WO2019157800A1 - 一种耐高温低辐射镀膜玻璃 - Google Patents

一种耐高温低辐射镀膜玻璃 Download PDF

Info

Publication number
WO2019157800A1
WO2019157800A1 PCT/CN2018/100327 CN2018100327W WO2019157800A1 WO 2019157800 A1 WO2019157800 A1 WO 2019157800A1 CN 2018100327 W CN2018100327 W CN 2018100327W WO 2019157800 A1 WO2019157800 A1 WO 2019157800A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
zrb2
doped
oxide layer
zinc
Prior art date
Application number
PCT/CN2018/100327
Other languages
English (en)
French (fr)
Inventor
黄丽莎
顾海波
Original Assignee
江苏奥蓝工程玻璃有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏奥蓝工程玻璃有限公司 filed Critical 江苏奥蓝工程玻璃有限公司
Publication of WO2019157800A1 publication Critical patent/WO2019157800A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3618Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • C03C2218/156Deposition methods from the vapour phase by sputtering by magnetron sputtering

Definitions

  • the invention relates to the field of glass, in particular to a high temperature resistant low radiation coated glass.
  • Low-emission coated hollow glass can be used in large-scale construction glass curtain walls and glass doors and windows of residential buildings. It can also be used in public events such as exhibition halls and shopping malls with high requirements for see-through and heat insulation. It can also be used to keep low temperatures. The glass window of the freezer.
  • the low-emission coated glass can also be used as a laminated glass.
  • the glass In addition to having a certain function of blocking solar radiation, the glass also has excellent security performance and sound insulation performance.
  • the tough PVB film can absorb energy quickly and keep the glass fragments completely stuck together, so it can resist the damage of bullets, earthquakes, typhoons and hail, and prevent broken doors and broken windows. criminal behavior into the room. PVB film also plays an important role in blocking sound waves, making laminated glass products reduce external noise by more than 30 decibels.
  • Low-e coated glass has the advantage of transmitting visible light and reflecting infrared light, which can significantly reduce the air conditioning energy consumption of the car and improve the comfort of the driver and passengers. Therefore, it is a green product in construction and transportation. There is a huge market demand on the tool.
  • the core material of the silver-based low-emission coated glass is one or more layers of silver (Ag). Since the silver (Ag) layer is easily corroded and oxidized, it must be deposited on both the upper and lower sides of the silver (Ag) layer. Transparent dielectric layers that pass through visible light; these dielectric layers must have good compactness and high thermal stability to provide sufficient thermal, mechanical, and chemical protection for the silver layer.
  • the dielectric layer closest to the glass substrate and the dielectric layer above the silver layer farthest from the glass substrate are particularly important for the protection of the silver layer, in particular, the dielectric layer closest to the glass substrate must be capable of The osmosis of alkali metal ions and oxygen atoms from the glass is blocked at high temperatures.
  • these dielectric layers can also perform anti-reflection effects on visible light, and combine with the silver layer to achieve better transmission and reflection characteristics of visible light.
  • off-line low-emission coating can be divided into single-silver low-emission film and low-emission film according to the film structure.
  • the latter has lower emissivity E and U values than the former, and the general single-silver Low-E film mainly relies on uniformity.
  • the silver layer (Ag) distributed in the middle layer acts to reflect far-infrared heat radiation.
  • the thickness of the entire film is about 45-75 nm. However, it is quite different. Its overall structure is relatively complicated, and there are mainly two or more layers of silver.
  • the silver layer (Ag) in the film layer is overlapped in the intermediate layer, and the thickness of the silver-based film layer is between 5 and 12 nm to form a metal layer and an insulating layer.
  • the object of the present invention is to provide a high temperature resistant low radiation coated glass for the deficiencies of the prior art.
  • a high temperature resistant low-emission coated glass comprising a glass substrate and a coating layer covering the surface of the glass substrate, the coating layer being sequentially plated on the surface of the glass substrate in the following order: a first TiOx layer, doped a first zinc aluminum oxide layer of ZrB2, a first nickel chromium oxide layer, an Ag layer, a second nickel chromium oxide layer, a second zinc aluminum oxide layer doped with ZrB2, and a second TiOx layer.
  • the first zinc aluminum oxide layer doped with ZrB2 and the second zinc aluminum oxide layer doped with ZrB2 are directly sputtered with a ZrB2 zinc oxide aluminum target by vacuum magnetron sputtering, wherein The amount of ZrB2 incorporated is 2.8-8.2% by weight.
  • the first zinc aluminum oxide layer doped with ZrB2 and the second zinc aluminum oxide layer doped with ZrB2 are directly sputtered with a ZrB2 zinc oxide aluminum target by vacuum magnetron sputtering, wherein The amount of ZrB2 incorporated is 3.1 to 6.3 wt%.
  • the first zinc aluminum oxide layer doped with ZrB2 and the second zinc aluminum oxide layer doped with ZrB2 are directly sputtered with a ZrB2 zinc oxide aluminum target by vacuum magnetron sputtering, wherein The amount of ZrB2 incorporated is 4.2 to 6.1% by weight.
  • the first TiOx layer has a thickness of 20-30 nm
  • the ZrB2 doped first zinc aluminum oxide layer has a thickness of 10-20 nm.
  • the first nickel chromium oxide layer has a thickness of 1-8 nm, and the Ag layer has a thickness of 2-10 nm.
  • the second nickel chromium oxide layer has a thickness of 55-60 nm
  • the ZrB2-doped second zinc aluminum oxide layer has a thickness of 10-20 nm.
  • the second TiOx layer has a thickness of 20-30 nm.
  • the high temperature resistant low-emission coated glass of the present invention, the ZrB2 doped zinc aluminum oxide layer improves the high temperature resistance and strength of the glass.
  • the high temperature resistant low-emission coated glass of the present invention has a visible light transmittance of 68 to 70%.
  • the high temperature resistant low-emission coated glass of the present invention has strong anti-friction and chemical etching ability.
  • FIG. 1 is a schematic view showing a structure of a high temperature resistant low-emission coated glass of the present invention
  • the reference numerals in the figure correspond to: 1-glass substrate, 2-first TiOx layer, 3-doped ZrB2 first zinc aluminum oxide layer, 4-first nickel chromium oxide layer, 5-Ag Layer, 6-second nickel chromium oxide layer, 7-doped ZrB2 second zinc aluminum oxide layer, 8-second TiOx layer.
  • the present invention discloses a high temperature resistant low-emission coated glass comprising a glass substrate 1 and a coating layer covering the surface of the glass substrate 1, the coating layer being sequentially plated on the glass in the following order.
  • Substrate 1 surface first TiOx layer 2, first zinc aluminum oxide layer 3 doped with ZrB2, first nickel chromium oxide layer 4, Ag layer 5, second nickel chromium oxide layer 6, doped with ZrB2 A second zinc aluminum oxide layer 7, a second TiOx layer 8.
  • the first zinc aluminum oxide layer 3 doped with ZrB2 and the second zinc aluminum oxide layer 7 doped with ZrB2 are directly sputtered into the zinc oxide aluminum target of ZrB2 by vacuum magnetron sputtering, wherein ZrB2
  • the blending amount was 2.8 wt%.
  • the thickness of the first TiOx layer 2 is 20 nm, and the thickness of the first zinc aluminum oxide layer 3 doped with ZrB2 is 10 nm.
  • the first nickel chromium oxide layer 4 has a thickness of 8 nm, and the Ag layer 5 has a thickness of 10 nm.
  • the thickness of the second nickel-chromium oxide layer 6 is 60 nm
  • the thickness of the second zinc-aluminum oxide layer 7 doped with ZrB2 is 20 nm
  • the thickness of the second TiOx layer 8 is 30 nm.
  • the coating experiment was carried out on the coated glass. After 500 washes, there was no brush damage, which was much higher than the 300 times of the European standard. The single piece was barely exposed for 100 hours without oxidation, and the steel was not oxidized for 48 hours after the edge cleaning.
  • the invention discloses a high temperature resistant low-emission coated glass, comprising a glass substrate 1 and a coating layer covering the surface of the glass substrate 1.
  • the coating layer is sequentially plated on the surface of the glass substrate 1 in the following order: First TiOx layer 2, first zinc aluminum oxide layer 3 doped with ZrB2, first nickel chromium oxide layer 4, Ag layer 5, second nickel chromium oxide layer 6, second zinc aluminum oxide doped with ZrB2 The layer 7, the second TiOx layer 8.
  • the first zinc aluminum oxide layer 3 doped with ZrB2 and the second zinc aluminum oxide layer 7 doped with ZrB2 are directly sputtered into the zinc oxide aluminum target of ZrB2 by vacuum magnetron sputtering, wherein ZrB2
  • the blending amount was 8.2% by weight.
  • the thickness of the first TiOx layer 2 is 25 nm, and the thickness of the first zinc aluminum oxide layer 3 doped with ZrB2 is 10 nm.
  • the first nickel chromium oxide layer 4 has a thickness of 1 nm, and the Ag layer 5 has a thickness of 5 nm.
  • the thickness of the second nickel-chromium oxide layer 6 is 60 nm, and the thickness of the second zinc-aluminum oxide layer 7 doped with ZrB2 is 20 nm.
  • the thickness of the second TiOx layer 8 is 25 nm.
  • the invention discloses a high temperature resistant low-emission coated glass, comprising a glass substrate 1 and a coating layer covering the surface of the glass substrate 1.
  • the coating layer is sequentially plated on the surface of the glass substrate 1 in the following order: First TiOx layer 2, first zinc aluminum oxide layer 3 doped with ZrB2, first nickel chromium oxide layer 4, Ag layer 5, second nickel chromium oxide layer 6, second zinc aluminum oxide doped with ZrB2 The layer 7, the second TiOx layer 8.
  • the first zinc aluminum oxide layer 3 doped with ZrB2 and the second zinc aluminum oxide layer 7 doped with ZrB2 are directly sputtered into the zinc oxide aluminum target of ZrB2 by vacuum magnetron sputtering, wherein ZrB2
  • the blending amount was 5.2% by weight.
  • the thickness of the first TiOx layer 2 is 30 nm, and the thickness of the first zinc aluminum oxide layer 3 doped with ZrB2 is 15 nm.
  • the first nickel chromium oxide layer 4 has a thickness of 3 nm, and the Ag layer 5 has a thickness of 5 nm.
  • the thickness of the second nickel-chromium oxide layer 6 is 56 nm, and the thickness of the second zinc-aluminum oxide layer 7 doped with ZrB2 is 13 nm.
  • the thickness of the second TiOx layer 8 is 25 nm.
  • the invention discloses a high temperature resistant low-emission coated glass, comprising a glass substrate 1 and a coating layer covering the surface of the glass substrate 1.
  • the coating layer is sequentially plated on the surface of the glass substrate 1 in the following order: First TiOx layer 2, first zinc aluminum oxide layer 3 doped with ZrB2, first nickel chromium oxide layer 4, Ag layer 5, second nickel chromium oxide layer 6, second zinc aluminum oxide doped with ZrB2 The layer 7, the second TiOx layer 8.
  • the first zinc aluminum oxide layer 3 doped with ZrB2 and the second zinc aluminum oxide layer 7 doped with ZrB2 are directly sputtered into the zinc oxide aluminum target of ZrB2 by vacuum magnetron sputtering, wherein ZrB2
  • the blending amount was 4.6 wt%.
  • the thickness of the first TiOx layer 2 is 28 nm, and the thickness of the first zinc aluminum oxide layer 3 doped with ZrB2 is 16 nm.
  • the first nickel chromium oxide layer 4 has a thickness of 4 nm, and the Ag layer 5 has a thickness of 6 nm.
  • the thickness of the second nickel-chromium oxide layer 6 is 58 nm, and the thickness of the second zinc-aluminum oxide layer 7 doped with ZrB2 is 17 nm.
  • the thickness of the second TiOx layer 8 is 22 nm.
  • Example 1 2 3 4 Surface resistance 0.260 0.259 0.258 0.254 Transmittance 68% 69% 69.5% 70% Heat transfer coefficient 1.5 1.6 1.4 1.7
  • the high temperature resistant low-emission coated glass of the present invention, the ZrB2 doped zinc aluminum oxide layer improves the high temperature resistance and strength of the glass.
  • the high temperature resistant low-emission coated glass of the present invention has a visible light transmittance of 68 to 70%.
  • the high temperature resistant low-emission coated glass of the present invention has strong anti-friction and chemical etching ability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

一种耐高温低辐射镀膜玻璃,包括玻璃基片(1)以及覆盖于玻璃基片(1)表面的镀膜层,镀膜层按照以下顺序依次镀于玻璃基片(1)表面:第一TiOx层(2),掺杂ZrB 2的第一锌铝氧化物层(3),第一镍铬氧化物层(4),Ag层(5),第二镍铬氧化物层(6),掺杂ZrB 2的第二锌铝氧化物层(7),第二TiOx层(8)。掺杂ZrB 2的锌铝氧化物层提高了玻璃的耐高温性能和强度,并且该玻璃的可见光透过率可达68-70%。

Description

一种耐高温低辐射镀膜玻璃 技术领域
本发明涉及玻璃领域,尤其涉及一种耐高温低辐射镀膜玻璃。
背景技术
低辐射镀膜玻璃,是采用高科技的真空磁控溅射技术,在大型玻璃基板上镀纳米级(1纳米=0.000001毫米)厚度的银膜及多层氧化物增透膜制造的。根据不同气候环境下使用要求,可以制作可见光透过率在40%~80%之间的一系列不同型号的产品。用一片低辐射镀膜玻璃和另一片玻璃间隔12毫米气体层制作的中空玻璃具有神奇的节能效果,夏季它反射和阻隔太阳光中的近红外辐射和室外环境中的远红外辐射(远红外辐射也叫做热辐射),保持室内清凉舒适;冬季它反射和阻隔室内暖气发出的远红外辐射,维持温暖的室内温度。这一切归功于银膜的高红外反射性能和中空内部气体的低对流性能的完美组合。低辐射玻璃的神奇之处在于,不仅保持良好的采光功能,而且像热反射玻璃那样有效阻挡太阳直接热辐射,更难能可贵的是不论白天还是黑夜始终发挥着阻挡热辐射的作用。
低辐射镀膜中空玻璃,可以大量用于大型建筑玻璃幕墙和民用住宅的玻璃门窗,也可以用在透视性和隔热性要求很高的展览馆、商场等公众活动场所,还可以用于保持低温的冰柜的玻璃窗。
低辐射镀膜玻璃还可以做成夹层玻璃使用,这种玻璃除了具有一定的阻挡太阳辐射的功能外,还具有相当优秀的保安性能和隔音性能。当夹胶玻璃受到外力袭击时,韧性很好的PVB胶片能迅速地吸收能量,并保持玻璃碎片完整地粘在一起,因此它能够抵御枪弹、地震、台风、冰雹的伤害,阻止破门、破窗入室的犯罪行为。PVB胶片在阻隔声波方面也起着重要的作用,使夹胶玻璃产品降低外界噪音30分贝以上。
低辐射(low-e)镀膜玻璃具有透过可见光和反射红外线的优点,从而可以明显地降低汽车的空调能耗以及提高驾驶员和乘客的舒适度,因此作为一种绿色环保产品在建筑和交通工具上面有巨大的市场需求。银基低辐射镀膜玻璃的核心材料是一层或者多层的银(Ag)层,由于银(Ag)层容易被腐蚀和氧化,所以必须 在银(Ag)层的上、下方都沉积有能够透过可见光的透明介质层;这些介质层必须致密性好、热稳定性高,从而为银层提供足够的热、力和化学保护。在银基低辐射镀膜玻璃的介质层中,最靠近玻璃基板的介质层和最远离玻璃基板的银层上方的介质层对银层的保护特别重要,特别是最靠近玻璃基板的介质层必须能够在高温下阻隔来自玻璃中的碱金属离子和氧原子的渗透作用。另一方面,这些介质层也能够起到对可见光的减反射作用,与银层结合在一起实现可见光较好的透过和反射特性。
目前离线低辐射镀膜按膜层结构可分为单银低辐射膜、低辐射膜两种,后者比前者具有更低的辐射率E和U值,一般单银Low-E膜主要是依靠均匀分布在中间层的银层(Ag)来起到反射远红外热辐射作用,整个膜层厚度约45~75nm;而则截然不同,它的整体结构相对比较复杂,主要有两层以上的银层均匀分布在其他起保护作用的金属氧化物之间,膜层中的银层(Ag)为相隔重叠在中间层,银基膜层的厚度约在5~12nm之间,形成金属层与绝缘层相互交叉的特殊薄膜结构。
发明内容
本发明的目的是针对现有技术的不足,提供一种耐高温低辐射镀膜玻璃。
本发明是通过以下技术方案实现的:
一种耐高温低辐射镀膜玻璃,包括玻璃基片以及覆盖于所述玻璃基片表面的镀膜层,所述镀膜层按照以下顺序依次镀于所述玻璃基片表面:第一TiOx层,掺杂ZrB2的第一锌铝氧化物层,第一镍铬氧化物层,Ag层,第二镍铬氧化物层,掺杂ZrB2的第二锌铝氧化物层,第二TiOx层。
优选地,所述掺杂ZrB2的第一锌铝氧化物层与掺杂ZrB2的第二锌铝氧化物层均采用真空磁控溅射法直接溅射掺入ZrB2的氧化锌铝靶材,其中ZrB2掺入量是2.8-8.2wt%。
优选地,所述掺杂ZrB2的第一锌铝氧化物层与掺杂ZrB2的第二锌铝氧化物层均采用真空磁控溅射法直接溅射掺入ZrB2的氧化锌铝靶材,其中ZrB2掺入量是3.1-6.3wt%。
优选地,所述掺杂ZrB2的第一锌铝氧化物层与掺杂ZrB2的第二锌铝氧化物层均采用真空磁控溅射法直接溅射掺入ZrB2的氧化锌铝靶材,其中ZrB2掺 入量是4.2-6.1wt%。
优选地,所述第一TiOx层的厚度为20-30nm,所述掺杂ZrB2的第一锌铝氧化物层的厚度为10-20nm。
优选地,所述第一镍铬氧化物层的厚度为1-8nm,所述Ag层的厚度为2-10nm。
优选地,所述第二镍铬氧化物层的厚度为55-60nm,所述掺杂ZrB2的第二锌铝氧化物层的厚度为10-20nm。
优选地,所述第二TiOx层的厚度为20-30nnm。
本发明的有益效果是:
(1)本发明的耐高温低辐射镀膜玻璃,掺杂ZrB2的锌铝氧化物层提高了玻璃的耐高温性能和强度。
(2)本发明的耐高温低辐射镀膜玻璃,可见光透过率为68-70%。
(3)本发明的耐高温低辐射镀膜玻璃,抗摩擦和化学侵蚀能力强。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。
图1是本发明的一种耐高温低辐射镀膜玻璃结构示意图;
其中,图中附图标记对应为:1-玻璃基片,2-第一TiOx层,3-掺杂ZrB2的第一锌铝氧化物层,4-第一镍铬氧化物层,5-Ag层,6-第二镍铬氧化物层,7-掺杂ZrB2的第二锌铝氧化物层,8-第二TiOx层。
具体实施方式
下面将结合本发明中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
请参阅图1。如图所示,本发明公开了一种耐高温低辐射镀膜玻璃,包括玻璃基片1以及覆盖于所述玻璃基片1表面的镀膜层,所述镀膜层按照以下顺序依次镀于所述玻璃基片1表面:第一TiOx层2,掺杂ZrB2的第一锌铝氧化物层3,第一镍铬氧化物层4,Ag层5,第二镍铬氧化物层6,掺杂ZrB2的第二锌铝氧化物层7,第二TiOx层8。
所述掺杂ZrB2的第一锌铝氧化物层3与掺杂ZrB2的第二锌铝氧化物层7均采用真空磁控溅射法直接溅射掺入ZrB2的氧化锌铝靶材,其中ZrB2掺入量是2.8wt%。
所述第一TiOx层2的厚度为20nm,所述掺杂ZrB2的第一锌铝氧化物层3的厚度为10nm。
所述第一镍铬氧化物层4的厚度为8nm,所述Ag层5的厚度为10nm。
所述第二镍铬氧化物层6的厚度为60nm,所述掺杂ZrB2的第二锌铝氧化物层7的厚度为20nm;所述第二TiOx层8的厚度为30nnm。
对镀膜玻璃进行洗刷实验,经500次洗刷后无刷伤,远远高于欧标的300次。单片裸放100小时无氧化,磨边清洗后48小时钢化不氧化。
实施例2
本发明公开了一种耐高温低辐射镀膜玻璃,包括玻璃基片1以及覆盖于所述玻璃基片1表面的镀膜层,所述镀膜层按照以下顺序依次镀于所述玻璃基片1表面:第一TiOx层2,掺杂ZrB2的第一锌铝氧化物层3,第一镍铬氧化物层4,Ag层5,第二镍铬氧化物层6,掺杂ZrB2的第二锌铝氧化物层7,第二TiOx层8。
所述掺杂ZrB2的第一锌铝氧化物层3与掺杂ZrB2的第二锌铝氧化物层7均采用真空磁控溅射法直接溅射掺入ZrB2的氧化锌铝靶材,其中ZrB2掺入量是8.2wt%。
所述第一TiOx层2的厚度为25nm,所述掺杂ZrB2的第一锌铝氧化物层3的厚度为10nm。
所述第一镍铬氧化物层4的厚度为1nm,所述Ag层5的厚度为5nm。
所述第二镍铬氧化物层6的厚度为60nm,所述掺杂ZrB2的第二锌铝氧化物层7的厚度为20nm。所述第二TiOx层8的厚度为25nnm。
实施例3
本发明公开了一种耐高温低辐射镀膜玻璃,包括玻璃基片1以及覆盖于所述玻璃基片1表面的镀膜层,所述镀膜层按照以下顺序依次镀于所述玻璃基片1表面:第一TiOx层2,掺杂ZrB2的第一锌铝氧化物层3,第一镍铬氧化物层4,Ag层5,第二镍铬氧化物层6,掺杂ZrB2的第二锌铝氧化物层7,第二TiOx层8。
所述掺杂ZrB2的第一锌铝氧化物层3与掺杂ZrB2的第二锌铝氧化物层7均采用真空磁控溅射法直接溅射掺入ZrB2的氧化锌铝靶材,其中ZrB2掺入量是5.2wt%。
所述第一TiOx层2的厚度为30nm,所述掺杂ZrB2的第一锌铝氧化物层3的厚度为15nm。
所述第一镍铬氧化物层4的厚度为3nm,所述Ag层5的厚度为5nm。
所述第二镍铬氧化物层6的厚度为56nm,所述掺杂ZrB2的第二锌铝氧化物层7的厚度为13nm。所述第二TiOx层8的厚度为25nnm。
实施例4
本发明公开了一种耐高温低辐射镀膜玻璃,包括玻璃基片1以及覆盖于所述玻璃基片1表面的镀膜层,所述镀膜层按照以下顺序依次镀于所述玻璃基片1表面:第一TiOx层2,掺杂ZrB2的第一锌铝氧化物层3,第一镍铬氧化物层4,Ag层5,第二镍铬氧化物层6,掺杂ZrB2的第二锌铝氧化物层7,第二TiOx层8。
所述掺杂ZrB2的第一锌铝氧化物层3与掺杂ZrB2的第二锌铝氧化物层7均采用真空磁控溅射法直接溅射掺入ZrB2的氧化锌铝靶材,其中ZrB2掺入量是4.6wt%。
所述第一TiOx层2的厚度为28nm,所述掺杂ZrB2的第一锌铝氧化物层3的厚度为16nm。
所述第一镍铬氧化物层4的厚度为4nm,所述Ag层5的厚度为6nm。
所述第二镍铬氧化物层6的厚度为58nm,所述掺杂ZrB2的第二锌铝氧化物层7的厚度为17nm。所述第二TiOx层8的厚度为22nnm。
实施例5
对实施例1-4所得到的产品进行测试,结果如下表所示:
实施例 1 2 3 4
面电阻 0.260 0.259 0.258 0.254
透光率 68% 69% 69.5% 70%
传热系数 1.5 1.6 1.4 1.7
本发明的有益效果是:
(1)本发明的耐高温低辐射镀膜玻璃,掺杂ZrB2的锌铝氧化物层提高了玻璃的耐高温性能和强度。
(2)本发明的耐高温低辐射镀膜玻璃,可见光透过率为68-70%。
(3)本发明的耐高温低辐射镀膜玻璃,抗摩擦和化学侵蚀能力强。
以上所述是本发明的优选实施方式,应该指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (8)

  1. 一种耐高温低辐射镀膜玻璃,包括玻璃基片(1)以及覆盖于所述玻璃基片(1)表面的镀膜层,其特征在于,所述镀膜层按照以下顺序依次镀于所述玻璃基片(1)表面:第一TiOx层(2),掺杂ZrB2的第一锌铝氧化物层(3),第一镍铬氧化物层(4),Ag层(5),第二镍铬氧化物层(6),掺杂ZrB2的第二锌铝氧化物层(7),第二TiOx层(8)。
  2. 根据权利要求1所述的一种耐高温低辐射镀膜玻璃,其特征在于,所述掺杂ZrB2的第一锌铝氧化物层(3)与掺杂ZrB2的第二锌铝氧化物层(7)均采用真空磁控溅射法直接溅射掺入ZrB2的氧化锌铝靶材,其中ZrB2掺入量是2.8-8.2wt%。
  3. 根据权利要求2所述的一种耐高温低辐射镀膜玻璃,其特征在于,所述掺杂ZrB2的第一锌铝氧化物层(3)与掺杂ZrB2的第二锌铝氧化物层(7)均采用真空磁控溅射法直接溅射掺入ZrB2的氧化锌铝靶材,其中ZrB2掺入量是3.1-6.3wt%。
  4. 根据权利要求3所述的一种耐高温低辐射镀膜玻璃,其特征在于,所述掺杂ZrB2的第一锌铝氧化物层(3)与掺杂ZrB2的第二锌铝氧化物层(7)均采用真空磁控溅射法直接溅射掺入ZrB2的氧化锌铝靶材,其中ZrB2掺入量是4.2-6.1wt%。
  5. 根据权利要求4所述的一种耐高温低辐射镀膜玻璃,其特征在于,所述第一TiOx层(2)的厚度为20-30nm,所述掺杂ZrB2的第一锌铝氧化物层(3)的厚度为10-20nm。
  6. 根据权利要求5所述的一种耐高温低辐射镀膜玻璃,其特征在于,所述第一镍铬氧化物层(4)的厚度为1-8nm,所述Ag层(5)的厚度为2-10nm。
  7. 根据权利要求6所述的一种耐高温低辐射镀膜玻璃,其特征在于,所述 第二镍铬氧化物层(6)的厚度为55-60nm,所述掺杂ZrB2的第二锌铝氧化物层(7)的厚度为10-20nm。
  8. 根据权利要求5所述的一种耐高温低辐射镀膜玻璃,其特征在于,所述第二TiOx层(8)的厚度为20-30nnm。
PCT/CN2018/100327 2018-02-13 2018-08-14 一种耐高温低辐射镀膜玻璃 WO2019157800A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810148769.6A CN108191260B (zh) 2018-02-13 2018-02-13 一种耐高温低辐射镀膜玻璃
CN201810148769.6 2018-02-13

Publications (1)

Publication Number Publication Date
WO2019157800A1 true WO2019157800A1 (zh) 2019-08-22

Family

ID=62593389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100327 WO2019157800A1 (zh) 2018-02-13 2018-08-14 一种耐高温低辐射镀膜玻璃

Country Status (2)

Country Link
CN (1) CN108191260B (zh)
WO (1) WO2019157800A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108191260B (zh) * 2018-02-13 2019-12-13 江苏奥蓝工程玻璃有限公司 一种耐高温低辐射镀膜玻璃
FR3088635B1 (fr) * 2018-11-16 2022-04-01 Saint Gobain Matériau traité thermiquement à faible résistivité et propriétés mécaniques améliorées

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103753896A (zh) * 2014-01-06 2014-04-30 天津南玻节能玻璃有限公司 一种掺杂硼化镧azo低辐射镀膜玻璃及其制备方法
CN103753895A (zh) * 2014-01-06 2014-04-30 天津南玻节能玻璃有限公司 一种新型低辐射镀膜玻璃及其制备方法
CN106431012A (zh) * 2016-11-25 2017-02-22 武汉长利新材料科技有限公司 可钢化高透低辐射镀膜玻璃及其制造方法
CN107117832A (zh) * 2017-05-05 2017-09-01 信义节能玻璃(芜湖)有限公司 低反低透可钢化单银低辐射镀膜玻璃及其制造方法和应用
CN107522409A (zh) * 2016-12-30 2017-12-29 深圳市晟砡科技有限公司 透明面板及其制造方法和应用
CN108191260A (zh) * 2018-02-13 2018-06-22 江苏奥蓝工程玻璃有限公司 一种耐高温低辐射镀膜玻璃

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103753896A (zh) * 2014-01-06 2014-04-30 天津南玻节能玻璃有限公司 一种掺杂硼化镧azo低辐射镀膜玻璃及其制备方法
CN103753895A (zh) * 2014-01-06 2014-04-30 天津南玻节能玻璃有限公司 一种新型低辐射镀膜玻璃及其制备方法
CN106431012A (zh) * 2016-11-25 2017-02-22 武汉长利新材料科技有限公司 可钢化高透低辐射镀膜玻璃及其制造方法
CN107522409A (zh) * 2016-12-30 2017-12-29 深圳市晟砡科技有限公司 透明面板及其制造方法和应用
CN107117832A (zh) * 2017-05-05 2017-09-01 信义节能玻璃(芜湖)有限公司 低反低透可钢化单银低辐射镀膜玻璃及其制造方法和应用
CN108191260A (zh) * 2018-02-13 2018-06-22 江苏奥蓝工程玻璃有限公司 一种耐高温低辐射镀膜玻璃

Also Published As

Publication number Publication date
CN108191260A (zh) 2018-06-22
CN108191260B (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
WO2019157798A1 (zh) 一种双银低辐射镀膜玻璃及其制备方法
US7972713B2 (en) Transparent substrate which can be used alternatively or cumulatively for thermal control, electromagnetic armour and heated glazing
US20190330101A1 (en) Low-Emissivity Coating for a Glass Substrate
US9856692B2 (en) Reduced pressure double glazed glass panel
KR101873103B1 (ko) 창호용 기능성 건축 자재
US20140010976A1 (en) Insulating multiple glazing including two low-emissivity stacks
JP2016538229A (ja) 日射熱取得係数(shgc)対熱膨張係数(u値)の比率を増加させた二重銀コーティングを含む断熱ガラス(ig)窓ユニット、及びig窓ユニット又はその他の窓に使用するための対応する被覆製品
US6413643B1 (en) Sunlight shielding translucent glass panel and sunlight shielding translucent multilayer glass panel assembly
JP7308748B2 (ja) 低い可視光透過率の、吸収体層を有する低e被膜を含む灰色に着色した被覆物品
CN107892489B (zh) 一种低辐射玻璃
WO2019157800A1 (zh) 一种耐高温低辐射镀膜玻璃
CN103737999A (zh) 一种具有红外反射功能的镀膜玻璃及其制备方法
WO2019157799A1 (zh) 一种低辐射镀膜玻璃的制备方法
JP2000302486A (ja) 日射遮蔽性透光板およびこれを用いた日射遮蔽性複層透光板
CN106495503A (zh) 一种低辐射镀膜玻璃
CN111253082B (zh) 一种超屏蔽隔热型三银可钢化Low-E玻璃及制备方法
JPWO2002092529A1 (ja) 断熱・遮熱性ガラスパネル
JP7266020B2 (ja) 複層ガラスパネル
CN103342022B (zh) 一种防火双银低辐射镀膜玻璃及其制造方法
CN206418032U (zh) 一种低辐射镀膜玻璃
CN207891265U (zh) 一种低辐射镀膜玻璃
CN216005667U (zh) 一种低反射率的低辐射镀膜玻璃
JP2014124815A (ja) 低放射膜
CN203357982U (zh) 一种防火双银低辐射镀膜玻璃
CN207891264U (zh) 一种新型镀膜玻璃

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906603

Country of ref document: EP

Kind code of ref document: A1