WO2022237732A1 - 上行传输的方法和装置 - Google Patents

上行传输的方法和装置 Download PDF

Info

Publication number
WO2022237732A1
WO2022237732A1 PCT/CN2022/091772 CN2022091772W WO2022237732A1 WO 2022237732 A1 WO2022237732 A1 WO 2022237732A1 CN 2022091772 W CN2022091772 W CN 2022091772W WO 2022237732 A1 WO2022237732 A1 WO 2022237732A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink transmission
transmission
time
pusch
uplink
Prior art date
Application number
PCT/CN2022/091772
Other languages
English (en)
French (fr)
Inventor
胡丹
张旭
郭志恒
陆绍中
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022237732A1 publication Critical patent/WO2022237732A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present application relates to the communication field, and more specifically, to a method and device for uplink transmission.
  • NR frequency range 1 frequency range 1, FR1
  • FR1 frequency range 1, FR1
  • ⁇ 6 GHz ⁇ 6 GHz
  • the spectrum of the NR system has a relatively high frequency point, so there is often a relatively large path loss in the process of data transmission.
  • operators In order to maintain a high communication quality in the NR system, when deploying a cellular communication network, operators generally improve communication service quality by means of coverage-enhanced uplink transmission.
  • the coverage-enhanced uplink transmission includes repeated transmission of type A, uplink transmission of physical uplink shared channel (PUSCH) transport blocks that support multiple time slots, and support for cross-physical uplink control channels (physical uplink control channel, PUCCH) repeated demodulation reference signal (demodulation reference signal, DMRS) bundling mechanism for uplink transmission, etc.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • DMRS demodulation reference signal
  • the network side may not be able to correctly interpret the uplink transmission blocks, or cannot guarantee the power consistency and phase continuity of multiple PUSCH transmissions, thus affecting uplink transmission.
  • the uplink transmission method and device of the embodiments of the present application can improve uplink transmission performance.
  • a method for uplink transmission includes: a terminal device receives first information, and the first information is used to indicate a first time period; the terminal device determines the first uplink transmission according to the first time period The size of the transmitted transport block and/or the transmission power of the first uplink transmission; the terminal device sends the first uplink transmission on N time slots according to the size of the transport block and/or the transmission power, where N is greater than 1 .
  • the terminal device receives first information from the network device, where the first information is used to indicate the first time period, or the first information is information about the first time period.
  • the first time period can be understood as a continuous period of time (duration), and can also be understood as a time window (time domain window).
  • the first information may be pre-configured by high-layer signaling RRC signaling, may also be activated by MACCE, or may be indicated by downlink control information (DCI)
  • RRC signaling may also be activated by MACCE, or may be indicated by downlink control information (DCI)
  • the terminal device may also determine the first time period according to preconfigured information.
  • the terminal device receives second information from the network device, where the second information is used to instruct the terminal device to perform the first uplink transmission.
  • the second information is downlink control information, or the first
  • the first information is RRC signaling; or the second information includes downlink control information or RRC signaling; or the second information is carried in downlink control information or RRC signaling.
  • the second information is also used to indicate the time-frequency resource and modulation and coding scheme of the first uplink transmission.
  • the first uplink transmission is an uplink transmission for improving uplink coverage
  • the first uplink transmission is an uplink transmission within N time slots
  • the first uplink transmission includes M transmission opportunities, Where N is greater than 1, N can be an integer or a decimal, and M is greater than or equal to 1.
  • the first uplink transmission includes type A physical uplink shared channel PUSCH repeated transmission (PUSCH repetition type A), or a transport block across multiple time slots (transport block over multi-slot, TBoMS) uplink transmission, or type B PUSCH repetition transmission (PUSCH repetition type B).
  • PUSCH repetition type A physical uplink shared channel PUSCH repeated transmission
  • TBoMS transport block over multi-slot
  • PUSCH repetition type B type B PUSCH repetition transmission
  • the transmission block size and/or the transmission power of the first uplink transmission are calculated according to the first time period corresponding to the first uplink transmission, and the transmission block size and/or the first uplink transmission power can be calculated more accurately.
  • the transmission power of uplink transmission improves the performance of uplink transmission.
  • the first time period is a time window for performing joint channel estimation on the first uplink transmission.
  • the joint channel estimation in the embodiment of the present application includes the following meanings: performing joint channel estimation on PUSCH transmission in N time slots through DMRS in one time slot; or bundling DMRS in multiple time slots , and perform joint channel estimation on PUSCH transmission or PUCCH transmission in N time slots through the DMRS obtained by bundling.
  • N is an integer greater than or equal to 1; or, N is greater than 1 and N can be a decimal number, for example, when N is 1.5, it means 1.5 time slots.
  • the method further includes: the terminal device maintains the power consistency among multiple PUSCH transmissions in the first uplink transmission within the first time period and/or or phase continuous. Or it can be said that the terminal device maintains power consistency and/or phase continuity among multiple PUSCH transmissions in the first uplink transmission during the first time period.
  • the first uplink transmission includes M transmission opportunities, where M is greater than or equal to 1; the first uplink transmission includes type-A physical uplink shared channel PUSCH repeated transmission , or TBoMS uplink transmission across multi-slot transport blocks.
  • the M transmission opportunities are M PUSCH transmission opportunities; or, in the When the first uplink transmission is the TBoMS uplink transmission, the M transmission opportunities are M TBoMS transmission opportunities.
  • the first uplink transmission includes M transmission opportunities, and the M transmission opportunities are greater than or equal to 1, and the method further includes: the terminal device The segment determines the transmission power of the first transmission opportunity, where the first transmission opportunity is one of the M transmission opportunities, and the time domain resources of the first time period correspond to the first transmission opportunity.
  • the time-domain resources of the first time period corresponding to the first transmission opportunity can be understood as: the number of OFDM symbols corresponding to the first time period is the same as the number of OFDM symbols corresponding to the first transmission opportunity; or, the first time period and the first transmission opportunity The time periods of the first transmission opportunities are the same.
  • the first time period is any one of the following: the first All the time domain resources occupied by the uplink transmission; the time domain resources between the start symbol of the first PUSCH time slot of the first uplink transmission and the end symbol of the last PUSCH time slot; the first uplink transmission is in a The product of the number of symbols occupied in a time slot and the number of PUSCH repetitions; the product of the number of symbols occupied by the first uplink transmission in a time slot and the number of time slots actually transmitted by the first uplink transmission; the first uplink transmission in a time slot The product of the number of symbols occupied in the time slot and the determined number of available time slots; the product of the number of symbols occupied by the first uplink transmission in a time slot and the number of time slots K used for the joint channel estimation, where K> 1; the time domain resources corresponding to the consecutive time slots occupied by the first uplink
  • the first time period is any one of the following: the All time domain resources occupied by the first uplink transmission; time domain resources between the start symbol in the start slot of the first uplink transmission and the end symbol of the end slot; the total number of symbols actually occupied by the first uplink transmission ; a time-domain resource corresponding to a TBoMS transmission opportunity of the first uplink transmission; a time-domain resource corresponding to consecutive time slots occupied by the first uplink transmission.
  • the terminal device determines the size of the transport block of the first uplink transmission and/or the transmission power of the first uplink transmission according to the first time period, including : the terminal device determines the size of the transport block of the first uplink transmission according to the number of symbols and/or the number of resource elements RE allocated by the first uplink transmission within the first time period, and/or the transmit power.
  • the terminal device determines the size of the transport block of the first uplink transmission according to the time domain resource corresponding to the first time period.
  • the UE calculates the number of REs in one PRB in the first time period (or a time window) for the first uplink transmission according to the following formula:
  • DMRS demodulation reference signal, demodulation reference signal
  • the terminal device determines the total number of REs allocated in the first time period for the first uplink transmission by using the following formula:
  • N RE min(12 ⁇ (14 ⁇ Nx ) ,N′ RE ) ⁇ n PRB ,
  • N is the number of time slots corresponding to the first time period
  • x is the value indicated or configured by the network device
  • x is an integer greater than or equal to 1
  • n PRBs are the total number of PRBs allocated by the network device to the terminal device for the first uplink transmission.
  • N info N RE ⁇ R ⁇ Q m ⁇ v, where Q m is the modulation order, R is the code rate, and v is the number of transmission layers.
  • N info ⁇ 3824 pass the formula Calculate the quantized median value of the information bits, where Look up the table in the protocol to obtain the latest value not less than N′ info as TBS.
  • the transport block size (transport block size, TBS) can be calculated according to the number of symbols allocated in the first time period corresponding to the first uplink transmission and the number of symbols occupied by the DMRS, which can be more accurately Calculate TBS to improve the performance of uplink transmission.
  • the terminal device determines the number of resource elements (resource element, RE) according to the PUSCH transmission in the first time period, or the number of symbols contained in the PUSCH transmission opportunity i in the first time period, and then determines the uplink transmit power.
  • resource element resource element
  • the embodiment of the present application provides a method for determining uplink transmission power, which can ensure consistent power and phase continuity for coverage-enhanced uplink transmission, and improve performance of uplink transmission.
  • ⁇ TF,b,fc (i) is determined according to the type of information carried by PUSCH (for example, carrying UL-SCH data information, or CSI information, etc.), the location and quantity of occupied physical resources and other factors:
  • N RE is the number of REs expressed as in It is the number of symbols included in the PUSCH transmission in the first time period during the activated uplink bandwidth part (UL BWP) b of the carrier f in the serving cell c, or the PUSCH transmission opportunity i in the first time period.
  • the other schemes are the same as the determination mechanism of the existing uplink power.
  • the embodiment of the present application provides a method for determining uplink transmission power, which can ensure consistent power and phase continuity for coverage-enhanced uplink transmission, and improve performance of uplink transmission.
  • the terminal device determines the transmission power of the first transmission opportunity according to the first time period, where the first transmission opportunity is one of the M transmission opportunities of the first uplink transmission, and the time domain resources of the first time period are related to the Corresponding to the first transmission opportunity.
  • time domain resource in the first time period corresponding to the first transmission opportunity may represent one or more of the following meanings:
  • the time domain resource of the first time period is the same as the time domain resource of the first transmission opportunity
  • the time domain resource in the first time period is the same as the time domain resource actually mapped to the PUSCH at the first transmission opportunity;
  • the number of time-domain symbols corresponding to the first time period is the same as the number of time-domain symbols corresponding to the first transmission opportunity.
  • the method further includes: when the first time domain resource and the second time domain resource overlap, and the first uplink transmission and the second time domain resource on the first time domain resource
  • a physical uplink control channel PUCCH satisfies the first condition
  • the terminal device multiplexes uplink control information (uplink control information, UCI) on the first uplink transmission, wherein the first PUCCH is used to carry
  • the first time-domain resource is a time-domain resource corresponding to the first time period, or the first resource is a time-domain resource corresponding to one of the M transmission opportunities
  • the second time-domain resource is used to carry the first PUCCH to be sent.
  • the method when the terminal device multiplexes the UCI on the first uplink transmission, the method further includes: the terminal device determines the The quantity of physical resources occupied by the UCI for uplink transmission within the first time period.
  • the first condition includes: the first OFDM in the first PUCCH and the first uplink transmission on the first time domain resource (orthogonal frequency division multiplexing, OFDM) symbol, the time domain length between the first physical downlink shared channel PDSCH last OFDM symbol is greater than or equal to T proc,1 , the first PUCCH and the first uplink transmission
  • the time domain length between the OFDM symbol and the last OFDM symbol of the first physical downlink control channel (physical downlink control channel, PDCCH) is greater than or equal to T proc,2 , wherein the first PDSCH and the first PUCCH or the first uplink Transmission correspondence, the first PDCCH corresponds to the first PUCCH or the first uplink transmission, the T proc,1 is the processing time of the PDSCH by the terminal device, and the T proc,2 is the processing time of the PUSCH by the terminal device ; or the first PUCCH and the first OFDM symbol of a transmission opportunity in the first uplink transmission
  • the terminal device multiplexes the uplink control information UCI on the first uplink transmission, including: each PUSCH of the terminal device in the first uplink transmission transmit the same bits of the UCI, for example, all bits of the UCI are multiplexed on each PUSCH transmission in the first uplink transmission; or the terminal device transmits the different UCI bits on each PUSCH in the first uplink transmission Bits, for example, in the first uplink transmission, some bits of UCI are multiplexed on each PUSCH transmission, and some bits of UCI on each PUSCH transmission are different, and some bits of UCI on each PUSCH transmission can be composed of All bits of the UCI.
  • UCI occupies the same number of bits in each PUSCH transmission.
  • the terminal device when at least one time domain symbol overlaps between the first time domain resource and the third time domain resource, the terminal device does not send the first uplink transmission, wherein the first time domain resource is used to send the first uplink transmission, or the first time domain resource is the time domain resource corresponding to the first time period; the third time domain resource is used to send the PUCCH repeated transmission.
  • the first uplink transmission in the first time period is four consecutive PUSCH repeated transmissions across time slots, and the PUCCH repeated transmission is PUCCH transmission repeated twice, and the PUCCH transmission and the first The second and third PUSCH transmissions in the uplink transmission overlap in time domain. If the first and fourth PUSCH transmissions in the first uplink transmission are sent instead of the second and third PUSCH transmissions in the first uplink transmission, phase discontinuity and power inconsistency will occur.
  • a method for uplink transmission includes:
  • the network device sends first information, where the first information is used to indicate a first time period; the network device determines the size of the transport block of the first uplink transmission and/or the transmission power of the first uplink transmission according to the first time period; The network device receives the first uplink transmission on N time slots according to the size of the transmission block and/or the transmission power, where N is greater than 1.
  • the first time period is a time window for performing joint channel estimation on the first uplink transmission.
  • the first uplink transmission includes M transmission opportunities, where M is greater than or equal to 1; the first uplink transmission includes type-A physical uplink shared channel PUSCH repeated transmission , or TBoMS uplink transmission across multi-slot transport blocks.
  • the M transmission opportunities are M PUSCH transmission opportunities; or, in the When the first uplink transmission is the TBoMS uplink transmission, the M transmission opportunities are M TBoMS transmission opportunities.
  • the first uplink transmission includes M transmission opportunities, where M is greater than or equal to 1, and the method further includes: the terminal device determines the first time period according to the first time period A transmission power of a transmission opportunity, where the first transmission opportunity is one of the M transmission opportunities, and the time domain resources of the first time period correspond to the first transmission opportunity.
  • the time-domain resources of the first time period corresponding to the first transmission opportunity can be understood as: the number of OFDM symbols corresponding to the first time period is the same as the number of OFDM symbols corresponding to the first transmission opportunity; or, the first time period and the first transmission opportunity The time periods of the first transmission opportunities are the same.
  • the first time period is any one of the following: the first All the time domain resources occupied by the uplink transmission; the time domain resources between the start symbol of the first PUSCH time slot of the first uplink transmission and the end symbol of the last PUSCH time slot; the first uplink transmission is in a The product of the number of symbols occupied in a time slot and the number of PUSCH repetitions; the product of the number of symbols occupied by the first uplink transmission in a time slot and the number of time slots actually transmitted by the first uplink transmission; the first uplink transmission in a time slot The product of the number of symbols occupied in the time slot and the determined number of available time slots; the product of the number of symbols occupied by the first uplink transmission in a time slot and the number of time slots K used for the joint channel estimation, where K> 1; the time domain resources corresponding to the consecutive time slots occupied by the first uplink
  • the first time period is any one of the following: the All time domain resources occupied by the first uplink transmission; time domain resources between the start symbol in the start slot of the first uplink transmission and the end symbol of the end slot; the total number of symbols actually occupied by the first uplink transmission ; a time-domain resource corresponding to a TBoMS transmission opportunity of the first uplink transmission; a time-domain resource corresponding to consecutive time slots occupied by the first uplink transmission.
  • the terminal device determines the size of the transport block of the first uplink transmission and/or the transmission power of the first uplink transmission according to the first time period, including : the terminal device determines the size of the transport block of the first uplink transmission according to the number of symbols and/or the number of resource elements RE allocated by the first uplink transmission within the first time period, and/or the transmit power.
  • an apparatus for uplink transmission which includes: a transceiver module, configured for a terminal device to receive first information, where the first information is used to indicate a first time period; a processing module, configured for the terminal device to The first time period determines the size of the transmission block of the first uplink transmission and/or the transmission power of the first uplink transmission; the processing module is also used for the terminal device to pass the transmission block according to the size of the transmission block and/or the transmission power The processing module sends the first uplink transmission on N time slots, where N is greater than 1.
  • the transceiver module may perform the processing of receiving and sending in the aforementioned first aspect, and the processing module may perform other processing in the aforementioned first aspect except receiving and sending.
  • an uplink transmission device which includes: a transceiver module, configured to send first information, the first information used to indicate a first time period; a processing module, configured to The time period determines the size of the transmission block of the first uplink transmission and/or the transmission power of the first uplink transmission; the processing module is further configured to, according to the size of the transmission block and/or the transmission power, pass the The transceiver module receives the first uplink transmission on N time slots, where N is greater than 1.
  • the transceiver module may perform the processing of receiving and sending in the aforementioned second aspect, and the processing module may perform other processing in the aforementioned second aspect except receiving and sending.
  • a communication device in a fifth aspect, includes: a processor configured to execute a computer program stored in a memory, so that the communication device executes any possible implementation manner in the first aspect.
  • a computer-readable storage medium is provided.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is run on a computer, the computer is made to execute any one of the possible methods in the first aspect. Method to realize.
  • a computer program product includes computer program instructions, and when the computer program instructions run on a computer, the computer executes any possible implementation manner in the first aspect.
  • a chip system which includes: a processor, configured to call and run a computer program from a memory, so that a communication device installed with the chip system executes any one of the possible methods in the first aspect. Method to realize.
  • a communication system in a ninth aspect, includes at least one terminal device and a network device, where the terminal device is configured to implement any possible implementation manner in the first aspect.
  • Fig. 1 is a schematic diagram of a wireless communication system applicable to the embodiment of the present application.
  • Fig. 2 is a schematic diagram of another wireless communication system applicable to the embodiment of the present application.
  • FIG. 3 is a schematic diagram of type-A PUSCH repeated transmission.
  • FIG. 4 is another schematic diagram of Type-A PUSCH repeated transmission.
  • FIG. 5 is a schematic diagram of Type B PUSCH repeated transmission.
  • FIG. 6 is a schematic diagram of TBoMS transmission.
  • Fig. 7 is a flowchart of an uplink transmission method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an example of a first timeline condition.
  • FIG. 9 is a schematic diagram of another example of the first timeline condition.
  • FIG. 10 is a schematic diagram of time domain overlap between repeated PUSCH transmission and PUCCH transmission of type A.
  • FIG. 11 is a schematic diagram of an example of a second timeline condition.
  • FIG. 12 is a schematic diagram of another example of the second timeline condition.
  • FIG. 13 is a schematic diagram of time domain overlap between uplink transmission of transport blocks spanning multiple slots and repeated transmission of PUCCH.
  • Fig. 14 is a schematic block diagram of an uplink transmission device provided by an embodiment of the present application.
  • Fig. 15 is a schematic block diagram of an uplink transmission device provided by another embodiment of the present application.
  • Fig. 16 is a schematic block diagram of a device for uplink transmission provided by another embodiment of the present application.
  • Fig. 17 is a schematic block diagram of an uplink transmission device provided by another embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: the fifth generation (5th generation, 5G) system or new radio (new radio, NR), long term evolution (long term evolution, LTE) system, LTE frequency Division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD), universal mobile telecommunications system (universal mobile telecommunications system, UMTS), etc.
  • 5G fifth generation
  • new radio new radio
  • NR new radio
  • long term evolution long term evolution
  • LTE frequency Division duplex frequency division duplex, FDD
  • LTE time division duplex time division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunications system
  • the technical solution of the embodiment of the present application can also be applied to: device to device (device to device, D2D) communication, machine to machine (machine to machine, M2M) communication, machine type communication (machine type communication, MTC), and Communication in connected car systems.
  • device to device device to device
  • machine to machine machine to machine
  • M2M machine to machine
  • MTC machine type communication
  • MTC Machine type communication
  • FIG. 1 and FIG. 2 a communication system applicable to the embodiment of the present application is first described with reference to FIG. 1 and FIG. 2 .
  • FIG. 1 is a schematic diagram of a wireless communication system 100 applicable to an embodiment of the present application.
  • the wireless communication system 100 may include at least one core network device, such as the core network device 110 shown in Figure 1, and the wireless communication system 100 may include at least one radio access network device, such as shown in Figure 1
  • the wireless access network device 120, the wireless communication system 100 may further include one or more terminal devices, such as the terminal device 130 and the terminal device 140 shown in FIG. 1 .
  • the terminal device is connected to the wireless access network device in a wireless manner, and the wireless access network device is connected to the core network device in a wireless or wired manner.
  • FIG. 2 is a schematic diagram of a wireless communication system 200 applicable to an embodiment of the present application.
  • the wireless communication system 200 may include at least one core network device, such as the core network device 210 shown in FIG.
  • the communication system may include at least two radio access network devices, such as the radio access network device 220 and the radio access network device 230 shown in FIG. terminal device 240 shown.
  • the terminal device 240 may be connected to the radio access network device 220 and the radio access network device 230 in a wireless manner at the same time.
  • the core network equipment and the wireless access network equipment can be independent and different physical equipment, or the functions of the core network equipment and the logical functions of the wireless access network equipment can be integrated on the same physical equipment, or it can be a physical equipment It integrates some functions of core network equipment and some functions of wireless access network equipment.
  • Terminal equipment can be fixed or mobile. It should be understood that the communication system 100 and the communication system 200 are only examples, and the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices. The embodiments of the present application do not limit the number of core network equipment, radio access network equipment, and terminal equipment included in the mobile communication system.
  • FIG. 1 and FIG. 2 are only exemplary illustrations, and the present application is not limited thereto.
  • the embodiments of the present application may also be applied to any communication scenario where uplink transmission is required.
  • the network device in the wireless communication system may be any device with a wireless transceiver function.
  • the equipment includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller, BSC) , base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WIFI) system in Access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be 5G, such as NR , a gNB in the system, or, a transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of a base station
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (active antenna unit, AAU for short).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and realizing the functions of radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer.
  • the DU is responsible for processing physical layer protocols and real-time services, realizing the functions of the radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer and physical (physical, PHY) layer.
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , or, sent by DU+AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • terminal equipment in the wireless communication system may also be referred to as user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, User terminal, terminal, wireless communication device, user agent or user device.
  • user equipment user equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, User terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • the embodiments of the present application do not limit the application scenarios.
  • the demodulation reference signal is a reference signal for data demodulation.
  • the demodulation reference signal may be the DMRS in the LTE protocol or the NR protocol, or may be other reference signals defined in future protocols for realizing the same function.
  • DMRS can be carried in the physical shared channel and sent together with the data block signal for channel estimation of the fading channel, and then complete the demodulation of the data block signal carried in the physical shared channel. For example, it is sent together with the downlink data block in the physical downlink shared channel (physical downlink share channel, PDSCH), or, is sent together with the uplink data block in the PUSCH.
  • the demodulation reference signal may include a demodulation reference signal sent through a physical uplink shared channel.
  • the mapping method of PDSCH or PUSCH in the time domain may include a first mapping method and a second mapping method, wherein the first mapping method may be mapping type A (mapping type A) in the NR protocol, and the second mapping method may be NR Mapping type B in the protocol.
  • the mapping manner of PDSCH or PUSCH can be indicated by high layer signaling, for example, radio resource control (radio resource control, RRC) signaling.
  • mapping type A the start position of the time-domain symbol of the scheduled physical uplink shared channel (or physical downlink shared channel) is the first time-domain symbol in a slot.
  • mapping type B the start position of the time-domain symbol of the scheduled physical uplink shared channel (or physical downlink shared channel) is any time-domain symbol in a slot.
  • the time-domain position of the demodulation reference signal can be determined relative to the position of the start time-domain symbol and the length of the time-domain symbol of the scheduled physical uplink shared channel (or physical downlink shared channel).
  • the length of time-domain symbols can also be understood as the total number of time-domain symbols.
  • the demodulation reference signal may include a preloaded demodulation reference signal and an additional demodulation reference signal.
  • a preload demodulation reference signal is generally configured, occupying one symbol or multiple symbols in the time domain, and if multiple symbols are occupied, the multiple symbols are continuous in the time domain.
  • Additional (additional) demodulation reference signal For one transmission of one data block, whether to configure the additional demodulation reference signal is determined according to the length of one transmission of one data block. If the additional demodulation reference signal is configured, the demodulation reference signal generated by the same sequence after the frontloading of the demodulation reference signal at the transmitting end is the additional demodulation reference signal.
  • the additional demodulation reference signal may be one or more symbols after the symbol occupied by the preloaded demodulation reference signal, and the last symbol occupied by the preloaded demodulation reference signal is the same as the symbol occupied by the additional demodulation reference signal. The first symbol is not consecutive.
  • the additional demodulation reference signal can configure resources through higher layer signaling, such as RRC signaling. Additional demodulation reference signal is an optional demodulation reference signal.
  • the format of a slot may include several OFDM symbols.
  • the format of a slot may include 14 OFDM symbols, or, the format of a slot may include 12 OFDM symbols; or, the format of a slot may include 7 OFDM symbols. All OFDM symbols in a slot can be used for uplink transmission; all of them can be used for downlink transmission; some can be used for downlink transmission, some can be used for uplink transmission, and some flexible time domain symbols can be flexibly configured for uplink or downlink transmission). It should be understood that the above examples are for illustrative purposes only, and should not constitute any limitation to the present application.
  • the number of OFDM symbols included in the slot and the slot used for uplink transmission and/or downlink transmission are not limited to the above examples.
  • the time domain symbols may be OFDM symbols, and the time domain symbols may be replaced by OFDM symbols.
  • NR new radio
  • the time slot actually occupied by the uplink transmission block may be the time slot jointly determined according to the uplink and downlink time slot ratio and time domain resource allocation (time domain resource allocation, TDRA).
  • the uplink and downlink time slot ratio may be semi-statically configured by the network device through RRC signaling
  • the TDRA is configured by RRC signaling
  • the first uplink transmission occupies 4 time slots, and the uplink and downlink time slots are configured as DDSUU, if in the special time slot,
  • the first 10 symbols are downlink symbols
  • the middle two symbols are flexible symbols
  • the last two symbols are uplink symbols
  • the starting time slot is the first downlink time slot
  • the first four symbols after the first downlink time slot uplink time slots are available time slots for the first uplink transmission.
  • the start symbol of the first symbol is the symbol with symbol index 12
  • the length of the first symbol is 2
  • the first uplink transmission occupies 4 time slots
  • the uplink and downlink time slots are configured as DDSUU
  • the special time slot if in the special time slot , the first 10 symbols are downlink symbols, the middle two symbols are flexible symbols, the last two symbols are uplink symbols, and the starting time slot is the first downlink time slot, then the first downlink time slot after the first downlink time slot
  • the two special time slots and the first two uplink time slots are available time slots for the first uplink transmission.
  • a time domain unit may be a time domain symbol or several time domain symbols, or a mini-slot (mini-slot), or a slot, or a subframe (subframe), wherein, The duration of a subframe in the time domain can be 1 millisecond (ms), a slot can consist of 7 or 14 time domain symbols, and a mini-slot can include at least one time domain symbol (for example, 2 time domain symbols symbols or 7 time domain symbols or 14 time domain symbols, or any number of symbols less than or equal to 14 time domain symbols).
  • the size of the above-mentioned time-domain unit is only for the convenience of understanding the solution of this application, and should not be understood as a limitation of this application. It can be understood that the above-mentioned time-domain unit size can be other values, which is not limited in this application.
  • the time unit may be, but not limited to, a subframe, a slot, a symbol, a physical slot, an available slot, the first symbol of a slot, the first symbol of a physical slot, The first symbol of an available slot, etc.
  • the symbol for example, the first symbol
  • the symbol may be a time-domain symbol (for example, an orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbol) and the like.
  • the first symbol may be a symbol occupied by the first uplink transmission in one time unit.
  • the first uplink transmission may occupy multiple time units, for example, TBoMS PUSCH.
  • the first symbol may include at least one symbol.
  • a slot can include 2 symbols or 7 symbols or 14 symbols, or any number of symbols less than or equal to 14 symbols, or it can also be expressed as, a slot can include 2 time domains symbols or 7 time-domain symbols or 14 time-domain symbols, or any number of symbols less than or equal to 14 time-domain symbols.
  • Type A (type A) repeated transmission
  • a method to enhance coverage performance is to repeatedly send data blocks. For example, the terminal device repeatedly sends the PUSCH, and the network device performs combination detection on the repeatedly sent data blocks. In this manner, channel estimation performance and data demodulation performance can be improved, thereby improving cell coverage.
  • the current NR protocol supports a maximum of 16 repeated transmissions of the PUSCH, and supports a maximum of 8 repeated transmissions of the PUCCH.
  • the current NR protocol supports repeated transmission of type A for PUCCH, and supports repeated transmission of type A and type B for PUSCH.
  • Repeated transmission of Type A refers to: N repeated transmissions need to schedule N consecutive slots, configure the starting position and total length of the time domain symbols that need to be occupied in one slot for one repeated transmission, in N slots, satisfy once The slot whose start position and total length of the time-domain symbols occupied by the repeated transmission is the same as the configured start position and total length can actually be used for one repeated transmission.
  • N is an integer greater than or equal to 1.
  • the repeated transmission of type A is based on slot repetition.
  • the position S and continuous duration L of the initial time domain symbol used for repeated transmission on the current slot must meet the requirements before it can be used for repeated transmission, otherwise the slot cannot be used for repeated transmission send.
  • the actual number of retransmissions is less than the number of retransmissions configured by the network device, which affects the combining gain of the receiving end. For example, it cannot meet expectations.
  • the received signal-to-noise ratio is low, resulting in a decrease in the accuracy of channel estimation and demodulation and decoding, which affects the performance of uplink transmission.
  • each repeated transmission occupies the 3rd to 12th time domain symbols on a slot. Since the 5th and 6th symbols in the time slot #2 are semi-static downlink symbols, the repeated transmission (PUSCH#2) on the time slot #2 is canceled, that is, the actual number of transmissions is 2.
  • Type B (type B) repeated transmission
  • Repeated transmission of Type B indicates: N repeated transmissions, according to the initial time-domain symbol position S of the first repeated transmission, according to the number of time-domain symbols L that need to be occupied by each repetition, in multiple consecutive time-domain symbols to resend. That is, starting from the Sth time-domain symbol of the first scheduled slot, the subsequent N*L time-domain symbols (which may extend to other slots) are used for N repeated transmissions.
  • one repeated transmission across the slot boundary will be split into two actual repeated transmissions according to the position of the slot boundary, and the TBS of each actual repeated transmission remains unchanged.
  • the N*L time-domain symbols that are continuously scheduled cross the slot boundaries. That is to say, in the repeated transmission of case 2, the original third transmission is considered as the third and fourth transmission; in the repeated transmission of case 3, assuming that a slot includes 10 symbols, the configured first
  • the original repeated transmission normal repetition
  • the original repeated sending of the configuration means the repeated sending of the configuration, or the nominal repeated sending. In the following, for the convenience of description, the original repeated sending of the configuration is referred to as the repeated sending of the configuration for short.
  • TBS transport block size
  • TBS can be understood as the amount of data (number of bits) carried on a certain resource.
  • N info N RE ⁇ R ⁇ Q m ⁇ v
  • Q m the modulation order
  • R the code rate
  • v the number of transmission layers.
  • N info ⁇ 3824 the quantized median value of information bits in Look up the table in the protocol to obtain the latest value not less than N′ info as TBS.
  • the TBS is determined by resources scheduled by PDSCH/PUSCH and modulation and coding scheme (modulation and coding scheme, MCS) (including code rate and modulation order).
  • the resources required for calculating the PDSCH/PUSCH scheduling refer to the number of symbols in a time slot in the time domain.
  • One slot, ie 14 symbols, is the upper limit when calculating TBS.
  • the above solution determines the TBS according to the number of symbols allocated by the PUSCH in one time slot.
  • these uplink transmissions have different DMRS symbols in different time slots or different PUSCH transmission opportunities, which will result in transmission blocks in different time slots or different PUSCH transmission opportunities different sizes. If the size of the transmission block is determined according to the above scheme, it will lead to an error in the understanding of the size of the uplink transmission block on the network side, that is, the TBS determined by the network side is different from the TBS actually received, and the network side may not be able to interpret the transmission block correctly, thus affecting Uplink performance.
  • the terminal device uses the parameter set number j to send PUSCH on the uplink active part bandwidth (Bandwidth part) b of the carrier f of the serving cell (serving cell) c, and the power control adjustment state index value is 1, then the terminal device transmits the PUSCH at the timing
  • the transmission power P PUSCH,b,f,c (i,j,q d ,l) of PUSCH determined on i is:
  • PCMAX,f,c (i) is the maximum output power configured on the PUSCH transmission opportunity i on the carrier f of the serving cell c.
  • the maximum output power is related to factors such as the transmission capability of the terminal equipment and the frequency band where the PUSCH is located.
  • P O_PUSCH,b,f,c (j) and ⁇ b,f,c (j) (which can be collectively referred to as the target power value), j ⁇ 0,1,...,J-1 ⁇ , when the base station is configured with multiple
  • the terminal device will determine the current transmission mode according to the current transmission mode (including: initial access transmission, DCI-based data scheduling transmission, RRC-based data scheduling transmission, etc.) and the value indicated by the SRI field.
  • the parameter set number j used for PUSCH transmission determines the values of P0 and alpha.
  • the parameters in a parameter set include the ID of the set, and the values of P0 and alpha.
  • is the path loss compensation factor.
  • is the value corresponding to the subcarrier size (SCS) configuration.
  • PL b,f,c (q d ) is the estimated value of the downlink path loss calculated by the UE according to the index value q d of the reference signal, and used as the path loss compensation value of the uplink power control.
  • ⁇ TF,b,fc (i) is determined according to the type of information carried by the PUSCH (for example, carrying UL-SCH data information, or CSI information, etc.), the location and quantity of occupied physical resources, and other factors.
  • K S is configured by the high layer parameter deltaMCS.
  • BPRE is expressed as If the PUSCH only carries CSI transmission and does not contain uplink data, then BPRE represents the average number of information bits carried on each RE, and its physical meaning is code rate, where C is the number of coding blocks, K r is the size of coding block r, Indicates the sum of all code block sizes, that is, the total number of information bits before channel coding.
  • N RE is the number of REs, expressed as in is the number of symbols included in the PUSCH transmission opportunity i transmitted on the activated UL BWP b of the serving cell c carrier f, is the number of subcarriers on PUSCH symbol j, excluding DMRS subcarriers and PTRS samples, If PUSCH contains UL-SCH uplink data, If there is only CSI on PUSCH without UL-SCH data Q m is the modulation order, and R is the target code rate.
  • f a,b,c (i,l) is the PUSCH power control adjustment state at the PUSCH transmission opportunity i on the uplink active bandwidth part (BWP) b of the carrier f of the serving cell (serving cell) c.
  • the above solution determines the number of REs and further determines the uplink power according to the number of symbols contained in the PUSCH transmission opportunity i.
  • these uplink transmissions have different DMRS symbols in different time slots or different PUSCH transmission opportunities, so determining transmission power based on one PUSCH cannot guarantee DMRS bundling
  • the power is consistent and the phase is continuous.
  • the transmission power is determined according to all the resources of the uplink transmission with enhanced coverage, and the limitation on transmission is relatively large.
  • Transport block over multi-slot (TBoMS) physical uplink shared channel (PUSCH) transmission is a technology used to improve NR uplink coverage performance.
  • the packets are aggregated into one large data packet, and the transmission of this large data packet is completed on multiple time slots.
  • Packet header overhead can be reduced by small packet aggregation, cyclic redundancy code overhead can be reduced by reducing the number of transport block (TB) splits, coding gain can be increased by increasing the transport block size (TBS), and by Reducing the number of physical resource blocks (physical resource blocks, PRBs) can increase power spectral density, and ultimately achieve the purpose of enhancing NR uplink coverage performance.
  • TB transport block
  • PRBs Physical resource blocks
  • N info K ⁇ N RE ⁇ R ⁇ Q m ⁇ v.
  • Q m represents the modulation order
  • R represents the coding rate
  • v represents the number of transmission layers
  • K is the scaling factor, which means that the TB aggregated by K time slots is transmitted on N time slots, where the number of time slots N and scaling
  • K satisfies the following condition: K ⁇ N. That is to say, the number of time slots for TB aggregation and the number of time slots for TB transmission may be the same or different.
  • the number of time slots allocated to TBoMS transmission is calculated based on the number of time slots available for uplink transmission.
  • the number of time slots available for uplink transmission according to the time domain resource allocation (time domain resource allocation, TDRA) in the scheduling PUSCH, configuration grant (configured grant, CG) configuration or activation of downlink control information (downlink control information, DCI) Determined by radio resource control (radio resource control, RRC)(s) configuration.
  • time domain resource allocation time domain resource allocation, TDRA
  • configuration grant Configured grant, CG
  • activation of downlink control information downlink control information, DCI
  • radio resource control radio resource control
  • Figure 6 shows two schematic diagrams of TBoMS PUSCH transmission.
  • D represents a downlink time domain symbol
  • U represents an uplink time domain symbol
  • S represents a special time domain symbol.
  • TDD time division duplex
  • the BPRE will be too large, resulting in inaccurate power control adjustment.
  • N info determined by the N RE on a transmission opportunity amplified by the scaling factor K, but N RE only represents the number of REs on a transmission opportunity, so it may cause the code rate to increase, thus affecting the power control adjustment .
  • the embodiment of the present application provides a method, which can more accurately calculate the transmission block size and uplink transmission power used for coverage-enhanced uplink transmission, and improve the performance of uplink transmission.
  • FIG. 7 shows a schematic flowchart of an uplink transmission method 300 provided by an embodiment of the present application. As can be seen from FIG. 7, method 300 includes:
  • the network device sends first information to the terminal device, where the first information is used to indicate a first time period.
  • the network device indicates the first time period to the terminal device through the first information, or the first information is information of the first time period.
  • the first time period can be understood as a continuous period of time (duration), and can also be understood as a time window (time domain window).
  • the first information may be pre-configured by high-layer signaling RRC, activated by MACCE, or indicated by DCI, which is not limited in this application.
  • the terminal device may also determine the first time period according to pre-configured information, that is, the first time period may be indicated to the terminal by the network device, or may be predefined by the terminal. Applications are not limited.
  • the network device sends second information to the terminal device, where the second information is used to instruct the terminal device to perform the first uplink transmission.
  • the first time period may be a time window for performing joint channel estimation on the first uplink transmission.
  • the first uplink transmission is an uplink transmission for improving uplink coverage
  • the first uplink transmission is an uplink transmission within N time slots
  • the first uplink transmission includes M transmission opportunities, Where N is greater than 1, N can be an integer or a decimal, and M is greater than or equal to 1.
  • the first uplink transmission is a PUSCH repetition type A of type A (PUSCH repetition type A); for another example, the first uplink transmission is an uplink transmission across a multi-slot transport block (transport block over multi-slot, TBoMS); also For example, the first uplink transmission is type B PUSCH repetition transmission (PUSCH repetition type B).
  • the M transmission opportunities of the first uplink transmission are M PUSCH transmission opportunities; when the first uplink transmission is TBoMS uplink transmission, the M transmission opportunities of the first uplink transmission are M TBoMS transmission opportunities.
  • the second information is downlink control information, or the second information is radio resource control (radio resource control, RRC); or the second information includes downlink control information or RRC signaling; or the second information is carried in downlink control information or RRC signaling.
  • RRC radio resource control
  • the second information is DCI
  • the second information is scrambled by a radio network temporary identity (RNTI), wherein the format of the DCI scrambled by the RNTI is used to schedule the first uplink transmission to meet coverage needs.
  • the first uplink transmission may be TBoMS uplink transmission or enhanced Type A PUSCH repeated transmission, where the enhanced Type A PUSCH repeated transmission refers to Type A repeated transmission with a repetition number of 32 or more.
  • the RNTI used for scrambling the second information is not any one of the following types of RNTI: C-RNTI, MCS-C-RNTI, and CS-RNTI.
  • the second information is also used to indicate the time-frequency resource and modulation and coding scheme of the first uplink transmission.
  • the terminal device determines a time window for joint channel estimation for the first uplink transmission according to the first information.
  • first information and the second information may be carried in the same message or in different messages, which is not limited in this application.
  • the DMRSs in multiple time slots are bundled, and joint channel estimation is performed on PUSCH transmission or PUCCH transmission in N time slots through the bundled DMRSs.
  • N is an integer greater than or equal to 1; or, N is greater than 1 and N can be a decimal number, for example, when N is 1.5, it means 1.5 time slots.
  • the time window for performing joint channel estimation on the first uplink transmission in the embodiment of the present application represents the time domain resources used for joint channel estimation, or all the time domain resources occupied by the first uplink transmission, or the time domain resources occupied by the first uplink transmission. - The number of symbols actually occupied by uplink transmission.
  • the first time period may represent any one of the following information:
  • Time-domain resources used for a joint channel estimation for TBoMS uplink transmission
  • Time domain resources corresponding to consecutive time slots occupied by TBoMS uplink transmission are Time domain resources corresponding to consecutive time slots occupied by TBoMS uplink transmission.
  • the first time period may represent any one of the following information:
  • the number K"' can be greater than 1, or less than or equal to 1.
  • Time-domain resources corresponding to consecutive time slots occupied by the first uplink transmission are Time-domain resources corresponding to consecutive time slots occupied by the first uplink transmission.
  • time domain resources corresponding to the consecutive time slots occupied by the first uplink transmission may be understood as the time domain resources to which the first uplink transmission is continuously mapped.
  • the terminal device determines the size of the transport block of the first uplink transmission and/or the transmission power of the first uplink transmission according to the first time period.
  • the following firstly introduces a solution for the terminal device to determine the size of the transport block for the first uplink transmission according to the first time period:
  • the terminal device determines the size of the transport block of the first uplink transmission according to the time domain resource corresponding to the first time period.
  • the UE calculates the number of REs in one PRB in the first time period (or a time window) for the first uplink transmission according to the following formula:
  • DMRS demodulation reference signal, demodulation reference signal
  • the terminal device determines the total number of REs allocated in the first time period for the first uplink transmission by using the following formula:
  • N RE min(12 ⁇ (14 ⁇ Nx),N′ RE ) ⁇ n PRB ,
  • N is the number of time slots corresponding to the first time period
  • x is the value indicated or configured by the network device
  • x is an integer greater than or equal to 1
  • n PRBs are the total number of PRBs allocated by the network device to the terminal device for the first uplink transmission.
  • N info N RE ⁇ R ⁇ Q m ⁇ v, where Q m is the modulation order, R is the code rate, and v is the number of transmission layers.
  • Q m the modulation order
  • R the code rate
  • v the number of transmission layers.
  • N info ⁇ 3824 pass the formula Calculate the quantized median value of the information bits, where Look up the table in the protocol to get the latest value not less than N i ′ nfo as TBS.
  • the TBS is calculated according to the number of symbols allocated in the first time period corresponding to the first uplink transmission and the number of symbols occupied by the DMRS, which can calculate the TBS more accurately and improve the performance of uplink transmission.
  • the frequency domain resource allocated by the network device to the terminal device does not change. Therefore, the number of REs calculated according to one PRB can be directly multiplied by one PRB to calculate the TBS, which makes relatively little change to the original protocol.
  • the transmission power of the first uplink transmission is calculated according to the first time period. Specifically, the number of REs is determined according to the PUSCH transmission in the first time period, or the number of symbols included in the PUSCH transmission opportunity i in the first time period, and then the uplink transmission power is determined according to the number of REs.
  • the number of REs is determined according to the PUSCH transmission in the first time period, or the number of symbols included in the PUSCH transmission opportunity i in the first time period, and then the uplink transmission power is determined according to the number of REs.
  • ⁇ TF,b,fc (i) is determined according to the type of information carried by PUSCH (for example, carrying UL-SCH data information, or CSI information, etc.), the location and quantity of occupied physical resources and other factors:
  • N RE is the number of REs expressed as in It is the number of symbols included in the PUSCH transmission opportunity i in the first time period during which the UL BWP b is activated for transmission on the serving cell c carrier f, or the PUSCH transmission in the first time period. If the PUSCH carries uplink data, or UL-SCH, BPRE is expressed as If only CSI transmission is carried on PUSCH and does not contain uplink data, then The other schemes are the same as the determination mechanism of the uplink power provided above, and the present application will not repeat the description here.
  • N info K ⁇ N RE ⁇ R ⁇ Q m ⁇ v, that is, the number of information bits takes into account the scaling factor K, therefore, is calculated based on the N info determined by the N RE on a transmission opportunity amplified by the scaling factor K.
  • the transmission opportunity here is a time slot, or the transmission opportunity is the first symbol in the one time slot, and the first symbol is determined by S and L (or SLIV) in the TDRA table, that is, the The first symbol is the symbol occupied by the first uplink transmission in the one time slot, the S represents the start symbol of the first symbol, and L represents the length of the first symbol.
  • S and L or SLIV
  • the transmission opportunity is defined as N time slots, or the transmission opportunity is composed of the first symbol of each time slot on the N time slots, wherein the first symbol is represented by S in the TDRA table and L (or SLIV), or the first symbol is the symbol occupied by the first uplink transmission on any one of the N time slots, the S represents the start symbol of the first symbol, and L represents the first symbol
  • N RE is calculated by the following formula:
  • N RE is expanded by a factor of 4. That is to say, when the transmission opportunity is defined as N time slots, or the first symbol on N time slots, N RE will be expanded by N times. If we continue to use the formula Calculating BPRE will result in a smaller code rate.
  • time slots described in the above solutions can be replaced by definitions in time units, such as available time slots, physical time slots, and the like.
  • the embodiment of the present application provides a method for determining uplink transmission power, which can ensure consistent power and phase continuity for uplink transmission with coverage enhancement, and improve the performance of uplink transmission.
  • the terminal device determines the transmission power of the first transmission opportunity according to the first time period, where the first transmission opportunity is one of the M transmission opportunities of the first uplink transmission, and the time domain resources of the first time period are related to the Corresponding to the first transmission opportunity.
  • time domain resource in the first time period corresponding to the first transmission opportunity may represent one or more of the following meanings:
  • the time domain resource of the first time period is the same as the time domain resource of the first transmission opportunity
  • the time domain resource in the first time period is the same as the time domain resource actually mapped to the PUSCH at the first transmission opportunity;
  • the number of time-domain symbols corresponding to the first time period is the same as the number of time-domain symbols corresponding to the first transmission opportunity.
  • the terminal device sends the first uplink transmission to the network device in N time slots according to the size and/or transmission power of the transmission block of the first uplink transmission, where N is greater than 1, and N can be an integer or a decimal.
  • time domain resources occupied by the first time period are less than or equal to the time domain resources occupied by the N time slots.
  • the time domain resources occupied by the first time period are part of the time domain resources occupied by the N time slots.
  • the UCI originally carried on the PUCCH transmission is multiplexed and transmitted on the PUSCH, that is, the UCI is transmitted through the PUSCH instead of the PUCCH.
  • the UCI here may be hybrid automatic repeat request (hybrid auto repeat request, HARQ) feedback information, such as acknowledgment (acknowledgment, ACK) information, or channel state information (channel state information, CSI).
  • HARQ hybrid automatic repeat request
  • T proc,1 (N 1 +d 1,1 +d 2 )(2048+144) ⁇ 2 ⁇ ⁇ T C +T ext .
  • the first OFDM symbol in the overlapping PUCCH and PUSCH in the time domain is the first OFDM symbol of the PUSCH
  • the time domain length a is the first OFDM symbol of the PUSCH and The length between the last OFDM symbols of PDSCH
  • the first OFDM symbol in the overlapped PUCCH and PUSCH in the time domain is the first OFDM symbol of PUCCH
  • the time domain length a is the length between the first OFDM symbol of PUCCH and the last OFDM symbol of PDSCH.
  • N1 is the PDSCH processing time determined for UE processing capability 1 and UE processing capability 2 based on ⁇ according to Tables 1 and 2, where ⁇ corresponds to one of ( ⁇ PDCCH , ⁇ PDSCH , ⁇ UL ), and the value of ⁇ To meet T proc, 1 takes the maximum value.
  • the ⁇ PDCCH corresponds to the subcarrier spacing of the PDCCH that schedules the PDSCH
  • the ⁇ PDSCH corresponds to the subcarrier spacing of the scheduled PDSCH
  • the ⁇ UL corresponds to the subcarrier spacing of the uplink channel that transmits the HARQ-ACK.
  • T ext 0.
  • the first OFDM symbol in the overlapping PUCCH(s) and PUSCH(s) is generated in the time domain, and the time domain length between the PDCCH and the PDCCH is greater than T proc, 2 symbols:
  • T proc,2 max((N 2 +d 2,1 +d 2 )(2048+144) ⁇ 2 - ⁇ T c +T ext +T switch ,d 2,2 ),
  • any one of the overlapping PUCCH(s) and PUSCH(s) corresponds to the PDCCH
  • the "correspondence" here may indicate that the PDCCH is used to schedule PUSCH transmission, or the PDCCH is used to schedule PDSCH, and the PDCCH indicates the bearer PUCCH for PDSCH feedback information.
  • N2 is the PDSCH preparation time determined for UE processing capability 1 and UE processing capability 2 based on ⁇ according to Table 3 and Table 4, where ⁇ corresponds to one of ( ⁇ DL , ⁇ UL ), and the value of ⁇ satisfies T proc,2 takes the maximum value.
  • ⁇ DL corresponds to the subcarrier spacing of the PDCCH that schedules the PUSCH
  • ⁇ UL corresponds to the subcarrier spacing of the uplink channel that transmits the PUSCH.
  • FIG. 10 is a schematic diagram of time-domain overlap between repeated PUSCH transmission of type A and PUCCH transmission in at least one time slot. It can be seen from Figure 10 that the repeated transmission of PUSCH of type A sends PUSCH in 3 time slots (time slot #1, time slot #2, time slot #3), where time slot #1 and time slot #2 The PUSCH transmission overlaps with the PUCCH, that is, slot #1 and slot #2 are repeated slots. At this time, the terminal device multiplexes the UCI on the PUCCH (indicated by the shaded part in the figure) in slot #1 and slot # 2 on the PUSCH, without sending the PUCCH.
  • the terminal device multiplexes UCI in the time slot overlapping with PUCCH in the PUSCH.
  • the terminal device will PUCCH The UCI multiplex on , is sent on the first overlapping actual repeat transmission without sending the PUCCH.
  • the terminal device transmits PUCCH in these time slots instead of PUSCH. If the slot-level PUCCH retransmission overlaps with one or more actual retransmissions in the type B PUSCH retransmission in the time domain, then the terminal device sends the PUCCH without sending the PUSCH actual retransmission on the overlapped resources.
  • the terminal device can multiplex the encoded UCI with the UL-SCH in a rate-matching manner and then map it to the PUSCH, or can pass the encoded UCI through puncture ) has been mapped to the UL-SCH on the PUSCH to be mapped to the PUSCH, thereby realizing multiplexing with the UL-SCH.
  • the first time domain symbol of the PUSCH carries DMRS
  • the HARQ-ACK is mapped on the first time domain symbol after the DMRS symbol
  • the UL-SCH is mapped on the remaining time domain symbols in the PUSCH.
  • the number of physical resources occupied by UCI can be expressed as:
  • Q' ACK is the number of physical resources occupied by UCI
  • O ACK is the number of bits of HARQ-ACK (that is, the payload size of HARQ-ACK)
  • L ACK is the cyclic redundancy check (cyclic redundancy check) of HARQ-ACK.
  • CRC CRC bit number. It is an equalization parameter, which can be regarded as the ratio of the code rate of other information (such as UL-SCH) on the PUSCH to the code rate of UCI, which is notified by the network device and is a number greater than 0.
  • C UL-SCH is the number of code blocks included in the UL-SCH on the PUSCH
  • K r is the number of bits of the r-th code block in the UL-SCH on the PUSCH.
  • l is a time-domain symbol carrying DMRS
  • l is the total number of physical resources (i.e. the number of subcarriers) included on symbol 1 by PUSCH, is the number of physical resources occupied by PTRS on symbol 1 of PUSCH.
  • is the resource scaling factor
  • 10 is the first time-domain symbol that does not carry DMRS after the first DMRS symbol on the PUSCH.
  • UCI is CSI part 1 (part 1)
  • the number of physical resources occupied by UCI can be expressed as:
  • Q' CSI-1 is the quantity of physical resources occupied by UCI
  • O CSI-1 is the number of bits of CSI part 1 (that is, the load size of CSI part1)
  • L CSI-1 is the number of CRC bits of CSI part 1
  • Q' ACK is the number of physical resources used for transmission or potentially used for transmission of HARQ-ACK.
  • Physical resources potentially used to transmit HARQ-ACK refer to the reserved resources reserved for HARQ-ACK transmission in some cases (such as the number of HARQ-ACK bits does not exceed 2 bits), and the UE can actually occupy the reserved resources to transmit
  • the HARQ-ACK may also not occupy the reserved resource to transmit the HARQ-ACK (for example, map the UL-SCH on the reserved resource).
  • UCI is CSI part 2 (part 2)
  • the number of physical resources occupied by UCI can be expressed as:
  • Q' CSI-2 is the number of physical resources occupied by UCI
  • O CSI-2 is the number of bits of CSI part 2 (that is, the payload size of CSI part 2)
  • L CSI-2 is the number of CRC bits of CSI part 2
  • Q' ACK is the number of physical resources used for transmission or potentially used for transmission of HARQ-ACK
  • Q' CSI-1 is the number of physical resources occupied by CSI part 1.
  • the terminal device can calculate the number of physical resources occupied by UCI according to the above scheme, and then, according to the pre-coding information of UCI (such as UCI information sequence a 0 , a 1 , a 2 , a 3 , ..., a A-1 ) and The number of physical resources occupied by the UCI (that is, the number of physical resources carrying the UCI) encodes the pre-encoding information of the UCI.
  • the pre-coding information of UCI such as UCI information sequence a 0 , a 1 , a 2 , a 3 , ..., a A-1
  • the code rate of the corresponding UCI encoded information is low, and the reliability of UCI is high; the number of physical resources occupied by UCI If it is smaller, the code rate of the corresponding UCI encoded information is higher, and the UCI reliability is lower.
  • the terminal device may calculate the number of physical resources occupied by UCI according to the number of physical resources used to bear UCI on the current PUSCH and the TBS corresponding to the UL-SCH data packet on the current PUSCH. For multiple repeated transmissions of PUSCH, when the number of physical resources used for data transmission corresponding to the PUSCH of each repeated transmission is the same, the existing method for calculating the TBS of the UL-SCH data packet can be used, that is, based on K The TBS is calculated from the quantity of physical resources included in the first PUSCH in the PUSCH, and the quantity of physical resources occupied by the appropriate UCI can be obtained.
  • the terminal device when the PUSCH transmission and the PUCCH transmission overlap in the time domain and the first timeline condition is satisfied, the terminal device multiplexes UCI on one PUSCH transmission.
  • uplink transmissions with strong coverage such as PUSCH repeated transmissions of type A, or uplink transmissions across multi-slot transport blocks (transport block over multi-slot, TBoMS)
  • multiplexing UCI on one PUSCH repeated transmission will The power consistency and phase continuity in the joint channel estimation time window are destroyed, thereby affecting the performance of uplink transmission.
  • the embodiment of the present application provides a UCI multiplexing method, which can ensure consistent power and continuous phase for uplink transmission with coverage enhancement, and improve the performance of uplink transmission.
  • the following uses the first uplink transmission in method 300 as an example to introduce a UCI multiplexing method provided in the embodiment of the present application:
  • the terminal device determines whether the first uplink transmission and the first PUCCH transmission within the first time period satisfy the second condition (also referred to as the second timeline condition), wherein, the first time domain resource is used to send the first uplink transmission, or the first time domain resource is the time domain resource corresponding to the first time period; the second time domain resource is used to send the first PUCCH transmission , the first PUCCH transmission is used to bear UCI.
  • the second condition also referred to as the second timeline condition
  • any one of the first PUCCH transmission and the first uplink transmission in the first time period corresponds to the PDCCH, where "corresponding" may indicate that the PDCCH is used to schedule the first uplink transmission, or the PDCCH is used to schedule the PDSCH, At the same time, the PDCCH indicates the first PUCCH carrying the PDSCH feedback information.
  • the first uplink transmission is an uplink transmission of transport blocks across time slots, specifically, the first uplink transmission is two consecutive PUSCH transmissions across time slots.
  • the first OFDM symbol of the first PUCCH transmission and the first uplink transmission in the first time period is the first OFDM symbol of the first uplink transmission
  • the time domain length a at this time is the first OFDM symbol of the first uplink transmission and
  • the time domain length b is the time domain length between the first OFDM symbol of the first uplink transmission and the last OFDM symbol of PDCCH
  • the second time line condition is a ⁇ T proc,1 , b ⁇ T proc,2 .
  • the first uplink transmission in the schematic diagram shown in FIG. 12 is similar to the first uplink transmission in FIG. 11 , but in FIG. 12 , the first PUCCH transmission and the first uplink transmission in the first time period A OFDM symbol is the first OFDM symbol transmitted by the first PUCCH.
  • the time domain length a is the time domain length between the first OFDM symbol transmitted by the first PUCCH and the last time domain symbol of the PDSCH
  • the time domain length b is the time domain length between the first OFDM symbol transmitted by the first PUCCH and the last OFDM symbol of the PDCCH
  • the second timeline condition is a ⁇ T proc,1 , b ⁇ T proc,2 .
  • the terminal device When the first uplink transmission and the first PUCCH transmission in the first time period meet the second timeline condition, the terminal device multiplexes the UCI on the first PUCCH transmission on the first uplink transmission in the first time period .
  • the UCI multiplexed by the terminal device on each PUSCH transmission in the first uplink transmission is the same bit. For example, all bits of UCI are multiplexed on each PUSCH transmission in the first uplink transmission.
  • the UCI multiplexed by the terminal device on each PUSCH transmission in the first uplink transmission is different bits. For example, some bits of UCI are multiplexed on each PUSCH transmission in the first uplink transmission, and some bits of UCI on each PUSCH transmission are different, and some bits of UCI on each PUSCH transmission can form UCI All bits.
  • UCI occupies the same number of bits in each PUSCH transmission.
  • the terminal device sends the first uplink transmission in the first time period in the first time domain resource, and the first uplink transmission multiplexes the UCI on the first PUCCH.
  • the following uses the first uplink transmission in method 300 as an example to introduce another UCI multiplexing method provided in the embodiment of the present application:
  • the terminal device determines whether the first uplink transmission and the first PUCCH transmission in the first time period satisfy the first timeline condition and/or the second A timeline condition, wherein the first time domain resource is used to send the first uplink transmission, or the first time domain resource is a time domain resource corresponding to the first time period; the second time domain resource is used to send the first PUCCH transmission, The first PUCCH transmission is used to bear UCI.
  • the terminal device determines the physical resources occupied by UCI multiplexing during the first uplink transmission quantity.
  • the number of physical resources occupied by UCI can be expressed as:
  • Q' ACK is the number of physical resources occupied by UCI
  • O ACK is the number of bits of HARQ-ACK (that is, the payload size of HARQ-ACK)
  • L ACK is the cyclic redundancy check (cyclic redundancy check) of HARQ-ACK.
  • CRC CRC bit number. It is an equalization parameter, which can be regarded as the ratio of the code rate of other information (such as UL-SCH) on the PUSCH to the code rate of UCI, which is notified by the network device and is a number greater than 0.
  • the time domain window represents the first time period (or the first time window).
  • the number of physical resources that can be used to bear UCI in the first uplink transmission within the first time period is the number of physical resources that can be used to bear UCI on the lth time domain symbol on the first uplink transmission in the first time period, is the total number of time-domain symbols (including the number of symbols carrying DMRS) on the PUSCH in the first time period.
  • the terminal device determines the number of physical resources occupied by UCI multiplexing on the PUSCH according to the second method, and at the same time, the first PUCCH transmission and the first uplink transmission in the first time period meet the first timeline condition, in a possible implementation
  • the terminal equipment multiplexes UCI on each PUSCH transmission of the first uplink transmission within the first time period.
  • Each PUSCH transmission opportunity and PUCCH in the first uplink transmission within the first time period satisfy the second timeline condition.
  • UCI is CSI part 1 (part 1)
  • the number of physical resources occupied by UCI can be expressed as:
  • Q' CSI-1 is the number of physical resources occupied by UCI
  • O CSI-1 is the number of bits of CSI part 1 (that is, the payload size of CSI part 1)
  • L CSI-1 is the number of CRC bits of CSI part 1
  • Q' ACK is the number of physical resources used for transmission or potentially used for transmission of HARQ-ACK.
  • Physical resources potentially used to transmit HARQ-ACK refer to the reserved resources reserved for HARQ-ACK transmission in some cases (such as the number of HARQ-ACK bits does not exceed 2 bits), and the UE can actually occupy the reserved resources to transmit
  • the HARQ-ACK may also not occupy the reserved resource to transmit the HARQ-ACK (for example, map the UL-SCH on the reserved resource).
  • UCI is CSI part 2 (part 2)
  • the number of physical resources occupied by UCI can be expressed as:
  • Q' CSI-2 is the number of physical resources occupied by UCI
  • O CSI-2 is the number of bits of CSI part 2 (that is, the payload size of CSI part 2)
  • L CSI-2 is the number of CRC bits of CSI part 2
  • Q' ACK is the number of physical resources used for transmission or potentially used for transmission of HARQ-ACK
  • Q' CSI-1 is the number of physical resources occupied by CSI part 1.
  • the following uses the first uplink transmission in method 300 as an example to introduce a UCI multiplexing method in another scenario provided by the embodiment of the present application:
  • the terminal device When at least one time domain symbol overlaps between the first time domain resource and the third time domain resource, the terminal device does not send the first uplink transmission on the first time domain resource, where the first time domain resource is used to send the first uplink transmission , that is, the first time domain resource is a time domain resource corresponding to the first time period; the third time domain resource is used for sending PUCCH repeated transmission.
  • the first uplink transmission in the first time period is four consecutive PUSCH repeated transmissions across time slots, and the PUCCH repeated transmission is PUCCH transmission repeated twice, and the PUCCH transmission and the first The second and third PUSCH transmissions in the uplink transmission overlap in time domain. If the first and fourth PUSCH transmissions in the first uplink transmission are sent instead of the second and third PUSCH transmissions in the first uplink transmission, phase discontinuity and power inconsistency will occur.
  • FIG. 14 is a schematic block diagram of a communication device 10 provided by an embodiment of the present application. As shown in the figure, the communication device 10 may include a transceiver module 11 and a processing module 12 .
  • the communications apparatus 10 may correspond to the terminal device (or UE) in the above method embodiments.
  • the communication device 10 may correspond to the terminal device in the method 300 according to the embodiment of the present application, and the communication device 10 may include modules for executing the methods performed by the terminal device in FIGS. 7 to 13 .
  • each unit and the above-mentioned other operations and/or functions in the communication device 10 are respectively for realizing the corresponding flow of the method shown in FIG. 7 to FIG. 13 .
  • the transceiver module 11 in the communication device 10 performs the receiving and sending operations performed by the terminal equipment in the above method embodiments, and the processing module 12 performs operations other than the receiving and sending operations.
  • the communications apparatus 10 may also correspond to the network device (or base station or gNB) in the above method embodiments.
  • the communication device 10 may correspond to the network device in the method 300 according to the embodiment of the present application, and the communication device 10 may include a module for executing the method performed by the network device in Fig. 7 to Fig. 13 . Moreover, each unit in the communication device 10 and the above-mentioned other operations and/or functions are for realizing the corresponding flow of the method described in FIG. 7 to FIG. 13 .
  • the transceiver module 11 in the communication device 10 performs the receiving and sending operations performed by the network equipment in the above method embodiments, and the processing module 12 performs operations other than the receiving and sending operations.
  • FIG. 15 is a schematic diagram of a communication device 20 provided in an embodiment of the present application.
  • the device 20 may be a terminal device or a network device.
  • the device 20 may include a processor 21 (ie, an example of a processing module) and a memory 22 .
  • the memory 22 is used to store instructions
  • the processor 21 is used to execute the instructions stored in the memory 22, so that the apparatus 20 implements the steps performed by the terminal device or the network device in the methods corresponding to FIG. 7 to FIG. 13 .
  • the device 20 may also include an input port 23 (ie, an example of a transceiver module) and an output port 24 (ie, another example of a transceiver module).
  • the processor 21 , the memory 22 , the input port 23 and the output port 24 can communicate with each other through internal connection paths, and transmit control and/or data signals.
  • the memory 22 is used to store a computer program, and the processor 21 can be used to call and run the computer program from the memory 22, to control the input port 23 to receive signals, and to control the output port 24 to send signals, so as to complete the terminal equipment or Steps for network devices.
  • the memory 22 can be integrated in the processor 21 or can be set separately from the processor 21 .
  • the input port 23 is a receiver
  • the output port 24 is a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 23 is an input interface
  • the output port 24 is an output interface
  • the functions of the input port 23 and the output port 24 may be realized by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 21 may be realized by a dedicated processing chip, a processing circuit, a processor or a general-purpose chip.
  • a general-purpose computer to implement the communication device provided in the embodiment of the present application.
  • the program codes to realize the functions of the processor 21 , the input port 23 and the output port 24 are stored in the memory 22 , and the general processor realizes the functions of the processor 21 , the input port 23 and the output port 24 by executing the codes in the memory 22 .
  • FIG. 16 is a schematic structural diagram of a terminal device 30 provided in the present application. For ease of illustration, FIG. 16 shows only the main components of the communication device. As shown in FIG. 16 , the terminal device 30 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program. described action.
  • the memory is mainly used for storing software programs and data, such as storing the codebook described in the above embodiments.
  • the control circuit is mainly used for conversion of baseband signal and radio frequency signal and processing of radio frequency signal.
  • the control circuit and the antenna can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 16 only shows a memory and a processor. In an actual terminal device, there may be multiple processors and memories.
  • a storage may also be called a storage medium or a storage device, etc., which is not limited in this embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit, the baseband processor is mainly used to process communication protocols and communication data, and the central processor is mainly used to control the entire terminal device, execute A software program that processes data for a software program.
  • the processor in FIG. 16 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors, interconnected through technologies such as a bus.
  • a terminal device may include multiple baseband processors to adapt to different network standards, a terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the terminal device 30 includes a transceiver unit 31 and a processing unit 32 .
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • the device in the transceiver unit 31 for realizing the receiving function can be regarded as a receiving unit
  • the device in the transceiver unit 31 for realizing the sending function can be regarded as a sending unit, that is, the transceiver unit 31 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, receiver, receiving circuit, etc.
  • the sending unit may be called a transmitter, transmitter, or transmitting circuit, etc.
  • the terminal device shown in FIG. 16 can execute various actions performed by the terminal device in the methods shown in FIG. 7 to FIG. 13 , and detailed description thereof is omitted here to avoid redundant description.
  • FIG. 17 shows a schematic structural diagram of a simplified network device 40 .
  • Network equipment includes 41 parts and 42 parts.
  • Part 41 is mainly used for the transmission and reception of radio frequency signals and the conversion between radio frequency signals and baseband signals; part 42 is mainly used for baseband processing and control of network equipment.
  • Part 41 can generally be called a transceiver module, a transceiver, a transceiver circuit, or a transceiver, etc.
  • the part 42 is generally the control center of the network device, which can be generally referred to as a processing module, and is used to control the network device to perform the processing operations on the network device side in the foregoing method embodiments.
  • the transceiver module in Part 41 which may also be called a transceiver or transceiver, etc., includes an antenna and a radio frequency circuit, wherein the radio frequency circuit is mainly used for radio frequency processing.
  • the device used to realize the receiving function in Part 41 can be regarded as a receiving module
  • the device used to realize the sending function can be regarded as a sending module, that is, Part 41 includes a receiving module and a sending module.
  • the receiving module may also be called a receiver, receiver, or receiving circuit, etc.
  • the sending module may be called a transmitter, transmitter, or transmitting circuit, etc.
  • Section 42 may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to implement baseband processing functions and control network devices. If there are multiple single boards, each single board can be interconnected to enhance the processing capability. As an optional implementation, it is also possible that multiple single boards share one or more processors, or that multiple single boards share one or more memories, or that multiple single boards share one or more processors at the same time. device.
  • the network device shown in Figure 17 may be any network device shown in the methods shown in Figure 7 to Figure 13, such as session management network element, mobility management network element, SMF, AMF, etc. .
  • the transceiver module in part 41 is used to execute the steps related to the sending and receiving of any network device in the methods shown in Figures 7 to 13; the part 42 is used to execute the processing related steps of any network device in the methods shown in Figures 7 to 13 step.
  • FIG. 17 is only an example rather than a limitation, and the foregoing network device including a transceiver module and a processing module may not depend on the structure shown in FIG. 17 .
  • the chip When the device 40 is a chip, the chip includes a transceiver module and a processing module.
  • the transceiver module may be an input-output circuit or a communication interface;
  • the processing module is a processor or a microprocessor or an integrated circuit integrated on the chip.
  • the embodiment of the present application further provides a computer-readable storage medium, on which computer instructions for implementing the method executed by the first network device in the above method embodiment are stored.
  • the computer program when executed by a computer, the computer can implement the method performed by the network device in the foregoing method embodiments.
  • the embodiments of the present application also provide a computer program product including instructions, which, when executed by a computer, enable the computer to implement the method executed by the first device or the method executed by the second device in the above method embodiments.
  • An embodiment of the present application further provides a communication system, where the communication system includes the network device in the foregoing embodiments.
  • the network device may include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer may include hardware such as a central processing unit (central processing unit, CPU), a memory management unit (memory management unit, MMU), and memory (also called main memory).
  • the operating system of the operating system layer can be any one or more computer operating systems that realize business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer may include applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of the present application does not specifically limit the specific structure of the execution subject of the method provided in the embodiment of the present application, as long as the program that records the code of the method provided in the embodiment of the present application can be executed according to the method provided in the embodiment of the present application Just communicate.
  • the execution subject of the method provided by the embodiment of the present application may be a network device, or a functional module in the network device that can call a program and execute the program.
  • Computer-readable media may include, but are not limited to, magnetic storage devices (such as hard disks, floppy disks, or tapes, etc.), optical disks (such as compact discs (compact disc, CD), digital versatile discs (digital versatile disc, DVD), etc. ), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc.).
  • magnetic storage devices such as hard disks, floppy disks, or tapes, etc.
  • optical disks such as compact discs (compact disc, CD), digital versatile discs (digital versatile disc, DVD), etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc.
  • Various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • processors mentioned in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and may also be other general processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits ( application specific integrated circuit (ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • RAM can be used as an external cache.
  • RAM may include the following forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM) , double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (synchlink DRAM, SLDRAM) and Direct memory bus random access memory (direct rambus RAM, DR RAM).
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous DRAM
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • Direct memory bus random access memory direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module may be integrated in the processor.
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to implement the solutions provided in this application.
  • each functional unit in each embodiment of the present application may be integrated into one unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer may be a personal computer, a server, or a network device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium, (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, DVD
  • a semiconductor medium for example, a solid state disk (SSD)
  • the aforementioned available The medium may include but not limited to: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种上行传输的方法和装置,该上行传输的方法包括:终端设备接收第一信息,该第一信息用于指示第一时间段;该终端设备根据该第一时间段确定该第一上行传输的传输块的大小和/或该第一上行传输的传输功率;该终端设备根据该传输块的大小和/或该传输功率在N个时隙上发送该第一上行传输,该N大于1。本申请实施例提供的方法中,根据第一上行传输对应的第一时间段可以更加精确地计算传输块大小和上行传输功率,从而提升上行传输的性能。

Description

上行传输的方法和装置
本申请要求于2021年05月10日提交中国专利局、申请号为202110507733.4、申请名称为“上行传输的方法和装置”的中国专利申请的优先权,以及于2021年09月30日提交中国专利局、申请号为202111166947.6、申请名称为“上行传输的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更加具体地,涉及一种上行传输的方法和装置。
背景技术
在当前新空口(new radio,NR)系统的上行传输中,许多国家为NR的频率范围1(frequency range 1,FR1)(<6GHz)部署提供了更多的可用频谱,例如3.5GHz。同时,NR系统的频谱具有较高的频点,因此在数据传输的过程往往会有比较大的路径损耗。为了使得NR系统保持较高的通信质量,运营商在部署蜂窝通信网络时,一般通过覆盖增强的上行传输的方式来提高通信的服务质量。其中,覆盖增强的上行传输包括类型A重复传输、支持跨多时隙的物理上行共享信道(physical uplink share channel,PUSCH)传输块的上行传输、支持跨物理上行链路控制信道(physical uplink control channel,PUCCH)重复的解调参考信号(demodulation reference signal,DMRS)捆绑机制的上行传输等。
然而,在对一些覆盖增强的上行传输进行联合信道估计的时候,网络侧可能无法对上行传输块进行正确解读,或者无法保证多个PUSCH传输的功率一致和相位连续,从而对上行传输产生影响。
因此,如何改善上行传输的性能是亟待解决的问题。
发明内容
本申请实施例的上行传输的方法和装置,可以改善上行传输的性能。
第一方面,提供了一种上行传输的方法,该方法包括:终端设备接收第一信息,该第一信息用于指示第一时间段;该终端设备根据该第一时间段确定该第一上行传输的传输块的大小和/或该第一上行传输的传输功率;该终端设备根据该传输块的大小和/或该传输功率在N个时隙上发送该第一上行传输,该N大于1。
作为一种可能的实现方式,终端设备从网络设备接收第一信息,该第一信息用于指示第一时间段,或者该第一信息为第一时间段的信息。该第一时间段可以理解为一段持续的时间(duration),也可以理解为一个时间窗(timedomainwindow)。
可选地,该第一信息可以是由高层信令RRC信令预配置的,也可以是MACCE激活的,或者是通过下行控制信息(downlink control information,DCI)指示的
在另一种可能的实现方式中,终端设备也可以根据预配置信息确定该第一时间段。
可选地,在该终端设备接收第一信息之前,终端设备从网络设备接收了第二信息,该第二信息用于指示该终端设备进行第一上行传输。该第二信息为下行控制信息,或者该第
一信息为RRC信令;或者第二信息包括下行控制信息或者RRC信令;或者第二信息承载于下行控制信息或者RRC信令。可选地,第二信息还用于指示第一上行传输的时频资源和调制编码方式。
示例性地,该第一上行传输是一种用于提高上行覆盖的上行传输,比如该第一上行传输是在N个时隙内的上行传输,且该第一上行传输包括M个传输时机,其中N大于1,N可以是整数也可以是小数,M大于或等于1。
结合第一方面,在第一方面的某些实现方式中,该第一上行传输包括类型A的物理上行共享信道PUSCH重复传输(PUSCH repetition type A),或者跨多时隙的传输块(transport block over multi-slot,TBoMS)上行传输,或者类型B的PUSCH重复传输(PUSCH repetition type B)。
因此,本申请实施例提供的方法中,根据第一上行传输对应的第一时间段计算传输块大小和/或第一上行传输的传输功率,可以更加精确地计算传输块大小和/或第一上行传输的传输功率,提升上行传输的性能。
结合第一方面,在第一方面的某些实现方式中,该第一时间段为对该第一上行传输进行联合信道估计的时间窗。
需要说明的是,本申请实施例中的联合信道估计包括以下含义:通过一个时隙中的DMRS对N个时隙中的PUSCH传输做联合信道估计;或者将多个时隙中的DMRS做捆绑,并通过捆绑得到的DMRS对N个时隙中的PUSCH传输或PUCCH传输做联合信道估计。其中,N为大于或等于1的整数;或者,N大于1且N可以为小数,如N为1.5时表示1.5个时隙。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该终端设备在该第一时间段内保持该第一上行传输中的多个PUSCH传输之间的功率一致和/或相位连续。或者可以说,该终端设备在该第一时间段维持该第一上行传输中的多个PUSCH传输之间的功率一致和/或相位连续。
结合第一方面,在第一方面的某些实现方式中,该第一上行传输包括M个传输时机,该M大于或等于1;该第一上行传输包括类型A的物理上行共享信道PUSCH重复传输,或者跨多时隙的传输块TBoMS上行传输。
结合第一方面,在第一方面的某些实现方式中,在该第一上行传输为该类型A的PUSCH重复传输的情形下,该M个传输时机为M个PUSCH传输时机;或者,在该第一上行传输为该TBoMS上行传输的情形下,该M个传输时机为M个TBoMS传输时机。
结合第一方面,在第一方面的某些实现方式中,该第一上行传输包括M个传输时机,该M个传输时机大于或等于1,该方法还包括:该终端设备根据该第一时间段确定第一传输时机的传输功率,该第一传输时机为该M个传输时机中的一个,该第一时间段的时域资源与该第一传输时机对应。该第一时间段的时域资源与该第一传输时机对应可以理解为:该第一时间段对应的OFDM符号数与第一传输时机对应的OFDM符号数相同;或者,该第一时间段与第一传输时机的时间段相同。
结合第一方面,在第一方面的某些实现方式中,在该第一上行传输为该类型A的 PUSCH重复传输的情形下,该第一时间段为以下中的任意一种:该第一上行传输占用的全部时域资源;该第一上行传输的第一个PUSCH所在时隙的起始符号到最后一个PUSCH所在时隙的结束符号之间的时域资源;该第一上行传输在一个时隙中占用的符号数与PUSCH重复次数的乘积;该第一上行传输在一个时隙中占用的符号数与该第一上行传输实际传输的时隙数的乘积;该第一上行传输在一个时隙中占用的符号数与确定的可用时隙数的乘积;该第一上行传输在一个时隙中占用的符号数与用于进行该联合信道估计的时隙数K的乘积,其中K>1;该第一上行传输占用的连续时隙对应的时域资源。
结合第一方面,在第一方面的某些实现方式中,在该第一上行传输为跨多时隙的传输块的上行传输的情形下,该第一时间段为以下中的任意一种:该第一上行传输占用的全部时域资源;该第一上行传输的起始时隙中的起始符号到结束时隙的结束符号之间的时域资源;该第一上行传输实际占用的符号总数;该第一上行传输的一个TBoMS传输时机对应的时域资源;该第一上行传输占用的连续时隙对应的时域资源。
结合第一方面,在第一方面的某些实现方式中,该终端设备根据该第一时间段确定该第一上行传输的传输块的大小,和/或该第一上行传输的传输功率,包括:该终端设备根据该第一上行传输分配在该第一时间段内的符号数目和/或资源元素RE数,确定该第一上行传输的传输块的大小,和/或该第一上行传输的传输功率。
示例性地,终端设备根据第一时间段对应的时域资源确定第一上行传输的传输块的大小。首先,UE根据以下公式计算第一上行传输在第一时间段(或者说一个时间窗)中一个PRB内的RE数:
Figure PCTCN2022091772-appb-000001
其中,
Figure PCTCN2022091772-appb-000002
表示第一上行传输分配在第一时间段内的符号数;或者
Figure PCTCN2022091772-appb-000003
表示第一上行传输在第一时间段内实际传输所占的符号数。
Figure PCTCN2022091772-appb-000004
表示一个PRB中频域上的载波数;
Figure PCTCN2022091772-appb-000005
为一个PRB中在一个时间段(或者说一个时间窗)内的DMRS(demodulation reference signal,解调参考信号)所占的RE数;
Figure PCTCN2022091772-appb-000006
是由高层参数PUSCH-ServingCellConfig中的xOverhead参数配置的开销。
进一步地,终端设备通过以下公式确定第一上行传输在第一时间段内分配的总RE数:
N RE=min(12×(14·N-x ),N′ RE)·n PRB
其中,N为第一时间段对应的时隙数,x为网络设备指示或者配置的数值,x为大于或等于1的整数;或者x为预定义的数值,其取值为1,2,3,…;或者x=N。n PRB为网络设备分配给终端设备用于第一上行传输的总PRB数。
进一步地,通过公式N info=N RE·R·Q m·v得到信息比特数,其中Q m为调制阶数,R为码率,v为传输层数,这三个参数可以根据DCI所指示的值在协议中查表得到。
如果N info≤3824,通过公式
Figure PCTCN2022091772-appb-000007
计算信息比特的量化中间值,其中
Figure PCTCN2022091772-appb-000008
在协议中查表得到不小于N′ info最近的一个值作为TBS。
如果N info>3824,通过公式
Figure PCTCN2022091772-appb-000009
计算信息比特的 量化中间值,其中
Figure PCTCN2022091772-appb-000010
如果码率R≤1/4,
Figure PCTCN2022091772-appb-000011
其中
Figure PCTCN2022091772-appb-000012
否则的话
Figure PCTCN2022091772-appb-000013
因此,本申请实施例提供的方法中,根据第一上行传输对应的第一时间段内分配的符号数和DMRS所占的符号数计算传输块大小(transport block size,TBS),可以更加精确地计算TBS,提升上行传输的性能。
示例性地,终端设备根据第一时间段内的PUSCH传输,或者第一时间段内的PUSCH传输时机i包含的符号数,确定资源元素(resource element,RE)数量,然后根据该RE数量确定上行传输功率。
因此,本申请实施例提供了一种确定上行传输功率的方法,可以保证用于覆盖增强的上行传输的功率一致和相位连续,并改善上行传输的性能。
Figure PCTCN2022091772-appb-000014
其中Δ TF,b,fc(i)根据PUSCH承载的信息类型(例如承载UL-SCH数据信息,或者CSI信息等)、占用的物理资源位置、数量等因素确定:
Figure PCTCN2022091772-appb-000015
其中N RE为RE数,表示为
Figure PCTCN2022091772-appb-000016
其中
Figure PCTCN2022091772-appb-000017
为在服务小区c载波f激活上行链路部分带宽(uplink bandwidth part,UL BWP)b上传输的第一时间段内的PUSCH传输,或者第一时间段内的PUSCH传输时机i包含的符号数。其余方案与现有上行功率的确定机制相同。
因此,本申请实施例提供了一种确定上行传输功率的方法,可以保证用于覆盖增强的上行传输的功率一致和相位连续,并改善上行传输的性能。
可选地,终端设备根据第一时间段确定第一传输时机的传输功率,该第一传输时机为第一上行传输的M个传输时机中的一个,该第一时间段的时域资源与该第一传输时机对应。
应理解,该第一时间段的时域资源与该第一传输时机对应可以表示以下含义中的一个或多个:
该第一时间段的时域资源与该第一传输时机的时域资源相同;
该第一时间段的时域资源与该第一传输时机上实际映射了PUSCH的时域资源相同;
该第一时间段对应的时域符号数目与该第一传输时机对应的时域符号数目相同。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:在第一时域资源和第二时域资源重叠,且该第一时域资源上的第一上行传输和第一物理上行控制信道PUCCH满足第一条件的情形下,该终端设备将上行控制信息上行控制信息(uplink control information,UCI)复用在该第一上行传输上,其中,该第一PUCCH用于承载该UCI,该第一时域资源为该第一时间段对应的时域资源,或者该第一资源为该M个传输时机中的一个传输时机对应的时域资源,该第二时域资源用于承载待发送的该第一PUCCH。
结合第一方面,在第一方面的某些实现方式中,在该终端设备将该UCI复用在该第一 上行传输上时,该方法还包括:该终端设备根据该第一时间段确定该UCI在该第一时间段内的上行传输上占用的物理资源的数量。
结合第一方面,在第一方面的某些实现方式中,该第一条件包括:该第一PUCCH和该第一时域资源上的第一上行传输中的第一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,与第一物理下行共享信道PDSCH最后一个OFDM符号之间的时域长度大于等于T proc,1,该第一PUCCH和该第一上行传输中的第一个OFDM符号与第一物理下行控制信道(physical downlink control channel,PDCCH)最后一个OFDM符号之间的时域长度大于等于T proc,2,其中,该第一PDSCH与该第一PUCCH或该第一上行传输对应,该第一PDCCH与该第一PUCCH或该第一上行传输对应,该T proc,1为该终端设备对该PDSCH的处理时间,该T proc,2为该终端设备对PUSCH的处理时间;或者该第一PUCCH和该第一上行传输中的一个传输时机的第一个正交频分复用OFDM符号,与第一物理下行共享信道PDSCH最后一个OFDM符号之间的时域长度大于等于T proc,1,该第一PUCCH和该第一上行传输的一个传输时机中的第一个OFDM符号与第一PDCCH最后一个OFDM符号之间的时域长度大于等于T proc,2,其中,该第一PDSCH与该第一PUCCH或该第一上行传输中的一个传输时机对应,该第一PDCCH与该第一PUCCH或该第一上行传输中的一个传输时机对应;或者该第一PUCCH和第一PUSCH中的第一个OFDM符号,与第二PDSCH最后一个OFDM符号之间的时域长度大于等于T proc,1,该第一PUCCH和该第一PUSCH中的第一个OFDM符号与第二PDCCH最后一个OFDM符号之间的时域长度大于等于T proc,2,其中,该第一PUSCH是该第一上行传输中与该第一PUCCH在时域上产生重叠的PUSCH传输,该第二PDSCH与该第一PUCCH或该第一PUSCH对应,该第二PDCCH与该第一PUCCH或该第一PUSCH对应。
结合第一方面,在第一方面的某些实现方式中,该终端设备将上行控制信息UCI复用在该第一上行传输上,包括:该终端设备在该第一上行传输中的每一个PUSCH上传输该UCI相同的比特,例如,第一上行传输中的每一个PUSCH传输上均复用UCI的全部比特;或者该终端设备在该第一上行传输中的每一个PUSCH上传输该UCI不同的比特,例如,第一上行传输中的每一个PUSCH传输上均复用UCI的部分比特,且每一个PUSCH传输上的UCI的部分比特均不相同,每一个PUSCH传输上的UCI的部分比特可以组成UCI的全部比特。可选地,在这种实现方式中,UCI在每个PUSCH传输上占用的比特数相同。
结合第一方面,在第一方面的某些实现方式中,当第一时域资源和第三时域资源至少有一个时域符号重叠,终端设备在第一时域资源上不发送第一上行传输,其中,第一时域资源用于发送第一上行传输,或者说第一时域资源是第一时间段对应的时域资源;第三时域资源用于发送PUCCH重复传输。
对于需要联合信道估计的第一上行传输,若信道估计时间段内的部分PUSCH传输不发送,只发送剩余的没有被PUCCH重复传输影响的PUSCH,一定会产生相位不连续和功率不一致现象。例如在图13所示的示意图中,第一时间段内的第一上行传输为跨时隙的连续四个PUSCH重复传输,PUCCH重复传输为重复传输两次的PUCCH传输,且PUCCH传输与第一上行传输中的第二个和第三个PUSCH传输在时域上重叠。如果不发送第一上行传输中的第二个和第三个PUSCH传输,而发送第一上行传输中的第一个和第四个PUSCH传输,则会产生相位不连续和功率不一致的现象。
因此,本申请实施例提供的方法,当PUCCH重复传输与第一时间段内的第一上行传输在时域上产生重叠,则将第一时间段内的全部PUSCH传输都丢弃不发送,而发送PUCCH重复传输。
第二方面,提供了一种上行传输的方法,该方法包括:
网络设备发送第一信息,该第一信息用于指示第一时间段;该网络设备根据该第一时间段确定第一上行传输的传输块的大小和/或该第一上行传输的传输功率;该网络设备根据该传输块的大小和/或该传输功率在N个时隙上接收第一上行传输,该N大于1。
结合第二方面,在第二方面的某些实现方式中,该第一时间段为对该第一上行传输进行联合信道估计的时间窗。
结合第二方面,在第二方面的某些实现方式中,该第一上行传输包括M个传输时机,该M大于或等于1;该第一上行传输包括类型A的物理上行共享信道PUSCH重复传输,或者跨多时隙的传输块TBoMS上行传输。
结合第二方面,在第二方面的某些实现方式中,在该第一上行传输为该类型A的PUSCH重复传输的情形下,该M个传输时机为M个PUSCH传输时机;或者,在该第一上行传输为该TBoMS上行传输的情形下,该M个传输时机为M个TBoMS传输时机。
结合第二方面,在第二方面的某些实现方式中,该第一上行传输包括M个传输时机,该M大于或等于1,该方法还包括:该终端设备根据该第一时间段确定第一传输时机的传输功率,该第一传输时机为该M个传输时机中的一个,该第一时间段的时域资源与该第一传输时机对应。该第一时间段的时域资源与该第一传输时机对应可以理解为:该第一时间段对应的OFDM符号数与第一传输时机对应的OFDM符号数相同;或者,该第一时间段与第一传输时机的时间段相同。
结合第二方面,在第二方面的某些实现方式中,在该第一上行传输为该类型A的PUSCH重复传输的情形下,该第一时间段为以下中的任意一种:该第一上行传输占用的全部时域资源;该第一上行传输的第一个PUSCH所在时隙的起始符号到最后一个PUSCH所在时隙的结束符号之间的时域资源;该第一上行传输在一个时隙中占用的符号数与PUSCH重复次数的乘积;该第一上行传输在一个时隙中占用的符号数与该第一上行传输实际传输的时隙数的乘积;该第一上行传输在一个时隙中占用的符号数与确定的可用时隙数的乘积;该第一上行传输在一个时隙中占用的符号数与用于进行该联合信道估计的时隙数K的乘积,其中K>1;该第一上行传输占用的连续时隙对应的时域资源。
结合第二方面,在第二方面的某些实现方式中,在该第一上行传输为跨多时隙的传输块的上行传输的情形下,该第一时间段为以下中的任意一种:该第一上行传输占用的全部时域资源;该第一上行传输的起始时隙中的起始符号到结束时隙的结束符号之间的时域资源;该第一上行传输实际占用的符号总数;该第一上行传输的一个TBoMS传输时机对应的时域资源;该第一上行传输占用的连续时隙对应的时域资源。
结合第二方面,在第二方面的某些实现方式中,该终端设备根据该第一时间段确定该第一上行传输的传输块的大小,和/或该第一上行传输的传输功率,包括:该终端设备根据该第一上行传输分配在该第一时间段内的符号数目和/或资源元素RE数,确定该第一上行传输的传输块的大小,和/或该第一上行传输的传输功率。
第三方面,提供了一种上行传输的装置,该装置包括:收发模块,用于终端设备接收 第一信息,该第一信息用于指示第一时间段;处理模块,用于该终端设备根据该第一时间段确定该第一上行传输的传输块的大小和/或该第一上行传输的传输功率;该处理模块还用于终端设备根据该传输块的大小和/或该传输功率通过该处理模块在N个时隙上发送该第一上行传输,该N大于1。
该收发模块可以执行前述第一方面中的接收和发送的处理,处理模块可以执行前述第一方面中除了接收和发送之外的其他处理。
第四方面,提供了一种上行传输的装置,该装置包括:收发模块,用于发送第一信息,所述第一信息用于指示第一时间段;处理模块,用于根据所述第一时间段确定第一上行传输的传输块的大小和/或所述第一上行传输的传输功率;所述处理模块还用于,根据所述传输块的大小和/或所述传输功率通过所述收发模块在N个时隙上接收第一上行传输,所述N大于1。
该收发模块可以执行前述第二方面中的接收和发送的处理,处理模块可以执行前述第二方面中除了接收和发送之外的其他处理。
第五方面,提供了一种通信装置,该装置包括:处理器,用于执行存储器中存储的计算机程序,以使得该通信装置执行第一方面中的任一种可能的实现方式。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,当该计算机程序在计算机上运行时,使得该计算机执行第一方面中的任一种可能的实现方式。
第七方面,提供了一种计算机程序产品,该计算机程序产品包括计算机程序指令,该计算机程序指令在计算机上运行时,使得计算机执行第一方面中的任一种可能的实现方式。
第八方面,提供了一种芯片系统,该芯片系统包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片系统地通信设备执行第一方面中的任一种可能的实现方式。
第九方面,提供了一种通信系统,该通信系统包括至少一个终端设备和网络设备,其中,该终端设备用于执行如第一方面中任一中可能的实现方式。
附图说明
图1是适用于本申请实施例的一种无线通信系统示意图。
图2是适用于本申请实施例的另一种无线通信系统示意图。
图3是类型A的PUSCH重复传输的一示意图。
图4是类型A的PUSCH重复传输的另一示意图。
图5是类型B的PUSCH重复传输的一示意图。
图6是TBoMS传输的一示意图。
图7是本申请实施例提供的上行传输方法的流程图。
图8是第一时间线条件的一例示意图。
图9是第一时间线条件的另一例示意图。
图10是类型A的PUSCH重复传输与PUCCH传输产生时域重叠的示意图。
图11是第二时间线条件的一例示意图。
图12是第二时间线条件的另一例示意图。
图13是跨多时隙的传输块的上行传输与PUCCH重复传输产生时域重叠的示意图。
图14是本申请一个实施例提供的上行传输的装置的示意性框图。
图15是本申请另一个实施例提供的上行传输的装置的示意性框图。
图16是本申请又一个实施例提供的上行传输的装置的示意性框图。
图17是本申请又一个实施例提供的上行传输的装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)等。此外,本申请实施例的技术方案还可以应用于侧链路通信。例如,本申请实施例的技术方案还可以应用于:设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车联网系统中的通信。
为便于理解本申请实施例,首先结合图1和图2说明适用于本申请实施例的通信系统。
图1是适用于本申请实施例的无线通信系统100的一示意图。如1图所示,该无线通信系统100可以包括至少一个核心网设备,例如图1所示的核心网设备110,该无线通信系统100可以包括至少一个无线接入网设备,例如图1所示的无线接入网设备120,该无线通信系统100还可以包括一个或多个终端设备,例如图1所示的终端设备130和终端设备140。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。
图2是适用于本申请实施例的无线通信系统200的一示意图,如图2所示,该无线通信系统200可以包括至少一个核心网设备,例如图2所示的核心网设备210,该无线通信系统可以包括至少两个无线接入网设备,例如图2所示的无线接入网设备220和无线接入网设备230,该无线通信系统200还可以包括至少一个终端设备,例如图2所示的终端设备240。终端设备240可以同时通过无线的方式与无线接入网设备220和无线接入网设备230相连。
核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。应理解,通信系统100和通信系统200仅仅是一种示例,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备等。本申请的实施例对该移动通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
应理解,上述图1和图2仅是示例性说明,本申请并未限定于此。例如,本申请实施例还可以应用于需要进行上行传输的任何通信场景。
还应理解,该无线通信系统中的网络设备可以是任意一种具有无线收发功能的设备。 该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,简称AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
为便于理解本申请实施例,下面首先结合本申请中涉及的几个术语进行简单介绍。
1、解调参考信号
解调参考信号为用于进行数据解调的参考信号。解调参考信号可以为LTE协议或NR协议中的DMRS,或者也可以为未来协议中定义的其他用于实现相同功能的参考信号。在LTE或NR协议中,DMRS可以承载在物理共享信道中与数据块信号一起发送,以用于对衰落信道进行信道估计,进而完成对物理共享信道中承载的数据块信号进行解调。如,在物理下行共享信道(physical downlink share channel,PDSCH)中与下行数据块一起发送,或者,在PUSCH中与上行数据块一起发送。在本申请实施例中,解调参考信号可包括通过物理上行共享信道发送的解调参考信号。
PDSCH或者PUSCH在时域上的映射方式可包括第一映射方式和第二映射方式,其中,第一映射方式可以为NR协议中的映射类型A(mapping type A),第二映射方式可以为NR协议中的映射类型B(mapping type B)。在通常情况下,PDSCH或者PUSCH的映射方式可通过高层信令指示,例如,无线资源控制(radio resource control,RRC)信令。
对于映射类型A,按照现有协议,被调度的物理上行共享信道(或物理下行共享信道)的时域符号的起始位置是一个slot中的第一个时域符号。对于映射类型B,被调度的物理上行共享信道(或物理下行共享信道)的时域符号的起始位置是一个slot中的任意一个时域符号。
解调参考信号的时域位置可以相对于被调度的物理上行共享信道(或物理下行共享信道)的起始时域符号的位置和时域符号的长度确定。其中,时域符号的长度也可以理解为时域符号的总数目。
对于PUSCH(或者PDSCH)资源映射类型A,首个解调参考信号的符号位置l0(即,前载解调参考信号(front-loaded DMRS)的首个符号位置)可以被配置为被调度的PUSCH(或者PDSCH)的第3个符号或第4个符号,即l0=2或3。
对于PUSCH(或者PDSCH)资源映射类型B,首个解调参考信号的符号位置l0(即,前载解调参考信号的首个符号位置)为被调度的PUSCH(或者PDSCH)的首个符号,即l0=0。
解调参考信号可包括前载解调参考信号和附加解调参考信号。
其中,对于一个数据块的一次传输,一般均会配置前载解调参考信号,在时域上占用一个符号或多个符号,若占用多个符号,则该多个符号在时域上连续。
附加(additional)解调参考信号:对于一个数据块的一次传输,附加解调参考信号的配置与否根据一个数据块一次传输的长度确定。若配置附加解调参考信号,则发送端在前载解调参考信号之后采用相同的序列生成的解调参考信号为附加解调参考信号。附加解调参考信号可以是前载解调参考信号所占用的符号之后的一个或多个符号,且前载解调参考信号占用的符号中的末个与附加解调参考信号占用的符号中的首个符号不连续。附加解调参考信号可以通过高层信令,例如RRC信令,配置资源。附加解调参考信号是一种可选的解调参考信号。
2、时隙(slot)
一种slot的格式可以为包含若干个OFDM符号。例如,一个slot的格式可以包括14个OFDM符号,或者,一种slot的格式可以为包含12个OFDM符号;或者,一种slot的格式为包含7个OFDM符号。一个slot中的OFDM符号可以全用于上行传输;可以全用于下行传输;也可以一部分用于下行传输,一部分用于上行传输,一部分灵活时域符号(可以灵活的配置为用于上行或者下行传输)。应理解,以上举例仅为示例性说明,不应对本申请构成任何限定。出于系统前向兼容性考虑,slot包含的OFDM符号的数目以及slot用于上行传输和/或下行传输不限于以上示例。本申请中,时域符号可以为OFDM符号,即时域符号可以替换为OFDM符号。
应理解,上述时隙和符号的命名仅是一种示例,并不限定于此。
3、物理时隙
可以理解为新无线(new radio,NR)帧结构中的时隙。
4、可用时隙,
可以为上行传输块实际占用的时隙,或者,可以为根据上下行时隙配比和时域资源分配(time domain resource allocation,TDRA)共同确定的时隙。其中,所述上下行时隙配比可以是所述网络设备通过RRC信令半静态配置的,所述TDRA由RRC信令配置,并由RRC信令或下行控制信息(downlink control information,DCI)指示。
例如,当第一符号的起始符号为符号索引0的符号,第一符号的长度为10,第一上行传输占用4个时隙,上下行时隙配备为DDSUU时,如果特殊时隙中,前10个符号为下行符号,中间2个符号为灵活符号,最后2个符号为上行符号,且起始时隙为第一个下行时隙,则所述第一个下行时隙之后的前四个上行时隙为所述第一上行传输的可用时隙。
又例如,当第一符号的起始符号为符号索引12的符号,第一符号的长度为2,第一上行传输占用4个时隙,上下行时隙配备为DDSUU时,如果特殊时隙中,前10个符号为下行符号,中间2个符号为灵活符号,最后2个符号为上行符号,且起始时隙为第一个下行时隙,则所述第一个下行时隙之后的前两个特殊时隙和前两个上行时隙为所述第一上行传输的可用时隙。
5、时域单元
一个时域单元(也可称为时间单元)可以是一个时域符号或者几个时域符号,或者一个迷你时隙(mini-slot),或者一个slot,或者一个子帧(subframe),其中,一个子帧在时域上的持续时间可以是1毫秒(ms),一个slot可以由7个或者14个时域符号组成,一个mini-slot可以包括至少一个时域符号(例如,2个时域符号或7个时域符号或者14个时域符号,或者小于等于14个时域符号的任意数目符号)。列举的上述时域单元大小仅仅是为了方便理解本申请的方案,不应理解对本申请的限定,可以理解的是,上述时域单元大小可以为其它值,本申请不做限定。
泛指时间的单位。示例性的,所述时间单元可以但不限于为子帧(subframe)、时隙(slot)、符号、物理时隙、可用时隙、时隙的第一符号、物理时隙的第一符号、可用时隙的第一符号等。其中,所述符号(例如,第一符号)可以是时域符号(例如,正交频分复用(orthogonal frequency division multiplexing,OFDM)符号)等。
在本申请实施例中,第一符号可以为第一上行传输在一个时间单元上占用的符号。其中,所述第一上行传输可以占用多个时间单元,例如,TBoMS PUSCH。所述第一符号可以包括至少一个符号。
在本申请实施例中,时域符号和符号有时交替使用,其表示相同的含义。以时域单元为slot为例,一个slot可以包括2个符号或7个符号或者14个符号,或者小于等于14个符号的任意数目符号,或者也可以表示为,一个slot可以包括2个时域符号或7个时域符号或者14个时域符号,或者小于等于14个时域符号的任意数目符号。
6、类型A(type A)重复传输
在一些场景下,如一些深覆盖场景,如小区边沿,或者地下室等,无线信号传播的路径损耗非常严重。为了改善上行传输性能,一种增强覆盖性能的方法是重复发送数据块。例如,终端设备重复发送PUSCH,网络设备对重复发送的数据块进行合并检测。通过该方式可以提升信道估计性能,提升数据解调性能,从而提升小区覆盖能力。
以当前的NR协议为例,在当前的NR协议中支持对PUSCH最大16次的重复发送, 支持对PUCCH最大8次的重复发送。当前NR协议对PUCCH支持type A的重复发送,对PUSCH支持type A和type B的重复发送。
Type A的重复发送,指的是:N次重复需要调度连续的N个slot,配置一次重复发送在一个slot中需要占用的时域符号的起始位置和总长度,N个slot中,满足一次重复发送占据的时域符号的起始位置和总长度与配置的起始位置和总长度相同的slot,可以实际用于一次重复发送。其中,N为大于或等于1的整数。如图3所示,假设配置了3次重复发送,且每次重复发送占据一个slot上的第3至第12个时域符号,那么需要满足每一个slot的重复均需要在各个slot的第3至第12个时域符号上。
此外,按照当前协议规定,当某一个slot中的时域符号不满足上述type A的重复发送的要求(即需要保证从第S个时域符号开始的连续L个时域符号为时域符号),则取消在当前slot上的重复发送。
由上可知,type A的重复发送是基于slot的重复。采用type A的重复传输方式时,对当前slot上用于重复发送的起始时域符号的位置S和连续持续长度L都需要满足要求,才能用于重复发送,否则该slot不能用于进行重复发送。
采用type A的重复发送方式时,当N次重复需要占据连续的N个slot中含有不可用于上行传输/重复传输的slot时,由于不可用slot的存在,可能导致实际的重复发送次数少于配置的重复发送次数。例如,假设每次重复发送占据一个slot上的第1至第L个时域符号(即在每个slot中一共占L个时域符号)。如果一个slot中有很多用于上行发送的时域符号,但不是从第1个时域(即S=0)开始;或者,从S=0第1个时域符号开始只有L-1个时域符号等情况,该slot无法用于重复发送,由于该slot上的重复发送被取消,实际重复传输的次数小于网络设备配置的重复传输的次数,从而影响接收端的合并增益,例如,无法达到期望的接收信噪比而导致信道估计和解调译码的准确性下降,影响上行发送的性能。
一示例,如图4所示,假设配置了3次重复发送,且每次重复发送占据一个slot上的第3至第12个时域符号。由于时隙#2中第5和第6个符号是半静态下行符号,因此该时隙#2上的重复传输(PUSCH#2)被取消,即实际传输的次数为2。
7、类型B(type B)重复传输
Type B的重复发送,指示是:N次重复发送,依据第1次重复发送的起始时域符号位置S,按照每次重复需要占据的时域符号数目L,在连续的多个时域符号上进行重复发送。即从调度的第一个slot的第S个时域符号开始,后续的N*L个时域符号(可能会到延伸到其他的slot上)均用于N次重复发送。
如图5所示,对于情况1,假设当前配置了2次重复发送,且每次重复发送占用4个时域符号时,那么会在连续的8个时域符号上完成2次重复发送。对于情况2,假设当前配置了4次重复发送,且每次重复发送占用4个时域符号时,那么会在连续的16个时域符号上完成4次重复发送。对于情况3,假设当前配置了1次重复,且一次重复需要占用14个时域符号时,那么会在连续的14个时域符号上完成1次重复发送。
按照当前的协议规定,跨slot边界的1次重复发送,会按照slot边界所在位置拆分成2次实际重复发送,每次实际重复发送的TBS保持不变。从图5可知,可以看到在情况2和情况3的重复发送中,连续调度的N*L个时域符号跨slot边界。也就是说,在情况2 的重复发送中,原本的第3次传输被认为是第3次和第4次传输;在情况3的重复发送中,假设一个slot包括10个符号,配置的第1次原本重复发送(norminal repetition)被切分为是第1次和第2次实际重复发送(actual repetition)。配置的原本重复发送,即表示配置的重复发送,或者说名义重复发送。下文为方便描述,将配置的原本重复发送,简称为配置的重复发送。
应理解,关于type A和type B的重复发送的具体描述可以参考现有的协议,其对本申请实施例的保护范围不造成限定。
为了便于理解本申请提供的上行传输的方案,下面首先介绍一种传输块大小(transport block size,TBS)的确定机制。
空口传输数据时,发射端和接收端对于TBS需要对齐理解,其中TBS可以理解为一定的资源上承载的数据量(比特数)。
在计算TBS时,首先通过公式
Figure PCTCN2022091772-appb-000018
确定一个时隙中的RE的数量N′ RE,其中
Figure PCTCN2022091772-appb-000019
表示一个物理资源块(physical resource block,PRB)中频域上的载波数,
Figure PCTCN2022091772-appb-000020
表示一个时隙内PUSCH或PDSCH分配的符号数,
Figure PCTCN2022091772-appb-000021
表示一个PRB中DMRS所占的RE数,
Figure PCTCN2022091772-appb-000022
是由高层参数PUSCH-ServingCellConfig中的xOverhead参数配置的开销。然后根据N RE=min(156,N′ RE)·n PRB获取用于计算TBS的RE数N RE
进一步地,通过N info=N RE·R·Q m·v得到信息比特数,其中,Q m为调制阶数,R为码率,v为传输层数,这三个参数可以根据下行控制信息(downlink control information,DCI)所指示的值在协议中查表得到。
如果N info≤3824,信息比特的量化中间值
Figure PCTCN2022091772-appb-000023
其中
Figure PCTCN2022091772-appb-000024
在协议中查表得到不小于N′ info最近的一个值作为TBS。
如果N info>3824,信息比特的量化中间值
Figure PCTCN2022091772-appb-000025
其中
Figure PCTCN2022091772-appb-000026
如果码率R≤1/4,
Figure PCTCN2022091772-appb-000027
其中
Figure PCTCN2022091772-appb-000028
否则的话
Figure PCTCN2022091772-appb-000029
应理解,TBS是由PDSCH/PUSCH调度的资源和调制与编码策略(modulation and coding scheme,MCS)(包括码率和调制阶数)确定的。其中计算所需的PDSCH/PUSCH调度的资源在时域上是指一个时隙内的符号数。一个时隙,即14个符号,是计算TBS时的上限。
因此,上述方案是根据一个时隙内PUSCH分配的符号数来确定TBS的。然而,在对一些覆盖增强的上行传输进行联合信道估计的时候,这些上行传输在不同时隙或者不同PUSCH传输时机上具有不同的DMRS符号,这会导致不同时隙或者不同PUSCH传输时机的传输块大小不同。如果按照上述方案确定传输块的大小,会导致网络侧对于上行传输块大小的理解有误差,即网络侧确定的TBS和实际接收到的TBS不同,网络侧有可能无法正确解读传输块,从而影响上行传输的性能。
下面再介绍一种上行功率的确定机制。
如果终端设备在服务小区(serving cell)c的载波f的上行激活部分带宽(Bandwidth part)b上采用参数集合编号j发送PUSCH,且功控调整状态索引值为l,则终端设备在PUSCH发送时机i上确定PUSCH的发送功率P PUSCH,b,f,c(i,j,q d,l)为:
Figure PCTCN2022091772-appb-000030
其中,P CMAX,f,c(i)是服务小区c的载波f上PUSCH发送时机i上配置的最大输出功率。该最大输出功率与终端设备发送能力、PUSCH所在的频带等因素相关。
P O_PUSCH,b,f,c(j)和α b,f,c(j)(可以统称为目标功率值),j∈{0,1,…,J-1},当基站配置了多个指示P O和α取值的参数集合时,终端设备会根据当前传输模式(包括:初始接入传输,基于DCI的数据调度传输,基于RRC的数据调度传输等)以及SRI字段指示的值确定当前PUSCH传输采用的参数集合编号j,从而确定P0和alpha取值,一个参数集合内的参数包括该集合的ID,P0和alpha取值。其中,P O是基础功率参数,具体可以表示为:P O_PUSCH,b,f,c(j)=P O_NOMNAL_PUSCH,f,c(j)+P O_UE_PUSCH,b,f,c(j),其中P O_NOMNAL_PUSCH,f,c(j)为小区专用开环功率参数,P O_UE_PUSCH,b,f,c(j)为UE专用功率参数。α为路径损耗补偿因子。
Figure PCTCN2022091772-appb-000031
是服务小区(serving cell)c的载波f的上行激活部分带宽ULBWP b上的PUSCH发送时机i上PUSCH占用的RB数量。
μ是子载波间隔(subcarrier size,SCS)配置对应的值。
PL b,f,c(q d)是UE根据参考信号索引值q d计算得到的下行路径损耗估计值,作为上行功率控制的路径损耗补偿值。
Δ TF,b,fc(i)根据PUSCH承载的信息类型(例如承载UL-SCH数据信息,或者CSI信息等)、占用的物理资源位置、数量等因素确定。
Figure PCTCN2022091772-appb-000032
其中K S=1.25。如果K S=0,则Δ TF,b,f,c(i)=0。K S是由高层参数deltaMCS配置的。如果PUSCH中承载有上行数据,或UL-SCH,BPRE表示为
Figure PCTCN2022091772-appb-000033
如果PUSCH上只承载CSI传输而不包含上行数据,则
Figure PCTCN2022091772-appb-000034
BPRE表示平均每个RE上承载的信息比特数,它的物理意义为码率,其中C为编码块的个数,K r为编码块r的大小,
Figure PCTCN2022091772-appb-000035
表示所有码块大小总和,即信道编码前的信息比特总数。N RE为RE数,表示为
Figure PCTCN2022091772-appb-000036
其中
Figure PCTCN2022091772-appb-000037
为在服务小区c载波f激活UL BWP b上传输的PUSCH传输时机i包含的符号数,
Figure PCTCN2022091772-appb-000038
为PUSCH符号j上的子载波数,不包含DMRS子载波和PTRS采样,
Figure PCTCN2022091772-appb-000039
如果PUSCH包含UL-SCH上行数据,
Figure PCTCN2022091772-appb-000040
如果PUSCH上只有CSI而不包含UL-SCH数据
Figure PCTCN2022091772-appb-000041
Q m为调制阶数,R为目标码率。
f a,b,c(i,l)是服务小区(serving cell)c的载波f的上行激活部分带宽(bandwidth part,BWP)b上的PUSCH发送时机i上的PUSCH功率控制调整状态。
上述方案是根据PUSCH传输时机i包含的符号数来确定RE数并进一步确定上行功 率的。然而,对于一些用于覆盖增强的上行传输进行联合信道估计的时候,这些上行传输在不同时隙或者不同PUSCH传输时机上具有不同的DMRS符号,因此根据一个PUSCH确定传输功率无法保证DMRS bundling时的功率一致和相位连续,根据覆盖增强的上行传输的全部资源确定传输功率,对传输的限制又比较大。
跨多时隙传输块(transport block over multi-slot,TBoMS)物理上行共享信道(physical uplink shared channel,PUSCH)传输是一种用于提升NR上行覆盖性能的技术,该技术将时隙上的小数据包聚合成一个大数据包,并在多个时隙上完成这个大数据包的传输。通过小包聚合能够降低包头开销,通过减少传输块(transport block,TB)的切分次数能够减少循环冗余码的开销,通过增加传输块大小(transport block size,TBS)能够提高编码增益,并通过降低物理资源块(physical resource block,PRB)的数量能够提高功率谱密度,最终实现增强NR上行覆盖性能的目的。
对于TBoMS PUSCH传输,可以采用以下公式确定信息比特数N info:N info=K·N RE·R·Q m·v。其中,Q m表示调制阶数,R表示编码码率,v表示传输层数,K为缩放因子,表示K个时隙聚合的TB在N个时隙上传输,其中,时隙数N和缩放因子K满足以下条件:K≤N。也就是说,TB聚合的时隙数和TB传输的时隙数可能相同也可能不同。其中,分配给TBoMS传输的时隙数基于上行传输可用的时隙数计算得到。上行传输可用的时隙数,根据调度PUSCH、配置授权(configured grant,CG)配置或激活下行控制信息(downlink control information,DCI)中的时域资源分配(time domain resource allocation,TDRA)之外的无线资源控制(radio resource control,RRC)(s)配置确定的。
图6给出来了两种TBoMS PUSCH传输示意图。在图6的传输示意图中,D表示下行时域符号,U表示上行时域符号,S表示特殊时域符号。在图6的(a)的传输示意图中,假设时分双工(time division duplex,TDD)频谱上下行时隙配比为“DDSUU”,N=8,K=4,因此图6的(a)所示的TBoMS PUSCH传输将4个时隙聚合的大TB在8个时隙上进行传输。在图6的(b)所示的传输示意图中,假设TDD频谱上下行时隙配比为“DDSUU”,N=4,K=4,因此图6的(b)所示的TBoMS PUSCH传输将4个时隙聚合的大TB在4个时隙上进行传输。
然而,如果PUSCH传输时机i由具有系统帧编号(system frame number,SFN)的帧内的时隙索引
Figure PCTCN2022091772-appb-000042
时隙内的起始符号S以及长度L进行定义,那么对于TBoMS PUSCH传输,会导致BPRE过大,从而导致功控调节不准确。具体来说,由于
Figure PCTCN2022091772-appb-000043
Figure PCTCN2022091772-appb-000044
表示信道编码前的信息比特总数,
Figure PCTCN2022091772-appb-000045
是基于经过缩放因子K放大的由一个传输时机上的N RE确定的N info计算得到的,但N RE仅表示一个传输时机上的RE数,因此可能导致码率变大,从而影响功控调节。
有鉴于此,本申请实施例提供一种方法,可以更加准确地计算用于覆盖增强的上行传输的传输块大小和上行传输的功率,改善上行传输的性能。
图7示出了本申请实施例提供的上行传输方法300的示意性流程图。从图7中可以看出,方法300包括:
S310,网络设备向终端设备发送第一信息,该第一信息用于指示第一时间段。
示例性地,网络设备通过第一信息向终端设备指示第一时间段,或者说该第一信息是第一时间段的信息。
该第一时间段可以理解为一段持续的时间(duration),也可以理解为一个时间窗(timedomainwindow)。
该第一信息可以是由高层信令RRC预配置的,也可以是MACCE激活的,或者是通过DCI指示的,本申请对此不做限定。
在另一种可能的实现方式中,终端设备也可以根据预配置信息确定该第一时间段,即该第一时间段既可以是网络设备指示给终端的,也可以在终端预定义的,本申请不做限定。
可选地,在S310之前,网络设备向终端设备发送第二信息,该第二信息用于指示该终端设备进行第一上行传输。该第一时间段可以是对该第一上行传输进行联合信道估计的时间窗。
示例性地,该第一上行传输是一种用于提高上行覆盖的上行传输,比如该第一上行传输是在N个时隙内的上行传输,且该第一上行传输包括M个传输时机,其中N大于1,N可以是整数也可以是小数,M大于或等于1。例如,该第一上行传输是类型A的PUSCH重复传输(PUSCH repetition type A);又例如,该第一上行传输是跨多时隙传输块(transport block over multi-slot,TBoMS)的上行传输;还例如,该第一上行传输是类型B的PUSCH重复传输(PUSCH repetition type B)。当第一上行传输是类型A的PUSCH重复传输时,第一上行传输的M个传输时机为M个PUSCH传输时机;当第一上行传输是TBoMS上行传输时,第一上行传输的M个传输时机为M个TBoMS传输时机。
该第二信息为下行控制信息,或者该第二信息为无线资源控制(radio resource control,RRC);或者第二信息包括下行控制信息或者RRC信令;或者第二信息承载于下行控制信息或者RRC信令。本申请对此不作限定。
需要说明的是,当第二信息为DCI的时候,该第二信息由无线网络临时标识(radio network tempory identity,RNTI)进行加扰,其中,RNTI加扰的DCI的格式用于调度第一上行传输,以满足覆盖需求。此时,第一上行传输可以是TBoMS上行传输或增强型类型A的PUSCH重复传输,其中增强型类型A的PUSCH重复传输是指重复次数为32次及以上的类型A重复传输。应理解,该用于第二信息进行加扰的RNTI不是以下类型的RNTI中的任意一种:C-RNTI、MCS-C-RNTI、CS-RNTI。
可选地,第二信息还用于指示第一上行传输的时频资源和调制编码方式。
可选地,终端设备根据该第一信息确定对第一上行传输进行联合信道估计的时间窗。应理解,第一信息和第二信息可以承载于同一个消息中,也可以承载于不同消息中,本申请对此不做限定。
需要说明的是,本申请实施例中的联合信道估计包括以下含义:
通过一个时隙中的DMRS对N个时隙中的PUSCH传输做联合信道估计;或者
将多个时隙中的DMRS做捆绑,并通过捆绑得到的DMRS对N个时隙中的PUSCH传输或PUCCH传输做联合信道估计。
其中,N为大于或等于1的整数;或者,N大于1且N可以为小数,如N为1.5时表示1.5个时隙。
还需要说明的是,本申请实施例中的对第一上行传输进行联合信道估计的时间窗表示 用于联合信道估计的时域资源,或者第一上行传输所占据的全部时域资源,或者第一上行传输实际占用的符号数量。
例如,当第一上行传输为TBoMS上行传输时,第一时间段可以表示以下信息中的任意一种:
TBoMS上行传输占用的全部时域资源;
TBoMS上行传输的起始时隙中的起始符号到结束时隙的结束符号之间的时域资源;
TBoMS上行传输实际占用的符号总数;
用于对TBoMS上行传输进行一次联合信道估计的时域资源;
TBoMS上行传输的一个TBoMS传输时机对应的时域资源,一个TBoMS传输时机持续一个或多个时隙,或者一个TBoMS传输包含一个或多个TBoMS传输时机;
TBoMS上行传输占用的连续时隙对应的时域资源。
又例如,当第一上行传输为类型A的PUSCH重复传输时,第一时间段可以表示以下信息中的任意一种:
类型A的PUSCH重复传输的全部时域资源;
类型A的PUSCH重复传输的第一个PUSCH所在的时隙的起始符号到最后一个PUSCH所在的时隙的结束符号之间的时域资源;
类型A的PUSCH重复传输在一个时隙中占用的符号数L与基站指示或者配置PUSCH重复次数K的乘积;
类型A的PUSCH重复传输在一个时隙中占用的符号数L与类型A的PUSCH重复传输实际传输的时隙数K’的乘积;
类型A的PUSCH重复传输在一个时隙中占用的符号数L与确定的可用时隙(available slot)数K”的乘积;
类型A的PUSCH重复传输用于联合信道估计的时隙数K”’与类型A的PUSCH重复传输在一个时隙中占用的符号数L的乘积;应理解,该用于联合信道估计的时隙数K”’可以大于1,也可以小于或等于1。
用于对类型A的PUSCH重复传输进行一次联合信道估计的时域资源;
第一上行传输占用的连续时隙对应的时域资源。
应理解,该第一上行传输占用的连续时隙对应的时域资源可以理解为第一上行传输连续映射的时域资源。
S320,终端设备根据第一时间段确定第一上行传输的传输块的大小和/或第一上行传输的传输功率。
下面首先介绍终端设备根据第一时间段确定第一上行传输的传输块的大小的方案:
示例性地,终端设备根据第一时间段对应的时域资源确定第一上行传输的传输块的大小。首先,UE根据以下公式计算第一上行传输在第一时间段(或者说一个时间窗)中一个PRB内的RE数:
Figure PCTCN2022091772-appb-000046
其中,
Figure PCTCN2022091772-appb-000047
表示第一上行传输分配在第一时间段内的符号数;或者
Figure PCTCN2022091772-appb-000048
表示第一上行传输在第一时间段内实际传输所占的符号数。
Figure PCTCN2022091772-appb-000049
表示一个PRB中频域上的载波数;
Figure PCTCN2022091772-appb-000050
为一个PRB中在第一时间段内的DMRS(demodulation reference signal,解调参考信号)所占的RE数;
Figure PCTCN2022091772-appb-000051
是由高层参数PUSCH-ServingCellConfig中的xOverhead参数配置的开销。
进一步地,终端设备通过以下公式确定第一上行传输在第一时间段内分配的总RE数:
N RE=min(12×(14·N-x),N′ RE)·n PRB
其中,N为第一时间段对应的时隙数,x为网络设备指示或者配置的数值,x为大于或等于1的整数;或者x为预定义的数值,其取值为1,2,3,…;或者x=N。n PRB为网络设备分配给终端设备用于第一上行传输的总PRB数。
进一步地,通过公式N info=N RE·R·Q m·v得到信息比特数,其中Q m为调制阶数,R为码率,v为传输层数,这三个参数可以根据下行控制信息(downlink control information,DCI)所指示的值在协议中查表得到。
如果N info≤3824,通过公式
Figure PCTCN2022091772-appb-000052
计算信息比特的量化中间值,其中
Figure PCTCN2022091772-appb-000053
在协议中查表得到不小于N i nfo最近的一个值作为TBS。
如果N info>3824,通过公式
Figure PCTCN2022091772-appb-000054
计算信息比特的量化中间值,其中
Figure PCTCN2022091772-appb-000055
如果码率R≤1/4,
Figure PCTCN2022091772-appb-000056
其中
Figure PCTCN2022091772-appb-000057
否则的话
Figure PCTCN2022091772-appb-000058
因此,本申请实施例提供的方法中,根据第一上行传输对应的第一时间段内分配的符号数和DMRS所占的符号数计算TBS,可以更加精确地计算TBS,提升上行传输的性能。
或者,在另一种实现方式中,如果第一上行传输为TBoMS PUSCH传输,终端设备可以通过以下公式计算信息比特数:N info=K·N RE·R·Q m·v,其中,Q m表示调制阶数,R表示编码码率,v表示传输层数,K表示缩放因子。
同时,在第一时间段内,为了保证相位连续和功率一致,网络设备为终端设备分配的频域资源不发生变化。因此根据一个PRB计算出的RE数可以直接与一个PRB相乘进而计算出TBS,这对原有协议改动也比较小。
下面接着介绍终端设备根据第一时间段确定第一上行传输的传输功率的方案:
本申请实施例提供的上行功率的确定方法中,根据第一时间段计算第一上行传输的传输功率。具体地,根据第一时间段内的PUSCH传输,或者第一时间段内的PUSCH传输时机i包含的符号数,确定RE数量,然后根据该RE数量确定上行传输功率。示例性地:
Figure PCTCN2022091772-appb-000059
其中Δ TF,b,fc(i)根据PUSCH承载的信息类型(例如承载UL-SCH数据信息,或者CSI信息等)、占用的物理资源位置、数量等因素确定:
Figure PCTCN2022091772-appb-000060
其中N RE为RE数,表示为
Figure PCTCN2022091772-appb-000061
其中
Figure PCTCN2022091772-appb-000062
为在服务小区c载波f激活UL BWP b上传输的第一时间段内的PUSCH传输,或者第一时间段内的PUSCH传输时机i包含的符号数。如果PUSCH中承载有上行数据,或UL-SCH,BPRE表示为
Figure PCTCN2022091772-appb-000063
如果PUSCH上只承载CSI传输而不包含上行数据,则
Figure PCTCN2022091772-appb-000064
其余方案与上述提供的上行功率的确定机制相同,本申请在此不再重复说明。
如果第一上行传输为TBoMS PUSCH传输,在一种实现方式中,可以通过以下公式计算BPRE:
Figure PCTCN2022091772-appb-000065
K为缩放因子,N为时隙数量,K≤N。如果K=N,上式中的K也可以替换为N。在第一上行传输为TBoMS PUSCH传输时,信息比特数为N info=K·N RE·R·Q m·v,即信息比特数考虑了缩放因子K,因此,
Figure PCTCN2022091772-appb-000066
是基于经过缩放因子K放大的由一个传输时机上的N RE确定的N info计算得到的。在该方案中,这里的传输时机为一个时隙,或者该传输时机为该一个时隙中的第一符号,所述第一符号由TDRA表中的S和L(或SLIV)确定,即该第一符号为第一上行传输在该一个时隙中所占用的符号,该S表示第一符号的起始符号,L表示第一符号的长度。而在上述方案中,通过
Figure PCTCN2022091772-appb-000067
计算BPRE,可以消除缩放因子K的影响,避免码率变大,防止码率对功控调节准确性产生影响;
在另一种实现方式中,将传输时机定义为N个时隙,或者说传输时机由N个时隙上的每个时隙的第一符号组成,其中该第一符号由TDRA表中的S和L(或SLIV)确定,或者说该第一符号是第一上行传输在该N个时隙上的任意一个时隙上占用的符号,该S表示第一符号的起始符号,L表示第一符号的长度,此时可以通过以下公式计算BPRE:
Figure PCTCN2022091772-appb-000068
其中N RE由以下公式计算:
Figure PCTCN2022091772-appb-000069
其中,
Figure PCTCN2022091772-appb-000070
表示一个传输时机中的用于传输PUSCH的符号数,由于在该实现方式中,传输时机的定义发生了变化,因此
Figure PCTCN2022091772-appb-000071
的范围也会发生变化。示例性地,在一种情况中,S=0,L=10,N=4,则
Figure PCTCN2022091772-appb-000072
因此N RE扩大了4倍。也就是说,当传输时机定义为N个时隙,或N个时隙上的第一符号,N RE会扩大N倍,如果继续采用公式
Figure PCTCN2022091772-appb-000073
计算BPRE,则会导致码率变小。因此,为了保证码率不变,需要在计算BPRE时乘N,即
Figure PCTCN2022091772-appb-000074
因此,基于该方案,可以消除缩放因子K的影响,避免码率变大,防止码率对功控调节准确性的产生影响。
应理解,上述方案中描述的时隙,都可以用时间单元里的定义替换掉,比如可用时隙、物理时隙等等。
因此,本申请实施例提供了一种确定上行传输功率的方法,可以保证用于覆盖增强的 上行传输的功率一致和相位连续,并改善上行传输的性能。
可选地,终端设备根据第一时间段确定第一传输时机的传输功率,该第一传输时机为第一上行传输的M个传输时机中的一个,该第一时间段的时域资源与该第一传输时机对应。
应理解,该第一时间段的时域资源与该第一传输时机对应可以表示以下含义中的一个或多个:
该第一时间段的时域资源与该第一传输时机的时域资源相同;
该第一时间段的时域资源与该第一传输时机上实际映射了PUSCH的时域资源相同;
该第一时间段对应的时域符号数目与该第一传输时机对应的时域符号数目相同。
S330,终端设备根据第一上行传输的传输块的大小和/或传输功率在N个时隙向网络设备发送第一上行传输,其中N大于1,N可以为整数也可以为小数。
应理解,该第一时间段所占据的时域资源小于等于该N个时隙所占据的时域资源。或者说,该第一时间段所占据的时域资源是该N个时隙所占据的时域资源中的一部分。
在另一种场景中,当PUCCH传输和PUSCH传输在时域上存在重叠,且PUCCH和PUSCH传输满足上行控制信息复用于PUSCH的第一条件(也可称为第一时间线条件),则将原本承载于PUCCH传输上的UCI复用在PUSCH上传输,即通过PUSCH传输UCI,而不传输PUCCH。此处的UCI可以是混合自动重传请求(hybrid auto repeat request,HARQ)反馈信息,如肯定应答(acknowledgement,ACK)信息,也可以是信道状态信息(channel state information,CSI)。
下面结合图8和图9介绍第一条件:
时域上产生交叠的PUCCH(s)和PUSCH(s)中的第一个OFDM符号,与PDSCH之间的时域长度a大于T proc,1个符号,其中,T proc,1=(N 1+d 1,1+d 2)(2048+144)·κ2 ·T C+T ext。例如,在图8所示的示意图中,时域上产生交叠的PUCCH和PUSCH中的第一个OFDM符号为PUSCH的第一个OFDM符号,此时时域长度a为PUSCH第一个OFDM符号和PDSCH的最后一个OFDM符号之间的长度;在图9所示的示意图中,时域上产生交叠的PUCCH和PUSCH中的第一个OFDM符号为PUCCH的第一个OFDM符号,此时时域长度a为PUCCH第一个OFDM符号和PDSCH的最后一个OFDM符号之间的长度。其中,交叠的PUCCH(s)和PUSCH(s)中的任意一个与该PDSCH对应,此处的“对应”可以表示PUCCH或PUSCH上承载该PDSCH的反馈信息。
其中,N1是基于μ的根据表格1和2为UE处理能力1和UE处理能2分别确定的PDSCH处理时间,其中μ对应(μ PDCCHPDSCHUL)中的一个,μ的取值满足T proc,1取最大值。其中μ PDCCH对应调度PDSCH的PDCCH的子载波间隔,μ PDSCH对应被调度的PDSCH的子载波间隔,μ UL对应传输HARQ-ACK的上行信道的子载波间隔。对于非共享频谱信道接入的处理,T ext=0。对于PDSCH映射类型A:如果PDSCH的最后一个符号为时隙中的第i个符号且i<7,d 1,1=7-i,否则d 1,1=0;对于UE处理能力1:应用PDSCH映射类型B时,如果分配给PDSCH的符号数L≥7,那么d 1,1=0;如果分配给PDSCH的符号数L≥4且L≤6,那么d 1,1=7-L;如果分配给PDSCH的符号数L=3,那么d 1,1=3+min(d,1),其中d是指主调PDCCH和被调PDSCH的重叠符号数;如果分配给PDSCH的符号数为2,那么d 1,1=3+d,其中d是指主调PDCCH和被调PDSCH的重叠符号数。
T c=1/(Δf max·N f),其中Δf max=480·10 3Hz,N f=4096。常数κ=T s/T c=64,其中T s=1/(Δf ref·N f,ref),Δf ref=15·10 3Hz,N f,ref=2048。
表1 UE处理能力1下的PDSCH处理时间
Figure PCTCN2022091772-appb-000075
表2 UE处理能力2下的PDSCH处理时间
Figure PCTCN2022091772-appb-000076
同时,时域上产生交叠的PUCCH(s)和PUSCH(s)中第一个OFDM符号,与PDCCH之间的时域长度大于T proc,2个符号:
T proc,2=max((N 2+d 2,1+d 2)(2048+144)·κ2 ·T c+T ext+T switch,d 2,2),
其中,交叠的PUCCH(s)和PUSCH(s)中的任意一个与该PDCCH对应,此处的“对应”可以表示该PDCCH用于调度PUSCH传输,或者PDCCH用于调度PDSCH,同时PDCCH指示承载PDSCH反馈信息的PUCCH。
其中,N2是基于μ的根据表3和表4为UE处理能力1和UE处理能2分别确定的PDSCH准备时间,其中μ对应(μ DLUL)中的一个,μ的取值满足T proc,2取最大值。其中μ DL对应调度PUSCH的PDCCH的子载波间隔,μ UL对应传输PUSCH的上行信道的子载波间隔。对于非共享频谱信道接入的处理,T ext=0。如果PUSCH的第一个符号只包含DM-RS,那么d 2,1=0,否则d 2,1=1。如果调度DCI触发BWP切换,d 2,2等于切换时间,否则d 2,2=0。如果高优先级的PUSCH与低优先级的PUCCH重叠,高优先级PUSCH的d 2通过UE上报值来设置,否则d 2=0。
表3 UE处理能力1下的PUSCH准备时间
μ PUSCH准备时间N 2[个符号]
0 10
1 12
2 23
3 36
表4 UE处理能力2下的PUSCH准备时间
μ PUSCH准备时间N 2[个符号]
0 5
1 5.5
2 11 for frequency range 1
图10是类型A的PUSCH重复传输在至少一个时隙中与PUCCH传输产生时域重叠的示意图。从图10中可以看出,类型A的PUSCH重复传输在3个时隙(时隙#1,时隙#2,时隙#3)中发送PUSCH,其中时隙#1和时隙#2中的PUSCH传输与PUCCH重叠,即时隙#1和时隙#2是重复时隙,此时终端设备将该PUCCH上的UCI(图中用阴影部分表示)复用在时隙#1和时隙#2中的PUSCH上进行发送,而不发送PUCCH。即,如果一个PUCCH传输与类型A的PUSCH重复传输的一个或多个时隙中的PUSCH传输产生时域重叠,且满足第一时间线条件,终端设备将UCI复用在与PUCCH重叠的时隙中的PUSCH上。
其他地,如果一个PUCCH传输与类型B的PUSCH重复传输中的一个或多个实际重复传输产生时域重叠,且重叠的每个实际重复传输与PUCCH都满足第一时间线条件,终端设备将PUCCH上的UCI复用在第一个重叠的实际重复传输上发送,而不发送PUCCH。
其他地,如果时隙级PUCCH重复传输与类型A的PUSCH重复传输在一个或多个时隙中的PUSCH传输产生时域重叠,那么终端设备在这些时隙中发送PUCCH而不发送PUSCH。如果时隙级PUCCH重复传输与类型B的PUSCH重复传输中的一个或多个实际重复传输在时域上产生重叠,那么终端设备发送PUCCH而不发送在重叠的资源上的PUSCH实际重复传输。
在PUSCH上承载UCI和UL-SCH的情况下,终端设备可以将编码后的UCI以速率匹配的方式与UL-SCH复用后映射到PUSCH上,也可以将编码后的UCI通过打孔(puncture)已经映射到PUSCH上的UL-SCH的方式映射到PUSCH上,从而实现与UL-SCH的复用。PUSCH的第一个时域符号承载的是DMRS,HARQ-ACK映射在DMRS符号之后的第一个时域符号上,UL-SCH映射在PUSCH中的剩余时域符号上。
下面介绍不同类型的UCI所占用的物理资源的数量的计算方法:
在UCI为HARQ-ACK的情况下,UCI所占的物理资源的数量可以表示为:
Figure PCTCN2022091772-appb-000077
其中,Q' ACK为UCI所占的物理资源的数量,O ACK为HARQ-ACK的比特数(即HARQ-ACK的载荷大小),L ACK为HARQ-ACK的循环冗余校验(cyclic redundancy check,CRC)比特数。
Figure PCTCN2022091772-appb-000078
为均衡参数,可以看作PUSCH上其它信息(如UL-SCH)的码率 与UCI的码率的比值,由网络设备通知,为大于0的数。
Figure PCTCN2022091772-appb-000079
为PUSCH上的UL-SCH对应的TBS,C UL-SCH为PUSCH上的UL-SCH包括的码块个数,K r为PUSCH上的UL-SCH中第r个码块的比特数。
Figure PCTCN2022091772-appb-000080
为PUSCH上可以用于承载UCI的物理资源数量,
Figure PCTCN2022091772-appb-000081
为PUSCH上的第l个时域符号上可以用于承载UCI的物理资源数量,
Figure PCTCN2022091772-appb-000082
为PUSCH上总的时域符号个数(包括承载DMRS的符号个数)。在l为承载DMRS的时域符号的情况下,
Figure PCTCN2022091772-appb-000083
在l为不承载DMRS的时域符号的情况下,
Figure PCTCN2022091772-appb-000084
为PUSCH在符号l上包括的总物理资源数目(即子载波数目),
Figure PCTCN2022091772-appb-000085
为PUSCH在符号l上的PTRS所占的物理资源数目。α为资源缩放因子,l0为PUSCH上第一个DMRS符号之后第一个不承载DMRS的时域符号。
在UCI为CSI部分1(part 1)的情况下,UCI所占的物理资源的数量可以表示为:
Figure PCTCN2022091772-appb-000086
其中,Q' CSI-1为UCI所占的物理资源的数量,O CSI-1为CSI part 1的比特数(即CSI part1的载荷大小),L CSI-1是CSI part 1的CRC比特数,Q' ACK是用于传输或潜在用于传输HARQ-ACK的物理资源数量。潜在用于传输HARQ-ACK的物理资源是指在某些情况下(如HARQ-ACK比特数目不超过2比特)预留给HARQ-ACK传输的预留资源,UE实际可以占用该预留资源传输HARQ-ACK,也可以不占用该预留资源传输HARQ-ACK(例如,在该预留资源上映射UL-SCH)。
在UCI为CSI部分2(part 2)的情况下,UCI所占的物理资源的数量可以表示为:
Figure PCTCN2022091772-appb-000087
其中,Q' CSI-2为UCI所占的物理资源的数量,O CSI-2为CSI part 2的比特数(即CSI part 2的载荷大小),L CSI-2是CSI part 2的CRC比特数,Q' ACK是用于传输或潜在用于传输HARQ-ACK的物理资源数量,Q' CSI-1是CSI part 1所占的物理资源数量。
终端设备可以根据上述方案计算得到UCI所占的物理资源的数量,然后,根据UCI的编码前信息(例如UCI信息序列a 0,a 1,a 2,a 3,…,a A-1)以及UCI所占的物理资源的数量(即承载UCI的物理资源数量),对UCI的编码前信息进行编码。对于相同的UCI的编码前信息,在UCI所占的物理资源的数量较大的情况下,对应的UCI编码信息的码率较低,UCI可靠性较高;在UCI所占的物理资源的数量较小的情况下,对应的UCI编码信息的码率较高,UCI可靠性较低。
终端设备可以根据当前PUSCH上用于承载UCI的物理资源数量和当前PUSCH上的UL-SCH数据包对应的TBS计算UCI所占的物理资源的数量。对于PUSCH多次重复传输, 在每次重复传输的PUSCH所对应的用于数据传输的物理资源数量相同的情况下,可以按照现有的计算UL-SCH数据包的TBS的方法,即基于K个PUSCH中的第一个PUSCH包括的物理资源数量计算TBS,可以得到合适的UCI所占的物理资源的数量。
因此,在上述方案中,当PUSCH传输和PUCCH传输在时域上产生重叠,且满足第一时间线条件时,终端设备将UCI复用在一个PUSCH传输上。但是,对于用于覆盖强的上行传输,例如类型A的PUSCH重复传输,或者跨多时隙传输块(transport block over multi-slot,TBoMS)的上行传输,将UCI复用在一个PUSCH重复传输上会破坏联合信道估计时间窗内的功率一致和相位连续,从而影响上行传输的性能。
鉴于此,本申请实施例提供了一种UCI复用的方法,可以保证用于覆盖增强的上行传输的功率一致和相位连续,改善上行传输的性能。
下面以方法300中的第一上行传输为例,介绍本申请实施例提供的一种UCI复用方法:
当第一时域资源和第二时域资源至少有一个时域符号重叠,终端设备确定第一时间段内的第一上行传输和第一PUCCH传输是否满足第二条件(也可称为第二时间线条件),其中,第一时域资源用于发送第一上行传输,或者说第一时域资源是第一时间段对应的时域资源;第二时域资源用于发送第一PUCCH传输,该第一PUCCH传输用于承载UCI。
下面结合图11和图12介绍第二条件:
第一PUCCH传输和第一时间段内的第一上行传输的第一个正交频分复用(orthogonal frequency division multiplex,OFDM)符号,与PDSCH之间的时域长度a大于等于T proc,1个符号,其中,T proc,1=(N 1+d 1,1+d 2)(2048+144)·κ2 ·T C+T ext,各项参数的含义可见第一条件中的相关解释,不再重复说明。第一PUCCH传输和第一时间段内的第一上行传输的任意一个与该PDSCH对应,此处的“对应”可以表示PUCCH或PUSCH上承载PDSCH的反馈信息。第一PUCCH和第一时间段内的第一上行传输的第一个OFDM符号与PDCCH最后一个OFDM符号之间的时域长度b大于等于T proc,2个符号,其中T proc,2=max((N 2+d 2,1+d 2)(2048+144)·κ2 ·T c+T ext+T switch,d 2,2),各项参数的含义可见第一条件中的相关解释,不再重复说明。第一PUCCH传输和第一时间段内的第一上行传输中的任意一个与该PDCCH对应,此处的“对应”可以表示该PDCCH用于调度第一上行传输,或者该PDCCH用于调度PDSCH,同时PDCCH指示承载PDSCH反馈信息的第一PUCCH。
例如,在图11所示的示意图中,第一上行传输为跨时隙的传输块的上行传输,具体地,第一上行传输是跨时隙的连续两个PUSCH传输。第一PUCCH传输和第一时间段内的第一上行传输的第一个OFDM符号是第一上行传输的第一个OFDM符号,此时时域长度a为第一上行传输的第一个OFDM符号和PDSCH的最后一个时域符号之间的时域长度,时域长度b为第一上行传输的第一个OFDM符号和PDCCH的最后一个OFDM符号之间时域长度,第二时间线条件为a≥T proc,1,b≥T proc,2
又例如,图12所示的示意图中的第一上行传输和图11中的第一上行传输类似,但在图12中,第一PUCCH传输和第一时间段内的第一上行传输的第一个OFDM符号是第一PUCCH传输的第一个OFDM符号,此时时域长度a为第一PUCCH传输的第一个OFDM符号和PDSCH的最后一个时域符号之间的时域长度,时域长度b为第一PUCCH传输的第一个OFDM符号和PDCCH的最后一个OFDM符号之间时域长度,第二时间线条件为 a≥T proc,1,b≥T proc,2
在第一时间段内的第一上行传输和第一PUCCH传输满足第二时间线条件的情况下,终端设备将第一PUCCH传输上的UCI复用在第一时间段内的第一上行传输上。
作为一种可能的实现方式:终端设备在第一上行传输中的每一个PUSCH传输上复用的UCI是相同的比特。例如,第一上行传输中的每一个PUSCH传输上均复用UCI的全部比特。
作为另一种可能的实现方式:终端设备在第一上行传输中的每一个PUSCH传输上复用的UCI是不同的比特。例如,第一上行传输中的每一个PUSCH传输上均复用UCI的部分比特,且每一个PUSCH传输上的UCI的部分比特均不相同,每一个PUSCH传输上的UCI的部分比特可以组成UCI的全部比特。可选地,在这种实现方式中,UCI在每个PUSCH传输上占用的比特数相同。
终端设备在第一时域资源发送第一时间段口中的第一上行传输,该第一上行传输复用了第一PUCCH上的UCI。
下面以方法300中的第一上行传输为例,介绍本申请实施例提供的另一种UCI复用方法:
当第一时域资源和第二时域资源至少有一个时域符号重叠,终端设备确定第一时间段内的第一上行传输和第一PUCCH传输是否满足第一时间线条件和/或第二时间线条件,其中,第一时域资源用于发送第一上行传输,或者说第一时域资源是第一时间段对应的时域资源;第二时域资源用于发送第一PUCCH传输,该第一PUCCH传输用于承载UCI。
在第一时间段内的第一上行传输和第一PUCCH传输满足第一时间线条件或第二时间线条件的情况下,终端设备确定UCI复用在第一上行传输时所占用的物理资源的数量。
示例性地,当在UCI为HARQ-ACK时,UCI所占的物理资源的数量可以表示为:
Figure PCTCN2022091772-appb-000088
或者,
Figure PCTCN2022091772-appb-000089
其中,Q' ACK为UCI所占的物理资源的数量,O ACK为HARQ-ACK的比特数(即HARQ-ACK的载荷大小),L ACK为HARQ-ACK的循环冗余校验(cyclic redundancy check,CRC)比特数。
Figure PCTCN2022091772-appb-000090
为均衡参数,可以看作PUSCH上其它信息(如UL-SCH)的码率与UCI的码率的比值,由网络设备通知,为大于0的数。
Figure PCTCN2022091772-appb-000091
为第一时间段内的第一上行传输上的UL-SCH对应的TBS,C UL-SCH为第一时间段内的第一上行传输上的 UL-SCH包括的码块个数,K r为第一时间段内的第一上行传输上的UL-SCH中第r个码块的比特数。其中,time domain window表示第一时间段(或者说第一时间窗)。
Figure PCTCN2022091772-appb-000092
为第一时间段内的第一上行传输上可以用于承载UCI的物理资源数量,
Figure PCTCN2022091772-appb-000093
为第一时间段内的第一上行传输上的第l个时域符号上可以用于承载UCI的物理资源数量,
Figure PCTCN2022091772-appb-000094
为第一时间段内PUSCH上总的时域符号个数(包括承载DMRS的符号个数)。
Figure PCTCN2022091772-appb-000095
为第一时间段内一个PUSCH传输时机上可用于承载UCI的物理资源数量。
如果终端设备根据第二种方式确定UCI复用在PUSCH上占用的物理资源数量,同时第一PUCCH传输和第一时间段内的第一上行传输满足第一时间线条件,在一种可能的实现方式中,终端设备在第一时间段内的第一上行传输的每一个PUSCH传输上复用UCI。其中第一时间段内的第一上行传输中每一个PUSCH传输时机与PUCCH都满足第二时间线条件。
在UCI为CSI部分1(part 1)的情况下,UCI所占的物理资源的数量可以表示为:
Figure PCTCN2022091772-appb-000096
或者,
Figure PCTCN2022091772-appb-000097
其中,Q' CSI-1为UCI所占的物理资源的数量,O CSI-1为CSI part 1的比特数(即CSI part 1的载荷大小),L CSI-1是CSI part 1的CRC比特数,Q' ACK是用于传输或潜在用于传输HARQ-ACK的物理资源数量。潜在用于传输HARQ-ACK的物理资源是指在某些情况下(如HARQ-ACK比特数目不超过2比特)预留给HARQ-ACK传输的预留资源,UE实际可以占用该预留资源传输HARQ-ACK,也可以不占用该预留资源传输HARQ-ACK(例如,在该预留资源上映射UL-SCH)。
在UCI为CSI部分2(part 2)的情况下,UCI所占的物理资源的数量可以表示为:
Figure PCTCN2022091772-appb-000098
或者,
Figure PCTCN2022091772-appb-000099
其中,Q' CSI-2为UCI所占的物理资源的数量,O CSI-2为CSI part 2的比特数(即CSI part 2的载荷大小),L CSI-2是CSI part 2的CRC比特数,Q' ACK是用于传输或潜在用于传输HARQ-ACK的物理资源数量,Q' CSI-1是CSI part 1所占的物理资源数量。
下面以方法300中的第一上行传输为例,介绍本申请实施例提供的在另一种场景下的一种UCI复用方法:
当第一时域资源和第三时域资源至少有一个时域符号重叠,终端设备在第一时域资源上不发送第一上行传输,其中,第一时域资源用于发送第一上行传输,或者说第一时域资源是第一时间段对应的时域资源;第三时域资源用于发送PUCCH重复传输。
对于需要联合信道估计的第一上行传输,若信道估计时间段内的部分PUSCH传输不发送,只发送剩余的没有被PUCCH重复传输影响的PUSCH,一定会产生相位不连续和功率不一致现象。例如在图13所示的示意图中,第一时间段内的第一上行传输为跨时隙的连续四个PUSCH重复传输,PUCCH重复传输为重复传输两次的PUCCH传输,且PUCCH传输与第一上行传输中的第二个和第三个PUSCH传输在时域上重叠。如果不发送第一上行传输中的第二个和第三个PUSCH传输,而发送第一上行传输中的第一个和第四个PUSCH传输,则会产生相位不连续和功率不一致的现象。
因此,本申请实施例提供的方法,当PUCCH重复传输与第一时间段内的第一上行传输在时域上产生重叠,则将第一时间段内的全部PUSCH传输都丢弃不发送,而发送PUCCH重复传输。
以上,结合图7至图13详细说明了本申请实施例提供的方法。以下,结合图14至图16详细说明本申请实施例提供的通信装置。
图14是本申请实施例提供的通信装置10的示意性框图。如图所示,该通信装置10可以包括收发模块11和处理模块12。
在一种可能的设计中,该通信装置10可对应于上文方法实施例中的终端设备(或者UE)。
示例性地,该通信装置10可对应于根据本申请实施例的方法300中的终端设备,该通信装置10可以包括用于执行图7至图13中的终端设备所执行的方法的模块。并且,该通信装置10中的各单元和上述其他操作和/或功能分别为了实现图7至图13所示方法的相应流程。
该通信装置10中的该收发模块11执行上述各方法实施例中的终端设备所执行的接收和发送操作,该处理模块12则执行除了该接收和发送操作之外的操作。
在另一种可能的设计中,该通信装置10还可对应于上文方法实施例中的网络设备(或者基站或者gNB)。
示例性地,该通信装置10可对应于根据本申请实施例的方法300中的网络设备,该 通信装置10可以包括用于执行图7至图13中的网络设备执行的方法的模块。并且,该通信装置10中的各单元和上述其他操作和/或功能分别为了实现图7至图13所述方法的相应流程。
该通信装置10中的该收发模块11执行上述各方法实施例中的网络设备所执行的接收和发送操作,该处理模块12则执行除了该接收和发送操作之外的操作。
根据前述方法,图15为本申请实施例提供的通信装置20的示意图,如图15所示,该装置20可以为终端设备,也可以为网络设备。
该装置20可以包括处理器21(即,处理模块的一例)和存储器22。该存储器22用于存储指令,该处理器21用于执行该存储器22存储的指令,以使该装置20实现如图7至图13对应的方法中终端设备或网络设备执行的步骤。
进一步地,该装置20还可以包括输入口23(即,收发模块的一例)和输出口24(即,收发模块的另一例)。进一步地,该处理器21、存储器22、输入口23和输出口24可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器22用于存储计算机程序,该处理器21可以用于从该存储器22中调用并运行该计算机程序,以控制输入口23接收信号,控制输出口24发送信号,完成上述方法中终端设备或网络设备的步骤。该存储器22可以集成在处理器21中,也可以与处理器21分开设置。
可选地,若该通信装置20为通信设备,该输入口23为接收器,该输出口24为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该通信装置20为芯片或电路,该输入口23为输入接口,该输出口24为输出接口。
作为一种实现方式,输入口23和输出口24的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器21可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的通信设备。即将实现处理器21、输入口23和输出口24功能的程序代码存储在存储器22中,通用处理器通过执行存储器22中的代码来实现处理器21、输入口23和输出口24的功能。
该装置20所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图16为本申请提供的一种终端设备30的结构示意图。为了便于说明,图16仅示出了通信装置的主要部件。如图16所示,终端设备30包括处理器、存储器、控制电路、天线以及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述传输预编码矩阵的指示方法实施例中所描述的动作。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的码本。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当通信装置开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图16仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图16中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
如图16所示,终端设备30包括收发单元31和处理单元32。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元31中用于实现接收功能的器件视为接收单元,将收发单元31中用于实现发送功能的器件视为发送单元,即收发单元31包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
图16所示的终端设备可以执行图7至图13所示的方法中终端设所执行的各动作,这里,为了避免赘述,省略其详细说明。
图17示出了一种简化的网络设备40的结构示意图。网络设备包括41部分以及42部分。41部分主要用于射频信号的收发以及射频信号与基带信号的转换;42部分主要用于基带处理,对网络设备进行控制等。41部分通常可以称为收发模块、收发机、收发电路、或者收发器等。42部分通常是网络设备的控制中心,通常可以称为处理模块,用于控制网络设备执行上述方法实施例中网络设备侧的处理操作。
41部分的收发模块,也可以称为收发机或收发器等,其包括天线和射频电路,其中射频电路主要用于进行射频处理。例如,可以将41部分中用于实现接收功能的器件视为接收模块,将用于实现发送功能的器件视为发送模块,即41部分包括接收模块和发送模块。接收模块也可以称为接收机、接收器、或接收电路等,发送模块可以称为发射机、发射器或者发射电路等。
42部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对网络设备的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方 式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,图17所示的网络设备可以是图7至图13所示的方法中所示的任意网络设备,例如会话管理网元、移动管理网元、SMF、AMF等。
41部分的收发模块用于执行图7至图13所示的方法中任意网络设备的收发相关的步骤;42部分用于执行图7至图13所示的方法中的任意网络设备的处理相关的步骤。
应理解,图17仅为示例而非限定,上述包括收发模块和处理模块的网络设备可以不依赖于图17所示的结构。
当该装置40为芯片时,该芯片包括收发模块和处理模块。其中,收发模块可以是输入输出电路、通信接口;处理模块为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由第网络设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由网络设备执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由第一设备执行的方法,或由第二设备执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文实施例中的网络设备。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,网络设备可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。其中,硬件层可以包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。操作系统层的操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。应用层可以包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构进行特别限定,只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可。例如,本申请实施例提供的方法的执行主体可以是网络设备,或者,是网络设备中能够调用程序并执行程序的功能模块。
本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本文中使用的术语“制品”可以涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。
本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可以包括但不限于:无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM可以包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的保护范围。
所属领域的技术人员可以清楚地了解到,为描述方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元实现本申请提供的方案。
另外,在本申请各个实施例中的各功能单元可以集成在一个单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,所述计算机可以是个人计算机,服务器,或者网络设备等。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,(SSD))等。例如,前述的可用介质可以包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求和说明书的保护范围为准。

Claims (53)

  1. 一种上行传输的方法,其特征在于,包括:
    终端设备接收第一信息,所述第一信息用于指示第一时间段;
    所述终端设备根据所述第一时间段确定第一上行传输的传输块的大小和/或所述第一上行传输的传输功率;
    所述终端设备根据所述传输块的大小和/或所述传输功率在N个时隙上发送所述第一上行传输,所述N大于1。
  2. 根据权利要求1所述的方法,其特征在于,所述第一时间段为对所述第一上行传输进行联合信道估计的时间窗。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述第一时间段内保持所述第一上行传输中的多个PUSCH传输之间的功率一致和/或相位连续。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一上行传输包括M个传输时机,所述M大于或等于1;
    所述第一上行传输包括类型A的物理上行共享信道PUSCH重复传输,或者跨多时隙的传输块TBoMS上行传输。
  5. 根据权利要求4所述的方法,其特征在于,在所述第一上行传输为所述类型A的PUSCH重复传输的情形下,所述M个传输时机为M个PUSCH传输时机;或者,
    在所述第一上行传输为所述TBoMS上行传输的情形下,所述M个传输时机为M个TBoMS传输时机。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一上行传输包括M个传输时机,所述M大于或等于1,所述方法还包括:
    所述终端设备根据所述第一时间段确定第一传输时机的传输功率,所述第一传输时机为所述M个传输时机中的一个,所述第一时间段的时域资源与所述第一传输时机对应。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,在所述第一上行传输为所述类型A的PUSCH重复传输的情形下,所述第一时间段为以下中的任意一种:
    所述第一上行传输占用的全部时域资源;
    所述第一上行传输的第一个PUSCH所在时隙的起始符号到最后一个PUSCH所在时隙的结束符号之间的时域资源;
    所述第一上行传输在一个时隙中占用的符号数与PUSCH重复次数的乘积;
    所述第一上行传输在一个时隙中占用的符号数与所述第一上行传输实际传输的时隙数的乘积;
    所述第一上行传输在一个时隙中占用的符号数与确定的可用时隙数的乘积;
    所述第一上行传输在一个时隙中占用的符号数与用于进行所述联合信道估计的时隙数K的乘积,其中K>1;
    所述第一上行传输占用的连续时隙对应的时域资源。
  8. 根据权利要求1至6中任一项所述的方法,其特征在于,在所述第一上行传输为 跨多时隙的传输块的上行传输的情形下,所述第一时间段为以下中的任意一种:
    所述第一上行传输占用的全部时域资源;
    所述第一上行传输的起始时隙中的起始符号到结束时隙的结束符号之间的时域资源;
    所述第一上行传输实际占用的符号总数;
    所述第一上行传输的一个TBoMS传输时机对应的时域资源;
    所述第一上行传输占用的连续时隙对应的时域资源。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述终端设备根据所述第一时间段确定所述第一上行传输的传输块的大小,和/或所述第一上行传输的传输功率,包括:
    所述终端设备根据所述第一上行传输分配在所述第一时间段内的符号数目和/或资源元素RE数,确定所述第一上行传输的传输块的大小,和/或
    所述终端设备根据所述第一上行传输分配在所述第一时间段内的符号数目和/或资源元素RE数,确定所述第一上行传输的传输功率。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    在第一时域资源和第二时域资源重叠,且所述第一时域资源上的第一上行传输和第一物理上行控制信道PUCCH满足第一条件的情形下,所述终端设备将上行控制信息UCI复用在所述第一上行传输上,其中,所述第一PUCCH用于承载所述UCI,所述第一时域资源为所述第一时间段对应的时域资源,或者所述第一资源为所述M个传输时机中的一个传输时机对应的时域资源,所述第二时域资源用于承载待发送的所述第一PUCCH。
  11. 根据权利要10所述的方法,其特征在于,在所述终端设备将所述UCI复用在所述第一上行传输上时,所述方法还包括:
    所述终端设备根据所述第一时间段确定所述UCI在所述第一时间段内的上行传输上占用的物理资源的数量。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第一条件包括:
    所述第一PUCCH和所述第一时域资源上的第一上行传输中的第一个正交频分复用OFDM符号,与第一物理下行共享信道PDSCH最后一个OFDM符号之间的时域长度大于等于T proc,1,所述第一PUCCH和所述第一上行传输中的第一个OFDM符号与第一PDCCH最后一个OFDM符号之间的时域长度大于等于T proc,2,其中,所述第一PDSCH与所述第一PUCCH或所述第一上行传输对应,所述第一PDCCH与所述第一PUCCH或所述第一上行传输对应,所述T proc,1为所述终端设备对所述PDSCH的处理时间,所述T proc,2为所述终端设备对PUSCH的处理时间;或者
    所述第一PUCCH和所述第一上行传输中的一个传输时机的第一个正交频分复用OFDM符号,与第一物理下行共享信道PDSCH最后一个OFDM符号之间的时域长度大于等于T proc,1,所述第一PUCCH和所述第一上行传输的一个传输时机中的第一个OFDM符号与第一PDCCH最后一个OFDM符号之间的时域长度大于等于T proc,2,其中,所述第一PDSCH与所述第一PUCCH或所述第一上行传输中的一个传输时机对应,所述第一PDCCH与所述第一PUCCH或所述第一上行传输中的一个传输时机对应;或者所述第一PUCCH和第一PUSCH中的第一个OFDM符号,与第二PDSCH最后一个OFDM符号之间的时域长度大于等于T proc,1,所述第一PUCCH和所述第一PUSCH中的第一个OFDM 符号与第二PDCCH最后一个OFDM符号之间的时域长度大于等于T proc,2,其中,所述第一PUSCH是所述第一上行传输中与所述第一PUCCH在时域上产生重叠的PUSCH传输,所述第二PDSCH与所述第一PUCCH或所述第一PUSCH对应,所述第二PDCCH与所述第一PUCCH或所述第一PUSCH对应。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述终端设备将上行控制信息UCI复用在所述第一上行传输上,包括:
    所述终端设备在所述第一上行传输中的每一个PUSCH上传输所述UCI相同的比特;或者
    所述终端设备在所述第一上行传输中的每一个PUSCH上传输所述UCI不同的比特。
  14. 根据权利要求1所述的方法,其特征在于,所述第一上行传输包括一个传输时机,所述一个传输时机包括N个时间单元或所述N个时间单元的第一符号,所述第一符号为所述第一上行传输在所述N个时间单元中的任意一个时间单元上占用的符号。
  15. 根据权利要求1或14所述的方法,其特征在于,所述终端设备根据第一参数确定所述第一上行传输在所述传输时机上的传输功率,所述第一参数包括N和/或K,所述N为所述第一上行传输所占用的时间单元的数量,所述K为所述第一上行传输承载的传输块的缩放因子。
  16. 根据权利要求1所述的方法,其特征在于,所述第一上行传输的平均每个资源元素RE上承载的信息比特数、所述第一上行传输所有码块大小总和以及资源元素数满足以下关系:
    Figure PCTCN2022091772-appb-100001
    其中,所述BPRE为平均每个资源元素RE上承载的信息比特数,所述K r为编码块r的大小,所述C为码块数量,所述N RE为资源元素数,所述K为所述第一上行传输承载的传输块的缩放因子。
  17. 根据权利要求14或15所述的方法,其特征在于,所述第一上行传输的平均每个资源元素RE上承载的信息比特数、所述第一上行传输所有码块大小总和、资源元素数以及所述第一上行传输的传输时机的时隙数量满足以下关系:
    Figure PCTCN2022091772-appb-100002
    其中,所述BPRE为平均每个资源元素RE上承载的信息比特数,所述K r为编码块r的大小,所述C为码块数量,所述N RE为资源元素数,所述N为所述第一上行传输的传输时机的时隙数量,所述K为所述第一上行传输承载的传输块的缩放因子。
  18. 一种上行传输的方法,其特征在于,包括:
    网络设备发送第一信息,所述第一信息用于指示第一时间段;
    所述网络设备根据所述第一时间段确定第一上行传输的传输块的大小和/或所述第一上行传输的传输功率;
    所述网络设备根据所述传输块的大小和/或所述传输功率在N个时隙上接收第一上行传输,所述N大于1。
  19. 根据权利要求18所述的方法,其特征在于,所述第一时间段为对所述第一上行传输进行联合信道估计的时间窗。
  20. 根据权利要求18或19所述的方法,其特征在于,所述第一上行传输包括M个传输时机,所述M大于或等于1;
    所述第一上行传输包括类型A的物理上行共享信道PUSCH重复传输,或者跨多时隙的传输块TBoMS上行传输。
  21. 根据权利要求20所述的方法,其特征在于,在所述第一上行传输为所述类型A的PUSCH重复传输的情形下,所述M个传输时机为M个PUSCH传输时机;或者,
    在所述第一上行传输为所述TBoMS上行传输的情形下,所述M个传输时机为M个TBoMS传输时机。
  22. 根据权利要求18至21中任一项所述的方法,其特征在于,所述第一上行传输包括M个传输时机,所述M大于或等于1,所述方法还包括:
    所述终端设备根据所述第一时间段确定第一传输时机的传输功率,所述第一传输时机为所述M个传输时机中的一个,所述第一时间段的时域资源与所述第一传输时机对应。
  23. 根据权利要求18至22中任一项所述的方法,其特征在于,在所述第一上行传输为所述类型A的PUSCH重复传输的情形下,所述第一时间段为以下中的任意一种:
    所述第一上行传输占用的全部时域资源;
    所述第一上行传输的第一个PUSCH所在时隙的起始符号到最后一个PUSCH所在时隙的结束符号之间的时域资源;
    所述第一上行传输在一个时隙中占用的符号数与PUSCH重复次数的乘积;
    所述第一上行传输在一个时隙中占用的符号数与所述第一上行传输实际传输的时隙数的乘积;
    所述第一上行传输在一个时隙中占用的符号数与确定的可用时隙数的乘积;
    所述第一上行传输在一个时隙中占用的符号数与用于进行所述联合信道估计的时隙数K的乘积,其中K>1;
    所述第一上行传输占用的连续时隙对应的时域资源。
  24. 根据权利要求18至22中任一项所述的方法,其特征在于,在所述第一上行传输为跨多时隙的传输块的上行传输的情形下,所述第一时间段为以下中的任意一种:
    所述第一上行传输占用的全部时域资源;
    所述第一上行传输的起始时隙中的起始符号到结束时隙的结束符号之间的时域资源;
    所述第一上行传输实际占用的符号总数;
    所述第一上行传输的一个TBoMS传输时机对应的时域资源;
    所述第一上行传输占用的连续时隙对应的时域资源。
  25. 根据权利要求18至24中任一项所述的方法,其特征在于,所述终端设备根据所述第一时间段确定所述第一上行传输的传输块的大小,和/或所述第一上行传输的传输功率,包括:
    所述终端设备根据所述第一上行传输分配在所述第一时间段内的符号数目和/或资源元素RE数,确定所述第一上行传输的传输块的大小,和/或所述第一上行传输的传输功率。
  26. 一种上行传输的装置,其特征在于,包括:
    收发模块,用于接收第一信息,所述第一信息用于指示第一时间段;
    处理模块,用于根据所述第一时间段确定所述第一上行传输的传输块的大小和/或所 述第一上行传输的传输功率;
    所述处理模块还用于根据所述传输块的大小和/或所述传输功率通过所述处理模块在N个时隙上发送所述第一上行传输,所述N大于1。
  27. 根据权利要求26所述的装置,其特征在于,所述第一时间段为对所述第一上行传输进行联合信道估计的时间窗。
  28. 根据权利要求26或27所述的装置,其特征在于,所述处理模块还用于:
    在所述第一时间段内保持所述第一上行传输中的多个PUSCH传输之间的功率一致和/或相位连续。
  29. 根据权利要求26至28中任一项所述的装置,其特征在于,所述第一上行传输包括M个传输时机,所述M大于或等于1;
    所述第一上行传输包括类型A的物理上行共享信道PUSCH重复传输,或者跨多时隙的传输块TBoMS上行传输。
  30. 根据权利要求29所述的装置,其特征在于,在所述第一上行传输为所述类型A的PUSCH重复传输的情形下,所述M个传输时机为M个PUSCH传输时机;或者,
    在所述第一上行传输为所述TBoMS上行传输的情形下,所述M个传输时机为M个TBoMS传输时机。
  31. 根据权利要求26至30中任一项所述的装置,其特征在于,所述第一上行传输包括M个传输时机,所述M大于或等于1;所述处理模块还用于:
    根据所述第一时间段确定第一传输时机的传输功率,所述第一传输时机为所述M个传输时机中的一个,所述第一时间段的时域资源与所述第一传输时机对应。
  32. 根据权利要求26至31中任一项所述的装置,其特征在于,在所述第一上行传输为所述类型A的PUSCH重复传输的情形下,所述第一时间段为以下中的任意一种:
    所述第一上行传输占用的全部时域资源;
    所述第一上行传输的第一个PUSCH所在时隙的起始符号到最后一个PUSCH所在时隙的结束符号之间的时域资源;
    所述第一上行传输在一个时隙中占用的符号数与PUSCH重复次数的乘积;
    所述第一上行传输在一个时隙中占用的符号数与所述第一上行传输实际传输的时隙数的乘积;
    所述第一上行传输在一个时隙中占用的符号数与确定的可用时隙数的乘积;
    所述第一上行传输在一个时隙中占用的符号数与用于进行所述联合信道估计的时隙数K的乘积,其中K>1;
    所述第一上行传输占用的连续时隙对应的时域资源。
  33. 根据权利要求26至31中任一项所述的装置,其特征在于,在所述第一上行传输为跨多时隙的传输块的上行传输的情形下,所述第一时间段为以下中的任意一种:
    所述第一上行传输占用的全部时域资源;
    所述第一上行传输的起始时隙中的起始符号到结束时隙的结束符号之间的时域资源;
    所述第一上行传输实际占用的符号总数;
    所述第一上行传输的一个TBoMS传输时机对应的时域资源;
    所述第一上行传输占用的连续时隙对应的时域资源。
  34. 根据权利要求26至33中任一项所述的装置,其特征在于,所述终端设备根据所述第一时间段确定所述第一上行传输的传输块的大小,和/或所述第一上行传输的传输功率,包括:
    所述终端设备根据所述第一上行传输分配在所述第一时间段内的符号数目和/或资源元素RE数,确定所述第一上行传输的传输块的大小,和/或所述第一上行传输的传输功率。
  35. 根据权利要求26至34中任一项所述的装置,其特征在于,在第一时域资源和第二时域资源重叠,且所述第一时域资源上的第一上行传输和第一物理上行控制信道PUCCH满足第一条件的情形下,所述处理模块还用于:
    将上行控制信息UCI复用在所述第一上行传输上,其中,所述第一PUCCH用于承载所述UCI,所述第一时域资源为所述第一时间段对应的时域资源,或者所述第一资源为所述M个传输时机中的一个传输时机对应的时域资源,所述第二时域资源用于承载待发送的所述第一PUCCH。
  36. 根据权利要35所述的装置,其特征在于,所述处理模块还用于:
    根据所述第一时间段确定所述UCI在所述第一时间段内的上行传输上占用的物理资源的数量。
  37. 根据权利要求35或36所述的装置,其特征在于,所述第一条件包括:
    所述第一PUCCH和所述第一时域资源上的第一上行传输中的第一个正交频分复用OFDM符号,与第一物理下行共享信道PDSCH最后一个OFDM符号之间的时域长度大于等于T proc,1,所述第一PUCCH和所述第一上行传输中的第一个OFDM符号与第一PDCCH最后一个OFDM符号之间的时域长度大于等于T proc,2,其中,所述第一PDSCH与所述第一PUCCH或所述第一上行传输对应,所述第一PDCCH与所述第一PUCCH或所述第一上行传输对应,所述T proc,1为所述终端设备对所述PDSCH的处理时间,所述T proc,2为所述终端设备对PUSCH的处理时间;或者
    所述第一PUCCH和所述第一上行传输中的一个传输时机的第一个正交频分复用OFDM符号,与第一物理下行共享信道PDSCH最后一个OFDM符号之间的时域长度大于等于T proc,1,所述第一PUCCH和所述第一上行传输的一个传输时机中的第一个OFDM符号与第一PDCCH最后一个OFDM符号之间的时域长度大于等于T proc,2,其中,所述第一PDSCH与所述第一PUCCH或所述第一上行传输中的一个传输时机对应,所述第一PDCCH与所述第一PUCCH或所述第一上行传输中的一个传输时机对应;或者所述第一PUCCH和第一PUSCH中的第一个OFDM符号,与第二PDSCH最后一个OFDM符号之间的时域长度大于等于T proc,1,所述第一PUCCH和所述第一PUSCH中的第一个OFDM符号与第二PDCCH最后一个OFDM符号之间的时域长度大于等于T proc,2,其中,所述第一PUSCH是所述第一上行传输中与所述第一PUCCH在时域上产生重叠的PUSCH传输,所述第二PDSCH与所述第一PUCCH或所述第一PUSCH对应,所述第二PDCCH与所述第一PUCCH或所述第一PUSCH对应。
  38. 根据权利要求35至37中任一项所述的装置,其特征在于,所述处理模块具体用于:
    在所述第一上行传输中的每一个PUSCH上传输所述UCI相同的比特;或者
    在所述第一上行传输中的每一个PUSCH上传输所述UCI不同的比特。
  39. 根据权利要求26所述的装置,其特征在于,所述第一上行传输包括一个传输时机,所述一个传输时机包括N个时间单元或所述N个时间单元的第一符号,所述第一符号为所述第一上行传输在所述N个时间单元中的任意一个时间单元上占用的符号。
  40. 根据权利要求26或39所述的装置,其特征在于,所述终端设备根据第一参数确定所述第一上行传输在所述传输时机上的传输功率,所述第一参数包括N和/或K,所述N为所述第一上行传输所占用的时间单元的数量,所述K为所述第一上行传输承载的传输块的缩放因子。
  41. 根据权利要求26所述的装置,其特征在于,在所述第一上行传输为跨多时隙的传输块TBoMS上行传输的情形下,所述第一上行传输的平均每个资源元素RE上承载的信息比特数、所述第一上行传输所有码块大小总和以及资源元素数满足以下关系:
    Figure PCTCN2022091772-appb-100003
    其中,所述BPRE为平均每个资源元素RE上承载的信息比特数,所述K r为编码块r的大小,所述C为码块数量,所述N RE为资源元素数,所述K为所述第一上行传输的缩放因子。
  42. 根据权利要求39或40所述的装置,其特征在于,所述第一上行传输的平均每个资源元素RE上承载的信息比特数、所述第一上行传输所有码块大小总和、资源元素数以及所述第一上行传输的传输时机的时隙数量满足以下关系:
    Figure PCTCN2022091772-appb-100004
    其中,所述BPRE为平均每个资源元素RE上承载的信息比特数,所述K r为编码块r的大小,所述C为码块数量,所述N RE为资源元素数,所述N为所述第一上行传输的传输时机的时隙数量,所述K为所述第一上行传输承载的传输块的缩放因子。
  43. 一种上行传输的装置,其特征在于,包括:
    收发模块,用于发送第一信息,所述第一信息用于指示第一时间段;
    处理模块,用于根据所述第一时间段确定第一上行传输的传输块的大小和/或所述第一上行传输的传输功率;
    所述处理模块还用于,根据所述传输块的大小和/或所述传输功率通过所述收发模块在N个时隙上接收第一上行传输,所述N大于1。
  44. 根据权利要求43所述的装置,其特征在于,所述第一时间段为对所述第一上行传输进行联合信道估计的时间窗。
  45. 根据权利要求43或44所述的装置,其特征在于,所述第一上行传输包括M个传输时机,所述M大于或等于1;
    所述第一上行传输包括类型A的物理上行共享信道PUSCH重复传输,或者跨多时隙的传输块TBoMS上行传输。
  46. 根据权利要求45所述的装置,其特征在于,在所述第一上行传输为所述类型A的PUSCH重复传输的情形下,所述M个传输时机为M个PUSCH传输时机;或者,
    在所述第一上行传输为所述TBoMS上行传输的情形下,所述M个传输时机为M个TBoMS传输时机。
  47. 根据权利要求43至46中任一项所述的装置,其特征在于,所述第一上行传输包括M个传输时机,所述M大于或等于1,所述处理模块还用于:
    根据所述第一时间段确定第一传输时机的传输功率,所述第一传输时机为所述M个传输时机中的一个,所述第一时间段的时域资源与所述第一传输时机对应。
  48. 根据权利要求43至47中任一项所述的装置,其特征在于,在所述第一上行传输为所述类型A的PUSCH重复传输的情形下,所述第一时间段为以下中的任意一种:
    所述第一上行传输占用的全部时域资源;
    所述第一上行传输的第一个PUSCH所在时隙的起始符号到最后一个PUSCH所在时隙的结束符号之间的时域资源;
    所述第一上行传输在一个时隙中占用的符号数与PUSCH重复次数的乘积;
    所述第一上行传输在一个时隙中占用的符号数与所述第一上行传输实际传输的时隙数的乘积;
    所述第一上行传输在一个时隙中占用的符号数与确定的可用时隙数的乘积;
    所述第一上行传输在一个时隙中占用的符号数与用于进行所述联合信道估计的时隙数K的乘积,其中K>1;
    所述第一上行传输占用的连续时隙对应的时域资源。
  49. 根据权利要求43至47中任一项所述的装置,其特征在于,在所述第一上行传输为跨多时隙的传输块的上行传输的情形下,所述第一时间段为以下中的任意一种:
    所述第一上行传输占用的全部时域资源;
    所述第一上行传输的起始时隙中的起始符号到结束时隙的结束符号之间的时域资源;
    所述第一上行传输实际占用的符号总数;
    所述第一上行传输的一个TBoMS传输时机对应的时域资源;
    所述第一上行传输占用的连续时隙对应的时域资源。
  50. 根据权利要求43至49中任一项所述的装置,其特征在于,所述处理模块具体用于:
    根据所述第一上行传输分配在所述第一时间段内的符号数目和/或资源元素RE数,确定所述第一上行传输的传输块的大小,和/或所述第一上行传输的传输功率。
  51. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1至17中任一项所述的方法。
  52. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令在计算机上运行时,使得计算机执行如权利要求1至17中任一项所述的方法。
  53. 一种芯片,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行如权利要求1至17中任一项所述的方法。
PCT/CN2022/091772 2021-05-10 2022-05-09 上行传输的方法和装置 WO2022237732A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110507733 2021-05-10
CN202110507733.4 2021-05-10
CN202111166947.6A CN115334629A (zh) 2021-05-10 2021-09-30 上行传输的方法和装置
CN202111166947.6 2021-09-30

Publications (1)

Publication Number Publication Date
WO2022237732A1 true WO2022237732A1 (zh) 2022-11-17

Family

ID=83911927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091772 WO2022237732A1 (zh) 2021-05-10 2022-05-09 上行传输的方法和装置

Country Status (2)

Country Link
CN (1) CN115334629A (zh)
WO (1) WO2022237732A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190281588A1 (en) * 2018-06-11 2019-09-12 Intel Corporation Enhanced uplink beam management
CN110830161A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种确定传输块大小的方法及装置
CN111435859A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 发送、接收方法及装置
CN111867070A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 通信方法和通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190281588A1 (en) * 2018-06-11 2019-09-12 Intel Corporation Enhanced uplink beam management
CN110830161A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种确定传输块大小的方法及装置
CN111435859A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 发送、接收方法及装置
CN111867070A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 通信方法和通信装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "TB Processing over Multi-Slot PUSCH", 3GPP DRAFT; R1-2103445, vol. RAN WG1, 7 April 2021 (2021-04-07), pages 1 - 17, XP052178175 *
INTEL CORPORATION: "Discussion on TB processing over multi-slot PUSCH", 3GPP DRAFT; R1-2103043, vol. RAN WG1, 7 April 2021 (2021-04-07), pages 1 - 6, XP052177851 *

Also Published As

Publication number Publication date
CN115334629A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
KR102258359B1 (ko) 업링크 송신 방법, 단말 디바이스, 및 네트워크 디바이스
US10334576B2 (en) Systems and methods for uplink control information reporting with license-assisted access (LAA) uplink transmissions
US11464019B2 (en) Downlink control information transmission method, device and network equipment
US9191162B2 (en) Simultaneous reporting of ACK/NACK and channel-state information using PUCCH format 3 resources
KR102315253B1 (ko) 주파수-분할 듀플렉스 송신 시간 간격 동작을 위한 시스템들 및 방법들
JP7179745B2 (ja) ワイヤレス通信システムのための高信頼性で低レイテンシの構成
EP3827627A1 (en) Base stations and methods
EP3223450A1 (en) Harq feedback using carrier aggregation
EP3751914B1 (en) Communication method, communication apparatus and readable storage medium
US20220224452A1 (en) Feedback Information Transmission Method and Apparatus
JP7313342B2 (ja) 端末、通信方法及び集積回路
JP2018516485A (ja) Harqフィードバックをコンパクト化するための方法及びユーザ機器
US20220174720A1 (en) Sidelink Feedback Information Transmission Method and Communications Apparatus
US20210410124A1 (en) Signal reception or transmission method and apparatus and system
EP3742846B1 (en) Communication method and device
US11611940B2 (en) Method and apparatus for uplink power control in wireless cellular communication system
EP3850903B1 (en) Method and apparatus for determining of transmission resources for uplink channels of use for dual connectivity in wireless communication system
CN113544992A (zh) 在无线通信系统中发送/接收上行链路控制信息的方法和设备
WO2020199767A1 (zh) 通信方法、通信装置和系统
JP6532912B2 (ja) キャリアアグリゲーションを使用するharqフィードバック
EP4262301A1 (en) Scheduling request transmission method and apparatus
WO2022237732A1 (zh) 上行传输的方法和装置
US20240015749A1 (en) Signaling and configurations of enhanced subslot-based pucch repetition
CN115104271A (zh) 无线通信系统中用于反馈harq-ack的方法和装置
KR102425579B1 (ko) 무선 통신 시스템에서 전력 제어 및 전력 정보 제공 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806695

Country of ref document: EP

Kind code of ref document: A1