WO2019157962A1 - 通信方法和无线装置 - Google Patents

通信方法和无线装置 Download PDF

Info

Publication number
WO2019157962A1
WO2019157962A1 PCT/CN2019/073966 CN2019073966W WO2019157962A1 WO 2019157962 A1 WO2019157962 A1 WO 2019157962A1 CN 2019073966 W CN2019073966 W CN 2019073966W WO 2019157962 A1 WO2019157962 A1 WO 2019157962A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
time
carrier
slots
format
Prior art date
Application number
PCT/CN2019/073966
Other languages
English (en)
French (fr)
Inventor
张兴炜
张莉莉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19753967.9A priority Critical patent/EP3748891A4/en
Publication of WO2019157962A1 publication Critical patent/WO2019157962A1/zh
Priority to US16/993,700 priority patent/US11638249B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands

Definitions

  • the present application relates to the field of communications and, more particularly, to a communication method and a wireless device.
  • SCS subcarrier spacing
  • the baseline of the SCS is 15 kHz, which can be 15 kHz * 2 m , m ⁇ (-2, 0, 1, ..., 5), ie the SCS can be 3.75 kHz, 7.5 kHz ... 480 kHz.
  • the carrier can have multiple symbol lengths and time slot lengths.
  • the time slots may have different time slot types, and different time slot types may include different numbers of symbols, such as mini time slots containing fewer than 14 symbols (eg, 1 symbol, 2 symbols, 4 symbols, 7 Symbols, etc.), the normal time slot contains 14 symbols.
  • the time slot may be composed of at least one of a downlink transmission, an unknown symbol, and an uplink transmission. Therefore, the time slot has different slot formats, and the slot format has a maximum of 256 types, and different slot formats include uplinks. The number of symbols, the number of downlink symbols, or the number of guard interval symbols are different. Therefore, how to determine the slot format is an urgent problem to be solved.
  • the present application provides a communication method and a wireless device, which can determine a slot format of a slot in a plurality of carriers when indicating a slot format across carriers.
  • a communication method comprising: a terminal device receiving signaling on a first carrier; the terminal device determining a slot format of N time slots on at least one second carrier, the N The time slot format of the time slot is determined based on M time slot formats, and the N and M are positive integers; wherein the M time slot formats are obtained based on the received signaling; The slot is determined based on at least one of: a receiving moment of the signaling; a magnitude relationship between a first slot length of the first carrier and a second slot length of the at least one second carrier.
  • the base station and the UE may acquire the M slot formats based on the signaling sent or received on the first carrier, and then based on the acquired M slots.
  • the format determines the slot format of the second carrier, which can solve the problem that the slot format of the slot of the second carrier cannot be determined in the case of the cross-carrier indicating slot format.
  • the slot format of all slots is indicated on one slot, which saves signaling overhead.
  • the method further includes: determining, by the terminal device, a starting time slot of the N time slots based on a receiving moment of the signaling.
  • the terminal device determines the starting time slot of the N time slots based on the receiving time of the signaling, for example, the corresponding time of the receiving time on the second carrier, so that the M time slot formats can be determined from the second carrier. Which time slot is applied.
  • a start time slot of the N time slots is a time slot where the receiving time of the signaling is located on the at least one second carrier, or a receiving moment of the signaling is located in the The next time slot of the time slot on at least one second carrier.
  • the M is equal to N, and the M time slots are applied to the N time slot formats.
  • the M time slots respectively correspond to the N time slot formats, or one-to-one correspondence.
  • the N time slots are one-to-one corresponding to M time slot formats, that is, N 1 corresponds to M 1 , N 2 corresponds to M 2, ..., N N corresponds to M M , In this way, the slot format of the N time slots can be quickly determined, and the communication rate is improved.
  • the M time slot formats are applied to M time slot groups, and each time slot group of the M time slot groups includes at least one time slot of the N time slots.
  • the M time slot formats respectively correspond to the M time slot groups, or the M time slot formats are in one-to-one correspondence with the M time slot groups.
  • the time slots of the second carrier are grouped, and the time slots of the one time slot group have the same format, and the M time slot formats and the welld time slot groups are in one-to-one correspondence, so that only M time slots are needed.
  • the format is applied to the M time slot groups respectively to determine the slot format of the N time slots, so that the slot format of the N time slots can be quickly determined and the communication rate can be improved.
  • the number of time slots included in each time slot group is determined based on a size relationship between the first time slot length and the second time slot length.
  • the method further includes: determining, by the terminal device, a slot format of S slots, where the S slots are other than the N slots in a listening period
  • the slot format of the S slots is determined based on at least one slot format or a pre-configured slot format of the M slot formats.
  • the channel format may be based on at least one slot in the M slot formats.
  • the configured slot format determines the slot format of the remaining slots, so that the slot format of all slots of the second carrier in one listening period can be determined, and the number of slots in the determined slot format is increased.
  • the S time slots are composed of L time slot groups, each time slot group includes at least one time slot, and time slot formats of the time slots in each time slot group are the same;
  • the slot formats of the M time slot groups in the L time slot groups are different.
  • the slot format of the S slots is the Mth slot format in the M slot formats, or the last slot format.
  • the last slot format of the M slot formats is applied to the slot formats of the remaining S slots, so that the slot formats of some consecutive slots can be guaranteed to be the same, so that the slots can be applied when Gap aggregation in the scene.
  • the pre-configured slot format is configured by radio resource control RRC signaling.
  • the symbol corresponding to the pre-configured slot format is a full uplink symbol or a full downlink symbol.
  • the first carrier and the at least one second carrier belong to multiple carrier groups, wherein a slot format of a carrier of the same carrier group is the same, and a slot format of a carrier of different carrier groups different.
  • the subcarrier spacing SCS of the first carrier and the at least one second carrier is different.
  • the present application may determine the slot format of the second carrier based on the M slot formats, so that the SCS of the first carrier and the second carrier may be different. In case, the second carrier cannot be identified.
  • a communication method including: a terminal device receives signaling; the terminal device determines a slot format of M time slot groups, where M is a positive integer, and the time of the M time slot group The slot format is determined based on M slot formats obtained based on the received signaling; the terminal device is based on at least one slot format of the M slot formats or The pre-configured slot format determines a slot format of the S slots, wherein the S slots are slots other than the M slot groups in one listening period.
  • the M time slot format or the configured time slot may also be used.
  • the format determines the slot format of the remaining slots, so that the problem that the slot format of the remaining slots is unclear can be solved.
  • the M time slot groups respectively correspond to the M time slot groups, and each of the M time slot groups includes at least one time slot.
  • the S time slots are composed of L time slot groups, each time slot group includes at least one time slot, and time slot formats of the time slots in each time slot group are the same;
  • the slot formats of the M time slot groups in the L time slot groups are different.
  • the time slot format of any M time-slot adjacent time slot groups in the L time slot groups is different, or the slot formats of any consecutive M time slot groups in the L time slot groups are different.
  • the slot formats used by the 2-6th slot group are different, and are respectively one of 5 slot formats.
  • the slot format of the S slots is the Mth slot format in the M slot formats, or the last slot format.
  • the last slot format of the M slot formats is applied to the slot formats of the remaining S slots, so that the slot formats of some consecutive slots can be guaranteed to be the same, so that the slots can be applied when Gap aggregation in the scene.
  • the pre-configured slot format is configured by radio resource control RRC signaling, and/or, the symbol corresponding to the pre-configured slot format is a full uplink symbol or a full downlink symbol. .
  • a communication method comprising: determining, by a network device, a slot format of N slots on at least one second carrier, the slot format of the N slots being based on M slot formats Determining that the N and M are positive integers; the network device sends signaling on the first carrier, where the signaling includes indication information of the M slot format information; the N slots and the following At least one correlation: a transmission moment of the signaling; a magnitude relationship between a length of a first slot of the first carrier and a length of a second slot of the at least one second carrier.
  • the starting time slots of the N time slots are related to the sending time of the signaling.
  • the start time slot of the N time slots is that one time slot of the signaling time is located on the at least one second carrier or the sending time of the signaling is located at the time slot.
  • the M is equal to N, and the M time slots are applied to the N time slot formats.
  • the M time slots respectively correspond to the N time slot formats, or one-to-one correspondence.
  • the M time slot formats are applied to M time slot groups, and each time slot group of the M time slot groups includes at least one time slot of the N time slots.
  • the M time slot formats respectively correspond to the M time slot groups, or the M time slot formats are in one-to-one correspondence with the M time slot groups.
  • the number of time slots included in each time slot group is determined based on a size relationship between the first time slot length and the second time slot length.
  • the method further includes: determining, by the network device, a slot format of S slots, where the S slots are other than the N slots in a listening period
  • the slot format of the S slots is determined based on at least one slot format or a pre-configured slot format of the M slot formats.
  • the S time slots are composed of L time slot groups, each time slot group includes at least one time slot, and time slot formats of the time slots in each time slot group are the same;
  • the slot formats of the M time slot groups in the L time slot groups are different.
  • the slot format of the S slots is the Mth slot format in the M slot formats, or the last slot format.
  • the pre-configured slot format is configured by radio resource control RRC signaling.
  • the symbol corresponding to the pre-configured slot format is a full uplink symbol or a full downlink symbol.
  • the first carrier and the multiple carriers in the at least one second carrier belong to multiple carrier groups, wherein the carriers of the same carrier group have the same slot format and belong to different carrier groups.
  • the slot format of the carrier is different.
  • the subcarrier spacing SCS of the first carrier and the at least one second carrier is different.
  • a fourth aspect provides a communication method, including: determining, by a network device, a slot format of M time slot groups, where M is a positive integer, and a slot format of the M time slot groups is based on M time slots Formatting; the network device sends signaling, the signaling includes indication information of the M slot format information; S slot format and at least one slot format of the M slot formats or The pre-configured time slot format is related, wherein the S time slots are time slots except for the M time slot groups in one listening period.
  • the M time slot formats are respectively applied to the M time slot groups, and each of the M time slot groups includes at least one time slot.
  • the S time slots are composed of L time slot groups, each time slot group includes at least one time slot, and time slot formats of the time slots in each time slot group are the same;
  • the slot formats of the M time slot groups in the L time slot groups are different.
  • the slot format of the S slots is the Mth slot format in the M slot formats, or the last slot format.
  • the pre-configured slot format is configured by radio resource control RRC signaling, and/or the symbols corresponding to the pre-configured slot format are full uplink symbols or full downlink symbols.
  • a wireless device comprising means for performing the method of any of the first aspect or the first aspect of the first aspect.
  • a wireless device comprising means for performing the method of any of the above-described second or second aspects of the second aspect.
  • a network device comprising means for performing the method of any of the above-described third or third aspects of the possible implementation.
  • a network device comprising means for performing the method of any of the above-described fourth or fourth aspects of the fourth aspect.
  • a wireless device comprising a processor for implementing the functions of the terminal device in the method described in the first aspect above.
  • the wireless device can also include a memory for storing program instructions and data.
  • the memory is coupled to the processor, and the processor can invoke and execute program instructions stored in the memory for implementing the functions of the terminal device in the method described in the first aspect above.
  • the wireless device can also include a transceiver for the wireless device to communicate with other devices.
  • the other device is a network device.
  • the wireless device includes a transceiver (or receiver) and a processor:
  • the transceiver for receiving signaling on a first carrier
  • the processor is configured to determine a slot format of N slots on the at least one second carrier, where the slot format of the N slots is determined based on M slot formats, where the N and M are a positive integer; wherein the M time slot formats are acquired based on signaling received by the transceiver; the N time slots are determined based on at least one of: a receiving moment of the signaling; A magnitude relationship between a first slot length of a carrier and a second slot length of the at least one second carrier.
  • the processor is further configured to determine a start time slot of the N time slots based on a receiving moment of the signaling.
  • a start time slot of the N time slots is a time slot where the receiving time of the signaling is located on the at least one second carrier, or a receiving moment of the signaling is located in the The next time slot of the time slot on at least one second carrier.
  • the M is equal to N, and the M time slots are applied to the N time slot formats.
  • the M time slots respectively correspond to the N time slot formats, or one-to-one correspondence.
  • the M time slot formats are applied to M time slot groups, and each time slot group of the M time slot groups includes at least one time slot of the N time slots.
  • the M time slot formats respectively correspond to the M time slot groups, or the M time slot formats are in one-to-one correspondence with the M time slot groups.
  • the number of time slots included in each time slot group is determined based on a size relationship between the first time slot length and the second time slot length.
  • the processor may be further configured to determine a slot format of the S time slots, where the S time slots are time slots except the N time slots in a listening period.
  • the slot format of the S slots is determined based on at least one slot format or a pre-configured slot format of the M slot formats.
  • the S time slots are composed of L time slot groups, each time slot group includes at least one time slot, and time slot formats of the time slots in each time slot group are the same;
  • the slot formats of the M time slot groups in the L time slot groups are different.
  • the slot format of the S slots is the Mth slot format in the M slot formats, or the last slot format.
  • the pre-configured slot format is configured by radio resource control RRC signaling.
  • the symbol corresponding to the pre-configured slot format is a full uplink symbol or a full downlink symbol.
  • the first carrier and the at least one second carrier belong to multiple carrier groups, wherein a slot format of a carrier of the same carrier group is the same, and a slot format of a carrier of different carrier groups different.
  • the subcarrier spacing SCS of the first carrier and the at least one second carrier is different.
  • a wireless device comprising a processor for implementing the functions of the terminal device in the method described in the second aspect above.
  • the wireless device can also include a memory for storing program instructions and data.
  • the memory is coupled to the processor, and the processor can invoke and execute program instructions stored in the memory for implementing the functions of the terminal device in the method described in the second aspect above.
  • the wireless device can also include a transceiver for the wireless device to communicate with other devices.
  • the other device is a network device.
  • the wireless device includes a transceiver (or receiver) and a processor:
  • the transceiver (or receiver) for receiving signaling
  • the processor is configured to determine a slot format of the M time slot groups, where the M is a positive integer, and the slot format of the M time slot groups is determined based on M time slot formats, where the M The slot format is obtained based on the received signaling;
  • the processor is configured to determine a slot format of the S slots according to at least one slot format or a pre-configured slot format of the M slot formats, where the S slots are one A time slot other than the M time slot groups in the listening period.
  • the M time slot groups respectively correspond to the M time slot groups, and each of the M time slot groups includes at least one time slot.
  • the S time slots are composed of L time slot groups, each time slot group includes at least one time slot, and time slot formats of the time slots in each time slot group are the same;
  • the slot formats of the M time slot groups in the L time slot groups are different.
  • the slot format of the S slots is the Mth slot format in the M slot formats, or the last slot format.
  • the pre-configured slot format is configured by radio resource control RRC signaling, and/or, the symbol corresponding to the pre-configured slot format is a full uplink symbol or a full downlink symbol. .
  • a network device comprising a processor and a memory, the memory for storing computer instructions, the processor for executing computer instructions stored in the memory, when the computer instructions are executed
  • the processor is configured to perform the method in any of the possible implementations of the third aspect or the third aspect above.
  • a network device comprising a processor and a memory, the memory for storing computer instructions, the processor for executing computer instructions stored in the memory, when the computer instructions are executed
  • the processor is operative to perform the method in any of the possible implementations of the fourth aspect or the fourth aspect above.
  • a computer storage medium comprising computer instructions which, when executed on a computer, cause the computer to perform any of the possible aspects of the first aspect or the first aspect described above The method described in the implementation.
  • a fourteenth aspect there is provided a computer storage medium comprising computer instructions which, when executed on a computer, cause the computer to perform any of the possible aspects of the second or second aspect described above The method described in the implementation.
  • a computer storage medium comprising computer instructions which, when executed on a computer, cause the computer to perform any of the possible aspects of the third or third aspect described above The method described in the implementation.
  • a computer storage medium comprising computer instructions that, when executed on a computer, cause the computer to perform any of the possible implementations of the fourth or fourth aspect described above The method described.
  • a system comprising the wireless device of the fifth aspect or the sixth aspect, and the network device of the seventh aspect or the eighth aspect.
  • FIG. 1 is a schematic interaction diagram of a communication method provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a cross-carrier indication slot format provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a cross-carrier indication slot format provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a cross-carrier indication slot format provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a cross-carrier indication slot format provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a cross-carrier indication slot format provided by an embodiment of the present application.
  • FIG. 7 is a schematic interaction diagram of a communication method provided by another embodiment of the present application.
  • FIG. 8 is a schematic diagram of a slot format in a single carrier scenario according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a slot format in a single carrier scenario according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a wireless device according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a wireless device provided by an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a wireless device according to an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 16 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 17 is a schematic block diagram of a network device according to an embodiment of the present application.
  • the terminal device in the embodiment of the present application may also be referred to as a terminal, and is a device having a wireless transceiver function, which may be deployed on land, including indoor or outdoor, handheld or on-board, or deployed on a water surface (such as a ship, etc.) ); can also be deployed in the air (such as airplanes, balloons, satellites, etc.).
  • the terminal device may be a user equipment (UE), wherein the UE includes a handheld device, an in-vehicle device, a wearable device, or a computing device having a wireless communication function.
  • the UE can be a mobile phone, a tablet, or a computer with wireless transceiving capabilities.
  • the terminal device may also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in an unmanned vehicle, a wireless terminal in telemedicine, and an intelligent device.
  • the device that implements the function of the terminal device may be a terminal device, or may be a device in the terminal device that supports the terminal device to implement the function.
  • the device that implements the function of the terminal device is a terminal device, and the technical solution provided by the embodiment of the present application is described.
  • the technical solution provided by the embodiment of the present application is described by using the terminal device as the UE and the network device as the base station, but the application is not limited thereto.
  • the embodiments of the present application are further described in detail below.
  • the delay that may exist in the uplink and downlink is ignored, and it is assumed that the transmission time of the network device is the same as the reception time of the terminal device.
  • the embodiment is described from the perspective of the terminal device side. Those skilled in the art can understand that the terminal device receives from the network device, which means that the network device performs the transmission.
  • FIG. 1 is a schematic interaction diagram of a communication method according to an embodiment of the present application.
  • the method of Figure 1 can be applied to a multi-carrier scenario.
  • the method of FIG. 1 may be applied to, but not limited to, a scenario indicated by a cross-carrier SFI, such as a scenario in which the slot format of another carrier is indicated on one carrier, and the SCS of the two carriers is different.
  • the method of FIG. 1 may include 110 to 130, and 110 to 130 are described in detail below.
  • the base station determines a slot format for N time slots on at least one second carrier.
  • the slot format of the N slots is determined based on M slot formats, where N and M are positive integers.
  • the determining manner of the slot format of the N timeslots by the base station may be implemented in multiple manners.
  • the determining manner of the base station side is not specifically limited in this embodiment, so that the base station can implement N time slots.
  • the determination of the slot format is subject to change.
  • the base station transmits signaling to the UE on the first carrier.
  • the UE can receive the signaling on the first carrier.
  • the signaling may be high layer signaling, such as radio resource control (RRC) signaling.
  • RRC radio resource control
  • the signaling may be a combination of higher layer signaling and physical layer signaling, such as RRC signaling plus DCI messages.
  • the signaling may include indication information of M slot format information.
  • the M time slot format information is obtained by using the signaling, that is, the UE acquires the M time slot format information by using the indication information carried by the signaling.
  • the signaling may also be referred to as the first signaling, and the present application is not specifically limited.
  • the second carrier is a carrier other than the first carrier.
  • the SCS of the first carrier and the second carrier may be different, that is, the first slot length of the first carrier and the second slot length of the second carrier may be different.
  • the SCS of the first carrier is 30 kHz
  • the SCS of the second carrier is 15 kHz.
  • the length of the second slot is equal to twice the length of the first slot.
  • the UE determines a slot format for N time slots on at least one second carrier.
  • the slot format includes information of several downlink symbols, several unknown symbols, and several uplink symbols in one slot.
  • Table 1 exemplarily shows 15 slot formats in 256 slot formats.
  • Table 1 exemplarily shows 15 slot formats in 256 slot formats.
  • one row represents a time slot, and it can be seen that each time slot has 14 symbols, "D” in Table 1 represents a downlink symbol, "U” represents an uplink symbol, and "X” represents an unknown symbol.
  • the slot format 0 indicates that 14 symbols in one slot are downlink symbols
  • slot format 1 indicates that 14 symbols in one slot are uplink symbols
  • slot format 10 indicates that there is a slot in a slot.
  • An unknown symbol 13 upstream symbols.
  • the slot format of the N slots may be determined based on M slot formats, where N and M are positive integers.
  • the M slot formats may be acquired based on signaling received by the UE.
  • the UE may acquire M time slot formats based on RRC signaling and/or DCI signaling.
  • a time slot may have 256 slot formats, and the UE obtains the 256 slot formats through a pre-stored table.
  • the M time slots have a total of 256 M time slot combinations.
  • the base station can indicate 256 time slot format combinations among 256 M time slot combination possibilities through RRC signaling. After determining 256 time slot format combinations, the base station re Any one of the 256 slot format combinations is indicated by DCI. After receiving the RRC signaling, the UE can know the combination of 256 slot formats. After receiving the DCI, the UE can know from the DCI indication which slot format combination is obtained, thereby obtaining the slot format of the M slots.
  • the base station determines the slot format of the N timeslots, which may be different from the manner in which the UE determines the slot format, which is not specifically limited in this embodiment of the present application.
  • the slot format of the M slots may have the same slot format.
  • the UE may determine the N time slots based on a time relationship between receiving the first signaling, and/or a size relationship between a first time slot length of the first carrier and a second time slot length of the second carrier. .
  • the relationship between the length of the first time slot and the length of the second time slot may be a H-fold relationship, and H may be an integer greater than or equal to 1, such as 2, 4, 8; H may also be less than or equal to 1. Number, such as 0.5, 0.25, 0.125.
  • the UE may determine the N time slots based on a time when the first signaling is received.
  • the UE may determine the N time slots based on a location of a time when the first signaling is received on a time domain corresponding to the second carrier.
  • the location may be an intermediate location of a time slot of the second carrier.
  • the intermediate position of the time slot may be a 1/2 position, a 1/4 position, and a 7/8 position of the time slot.
  • the location may be the starting location of a time slot of the second carrier.
  • the starting position of the time slot may represent the position from the time slot boundary of the time slot.
  • the position may be the starting position of one time slot of the second carrier.
  • the position may be an intermediate position of one time slot of the second carrier.
  • the length of the second time slot is H times the length of the first time slot, for example, as shown in FIG. 2, carrier 1 is the first carrier, carrier 2 is the second carrier, and the second time slot is the first time. 2 times the length of the gap.
  • the base station sends the first signaling on the first carrier, and the UE receives the first signaling including the third slot format of the second carrier in the slot #10 of the first carrier, and the corresponding second is corresponding to the second carrier.
  • the 1/2 position of the slot #5 of the carrier that is, the intermediate position.
  • the length of the first time slot is H times the length of the second time slot, as shown in FIG. 3, carrier 1 is the first carrier, carrier 2 is the second carrier, and the length of the first time slot is 2 of the length of the second time slot. Times. It can be seen that the base station sends the first signaling on the first carrier, and the UE receives the three slot formats of the second carrier in the slot #5 of the first carrier, and corresponds to the slot of the second carrier. The slot boundary of 9 is the starting position.
  • the UE may first determine a starting time slot of the N time slots, and then determine which time slots of the N time slots are specific.
  • the starting time slot may represent the first time slot of the N time slots.
  • the implementation of the initial time slot by the UE may be various.
  • the embodiment of the present application does not specifically limit this.
  • the UE may determine a starting time slot of the N time slots based on a reception time of the first signaling.
  • the UE may determine a starting time slot of the N time slots based on a location of the time at which the first signaling is received on a time domain corresponding to the second carrier.
  • the start time slot may be determined to be a time slot on the second carrier at the time when the UE receives the first signaling.
  • the start time slot may be determined to be the time when the UE receives the first signaling.
  • the starting time in one slot and not in the slot may also be expressed as the middle position of the slot.
  • the time when the UE receives the first signaling is located in the slot #5 of the second carrier and is not the starting moment of the slot #5, and the starting slot can be determined to be the slot #5.
  • the next time slot, that is, the start time slot is #6.
  • the UE can determine that the three slots are #6, #7, and #8.
  • the start time slot of the N time slots may be determined to be a corresponding time slot.
  • the moment when the UE receives the first signaling is located at the start time of the slot #9 of the second carrier, and the initial slot can be determined to be the slot #9. Based on the start slot #9, the UE can determine that the N slots are #9, #10, and #11.
  • the UE may determine a starting time slot of the N time slots based on a location and an offset of a time slot of the second carrier corresponding to a time at which the first signaling is received.
  • the offset can be used to indicate a time slot in which M slot formats begin to take effect.
  • the base station may configure an offset to send the second signaling including the offset to the UE.
  • the UE may determine a starting time slot of the N time slots based on a position and an offset in a time domain corresponding to the second carrier at a time when the first signaling is received. .
  • the second signaling may be physical layer signaling, such as a DCI message, or high layer signaling, such as RRC signaling.
  • the UE can also configure an offset by itself.
  • the offset is 2, and the UE receives the first signaling in the slot #10 of the first carrier, and at this time corresponds to the intermediate position of the slot #5 of the second carrier, combined with the offset.
  • Quantity you can determine the starting time slot is #8. Based on the start slot #8, the UE can determine that the three slots are #8, #9, and #10.
  • the UE receives the first signaling in slot #5 of the first carrier, and the second is corresponding.
  • the slot #9 of the carrier, combined with the offset, can determine that the starting slot is slot #13. Based on the start slot #13, the UE can determine that the three slots are #13, #14, and #15.
  • the UE may also determine the starting time slot based on the offset.
  • the UE may determine the starting time slot of the N time slots based on the receiving time of the signaling, for example, the corresponding time of the receiving time on the second carrier, so that the M time slot formats may be determined from the second carrier. Which time slot is applied.
  • the UE may determine the N time slots based on a time when the first signaling is received and a size relationship between the length of the first time slot and the length of the second time slot.
  • the length of the first time slot is H times the length of the second time slot, it may be determined that the number of N time slots is M or H*M, and H is an integer greater than or equal to 1.
  • the length of the second time slot is H times the length of the first time slot, it may be determined that the number of N time slots is M, and H is an integer greater than or equal to 1.
  • the UE may determine the starting position of the N time slots based on the position of the time when the first signaling is received in the time domain corresponding to the second carrier, and then combine the determined N times. The number of slots of the slot determines the N slots.
  • the UE determines the starting position of the time slot based on the location of the time when the first signaling is received in the time domain corresponding to the second carrier.
  • the number of N time slots is M or H*M.
  • the number of N time slots may be 3 or 6.
  • the number of time slots is three.
  • the number of time slots is six.
  • the number of time slots is 6, it can be seen that the time when the UE receives the first signaling corresponds to the starting position of the second carrier time slot #9, and combined with the determined number of time slots 6, it can be determined that the N time slots are respectively # 9, #10, #11, #12, #13, #14.
  • the UE may determine the slot format of the N time slots based on the M time slot formats.
  • the M slot formats may correspond to N slots, respectively.
  • the correspondence may be a one-to-one correspondence. That is, the first slot N 1 of the N slots corresponds to the first slot format M 1 of the M slot formats, and the second slot N 2 of the N slots corresponds to the M slots The second slot format M 2 in the slot format ... the Nth slot N N of the N slots corresponds to the Mth slot format M M of the M slot formats.
  • the UE determines the three slot formats and the second carrier based on the received first signaling.
  • One time slot corresponds to one time.
  • the UE has determined that the three time slots are slots #6, #7, and #8, and then three consecutive slot formats may be sequentially applied to slots #6, #7, and #8, that is, One slot format is applied to slot #6, the second slot format is applied to slot #7, and the third slot format is applied to slot #8.
  • the N time slots are one-to-one corresponding to M time slot formats, that is, N 1 corresponds to M 1 , N 2 corresponds to M 2, ..., N N corresponds to M M , In this way, the slot format of the N time slots can be quickly determined, and the communication rate is improved.
  • the M time slot formats may respectively correspond to M time slot groups, and each of the M time slot groups includes at least one of the N time slots.
  • the length of the time slot in the M time slot groups is the length of the second time slot.
  • the number of N time slots belongs to consecutive M time slot groups.
  • the M time slot groups are in one-to-one correspondence with the M time slot formats.
  • the number of slots included in each slot group may be determined based on a relationship between a length of the first slot and a length of the second slot.
  • the time slot group may also be referred to as a time range or other name, which is not limited in this application.
  • each time slot group may include H time slots or one time slot, and time slots of H time slots of each time slot group.
  • the format is the same, and the slot formats of different slot groups are different.
  • H is an integer greater than 1.
  • the slots may belong to three consecutive slot groups, that is, slots #9 and #10 belong to the first slot group, slots #11 and #12 belong to the second slot group, and slots #13 and #14 belong to the first slot group.
  • the time slot format of the second time slot group is the same as the second time slot format M 2
  • the third slot format slots and the third slot group M 3 are the same format.
  • the UE may also determine the slot format of the S time slots.
  • the S time slots are time slots except for the N time slots in a listening period P.
  • the listening period refers to a period in which the UE monitors a PDCCH carrying a slot format indicator (SFI). That is, how often the UE receives the PDCCH to obtain the SFI.
  • SFI slot format indicator
  • the listening period may indicate a time when the UE receives the first signaling interval twice.
  • M 3, in addition to N time slots in one listening period P, that is, slots #6, #7, and #8, there are slots #9 and #10, and the UE can also determine the slot.
  • the slot format of the S slots may be determined based on at least one slot format of the M slot formats or a pre-configured slot format.
  • the slot format of the S slots may be determined based on M slot formats.
  • the S time slots may be composed of L time slot groups, and the time slot formats of the M time slot groups in the L time slot groups are different.
  • the length of the time slot in the L time slot groups is the length of the second time slot.
  • the slot formats of the two slot groups separated by M slot groups are the same, and the slot formats in the adjacent M slot groups are different from each other.
  • Each of the time slot groups includes at least one time slot, and the time slots of the time slots in each time slot group have the same format.
  • slots #9, #10, #11, #12, #13, and #14 of the second carrier belong to N slots
  • slots #15, #16, # of the second carrier. 17 and #18 belong to S time slots.
  • the slots #15, #16, #17, and #18 may be composed of two slot groups, where the first slot group includes slots #15 and #16, and the second slot group includes slot #17 And #18, where slot #15 and #16 are in the same slot format, slots #17 and #18 have the same slot format, slots #15, #16 and slots #17 and #18 slots The format is different.
  • the UE may determine the slot formats of slots #15 and #16 and the slot groups separated by 3 slots, ie slots #9 and #10, the slots format and of slots #17 and #18
  • the time slot formats of the three time slot groups, that is, slots #11 and #12 are the same.
  • slots #8, #9, and #10 of the second carrier belong to N slots
  • slots #6 and #7 of the second carrier belong to S slots
  • slot #6 And #7 may be composed of two slot groups, wherein the first slot group includes slot #6, the second slot group includes slot #7, and slot #6 and #7 have different slot formats. .
  • the UE may determine that the slot format of the slot #6 is the same as the slot group of the slot group #9, that is, the slot format of the slot #9, and the slot format of the slot #7 is separated from the three slot groups, The time slot format of slot #10 is the same.
  • the slot format of the S slots may be determined based on the Mth slot format.
  • the Mth slot format may also be referred to as the last slot format or the last slot format or other names in the timing, which is not limited in this application.
  • the slot format of slots #6 and #7 can also be determined, slot #6.
  • the slot format of #7 and #7 may be the same as the third slot format of the M slot formats.
  • the last slot format of the M slot formats is applied to the slot formats of the remaining S slots, so that the slot formats of some consecutive slots can be guaranteed to be the same, so that the slots can be applied when Gap aggregation in the scene.
  • the slot format of the S slots may be determined based on a pre-configured slot format.
  • the pre-configured slot format may be configured by RRC signaling.
  • the base station may send RRC signaling to the UE, and the RRC signaling may indicate a pre-configured slot format.
  • the RRC signaling may be a common RRC signaling or a dedicated RRC signaling, which is not limited in this application.
  • the pre-configured slot format may be determined by the UE based on protocol specifications.
  • the slot format of the S timeslots may be a slot format preconfigured by RRC signaling.
  • the slot format of the S slots can be backed up to the slot format configured by the RRC signaling.
  • the base station can configure the slot format for the UE through RRC signaling, and tell the UE which symbols are uplink, which symbols are downlink, and which symbols are protection intervals.
  • the UE may directly use the slot format configured by the RRC signaling;
  • the slot format of the SFI covers the slot format configured by the RRC signaling;
  • the time slot format of the other time slots may use the slot format configured by the RRC signaling.
  • the symbol corresponding to the pre-configured slot format is a full uplink symbol or a full downlink symbol.
  • the 14 symbols corresponding to the slot format of the S slots are all downlink symbols. As in the slot format 0 in Table 1.
  • the 14 symbols corresponding to the slot format of the S slots are all uplink symbols. As in the slot format 1 in Table 1.
  • the channel format may be based on at least one slot in the M slot formats.
  • the configured slot format determines the slot format of the remaining slots, so that the slot format of all slots of the second carrier in one listening period can be determined, and the number of slots in the determined slot format is increased.
  • multiple carriers in the first carrier and the at least one second carrier may belong to multiple carrier groups, where the slots of the same carrier group have the same slot format, and the slots of carriers belonging to different carrier groups have the same slot format.
  • the base station may send the packet information to the UE.
  • the UE may group the at least one first carrier and the multiple carriers in the at least one second carrier based on the group information.
  • the base station and the UE may acquire the M slot formats based on the signaling sent or received on the first carrier, and then based on the M slots.
  • the slot format determines the slot format of the second carrier, and solves the problem that the slot format of the slot of the second carrier cannot be determined in the case of the cross-carrier indicating slot format.
  • the slot format of all slots is indicated on one slot, which saves signaling overhead.
  • FIG. 7 is a schematic interaction diagram of a communication method according to an embodiment of the present application. It should be understood that the method of FIG. 7 may be applied to, but not limited to, a single carrier and a scene where M is less than P.
  • the method of FIG. 7 may include 710-750, and 710-750 are described in detail below.
  • the base station determines a slot format for the M time slot groups, where M is a positive integer.
  • the slot format of the M time slot groups may be determined based on M time slot formats.
  • the determining manner of the slot format of the M time slot groups by the base station may be implemented in multiple manners.
  • the determining manner of the base station side is not specifically limited in this embodiment, so that the base station can implement the M time.
  • the slot format of the slot group is determined to be correct.
  • the base station sends signaling to the UE. Accordingly, the UE can receive the signaling sent by the base station.
  • the signaling may include indication information of M slot format information.
  • the signaling may be high layer signaling, such as RRC signaling.
  • the signaling may be physical layer signaling, such as a DCI message, and may be carried in a PDCCH, an EPDCCH, an MPDCCH, a PSCCH, or an NPDCCH, which is not limited in this application.
  • the signaling may be a combination of higher layer signaling and physical layer signaling, such as RRC signaling plus DCI messages.
  • the UE determines a slot format for the M time slot groups, wherein each time slot group includes at least one time slot, M being a positive integer.
  • the slot format of the M time slot groups may be determined based on the M time slot formats.
  • the UE may acquire M time slot formats based on the received signaling.
  • the UE may acquire M time slot formats based on RRC signaling and/or DCI signaling.
  • a time slot may have 256 slot formats, and the UE obtains the 256 slot formats through a pre-stored table.
  • the M time slots have a total of 256 M time slot combinations.
  • the base station can indicate 256 time slot format combinations among 256 M time slot combination possibilities through RRC signaling. After determining 256 time slot format combinations, the base station re Any one of the 256 slot format combinations is indicated by DCI. After receiving the RRC signaling, the UE can know the combination of 256 slot formats. After receiving the DCI, the UE can know from the DCI indication which slot format combination is obtained, thereby obtaining the slot format of the M slots.
  • the M time slot groups may correspond to M time slot formats.
  • the correspondence may be a one-to-one correspondence.
  • the slots #12 and #13 belong to the second slot group, and the slots #14 and #15 belong to the third slot group, and the three slot groups are in one-to-one correspondence with the three slot formats, that is,
  • the first slot group corresponds to the first slot format M 1
  • the second slot group corresponds to the second slot format M 2
  • the third slot group corresponds to the third slot format M 3
  • M 1 the same instant gap slot format # 10 and # 11
  • M 2 and the same time slot # 12 and # 13 form a second slot
  • slots # 14 and # 15 The three time slot formats M 3 are the same.
  • the UE receives M time slot formats in slot #K, so that the offset is S. If each time slot group includes one time slot, the M time slot formats may be applied to time slot # ( K+S) to time slot #(K+S+M-1).
  • each slot includes a time slot group, the same slots # 12 and M form a first slot, slot # 13 and the same second slot format M 2, M 14, and the same third time slot # 3 time slot format.
  • each time slot group includes two time slots
  • the UE receives three time slot formats in time slot #10, the offset is 2, and the time slot formats of the time slots #14 and #15 are the first.
  • the time slots have the same format
  • the slots #16 and #17 and the second slot have the same format
  • the slots #18 and #19 and the third slot have the same format.
  • the UE determines a slot format for the S slots based on at least one of the M slot formats or a pre-configured slot format.
  • the S time slots are time slots other than the M time slot groups in one listening period P.
  • the pre-configured slot format may be configured by RRC signaling.
  • the RRC signaling may be a common RRC signaling or a dedicated RRC signaling, which is not limited in this application.
  • the pre-configured slot format may be determined by the UE based on protocol specifications.
  • the slot format of the S slots may be determined based on M slot formats.
  • the S time slots may be composed of L time slot groups, and the time slot formats of the M time slot groups in the L time slot groups are different. That is, the slot formats of the two slot groups of the M slot groups are the same, and the slot formats in the adjacent M slot groups are different from each other.
  • Each time slot group includes at least one time slot, and the time slots of each time slot group have the same time slot format.
  • each time slot group includes one time slot, such as option 1, the time slot format of time slots #13, #16, and #19 is the same as the time slot format of time slot #10, and the time slot is the same.
  • the slot formats of #14 and #17 are the same as the slot format of slot #11, and the slot formats of slots #15 and #18 are the same as the slot format of slot #12.
  • each time slot group includes two time slots, such as option 1, the four time slots can form two time slot groups, and time slots #16 and #17 are one time slot group.
  • the slots #18 and #19 are one slot group, and the slot formats of the two slot groups separated by three slot groups are the same, and the slots #16 and #17 are separated from the slots #10 and #11 by three times.
  • the slot group, slot #18 and #19 are separated from slot #12 and #13 by three slot groups, so the slot formats of slots #16 and #17 are the same as the slot formats of slots #10 and #11.
  • the slot formats of slots #18 and #19 are the same as the slot formats of slots #12 and #13.
  • the base station also needs to determine the slot format of the S time slots.
  • the specific determining manner may be implemented in multiple manners, and there may be a difference between the manner in which the UE determines the slot format of the S timeslots.
  • the determining manner of the base station side is not specifically limited, and the base station can implement the determination of the slot format of the S time slots.
  • the base station may determine S time slots based on at least one slot format of the M slot formats or a pre-configured slot format.
  • the slot format of the S slots may be determined based on the Mth slot format.
  • the remaining time slots i.e., the slot formats of the S time slots, are the same as the time slot format of the third time slot.
  • the slot format of the S slots may be determined based on a pre-configured slot format.
  • the slot format of the S timeslots may be a slot format preconfigured by RRC signaling.
  • the slot format of the S slots can be backed up to the slot format configured by the RRC signaling.
  • the base station can configure the slot format for the UE through RRC signaling, and tell the UE which symbols are uplink, which symbols are downlink, and which symbols are protection intervals.
  • the UE can directly use the slot format configured by the RRC signaling;
  • the slot format of the SFI covers the slot format configured by the RRC signaling;
  • the time slot format of the other time slots may use the slot format configured by the RRC signaling.
  • the symbol corresponding to the pre-configured slot format is a full uplink symbol or a full downlink symbol.
  • the 14 symbols corresponding to the slot format of the S slots are all downlink symbols. As in the slot format 0 in Table 1.
  • the 14 symbols corresponding to the slot format of the S slots are all uplink symbols. As in the slot format 1 in Table 1.
  • the M time slot format or the configured time slot may also be used.
  • the format determines the slot format of the remaining slots, so that the problem that the slot format of the remaining slots is unclear can be solved.
  • the terminal device may include a hardware structure and/or a software module, a hardware structure, a software module, or a hardware structure.
  • the software modules are added to implement the above functions.
  • One of the above functions is performed in a hardware structure, a software module, or a hardware structure plus a software module, depending on the specific application and design constraints of the technical solution.
  • the embodiment of the present application provides a wireless device, which is used to implement the function of the terminal device in the foregoing method.
  • the wireless device may be a terminal device or a device in the terminal device.
  • FIG. 10 is a schematic block diagram of a wireless device according to an embodiment of the present application. It should be understood that the wireless device 1000 illustrated in FIG. 10 is merely an example, and the wireless device 1000 of the embodiment of the present application may further include other modules or units, or include modules similar to those of the modules in FIG. 10, or are not to be included. Figure 10 shows all the modules.
  • the receiving unit 1010 is configured to receive signaling on the first carrier.
  • the determining unit 1020 is configured to determine a slot format of the N slots on the at least one second carrier, where the slot format of the N slots is determined based on the M slot formats, where N and M are positive integers, where M slot formats are obtained based on received signaling; N slots are determined based on at least one of: a receiving moment of signaling; a first slot length of the first carrier and a second of the at least one second carrier The size relationship between the slot lengths.
  • the determining unit 1020 is further configured to determine a starting time slot of the N time slots based on the receiving moment of the signaling.
  • the start time slot of the N time slots is a time slot in which the receiving unit 1010 receives the signaling time is located on the at least one second carrier, or the time when the receiving unit 1010 receives the signaling is located on the at least one second carrier.
  • the next time slot of the time slot is a time slot in which the receiving unit 1010 receives the signaling time is located on the at least one second carrier, or the time when the receiving unit 1010 receives the signaling is located on the at least one second carrier.
  • M is equal to N, and M time slots respectively correspond to N time slot formats.
  • the M time slot formats respectively correspond to M time slot groups, and each of the M time slot groups includes at least one time slot of the N time slots.
  • the number of slots included in each slot group is determined based on a relationship between a length of the first slot and a length of the second slot.
  • the determining unit 1020 is further configured to determine a slot format of the S timeslots, where the slot is a slot other than the N slots in the listening period, and the slots of the S slots The format is determined based on at least one of the M slot formats or a pre-configured slot format.
  • the S time slots are composed of L time slot groups, each time slot group includes at least one time slot, and the time slot of each time slot group has the same time slot format; M of the L time slot groups The slot format of the slot group is different.
  • the determining unit 1020 determines that the slot format of the S timeslots is the Mth slot format in the M slot formats, or the last slot format.
  • the pre-configured slot format is configured by radio resource control RRC signaling.
  • the symbol corresponding to the pre-configured slot format is a full uplink symbol or a full downlink symbol.
  • the first carrier and the at least one second carrier belong to multiple carrier groups, wherein the slots of the same carrier group have the same slot format, and the slots of different carrier groups have different slot formats.
  • the subcarrier spacing SCS of the first carrier and the at least one second carrier are different.
  • the wireless device 1100 is provided to implement the functions of the terminal device in the foregoing method.
  • the wireless device may be a terminal device or a device in the terminal device.
  • the wireless device can be a chip system.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices.
  • the wireless device 1100 includes a processor 1120 for implementing the functions of the terminal device in the method provided by the embodiment of the present application.
  • the processor 1120 may be configured to determine a slot format and the like of the N slots on the at least one second carrier. For details, refer to the detailed description in the method example, which is not described herein.
  • the wireless device 1100 can also include a memory 1130 for storing program instructions and/or data.
  • Memory 1130 is coupled to processor 1120.
  • Processor 1120 may operate in conjunction with memory 1130.
  • the processor 1120 may execute program instructions stored in the memory 1130.
  • the wireless device 1100 may also include a transceiver 1110 (which may be replaced with a receiver and a transmitter, the function of which is implemented by the receiver) for communicating with the other device through the transmission medium, such that the device for use in the wireless device 1100 can Other devices communicate.
  • the processor 1120 uses the transceiver 1110 to send and receive signaling, and is used to implement the method performed by the terminal device in the method embodiment of the present application.
  • connection medium between the above transceiver 1110, the processor 1120, and the memory 1130 is not limited in the embodiment of the present application.
  • the memory 1130, the processor 1120, and the transceiver 1110 are connected by a bus 1140 in FIG. 11, and the bus is indicated by a thick line in FIG. 11, and the connection manner between other components is only schematically illustrated. , not limited to.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 11, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the present application provides a wireless device, which is used to implement the function of the terminal device in the foregoing method.
  • the wireless device may be a terminal device or a device in the terminal device.
  • FIG. 12 is a schematic block diagram of a wireless device according to an embodiment of the present application. It should be understood that the wireless device 1200 illustrated in FIG. 12 is merely an example, and the wireless device 1200 of the embodiment of the present application may further include other modules or units, or include modules similar to those of the modules in FIG. 12, or are not to be included. Figure 12 shows all the modules.
  • the receiving unit 1210 is configured to receive signaling.
  • the first determining unit 1220 is configured to determine a slot format of the M time slot groups, where M is a positive integer, the slot format of the M time slot groups is determined based on the M time slot formats, and the M time slot formats are based on Received signaling obtained.
  • the second determining unit 1230 is configured to determine, according to at least one slot format of the M slot formats or a pre-configured slot format, a slot format of the S slots, where the S slots are within one listening period A time slot other than the M time slot groups.
  • the M time slot formats respectively correspond to M time slot groups, and each of the M time slot groups includes at least one time slot.
  • the S time slots are composed of L time slot groups, each time slot group includes at least one time slot, and the time slot of each time slot group has the same time slot format; M of the L time slot groups The slot format of the slot group is different.
  • the second determining unit 1230 determines that the slot format of the S timeslots is the Mth slot format in the M slot formats, or the last slot format.
  • the pre-configured slot format is configured by radio resource control RRC signaling, and/or the symbol corresponding to the pre-configured slot format is a full uplink symbol or a full downlink symbol.
  • the wireless device 1300 is provided to implement the functions of the terminal device in the foregoing method.
  • the wireless device may be a terminal device or a device in the terminal device.
  • the wireless device can be a chip system.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices.
  • the wireless device 1300 includes a processor 1320 for implementing the functions of the terminal device in the method provided by the embodiment of the present application.
  • the processor 1320 can be used to determine the slot format and the like of the M time slot groups. For details, refer to the detailed description in the method example, and details are not described herein.
  • the wireless device 1300 can also include a memory 1330 for storing program instructions and/or data.
  • Memory 1330 is coupled to processor 1320.
  • Processor 1320 may operate in conjunction with memory 1330.
  • the processor 1320 may execute program instructions stored in the memory 1330.
  • the wireless device 1300 can also include a transceiver 1310 (which can be replaced with a receiver and a transmitter, the functionality implemented by the receiver) for communicating over the transmission medium and other devices, such that the devices in the wireless device 1300 can Other devices communicate.
  • the processor 1320 uses the transceiver 1310 to send and receive signaling, and is used to implement the method performed by the terminal device in the method embodiment of the present application.
  • connection medium between the above transceiver 1310, the processor 1320, and the memory 1330 is not limited in the embodiment of the present application.
  • the memory 1330, the processor 1320, and the transceiver 1310 are connected by a bus 1340 in FIG. 13, and the bus is indicated by a thick line in FIG. 13, and the connection manner between other components is only schematically illustrated. , not limited to.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 13, but it does not mean that there is only one bus or one type of bus.
  • FIG. 14 is a schematic block diagram of a network device according to an embodiment of the present application. It should be understood that the network device 1400 illustrated in FIG. 14 is only an example, and the network device 1400 of the embodiment of the present application may further include other modules or units, or include modules similar to those of the modules in FIG. 14 , or are not to be included. Figure 14 shows all the modules.
  • the determining unit 1410 is configured to determine a slot format of the N slots on the at least one second carrier, where the slot format of the N slots is determined based on the M slot formats, and N and M are positive integers.
  • the sending unit 1420 is configured to send signaling on the first carrier, where the signaling includes indication information of the M slot format information.
  • the N time slots are related to at least one of the following: a time when the transmitting unit 1420 sends signaling; a size relationship between a first time slot length of the first carrier and a second time slot length of the at least one second carrier.
  • the starting time slot of the N time slots is related to the time at which the transmitting unit 1420 sends signaling.
  • the start time slot of the N time slots is the time slot in which the sending unit 1420 sends signaling, and the time at which the sending unit 1420 sends signaling is located on the at least one second carrier.
  • the next time slot of the time slot is located on the at least one second carrier.
  • M is equal to N, and M time slots respectively correspond to N time slot formats.
  • the M time slot formats respectively correspond to M time slot groups, and each of the M time slot groups includes at least one time slot of the N time slots.
  • the number of slots included in each slot group is determined based on a relationship between a length of the first slot and a length of the second slot.
  • the determining unit 1410 is further configured to determine a slot format of the S timeslots, where the slot is a slot other than the N slots in a listening period, and the slots of the S slots The format is determined based on at least one of the M slot formats or a pre-configured slot format.
  • the S time slots are composed of L time slot groups, each time slot group includes at least one time slot, and the time slot of each time slot group has the same time slot format; M of the L time slot groups The slot format of the slot group is different.
  • the determining unit 1410 determines that the slot format of the S timeslots is the Mth slot format in the M slot formats, or the last slot format.
  • the pre-configured slot format is configured by radio resource control RRC signaling.
  • the symbol corresponding to the pre-configured slot format is a full uplink symbol or a full downlink symbol.
  • the first carrier and the at least one second carrier belong to multiple carrier groups, wherein the slots of the same carrier group have the same slot format, and the slots of different carrier groups have different slot formats.
  • the subcarrier spacing SCS of the first carrier and the at least one second carrier are different.
  • FIG. 15 shows a network device 1500 according to an embodiment of the present application.
  • the network device 1500 includes a processor 1520 for implementing the functions of the network device in the method provided by the embodiment of the present application.
  • the processor 1520 may be configured to determine a slot format and the like of the N slots on the at least one second carrier. For details, refer to the detailed description in the method example, which is not described herein.
  • Network device 1500 can also include a memory 1530 for storing program instructions and/or data.
  • Memory 1530 is coupled to processor 1520.
  • Processor 1520 may operate in conjunction with memory 1530.
  • Processor 1520 may execute program instructions stored in memory 1530.
  • Network device 1500 may also include a transceiver 1510 for communicating with other devices over a transmission medium such that devices for use in network device 1500 can communicate with other devices.
  • the processor 1520 uses the transceiver 1510 to send and receive signaling, and is used to implement the method performed by the network device in the method embodiment of the present application.
  • connection medium between the above transceiver 1510, the processor 1520, and the memory 1530 is not limited in the embodiment of the present application.
  • the memory 1530, the processor 1520, and the transceiver 1510 are connected by a bus 1540 in FIG. 15, and the bus is indicated by a thick line in FIG. 15, and the connection manner between other components is only schematically illustrated. , not limited to.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 15, but it does not mean that there is only one bus or one type of bus.
  • FIG. 16 is a schematic block diagram of a network device according to an embodiment of the present application. It should be understood that the network device 1600 shown in FIG. 16 is only an example, and the network device 1600 of the embodiment of the present application may further include other modules or units, or include modules similar to those of the modules in FIG. 16, or may not include Figure 16 shows all the modules.
  • the determining unit 1610 is configured to determine a slot format of the M time slot groups, where M is a positive integer, and the slot format of the M time slot groups is determined based on the M time slot formats.
  • the sending unit 1620 is configured to send signaling, where the signaling includes indication information of M slot format information.
  • the S time slot formats are related to at least one time slot format or a pre-configured time slot format of the M time slot formats, and the S time slots are time slots except M time slot groups in one listening period.
  • the M time slot formats respectively correspond to M time slot groups, and each of the M time slot groups includes at least one time slot.
  • the S time slots are composed of L time slot groups, each time slot group includes at least one time slot, and the time slot of each time slot group has the same time slot format; M of the L time slot groups The slot format of the slot group is different.
  • the second determining unit 1630 determines that the slot format of the S timeslots is the Mth slot format in the M slot formats, or the last slot format.
  • the pre-configured slot format is configured by radio resource control RRC signaling, and/or the symbol corresponding to the pre-configured slot format is a full uplink symbol or a full downlink symbol.
  • FIG. 17 shows a network device 1700 according to an embodiment of the present application.
  • the network device 1700 includes a processor 1720 for implementing the functions of the network device in the method provided by the embodiment of the present application.
  • the processor 1720 can be used to determine the slot format and the like of the M time slot groups. For details, refer to the detailed description in the method example, and details are not described herein.
  • Network device 1700 can also include a memory 1730 for storing program instructions and/or data.
  • Memory 1730 is coupled to processor 1720.
  • Processor 1720 may operate in conjunction with memory 1730.
  • the processor 1720 may execute program instructions stored in the memory 1730.
  • Network device 1700 can also include a transceiver 1710 for communicating with other devices over a transmission medium such that devices for use in network 1700 can communicate with other devices.
  • the processor 1720 uses the transceiver 1710 to send and receive signaling, and is used to implement the method performed by the network device in the method embodiment of the present application.
  • connection medium between the above transceiver 1710, the processor 1720, and the memory 1730 is not limited in the embodiment of the present application.
  • the memory 1730, the processor 1720, and the transceiver 1710 are connected by a bus 1740 in FIG. 17, and the bus is indicated by a thick line in FIG. 17, and the connection manner between other components is only schematically illustrated. , not limited to.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 17, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the present application further provides a communication system, including at least one network device and at least one terminal device mentioned in the foregoing embodiments of the present application.
  • the embodiment of the present application further provides a device (for example, an integrated circuit, a wireless device, a circuit module, etc.) for implementing the above communication method.
  • a device for example, an integrated circuit, a wireless device, a circuit module, etc.
  • the means for implementing the power tracker and/or power generator described herein may be a stand-alone device or may be part of a larger device.
  • the device may be (i) a self-contained IC; (ii) a set having one or more 1Cs, which may include a memory IC for storing data and/or instructions; (iii) an RFIC, such as an RF receiver or RF transmitter (iv) an ASIC, such as a mobile station modem; (v) a module that can be embedded in other devices; (vi) a receiver, a cellular telephone, a wireless device, or a mobile unit; (vii) others, and the like.
  • a self-contained IC may include a memory IC for storing data and/or instructions; (iii) an RFIC, such as an RF receiver or RF transmitter (iv) an ASIC, such as a mobile station modem; (v) a module that can be embedded in other devices; (vi) a receiver, a cellular telephone, a wireless device, or a mobile unit; (vii) others, and the like.
  • the method and apparatus provided by the embodiments of the present application may be applied to a terminal device or a network device (which may be collectively referred to as a wireless device).
  • the terminal device or network device or wireless device may include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through a process, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, contacts, word processing software, and instant messaging software. Moreover, in the embodiments of the present application, the embodiment of the present application does not limit the specific structure of the execution body of the method.
  • a wireless device can include any number of transmitters, receivers, processors, controllers, memories, communication units, and the like.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the embodiments of the present application, or the part contributing to the prior art or the part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in the various embodiments of the embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory, a random access memory, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和无线装置,其中,该通信方法包括:终端设备在第一载波上接收信令;终端设备确定在至少一个第二载波上的N个时隙的时隙格式,N个时隙的时隙格式是基于M个时隙格式确定的,N和M为正整数,其中,M个时隙格式是基于接收的信令获取的;N个时隙基于以下至少一项确定:信令的接收时刻;第一载波的第一时隙长度与至少一个第二载波的第二时隙长度之间的大小关系。通过本申请实施例的通信方法、终端设备和网络设备,可以确定多个载波中时隙的时隙格式。

Description

通信方法和无线装置
本申请要求于2018年02月14日提交中国专利局、申请号为201810152378.1、申请名称为“通信方法和无线装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法和无线装置。
背景技术
第5代移动通信(the 5th generation,5G)系统中引入了多种子载波间隔(subcarrier spacing,SCS),不同的载波可以有不同的SCS。SCS的基线为15kHz,可以是15kHz*2 m,m∈(-2,0,1……,5),即SCS可以为3.75kHz、7.5kHz……480kHz。对应的,载波可以有多种符号长度、时隙长度。
时隙可以有不同的时隙类型,不同的时隙类型包括的符号个数不一样,如迷你时隙包含的符号个数小于14个(如1个符号、2个符号、4个符号、7个符号等),普通时隙包含14个符号。其中,一个时隙可以由下行传输、未知符号、上行传输等其中的至少一个组成,因此时隙就会有不同的时隙格式,时隙格式最多有256种,不同的时隙格式包括的上行符号个数、下行符号个数或保护间隔符号个数是不一样的,因此,如何确定时隙格式是一个亟待解决的问题。
发明内容
本申请提供一种通信方法和无线装置,在跨载波指示时隙格式时,可以确定多个载波中时隙的时隙格式。
第一方面,提供了一种通信方法,包括:终端设备在第一载波上接收信令;所述终端设备确定在至少一个第二载波上的N个时隙的时隙格式,所述N个时隙的时隙格式是基于M个时隙格式确定的,所述N和M为正整数;其中,所述M个时隙格式是基于所述接收的信令获取的;所述N个时隙基于以下至少一项确定:所述信令的接收时刻;所述第一载波的第一时隙长度与所述至少一个第二载波的第二时隙长度之间的大小关系。
本申请实施例的技术方案,在跨载波指示时隙格式时,基站和UE可以基于在第一载波上发送或接收的信令获取到M个时隙格式,再基于获取到的M个时隙格式确定出第二载波的时隙格式,可以解决在跨载波指示时隙格式的情况下,第二载波的时隙的时隙格式无法确定的问题。除此之外,在一个时隙上将所有时隙的时隙格式都进行指示,这样可以节省信令开销。
在一些可能的实现方式中,所述方法还包括:所述终端设备基于所述信令的接收时刻,确定所述N个时隙的起始时隙。
上述技术方案,终端设备基于信令的接收时刻,比如该接收时刻在第二载波上对应的位置,确定出N个时隙的起始时隙,从而可以确定M个时隙格式从第二载波的哪个时隙开始应用。
在一些可能的实现方式中,所述N个时隙的起始时隙为所述信令的接收时刻位于所述至少一个第二载波上的时隙或者所述信令的接收时刻位于所述至少一个第二载波上时隙的下一个时隙。
在一些可能的实现方式中,所述M等于N,所述M个时隙应用于所述N个时隙格式。例如,所述M个时隙分别对应于所述N个时隙格式,或者两者一一对应。
上述技术方案,当M等于N时,该N个时隙一一对应于M个时隙格式,即N 1对应于M 1,N 2对应于M 2,……,N N对应于M M,如此可以快速地确定该N个时隙的时隙格式,提高通信速率。
在一些可能的实现方式中,所述M个时隙格式应用于M个时隙组,所述M个时隙组中的每个时隙组包含所述N个时隙中的至少一个时隙。例如,所述M个时隙格式分别对应所述M个时隙组,或者,所述M个时隙格式与M个时隙组一一对应。
上述技术方案,对第二载波的时隙进行分组,属于一个时隙组的时隙格式相同,且M个时隙格式和分好的时隙组一一对应,这样只需将M个时隙格式分别应用于该M个时隙组就可以确定出N个时隙的时隙格式,这样可以快速地确定该N个时隙的时隙格式,提高通信速率。
在一些可能的实现方式中,所述每个时隙组包括的时隙数量是基于所述第一时隙长度和所述第二时隙长度的大小关系确定的。
在一些可能的实现方式中,所述方法还包括:所述终端设备确定S个时隙的时隙格式,所述S个时隙为一个监听周期内除所述N个时隙之外的时隙,所述S个时隙的时隙格式是基于所述M个时隙格式中的至少一个时隙格式或预配置的时隙格式确定的。
上述技术方案,在确定N个时隙的时隙格式后,若在一个监听周期内除N个时隙还有剩余时隙,则可以基于M个时隙格式中的至少一个时隙格式或预配置的时隙格式确定剩余时隙的时隙格式,这样可以确定一个监听周期内第二载波所有的时隙的时隙格式,增加确定的时隙格式的时隙数量。
在一些可能的实现方式中,所述S个时隙由L个时隙组组成,每个时隙组包括至少一个时隙,且所述每个时隙组中时隙的时隙格式相同;所述L个时隙组中M个时隙组的时隙格式不同。进一步,所述L个时隙组中任意M个时域相邻的时隙组的时隙格式不同。例如,M=5时,所述L个时隙组中的第2-6个时隙组在时域上相邻(或者第2-6个时隙组在时隙上两两相邻),则所述第2-6个时隙组所使用的时隙格式不同,且分别为5个时隙格式中的一个。
在一些可能的实现方式中,所述S个时隙的时隙格式是所述M个时隙格式中的第M个时隙格式,或者,最后一个时隙格式。
上述技术方案,将M个时隙格式的最后一个时隙格式应用于剩余的S个时隙的时隙格式上,可以保证部分连续时隙的时隙格式相同,这样可以将时隙应用于时隙聚合的场景中。
在一些可能的实现方式中,所述预配置的时隙格式是通过无线资源控制RRC信令配 置的。
在一些可能的实现方式中,所述预配置的时隙格式对应的符号为全上行符号或全下行符号。
在一些可能的实现方式中,所述第一载波和所述至少一个第二载波属于多个载波组,其中,同一个载波组的载波的时隙格式相同,不同载波组的载波的时隙格式不同。
上述技术方案,通过对多个载波进行分组,时隙格式相同的载波属于同一个载波组,这样在确定第二载波的时隙格式时,只需要确定一个载波组中的一个载波的时隙格式,而不用确定每个载波的时隙格式,如此可以节省信令开销,并且还可以提高通信速率。
在一些可能的实现方式中,所述第一载波和所述至少一个第二载波的子载波间隔SCS不同。
上述技术方案,当第一载波和第二载波的SCS不同时,本申请可以基于M个时隙格式确定第二载波的时隙格式,从而可以解决当第一载波和第二载波的SCS不同的情况下,第二载波无法确定的问题。
第二方面,提供了一种通信方法,包括:终端设备接收信令;所述终端设备确定M个时隙组的时隙格式,所述M为正整数,所述M个时隙组的时隙格式是基于M个时隙格式确定的,所述M个时隙格式是基于所述接收的信令获取的;所述终端设备基于所述M个时隙格式中的至少一个时隙格式或预配置的时隙格式,确定S个时隙的时隙格式,其中,所述S个时隙为一个监听周期内除所述M个时隙组之外的时隙。
本申请实施例,当监听周期P大于M时,在基站或UE基于发送或接收的信令确定M个时隙组的时隙格式后,还可以基于M个时隙格式或去配置的时隙格式,确定剩余时隙的时隙格式,从而可以解决剩余时隙的时隙格式不明确的问题。
在一些可能的实现方式中,所述M个时隙组分别对应所述M个时隙组,所述M个时隙组中的每个时隙组包括至少一个时隙。
在一些可能的实现方式中,所述S个时隙由L个时隙组组成,每个时隙组包括至少一个时隙,且所述每个时隙组中时隙的时隙格式相同;所述L个时隙组中M个时隙组的时隙格式不同。进一步,所述L个时隙组中任意M个时域相邻的时隙组的时隙格式不同,或者,所述L个时隙组中任意连续的M个时隙组的时隙格式不同。例如,M=5时,所述L个时隙组中的第2-6个时隙组在时域上相邻(或者第2-6个时隙组在时隙上两两相邻),则所述第2-6个时隙组所使用的时隙格式不同,且分别为5个时隙格式中的一个。
在一些可能的实现方式中,所述S个时隙的时隙格式是所述M个时隙格式中的第M个时隙格式,或者,最后一个时隙格式。
上述技术方案,将M个时隙格式的最后一个时隙格式应用于剩余的S个时隙的时隙格式上,可以保证部分连续时隙的时隙格式相同,这样可以将时隙应用于时隙聚合的场景中。
在一些可能的实现方式中,所述预配置的时隙格式是通过无线资源控制RRC信令配置的,和/或,所述预配置的时隙格式对应的符号为全上行符号或全下行符号。
第三方面,提供了一种通信方法,包括:网络设备确定在至少一个第二载波上的N个时隙的时隙格式,所述N个时隙的时隙格式是基于M个时隙格式确定的,所述N和M为正整数;所述网络设备在第一载波上发送信令,所述信令包括所述M个时隙格式信息的 指示信息;所述N个时隙与以下至少一项相关:所述信令的发送时刻;所述第一载波的第一时隙长度与所述至少一个第二载波的第二时隙长度之间的大小关系。
在一些可能的实现方式中,所述N个时隙的起始时隙与所述信令的发送时刻相关。
在一些可能的实现方式中,所述N个时隙的起始时隙为所述信令的发送时刻位于所述至少一个第二载波上的一个时隙或者所述信令的发送时刻位于所述至少一个第二载波上的时隙的下一个时隙。
在一些可能的实现方式中,所述M等于N,所述M个时隙应用于所述N个时隙格式。例如,所述M个时隙分别对应于所述N个时隙格式,或者两者一一对应。
在一些可能的实现方式中,所述M个时隙格式应用于M个时隙组,所述M个时隙组中的每个时隙组包含所述N个时隙中的至少一个时隙。例如,所述M个时隙格式分别对应所述M个时隙组,或者,所述M个时隙格式与M个时隙组一一对应。
在一些可能的实现方式中,所述每个时隙组包括的时隙数量是基于所述第一时隙长度和所述第二时隙长度的大小关系确定的。
在一些可能的实现方式中,所述方法还包括:所述网络设备确定S个时隙的时隙格式,所述S个时隙为一个监听周期内除所述N个时隙之外的时隙,所述S个时隙的时隙格式是基于所述M个时隙格式中的至少一个时隙格式或预配置的时隙格式确定的。
在一些可能的实现方式中,所述S个时隙由L个时隙组组成,每个时隙组包括至少一个时隙,且所述每个时隙组中时隙的时隙格式相同;所述L个时隙组中M个时隙组的时隙格式不同。
在一些可能的实现方式中,所述S个时隙的时隙格式是所述M个时隙格式中的第M个时隙格式,或者,最后一个时隙格式。
在一些可能的实现方式中,所述预配置的时隙格式是通过无线资源控制RRC信令配置的。
在一些可能的实现方式中,所述预配置的时隙格式对应的符号为全上行符号或全下行符号。
在一些可能的实现方式中,所述第一载波和所述至少一个第二载波中的多个载波属于多个载波组,其中,同一个载波组的载波的时隙格式相同,属于不同载波组的载波的时隙格式不同。
在一些可能的实现方式中,所述第一载波和所述至少一个第二载波的子载波间隔SCS不同。
第四方面,提供了一种通信方法,包括:网络设备确定M个时隙组的时隙格式,所述M为正整数,所述M个时隙组的时隙格式是基于M个时隙格式确定的;所述网络设备发送信令,所述信令包括所述M个时隙格式信息的指示信息;S个时隙格式与所述M个时隙格式中的至少一个时隙格式或预配置的时隙格式相关,其中,所述S个时隙为一个监听周期内除所述M个时隙组之外的时隙。
在一些可能的实现方式中,所述M个时隙格式应用于分别对应所述M个时隙组,所述M个时隙组中的每个时隙组包括至少一个时隙。
在一些可能的实现方式中,所述S个时隙由L个时隙组组成,每个时隙组包括至少一个时隙,且所述每个时隙组中时隙的时隙格式相同;所述L个时隙组中M个时隙组的时 隙格式不同。
在一些可能的实现方式中,所述S个时隙的时隙格式是所述M个时隙格式中的第M个时隙格式,或者,最后一个时隙格式。
在一些可能的实现方式中,所述预配置的时隙格式是通过无线资源控制RRC信令配置的,和/或所述预配置的时隙格式对应的符号为全上行符号或全下行符号。
第五方面,提供了一种无线装置,包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第六方面,提供了一种无线装置,包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的单元。
第七方面,提供了一种网络设备,包括用于执行上述第三方面或第三方面的任意可能的实现方式中的方法的单元。
第八方面,提供了一种网络设备,包括用于执行上述第四方面或第四方面的任意可能的实现方式中的方法的单元。
第九方面,提供了一种无线装置,所述无线装置包括处理器,用于实现上述第一方面描述的方法中终端设备的功能。所述无线装置还可以包括存储器,用于存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器可以调用并执行所述存储器中存储的程序指令,用于实现上述第一方面描述的方法中终端设备的功能。所述无线装置还可以包括收发器,所述收发器用于该无线装置与其它设备进行通信。示例性地,该其它设备为网络设备。
在一种可能的装置中,该无线装置包括收发器(或者接收器)以及处理器:
所述收发器(或者接收器),用于在第一载波上接收信令;
所述处理器,用于确定在至少一个第二载波上的N个时隙的时隙格式,所述N个时隙的时隙格式是基于M个时隙格式确定的,所述N和M为正整数;其中,所述M个时隙格式是基于所述收发器接收的信令获取的;所述N个时隙基于以下至少一项确定:所述信令的接收时刻;所述第一载波的第一时隙长度与所述至少一个第二载波的第二时隙长度之间的大小关系。
在一些可能的实现方式中,该处理器还用于基于所述信令的接收时刻,确定所述N个时隙的起始时隙。
在一些可能的实现方式中,所述N个时隙的起始时隙为所述信令的接收时刻位于所述至少一个第二载波上的时隙或者所述信令的接收时刻位于所述至少一个第二载波上时隙的下一个时隙。
在一些可能的实现方式中,所述M等于N,所述M个时隙应用于所述N个时隙格式。例如,所述M个时隙分别对应于所述N个时隙格式,或者两者一一对应。
在一些可能的实现方式中,所述M个时隙格式应用于M个时隙组,所述M个时隙组中的每个时隙组包含所述N个时隙中的至少一个时隙。例如,所述M个时隙格式分别对应所述M个时隙组,或者,所述M个时隙格式与M个时隙组一一对应。
在一些可能的实现方式中,所述每个时隙组包括的时隙数量是基于所述第一时隙长度和所述第二时隙长度的大小关系确定的。
在一些可能的实现方式中,该处理器还可以用于确定S个时隙的时隙格式,所述S个 时隙为一个监听周期内除所述N个时隙之外的时隙,所述S个时隙的时隙格式是基于所述M个时隙格式中的至少一个时隙格式或预配置的时隙格式确定的。
在一些可能的实现方式中,所述S个时隙由L个时隙组组成,每个时隙组包括至少一个时隙,且所述每个时隙组中时隙的时隙格式相同;所述L个时隙组中M个时隙组的时隙格式不同。
在一些可能的实现方式中,所述S个时隙的时隙格式是所述M个时隙格式中的第M个时隙格式,或者,最后一个时隙格式。
在一些可能的实现方式中,所述预配置的时隙格式是通过无线资源控制RRC信令配置的。
在一些可能的实现方式中,所述预配置的时隙格式对应的符号为全上行符号或全下行符号。
在一些可能的实现方式中,所述第一载波和所述至少一个第二载波属于多个载波组,其中,同一个载波组的载波的时隙格式相同,不同载波组的载波的时隙格式不同。
在一些可能的实现方式中,所述第一载波和所述至少一个第二载波的子载波间隔SCS不同。
第十方面,提供了一种无线装置,所述无线装置包括处理器,用于实现上述第二方面描述的方法中终端设备的功能。所述无线装置还可以包括存储器,用于存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器可以调用并执行所述存储器中存储的程序指令,用于实现上述第二方面描述的方法中终端设备的功能。所述无线装置还可以包括收发器,所述收发器用于该无线装置与其它设备进行通信。示例性地,该其它设备为网络设备。
在一种可能的装置中,该无线装置包括收发器(或者接收器)以及处理器:
所述收发器(或者接收器),用于接收信令;
所述处理器,用于确定M个时隙组的时隙格式,所述M为正整数,所述M个时隙组的时隙格式是基于M个时隙格式确定的,所述M个时隙格式是基于所述接收的信令获取的;
所述处理器,用于基于所述M个时隙格式中的至少一个时隙格式或预配置的时隙格式,确定S个时隙的时隙格式,其中,所述S个时隙为一个监听周期内除所述M个时隙组之外的时隙。
在一些可能的实现方式中,所述M个时隙组分别对应所述M个时隙组,所述M个时隙组中的每个时隙组包括至少一个时隙。
在一些可能的实现方式中,所述S个时隙由L个时隙组组成,每个时隙组包括至少一个时隙,且所述每个时隙组中时隙的时隙格式相同;所述L个时隙组中M个时隙组的时隙格式不同。
在一些可能的实现方式中,所述S个时隙的时隙格式是所述M个时隙格式中的第M个时隙格式,或者,最后一个时隙格式。
在一些可能的实现方式中,所述预配置的时隙格式是通过无线资源控制RRC信令配置的,和/或,所述预配置的时隙格式对应的符号为全上行符号或全下行符号。
第十一方面,提供了一种网络设备,包括处理器和存储器,所述存储器用于存储计算 机指令,所述处理器用于执行所述存储器中存储的计算机指令,当所述计算机指令被执行时,所述处理器用于执行上述第三方面或第三方面的任意可能的实现方式中的方法。
第十二方面,提供了一种网络设备,包括处理器和存储器,所述存储器用于存储计算机指令,所述处理器用于执行所述存储器中存储的计算机指令,当所述计算机指令被执行时,所述处理器用于执行上述第四方面或第四方面的任意可能的实现方式中的方法。
第十三方面,提供了一种提供了一种计算机存储介质,包括计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如上述第一方面或第一方面的任意可能的实现方式中所述的方法。
第十四方面,提供了一种提供了一种计算机存储介质,包括计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如上述第二方面或第二方面的任意可能的实现方式中所述的方法。
第十五方面,提供了一种提供了一种计算机存储介质,包括计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如上述第三方面或第三方面的任意可能的实现方式中所述的方法。
第十六方面,提供了一种计算机存储介质,包括计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如上述第四方面或第四方面的任意可能的实现方式中所述的方法。
第十七方面,提供了一种系统,包括第五方面或第六方面所述的无线装置、和第七方面或者第八方面所述的网络设备。
附图说明
图1是本申请实施例提供的通信方法的示意性交互图。
图2是本申请实施例提供的跨载波指示时隙格式示意图。
图3是本申请实施例提供的跨载波指示时隙格式示意图。
图4是本申请实施例提供的跨载波指示时隙格式示意图。
图5是本申请实施例提供的跨载波指示时隙格式示意图。
图6是本申请实施例提供的跨载波指示时隙格式示意图。
图7是本申请另一实施例提供的通信方法的示意性交互图。
图8是本申请实施例提供的单载波场景下时隙格式示意图。
图9是本申请实施例提供的单载波场景下时隙格式示意图。
图10是本申请实施例提供的无线装置的示意性框图。
图11是本申请实施例提供的无线装置的示意性框图。
图12是本申请实施例提供的无线装置的示意性框图。
图13是本申请实施例提供的无线装置的示意性框图。
图14是本申请实施例提供的网络设备的示意性框图。
图15是本申请实施例提供的网络设备的示意性框图。
图16是本申请实施例提供的网络设备的示意性框图。
图17是本申请实施例提供的网络设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统。其中,5G系统还可以称为新无线(new radio,NR)系统。
本申请实施例涉及到的终端设备还可以称为终端,是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE),其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请实施例中,实现终端设备的功能的装置可以是终端设备,也可以是终端设备中支持终端设备实现该功能的装置。本申请实施例中,以实现终端设备的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
本申请实施例涉及到的网络设备包括基站(base station,BS),是一种部署在无线接入网中可以和终端进行无线通信的设备。其中,基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。示例性地,本申请实施例涉及到的基站可以是5G系统中的基站或LTE系统中的基站,其中,5G系统中的基站还可以称为发送接收点(transmission reception point,TRP)或gNB。本申请实施例中,实现网络设备的功能的装置可以是网络设备,也可以是网络设备中支持网络设备实现该功能的装置。本申请实施例中,以实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
为了描述方便,本申请实施例中,以终端设备是UE、网络设备是基站为例描述本申请实施例提供的技术方案,但本申请不限于此。
下面将本申请实施例进一步详细说明。在实施例的阐述中,忽略上下行可能存在的时延,假设网络设备的发送时刻与终端设备的接收时刻相同。对于网络设备的发送和终端设备的接收相对应的处理,实施例中多从终端设备侧角度阐述,本领域技术人员可以理解,终端设备从网络设备接收,意味着网络设备进行了发送。
图1是根据本申请实施例的通信方法的示意性交互图。
应理解,图1的方法可以应用于多载波场景。可选地,图1的方法可以应用于但不限于跨载波SFI指示的场景,比如在一个载波上指示另一个载波的时隙格式,且两个载波的SCS不同的场景。
图1的方法可以包括110~130,下面分别对110~130进行详细描述。
在110中,基站确定在至少一个第二载波上的N个时隙的时隙格式。
可选地,该N个时隙的时隙格式是基于M个时隙格式确定的,其中,N和M为正整数。
这里需要说明的是,基站确定N个时隙的时隙格式的具体确定方式可以有多种实现,本申请实施例对于基站侧的确定方式不做具体限定,以基站能够实现对N个时隙的时隙格式的确定为准。
为了描述方便,下述实施例将以只有一个第二载波为例进行说明,但本申请并不限于此。
在120中,基站在第一载波上向UE发送信令。
相应地,UE可以在第一载波上接收到该信令。
可选地,该信令可以为高层信令,如无线资源控制(radio resource control,RRC)信令。
可选地,该信令可以为物理层信令,例如下行控制信息(downlink control information,DCI),可以承载于物理下行控制信道(physical downlink control channel,PDCCH)、增强的物理下行控制信道(enhanced physical downlink control channel,EPDCCH)、机器类通信物理下行控制信道(machine type communication physical downlink control channel,MPDCCH)、物理副链路控制信道(physical sidelink control channel,PSCCH)或窄带物理下行控制信道(narrowband physical downlink control channel,NPDCCH),本申请对此不作限定。
可选地,该信令可以为高层信令和物理层信令组合,如RRC信令加上DCI消息。
可选地,该信令可以包括M个时隙格式信息的指示信息。对于UE来说,通过所述信令获取所述M个时隙格式信息,即UE通过所述信令承载的上述指示信息获取所述M个时隙格式信息。
应理解,在申请实施例中,该信令也可以称为第一信令,本申请具体不作限定。
可选地,第二载波为除第一载波之外的载波。
可选地,第一载波和第二载波的SCS可以不同,也就是说,第一载波的第一时隙长度和第二载波的第二时隙长度可以不同。
例如,第一载波的SCS为30kHz,第二载波的SCS为15kHz,此时,第二时隙长度等于两倍的第一时隙长度。
在130中,UE确定在至少一个第二载波上的N个时隙的时隙格式。
可选地,时隙格式包括一个时隙中有几个下行符号,几个未知符号,几个上行符号的信息。
表1示例性地给出了256种时隙格式中的15种时隙格式。在表1中,一行表示一个时隙,可以看出每个时隙有14个符号,表1中的“D”表示下行符号,“U”表示上行符号,“X”表示未知符号。可以看到,时隙格式0表示一个时隙中的14个符号都为下行符号,时隙格式1表示一个时隙中的14个符号都为上行符号,时隙格式10表示一个时隙中有一个未知符号、13个上行符号。
表1
Figure PCTCN2019073966-appb-000001
可选地,该N个时隙的时隙格式可以基于M个时隙格式确定,其中,N和M为正整数。
可选地,该M个时隙格式可以基于UE接收的信令获取到。
可选地,UE可以基于RRC信令和/或DCI信令获取到M个时隙格式。
作为一种示例,一个时隙可能有256种时隙格式,UE通过预存的表格得到这256种时隙格式。而M个时隙共有256 M个时隙组合,基站可以通过RRC信令指示256 M个时隙组合可能性中的256个时隙格式组合,在确定出256个时隙格式组合后,基站再通过DCI指示256个时隙格式组合中的任意一个时隙格式组合。UE接收到RRC信令后可以知道256个时隙格式组合,接收到DCI之后,UE可以从DCI指示中知道是哪一个时隙格式组合,从而得到M个时隙的时隙格式。
这里需要说明的是,基站确定N个时隙的时隙格式,与UE确定所述时隙格式的方式可以存在差别,本申请实施例对此不做具体限定。
应理解,本申请实施例中,M个时隙的时隙格式中可以有相同的时隙格式。
可选地,UE可以基于接收第一信令的时刻,和/或,第一载波的第一时隙长度与第二载波的第二时隙长度之间的大小关系,确定该N个时隙。
应理解,本申请实施例中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单 独存在B这三种情况。
可选地,第一时隙长度和第二时隙长度的大小关系可以为H倍的关系,H可以为大于或等于1的整数,如2,4,8;H也可以为小于等于1的数,如0.5,0.25,0.125。
在一种实现方式中,UE可以基于接收第一信令的时刻,确定该N个时隙。
可选地,UE可以基于接收第一信令的时刻在第二载波对应的时域上的位置,确定该N个时隙。
可选地,该位置可以为第二载波的一个时隙的中间位置。其中,时隙的中间位置可以为时隙的1/2位置、1/4位置……7/8位置。
可选地,该位置可以为第二载波的一个时隙的起始位置。
可选地,时隙的起始位置可以表示从时隙的时隙边界开始的位置。
当第一时隙长度为第二时隙长度的H倍时,该位置可以为第二载波的一个时隙的起始位置。
当第二时隙长度为第一时隙长度的H倍时,该位置可以为第二载波的一个时隙的中间位置。
当第二时隙长度为第一时隙长度的H倍时,示例性地,如图2所示,载波1为第一载波,载波2为第二载波,第二时隙长度为第一时隙长度的2倍。可以看到,基站在第一载波上发送第一信令,UE在第一载波的时隙#10接收到包括第二载波3个时隙格式的第一信令,此时对应的是第二载波的时隙#5的1/2位置,即中间位置。
当第一时隙长度为第二时隙长度的H倍时,如图3所示,载波1为第一载波,载波2为第二载波,第一时隙长度为第二时隙长度的2倍。可以看到,基站在第一载波上发送第一信令,UE在第一载波的时隙#5接收到第二载波的3个时隙格式,此时对应的是第二载波的时隙#9的时隙边界,即为起始位置。
可选地,UE可以先确定该N个时隙的起始时隙,然后再确定该N个时隙具体是哪几个时隙。
可选地,起始时隙可以表示该N个时隙的第一个时隙。
UE确定起始时隙的实现方式可以有多种,本申请实施例对此不做具体限定。作为一个示例,UE可以基于第一信令的接收时刻,确定该N个时隙的起始时隙。
可选地,UE可以基于接收第一信令的时刻在第二载波对应的时域上的位置,确定该N个时隙的起始时隙。可选地,当UE接收第一信令的时刻位于第二载波上的一个时隙起始时刻时,可以确定起始时隙为UE接收第一信令的时刻在第二载波上的时隙。
可选地,当UE接收第一信令的时刻位于第二载波上的一个时隙中且非该时隙的起始时刻时,可以确定起始时隙为UE接收第一信令的时刻在第二载波对应的一个时隙的下一个时隙。
其中,位于一个时隙中且非该时隙的起始时刻也可以表述为时隙的中间位置。
继续参见图2,可以看到,UE接收第一信令的时刻位于第二载波的时隙#5中且不是时隙#5的起始时刻,可以确定起始时隙为时隙#5的下一个时隙,即起始时隙为#6。基于起始时隙#6,UE可以确定该3个时隙为#6、#7和#8。
可选地,当UE接收信令的时刻落入第一载波对应的一个时隙上的起始位置时,可以确定该N个时隙的起始时隙为对应的时隙。
继续参见图3,可以看到,UE接收第一信令的时刻位于第二载波的时隙#9的起始时刻,可以确定起始时隙为时隙#9。基于起始时隙#9,UE可以确定该N个时隙为#9、#10和#11。
作为一个示例,UE可以基于接收第一信令的时刻在第二载波对应的时域上的位置和偏移量,确定该N个时隙的起始时隙。
可选地,偏移量可以用于指示M个时隙格式开始生效的时隙。
可选地,基站可以配置一个偏移量,向UE发送包括该偏移量的第二信令。UE在接收到基站发送的第二信令后,可以基于接收到第一信令的时刻在第二载波对应的时域上的位置和偏移量,确定该N个时隙的起始时隙。
可选地,该第二信令可以是物理层信令,如DCI消息,也可以是高层信令,如RRC信令。
可选地,UE还可以自己配置一个偏移量。
如图4所示,令偏移量为2,UE在第一载波的时隙#10接收到第一信令,此时对应的是第二载波的时隙#5的中间位置,结合偏移量,可以确定起始时隙为#8。基于起始时隙#8,UE可以确定该3个时隙为#8、#9和#10。
再例如,令偏移量为4,若第一时隙长度为第二时隙长度的2倍,UE在第一载波的时隙#5接收到第一信令,此时对应的是第二载波的时隙#9,结合偏移量,可以确定起始时隙为时隙#13。基于起始时隙#13,UE可以确定该3个时隙为#13、#14和#15。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
需要说明的是,在一些实施例中,UE也可以基于偏移量确定起始时隙。
上述技术方案,UE基于信令的接收时刻,比如该接收时刻在第二载波上对应的位置,可以确定出N个时隙的起始时隙,从而可以确定M个时隙格式从第二载波的哪个时隙开始应用。
在一种实现方式中,UE可以基于接收第一信令的时刻以及第一时隙长度与第二时隙长度之间的大小关系,确定该N个时隙。
可选地,当第一时隙长度为第二时隙长度的H倍时,可以确定N个时隙数量为M或H*M,此时H为大于或等于1的整数。
可选地,当第二时隙长度为第一时隙长度的H倍时,可以确定N个时隙数量为M,此时H为大于或等于1的整数。
UE在确定了N个时隙的数量后,可以基于接收第一信令的时刻在第二载波对应的时域上的位置,确定N个时隙的起始位置,再结合确定的N个时隙的时隙数量确定该N个时隙。
UE基于接收第一信令的时刻在第二载波对应的时域上的位置确定时隙的起始位置,上述内容已有详细的描述,为了内容的简洁,此处不再赘述。
当第一时隙长度为第二时隙长度的H倍时,可以确定N个时隙数量为M或H*M。例如,当第一时隙长度为第二时隙长度的2倍时,如图3和图5所示,N个时隙的数量为可以为3或6。图3中,时隙数量为3,图5中,时隙数量为6。当时隙数量为6时,可以看到,UE接收第一信令的时刻对应第二载波时隙#9的起始位置,再结合确定的时隙数量 6,可以确定N个时隙分别为#9、#10、#11、#12、#13、#14。
UE在确定出该N个时隙后,可以基于M个时隙格式,确定该N个时隙的时隙格式。
在一种可能的实施例中,当M等于N时,M个时隙格式可以分别对应该N个时隙。
可选地,这种对应关系可以为一一对应关系。即N个时隙中的第一个时隙N 1对应于M个时隙格式中的第一个时隙格式M 1,N个时隙中的第二个时隙N 2对应于M个时隙格式中的第二个时隙格式M 2……N个时隙中的第N个时隙N N对应于M个时隙格式中的第M个时隙格式M M
如图2~图4所示,图中不同的图案表示不同的时隙格式,M=N=3,则UE基于接收到的第一信令确定的3个时隙格式与第二载波的3个时隙一一对应。例如图2,UE已经确定该3个时隙为时隙#6、#7和#8,则3个连续的时隙格式可以依次应用于时隙#6、#7和#8上,即第一个时隙格式应用于时隙#6上,第二个时隙格式应用于时隙#7上,第三个时隙格式应用于时隙#8上。
上述技术方案,当M等于N时,该N个时隙一一对应于M个时隙格式,即N 1对应于M 1,N 2对应于M 2,……,N N对应于M M,如此可以快速地确定该N个时隙的时隙格式,提高通信速率。
在一种可能的实施例中,可以令M个时隙格式分别对应M个时隙组,该M个时隙组中的每个时隙组包含N个时隙中的至少一个时隙。可选的,所述M个时隙组中时隙的长度为第二时隙长度。
也就是说,N个时隙数量属于连续的M个时隙组。其中,该M个时隙组与M个时隙格式一一对应。
可选地,每个时隙组包括的时隙数量可以基于第一时隙长度和第二时隙长度的大小关系确定的。
本申请实施例中,时隙组还可以称为时间范围或者其他名称,本申请不做限制。
可选地,当第一时隙长度为第二时隙长度的H倍时,每个时隙组可以包括H个时隙或一个时隙,每个时隙组的H个时隙的时隙格式相同,不同时隙组的时隙格式不同。此时,H为大于1的整数。
示例性地,如图5所示,N=6,M=3,第一时隙长度为第二时隙长度的2倍,因此,每个时隙组包括2个时隙,这6个时隙可以属于连续的3个时隙组,即时隙#9和#10属于第一个时隙组,时隙#11和#12属于第二个时隙组,时隙#13和#14属于第三个时隙组,第一个时隙组的时隙格式和第一个时隙格式M 1相同,第二个时隙组的时隙格式和第二个时隙格式M 2相同,第三个时隙组的时隙格式和第三个时隙格式M 3相同。
可选地,当一个监听周期P内除该N个时隙之外还有S个时隙时,UE还可以确定S个时隙的时隙格式
可选地,该S个时隙为一个监听周期P内除该N个时隙之外的时隙。
可选地,监听周期是指UE监听携带时隙格式指示符(slot format indicator,SFI)的PDCCH的周期。即UE多长时间接收一次PDCCH以获得SFI。
可选地,监听周期可以表示UE两次接收第一信令间隔的时间。
例如,参见图6,M=3,在一个监听周期P内除N个时隙,即时隙#6、#7和#8之外还有时隙#9和#10,则UE还可以确定时隙#9和#10的时隙格式。
可选地,该S个时隙的时隙格式可以基于M个时隙格式中的至少一个时隙格式或预配置的时隙格式确定。
在一种可能的实现方式中,该S个时隙的时隙格式可以基于M个时隙格式确定。
可选地,该S个时隙可以由L个时隙组组成,L个时隙组中M个时隙组的时隙格式不同。可选的,L个时隙组中时隙的长度为第二时隙长度。
换句话说,相隔M个时隙组的两个时隙组的时隙格式相同,相邻的M个时隙组内的时隙格式互不相同。
其中,每个时隙组包括至少一个时隙,每个时隙组中时隙的时隙格式相同。
例如,如图5所示,第二载波的时隙#9、#10、#11、#12、#13和#14属于N个时隙,第二载波的时隙#15、#16、#17和#18属于S个时隙。时隙#15、#16、#17和#18可以由两个时隙组组成,其中,第一个时隙组包括时隙#15和#16,第二个时隙组包括时隙#17和#18,其中,时隙#15和#16和时隙格式相同,时隙#17和#18的时隙格式相同,时隙#15、#16与时隙#17和#18的时隙格式不同。
UE可以确定时隙#15和#16的时隙格式和与之相隔3个时隙组,即时隙#9和#10的时隙格式相同,时隙#17和#18的时隙格式和与之相隔3个时隙组,即时隙#11和#12的时隙格式相同。
再例如,如图6所示,第二载波的时隙#8、#9和#10属于N个时隙,第二载波的时隙#6和#7属于S个时隙,时隙#6和#7可以由两个时隙组组成,其中,第一个时隙组包括时隙#6,第二个时隙组包括时隙#7,时隙#6和#7的时隙格式不同。
UE可以确定时隙#6的时隙格式和与之相隔3个时隙组,即时隙#9的时隙格式相同,时隙#7的时隙格式和与之相隔3个时隙组,即时隙#10的时隙格式相同。
在一种可能的实现方式中,该S个时隙的时隙格式可以基于第M个时隙格式确定。
可选地,第M个时隙格式也可以称为时序上的最后一个时隙格式或者最后一个时隙格式或者其他名称,本申请不做限制。
例如,在图4中,UE再确定了第二载波的时隙#8、#9和#10的时隙格式后,还可以确定时隙#6和#7的时隙格式,时隙#6和#7的时隙格式可以和M个时隙格式中的第3个时隙格式相同。
上述技术方案,将M个时隙格式的最后一个时隙格式应用于剩余的S个时隙的时隙格式上,可以保证部分连续时隙的时隙格式相同,这样可以将时隙应用于时隙聚合的场景中。
在一种可能的实现方式中,该S个时隙的时隙格式可以基于预配置的时隙格式确定。
可选地,预配置的时隙格式可以是通过RRC信令配置的。
可选地,基站可以向UE发送RRC信令,该RRC信令可以指示预配置的时隙格式。
其中,该RRC信令可以是公共RRC信令,也可以是专用RRC信令,本申请对此不作限定。
可选地,该预配置的时隙格式可以是UE基于协议规定确定的。
可选地,对于时分双工(time division duplexing,TDD),该S个时隙的时隙格式可以为RRC信令预配置的时隙格式。
也就是说,该S个时隙的时隙格式可以回退到RRC信令配置的时隙格式。
具体而言,在TDD模式下,基站可以通过RRC信令给UE配置时隙格式,告诉UE哪些符号是上行,哪些符号是下行,哪些符号是保护时隔。当UE没有收到携带SFI的DCI时,UE可以直接使用RRC信令配置的时隙格式;当UE收到携带SFI的DCI时,SFI的时隙格式覆盖RRC信令配置的时隙格式;当UE收到的携带SFI的DCI只指示一个监听周期中的部分时隙时,其他时隙的时隙格式可以使用RRC信令配置的时隙格式。
可选地,对于频分双工(frequency division duplexing,FDD),该预配置的时隙格式对应的符号为全上行符号或全下行符号。
作为一个示例,对于FDD下行载波,该S个时隙的时隙格式对应的14符号全为下行符号。如表1中的时隙格式0。
作为一个示例,对于FDD上行载波,该S个时隙的时隙格式对应的14符号全为上行符号。如表1中的时隙格式1。
上述技术方案,在确定N个时隙的时隙格式后,若在一个监听周期内除N个时隙还有剩余时隙,则可以基于M个时隙格式中的至少一个时隙格式或预配置的时隙格式确定剩余时隙的时隙格式,这样可以确定一个监听周期内第二载波所有的时隙的时隙格式,增加确定的时隙格式的时隙数量。
可选地,第一载波和至少一个第二载波中的多个载波可以属于多个载波组,其中,同一个载波组的载波的时隙格式相同,属于不同载波组的载波的时隙格式相同。
其中,可以有多个第一载波,且每个载波组中至少包括一个载波。
可选地,基站可以向UE发送分组信息。
相应地,UE接收到该分组信息后,可以基于该分组信息将至少一个第一载波和至少一个第二载波中的多个载波进行分组。
上述技术方案,通过对多个载波进行分组,时隙格式相同的载波属于同一个载波组,这样在确定第二载波的时隙格式时,只需要确定一个载波组中的一个载波的时隙格式,而不用确定每个载波的时隙格式,如此可以节省信令开销,并且还可以提高通信速率。
本申请实施例中,在跨载波指示时隙格式且多个载波的SCS不同时,基站和UE可以基于在第一载波上发送或接收的信令获取到M个时隙格式,再基于M个时隙格式确定出第二载波的时隙格式,解决了在跨载波指示时隙格式的情况下,第二载波的时隙的时隙格式无法确定的问题。除此之外,在一个时隙上将所有时隙的时隙格式都进行指示,这样可以节省信令开销。
图7是根据本申请实施例的通信方法的示意性交互图。应理解,图7的方法可以应用但不限于于单载波且M小于P的场景。
图7的方法可以包括710~750,下面分别对710~750进行详细描述。
在710中,基站确定M个时隙组的时隙格式,其中,M为正整数。
可选地,M个时隙组的时隙格式可以是基于M个时隙格式确定的。
这里需要说明的是,基站确定M个时隙组的时隙格式的具体确定方式可以有多种实现,本申请实施例对于基站侧的确定方式不做具体限定,以基站能够实现对M个时隙组的时隙格式的确定为准。
在720中,基站向UE发送信令。相应地,UE可以接收到基站发送的该信令。
可选地,该信令可以包括M个时隙格式信息的指示信息。
可选地,该信令可以为高层信令,如RRC信令。
可选地,该信令可以为物理层信令,例如DCI消息,可以承载于PDCCH、EPDCCH、MPDCCH、PSCCH或NPDCCH中,本申请对此不作限定。
可选地,该信令可以为高层信令和物理层信令的组合,如RRC信令加上DCI消息。
在730中,UE确定M个时隙组的时隙格式,其中,每个时隙组包括至少一个时隙,M为正整数。
可选地,M个时隙组的时隙格式可以基于M个时隙格式确定。
可选地,UE可以基于接收的信令获取M个时隙格式。
可选地,UE可以基于RRC信令和/或DCI信令获取到M个时隙格式。
作为一种示例,一个时隙可能有256种时隙格式,UE通过预存的表格得到这256种时隙格式。而M个时隙共有256 M个时隙组合,基站可以通过RRC信令指示256 M个时隙组合可能性中的256个时隙格式组合,在确定出256个时隙格式组合后,基站再通过DCI指示256个时隙格式组合中的任意一个时隙格式组合。UE接收到RRC信令后可以知道256个时隙格式组合,接收到DCI之后,UE可以从DCI指示中知道是哪一个时隙格式组合,从而得到M个时隙的时隙格式。
可选地,该M个时隙组可以对应于M个时隙格式。
可选地,这种对应关系可以为一一对应关系。
示例性地,当每个时隙组中包括一个时隙时,UE可以确定M个时隙的时隙格式与M个时隙格式一一对应。即N个时隙中的第一个时隙N 1对应于M个时隙格式中的第一个时隙格式M 1,N个时隙中的第二个时隙N 2对应于M个时隙格式中的第二个时隙格式M 2……N个时隙中的第N个时隙N N对应于M个时隙格式中的第M个时隙格式M M
再示例性地,当每个时隙组中包括H个时隙时,该H*M个时隙属于M个时隙组,该M个时隙组与M个时隙格式一一对应。
例如,如图8所示,M=3,P=10,每个时隙组中包括一个时隙,UE在时隙#10收到3个时隙格式,则接收到的3个时隙格式分别应用于时隙#10、#11、#12,即时隙#10的时隙格式与接收到的第一个时隙格式相同,时隙#11的时隙格式与接收到的第二个时隙格式相同,时隙#12的时隙格式与接收到的第三个时隙格式相同。
如图9所示,M=3,P=10,每个时隙组中包括两个时隙,UE在时隙#10收到3个时隙格式,则接收到的3个时隙格式分别应用于时隙#10、#11、#12、#13、#14和#15,这六个时隙可以属于3个时隙组,即时隙#10和#11属于第一个时隙组,时隙#12和#13属于第二个时隙组,时隙#14和#15属于第三个时隙组,这三个时隙组与三个时隙格式一一对应,也就是说,第一个时隙组与第一个时隙格式M 1对应,第二个时隙组与第二个时隙格式M 2对应,第三个时隙组与第三个时隙格式M 3对应,即时隙#10和#11的时隙格式和第一个时隙格式M 1相同,时隙#12和#13和第二个时隙格式M 2相同,时隙#14和#15和第三个时隙格式M 3相同。
可选地,UE也可以基于接收到的M个时隙格式和偏移量,确定M个时隙组的时隙格式。
可选地,UE在时隙#K收到M个时隙格式,令偏移量为S,若每个时隙组包括一个时隙,则该M个时隙格式可以应用于时隙#(K+S)至时隙#(K+S+M-1)上。
例如,UE在时隙#10收到3个时隙格式,偏移量为2,每个时隙组包括一个时隙,则时隙#12和第一个时隙格式M 1相同,时隙#13和第二个时隙格式M 2相同,时隙#14和第三个时隙格式M 3相同。
再例如,若每个时隙组包括两个时隙,UE在时隙#10收到3个时隙格式,偏移量为2,则时隙#14和#15的时隙格式和第一个时隙格式相同,时隙#16和#17和第二个时隙格式相同,时隙#18和#19和第三个时隙格式相同。
应理解,关于偏移量,前面内容已经有了详细地描述,此处不再赘述。
在740中,UE基于M个时隙格式中的至少一个时隙格式或预配置的时隙格式,确定S个时隙的时隙格式。
其中,S个时隙为一个监听周期P内除M个时隙组之外的时隙。
可选地,预配置的时隙格式可以是通过RRC信令配置的。
可选地,基站可以向UE发送RRC信令,该RRC信令指示预配置的时隙格式。
其中,该RRC信令可以是公共RRC信令,也可以是专用RRC信令,本申请对此不作限定。
可选地,该预配置的时隙格式可以是UE基于协议规定确定的。
在一种可能的实现方式中,该S个时隙的时隙格式可以基于M个时隙格式确定。
可选地,该S个时隙可以由L个时隙组组成,L个时隙组中M个时隙组的时隙格式不同。即隔M个时隙组的两个时隙组的时隙格式相同,相邻的M个时隙组内的时隙格式互不相同。
其中,每个时隙组包括至少一个时隙,每个时隙组中的时隙的时隙格式相同。
继续参见图8,S=7,每个时隙组包括一个时隙,如选项1,时隙#13、#16和#19的时隙格式和时隙#10的时隙格式相同,时隙#14和#17的时隙格式和时隙#11的时隙格式相同,时隙#15和#18的时隙格式和时隙#12的时隙格式相同。
继续参见图9,S=4,每个时隙组包括两个时隙,如选项1,该4个时隙可以组成2个时隙组,时隙#16和#17为一个时隙组,时隙#18和#19为一个时隙组,相隔三个时隙组的两个时隙组的时隙格式相同,时隙#16和#17与时隙#10和#11相隔三个时隙组,时隙#18和#19与时隙#12和#13相隔三个时隙组,因此时隙#16和#17的时隙格式与时隙#10和#11的时隙格式相同,时隙#18和#19的时隙格式与时隙#12和#13的时隙格式相同。
这里需要说明的是,基站也需要确定S个时隙的时隙格式。但是对于基站来说,具体的确定方式可以有多种实现,与UE确定S个时隙的时隙格式的方式可以存在差别。本申请实施例对于基站侧的确定方式不做具体限定,以基站能够实现对S个时隙的时隙格式的确定为准。
可选地,基站可以基于M个时隙格式中的至少一个时隙格式或预配置的时隙格式确定S个时隙。
在一种可能的实现方式中,该S个时隙的时隙格式可以基于第M个时隙格式确定。
例如,继续参见图8和图9,如选项2,剩余时隙,即S个时隙的时隙格式都和第3个时隙的时隙格式相同。
在一种可能的实现方式中,该S个时隙的时隙格式可以基于预配置的时隙格式确定。
可选地,对于时分双工(time division duplexing,TDD),该S个时隙的时隙格式可 以为RRC信令预配置的时隙格式。
也就是说,该S个时隙的时隙格式可以回退到RRC信令配置的时隙格式。
具体而言,在TDD模式下,基站可以通过RRC信令给UE配置时隙格式,告诉UE哪些符号是上行,哪些符号是下行,哪些符号是保护时隔。当UE没有收到通过携带SFI的DCI时,UE可以直接使用RRC信令配置的时隙格式;当UE收到携带SFI的DCI时,SFI的时隙格式覆盖RRC信令配置的时隙格式;当UE收到的携带SFI的DCI只指示一个监听周期中的部分时隙时,其他时隙的时隙格式可以使用RRC信令配置的时隙格式。
可选地,对于频分双工(frequency division duplexing,FDD),该预配置的时隙格式对应的符号为全上行符号或全下行符号。
作为一个示例,对于FDD下行载波,该S个时隙的时隙格式对应的14符号全为下行符号。如表1中的时隙格式0。
作为一个示例,对于FDD上行载波,该S个时隙的时隙格式对应的14符号全为上行符号。如表1中的时隙格式1。
本申请实施例,当监听周期P大于M时,在基站或UE基于发送或接收的信令确定M个时隙组的时隙格式后,还可以基于M个时隙格式或去配置的时隙格式,确定剩余时隙的时隙格式,从而可以解决剩余时隙的时隙格式不明确的问题。
以上对本申请实施例提供的方法进行了详细描述,为了实现上述本申请实施例提供的方法中的各功能,终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
基于与上述方法实施例同样的发明构思,本申请实施例提供了一种无线装置,用于实现上述方法中终端设备的功能。该无线装置可以是终端设备,也可以是终端设备中的装置。图10是本申请实施例无线装置的示意性框图。应理解,图10示出的无线装置1000仅是示例,本申请实施例的无线装置1000还可以包括其他模块或单元,或者包括与图10中的各个模块的功能相似的模块,或者并非要包括图10中所有模块。
接收单元1010,用于在第一载波上接收信令。
确定单元1020,用于确定在至少一个第二载波上的N个时隙的时隙格式,N个时隙的时隙格式是基于M个时隙格式确定的,N和M为正整数,其中,M个时隙格式是基于接收的信令获取的;N个时隙基于以下至少一项确定:信令的接收时刻;第一载波的第一时隙长度与至少一个第二载波的第二时隙长度之间的大小关系。
可选地,该确定单元1020还可以用于基于信令的接收时刻,确定N个时隙的起始时隙。
可选地,N个时隙的起始时隙为该接收单元1010接收信令的时刻位于至少一个第二载波上的时隙或者该接收单元1010接收信令的时刻位于至少一个第二载波上时隙的下一个时隙。
可选地,M等于N,M个时隙分别对应N个时隙格式。
可选地,M个时隙格式分别对应M个时隙组,M个时隙组中每个时隙组包含N个时隙中的至少一个时隙。
可选地,每个时隙组包括的时隙数量是基于第一时隙长度和第二时隙长度的大小关系确定的。
可选地,该确定单元1020还可以用于确定S个时隙的时隙格式,该S个时隙为一个监听周期内除N个时隙之外的时隙,S个时隙的时隙格式是基于M个时隙格式中的至少一个时隙格式或预配置的时隙格式确定的。
可选地,S个时隙由L个时隙组组成,每个时隙组包括至少一个时隙,且每个时隙组中时隙的时隙格式相同;L个时隙组中M个时隙组的时隙格式不同。
可选地,该确定单元1020确定S个时隙的时隙格式是M个时隙格式中的第M个时隙格式,或者,最后一个时隙格式。
可选地,该预配置的时隙格式是通过无线资源控制RRC信令配置的。
可选地,该预配置的时隙格式对应的符号为全上行符号或全下行符号。
可选地,第一载波和至少一个第二载波属于多个载波组,其中,同一个载波组的载波的时隙格式相同,不同载波组的载波的时隙格式不同。
可选地,第一载波和至少一个第二载波的子载波间隔SCS不同。
如图11所示为本申请实施例提供的无线装置1100,用于实现上述方法中终端设备的功能。该无线装置可以是终端设备,也可以是终端设备中的装置。其中,该无线装置可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。无线装置1100包括处理器1120,用于实现本申请实施例提供的方法中终端设备的功能。示例性地,处理器1120可以用于在至少一个第二载波上确定N个时隙的时隙格式等,具体参见方法示例中的详细描述,此处不做赘述。
无线装置1100还可以包括存储器1130,用于存储程序指令和/或数据。存储器1130和处理器1120耦合。处理器1120可能和存储器1130协同操作。处理器1120可能执行存储器1130中存储的程序指令。
无线装置1100还可以包括收发器1110(可以替换为接收器和发射器,由接收器实现接收的功能),用于通过传输介质和其它设备进行通信,从而用于无线装置1100中的装置可以和其它设备进行通信。处理器1120利用收发器1110收发信令,并用于实现本申请方法实施例中终端设备所执行的方法。
本申请实施例中不限定上述收发器1110、处理器1120以及存储器1130之间的具体连接介质。本申请实施例在图11中以存储器1130、处理器1120以及收发器1110之间通过总线1140连接,总线在图11中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
基于与上述方法实施例同样的发明构思,本申请实施例提供了一种无线装置,用于实现上述方法中终端设备的功能。该无线装置可以是终端设备,也可以是终端设备中的装置。图12是本申请实施例无线装置的示意性框图。应理解,图12示出的无线装置1200仅是示例,本申请实施例的无线装置1200还可以包括其他模块或单元,或者包括与图12中的各个模块的功能相似的模块,或者并非要包括图12中所有模块。
接收单元1210,用于接收信令。
第一确定单元1220,用于确定M个时隙组的时隙格式,M为正整数,M个时隙组的 时隙格式是基于M个时隙格式确定的,M个时隙格式是基于接收的信令获取的。
第二确定单元1230,用于基于M个时隙格式中的至少一个时隙格式或预配置的时隙格式,确定S个时隙的时隙格式,其中,S个时隙为一个监听周期内除M个时隙组之外的时隙。
可选地,M个时隙格式分别对应M个时隙组,该M个时隙组中的每个时隙组包括至少一个时隙。
可选地,S个时隙由L个时隙组组成,每个时隙组包括至少一个时隙,且每个时隙组中时隙的时隙格式相同;L个时隙组中M个时隙组的时隙格式不同。
可选地,第二确定单元1230确定S个时隙的时隙格式是M个时隙格式中的第M个时隙格式,或者,最后一个时隙格式。
可选地,该预配置的时隙格式是通过无线资源控制RRC信令配置的,和/或该预配置的时隙格式对应的符号为全上行符号或全下行符号。
如图13所示为本申请实施例提供的无线装置1300,用于实现上述方法中终端设备的功能。该无线装置可以是终端设备,也可以是终端设备中的装置。其中,该无线装置可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。无线装置1300包括处理器1320,用于实现本申请实施例提供的方法中终端设备的功能。示例性地,处理器1320可以用于确定M个时隙组的时隙格式等,具体参见方法示例中的详细描述,此处不做赘述。
无线装置1300还可以包括存储器1330,用于存储程序指令和/或数据。存储器1330和处理器1320耦合。处理器1320可能和存储器1330协同操作。处理器1320可能执行存储器1330中存储的程序指令。
无线装置1300还可以包括收发器1310(可以替换为接收器和发射器,由接收器实现接收的功能),用于通过传输介质和其它设备进行通信,从而用于无线装置1300中的装置可以和其它设备进行通信。处理器1320利用收发器1310收发信令,并用于实现本申请方法实施例中终端设备所执行的方法。
本申请实施例中不限定上述收发器1310、处理器1320以及存储器1330之间的具体连接介质。本申请实施例在图13中以存储器1330、处理器1320以及收发器1310之间通过总线1340连接,总线在图13中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
基于与上述方法实施例同样的发明构思,本申请实施例提供了一种网络设备。图14是本申请实施例网络设备的示意性框图。应理解,图14示出的网络设备1400仅是示例,本申请实施例的网络设备1400还可以包括其他模块或单元,或者包括与图14中的各个模块的功能相似的模块,或者并非要包括图14中所有模块。
确定单元1410,用于确定在至少一个第二载波上的N个时隙的时隙格式,N个时隙的时隙格式是基于M个时隙格式确定的,N和M为正整数。
发送单元1420,用于在第一载波上发送信令,该信令包括所述M个时隙格式信息的指示信息。
其中,N个时隙与以下至少一项相关:发送单元1420发送信令的时刻;第一载波的 第一时隙长度与至少一个第二载波的第二时隙长度之间的大小关系。
可选地,N个时隙的起始时隙与发送单元1420发送信令的时刻相关。
可选地,N个时隙的起始时隙为该发送单元1420发送信令的时刻位于至少一个第二载波上的时隙或者该发送单元1420发送信令的时刻位于至少一个第二载波上的时隙的下一个时隙。
可选地,M等于N,M个时隙分别对应N个时隙格式。
可选地,M个时隙格式分别对应M个时隙组,M个时隙组中每个时隙组包含N个时隙中的至少一个时隙。
可选地,每个时隙组包括的时隙数量是基于第一时隙长度和第二时隙长度的大小关系确定的。
可选地,该确定单元1410还可以用于确定S个时隙的时隙格式,该S个时隙为一个监听周期内除N个时隙之外的时隙,S个时隙的时隙格式是基于M个时隙格式中的至少一个时隙格式或预配置的时隙格式确定的。
可选地,S个时隙由L个时隙组组成,每个时隙组包括至少一个时隙,且每个时隙组中时隙的时隙格式相同;L个时隙组中M个时隙组的时隙格式不同。
可选地,该确定单元1410确定S个时隙的时隙格式是M个时隙格式中的第M个时隙格式,或者,最后一个时隙格式。
可选地,该预配置的时隙格式是通过无线资源控制RRC信令配置的。
可选地,该预配置的时隙格式对应的符号为全上行符号或全下行符号。
可选地,第一载波和至少一个第二载波属于多个载波组,其中,同一个载波组的载波的时隙格式相同,不同载波组的载波的时隙格式不同。
可选地,第一载波和至少一个第二载波的子载波间隔SCS不同。
如图15所示为本申请实施例提供的网络设备1500。网络设备1500包括处理器1520,用于实现本申请实施例提供的方法中网络设备的功能。示例性地,处理器1520可以用于在至少一个第二载波上确定N个时隙的时隙格式等,具体参见方法示例中的详细描述,此处不做赘述。
网络设备1500还可以包括存储器1530,用于存储程序指令和/或数据。存储器1530和处理器1520耦合。处理器1520可能和存储器1530协同操作。处理器1520可能执行存储器1530中存储的程序指令。
网络设备1500还可以包括收发器1510,用于通过传输介质和其它设备进行通信,从而用于网络设备1500中的装置可以和其它设备进行通信。处理器1520利用收发器1510收发信令,并用于实现本申请方法实施例中网络设备所执行的方法。
本申请实施例中不限定上述收发器1510、处理器1520以及存储器1530之间的具体连接介质。本申请实施例在图15中以存储器1530、处理器1520以及收发器1510之间通过总线1540连接,总线在图15中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图15中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
基于与上述方法实施例同样的发明构思,本申请实施例提供了一种网络设备。图16是本申请实施例网络设备的示意性框图。应理解,图16示出的网络设备1600仅是示例, 本申请实施例的网络设备1600还可以包括其他模块或单元,或者包括与图16中的各个模块的功能相似的模块,或者并非要包括图16中所有模块。
确定单元1610,用于确定M个时隙组的时隙格式,M为正整数,M个时隙组的时隙格式是基于M个时隙格式确定的。
发送单元1620,用于发送信令,该信令包括M个时隙格式信息的指示信息。
其中,S个时隙格式与M个时隙格式中的至少一个时隙格式或预配置的时隙格式相关,S个时隙为一个监听周期内除M个时隙组之外的时隙。
可选地,M个时隙格式分别对应M个时隙组,该M个时隙组中的每个时隙组包括至少一个时隙。
可选地,S个时隙由L个时隙组组成,每个时隙组包括至少一个时隙,且每个时隙组中时隙的时隙格式相同;L个时隙组中M个时隙组的时隙格式不同。
可选地,第二确定单元1630确定S个时隙的时隙格式是M个时隙格式中的第M个时隙格式,或者最后一个时隙格式。
可选地,该预配置的时隙格式是通过无线资源控制RRC信令配置的,和/或该预配置的时隙格式对应的符号为全上行符号或全下行符号。
如图17所示为本申请实施例提供的网络设备1700。网络设备1700包括处理器1720,用于实现本申请实施例提供的方法中网络设备的功能。示例性地,处理器1720可以用于确定M个时隙组的时隙格式等,具体参见方法示例中的详细描述,此处不做赘述。
网络设备1700还可以包括存储器1730,用于存储程序指令和/或数据。存储器1730和处理器1720耦合。处理器1720可能和存储器1730协同操作。处理器1720可能执行存储器1730中存储的程序指令。
网络设备1700还可以包括收发器1710,用于通过传输介质和其它设备进行通信,从而用于网络1700中的装置可以和其它设备进行通信。处理器1720利用收发器1710收发信令,并用于实现本申请方法实施例中网络设备所执行的方法。
本申请实施例中不限定上述收发器1710、处理器1720以及存储器1730之间的具体连接介质。本申请实施例在图17中以存储器1730、处理器1720以及收发器1710之间通过总线1740连接,总线在图17中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图17中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例还提供一种通信系统,其包含执行本申请上述实施例所提到的至少一个网络设备以及至少一个终端设备。
本申请实施例还提供一种装置(例如,集成电路、无线设备、电路模块等)用于实现上述通信方法。实现本文描述的功率跟踪器和/或供电发生器的装置可以是自立设备或者可以是较大设备的一部分。设备可以是(i)自立的IC;(ii)具有一个或多个1C的集合,其可包括用于存储数据和/或指令的存储器IC;(iii)RFIC,诸如RF接收机或RF发射机/接收机;(iv)ASIC,诸如移动站调制解调器;(v)可嵌入在其他设备内的模块;(vi)接收机、蜂窝电话、无线设备或者移动单元;(vii)其他等等。
本申请实施例提供的方法和装置,可以应用于终端设备或网络设备(可以统称为无线设备)。该终端设备或网络设备或无线设备可以包括硬件层、运行在硬件层之上的操作 系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、以及即时通信软件等应用。并且,在本申请实施例中,本申请实施例并不限定方法的执行主体的具体结构。
可以理解的是,附图仅仅示出了无线装置的简化设计。在实际应用中,无线装置可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (49)

  1. 一种通信方法,其特征在于,包括:
    终端设备在第一载波上接收信令;
    所述终端设备确定在至少一个第二载波上的N个时隙的时隙格式,所述N个时隙的时隙格式是基于M个时隙格式确定的,所述N和M为正整数;其中,所述M个时隙格式是基于所述接收的信令获取的;
    所述N个时隙基于以下至少一项确定:
    所述信令的接收时刻;
    所述第一载波的第一时隙长度与所述至少一个第二载波的第二时隙长度之间的大小关系。
  2. 根据权利要求1所述的方法,其特征在于,所述第一载波的第一时隙长度与所述至少一个第二载波的第二时隙长度之间的大小关系为所述第一载波的第一时隙长度与所述至少一个第二载波的第二时隙长度之间的倍数关系。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一载波的第一时隙长度与所述至少一个第二载波的第二时隙长度之间的大小关系是基于所述第一载波的子载波间隔与所述至少一个第二载波的子载波间隔之间的大小关系确定的。
  4. 根据权利要求3所述的方法,其特征在于,所述第一载波的子载波间隔与所述至少一个第二载波的子载波间隔之间的大小关系为倍数关系。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备基于所述信令的接收时刻,确定所述N个时隙的起始时隙。
  6. 根据权利要求5所述的方法,其特征在于,所述N个时隙的起始时隙为所述信令的接收时刻位于所述至少一个第二载波上的时隙或者所述信令的接收时刻位于所述至少一个第二载波上的时隙的下一个时隙。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述M等于N,所述M个时隙格式分别对应所述N个时隙。
  8. 根据权利要求1至6中任一项所述的方法,其特征在于,所述M个时隙格式分别对应M个时隙组,所述M个时隙组中的每个时隙组包含所述N个时隙中的至少一个时隙。
  9. 根据权利要求8所述的方法,其特征在于,所述每个时隙组包括的时隙数量是基于所述第一时隙长度和所述第二时隙长度的大小关系确定的。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定S个时隙的时隙格式,所述S个时隙为一个监听周期内除所述N个时隙之外的时隙,所述S个时隙的时隙格式是基于所述M个时隙格式中的至少一个时隙格式或预配置的时隙格式确定的。
  11. 根据权利要求10所述的方法,其特征在于,所述S个时隙由L个时隙组组成,每个时隙组包括至少一个时隙,且所述每个时隙组中时隙的时隙格式相同;
    所述L个时隙组中M个时隙组的时隙格式不同。
  12. 根据权利要求10所述的方法,其特征在于,所述S个时隙的时隙格式是所述M 个时隙格式中的第M个时隙格式,或者,最后一个时隙格式。
  13. 根据权利要求10所述的方法,其特征在于,所述预配置的时隙格式是通过无线资源控制RRC信令配置的。
  14. 根据权利要求10所述的方法,其特征在于,所述预配置的时隙格式对应的符号为全上行符号或全下行符号。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述第一载波和所述至少一个第二载波属于多个载波组,其中,同一个载波组的载波的时隙格式相同,不同载波组的载波的时隙格式不同。
  16. 根据权利要求1至15中任一项所述的方法,其特征在于,所述第一载波和所述至少一个第二载波的子载波间隔SCS不同。
  17. 一种通信方法,其特征在于,包括:
    终端设备接收信令;
    所述终端设备确定M个时隙组的时隙格式,所述M为正整数,所述M个时隙组的时隙格式是基于M个时隙格式确定的,所述M个时隙格式是基于所述接收的信令获取的;
    所述终端设备基于所述M个时隙格式中的至少一个时隙格式或预配置的时隙格式,确定S个时隙的时隙格式,其中,所述S个时隙为一个监听周期内除所述M个时隙组之外的时隙。
  18. 根据权利要求17所述的方法,其特征在于,所述M个时隙格式分别对应所述M个时隙组,所述M个时隙组中的每个时隙组包括至少一个时隙。
  19. 根据权利要求17或18所述的方法,其特征在于,所述S个时隙由L个时隙组组成,每个时隙组包括至少一个时隙,且所述每个时隙组中时隙的时隙格式相同;
    所述L个时隙组中M个时隙组的时隙格式不同。
  20. 根据权利要求17或18所述的方法,其特征在于,所述S个时隙的时隙格式是所述M个时隙格式中的第M个时隙格式,或者,最后一个时隙格式。
  21. 根据权利要求17或18所述的方法,其特征在于,所述预配置的时隙格式是通过无线资源控制RRC信令,和/或,所述预配置的时隙格式对应的符号为全上行符号或全下行符号。
  22. 一种通信方法,其特征在于,包括:
    网络设备确定在至少一个第二载波上的N个时隙的时隙格式,所述N个时隙的时隙格式是基于M个时隙格式确定的,所述N和M为正整数;
    所述网络设备在第一载波上发送信令,所述信令包括所述M个时隙格式的指示信息;
    所述N个时隙与以下至少一项相关:
    所述信令的发送时刻;
    所述第一载波的第一时隙长度与所述至少一个第二载波的第二时隙长度之间的大小关系。
  23. 根据权利要求22所述的方法,其特征在于,所述第一载波的第一时隙长度与所述至少一个第二载波的第二时隙长度之间的大小关系为所述第一载波的第一时隙长度与所述至少一个第二载波的第二时隙长度之间的倍数关系。
  24. 根据权利要求22或23所述的方法,其特征在于,所述第一载波的第一时隙长度 与所述至少一个第二载波的第二时隙长度之间的大小关系是基于所述第一载波的子载波间隔与所述至少一个第二载波的子载波间隔之间的大小关系确定的。
  25. 根据权利要求24所述的方法,其特征在于,所述第一载波的子载波间隔与所述至少一个第二载波的子载波间隔之间的大小关系为倍数关系。
  26. 根据权利要求22至25中任一项所述的方法,其特征在于,所述N个时隙的起始时隙与所述信令的发送时刻相关。
  27. 根据权利要求26所述的方法,其特征在于,所述N个时隙的起始时隙为所述信令的发送时刻位于所述至少一个第二载波上的时隙或者所述信令的发送时刻位于所述至少一个第二载波上的时隙的下一个时隙。
  28. 根据权利要求22至27中任一项所述的方法,其特征在于,所述M等于N,所述N个时隙分别对应所述M个时隙格式。
  29. 根据权利要求22至28中任一项所述的方法,其特征在于,所述M个时隙格式分别对应M个时隙组,所述M个时隙组中的每个时隙组包含所述N个时隙中的至少一个时隙。
  30. 根据权利要求29所述的方法,其特征在于,所述每个时隙组包括的时隙数量是基于所述第一时隙长度和所述第二时隙长度的大小关系确定的。
  31. 根据权利要求22至30中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定S个时隙的时隙格式,所述S个时隙为一个监听周期内除所述N个时隙之外的时隙,所述S个时隙的时隙格式是基于所述M个时隙格式中的至少一个时隙格式或预配置的时隙格式确定的。
  32. 根据权利要求31所述的方法,其特征在于,所述S个时隙由L个时隙组组成,每个时隙组包括至少一个时隙,且所述每个时隙组中时隙的时隙格式相同;
    所述L个时隙组中M个时隙组的时隙格式不同。
  33. 根据权利要求31所述的方法,其特征在于,所述S个时隙的时隙格式是所述M个时隙格式中的第M个时隙格式,或者,最后一个时隙格式。
  34. 根据权利要求31所述的方法,其特征在于,所述预配置的时隙格式是通过无线资源控制RRC信令配置的。
  35. 根据权利要求31所述的方法,其特征在于,所述预配置的时隙格式对应的符号为全上行符号或全下行符号。
  36. 根据权利要求22至35中任一项所述的方法,其特征在于,所述第一载波和所述至少一个第二载波中的多个载波属于多个载波组,其中,同一个载波组的载波的时隙格式相同,属于不同载波组的载波的时隙格式不同。
  37. 根据权利要求22至36中任一项所述的方法,其特征在于,所述第一载波和所述至少一个第二载波的子载波间隔SCS不同。
  38. 一种通信方法,其特征在于,包括:
    网络设备确定M个时隙组的时隙格式,所述M为正整数,所述M个时隙组的时隙格式是基于M个时隙格式确定的;
    所述网络设备发送信令,所述信令包括所述M个时隙格式信息的指示信息;
    其中,S个时隙与所述M个时隙格式中的至少一个时隙格式或预配置的时隙格式相 关,其中,所述S个时隙为一个监听周期内除所述M个时隙组之外的时隙。
  39. 根据权利要求38所述的方法,其特征在于,所述M个时隙格式分别对应所述M个时隙组,所述M个时隙组中的每个时隙组包括至少一个时隙。
  40. 根据权利要求38或39所述的方法,其特征在于,所述S个时隙由L个时隙组组成,每个时隙组包括至少一个时隙,且所述每个时隙组中时隙的时隙格式相同;
    所述L个时隙组中M个时隙组的时隙格式不同。
  41. 根据权利要求38或39所述的方法,其特征在于,所述S个时隙的时隙格式是所述M个时隙格式中的第M个时隙格式,或者,最后一个时隙格式。
  42. 根据权利要求38或39所述的方法,其特征在于,所述预配置的时隙格式是通过无线资源控制RRC信令配置的,和/或所述预配置的时隙格式对应的符号为全上行符号或全下行符号。
  43. 一种无线装置,用于执行如权利要求1至21中任一项所述的方法。
  44. 一种网络设备,用于执行如权利要求22至42中任一项所述的方法。
  45. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得所述计算机执行如权利要求1到21中任一项所述的方法,或者,权利要求22到42中任一项所述的方法。
  46. 一种无线装置,其特征在于,包括:
    接收单元,用于在第一载波上接收信令;
    确定单元,用于确定在至少一个第二载波上的N个时隙的时隙格式,所述N个时隙的时隙格式是基于M个时隙格式确定的,所述N和M为正整数;其中,所述M个时隙格式是基于所述接收的信令获取的;
    所述N个时隙基于以下至少一项确定:
    所述信令的接收时刻;
    所述第一载波的第一时隙长度与所述至少一个第二载波的第二时隙长度之间的大小关系。
  47. 一种无线装置,其特征在于,包括:
    接收单元,用于接收信令;
    确定单元,用于确定M个时隙组的时隙格式,所述M为正整数,所述M个时隙组的时隙格式是基于M个时隙格式确定的,所述M个时隙格式是基于所述接收的信令获取的;
    所述确定单元,还用于基于所述M个时隙格式中的至少一个时隙格式或预配置的时隙格式,确定S个时隙的时隙格式,其中,所述S个时隙为一个监听周期内除所述M个时隙组之外的时隙。
  48. 一种网络设备,其特征在于,包括:
    确定单元,用于确定在至少一个第二载波上的N个时隙的时隙格式,所述N个时隙的时隙格式是基于M个时隙格式确定的,所述N和M为正整数;
    发送单元,用于在第一载波上发送信令,所述信令包括所述M个时隙格式的指示信息;
    所述N个时隙与以下至少一项相关:
    所述信令的发送时刻;
    所述第一载波的第一时隙长度与所述至少一个第二载波的第二时隙长度之间的大小关系。
  49. 一种网络设备,其特征在于,包括:
    确定单元,用于确定M个时隙组的时隙格式,所述M为正整数,所述M个时隙组的时隙格式是基于M个时隙格式确定的;
    发送单元,用于发送信令,所述信令包括所述M个时隙格式信息的指示信息;
    其中,S个时隙与所述M个时隙格式中的至少一个时隙格式或预配置的时隙格式相关,其中,所述S个时隙为一个监听周期内除所述M个时隙组之外的时隙。
PCT/CN2019/073966 2018-02-14 2019-01-30 通信方法和无线装置 WO2019157962A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19753967.9A EP3748891A4 (en) 2018-02-14 2019-01-30 COMMUNICATION METHOD AND WIRELESS DEVICE
US16/993,700 US11638249B2 (en) 2018-02-14 2020-08-14 Communication method and wireless apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810152378.1A CN110166210B (zh) 2018-02-14 2018-02-14 通信方法和无线装置
CN201810152378.1 2018-02-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/993,700 Continuation US11638249B2 (en) 2018-02-14 2020-08-14 Communication method and wireless apparatus

Publications (1)

Publication Number Publication Date
WO2019157962A1 true WO2019157962A1 (zh) 2019-08-22

Family

ID=67619203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073966 WO2019157962A1 (zh) 2018-02-14 2019-01-30 通信方法和无线装置

Country Status (4)

Country Link
US (1) US11638249B2 (zh)
EP (1) EP3748891A4 (zh)
CN (2) CN112751659B (zh)
WO (1) WO2019157962A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114448577B (zh) * 2019-09-18 2024-03-05 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2024065762A1 (zh) * 2022-09-30 2024-04-04 Oppo广东移动通信有限公司 无线通信的方法及终端设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107211395A (zh) * 2015-01-22 2017-09-26 德州仪器公司 高性能非视距无线回程帧结构

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102811495A (zh) * 2011-06-02 2012-12-05 华为技术有限公司 接收、发送调度信息的方法、装置及系统
CN102857463B (zh) * 2011-07-01 2015-05-20 电信科学技术研究院 一种传输数据的方法和设备
WO2017073084A1 (en) * 2015-10-29 2017-05-04 Sharp Kabushiki Kaisha Systems and methods for multi-physical structure system
TWI660611B (zh) * 2016-05-13 2019-05-21 聯發科技股份有限公司 一種配置用於ofdm系統的統一和擴展的訊框結構的方法及使用者設備
US11147051B2 (en) * 2017-02-06 2021-10-12 Apple Inc. Transmission of group common PDCCH (physical downlink control channel) for NR (new radio)
WO2018222001A2 (ko) * 2017-06-02 2018-12-06 엘지전자 주식회사 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
US10548126B2 (en) * 2017-06-16 2020-01-28 Qualcomm Incorporated Carrier aggregation under different subframe structures in new radio
EP3668215B1 (en) * 2017-08-07 2023-04-26 LG Electronics Inc. Method for transmitting or receiving signal in wireless communication system and device therefor
JP7213243B2 (ja) * 2017-11-17 2023-01-26 オッポ広東移動通信有限公司 スロットフォーマット指示方法及び関連製品
US11101950B2 (en) * 2018-01-12 2021-08-24 Qualcomm Incorporated Demodulation reference signal (DMRS) bundling in slot aggregation and slot format considerations for new radio
JPWO2019159238A1 (ja) * 2018-02-13 2021-01-28 株式会社Nttドコモ ユーザ端末及び無線通信方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107211395A (zh) * 2015-01-22 2017-09-26 德州仪器公司 高性能非视距无线回程帧结构

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
OPPO: "Remaining Issues on GC-PDCCH", 3GPP TSG RAN WG1 MEETING AH 1801, R1-1800496, 13 January 2018 (2018-01-13), XP051384898 *
OPPO: "Remaining Issues on GC-PDCCH", 3GPP TSG RAN WG1 MEETING#91, R1-1719984, 18 November 2017 (2017-11-18), XP051369680 *
See also references of EP3748891A4

Also Published As

Publication number Publication date
CN110166210A (zh) 2019-08-23
US11638249B2 (en) 2023-04-25
US20200374878A1 (en) 2020-11-26
CN112751659A (zh) 2021-05-04
CN110166210B (zh) 2021-01-05
CN112751659B (zh) 2022-05-17
EP3748891A1 (en) 2020-12-09
EP3748891A4 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
US11363499B2 (en) Resource configuration method, apparatus, and system
KR20190042721A (ko) 물리 하향링크 제어 채널을 송신 또는 수신하는 방법 및 디바이스
US11937281B2 (en) Communications method and apparatus
CN115134927A (zh) 一种通信方法、装置以及系统
CN109150463B (zh) 信息发送、接收方法及装置
CN113747497B (zh) 干扰抑制合并方法、资源指示方法及通信装置
CN111436133B (zh) 信道测量方法和装置
EP3661298B1 (en) Wireless communication method and apparatus
WO2022061507A1 (zh) 信息传输方法、设备及存储介质
WO2020169063A1 (zh) 一种数据传输方法及通信装置
CN110719648A (zh) 一种信息发送、信息接收方法及装置
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
CN110149716B (zh) 通信方法和通信装置
CN113517946A (zh) 一种通信方法及装置
WO2019157962A1 (zh) 通信方法和无线装置
WO2017173881A1 (zh) 参考信号的传输方法、设备和系统
CN111181887B (zh) 一种序列的生成及处理方法和装置
CN114402676A (zh) 调制解调参考信号的配置信息获取方法、配置方法及装置
EP4255066A1 (en) Communication method and apparatus
CN110351839B (zh) 通信方法及装置
CN115379569A (zh) 一种通信方法及通信装置
CN110972281A (zh) 一种检测控制信道的方法及装置
US20220159680A1 (en) Control channel transmission method and apparatus
CN108631996B (zh) 一种参考信号发送、接收方法及装置
CN116830708A (zh) 数据的传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19753967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019753967

Country of ref document: EP

Effective date: 20200903