value of the corresponding ⁇ may be different for different UCI values.
  • the advantage of this design is that by setting different values of ⁇ for different UCIs, different UCIs occupy different upper bounds, preventing the data volume of a certain UCI from exceeding the data, and the min operation of the formula is always taken.
  • the item on the right causes all resources to be assigned to a certain UCI, and other UCIs cannot be assigned data.
  • the beta parameter is an item greater than or equal to 1
  • the operation of the min will take the item on the right.
  • the resources are all part of the HARQ-ACK.
  • the right term of the formula (2) is 0, so that the CSI part1 is not allocated resources, and the CSI part 2 is not allocated resources.
  • each UCI can be configured with different values of ⁇ , for example, ⁇ 0 is 0.5, ⁇ 1 is 0.6, and ⁇ 2 is 0.8, which ensures that each UCI can be allocated resources.
  • the base station tells the UE that only UCI is transmitted on the corresponding resource, the UE allocates resources to the UCI according to the allocated resources and the agreed manner.
  • O CSI-1 + L CSI-1 represents the number of bits after CSI part 1 has undergone CRC check.
  • Another possible formula is to introduce ⁇ , where ⁇ is a number less than or equal to 1, and different values can be taken for different UCIs, as follows:
  • This approach prevents all available resources from being distributed to HARQ-ACK.
  • O CSI-2 + L CSI-2 indicates the number of bits after CSI part 2 has undergone CRC check.
  • the resource of the CSI part 2 calculated by the foregoing various embodiments may determine the discarded bit according to the resource of the CSI part 2 and the modulation order indicated by the MCS field and the corresponding reference code rate (ie, the first code rate). For the number, assuming that A is the number of bits of the generated CSI part 2, and A0 is the number of discarded bits, then A and A0 satisfy the following conditions, and the discarding is performed according to the priority of Table 2 as specified.
  • the terminal device determines the number of partial or all UCI bits that need to be discarded (for example, part or all of CSI part 2), that is, determines the number of UCI bits to be transmitted or actually to be transmitted, and the UCI to be transmitted.
  • the number of bits is less than or equal to the number of generated bits of the UCI.
  • the calculated number of UCI bits actually to be transmitted is transmitted to the network device, and the network device receives the corresponding UCI bit number.
  • step 760 when there is uplink data and UCI to be transmitted, the calculation is performed according to formulas (1)-(3), and the number of partial or all UCI bits that need to be discarded (for example, part or all of CSI part 2) is determined. And determining the number of UCI bits to be transmitted or actually to be transmitted, and transmitting the calculated UCI bit number and uplink data to be transmitted to the network device, and the network device receives the corresponding UCI bit number and uplink data.
  • the network device and the terminal device may determine the threshold code rate according to the modulation and coding mode MCS identifier in the case that only the uplink control information UCI is sent on the physical uplink channel, so according to the threshold code rate and the uplink control information UCI.
  • the terminal device may further send the uplink control information and the uplink data in parallel on the physical uplink channel, thereby improving resource utilization and having no effect on correct receiving of the uplink control information. . Overall, it is beneficial to improve the transmission performance of the communication system.
  • the communication method provided by the embodiment of the present application is described in detail by taking the interaction between the network device and the terminal device as an example for convenience of understanding, but this should not be construed as limiting the present application.
  • the network device that sends the downlink control information to the terminal device and the network device that receives the uplink control information may be the same network device or different network devices, which is not limited in this application.
  • FIG. 7 is a schematic diagram showing the steps performed by the terminal device and the network device for convenience of understanding, but this does not mean that the terminal device and the network device perform each step shown in the figure, for example, the terminal.
  • the device may perform an alternative between step 710 and step 760 according to the relationship between the resources of the allocated physical uplink channel and the code rate threshold.
  • FIG. 8 is a schematic flowchart of a communication method 800 according to still another embodiment of the present application, which is shown from the perspective of device interaction.
  • the method 800 includes steps 810 through 840.
  • Step 810 The terminal device receives third indication information, where the third indication information indicates a UCI to be transmitted by the terminal device.
  • the network device sends third indication information, where the third indication information indicates the UCI to be transmitted by the terminal device on the physical uplink channel.
  • the third indication information may be information carried in the high layer signaling, for example, an RRC message or a MAC CE; or the third indication information may be information carried in the physical layer signaling, for example, DCI.
  • the third indication information may indicate a UCI to be transmitted by the terminal device on the physical uplink channel by using a field added in the high layer signaling or the physical layer signaling.
  • the newly added field when the newly added field is set to “0”, it can indicate that only the uplink control information is sent on the physical uplink channel and directly indicates the number of UCI bits that can be transmitted; when the newly added field is set to “1”, it can be represented in the physical The uplink control information and the uplink data are sent on the uplink channel and directly indicate the number of UCI and uplink data bits that can be transmitted.
  • the newly added field when the newly added field is set to "00”, it may indicate that only the uplink control information is sent on the physical uplink channel to directly indicate the number of UCI bits that can be transmitted; when the newly added field is set to "01", the physical uplink may be indicated.
  • the number of data bits; the newly added field is set to "11" is the reserved state.
  • the above-mentioned signaling carrying the third indication information, the field carrying the third indication information, and the specific manner of indicating whether to transmit only the uplink control information on the physical uplink channel by using the above enumerated fields are merely exemplary. It should be noted that this application should not be construed as limiting. For example, the first indication information may also be indicated by other existing fields, which is not limited in this application.
  • the third indication information indicates the number of bits of uplink control information that can be transmitted on the physical uplink channel, and the terminal device and the network device determine that only the indicated number of UCI bits are transmitted on the physical uplink channel.
  • step 830 the terminal device sends only the indicated number of UCI bits on the physical uplink channel.
  • the network device only receives the uplink control information on the physical uplink channel.
  • step 820 is the same as the specific process of step 740 in method 700 above, and for brevity, no further details are provided herein.
  • the method 800 further includes a step 840, in the case that the third indication information indicates that the uplink control information is not sent only on the physical uplink channel, the terminal device sends the uplink control information and the uplink data on the physical uplink channel, Or, send uplink data.
  • step 840 if the third indication information indicates that the uplink control information is not only sent on the physical uplink channel, the network device receives the uplink control information and the uplink data on the physical uplink channel, or receives Upstream data.
  • step 840 is the same as the specific process of step 760 in the method 700 above.
  • the specific situation of the terminal device can be used to describe the uplink control information and the uplink data, and in what manner. In this case, only uplink data can be sent. For brevity, no further details are provided here.
  • the terminal device may determine the content sent on the physical uplink channel based on the indication of the network device, and the network device may also receive the corresponding content on the physical uplink channel based on the same indication, so the network device can correctly receive the content.
  • Uplink control information and/or uplink data are beneficial to improve the reliability of data transmission, thereby facilitating the improvement of the transmission performance of the communication system.
  • the communication method provided by the embodiment of the present application is described in detail by taking the interaction between the network device and the terminal device as an example for convenience of understanding, but this should not be construed as limiting the present application.
  • the network device that sends the information of the configuration parameter to the terminal device and the network device that receives the uplink control information may be the same network device or a different network device, which is not limited in this application.
  • the size of the sequence number of each process does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken by the embodiment of the present application.
  • the implementation process constitutes any qualification.
  • FIG. 9 is a schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • the communication device 900 can include a determining unit 910 and a transceiver unit 920.
  • the communication device 900 can be a terminal device or a chip configured in the terminal device.
  • the determining unit 910 is configured to determine a threshold code rate according to the modulation and coding mode MCS identifier.
  • the determining unit 910 is further configured to determine, according to the threshold code rate and the number of generated bits of the uplink control information UCI, the number of UCI bits to be transmitted, where the number of bits of the UCI to be transmitted is less than or equal to the number of generated bits of the UCI. .
  • the transceiver unit 920 is configured to send the number of UCI bits to be transmitted.
  • the determining unit 910 is specifically configured to: when the MCS identifier is in the first range, determine a first code rate according to a one-to-one correspondence between the predefined MCS identifier and the first code rate; A code rate is determined as the threshold code rate; or the threshold code rate is determined according to the first code rate and the offset amount ⁇ , and the offset amount ⁇ is a value greater than or equal to 1.
  • the determining unit 910 is further configured to: when the MCS identifier is in the second range, determine a modulation order according to the MCS identifier, and determine the first according to a correspondence between a modulation order and a first code rate. a code rate; determining the first code rate as the threshold code rate; or determining the threshold code rate according to the first code rate and the offset ⁇ , wherein the offset ⁇ is greater than or equal to 1 Value.
  • the determining unit 910 may be configured to determine that a maximum code rate of the plurality of first code rates is the first a code rate; or if the modulation order corresponds to the plurality of the first code rates, the determining unit 910 may be configured to determine that a minimum code rate of the plurality of first code rates is the first code rate; or If the modulation order corresponds to the plurality of the first code rates, the determining unit 910 may be configured to determine the first code rate according to the first indication information, where the first indication information is carried in the downlink control information DCI. information.
  • the determining unit 910 may be configured to determine, according to a one-to-one correspondence between the predefined MCS identifier and the first code rate, the first code rate. Determining the threshold rate; or determining the threshold code rate according to the first code rate and the offset ⁇ , the offset ⁇ being a value greater than or equal to 1.
  • the determining unit 910 is further configured to determine whether to send only the UCI on the physical uplink channel.
  • the determining unit 910 may determine, according to the second indication information, whether to send only UCI on the physical uplink channel, where the second indication information is information carried in the DCI, or according to the MCS identifier, redundancy.
  • the version RV indication and the new transmission data NDI indicate whether to determine whether to transmit only the UCI on the physical uplink channel.
  • the communication device 900 can correspond to a terminal device or network device in the communication method 700 according to an embodiment of the present application, and the communication device 900 can include a terminal device or a network device for performing the communication method 700 of FIG.
  • the module of the method Moreover, the modules in the communication device 900 and the other operations and/or functions described above are respectively used to implement the corresponding processes of the communication method 700 in FIG. 7, and specifically, the determining unit 910 is used in steps 720, 730, and 730 in the method 700.
  • the transceiver unit 920 is configured to perform the step 710 or 750 or 760 in the method 700.
  • the specific process of performing the foregoing steps in each unit has been described in detail in the method 700. For brevity, no further details are provided herein.
  • the communication device 900 can correspond to a terminal device in the communication method 800 in accordance with an embodiment of the present application, which can include a module for performing the method performed by the terminal device of the communication method 800 of FIG.
  • each module in the communication device 900 and the other operations and/or functions described above are respectively used to implement the corresponding process of the communication method 800 in FIG. 8.
  • the transceiver unit 920 is configured to perform step 520 in the method 800, each unit. The specific process of performing the above-mentioned corresponding steps has been described in detail in the method 800. For brevity, no further details are provided herein.
  • the communication device 900 can be a terminal device or a chip configured in the terminal device.
  • FIG. 10 is a schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • the communication device 1000 may include a determining unit 1010 and a transceiver unit 1020.
  • the communication device 1000 can be a network device or a chip configured in a network device.
  • the determining unit 1010 is configured to determine a threshold code rate according to the modulation and coding mode MCS identifier.
  • the determining unit 1010 is further configured to determine, according to the threshold code rate and the number of generated bits of the uplink control information UCI, the number of UCI bits to be transmitted, where the number of bits of the UCI to be transmitted is less than or equal to the number of generated bits of the UCI. .
  • the transceiver unit 1020 is configured to send the number of UCI bits to be transmitted.
  • the determining unit 1010 is specifically configured to: when the MCS identifier is in the first range, determine a first code rate according to a one-to-one correspondence between the predefined MCS identifier and the first code rate; A code rate is determined as the threshold code rate; or the threshold code rate is determined according to the first code rate and the offset amount ⁇ , and the offset amount ⁇ is a value greater than or equal to 1.
  • the determining unit 1010 is further configured to: when the MCS identifier is in the second range, determine a modulation order according to the MCS identifier, and determine the first according to a correspondence between a modulation order and a first code rate. a code rate; determining the first code rate as the threshold code rate; or determining the threshold code rate according to the first code rate and the offset ⁇ , wherein the offset ⁇ is greater than or equal to 1 Value.
  • the determining unit 1010 may be configured to determine that a maximum code rate of the plurality of first code rates is the first a code rate; or if the modulation order corresponds to the plurality of the first code rates, the determining unit 1010 may be configured to determine that a minimum code rate of the plurality of first code rates is the first code rate; or If the modulation order corresponds to the plurality of the first code rates, the determining unit 1010 may be configured to determine the first code rate according to the first indication information, where the first indication information is carried in the downlink control information DCI. information.
  • the determining unit 1010 may be configured to determine, according to a one-to-one correspondence between the predefined MCS identifier and the first code rate, the first code rate. Determining the threshold rate; or determining the threshold code rate according to the first code rate and the offset ⁇ , the offset ⁇ being a value greater than or equal to 1.
  • the determining unit 1010 is further configured to determine whether to send only the UCI on the physical uplink channel.
  • the determining unit 1010 may determine, according to the second indication information, whether to send only UCI on the physical uplink channel, where the second indication information is information carried in the DCI, or according to the MCS identifier, redundancy.
  • the version RV indication and the new transmission data NDI indicate whether to determine whether to transmit only the UCI on the physical uplink channel.
  • the communication device 1000 can correspond to a network device in the communication method 700 in accordance with an embodiment of the present application, which can include a module for performing the method performed by the network device of the communication method 700 of FIG.
  • the modules in the communication device 1000 and the other operations and/or functions described above are respectively used to implement the corresponding processes of the communication method 700 in FIG. 7, and specifically, the determining unit 1010 is used in steps 720, 730, and 730 in the method 700.
  • the transceiver unit 1020 is configured to perform the step 710 or 750 or 760 in the method 700.
  • the specific process of performing the foregoing steps in each unit has been described in detail in the method 700. For brevity, no further details are provided herein.
  • the communication device 1000 can correspond to a network device in the communication method 800 in accordance with an embodiment of the present application, which can include a module for performing the method performed by the network device of the communication method 800 of FIG.
  • the modules in the communication device 1000 and the other operations and/or functions described above are respectively used to implement the corresponding processes of the communication method 800 in FIG. 8.
  • the transceiver unit 1020 is configured to perform step 520 in the method 800, each unit. The specific process of performing the above-mentioned corresponding steps has been described in detail in the method 800. For brevity, no further details are provided herein.
  • the communication device 1000 can be a network device or a chip configured in the network device.
  • FIG. 11 is a schematic structural diagram of a terminal device 1100 according to an embodiment of the present application.
  • the terminal device 1100 includes a processor 1110 and a transceiver 1120.
  • the terminal device 1100 further includes a memory 1130.
  • the processor 1110, the transceiver 1120, and the memory 1130 communicate with each other through an internal connection path for transferring control and/or data signals.
  • the memory 1130 is configured to store a computer program, and the processor 1110 is configured to be called from the memory 1130.
  • the computer program is run to control the transceiver 1120 to send and receive signals.
  • the processor 1110 and the memory 1130 described above may synthesize a processing device, and the processor 1110 is configured to execute the program code stored in the memory 1130 to implement the above functions.
  • the memory 1130 may also be integrated in the processor 1110 or independent of the processor 1110.
  • the foregoing terminal device may further include an antenna 1140, configured to send downlink data or downlink control signaling output by the transceiver 1120 by using a wireless signal.
  • the terminal device 1100 may correspond to a terminal device in the communication method 700 according to an embodiment of the present application, and the terminal device 1100 may include a module for performing a method performed by the terminal device of the communication method 700 of FIG.
  • each module in the terminal device 1100 and the other operations and/or functions described above are respectively configured to implement the corresponding flow of the communication method 700 in FIG.
  • the memory 1130 is configured to store program code, such that when executing the program code, the processor 1110 performs steps 720, 730, and 740 in the method 700, and controls the transceiver 1120 to perform the method 700 through the antenna 1140.
  • Step 710, step 750 or step 760 the specific process of each module performing the above-mentioned corresponding steps has been described in detail in the method 700. For brevity, no further details are provided herein.
  • the terminal device 1100 may correspond to a terminal device in the communication method 800 according to an embodiment of the present application, and the terminal device 1100 may include a module for performing a method performed by the terminal device of the communication method 800 of FIG.
  • each module in the terminal device 1100 and the other operations and/or functions described above are respectively configured to implement the corresponding flow of the communication method 800 in FIG.
  • the memory 1150 is configured to store program code, such that when executing the program code, the processor 1110 performs step 820 of the method 800, and controls the transceiver 1120 to perform step 810, step 830 in the method 800 through the antenna 1140.
  • step 840 the specific process of each module performing the above-mentioned corresponding steps has been described in detail in the method 500. For brevity, no further details are provided herein.
  • FIG. 12 is a schematic structural diagram of a terminal device 1200 according to an embodiment of the present application.
  • the terminal device 1200 includes a processor 1201 and a transceiver 1202.
  • the terminal device 1200 further includes a memory 1203.
  • the processor 1202, the transceiver 1202, and the memory 1203 communicate with each other through an internal connection path, and the control device and the data signal are transmitted.
  • the memory 1203 is used to store a computer program
  • the processor 1201 is used to receive the computer program 1201.
  • the computer program is called and executed to control the transceiver 1202 to send and receive signals.
  • the processor 1201 and the memory 1203 may be combined to form a processing device 1204 for executing the program code stored in the memory 1203 to implement the above functions.
  • the memory 1203 may also be integrated in the processor 1201 or independent of the processor 1201.
  • the terminal device 1200 may further include an antenna 1210, configured to send uplink data or uplink control signaling output by the transceiver 1202 by using a wireless signal.
  • the terminal device 1200 may correspond to a terminal device in the communication method 700 according to an embodiment of the present application, and the terminal device 1200 may include a module for performing a method performed by the terminal device of the communication method 700 of FIG. 7, and The modules in the terminal device 1200 and the other operations and/or functions described above are respectively implemented to implement the corresponding flow of the communication method 700 of FIG.
  • the memory 1203 is configured to store program code, such that when executing the program code, the processor 1201 executes steps 720 to 740 of the method 700, and controls the transceiver 1202 to perform step 710 or step 750 of the method 700 or
  • step 760 the specific process of performing the foregoing steps in each module has been described in detail in the method 700. For brevity, details are not described herein again.
  • the terminal device 1200 may correspond to a terminal device in the communication method 800 according to an embodiment of the present application, and the terminal device 1200 may include a module for performing a method performed by the terminal device of the communication method 800 of FIG. 8, and the terminal
  • the various modules in device 1200 and the other operations and/or functions described above are respectively implemented to implement the corresponding flow of communication method 800 in FIG.
  • the memory 1203 is configured to store program code, such that when the processor 1201 executes the program code, the method 800 is executed, and the transceiver 1202 is controlled to perform step 810 or step 830 or step 840 of the method 800, and each module executes the above.
  • the specific process of the corresponding steps has been described in detail in the method 800. For brevity, no further details are provided herein.
  • the above-mentioned processor 1201 can be used to perform the actions implemented by the terminal in the foregoing method embodiments, and the transceiver 1202 can be used to perform the actions of the terminal to transmit or transmit to the terminal device described in the foregoing method embodiments.
  • the transceiver 1202 can be used to perform the actions of the terminal to transmit or transmit to the terminal device described in the foregoing method embodiments.
  • the processor 1201 and the memory 1203 described above may be integrated into one processing device, and the processor 1201 is configured to execute program code stored in the memory 1203 to implement the above functions.
  • the memory 1203 may also be integrated in the processor 1201.
  • the terminal device 1200 described above may also include a power source 1205 for providing power to various devices or circuits in the terminal.
  • the terminal device 1200 may further include one or more of an input unit 1214, a display unit 1216, an audio circuit 1218, a camera 1220, a sensor 1222, and the like, the audio circuit.
  • a speaker 1282, a microphone 1284, and the like can also be included.
  • FIG. 13 is a schematic structural diagram of a network device 1300 according to an embodiment of the present application.
  • the network device 1300 includes a processor 1310 and a transceiver 1320.
  • the network device 1300 further includes a memory 1330.
  • the processor 1310, the transceiver 1320 and the memory 1330 communicate with each other through an internal connection path for transferring control and/or data signals.
  • the memory 1330 is configured to store a computer program, and the processor 1310 is configured to be called from the memory 1330.
  • the computer program is run to control the transceiver 1320 to send and receive signals.
  • the processor 1310 and the memory 1330 described above may synthesize a processing device, and the processor 1310 is configured to execute the program code stored in the memory 1330 to implement the above functions.
  • the memory 1330 can also be integrated in the processor 1310 or independent of the processor 1310.
  • the network device may further include an antenna 1340, configured to send downlink data or downlink control signaling output by the transceiver 1320 by using a wireless signal.
  • the network device 1300 can correspond to a network device in the communication method 700 in accordance with an embodiment of the present application, which can include a module for performing the method performed by the network device of the communication method 700 of FIG.
  • each module in the network device 1300 and the other operations and/or functions described above are respectively configured to implement the corresponding flow of the communication method 700 of FIG.
  • the memory 1330 is configured to store program code such that when executing the program code, the processor 1310 performs steps 720, 730, and 740 of the method 700, and controls the transceiver 1320 to perform the method 700 through the antenna 1340.
  • Step 710, step 750 or step 760 the specific process of each module performing the above-mentioned corresponding steps has been described in detail in the method 700. For brevity, no further details are provided herein.
  • the network device 1300 can correspond to a network device in the communication method 800 in accordance with an embodiment of the present application, which can include a module for performing the method performed by the network device of the communication method 800 of FIG.
  • each module in the network device 1300 and the other operations and/or functions described above are respectively implemented to implement the corresponding flow of the communication method 800 in FIG.
  • the memory 1350 is configured to store program code such that when executing the program code, the processor 1310 performs step 820 of the method 800 and controls the transceiver 1320 to perform step 810, step 830 of the method 800 through the antenna 1340.
  • step 840 the specific process of each module performing the above-mentioned corresponding steps has been described in detail in the method 800. For brevity, no further details are provided herein.
  • FIG. 14 is a schematic structural diagram of a network device 1400 according to an embodiment of the present application. It can be used to implement the functions of the network device in the above method 700 or 800. For example, it can be a schematic diagram of a base station. As shown in FIG. 14, the base station can be applied to the system as shown in FIG. 1.
  • the base station 1400 includes one or more radio frequency units, such as a remote radio unit (RRU) 1401 and one or more baseband units (BBUs) (also referred to as digital units, DUs) 1402. .
  • RRU remote radio unit
  • BBUs baseband units
  • DUs digital units
  • the RRU 1401 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 1403 and a radio frequency unit 1404.
  • the RRU 1401 is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for transmitting the signaling messages described in the foregoing embodiments to the terminal device.
  • the BBU 1402 portion is mainly used for performing baseband processing, controlling a base station, and the like.
  • the RRU 1401 and the BBU 1402 may be physically disposed together or physically separated, that is, distributed base stations.
  • the BBU 1402 is a control center of a base station, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, spreading, and the like.
  • the BBU (determination unit) 1402 can be used to control the flow of operations of the base station 1400 in the embodiment of the method 700 or 800 described above with respect to the network device.
  • the BBU 1402 may be composed of one or more single boards, and multiple boards may jointly support a single access standard radio access network (such as an LTE system or an NR system), or may respectively support different Access to the standard wireless access network.
  • the BBU 1402 also includes a memory 1405 and a processor 1406.
  • the memory 1405 is used to store necessary instructions and data.
  • the memory 1405 stores the codebook or the like in the above embodiment.
  • the processor 1406 is configured to control the base station to perform necessary actions, for example, to control the base station to perform an operation procedure of the network device in the foregoing method embodiment.
  • the memory 1405 and processor 1406 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • SoC system-on-chip
  • all or part of the functions of the 1402 part and the 1401 part may be implemented by SoC technology, for example, by a base station function chip.
  • the base station function chip integrates a processor, a memory, an antenna interface and the like.
  • the program of the base station related function is stored in the memory, and the processor executes the program to implement the related functions of the base station.
  • the base station function chip can also read the memory external to the chip to implement related functions of the base station.
  • FIG. 14 It should be understood that the structure of the base station illustrated in FIG. 14 is only one possible form, and should not be construed as limiting the embodiments of the present application. This application does not preclude the possibility of other forms of base station architecture that may arise in the future.
  • the embodiment of the present application further provides a communication system including the foregoing network device and one or more terminal devices.
  • the processor may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration.
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic randomness synchronous dynamic randomness.
  • Synchronous DRAM SDRAM
  • DDR SDRAM double data rate synchronous DRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Take memory
  • DR RAM direct memory bus random access memory
  • the application further provides a computer program product, comprising: computer program code, when the computer program code is run on a computer, causing the computer to perform the method of FIG. 7 or FIG. 8
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, causing the computer to perform the method of FIG. 7 or FIG. 8
  • the method in the examples is shown.
  • the present application further provides a computer readable medium storing program code, when the program code is run on a computer, causing the computer to execute FIG. 7 or FIG. 8
  • FIG. 7 or FIG. 8 The method in the examples is shown.
  • the application further provides a system including the foregoing network device and one or more terminal devices.
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the processes or functions according to embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be wired from a website site, computer, server or data center (for example, infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that contains one or more sets of available media.
  • the usable medium can be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium.
  • the semiconductor medium can be a solid state hard drive.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Abstract

本申请提供了一种通信方法和通信装置,该方法包括:根据调制编码方式MCS标识确定门限码率;根据所述门限码率和上行控制信息UCI的生成比特数,确定待传输的UCI比特数,该待传输的UCI的比特数小于或等于该UCI的生成比特数;发送该待传输的UCI。该方法能够合理的分配资源,保证UCI数据的有效发送,有利于提高数据传输的可靠性,提高了资源的利用率。

Description

通信的方法和装置
本申请要求于2018年02月13日提交中国专利局、申请号为201810150625.4、申请名称为“通信的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种发送上行控制信息的方法和装置,以及接收上行控制信息的方法和装置。
背景技术
上行控制信息UCI主要分为混合自动重传请求反馈确认(hybrid automatic repeat request acknowledge,HARQ-ACK),CSI part 1和CSI part 2三部分,其中CSI part 2的数据量有了大幅度的增加。
基站调度资源的时候可能无法提前获得CSI part 2的数据量,会导致调度的资源不够,此时,CSI part 2无法在所分配的资源上进行有效的承载,因此需要丢弃CSI part 2的部分或全部数据量。现有的技术方案中,根据上行数据的码率和β值,获得一个CSI part 2的码率门限。CSI part 2按照一定的优先级进行抛弃,直到CSI part 2的码率低于一定的门限值,就停止抛弃。但在没有上行数据的时候,CSI part 2数据如何在有限的资源上进行有效的承载,仍需进一步研究。
发明内容
本申请提供一种发送上行控制信息的方法和装置,以及接收上行控制信息的方法和装置,能够保证UCI数据的有效发送,提高了资源的利用率。
第一方面,提供了一种通信方法,包括:
根据调制编码方式MCS标识确定门限码率;根据该门限码率和上行控制信息UCI的生成比特数,确定待传输的UCI比特数,该待传输的UCI的比特数小于或等于该UCI的生成比特数;发送该待传输的UCI。
基于上述技术方案,在物理上行信道上仅发送上行控制信息UCI的情况下,终端设备可以根据网络设备分配的资源丢弃一部分UCI,例如部分或者全部CSI part2,只发送能有效承载的UCI比特数。从而终端设备能够合理的分配资源,保证UCI数据的有效发送。此外,在物理上行信道的资源充足的情况下,终端设备还可以在该物理上行信道上并行地发送上行控制信息和上行数据,提高了资源的利用率,从整体上来说,有利于提高通信系统的传输性能。
结合第一方面,在第一方面的某些实现方式中,该根据MCS标识确定门限码率,包括:
若该MCS标识在第一范围内,根据该MCS标识和预定义的MCS标识和第一码率的一一对应关系确定第一码率;将该第一码率确定为该门限码率;或者根据该第一码率与偏移量β确定该门限码率,该偏移量β为大于或等于1的值。
可选地,该第一范围是该MCS标识大于或等于0且小于28的区域。
具体地,例如当所述MCS标识在0到27之间(包括0和27)取值时,可以通过协议定义MCS标识和第一码率的对应关系,其中,所述MCS标识和第一码率是一一对应的,将一个MCS标识对应的一个码率作为计算码率门限的第一码率,再得到门限码率,这样可以根据网络设备分配的资源选择丢弃一部分UCI,例如部分或者全部CSI part2,只发送能有效承载的UCI比特数,提高资源的利用率,有利于提高通信系统的传输性能。
结合第一方面和上述实现方式,在某些可能的实现方式中,该根据MCS标识确定门限码率,包括:
若该MCS标识在第二范围内,根据该MCS标识确定调制阶数,根据该调制阶数和第一码率的对应关系确定该第一码率;
将该第一码率确定为该门限码率;或者
根据该第一码率与偏移量β确定该门限码率,该偏移量β为大于或等于1的值。
结合第一方面和上述实现方式,在某些可能的实现方式中,该根据调制阶数和第一码率的对应关系确定第一码率,包括:
若该调制阶数对应多个该第一码率,确定该多个第一码率中最大的码率为该第一码率;或者
若该调制阶数对应多个该第一码率,确定该多个第一码率中最小的码率为该第一码率;或者
若该调制阶数对应多个该第一码率,根据第一指示信息确定该第一码率。
可选地,当所述MCS标识在28到31之间(包括28和31)取值时,可以通过定义MCS标识和调制阶数的对应关系,再根据调制阶数和码率的对应关系,确定第一码率。这里需要指出的是,调制阶数有1、2、4、6这四个取值,每个取值会对应多个码率,可选地,若所述调制阶数对应多个所述码率,确定所述多个码率中最大或最小的码率为所述第一码率,或者用DCI中携带的第一指示信息指示一个码率作为第一码率,这样能够提高传输的效率,同时提高资源的利用率,有利于提高通信系统的传输性能。
结合第一方面和上述实现方式,在某些可能的实现方式中,该根据MCS标识确定门限码率,包括:
若该MCS标识在第二范围内,根据该MCS标识和预定义的MCS标识和第一码率的一一对应关系确定第一码率,
将该第一码率确定为该门限码率;或者
根据该第一码率与偏移量β确定该门限码率,该偏移量β为大于或等于1的值。
可选地,该第二范围是该MCS标识大于28的区域。
目前,若所述MCS标识在28到31之间(包括28和31)取值时,定义为数据重传的情况,本申请实施例通过协议定义第二范围内的MCS标识和第一码率的一一对应关系来确定一个第一码率。这样能够提高传输的效率,同时提高资源的利用率,有利于提高通信系统的传输性能。
结合第一方面和上述实现方式,在某些可能的实现方式中,该方法还包括:确定是否在物理上行信道上仅发送该UCI。
具体来说,网络设备通过DCI的信息调度的资源可以用来传输数据和\或UCI,网络设备需要让终端设备知道是否需要传输上行数据。如果只传输了UCI没有需要传输上行数据,则终端设备就不会生成TB块,而是把所有的资源都分给终端设备。如果上行数据和UCI都有,则终端设备需要给上行数据和UCI都分配资源。
可选地,根据第二指示信息确定是否在该物理上行信道上仅发送UCI,该第二指示信息是该DCI中携带的信息;或者
根据该MCS标识,冗余版本RV指示和新传数据指示NDI确定是否在物理上行信道上仅发送该UCI。
基于上述技术方案,确定在物理上行信道上仅发送上行控制信息UCI,例如通过DCI中携带的指示信息,例如可以是1bit的指示信息或者所述MCS标识,冗余版本RV指示和新传数据NDI指示等,当确定终端设备只有UCI发送的时候,将所有的资源都分给终端设备用来传输UCI,能够提高传输的效率,同时提高资源的利用率,有利于提高通信系统的传输性能。
第二方面,提供了一种通信方法,包括:
根据调制编码方式MCS标识确定门限码率;根据该门限码率和上行控制信息UCI的生成比特数,确定待接收的UCI比特数,该待接收的UCI的比特数小于或等于该UCI的生成比特数;接收该待接收的UCI。
基于上述技术方案,在物理上行信道上仅发送上行控制信息UCI的情况下,网络设备可以根据分配的资源确定终端设备丢弃一部分UCI,例如部分或者全部CSI part2,从而网络设备可以有效接收UCI比特数,有利于提高数据传输的可靠性,提高了资源的利用率,从整体上来说,有利于提高通信系统的传输性能。
结合第二方面,在某些可能的实现方式中,该根据MCS标识确定门限码率,包括:
若该MCS标识在第一范围内,根据预定义的MCS标识和第一码率的一一对应关系确定第一码率;
将该第一码率确定为该门限码率;或者
根据该第一码率与偏移量β确定该门限码率,该偏移量β为大于或等于1的值。
可选地,该第一范围是该MCS标识大于或等于0且小于28的区域。
结合第二方面和上述实现方式,在某些可能的实现方式中,该根据MCS标识确定门限码率,包括:若该MCS标识在第二范围内时,根据该MCS标识确定调制阶数,根据调制阶数和第一码率的对应关系确定该第一码率;
将该第一码率确定为该门限码率;或者
根据该第一码率与偏移量β确定该门限码率,该偏移量β为大于或等于1的值。
可选地,若该调制阶数对应多个该第一码率,确定该多个第一码率中最大的码率为该第一码率;或者
若该调制阶数对应多个该第一码率,确定该多个第一码率中最小的码率为该第一码率;或者
若该调制阶数对应多个该第一码率,根据第一指示信息确定该第一码率。
结合第二方面和上述实现方式,在某些可能的实现方式中,该根据MCS标识确定门限码率,包括:当该MCS标识在第二范围内时,根据预定义的MCS标识和第一码率的一一对应关系确定第一码率,
将该第一码率确定为该门限码率;或者
根据该第一码率与偏移量β确定该门限码率,该偏移量β为大于或等于1的值。
可选地,该第二范围是该MCS标识大于28的区域。
结合第二方面和上述实现方式,在某些可能的实现方式中,该方法还包括:确定是否在物理上行信道上仅接收该UCI。
可选地,根据第二指示信息确定是否在该物理上行信道上仅接收UCI,该第二指示信息是该DCI中携带的信息;或者根据该MCS标识,冗余版本RV指示和新传数据NDI指示确定是否在物理上行信道上仅接收该UCI。
在物理上行信道上仅发送上行控制信息UCI的情况下,终端设备可以根据网络设备分配的资源丢弃一部分UCI,例如部分或者全部CSI part2,只发送能有效承载的UCI比特数。从而终端设备能够合理的分配资源,保证UCI数据的有效发送。此外,在物理上行信道的资源充足的情况下,终端设备还可以在该物理上行信道上并行地发送上行控制信息和上行数据,提高了资源的利用率,从整体上来说,有利于提高通信系统的传输性能。
第三方面,提供了一种终端设备,所述终端设备具有实现上述第一方面的方法设计中的终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第四方面,提供了一种网络设备,所述网络设备具有实现上述第二方面的方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第五方面,提供了一种终端设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该终端设备执行上述第一方面和第一方面任意一种可能的实现方式中任意一种可能的实现方式中的方法。
第六方面,提供了一种网络设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该网络设备执行上述第二方面和第二方面任意一种可能的实现方式中任意一种可能的实现方式中的方法。
第七方面,提供了一种通信装置,该通信装置可以为上述方法设计中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面以及第一方面的任意一种可能的实现方式中终端设备所执行的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
第八方面,提供了一种通信装置,该通信装置可以为上述是方法设计中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面以及第二方面中的任意一种可能的实现方式中网络设备所执行的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信 接口,处理器与通信接口耦合。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
第十方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
第十一方面,提供了一种芯片系统,该芯片系统包括处理器,用于支持终端设备实现上述方面中所涉及的功能,例如,生成,接收,确定,发送,或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的程序指令和数据。该芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
第十二方面,提供了一种芯片系统,该芯片系统包括处理器,用于支持网络设备实现上述方面中所涉及的功能,例如,生成,接收,确定,发送,或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的程序指令和数据。该芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1是本申请实施例提供的一例通信系统示意图。
图2是本申请实施例提供的一例信息处理方式示意图。
图3是本申请实施例提供的一例资源映射示意图。
图4是本申请实施例提供的另一例信息处理方式示意图。
图5是本申请实施例提供的另一例资源映射示意图。
图6是本申请实施例提供的另一例资源映射示意图。
图7是本申请实施例提供的一例通信方法的示意性流程图。
图8是本申请实施例提供的另一例通信方法的示意性流程图。
图9是本申请实施例提供的一例通信装置的示意性框图。
图10是本申请实施例提供的另一例通信装置的示意性框图。
图11是本申请实施例提供的一例终端设备的示意性框图。
图12是本申请实施例提供的另一例终端设备的示意性框图。
图13是本申请实施例提供的一例网络设备的示意性框图。
图14是本申请实施例提供的另一例网络设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件 可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
需要说明的是,在本申请实施中,“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
还需要说明的是,本申请实施例中,“预先定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预先定义可以是指协议中定义的。
还需要说明的是,本申请实施例中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
还需要说明的是,在本申请实施例中,“上报”和“反馈”经常交替使用,但本领域的技术人员可以理解其含义。对于终端设备来说,上报CSI和反馈CSI实质上都可以是通过物理上行信道发送CSI。因此,在本申请实施例中,在不强调其区别时,其所要表达的含义是一致的。
还需要说明的是,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或一个以上;“A和B中的至少一个”,类似于“A和/或B”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和B中的至少一个,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。下面将结合附图详细说明本申请提供的技术方案。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图1是适用于本申请实施例的无线通信系统100的示意图。如图1所示,该无线通信系统100可以包括一个或多个网络设备,例如,图1所示的网络设备101;该无线通信系统100还可以包括一个或多个终端设备,例如,图1所示的终端设备#1 102、终端设备#2 103。该无线通信系统100可支持协作多点传输(coordinated multiple points transmission,CoMP),即,多个小区或多个网络设备可以协同参与一个终端设备的数据传输或者联合接收一个终端设备发送的数据,或者多个小区或多个网络设备进行协作调度或者协作波束成型。其中,该多个小区可以属于相同的网络设备或者不同的网络设备,并 且可以根据信道增益或路径损耗、接收信号强度、接收信号指令等来选择。
应理解,该无线通信系统中的网络设备可以是任意一种具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(home evolved NodeB或home Node B,HNB)、基带单元(base band unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将前述终端设备及可设置于前述终端设备的芯片统称为终端设备。
可选地,图1示出的通信系统100中,网络设备可以为服务网络设备,服务网络设备可以是指通过无线空口协议为终端设备提供RRC连接、非接入层(non-access stratum,NAS)移动性管理和安全性输入中至少一项服务的网络设备。可选地,网络设备还可以为协作网络设备。服务网络设备可以向终端设备发送控制信令,协作网络设备可以向终端设备发送数据;或者,服务网络设备可以向终端设备发送控制信令,服务网络设备和协作网络设备可以向终端设备发送数据;或者,服务网络设备和协作网络设备均可以向终端设备发送控制信令,并且服务网络设备和协作网络设备均可以向终端设备发送数据;或者,协作网络设备可以向终端设备发送控制信令,服务网络设备和协作网络设备中的至少一个可 以向终端设备发送数据;或者,协作网络设备可以向终端设备发送控制信令和数据。本申请实施例对此并未特别限定。
应理解,图1中仅为便于理解,示意性地示出了网络设备和终端设备,但这不应对本申请构成任何限定,该无线通信系统中还可以包括更多或更少数量的网络设备,也可以包括更多数量的终端设备,与不同的终端设备通信的网络设备可以是相同的网络设备,也可以是不同的网络设备,与不同的终端设备通信的网络设备的数量可以相同,也可以不同,本申请对此不做限定。
为便于理解本申请实施例,下面先对本申请涉及到的几个名词或术语进行简单介绍。
1、物理上行信道:可用于承载上行控制信息和/或上行数据的信道。例如,该物理上行信道可以包括LTE协议或NR协议中定义的物理上行控制信道(physical uplink control channel,PUCCH)、物理上行共享信道(PUSCH)以及随着网络演变而定义的具有上述功能的其他上行信道。
2、上行控制信息(uplink control information,UCI):可用于承载CSI(channel state information)、确认(acknowledgement,ACK)/非确认(negative acknowledgement,NACK)、上行调度请求(scheduling request,SR)中的至少一项。
3、下行控制信息(download control information,DCI):主要用于发送下行调度分配信息,有多种不同的格式,包括DCI format 1/1A/1B/1C/1D/2/2A/2B/2C。
4、资源粒子(resource element,RE):或者称,资源元素。在时域上可以对应一个符号,在频域上可以对应一个子载波。在本申请实施例中,RE可以是资源单元的一例。
5、资源块(resource block,RB):一个RB在频域上占用
Figure PCTCN2019074832-appb-000001
个连续的子载波。其中,
Figure PCTCN2019074832-appb-000002
为正整数。例如,在LTE协议中,
Figure PCTCN2019074832-appb-000003
可以等于12。本申请实施例中,可以仅从频域资源上来定义RB,也就是说,不限制RB在时域上占用的时域资源数量。在本申请实施例中,RB可以是资源单元的又一例。
下面,对本申请实施例的传输对象(即,上行控制信息UCI)进行详细说明。
在本申请实施例中,上行控制信息UCI包含有:HARQ-ACK,SR,CSI(CQI,PMI,RI)。
作为示例而非限定,在本申请实施例中上行控制信息可以包括但不限于以下一种或多种信息:
1.反馈信息
在本申请实施例中,该上行控制信息可以包括针对下行数据的反馈信息。
具体的说,在本申请实施例中,下行数据的传输可以采用反馈技术,作为示例而非限定,该反馈技术可以包括例如,混合自动重传请求(hybrid automatic repeat request,HARQ)技术。
其中,HARQ技术是一种将前向纠错编码(forward error correction,FEC)和自动重传请求(automatic repeat request,ARQ)相结合而形成的技术。
例如,在HARQ技术中,接收端在从发送端接收到数据后,可以确定该数据是否准确译码。如果不能准确译码,则接收端可以向发送端反馈非确认(negative-acknowledge,NACK)信息,从而,发送端可以基于NACK信息,确定接收端没有准确接收到数据,从而可以进行重传处理;如果能够准确译码,则接收端可以向发送端反馈确认(acknowledge, ACK)信息,从而,发送端可以基于ACK信息,确定接收端准确接收到数据,从而可以确定完成了数据传输。
即,在本申请实施例中,当接收端解码成功是可以向发送端ACK信息,在解码失败时可以向发送端反馈NACK信息
作为示例而非限定,在本申请实施例中,上行控制信息可以包括HARQ技术中的ACK信息或NACK信息。其中,HARQ-ACK用于反馈下行数据信道PDSCH的接收情况,当UE接收正确,会发送ACK。当UE接收错误,会发送NACK。基站根据UE对PDSCH信道的反馈信息,来确定接下来的调度策略,比如是重传还是新传。
应理解,以上列举的反馈信息包括的内容仅为示例性说明,本申请并未限定于此,其他能够指示终端设备对下行数据的接收情况的信息,均落入本申请的保护范围内,例如,该反馈信息还可以包括非连续传输(discontinuous transmission,DTX)信息,该DTX信息可以用于指示终端设备未接收到下行数据。
2.信道状态信息CSI
在无线通信领域,所谓的CSI,就是通信链路的信道属性,CSI是UE对信道状态进行测量后向基站反馈的信道状态信息,该信息进一步包括CQI/PMI/RI等信息。它描述了信号在每条传输路径上的衰弱情况,即信道增益矩阵H中每个元素的值,如信号散射(scattering),环境衰弱(multipath fading or shadowing fading),距离衰减(power decay of distance)等信息。CSI可以使通信系统适应当前的信道条件,在多天线系统中为高可靠性高速率的通信提供了保障。
3.信道质量指示(channel quality indicator,CQI)信息
在本申请实施例中,CQI可以用来反映物理下行共享信道(physical downlink shared channel,PDSCH)的信道质量。CQI是信道质量指示信息,用于直接反馈信道质量。基站根据CQI可以进一步确定发送数据采用的调制编码策略MCS。当反馈的CQI的值高的时候,可以采用较高的编码调制方式和较高的码率,在有限的资源上承载更多的信息,从而提升数据的传输速率。当反馈的CQI的值较低的时候,可以采用较低的编码调制方式和较低的码率,采用更多的时频资源来传输数据,从而提高数据传输的可靠性。同时,UE通过测量不同频域资源的CQI,使得基站能够将数据调度在信道质量好的频域资源上,从而获得频域调度增益。
作为示例而非限定,在本申请实施例中,可以用0~15来表示PDSCH的信道质量。0表示信道质量最差,15表示信道质量最好。
在本申请实施例中,终端设备可以在物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道(physical uplink shared channel,PUSCH)上向网络设备发送CQI信息。网络设备可以CQI信息根据,确定当前PDSCH或PUSCH的无线信道条件,进而完成针对PDSCH的调度,例如,在本申请实施例中,网络设备可以基于CQI信息确定自适应编码调制(adaptive modulation and coding,AMC)、调制与编码策略(modulation and coding scheme,MCS)、上行传输或下行传输的码率或数据量等。
4.秩指示(rank indication,RI)信息
在本申请实施例中,RI是秩指示信息,用于向基站反馈该信道所能分离出来的层数,层数越多,能同时传输的数据量就越大。RI信息可以用于指示PDSCH的有效的数据层数, 或者说,RI信息可以用于指示终端设备当前可以支持的码字(code word,CW)数。
5.预编码矩阵指示(precoding matrix indicator,PMI)信息
在本申请实施例中,PMI信息可以用于指示码本集合的索引(index),PMI是UE根据测量的信道质量,向基站反馈的发送数据的预编码矩阵标识。基站可以根据反馈的PMI信息,来确定对应的预编码矩阵。即,在使用多天线技术,例如,多输入多输出(multiple-input multiple-output,MIMO)技术中,在PDSCH物理层的基带处理中,会进行基于预编码矩阵的预编码处理(precoding)。终端设备可以通过PMI信息指示预编码矩阵,从而,能够提高PDSCH的信号质量。
除此之外,还有一些信息比如CSI-RS的资源指示信息(CSI-RS resource indicator,CRI),用于向基站反馈测量的多个测量资源中,哪个测量资源测量的信道质量最好。
应理解,以上列举的CSI的具体内容仅为示例性说明,不应对本申请构成任何限定。接收端设备向发送端设备发送的CSI可以包括上述列举中的一项或多项,或者,还可以包括除上述列举之外的其他用于表征CSI的信息,本申请对此不做限定。
以下,不失一般性,以一个终端设备与一个网络设备之间的交互过程为例详细说明本申请实施例。该终端设备可以为处于无线通信系统中与一个或多个网络设备具有无线连接关系的任意终端设备。可以理解的是,处于该无线通信系统中的任意一个终端设备均可以基于相同的技术方案实现无线通信。本申请对此不做限定。
在本申请实施例中,发送上行控制信息可以是指发送上行控制信道PUCCH或上行共享信道PUSCH上承载的数据或信息,其中,该数据或信息可以是指经过信道编码后的数据或信息。本申请对此不做限定。
同样地,在本申请实施例中,发送下行控制信息可以是指发送下行控制信道(physical uplink control channel,PDCCH)或下行共享信道PDSCH上承载的数据或信息,其中,该数据或信息可以是指经过信道编码后的数据或信息。本申请对此不做限定。
上行控制信息的传输可以用两个信道进行传输:PUCCH和PUSCH。在NR的Rel-15中,不支持PUCCH和PUSCH的同时传输。因此,当UE需要同时发送控制信息和数据的时候,上行控制信息需要承载在PUSCH上来传输。当仅有上行控制信息的时候,可以采用PUCCH来传输UCI,也可以支持在PUSCH信道上将所有的资源都分配给UCI,从而不发送数据。具体来说,当UCI在PUSCH上复用时,不同的信息采用的处理方式不同。
目前的一种协议中的描述如图2所示。
首先,对数据传输而言,UE从媒体接入控制(media access control,MAC)层生成一个传输块(transmission block,TB),按照S201的操作将传输块进行循环冗余码校验(cyclic redundancy check,CRC)添加,其中,然后进行S202所示的码块(code block,CB)的分割和每个码块的CRC添加,然后进行S203进入编码器进行编码,编码后,要根据实际时频资源的多少对编码后的数据进行速率匹配,如S204,速率匹配后进行S205码块的级联,合成一串数据的比特流。
其次,对UCI的传输而言,CQI进行编码后需要和数据进行复用。ACK和RI进行编码后,和CQI/数据一起进交织器。ACK采用打掉数据的方式进入交织器,ACK位于PUSCH的导频旁边的位置上,RI位于ACK旁边的位置上,采用速率匹配的方法。这样放置是考虑到ACK可以有较好的信道估计性能,而RI对于正确接收CQI/PMI有一定的作用。
图3是一种协议对应的信息交织示意图。具体的信息的交织映射如图3所示,图3中有14个符号,ACK/NACK按照图中黑点区域映射在4个符号上,按照先时域后频域的顺序,从下向上逐行映射;RI映射在ACK/NACK两旁的4个符号上,按照先时域后频域的顺序,从下向上逐行映射;CQI和数据复用之后,按照先时域后频域的顺序从上向下逐行映射,其中白色的时频资源为分配给数据的。
在另一种可能的协议中,具体的流程和资源映射的方式都有所不同。其中一种可能的流程方式如图4所示,下面结合图4和图5对这种可能的协议流程和资源映射方式进行说明。
首先,对数据传输而言,UE从MAC层生成一个传输块TB,按照S401的操作将传输块进行CRC添加,其中,然后进行S402所示的码块CB的分割和每个码块的CRC添加,然后进行S403进入编码器进行编码,编码后,要根据实际时频资源的多少对编码后的数据进行速率匹配,如S404,速率匹配后进行S405码块的级联,合成一串数据的比特流。
其次,对UCI的传输而言,需要和数据进行复用。HARQ-ACK进行编码后,和CSI-part1,以及CSI part 2进行复用。
一种可能的映射方式如图5所示,在具体映射过程中,HARQ-ACK信息映射在DMRS之后的第一个非DMRS的符号上。CSI part 1和CSI part 2从第一个非DMRS的符号开始映射。在某个符号上映射的时候,具体的映射规则如下:
假设该符号上可用的RE个数为B,剩余的UCI的符号数为A,则按照在频域上分散映射的方式来映射,
如果A>B,则映射时频域上的RE距离为d=1,即频域连续映射;
如果A<B,则映射时频域上的RE距离为d=floor(A/B)。
例如,图中的HARQ-ACK的RE个数为6,符号3上的可用RE个数为12,则d=floor(12/6)=2,即频域上每隔一个RE映射一个HARQ-ACK的RE。
CSI part 1映射时,可用的RE需要去除HARQ-ACK已经映射过的RE。
CSI part 2映射时,可用的RE需要去除HARQ-ACK和CSI part 1已经映射过的RE。
需要注意,HARQ-ACK信息在信息比特不同时,需要有不同的操作方式。当HARQ-ACK信息小于2bit的时候,在资源映射时采用打孔的方式;当HARQ-ACK信息大于2bit的时候,在资源映射时采用速率匹配的方式。采用打孔的方式时,为了避免HARQ-ACK的RE占用CSI part 1的资源,引入了预留资源的方式。具体来说,就是当HARQ-ACK小于等于2比特的时候,不管HARQ-ACK的真实比特数是多少,都按照2bit来对HARQ-ACK的资源进行预留,CSI-part1不可以映射到该预留的资源上,以避免被HARQ-ACK的资源打掉。
一种可能的方式中,预留资源的映射仍然可以采用如前所述的在可用资源上的等距映射的方式,而真实要传输的资源在预留资源上的映射,也仍然可以采用如前所述的在预留资源上等距映射的方式。
举例来说,如图6所示,其中真实传输的HARQ-ACK资源为3个RE,在预留的HARQ-ACK资源上是等距分布的。
网络设备若不能预先获知终端设备反馈所需要的资源大小,便无法配置相应的资源给 物理上行信道,终端设备在反馈所需的资源较大的情况下便有可能出现反馈资源不足的可能。
再一方面,在网络设备配置的物理上行资源充足的情况下,终端设备还可以在发送UCI的同时发送上行数据。例如,在PUSCH上发送CSI和上行数据。
然而,网络设备并不能预先知道终端设备在物理上行信道上发送的是UCI还是上行数据,也就不能够正确地接收,从而造成传输可靠性下降。
UCI主要分为HARQ-ACK,CSI part 1和CSI part 2三部分,其中CSI part 2的数据量有了大幅度的增加。CSI part 2的数据量取决于CSI part 1,基站在调度资源的时候,无法获得CSI part 2的数据量,可能会导致调度的资源不够,此时,CSI part 2无法在所分配的资源上进行有效的承载,此时需要对CSI part 2的数据量进行部分或者全部丢弃,具体丢弃的数据量,需要通过计算。
现有技术给出了CSI part 2在有数据分配的资源上进行丢弃的规则。首先说明码率的计算方法,一般情况下,码率一般用于表示数据编码前的比特数和实际传输的比特数之间的比值,例如,如下公式一般分子可以为经过CRC校验的TB块的大小,分母为实际分配的RE个数和调制阶数的乘积。基站通过指示UE对应的码率和调制阶数,使得终端设备可以推算出TB块的大小。
码率=(TB+CRC)/(RE个数*调制阶数)
应理解,上述列举的参数,例如,调制阶数、CRC码的比特数、最小码率以及一个RB所包含的子载波数和符号数等可以是预先定义的,也可以是网络设备通过信令配置的,本申请对此不做限定。
c MCS为数据的码率,该码率是通过DCI来指示的,在DCI中采用5bit来指示所调度的上行数据的调制编码方式,具体来说,通过DCI指示对应的PDSCH所用的调制编码方式,UE根据调度的资源和PDCCH指示的调制与编码方式(Modulation and Coding Scheme,MCS)标识,则可以按照预定义的规则计算得出对应的传输块的大小。
具体地,协议定义了如下的表格表1。
在表1中,对应第一列的32种可能的MCS标识,第二列为调制阶数,其中1对应二进制相移键控调制方式(Binary Phase Shift Keying,BPSK),2对应正交相移键控调制方式QPSK,4对应正交幅度调制方式(Quadrature Amplitude Modulation,16QAM),6对应相正交振幅调制调制方式(Quadrature Amplitude Modulation,64QAM)。第三列为对应的码率,即所述c MCS。在该表格中,28,29,30,31行用于指示用户设备当前所发送的数据为重传的数据。该表格的主要作用是让UE通过指示的MCS和码率来确定传输块的大小,因为重传的数据的传输块的大小和初传相同,所以在该表格中未定义对应的码率。
表1
Figure PCTCN2019074832-appb-000004
同理,对CSI part 2而言,也存在对应的码率。码率的分子即CSI part 2的比特数,分母为实际分配的RE个数和调制阶数的乘积。
Figure PCTCN2019074832-appb-000005
为数据和CSI part 2的码率的比值,该值可以是DCI中指示的,也可以是半静态配置的,具体参考的表格如表2所示。其中,高层信令可以向UE配置4个表格中的值,然后DCI来指示具体采用4个中的哪一个。
表2
Figure PCTCN2019074832-appb-000006
根据会议讨论的结论,可以通过指示的c MCS
Figure PCTCN2019074832-appb-000007
来确定对应的CSI part 2的一个码 率门限c T,然后通过该门限c T来确定对CSI part 2的抛弃程度。具体的抛弃的优先级由协议定义如下表3所示。当UE发现码率不在码率门限以下的时候,抛弃时按照优先级从低到高依次抛弃,直到码率降到门限以下。
表3
Figure PCTCN2019074832-appb-000008
具体地,假设现在UE生成的CSI part 2为A比特,这A比特为经过CRC校验的比特。CSI part 2的可用资源RE个数为B个,可用资源数为基站和UE按照预定义的方式计算出来的。如果UE发现A/B的值超过了所述的码率门限c T,则会按照优先级的方式将A比特的内容进行抛弃,直到A/B的值不超过所述的码率门限c T
关于CSI part 2的可用资源数,具体的计算公式如(1)-(3):
Figure PCTCN2019074832-appb-000009
Figure PCTCN2019074832-appb-000010
Figure PCTCN2019074832-appb-000011
其中,公式(1)表示在PUSCH上传输的HARQ-ACK的资源。在公式(1)中,O ACK表示HARQ-ACK的比特数目,L ACK表示HARQ-ACK对应的CRC校验的比特数目,
Figure PCTCN2019074832-appb-000012
表示HARQ-ACK的码率的偏移量。
Figure PCTCN2019074832-appb-000013
表示可用于UCI传输的数据的RE个数,
Figure PCTCN2019074832-appb-000014
表示数据码块级联后的比特数。α表示一个小于等于1的值,α={0.5,0.65,0.8,1},为高层信令配置的参数。l 0表示在DMRS之后的第一个可用的非DMRS符号。
其中,公式(2)表示在PUSCH上传输的CSI part 1的资源,在公式(2)中,O CSI-1表示CSI part 1的比特数目,L CSI-1表示CSI part 1对应的CRC校验的比特数目,
Figure PCTCN2019074832-appb-000015
表示CSI part 1的码率的偏移量。
Figure PCTCN2019074832-appb-000016
表示可用于UCI传输的数据的RE个数,
Figure PCTCN2019074832-appb-000017
表示数据码块级联后的比特数。α表示一个小于等于1的值,α={0.5,0.65,0.8,1},为高层信令配置的参数。该公式的min函数的右边表示CSI part 1占用的资源的上界为不超过所有可用的数据的RE除去HARQ-ACK所占的RE个数。
其中,公式(3)表示在PUSCH上传输的CSI part 2的资源,在公式(3)中,O CSI-2表示CSI part 2的比特数目,L CSI-2表示CSI part 2对应的CRC校验的比特数目,
Figure PCTCN2019074832-appb-000018
表示CSI part 2的码率的偏移量。
Figure PCTCN2019074832-appb-000019
表示可用于UCI传输的数据的RE个数,
Figure PCTCN2019074832-appb-000020
表示数据码块级联后的比特数。α表示一个小于等于1的值,α={0.5,0.65,0.8,1},为高层信令配置的参数。该公式的min函数的右边表示CSI part 2占用的资源的上界为不超过所有可用的数据的RE除去HARQ-ACK和CSI part 1所占的RE个数。
上述方案需要有数据的调度和传输,在没有上行数据的时候,因为没有数据的码率,该方法无法计算得到码率的门限,从而无法确定出需要抛弃的CSI part 2数据量。
本申请实施例提供的通信方法,在物理上行信道上仅发送上行控制信息UCI的情况下,即网络设备所分配的资源上只传UCI情况下,能够确定码率门限,从而确定UCI的抛弃规则。
特别需要说明的是,在本申请实施例中,多次提及“终端设备在物理上行信道上仅发送上行控制信息的情况”,这种描述是相对于上行数据而言,也就是说,在上行数据和上行控制信息之中,终端设备仅发送上行控制信息而不发送上行数据。因此,“终端设备在物理上行信道上仅发送上行控制信息”并不代表该终端设备在物理上行信道上不发送其他信号,例如,解调参考信号(demodulation reference signal,DMRS)等。本领域的技术人员可以理解,在某些情况下,若终端设备在物理上行信道上仅发送上行控制信息而不发送解调参考信号,网络设备也是无法正确接收到该上行控制信息的。此外,当终端设备在物理上行信道上仅发送上行控制信息时,本申请也并不排除该终端设备在物理上行信道上发送除DMRS之外的其他参考信号的可能,例如,SRS等。
图7是从设备交互的角度示出的本申请实施例提供的通信方法700的示意性流程图。 如图所示,图7中所示的方法700可以包括步骤710至步骤760。下面结合图7对方法700进行详细描述。
在步骤710中,网络设备发送下行控制信息DCI,相应地,终端设备接收网络设备发送的DCI,并获取该DCI中的信息。
可选地,该DCI中可以包括第一指示信息,用于确定第一码率。
可选地,该DCI中还可以包括第二指示信息,用于指示是否在所述物理上行信道上仅发送UCI,终端设备可以根据第二指示信息确定是否在所述物理上行信道上仅发送UCI。例如第二指示信息可以是所述DCI中携带的信息指示字段,该指示字段用于确定是否在所述物理上行信道上仅发送UCI。
可选地,该DCI中还可以包括调制编码策略MCS域,包括MCS标识。
具体地,该第一指示信息和/或第二指示信息可以是携带在高层信令中的信息,例如,RRC消息或MAC CE;或者,该第一指示信息和/或第二指示信息可以是携带在物理层信令中的信息,例如,DCI。
可选地,该第二指示信息可通过在高层信令或物理层信令中新增的字段来指示是否在物理上行信道上仅发送上行控制信息。该新增的字段例如可以是UCI only(仅UCI)字段或UE content(UE内容)字段等。
比如,UCI only字段指示UCI-only=TRUE时,可表示在物理上行信道上仅发送上行控制信息;UCI only字段指示UCI-only=FALSE时,可表示在物理上行信道上行控制信息和上信息数据。
或者,UE content字段置为“0”时,可表示在物理上行信道上仅发送上行控制信息;UE content字段置为“1”时,可表示在物理上行信道上发送上行控制信息和上行数据。或者,UE content字段置为“00”时,可表示在物理上行信道上仅发送上行控制信息;UE content字段置为“01”时,可表示在物理上行信道上发送上行控制信息和上行数据;UE content字段置为“10”时,可表示在物理上行信道上发送上行数据;UE content字段置为“11”是预留状态。
应理解,以上列举的携带该第一指示信息的信令、承载该第一指示信息的字段以及通过上文列举的字段指示是否在物理上行信道上仅发送上行控制信息的具体方式仅为示例性说明,不应对本申请构成任何限定。例如,该第一指示信息也可以通过其他现有的字段来指示,本申请对此不做限定。
在步骤720中,终端设备确定物理上行信道仅发送UCI。相应的,网络设备确定物理上行信道仅发送UCI。
具体来说,网络设备通过DCI的信息调度的资源可以用来传输数据和\或UCI,网络设备需要让终端设备知道是否需要传输上行数据。如果只传输了UCI没有需要传输上行数据,则终端设备就不会生成TB块,而是把所有的资源都分给UCI。如果上行数据和UCI都有,则终端设备需要给上行数据和UCI都分配资源。
网络设备和终端设备需要对这两种情况的理解保持一致。如果网络设备告诉终端设备对应的资源上会传输上行数据和UCI,则终端设备会根据网络设备所分配的资源以及约定的方式来给数据和UCI分配资源。
可选地,终端设备可以根据该DCI中携带的指示信息来确定是否在所述物理上行信道 上仅发送UCI。作为一种实施例,例如,根据第二指示信息确定是否在所述物理上行信道上仅发送UCI;或者根据所述MCS标识,冗余版本RV指示和新传数据NDI指示确定是否在物理上行信道上仅发送所述UCI。
作为一种实施例,例如,该DCI中可以用1bit来指示所述物理上行信道上仅发送UCI的情况。
可选地,根据所述MCS标识确定是否在所述物理上行信道上仅发送UCI。当所述MCS标识落入预设范围(例如,第二范围)内时,确定为在所述物理上行信道上仅发送所述UCI;否则,确定在所述物理上行信道上发送所述UCI和上行数据。应理解,所述预设范围内的标识所对应的MCS用于指示重传,或所述预设范围是由协议定义。
本申请实施例将表1中的行数MCS Index(I MCS)取值为0到27(包括0和27)的范围划分为第一范围,将行数MCS Index(I MCS)取值为28,29,30,31的范围划分为第二范围,应理解,本申请并不限于此。
作为一种实施例而非限定,例如,该DCI中包括的MCS标识大于或等于28时,指示所述物理上行信道上仅发送UCI的情况,即在表1中行数MCS Index(I MCS)取值为28,29,30,31时,可以将28,29,30,31行增加新的含义,除了用于指示用户设备当前所发送的数据为重传的数据外,还可以用于指示所述物理上行信道上仅发送UCI的情况。
可选地,还可以根据所述MCS标识,RV指示和NDI指示所述物理上行信道上仅发送UCI的情况。例如,MCS标识指示的范围是28-31,RV的值为0,NDI的值和上次传输的值不同,即NDI翻转,通过这三个域,可以告诉UE对应的PUSCH信道上不传输数据,仅传输上行控制信息。
在步骤730中,终端设备根据MCS标识确定门限码率,相应的,网络设备根据MCS标识确定门限码率。
可选地,当所述MCS标识在第一范围内时,根据预定义的MCS标识和第一码率的一一对应关系确定第一码率。将所述第一码率确定为所述门限码率;或者根据所述第一码率与偏移量β确定所述门限码率,所述偏移量β为大于或等于1的值。
具体地,当所述MCS标识在0到27之间(包括0和27)取值时,可以通过协议定义MCS标识和第一码率的对应关系,其中,所述MCS标识和第一码率是一一对应的,例如,呈现为表1所示的情况,当MCS Index取值为8时,对应的第一码率为602,终端设备通过读取8对应的码率602,将这个码率作为计算码率门限的第一码率,或者根据所述第一码率与偏移量β确定所述门限码率,所述偏移量β为大于或等于1的值。应理解,本申请实施例并不限于此。
可选地,当所述MCS标识在第二范围内时,根据所述MCS标识确定调制阶数,根据调制阶数和第一码率的对应关系确定所述第一码率;将所述第一码率确定为所述门限码率;或者根据所述第一码率与偏移量β确定所述门限码率,所述偏移量β为大于或等于1的值。
具体地,当所述MCS标识在28到31之间(包括28和31)取值时,可以通过定义MCS标识和调制阶数的对应关系,再根据调制阶数和第一码率的对应关系,确定所述第一码率。
这里需要指出的是,调制阶数有1、2、4、6这四个取值,每个取值会对应多个码率,可选地,若所述调制阶数对应多个所述第一码率,确定所述多个第一码率中最大的码率为 所述第一码率。
可选地,若所述调制阶数对应多个所述第一码率,确定所述多个第一码率中最小的码率为所述第一码率。
可选地,若所述调制阶数对应多个所述第一码率,根据第一指示信息确定所述第一码率。
作为另一种可能的实施方式,当所述MCS标识在第二范围内时,根据预定义的MCS标识和第一码率的一一对应关系确定第一码率,将所述第一码率确定为所述门限码率;或者根据所述第一码率与偏移量β确定所述门限码率,所述偏移量β为大于或等于1的值。
具体地,当所述MCS标识在28到31之间(包括28和31)取值时,可以通过协议定义MCS标识和第一码率的一一对应关系,例如,当MCS Index取值为29时,对应的第一码率为602,将602确定为所述第一码率,或者根据该第一码率与偏移量β确定所述门限码率,所述偏移量β为大于或等于1的值。
在步骤740中,终端设备根据门限码率和上行控制信息UCI的生成比特数,确定待传输的UCI比特数,所述待传输的UCI的比特数小于或等于所述UCI的生成比特数。相应的,网络设备根据门限码率和上行控制信息UCI的生成比特数,确定待接收的UCI比特数。
可选地,一种可能实现的方式为通过上述公式(1)-(3)来得到传输的UCI的可用资源数。
另一种可能的实现方式为公式(4)-(6),如下所示:
Figure PCTCN2019074832-appb-000021
Figure PCTCN2019074832-appb-000022
Figure PCTCN2019074832-appb-000023
其中,与公式(1)-(3)不同,对应的α的取值对不同的UCI取值可以不同。这样设计的好处在于,通过对不同的UCI设置不同的α的取值,使得不同的UCI所占用的上界不同,防止了某一种UCI的数据量超过数据,公式的min操作总是取到右边的项,导致所有的资源都分给某一种UCI,其他的UCI无法分到数据。
例如,按照公式(1),如果
Figure PCTCN2019074832-appb-000024
由于beta参数为大于等于1的项,很大程度上min的操作会取到右边的项,此时,
Figure PCTCN2019074832-appb-000025
的资源就全部分给了HARQ-ACK,当再采用公式(2)计算的时候,导致公式(2)的右边项为0,从而CSI part1分不到资源,CSI part 2也分不到资源。
而如果每种UCI可以配置不同的α的取值,例如α 0取0.5,α 1取0.6,α 2取0.8,则保证了每种UCI都可以分到资源。
另一种可能的实现方式为(7)-(9),其中公式(7)同公式(1),
Figure PCTCN2019074832-appb-000026
Figure PCTCN2019074832-appb-000027
Figure PCTCN2019074832-appb-000028
该方式的好处在于,即使公式(7)将资源
Figure PCTCN2019074832-appb-000029
全部分配给HARQ-ACK,在(8)中,将总资源出去HARQ-ACK的资源之后,再将剩余资源中α比例的资源分配给CSI-part 1,在(9)中,将总资源出去HARQ-ACK和CSI part 1的资源之后,再将剩余资源中α比例的资源分配给CSI-part 2。通过这种操作,保证了每种UCI和数据都可以分到资源。
还有一种方式为公式(10)-(12),考虑上述两种方式的结合,如下:
Figure PCTCN2019074832-appb-000030
Figure PCTCN2019074832-appb-000031
Figure PCTCN2019074832-appb-000032
如果基站告诉UE对应的资源上只传输UCI,则UE会根据所分配的资源以及约定的方式来给UCI分配资源。
对HARQ-ACK,一种可能的实现方式为公式(13),(13a-h),
Figure PCTCN2019074832-appb-000033
其中,O CSI-1+L CSI-1表示CSI part 1经过CRC校验后的比特数,
Figure PCTCN2019074832-appb-000034
可能的另一种公式为引入α,其中α为小于等于1的数,可以对不同的UCI取不同的值,如下:
Figure PCTCN2019074832-appb-000035
该方式防止了所有的可用资源都分给了HARQ-ACK。
可能的另一种方式为(13-b),如下:
Figure PCTCN2019074832-appb-000036
其中,O CSI-2+L CSI-2表示CSI part 2经过CRC校验后的比特数。
可能的另一种公式为引入α,其中α为小于等于1的数,可以对不同的UCI取不同的值,如下(13-c):
Figure PCTCN2019074832-appb-000037
可能的另一种方式为(13-d),如下:
Figure PCTCN2019074832-appb-000038
可能的另一种公式为引入α其中α为小于等于1的数,可以对不同的UCI取不同的值,如下(13-e):
Figure PCTCN2019074832-appb-000039
可能的一种方式为引入参考码率,其中
Figure PCTCN2019074832-appb-000040
Figure PCTCN2019074832-appb-000041
Figure PCTCN2019074832-appb-000042
Figure PCTCN2019074832-appb-000043
Figure PCTCN2019074832-appb-000044
对CSI part 1,可能的公式如下(14)(14a-h),其中α为小于等于1的数,
Figure PCTCN2019074832-appb-000045
可以对不同的UCI取不同的值:
Figure PCTCN2019074832-appb-000046
Figure PCTCN2019074832-appb-000047
Figure PCTCN2019074832-appb-000048
分母变化:
Figure PCTCN2019074832-appb-000049
Figure PCTCN2019074832-appb-000050
Figure PCTCN2019074832-appb-000051
还可以考虑利用有数据的情况下的公式,用MCS域来指示一个参考的码率c Ref
Figure PCTCN2019074832-appb-000052
Figure PCTCN2019074832-appb-000053
其中α为小于等于1的数,可以对不同的UCI取不同的值,根据该码率来计算:
Figure PCTCN2019074832-appb-000054
Figure PCTCN2019074832-appb-000055
Figure PCTCN2019074832-appb-000056
对CSI part 2,可用的资源数如下:
Figure PCTCN2019074832-appb-000057
通过上述多种实施方式计算得到的CSI part 2的资源,根据CSI part 2的资源,以及MCS域指示的调制阶数和对应的参考码率(即,第一码率),可以确定抛弃的比特数,假设A为生成的CSI part 2的比特数,A0为抛弃的比特数,则有A和A0满足如下条件,且抛弃是按照规定的表2的优先级进行的。
Figure PCTCN2019074832-appb-000058
在步骤750中,终端设备确定了需要丢弃的部分或全部UCI比特数(例如CSI part 2的部分或全部),即确定了待传输或者实际要传输的UCI比特数,所述待传输的UCI的比特数小于或等于所述UCI的生成比特数。将计算的实际要传输的UCI比特数传输到网络设备,网络设备接收相应的UCI比特数。
或者,在步骤760中,当有上行数据和UCI要发送时,按照公式(1)-(3)来进行计算,并确定需要丢弃的部分或全部UCI比特数(例如CSI part 2的部分或全部),从而确定待传输或者实际要传输的UCI比特数,将计算的实际要传输的UCI比特数和上行数据传输到网络设备,网络设备接收相应的UCI比特数和上行数据。
基于上述技术方案,网络设备和终端设备可以在物理上行信道上仅发送上行控制信息UCI的情况下,分别根据调制编码方式MCS标识确定门限码率,从而根据所述门限码率和上行控制信息UCI的生成比特数,发送或接受待传输的UCI比特数。因此,终端设备能够合理的分配资源,保证UCI数据的有效发送,网络设备能够正确地接收UCI,有利于提高数据传输的可靠性。此外,在物理上行信道的资源充足的情况下,终端设备还可以在该物理上行信道上并行地发送上行控制信息和上行数据,提高了资源的利用率,同时对上行控制信息的正确接收没有影响。从整体上来说,有利于提高通信系统的传输性能。
应理解,上文中仅为便于理解,以网络设备与终端设备的交互为例详细说明了本申请实施例提供的通信方法,但这不应对本申请构成任何限定。例如,向终端设备发送下行控制信息的网络设备与接收上行控制信息的网络设备可以为相同的网络设备或不同的网络设备,本申请对此不做限定。
还应理解,图7仅为便于理解,示意性地示出了终端设备和网络设备执行的步骤,但这并不表示终端设备和网络设备会执行图中示出的每一个步骤,例如,终端设备可以根据分配的物理上行信道的资源和码率门限的关系,在步骤710和步骤760之间择一执行。
需要说明的是,上文示出的实施例中,示出了计算的过程,但这仅仅示出了计算门限的一种可能的实现方式,不应对本申请构成任何限定,本申请实施例对于门限的计算方法并未特别限定。
本申请还提供一种方法,终端设备可直接根据网络设备的指示确定在物理上行信道上发送的UCI。图8是从设备交互的角度示出的本申请再一实施例提供的通信方法800的示意性流程图。
如图8所示,该方法800包括:步骤810至步骤840。
步骤810,终端设备接收第三指示信息,该第三指示信息指示终端设备待传输的UCI。
相对应地,网络设备发送第三指示信息,该第三指示信息指示终端设备在物理上行信道上待传输的UCI。
具体地,该第三指示信息可以是携带在高层信令中的信息,例如,RRC消息或MAC CE;或者,该第三指示信息可以是携带在物理层信令中的信息,例如,DCI。该第三指示信息可通过在高层信令或物理层信令中新增的字段来指示终端设备在物理上行信道上待传输的UCI。
比如,新增的字段置为“0”时,可表示在物理上行信道上仅发送上行控制信息且直接 指示可以传输的UCI比特数;新增的字段置为“1”时,可表示在物理上行信道上发送上行控制信息和上行数据且直接指示可以传输的UCI和上行数据比特数。或者,新增的字段置为“00”时,可表示在物理上行信道上仅发送上行控制信息直接指示可以传输的UCI比特数;新增的字段置为“01”时,可表示在物理上行信道上发送上行控制信息和上行数据且直接指示可以传输的UCI和上行数据比特数;新增的字段置为“10”时,可表示在物理上行信道上发送上行数据且直接指示可以传输的上行数据比特数;新增的字段置为“11”是预留状态。
应理解,以上列举的携带该第三指示信息的信令、承载该第三指示信息的字段以及通过上文列举的字段指示是否在物理上行信道上仅发送上行控制信息的具体方式仅为示例性说明,不应对本申请构成任何限定。例如,该第一指示信息也可以通过其他现有的字段来指示,本申请对此不做限定。
在步骤820中,在第三指示信息指示在物理上行信道上可以发送的上行控制信息的比特数,终端设备和网络设备确定在该物理上行信道上仅发送指示的UCI比特数。
在步骤830中,终端设备在该物理上行信道上仅发送指示的UCI比特数,相应的,网络设备在物理上行信道上仅接收上行控制信息。
应理解,步骤820的具体过程与上文中方法700中的步骤740的具体过程相同,为了简洁,这里不再赘述。
可选地,该方法800还包括步骤840,在第三指示信息指示在物理上行信道上不是仅发送上行控制信息的情况下,该终端设备在该物理上行信道上发送上行控制信息和上行数据,或者,发送上行数据。
相对应地,在步骤840中,在第三指示信息指示在物理上行信道上不是仅发送上行控制信息的情况下,该网络设备在该物理上行信道上接收上行控制信息和上行数据,或者,接收上行数据。
应理解,步骤840的具体过程与上文中方法700中的步骤760的具体过程相同,上文中已经结合具体的情况说明了终端设备在怎样的情况下可以发送上行控制信息和上行数据以及在怎样的情况下可以仅发送上行数据,为了简洁,这里不再赘述。
基于上述技术方案,终端设备可以基于网络设备的指示确定在物理上行信道上发送的内容,网络设备也可以基于相同的指示在该物理上行信道上接收相应的内容,因此,网络设备能够正确地接收上行控制信息和/或上行数据,有利于提高数据传输的可靠性,从而有利于提高通信系统的传输性能。
应理解,上文中仅为便于理解,以网络设备与终端设备的交互为例详细说明了本申请实施例提供的通信方法,但这不应对本申请构成任何限定。例如,向终端设备发送配置参数的信息的网络设备与接收上行控制信息的网络设备可以为相同的网络设备或不同的网络设备,本申请对此不做限定。
还应理解,在本申请的各实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图7和图8对本申请实施例的通信方法做了详细说明。以下,结合图9至图12对本申请实施例的通信装置进行详细说明。
图9是本申请实施例提供的通信装置的示意性框图。如图9所示,该通信装置900可以包括:确定单元910和收发单元920。
在一种可能的设计中,该通信装置900可以为终端设备或配置于终端设备中的芯片。
在一种可能的实现方式中,该确定单元910可用于根据调制编码方式MCS标识确定门限码率。
该确定单元910还可用于根据所述门限码率和上行控制信息UCI的生成比特数,确定待传输的UCI比特数,所述待传输的UCI的比特数小于或等于所述UCI的生成比特数。
该收发单元920用于发送所述待传输的UCI比特数。
可选地,该确定单元910具体可以用于当所述MCS标识在第一范围内时,根据预定义的MCS标识和第一码率的一一对应关系确定第一码率;将所述第一码率确定为所述门限码率;或者根据所述第一码率与偏移量β确定所述门限码率,所述偏移量β为大于或等于1的值。
可选地,该确定单元910还可以用于当所述MCS标识在第二范围内时,根据所述MCS标识确定调制阶数,根据调制阶数和第一码率的对应关系确定所述第一码率;将所述第一码率确定为所述门限码率;或者根据所述第一码率与偏移量β确定所述门限码率,所述偏移量β为大于或等于1的值。
作为一种可能的实施方式,若所述调制阶数对应多个所述第一码率,该确定单元910可以用于确定所述多个第一码率中最大的码率为所述第一码率;或者若所述调制阶数对应多个所述第一码率,该确定单元910可以用于确定所述多个第一码率中最小的码率为所述第一码率;或者若所述调制阶数对应多个所述第一码率,该确定单元910可以用于根据第一指示信息确定所述第一码率,所述第一指示信息是下行控制信息DCI中携带的信息。
或者,当所述MCS标识在第二范围内时,该确定单元910可以用于根据预定义的MCS标识和第一码率的一一对应关系确定第一码率,将所述第一码率确定为所述门限码率;或者根据所述第一码率与偏移量β确定所述门限码率,所述偏移量β为大于或等于1的值。
可选地,该确定单元910还可以用于确定是否在物理上行信道上仅发送所述UCI。
具体地,该确定单元910可以根据第二指示信息确定是否在所述物理上行信道上仅发送UCI,所述第二指示信息是所述DCI中携带的信息;或者根据所述MCS标识,冗余版本RV指示和新传数据NDI指示确定是否在物理上行信道上仅发送所述UCI。
应理解,该通信装置900可对应于根据本申请实施例的通信方法700中的终端设备或网络设备,该通信装置900可以包括用于执行图7中通信方法700的终端设备或网络设备执行的方法的模块。并且,该通信装置900中的各模块和上述其他操作和/或功能分别为了实现图7中通信方法700的相应流程,具体地,该确定单元910用于方法700中的步骤720、步骤730和步骤740,该收发单元920用于执行方法700中的步骤710或750或760,各单元执行上述相应步骤的具体过程在方法700中已经详细说明,为了简洁,在此不再赘述。
具体地,该通信装置900可对应于根据本申请实施例的通信方法800中的终端设备,该通信装置900可以包括用于执行图8中通信方法800的终端设备执行的方法的模块。并且,该通信装置900中的各模块和上述其他操作和/或功能分别为了实现图8中通信方法 800的相应流程,具体地,该收发单元920用于执行方法800中的步骤520,各单元执行上述相应步骤的具体过程在方法800中已经详细说明,为了简洁,在此不再赘述。
在另一种可能的设计中,该通信装置900可以为终端设备或配置于终端设备中的芯片。
图10是本申请实施例提供的通信装置的示意性框图。如图10所示,该通信装置1000可以包括:确定单元1010和收发单元1020。
在一种可能的设计中,该通信装置1000可以为网络设备或配置于网络设备中的芯片。
在一种可能的实现方式中,该确定单元1010可用于根据调制编码方式MCS标识确定门限码率。
该确定单元1010还可用于根据所述门限码率和上行控制信息UCI的生成比特数,确定待传输的UCI比特数,所述待传输的UCI的比特数小于或等于所述UCI的生成比特数。
该收发单元1020用于发送所述待传输的UCI比特数。
可选地,该确定单元1010具体可以用于当所述MCS标识在第一范围内时,根据预定义的MCS标识和第一码率的一一对应关系确定第一码率;将所述第一码率确定为所述门限码率;或者根据所述第一码率与偏移量β确定所述门限码率,所述偏移量β为大于或等于1的值。
可选地,该确定单元1010还可以用于当所述MCS标识在第二范围内时,根据所述MCS标识确定调制阶数,根据调制阶数和第一码率的对应关系确定所述第一码率;将所述第一码率确定为所述门限码率;或者根据所述第一码率与偏移量β确定所述门限码率,所述偏移量β为大于或等于1的值。
作为一种可能的实施方式,若所述调制阶数对应多个所述第一码率,该确定单元1010可以用于确定所述多个第一码率中最大的码率为所述第一码率;或者若所述调制阶数对应多个所述第一码率,该确定单元1010可以用于确定所述多个第一码率中最小的码率为所述第一码率;或者若所述调制阶数对应多个所述第一码率,该确定单元1010可以用于根据第一指示信息确定所述第一码率,所述第一指示信息是下行控制信息DCI中携带的信息。
或者,当所述MCS标识在第二范围内时,该确定单元1010可以用于根据预定义的MCS标识和第一码率的一一对应关系确定第一码率,将所述第一码率确定为所述门限码率;或者根据所述第一码率与偏移量β确定所述门限码率,所述偏移量β为大于或等于1的值。
可选地,该确定单元1010还可以用于确定是否在物理上行信道上仅发送所述UCI。
具体地,该确定单元1010可以根据第二指示信息确定是否在所述物理上行信道上仅发送UCI,所述第二指示信息是所述DCI中携带的信息;或者根据所述MCS标识,冗余版本RV指示和新传数据NDI指示确定是否在物理上行信道上仅发送所述UCI。
应理解,该通信装置1000可对应于根据本申请实施例的通信方法700中的网络设备,该通信装置1000可以包括用于执行图7中通信方法700的网络设备执行的方法的模块。并且,该通信装置1000中的各模块和上述其他操作和/或功能分别为了实现图7中通信方法700的相应流程,具体地,该确定单元1010用于方法700中的步骤720、步骤730和步骤740,该收发单元1020用于执行方法700中的步骤710或750或760,各单元执行上 述相应步骤的具体过程在方法700中已经详细说明,为了简洁,在此不再赘述。
具体地,该通信装置1000可对应于根据本申请实施例的通信方法800中的网络设备,该通信装置1000可以包括用于执行图8中通信方法800的网络设备执行的方法的模块。并且,该通信装置1000中的各模块和上述其他操作和/或功能分别为了实现图8中通信方法800的相应流程,具体地,该收发单元1020用于执行方法800中的步骤520,各单元执行上述相应步骤的具体过程在方法800中已经详细说明,为了简洁,在此不再赘述。
在另一种可能的设计中,该通信装置1000可以为网络设备或配置于网络设备中的芯片。
图11是本申请实施例提供的终端设备1100的结构示意图。如图11所示,该终端设备1100包括处理器1110和收发器1120。可选地,该终端设备1100还包括存储器1130。其中,处理器1110、收发器1120和存储器1130之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器1130用于存储计算机程序,该处理器1110用于从该存储器1130中调用并运行该计算机程序,以控制该收发器1120收发信号。
上述处理器1110和存储器1130可以合成一个处理装置,处理器1110用于执行存储器1130中存储的程序代码来实现上述功能。具体实现时,该存储器1130也可以集成在处理器1110中,或者独立于处理器1110。
上述终端设备还可以包括天线1140,用于将收发器1120输出的下行数据或下行控制信令通过无线信号发送出去。
具体地,该终端设备1100可对应于根据本申请实施例的通信方法700中的终端设备,该终端设备1100可以包括用于执行图7中通信方法700的终端设备执行的方法的模块。并且,该终端设备1100中的各模块和上述其他操作和/或功能分别为了实现图7中通信方法700的相应流程。具体地,该存储器1130用于存储程序代码,使得处理器1110在执行该程序代码时,执行方法700中的步骤720、步骤730和步骤740,并控制该收发器1120通过天线1140执行方法700中的步骤710、步骤750或步骤760,各模块执行上述相应步骤的具体过程在方法700中已经详细说明,为了简洁,在此不再赘述。
或者,该终端设备1100可对应于根据本申请实施例的通信方法800中的终端设备,该终端设备1100可以包括用于执行图8中通信方法800的终端设备执行的方法的模块。并且,该终端设备1100中的各模块和上述其他操作和/或功能分别为了实现图8中通信方法800的相应流程。具体地,该存储器1150用于存储程序代码,使得处理器1110在执行该程序代码时,执行方法800中的步骤820,并控制该收发器1120通过天线1140执行方法800中的步骤810、步骤830或步骤840,各模块执行上述相应步骤的具体过程在方法500中已经详细说明,为了简洁,在此不再赘述。
图12是本申请实施例提供的终端设备1200的结构示意图。如图12所示,该终端设备1200包括:处理器1201和收发器1202,可选地,该终端设备1200还包括存储器1203。其中,其中,处理器1202、收发器1202和存储器1203之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器1203用于存储计算机程序,该处理器1201用于从该存储器1203中调用并运行该计算机程序,以控制该收发器1202收发信号。
上述处理器1201和存储器1203可以合成一个处理装置1204,处理器1201用于执行存储器1203中存储的程序代码来实现上述功能。具体实现时,该存储器1203也可以集成 在处理器1201中,或者独立于处理器1201。上述终端设备1200还可以包括天线1210,用于将收发器1202输出的上行数据或上行控制信令通过无线信号发送出去。
具体地,终端设备1200可以对应于根据本申请实施例的通信方法700中的终端设备,该终端设备1200可以包括用于执行图7中通信方法700的终端设备执行的方法的模块,并且,该终端设备1200中的各模块和上述其他操作和/或功能分别为了实现图7中通信方法700的相应流程。具体地,该存储器1203用于存储程序代码,使得处理器1201在执行该程序代码时,执行方法700中的步骤720到步骤740,并控制收发器1202执行方法700中的步骤710或步骤750或步骤760,各模块执行上述相应步骤的具体过程在方法700中已经详细说明,为了简洁,在此不再赘述。
或者,终端设备1200可以对应于根据本申请实施例的通信方法800中的终端设备,该终端设备1200可以包括用于执行图8中通信方法800的终端设备执行的方法的模块,并且,该终端设备1200中的各模块和上述其他操作和/或功能分别为了实现图8中通信方法800的相应流程。具体地,该存储器1203用于存储程序代码,使得处理器1201在执行该程序代码时,执行方法800,并控制收发器1202执行方法800中的步骤810或步骤830或步骤840,各模块执行上述相应步骤的具体过程在方法800中已经详细说明,为了简洁,在此不再赘述。
上述处理器1201可以用于执行前面方法实施例中描述的由终端内部实现的动作,而收发器1202可以用于执行前面方法实施例中描述的终端向终端设备传输或者发送的动作。具体请见前面方法实施例中的描述,此处不再赘述。
上述处理器1201和存储器1203可以集成为一个处理装置,处理器1201用于执行存储器1203中存储的程序代码来实现上述功能。具体实现时,该存储器1203也可以集成在处理器1201中。
上述终端设备1200还可以包括电源1205,用于给终端中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备1200还可以包括输入单元1214,显示单元1216,音频电路1218,摄像头1220和传感器1222等中的一个或多个,所述音频电路还可以包括扬声器1282,麦克风1284等。
图13是本申请实施例提供的网络设备1300的结构示意图。如图13所示,该网络设备1300包括处理器1310和收发器1320。可选地,该网络设备1300还包括存储器1330。其中,处理器1310、收发器1320和存储器1330之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器1330用于存储计算机程序,该处理器1310用于从该存储器1330中调用并运行该计算机程序,以控制该收发器1320收发信号。
上述处理器1310和存储器1330可以合成一个处理装置,处理器1310用于执行存储器1330中存储的程序代码来实现上述功能。具体实现时,该存储器1330也可以集成在处理器1310中,或者独立于处理器1310。
上述网络设备还可以包括天线1340,用于将收发器1320输出的下行数据或下行控制信令通过无线信号发送出去。
具体地,该网络设备1300可对应于根据本申请实施例的通信方法700中的网络设备,该网络设备1300可以包括用于执行图7中通信方法700的网络设备执行的方法的模块。并且,该网络设备1300中的各模块和上述其他操作和/或功能分别为了实现图7中通信方 法700的相应流程。具体地,该存储器1330用于存储程序代码,使得处理器1310在执行该程序代码时,执行方法700中的步骤720、步骤730和步骤740,并控制该收发器1320通过天线1340执行方法700中的步骤710、步骤750或步骤760,各模块执行上述相应步骤的具体过程在方法700中已经详细说明,为了简洁,在此不再赘述。
或者,该网络设备1300可对应于根据本申请实施例的通信方法800中的网络设备,该网络设备1300可以包括用于执行图8中通信方法800的网络设备执行的方法的模块。并且,该网络设备1300中的各模块和上述其他操作和/或功能分别为了实现图8中通信方法800的相应流程。具体地,该存储器1350用于存储程序代码,使得处理器1310在执行该程序代码时,执行方法800中的步骤820,并控制该收发器1320通过天线1340执行方法800中的步骤810、步骤830或步骤840,各模块执行上述相应步骤的具体过程在方法800中已经详细说明,为了简洁,在此不再赘述。
图14为本申请实施例提供的一种网络设备1400的结构示意图。可以用于实现上述方法中700或800中的网络设备的功能。如可以为基站的结构示意图。如图14所示,该基站可应用于如图1所示的系统中。基站1400包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1401和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1402。所述RRU 1401可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线1403和射频单元1404。所述RRU 1401部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中所述的信令消息。所述BBU 1402部分主要用于进行基带处理,对基站进行控制等。所述RRU 1401与BBU 1402可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1402为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如该BBU(确定单元)1402可以用于控制基站1400执行上述方法700或800的实施例中关于网络设备的操作流程。
在一个示例中,所述BBU 1402可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE系统,或NR系统),也可以分别支持不同接入制式的无线接入网。所述BBU 1402还包括存储器1405和处理器1406。所述存储器1405用以存储必要的指令和数据。例如存储器1405存储上述实施例中的码本等。所述处理器1406用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器1405和处理器1406可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
在一种可能的实施方式中,随着片上系统(system-on-chip,SoC)技术的发展,可以将1402部分和1401部分的全部或者部分功能由SoC技术实现,例如由一颗基站功能芯片实现,该基站功能芯片集成了处理器、存储器、天线接口等器件,基站相关功能的程序存储在存储器中,由处理器执行程序以实现基站的相关功能。可选的,该基站功能芯片也能够读取该芯片外部的存储器以实现基站的相关功能。
应理解,图14示例的基站的结构仅为一种可能的形态,而不应对本申请实施例构成任何限定。本申请并不排除未来可能出现的其他形态的基站结构的可能。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的网络设备和一个或多于一个终端设备。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图7或图8所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读解释存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图7或图8所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的网络设备和一个或多个终端设备。上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载或执行该计算机程序指令时,全部或部分地产生按照本申请实施例该的流程或功能。该计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及 算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种通信方法,其特征在于,包括:
    当在物理上行共享信道上发送上行控制信息UCI且不发送上行数据时,根据调制编码方式MCS标识确定门限码率;
    根据所述门限码率和UCI的生成比特数,确定待传输的UCI比特数,所述待传输的UCI的比特数小于或等于所述UCI的生成比特数;
    在所述物理上行共享信道上发送所述待传输的UCI。
  2. 根据权利要求1所述的通信方法,其特征在于,所述根据MCS标识确定门限码率,包括:
    若所述MCS标识在第一范围内,根据所述MCS标识和预定义的MCS标识和第一码率的一一对应关系确定第一码率;
    将所述第一码率确定为所述门限码率;或者
    根据所述第一码率与偏移量β确定所述门限码率,所述偏移量β为大于或等于1的值。
  3. 根据权利要求2所述的通信方法,其特征在于,所述第一范围是所述MCS标识大于或等于0且小于28的区域。
  4. 根据权利要求1所述的通信方法,其特征在于,所述根据MCS标识确定门限码率,包括:
    若所述MCS标识在第二范围内,根据所述MCS标识确定调制阶数,根据所述调制阶数和第一码率的对应关系确定所述第一码率;
    将所述第一码率确定为所述门限码率;或者
    根据所述第一码率与偏移量β确定所述门限码率,所述偏移量β为大于或等于1的值。
  5. 根据权利要求4所述的通信方法,其特征在于,所述根据调制阶数和第一码率的对应关系确定第一码率,包括:
    若所述调制阶数对应多个所述第一码率,确定所述多个第一码率中最大的码率为所述第一码率;或者
    若所述调制阶数对应多个所述第一码率,确定所述多个第一码率中最小的码率为所述第一码率;或者
    若所述调制阶数对应多个所述第一码率,根据第一指示信息确定所述第一码率。
  6. 根据权利要求1所述的通信方法,其特征在于,所述根据MCS标识确定门限码率,包括:
    若所述MCS标识在第二范围内,根据所述MCS标识和预定义的MCS标识和第一码率的一一对应关系确定第一码率,
    将所述第一码率确定为所述门限码率;或者
    根据所述第一码率与偏移量β确定所述门限码率,所述偏移量β为大于或等于1的值。
  7. 根据权利要求4至6中任一项所述的通信方法,其特征在于,所述第二范围是所述MCS标识大于或等于28的区域。
  8. 根据权利要求1至7中任一项所述的通信方法,其特征在于,所述在所述物理上 行共享信道上发送所述待传输的UCI,包括:在所述物理上行共享信道上发送所述待传输的UCI且不发送上行数据。
  9. 根据权利要求1至8中任一项所述的通信方法,其特征在于,所述方法还包括:接收第二指示信息,所述第二指示信息指示在所述物理上行共享信道上不发送上行数据。
  10. 根据权利要求9所述的方法,其特征在于,所述第二指示信息包括指示字段,所述指示字段置为0指示在所述物理上行共享信道上不发送上行数据。
  11. 一种通信方法,其特征在于,包括:
    当在第一终端设备的物理上行共享信道上仅承载上行控制信息UCI时,根据调制编码方式MCS标识确定门限码率;
    根据所述门限码率确定待接收的UCI比特数;
    在所述物理上行共享信道上接收来自所述第一终端设备的所述待接收的UCI。
  12. 根据权利要求11所述的通信方法,其特征在于,所述根据MCS标识确定门限码率,包括:
    若所述MCS标识在第一范围内,根据所述MCS标识和预定义的MCS标识和第一码率的一一对应关系确定第一码率;
    将所述第一码率确定为所述门限码率;或者
    根据所述第一码率与偏移量β确定所述门限码率,所述偏移量β为大于或等于1的值。
  13. 根据权利要求12所述的通信方法,其特征在于,所述第一范围是所述MCS标识大于或等于0且小于28的区域。
  14. 根据权利要求11所述的通信方法,其特征在于,所述根据MCS标识确定门限码率,包括:
    若所述MCS标识在第二范围内,根据所述MCS标识确定调制阶数,根据所述调制阶数和第一码率的对应关系确定所述第一码率;
    将所述第一码率确定为所述门限码率;或者
    根据所述第一码率与偏移量β确定所述门限码率,所述偏移量β为大于或等于1的值。
  15. 根据权利要求14所述的通信方法,其特征在于,所述根据调制阶数和第一码率的对应关系确定第一码率,包括:
    若所述调制阶数对应多个所述第一码率,确定所述多个第一码率中最大的码率为所述第一码率;或者
    若所述调制阶数对应多个所述第一码率,确定所述多个第一码率中最小的码率为所述第一码率;或者
    若所述调制阶数对应多个所述第一码率,根据第一指示信息确定所述第一码率。
  16. 根据权利要求11所述的通信方法,其特征在于,所述根据MCS标识确定门限码率,包括:
    若所述MCS标识在第二范围内,根据所述MCS标识和预定义的MCS标识和第一码率的一一对应关系确定第一码率;
    将所述第一码率确定为所述门限码率;或者
    根据所述第一码率与偏移量β确定所述门限码率,所述偏移量β为大于或等于1的值。
  17. 根据权利要求14至16中任一项所述的通信方法,其特征在于,所述第二范围是 所述MCS标识大于或等于28的区域。
  18. 根据权利要求11至17中任一项所述的通信方法,其特征在于,所述在所述物理上行共享信道上接收来自所述第一终端设备的所述待接收的UCI,包括:在所述物理上行共享信道上接收来自所述第一终端设备的所述待接收的UCI且不接收来自所述第一终端设备的上行数据。
  19. 根据权利要求11至18中任一项所述的通信方法,其特征在于,所述方法还包括:发送第二指示信息,所述第二指示信息指示在所述物理上行共享信道上不承载上行数据。
  20. 根据权利要求19所述的方法,其特征在于,所述第二指示信息包括指示字段,所述指示字段置为0指示在所述物理上行共享信道上不承载上行数据。
  21. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1-10中任一项所述的方法。
  22. 根据权利要求21所述的装置,其特征在于,还包括:所述存储器,用于存储程序指令和数据。
  23. 一种存储介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行如权利要求1-10中任一项或权利要求11-20中任一项所述的方法。
  24. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求11-20中任一项所述的方法。
  25. 根据权利要求24所述的装置,其特征在于,还包括:所述存储器,用于存储程序指令和数据。
  26. 一种通信装置,其特征在于,包括:确定模块和收发模块;
    所述确定模块用于:当在物理上行共享信道上发送上行控制信息UCI且不发送上行数据时,根据调制编码方式MCS标识确定门限码率,并根据所述门限码率和UCI的生成比特数确定待传输的UCI比特数,其中所述待传输的UCI的比特数小于或等于所述UCI的生成比特数;
    所述收发模块用于:在所述物理上行共享信道上发送所述待传输的UCI。
  27. 一种通信装置,其特征在于,包括:确定模块和收发模块;
    所述确定模块用于:当在第一终端设备的物理上行共享信道上仅承载上行控制信息UCI时,根据调制编码方式MCS标识确定门限码率,并根据所述门限码率确定待接收的UCI比特数;
    所述收发模块用于:在所述物理上行共享信道上接收来自所述第一终端设备的所述待接收的UCI。
  28. 一种通信装置,其特征在于,所述通信装置用于执行如权利要求1-20中任一项所述的方法。
PCT/CN2019/074832 2018-02-13 2019-02-12 通信的方法和装置 WO2019158042A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP23204350.5A EP4333337A3 (en) 2018-02-13 2019-02-12 Communications method and apparatus
JP2020542771A JP7182637B2 (ja) 2018-02-13 2019-02-12 通信方法及び装置
EP19754080.0A EP3742846B1 (en) 2018-02-13 2019-02-12 Communication method and device
US16/987,404 US11700103B2 (en) 2018-02-13 2020-08-07 Method and apparatus for transmitting uplink control information
US17/940,765 US20230006802A1 (en) 2018-02-13 2022-09-08 Method and apparatus for transmitting uplink control information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810150625.4A CN110167157B (zh) 2018-02-13 2018-02-13 通信的方法和装置
CN201810150625.4 2018-02-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/987,404 Continuation US11700103B2 (en) 2018-02-13 2020-08-07 Method and apparatus for transmitting uplink control information

Publications (1)

Publication Number Publication Date
WO2019158042A1 true WO2019158042A1 (zh) 2019-08-22

Family

ID=67618901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074832 WO2019158042A1 (zh) 2018-02-13 2019-02-12 通信的方法和装置

Country Status (5)

Country Link
US (2) US11700103B2 (zh)
EP (2) EP3742846B1 (zh)
JP (1) JP7182637B2 (zh)
CN (2) CN110167157B (zh)
WO (1) WO2019158042A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023283958A1 (zh) * 2021-07-16 2023-01-19 Oppo广东移动通信有限公司 信息处理方法、装置、设备及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351072B (zh) * 2018-04-04 2020-12-01 华为技术有限公司 确定频率标识的方法和通信设备
CN111490858B (zh) * 2019-01-29 2021-11-19 华为技术有限公司 一种卫星通信的自适应传输方法、装置及系统
CN112583531B (zh) * 2019-09-27 2022-06-24 维沃移动通信有限公司 一种上行控制信息的传输方法、终端设备和网络设备
WO2022126648A1 (zh) * 2020-12-18 2022-06-23 华为技术有限公司 一种信息传输方法及其装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102859923A (zh) * 2010-03-22 2013-01-02 三星电子株式会社 在物理数据信道中复用来自用户设备的控制和数据信息
CN102934381A (zh) * 2010-06-02 2013-02-13 三星电子株式会社 无线通信系统中用于发送信道状态信息的方法和系统
WO2017164626A2 (en) * 2016-03-21 2017-09-28 Samsung Electronics Co., Ltd. Scheduling uplink transmissions

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2801007C (en) * 2010-06-08 2016-01-05 Samsung Electronics Co., Ltd. Multiplexing control and data information from a user equipment in mimo transmission mode
KR20120010099A (ko) * 2010-07-22 2012-02-02 엘지전자 주식회사 상향링크 신호를 전송하는 방법 및 이를 위한 장치
US11147090B2 (en) * 2015-11-19 2021-10-12 Nokia Solutions And Networks Oy Dynamic HARQ-ACK codebook size in unlicensed spectrum
JP7030686B2 (ja) * 2016-04-08 2022-03-07 株式会社Nttドコモ 端末、基地局、無線通信方法及びシステム
WO2018006311A1 (en) * 2016-07-07 2018-01-11 Qualcomm Incorporated Processing relaxation for aperiodic csi-rs
US10638467B2 (en) * 2016-09-28 2020-04-28 Sharp Kabushiki Kaisha User equipments, base stations and methods
US10492184B2 (en) * 2016-12-09 2019-11-26 Samsung Electronics Co., Ltd. Multiplexing control information in a physical uplink data channel
CN115474280A (zh) 2017-11-17 2022-12-13 华为技术有限公司 一种上行控制信息传输的方法及装置
JP7148548B2 (ja) * 2017-12-27 2022-10-05 株式会社Nttドコモ 端末、無線通信方法及びシステム
US10873966B2 (en) * 2018-01-02 2020-12-22 Samsung Electronics Co., Ltd. Signaling of control information in a communication system
US11374718B2 (en) * 2018-01-12 2022-06-28 Telefonaktiebolaget Lm Ericsson (Publ) Channel state information reporting without uplink shared channel
US20220377602A1 (en) * 2019-11-06 2022-11-24 Samsung Electronics Co., Ltd. Method and apparatus for performing feedback-based ethernet header compression or decompression in wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102859923A (zh) * 2010-03-22 2013-01-02 三星电子株式会社 在物理数据信道中复用来自用户设备的控制和数据信息
CN102934381A (zh) * 2010-06-02 2013-02-13 三星电子株式会社 无线通信系统中用于发送信道状态信息的方法和系统
WO2017164626A2 (en) * 2016-03-21 2017-09-28 Samsung Electronics Co., Ltd. Scheduling uplink transmissions

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical Layer Procedures for Data", 3GPP TS 38.214, no. V2.0.0, 15 December 2017 (2017-12-15), XP051392021 *
CATT: "Open Issues for UCI Multiplexing on PUSCH", 3GPP TSG RAN WG1 MEETING AH 1801 R1-1800255, 13 January 2018 (2018-01-13), XP051384733 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023283958A1 (zh) * 2021-07-16 2023-01-19 Oppo广东移动通信有限公司 信息处理方法、装置、设备及存储介质

Also Published As

Publication number Publication date
EP4333337A3 (en) 2024-04-24
CN115802505A (zh) 2023-03-14
EP3742846A1 (en) 2020-11-25
EP3742846A4 (en) 2021-03-17
US20230006802A1 (en) 2023-01-05
EP3742846B1 (en) 2023-11-29
US11700103B2 (en) 2023-07-11
US20200366449A1 (en) 2020-11-19
JP2021513275A (ja) 2021-05-20
JP7182637B2 (ja) 2022-12-02
CN110167157B (zh) 2022-12-02
EP4333337A2 (en) 2024-03-06
CN110167157A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
US11128416B2 (en) Feedback information transmission method and apparatus
TWI527418B (zh) 傳送分配資源指示之方法、非暫時性電腦可讀媒體、用於傳送分配資源指示之裝置、選擇在上行鏈路傳輸的叢點之方法以及選擇多個資源中的一者之方法
WO2019158042A1 (zh) 通信的方法和装置
US10512070B2 (en) User equipment, network device, and method for determining physical uplink control channel resource
WO2013104330A1 (zh) 传输上行控制信息的方法、用户设备和基站
US11317387B2 (en) Uplink control information transmission method and apparatus
US11316725B2 (en) Wireless communication transceiver and wireless communication method
US11588585B2 (en) Methods and apparatus for transmitting information on two PDSCHs
US11843462B2 (en) Method for generating hybrid automatic repeat request HARQ information and apparatus
WO2020216314A1 (zh) 通信方法和通信装置
US20230199766A1 (en) Hybrid automatic repeat request harq codebook generation method and apparatus
KR102430291B1 (ko) 피드백 응답 정보의 전송 방법, 장치 및 시스템
WO2019153259A1 (zh) 通信方法、通信装置和系统
EP4013166A1 (en) Method and apparatus for determining channel
WO2022237732A1 (zh) 上行传输的方法和装置
WO2020031278A1 (ja) 送信装置、受信装置、無線通信システム、及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754080

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020542771

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019754080

Country of ref document: EP

Effective date: 20200818