WO2019157636A1 - 一种循环前缀长度确定方法及装置 - Google Patents

一种循环前缀长度确定方法及装置 Download PDF

Info

Publication number
WO2019157636A1
WO2019157636A1 PCT/CN2018/076675 CN2018076675W WO2019157636A1 WO 2019157636 A1 WO2019157636 A1 WO 2019157636A1 CN 2018076675 W CN2018076675 W CN 2018076675W WO 2019157636 A1 WO2019157636 A1 WO 2019157636A1
Authority
WO
WIPO (PCT)
Prior art keywords
length
channel quality
quality information
data
correspondence
Prior art date
Application number
PCT/CN2018/076675
Other languages
English (en)
French (fr)
Inventor
甄斌
程型清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/076675 priority Critical patent/WO2019157636A1/zh
Priority to CN201880089001.4A priority patent/CN111699660B/zh
Publication of WO2019157636A1 publication Critical patent/WO2019157636A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a cyclic prefix (CP) length determining method and apparatus.
  • CP cyclic prefix
  • an orthogonal frequency division multiplexing (OFDM) modulation scheme is generally employed.
  • the transmitting end copies part of the data of a certain length of the OFDM symbol. Inserted into the forefront of the OFDM symbol, the inserted partial data is called a CP, and then the transmitting end transmits the data that has become longer after the CP is inserted as a new OFDM symbol and sends it to the receiving end; the receiving end receives the After the new OFDM symbol is described, the original OFDM symbol is demodulated.
  • ISI inter-symbol interference
  • ICI inter-carrier interference
  • the standard of the LTE system defines two fixed CPs, a normal CP and an extended CP, so that the transmitting end modulates based on the length of the normal CP or the extended CP. And demodulating the receiving end based on the length of the normal CP or the extended CP.
  • the CP does not carry any useful information, the existing normal CP and the extended CP are relatively long in length, which results in a low spectrum utilization rate of the communication system.
  • the embodiment of the present application provides a method and a device for determining a CP length, which are used to solve the problem that the spectrum utilization of the communication system is low due to the use of the normal CP and the extended CP in the prior art.
  • the present application provides a method for determining a CP length, the method comprising:
  • the first device receives the reference signal sent by the second device, and determines channel quality information based on the reference signal; the first device determines, according to the corresponding relationship between the stored multiple channel quality information and the multiple cyclic prefix CP lengths. a CP length corresponding to the channel quality information, and sending the CP length to the second device; the CP length is smaller than a length of a regular normal CP; the channel quality information is used to represent the first device and the second Channel quality between devices; the first device is any one of a terminal device and a base station, and the second device is one of the terminal device and the base station except the first device.
  • the appropriate CP length can be selected according to the channel quality information, and the selected CP length is smaller than the length of the normal CP in the prior art, so that the useless data in the transmission process is less than the prior art, so that Improve the spectrum utilization of communication systems.
  • the correspondence is generated from a plurality of channel quality information samples and a plurality of CP length samples. This makes it possible to accurately obtain the pair relationship.
  • the plurality of channel quality information samples and the plurality of CP length samples may be Perform machine learning training to generate the corresponding relationship. This can accurately generate the correspondence.
  • the correspondence includes a correspondence between the first channel quality information and the first CP length, where the first channel quality information is one of the plurality of channel quality information samples, where the a CP length is one of the plurality of CP length samples; the correspondence between the first channel quality information and the first CP length satisfies the following condition: a difference between the first data and the second data is in a set difference range
  • the second data is obtained by demodulating the first intermediate data according to the first CP length, where the first intermediate data is based on the first channel quality information and the first CP length
  • the first data is obtained after modulation.
  • the first intermediate data is to modulate the first data based on the first channel quality information and the first CP length, and may be based on the first channel quality information and the first CP
  • the length is processed by adding channel distortion and noise to the first data to obtain the first intermediate data.
  • the correspondence relationship can be accurately obtained, so that the first device selects an appropriate CP length according to the determined channel quality information.
  • the first data and the second data may each be composed of a plurality of bits, and the first data and the second data have the same number of bits.
  • the difference between the first data and the second data may be obtained by comparing values corresponding to the same bits in the first data and the second data, and comparing values corresponding to all the bits.
  • the difference value is processed into a target value, which can be used as a difference between the first data and the second data.
  • the set difference range may be a set value range.
  • the method of processing the difference obtained by comparing the values corresponding to all the bits into the target value may be, but not limited to, a mean square error method, a mean square method, a least square method, and the like.
  • the first intermediate data in the process of generating, by the first device, the correspondence according to the multiple channel quality information samples and the multiple CP length samples, may be The first device is configured to modulate the first data based on the first channel quality information and the first CP length, where the first data may be randomly selected by the first device; The data may be sent by the second device to the first device after the first data is modulated based on the first channel quality information and the first CP length, and the first device is sent to the first device. The data may be that the second device is agreed with the first device.
  • the first device can accurately obtain the correspondence between the first channel quality information and the first CP length.
  • the first device generates the correspondence, or the first device receives the correspondence from the second device.
  • the corresponding relationship that the first device receives from the second device is generated by the second device.
  • the first device can obtain the corresponding relationship by using the foregoing method, so that the first device can ensure the success rate of the corresponding relationship, and the first device can pass the determined channel quality.
  • the first device before the first device receives the reference signal sent by the second device, the first device sends first indication information to the second device, where the first indication information Instructing the first device to have the capability of selecting a different CP length; the first device receiving second indication information of the second device, the second indication information indicating that the second device is configured according to different CP lengths The ability to transfer data.
  • the first device and the second device can mutually know that both parties can support data transmission using different CP lengths, so that the first device can determine the appropriate data required in the data transmission process.
  • the CP length is such that the CP length is adopted in the subsequent data transmission process with the second device, thereby improving the spectrum utilization rate of the system.
  • the first device when the first device is a terminal device, and the second device is a base station, the first device directly sends the first indication information to the second device; The device receives the second indication information that is broadcast by the second device, or the first device receives the second indication information that is sent by the second device to the first device.
  • the first device determines a CP demodulation template corresponding to the CP length, and the CP demodulation template is used to indicate a demodulation parameter corresponding to the CP length; when the first device receives When the second device sends data based on the length of the CP, the first device demodulates the data according to the CP demodulation template.
  • the first device can accurately demodulate the required data from the data sent by the second device.
  • the channel quality information includes at least one or a combination of: signal to interference plus noise ratio (SINR), carrier to interference plus noise ratio (CINR) ), multipath delay distribution, beam angle expansion, Doppler shift.
  • SINR signal to interference plus noise ratio
  • CINR carrier to interference plus noise ratio
  • the present application further provides a first device, which has the function of implementing the first device in the foregoing method example.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the first device includes a receiving unit, a processing unit, a storage unit, and a sending unit, and the units may perform corresponding functions in the foregoing method examples.
  • the units may perform corresponding functions in the foregoing method examples.
  • the processing unit may perform corresponding functions in the foregoing method examples.
  • the first device is structured to include a transceiver, a processor, and a memory for transceiving data and for communicating with other devices in the communication system, the processor It is configured to support the first device to perform a corresponding function in the above method.
  • the memory is coupled to the processor, which stores program instructions and data necessary for the first device.
  • the present application also provides a communication system including the first device and the second device mentioned in the above design.
  • the present application further provides a computer storage medium having stored therein computer executable instructions for causing the computer to perform the above-mentioned tasks when called by the computer a way.
  • the present application also provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform any of the above methods.
  • the present application further provides a chip connected to a memory for reading and executing program instructions stored in the memory to implement any of the above methods.
  • the first device determines the CP length corresponding to the channel quality information according to the corresponding relationship between the stored multiple channel quality information and multiple CP lengths. And transmitting the determined CP length to the second device, wherein the CP length is less than the length of the normal CP.
  • the appropriate CP length can be selected according to the channel quality information, and the selected CP length is smaller than the length of the normal CP in the prior art, so that the useless data in the transmission process is less than that in the prior art, thereby Can improve the spectrum utilization of the system.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a flowchart of a method for determining a CP length according to an embodiment of the present application
  • FIG. 3a is a schematic diagram of a resource location according to an embodiment of the present application.
  • FIG. 3b is a schematic diagram of another resource location according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a first device according to an embodiment of the present disclosure.
  • FIG. 5 is a structural diagram of a first device according to an embodiment of the present application.
  • the embodiment of the present application provides a method and a device for determining a CP length, which are used to solve the problem that the spectrum utilization rate of the system is low due to the use of the normal CP and the extended CP in the prior art.
  • the method and the device of the present application are based on the same inventive concept. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and the repeated description is not repeated.
  • a terminal device also called a user equipment (UE) is a device that provides data connectivity to a user, for example, a handheld device with a wireless connection function, an in-vehicle device, a wearable device, and a computing device.
  • UE user equipment
  • a base station is a device that provides a radio access service for a terminal device, including but not limited to: an evolved Node B (eNB), a radio network controller (radio network controller, RNC). ), Node B (NB), base station controller (BSC), base transceiver station (BTS), home base station (eg, home evolved NodeB, or home Node B, HNB), Baseband unit (BBU), access point (AP), wireless fidelity access point (WiFi AP), worldwide interoperability for microwave access (WiMAX) BS, etc. .
  • eNB evolved Node B
  • RNC radio network controller
  • NB Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station eg, home evolved NodeB, or home Node B, HNB
  • BBU Baseband unit
  • AP access point
  • WiFi AP wireless fidelity access point
  • WiMAX worldwide interoperability for microwave access
  • CP after copying a part of data of a certain length of an OFDM symbol and inserting it into the foremost end of the OFDM symbol, the inserted partial data is the CP.
  • CP length the length of the partial data inserted at the forefront of an OFDM symbol
  • CP length can also be understood as the length of the data at the forefront of one OFDM symbol and the same portion as the last end, that is, the length of the CP.
  • FIG. 1 shows a possible communication system to which the CP length determining method provided by the embodiment of the present application is applicable.
  • the architecture of the communication system includes a first device and a second device. among them:
  • the first device is any one of a base station and a terminal device
  • the second device is one of a base station and a terminal device except the first device.
  • the OFDM modulation mode is adopted, that is, the first device and the second device mutually transmit and receive OFDM symbols when transmitting data.
  • the first device and the second device perform at least the following operations in the transmission process of the OFDM symbol:
  • the first device when the first device needs to send data to the second device, the first device first inserts a CP in the original OFDM symbol, specifically: the first device will be the last in the original OFDM symbol. After the partial data of a certain length is copied, it is inserted into the forefront of the original OFDM symbol, and the data inserted into the front end is the CP, and the length of the data is the length of the CP. The first device then transmits the processed OFDM symbol to the second device. After receiving the processed OFDM symbol sent by the first device, the second device demodulates the processed OFDM symbol according to the length of the CP to obtain the original OFDM symbol.
  • the first device and the second device adopt the CP length specified by the protocol (that is, the length of the normal CP or the extended CP), which causes the spectrum utilization of the communication system to be low.
  • the length of the CP used by the first device and the second device is that the CP length can be selected according to the current channel quality information, and the selected CP length ratio is selected.
  • the CP length used in the prior art is small, and the disadvantages in the prior art can be effectively solved. Specific embodiments in the embodiments of the present invention are specifically described in the following embodiments.
  • FIG. 1 the architecture of the communication system shown in FIG. 1 is not limited to including the device shown in the figure, and may also include other devices not shown in the figure. Those skilled in the art should understand that the details are not described herein. Said.
  • the communication system shown in FIG. 1 does not constitute a limitation of the communication system to which the embodiment of the present application can be applied. Therefore, the method provided by the embodiment of the present application can also be applied to a 4th generation (4th generation, 4G) mobile communication system; and various mobile communication networks suitable for 5th generation (5G) or future.
  • 4G 4th generation
  • 5G 5th generation
  • a method for determining a CP length according to an embodiment of the present invention is applicable to the communication system shown in FIG. 1.
  • the specific process of the method includes:
  • Step 201 The first device receives a reference signal sent by the second device, and determines channel quality information based on the reference signal, where the channel quality information is used to represent channel quality between the first device and the second device. .
  • the first device is any one of a terminal device and a base station
  • the second device is one of the terminal device and the base station except the first device.
  • the reference signal is a downlink reference signal
  • the reference signal is an uplink reference signal.
  • the channel quality information may include at least one or a combination of: SINR, CINR, multipath delay profile, beam angle extension, Doppler frequency shift.
  • the reference signal sent by the second device to the first device is a signal of the content known by the first device, and the first device analyzes the reference signal actually received and the reference of the known content.
  • the signal can calculate channel quality information, that is, estimate the channel quality between the first device and the second device. In this way, the first device can subsequently select a suitable CP length according to the channel quality information to complete subsequent data transmission.
  • the first device may further perform the following operations:
  • the first device sends first indication information to the second device, where the first indication information indicates that the first device has the capability of selecting a different CP length;
  • the first device receives second indication information of the second device, and the second indication information indicates that the second device has the capability of transmitting data according to different CP lengths.
  • the first device and the second device can mutually know that both parties can support data transmission using different CP lengths, so that the first device can determine the appropriate data required in the data transmission process.
  • the length of the CP is such that the length of the CP is used in subsequent data transmission with the second device, thereby improving the spectrum utilization of the communication system.
  • the terminal device when the terminal device sends the indication information to the base station, the terminal device directly sends the indication information to the base station;
  • the base station When the base station sends the indication information to the terminal device: the base station broadcasts the indication information to enable the terminal device to receive, or the base station directly sends the indication information to the terminal device. That is, when the first device is a terminal device, and the second device is a base station, the terminal device directly sends the first indication information to the base station; and the terminal device receives the first broadcast by the base station
  • the second indication information, or the terminal device receives the second indication information that is sent by the base station to the terminal device.
  • the first device is a base station
  • the second device when the second device is a terminal device, the principle of transmitting and receiving the indication information is the same, and details are not described herein again.
  • Step 202 The first device determines a CP length corresponding to the channel quality information according to a corresponding relationship between the stored multiple channel quality information and a plurality of CP lengths, where the CP length is smaller than a length of the normal CP.
  • the first device and the second device have different CP lengths under different channel quality information, and the data transmission effect is different, and the corresponding CP length can ensure that the data is characterized in the channel quality information.
  • Transmission quality under channel quality. Therefore, the first device may determine the CP length corresponding to the channel quality information obtained in step 201 by using the stored correspondence, and the first device and the second device may use the agreed CP length for data transmission. Thereby, the data transmission quality between the first device and the second device can be ensured, and since the CP length is smaller than the length of the normal CP, the spectrum utilization ratio of the communication system can be improved compared to the prior art.
  • the source of the correspondence stored in the first device may be classified into the following two types:
  • the first type the first device generates the correspondence.
  • the second type the first device receives the correspondence from the second device, where the corresponding relationship is generated by the second device.
  • the correspondence is generated in the same manner.
  • the correspondence relationship is generated according to multiple channel quality information samples and multiple CP length samples.
  • the multiple channel quality information samples may be The plurality of CP length samples are subjected to machine learning training to generate the correspondence.
  • the algorithm for machine learning as described below may be used: a supervised learning algorithm, such as a Regression model algorithm, K-nearest neighbor (KNN) Classification algorithm, support vector machine (SVM) algorithm, Bayesian learning algorithm, etc.; unsupervised learning algorithm, such as K-means algorithm, principal component analysis (PCA) Algorithm, independent component analysis (ICA) algorithm, etc.; enhanced learning algorithms, such as Markov decision process (MDP) algorithm, partially observable markov decision process , POMDP) algorithm, enhanced learning (Q-learning) algorithm, etc.
  • KNN K-nearest neighbor
  • SVM support vector machine
  • ICA independent component analysis
  • enhanced learning algorithms such as Markov decision process (MDP) algorithm, partially observable markov decision process , POMDP) algorithm, enhanced learning (Q-learning) algorithm, etc.
  • the corresponding relationship includes a correspondence between the first channel quality information and the first CP length, where the first channel quality information is one of the multiple channel quality information samples,
  • the first CP length is one of the plurality of CP length samples; wherein, the correspondence between the first channel quality information and the first CP length satisfies the following condition: difference between the first data and the second data
  • the second data is obtained by demodulating the first intermediate data according to the first CP length, and the first intermediate data is based on the first channel quality information and the first A CP length is obtained by modulating the first data.
  • the first intermediate data is to modulate the first data based on the first channel quality information and the first CP length, and may be based on the first channel quality information and the first CP
  • the length is processed by adding channel distortion and noise to the first data to obtain the first intermediate data.
  • the first data and the second data may be respectively composed of a plurality of bits, and the first data and the second data have the same bit number.
  • the difference between the first data and the second data may be obtained by comparing values corresponding to the same bits in the first data and the second data, and comparing values corresponding to all the bits.
  • the difference value is processed into a target value, which can be used as a difference between the first data and the second data.
  • the method of processing the difference obtained by comparing the values corresponding to all the bits into the target value may be, but not limited to, a mean square error method, a mean square method, a least square method, and the like.
  • the set difference range may be a set value range, such that when the target value is within the set value range, the difference between the first data and the second data is set Within the range of differences.
  • the first data is 011110
  • the second data is 0.1, 0.9, 0.7, 0.8, 0.9, 0.2
  • the values corresponding to the same bit of the first data and the second data are compared
  • six The values corresponding to the bits are respectively compared to 0.1, 0.1, 0.3, 0.2, 0.1, and 0.2
  • the target value is 0.2 by square summing all the differences, when the set difference range is When 0 to 10, the target value is within the set difference range.
  • the target value may be the obtained minimum value, so that when the first channel information and the first CP length are corresponding, the data transmission error may be reduced, that is, data transmission Good quality.
  • the first intermediate data when the first device generates the correspondence relationship according to the multiple channel quality information samples and the multiple CP length samples, the first intermediate data may be The first device is modulated by the first device based on the first channel quality information and the first CP length; the first intermediate data may also be based on the second device by the second device After the first data is modulated by the channel quality information and the first CP length, the first data is sent to the first device.
  • the process of generating the corresponding relationship by the first device in the two cases is as follows:
  • the determining, by the first device, that the first channel information quality and the first CP length form a corresponding relationship may be:
  • the first device randomly selects the first data, and modulates the first data based on the first channel quality information and the first CP length to obtain the first intermediate data; the first device Demodulating the first intermediate data according to the first CP length to obtain the second data; the first device determining that the difference between the first data and the second data is in the setting difference When the range is within, the first device determines that the first channel quality information corresponds to the first CP length. Thus, the correspondence between the first channel quality information and the first CP length is obtained.
  • A2 In a case that the first intermediate data is sent by the second device that is received, the determining, by the first device, that the first channel information quality and the first CP length form a corresponding relationship may be:
  • the second device After the second device determines the first data, and modulates the first data based on the first channel quality information and the first CP length to obtain the first intermediate data, the second The device sends the first intermediate data to the first device, where the first data may be agreed by the second device and the first device; the first device is according to the first CP Decoding the first intermediate data to obtain the second data; and when the first device determines that the difference between the first data and the second data is within the set difference range, The first device determines that the first channel quality information corresponds to the first CP length. Thus, the correspondence between the first channel quality information and the first CP length is obtained.
  • the process in the above A1 may be referred to as an offline training process, that is, the training of the corresponding relationship is completed by the first device itself; the process in the above A2 may be referred to as an online training process. That is, when the first device and the second device communicate, the second device cooperates to enable the first device to complete the training of the corresponding relationship. Therefore, the length of the CP can be determined by any one of the two training methods according to actual needs, and the success rate and accuracy of the CP length determination can be guaranteed.
  • the first device repeats the foregoing process of determining a correspondence between the first channel quality information and the first CP length by using multiple channel information quality samples and multiple CP length samples to find out that a plurality of pairs of channel quality information samples and CP length samples of the condition that the difference between the initial data (for example, the first data described above) and the demodulated data (for example, the second data described above) is within the set difference range, That is, a correspondence relationship between a plurality of channel quality information and a plurality of CP lengths can be obtained.
  • the difference between the initial data (eg, the first data described above) and the demodulated data may also be processed to minimize the difference.
  • the corresponding relationship is that the first device receives from the second device
  • the principle that the second device generates the corresponding relationship is generated by the first device in the foregoing description.
  • the specific processes are the same and can be referred to each other, and will not be described here.
  • Step 203 The first device sends the CP length to the second device.
  • the first device after the first device sends the CP length to the second device, when the first device and the second device are performing data transmission, the first device and the The second device performs modulation and demodulation according to the length of the CP. That is, the first device sends data to the second device based on the length of the CP, and after receiving the data sent by the second device, demodulates the received data based on the length of the CP.
  • the second device is similar, and details are not repeated herein.
  • the first device determines a CP demodulation template corresponding to the CP length, where the CP demodulation template is used to indicate a demodulation parameter corresponding to the CP length;
  • the first device demodulates the data according to the CP demodulation template.
  • the first device stores a plurality of CP demodulation templates, and the plurality of CP demodulation templates respectively correspond to a plurality of CP lengths, and the first device may have a solution corresponding to each CP length.
  • the template is adjusted to determine a demodulation parameter corresponding to the length of the CP, and then the data based on the length of the CP may be subsequently demodulated according to the demodulation parameter.
  • the physical downlink shared channel (PDSCH) time-frequency resource or physical is utilized.
  • the uplink time shared channel (PUSCH) is transmitted on the time-frequency resource. Therefore, the length of the CP determined in the embodiment of the present application can be used on the corresponding PDSCH or PUSCH, such as the PDSCH and the PDSCH shown in FIG. 3a. PUSCH shown in 3b.
  • the first device and the second device may stop transmitting data based on the CP length at the end of the current frame. Further, since the CP length used in the current intra-frame data transmission is smaller than the CP length specified in the prior art, the reference signal position in the next frame of the current frame is relative to the existing one. The position of the reference signal in the technique is advanced as the length of the CP is changed relative to the length of the CP specified in the prior art. This saves time and frequency resources.
  • the first device After determining the channel quality information based on the reference signal sent by the second device, the first device determines the channel according to the corresponding relationship between the stored multiple channel quality information and multiple CP lengths.
  • the CP length corresponding to the quality information, and the determined CP length is sent to the second device, wherein the CP length is smaller than the length of the normal CP.
  • the appropriate CP length can be selected according to the channel quality information, and the selected CP length is smaller than the length of the normal CP in the prior art, so that the useless data in the transmission process is less than that in the prior art, thereby It can improve the spectrum utilization of the communication system.
  • the embodiment of the present application further provides a first device, where the first device is applied to the first device in the communication system shown in FIG. 1 to implement the CP length determining method shown in FIG. 2.
  • the first device 400 includes: a receiving unit 401, a processing unit 402, a storage unit 403, and a sending unit 404, where:
  • the receiving unit 401 is configured to receive a reference signal sent by the second device.
  • the processing unit 402 is configured to determine channel quality information, where the channel quality information is used to represent channel quality between the first device and the second device, where the first device 400 is Any one of a terminal device and a base station, the second device being one of the terminal device and the base station except the first device 400.
  • the channel quality information includes at least one or a combination of: SINR, CINR, multipath delay profile, beam angle extension, Doppler frequency shift.
  • the storage unit 403 is configured to store a correspondence between multiple channel quality information and a plurality of cyclic prefix CP lengths.
  • the processing unit 402 is further configured to determine a CP length corresponding to the channel quality information according to a correspondence between multiple channel quality information stored by the storage unit 403 and a plurality of cyclic prefix CP lengths, where the CP length is smaller than a conventional The length of the normal CP.
  • the sending unit 404 is configured to send the CP length to the second device.
  • the correspondence relationship is generated according to multiple channel quality information samples and multiple CP length samples.
  • the corresponding relationship includes a correspondence between the first channel quality information and the first CP length, where the first channel quality information is one of the multiple channel quality information samples, The first CP length is one of the plurality of CP length samples; the correspondence between the first channel quality information and the first CP length satisfies the following condition: a difference between the first data and the second data is set The second data is obtained by demodulating the first intermediate data according to the first CP length, and the first intermediate data is based on the first channel quality information and the first CP The length is obtained by modulating the first data.
  • processing unit 402 is further configured to generate the correspondence.
  • the receiving unit 401 is further configured to receive the correspondence from the second device. In this case, the corresponding relationship is sent to the first device 400 after being generated by the second device.
  • the sending unit 404 is further configured to: before the receiving unit 401 receives the reference signal sent by the second device, send the first indication information to the second device.
  • the first indication information indicates that the first device has the capability of selecting a different CP length
  • the receiving unit 401 is further configured to receive second indication information of the second device, where the second indication information indicates The second device is capable of transmitting data according to different CP lengths.
  • the processing unit 402 is further configured to determine a CP demodulation template corresponding to the CP length, where the CP demodulation template is used to indicate a demodulation parameter corresponding to the CP length;
  • the receiving unit 401 is further configured to receive data that is sent by the second device based on the length of the CP;
  • the processing unit 402 is further configured to: when the receiving unit 401 receives the data that is sent by the second device based on the length of the CP, demodulate the data according to the CP demodulation template.
  • the first device After determining the channel quality information by using the reference signal sent by the second device, the first device provided by the embodiment of the present application determines the channel quality information according to the corresponding relationship between the stored multiple channel quality information and multiple CP lengths.
  • the CP length is sent to the second device, wherein the CP length is less than the length of the normal CP.
  • the appropriate CP length can be selected according to the channel quality information, and the selected CP length is smaller than the length of the normal CP in the prior art, so that the useless data in the transmission process is less than that in the prior art, thereby It can improve the spectrum utilization of the communication system.
  • the division of the unit in the embodiment of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • the functional units in the embodiments of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .
  • the embodiment of the present application further provides a first device, where the first device is applied to the first device in the communication system shown in FIG. 1 to implement the CP length determination shown in FIG. 2 .
  • the first device 500 includes a transceiver 501, a processor 502, and a memory 503, where:
  • the processor 502 can be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • the processor 502 may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the transceiver 501, the processor 502, and the memory 503 are connected to each other.
  • the transceiver 501, the processor 502, and the memory 503 are mutually connected by a bus 504;
  • the bus 504 may be a Peripheral Component Interconnect (PCI) bus or an extended industry standard. Extended Industry Standard Architecture (EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 5, but it does not mean that there is only one bus or one type of bus.
  • the transceiver 501 is configured to receive and send data
  • the processor 502 is configured to receive, by the transceiver 501, a reference signal sent by the second device, and determine channel quality information based on the reference signal; and according to the stored multiple channel quality information and multiple cyclic prefix CP lengths Corresponding relationship, determining a CP length corresponding to the channel quality information, where the CP length is smaller than a length of a regular normal CP; sending, by the transceiver 501, the CP length to the second device; the channel quality information is used for Characterizing channel quality between the first device 500 and the second device; the first device 500 is any one of a terminal device and a base station, and the second device is a terminal device and a base station except the One of the devices 500; in an optional implementation manner, the channel quality information includes at least one or a combination of: SINR, CINR, multipath delay profile, beam angle extension, Doppler shift ;
  • the memory 503 is configured to store a correspondence between multiple channel quality information and a plurality of cyclic prefix CP lengths.
  • the correspondence relationship is generated according to multiple channel quality information samples and multiple CP length samples.
  • the corresponding relationship includes a correspondence between the first channel quality information and the first CP length, where the first channel quality information is one of the multiple channel quality information samples, The first CP length is one of the plurality of CP length samples; the correspondence between the first channel quality information and the first CP length satisfies the following condition: a difference between the first data and the second data is set The second data is obtained by demodulating the first intermediate data according to the first CP length, and the first intermediate data is based on the first channel quality information and the first CP The length is obtained by modulating the first data.
  • the processor 502 is further configured to generate the correspondence.
  • the processor 502 is further configured to receive, by using the transceiver 501, the correspondence from the second device.
  • the processor 502 is further configured to: before the receiving, by the transceiver 501, the reference signal sent by the second device, by using the transceiver 501 The second device sends the first indication information, where the first indication information indicates that the first device has the capability of selecting a different CP length;
  • the processor 502 is further configured to receive, by the transceiver 501, second indication information of the second device, where the second indication information indicates that the second device has the capability of transmitting data according to different CP lengths.
  • the processor 502 is further configured to determine a CP demodulation template corresponding to the CP length, where the CP demodulation template is used to indicate a demodulation parameter corresponding to the CP length.
  • the processor 502 is further configured to receive, by the transceiver 501, data that is sent by the second device based on the length of the CP, and demodulate the data according to the CP demodulation template.
  • the memory 503 is also used to store programs and the like.
  • the program can include program code, the program code including computer operating instructions.
  • the memory 503 may include a RAM, and may also include a non-volatile memory, such as at least one disk storage.
  • the processor 502 executes an application stored in the memory 503 to implement the above functions, thereby implementing the CP length determining method shown in FIG. 2.
  • the first device After determining the channel quality information by using the reference signal sent by the second device, the first device provided by the embodiment of the present application determines the channel quality information according to the corresponding relationship between the stored multiple channel quality information and multiple CP lengths.
  • the CP length is sent to the second device, wherein the CP length is less than the length of the normal CP.
  • the appropriate CP length can be selected according to the channel quality information, and the selected CP length is smaller than the length of the normal CP in the prior art, so that the useless data in the transmission process is less than that in the prior art, thereby Can improve the spectrum utilization of the system.
  • the CP length determining method and apparatus after determining the channel quality information based on the reference signal sent by the second device, the first device according to the stored multiple channel quality information and multiple CP lengths Corresponding relationship, determining a CP length corresponding to the channel quality information, and transmitting the determined CP length to the second device, where the CP length is smaller than a length of the normal CP.
  • the appropriate CP length can be selected according to the channel quality information, and the selected CP length is smaller than the length of the normal CP in the prior art, so that the useless data in the transmission process is less than that in the prior art, thereby It can improve the spectrum utilization of the communication system.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the application can take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种循环前缀长度确定方法及装置,用以解决现有技术中使用常规循环前缀normal CP和扩展extended CP导致系统的频谱利用率较低的问题。方法包括:第一设备接收第二设备发送的参考信号,并基于所述参考信号确定信道质量信息;所述第一设备根据存储的多个信道质量信息与多个循环前缀CP长度的对应关系,确定所述信道质量信息对应的CP长度,所述CP长度小于normal CP的长度;所述第一设备向所述第二设备发送所述CP长度。这样可以根据信道质量信息选择合适的CP长度,且选择的CP长度小于现有技术中的normal CP的长度,相对于现有技术,在传输过程中的无用数据变少,从而可以提高系统的频谱利用率。

Description

一种循环前缀长度确定方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种循环前缀(cyclic prefix,CP)长度确定方法及装置。
背景技术
在长期演进(long term evolution,LTE)通信系统中,通常采用正交频分复用(orthogonal frequency division multiplexing,OFDM)的调制方式。具体的,在OFDM符号的传输过程中,为了消除符号间干扰(Inter Symbol Interference,ISI)和载波间干扰(inter carrier interference,ICI),发送端会将一个OFDM符号最后一定长度的部分数据复制后插入到所述OFDM符号的最前端,插入的部分数据叫做CP,然后所述发送端将插入了CP后变长了的数据作为新的OFDM符号并发送给接收端;所述接收端接收到所述新的OFDM符号后,解调出原始的OFDM符号。
目前,为了适应不同的小区半径,LTE系统的标准中定义了常规(normal)CP和扩展(extended)CP两种固定的CP,以使发送端基于所述normal CP或extended CP的长度进行调制,以及使接收端基于所述normal CP或extended CP的长度进行解调。但是由于CP中不承载任何有用信息,现有的normal CP和extended CP的长度均比较长,这样会导致通信系统的频谱利用率较低。
发明内容
本申请实施例提供了一种CP长度确定方法及装置,用以解决现有技术中使用normal CP和extended CP导致通信系统的频谱利用率较低的问题。
第一方面,本申请提供了一种CP长度确定方法,该方法包括:
第一设备接收第二设备发送的参考信号,并基于所述参考信号确定信道质量信息;所述第一设备根据存储的多个信道质量信息与多个循环前缀CP长度的对应关系,确定所述信道质量信息对应的CP长度,并向所述第二设备发送所述CP长度;所述CP长度小于常规normal CP的长度;所述信道质量信息用于表征所述第一设备与所述第二设备之间的信道质量;所述第一设备为终端设备和基站中的任一个,所述第二设备为终端设备和基站中除所述第一设备之外的一个。
通过上述方法,可以根据信道质量信息选择合适的CP长度,且选择的CP长度小于现有技术中的normal CP的长度,这样相对于现有技术,在传输过程中的无用数据变少,从而可以提高通信系统的频谱利用率。
在一个可能的设计中,所述对应关系根据多个信道质量信息样本和多个CP长度样本生成。这样可以准确地得到所述对关系。
在一个可能的设计中,在根据所述多个信道质量信息样本和所述多个CP长度样本生成所述对应关系时,可以对所述多个信道质量信息样本和所述多个CP长度样本进行机器学习训练,生成所述对应关系。这样可以准确地生成所述对应关系。
在一个可能的设计中,所述对应关系中包括第一信道质量信息与第一CP长度的对应 关系,所述第一信道质量信息为所述多个信道质量信息样本中的一个,所述第一CP长度为所述多个CP长度样本中的一个;所述第一信道质量信息和所述第一CP长度的对应关系满足以下条件:第一数据和第二数据的差异在设定差异范围内;所述第二数据为根据所述第一CP长度对第一中间数据解调后得到的,所述第一中间数据为基于所述第一信道质量信息和所述第一CP长度对所述第一数据进行调制后得到的。具体的,所述第一中间数据为基于所述第一信道质量信息和所述第一CP长度对所述第一数据进行调制,可以为基于所述第一信道质量信息和所述第一CP长度对所述第一数据加入信道失真和噪声进行处理,得到所述第一中间数据。
通过上述方法,可以准确地得到所述对应关系,以使所述第一设备根据确定的信道质量信息选择合适的CP长度。
在一个可能的设计中,所述第一数据和所述第二数据分别可以由多个比特组成,且所述第一数据和所述第二数据的比特位数相同。所述第一数据和所述第二数据的差异可以通过下述方法得到:比较所述第一数据和所述第二数据中相同比特位对应的值,将所有比特位对应的值比较得到的差值处理成一个目标值,所述目标值即可以作为所述第一数据和所述第二数据的差异。所述设定差异范围可以为设定的数值范围。其中,将所有比特位对应的值比较得到的差值处理成所述目标值的方法可以但不限于为均方差法、均方和法、最小二乘法等等。
通过上述方法,可以准确地判断所述第一数据和所述第二数据的差异是否在所述设定差异范围内。
在一个可能的设计中,在所述第一设备在根据所述多个信道质量信息样本和所述多个CP长度样本生成所述对应关系过程中,所述第一中间数据可以是由所述第一设备基于所述第一信道质量信息和所述第一CP长度对第一数据进行调制得到的,此时所述第一数据可以是所述第一设备随机选择的;所述第一中间数据还可以是由所述第二设备基于所述第一信道质量信息和所述第一CP长度对第一数据进行调制得到后,发送给所述第一设备的,此时,所述第一数据可以是所述第二设备与所述第一设备约定好的。
通过上述方法,所述第一设备可以准确地得到所述第一信道质量信息和所述第一CP长度的对应关系。
在一个可能的设计中,所述第一设备生成所述对应关系,或者所述第一设备从所述第二设备接收所述对应关系。其中,所述第一设备从所述第二设备接收的所述对应关系为所述第二设备生成的。
通过上述方法,所述第一设备可以通过两种方式得到所述对应关系,从而可以保证所述第一设备存储所述对应关系的成功率,进而可以使所述第一设备通过确定的信道质量信息选择合适的CP长度。
在一个可能的设计中,在所述第一设备接收所述第二设备发送的所述参考信号之前,所述第一设备向所述第二设备发送第一指示信息,所述第一指示信息指示所述第一设备具备选择不同的CP长度的能力;所述第一设备接收所述第二设备的第二指示信息,所述第二指示信息指示所述第二设备具备根据不同的CP长度传输数据的能力。
通过上述方法,所述第一设备和所述第二设备均可以互相知道双方均可以支持采用不同的CP长度来传输数据,这样所述第一设备就可以确定数据传输过程中所需的合适的CP长度,以使在后续与所述第二设备的数据传输过程中采用所述CP长度,进而可以提高系 统的频谱利用率。
在一个可能的设计中,当所述第一设备是终端设备,所述第二设备是基站时,所述第一设备直接向所述第二设备发送所述第一指示信息;所述第一设备接收所述第二设备广播的所述第二指示信息,或者所述第一设备接收所述第二设备直接向所述第一设备发送的所述第二指示信息。
在一个可能的设计中,所述第一设备确定所述CP长度对应的CP解调模板,所述CP解调模板用于指示所述CP长度对应的解调参数;当所述第一设备接收到所述第二设备基于所述CP长度发送的数据时,所述第一设备根据所述CP解调模板对所述数据进行解调。
通过上述方法,所述第一设备可以准确从所述第二设备发送的数据中解调出需要的数据。
在一个可能的设计中,所述信道质量信息包括以下至少一项或组合:信号与干扰加噪声比(signal to interference plus noise ratio,SINR)、载波干扰噪声比(carrier to interference plus noise ratio,CINR)、多径时延分布、波束角度扩展,多普勒频移。
第二方面,本申请还提供了一种第一设备,该第一设备具有实现上述方法实例中第一设备的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述第一设备的结构中包括接收单元、处理单元、存储单元和发送单元,这些单元可以执行上述方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述第一设备的结构中包括收发器、处理器以及存储器,所述收发器用于收发数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述第一设备执行上述方法中相应的功能。所述存储器与所述处理器耦合,其保存所述第一设备必要的程序指令和数据。
第三方面,本申请还提供了一种通信系统,所述通信系统包括上述设计中提及的第一设备和第二设备。
第十方面,本申请还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时用于使所述计算机执行上述任一种方法。
第十一方面,本申请还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一种方法。
第十二方面,本申请还提供了一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的程序指令,以实现上述任一种方法。
本申请实施例中,第一设备基于第二设备发送的参考信号确定信道质量信息后,根据存储的多个信道质量信息与多个CP长度的对应关系,确定所述信道质量信息对应的CP长度,并将确定的CP长度发送给所述第二设备,其中所述CP长度小于normal CP的长度。在该方法中,可以根据信道质量信息选择合适的CP长度,且选择的CP长度小于现有技术中的normal CP的长度,这样相对于现有技术,在传输过程中的无用数据变少,从而可以提高系统的频谱利用率。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的一种CP长度确定方法的流程图;
图3a为本申请实施例提供的一种资源位置示意图;
图3b为本申请实施例提供的另一种资源位置示意图;
图4为本申请实施例提供的一种第一设备的结构示意图;
图5为本申请实施例提供的一种第一设备的结构图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请实施例提供一种CP长度确定方法及装置,用以解决现有技术中使用normal CP和extended CP导致系统的频谱利用率较低的问题。其中,本申请所述方法和装置基于同一发明构思,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、终端设备,又称之为用户设备(user equipment,UE),是一种向用户提供数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备、可穿戴设备、计算设备、移动台(mobile station,MS)或连接到无线调制解调器的其他处理设备等,以及经接入网与一个或多个核心网进行通信的移动终端。
2)、基站(base station,BS),是为终端设备提供无线接入服务的设备,包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU)、接入点(access point,AP)、无线接入点(wireless fidelity access point,WiFi AP)、全球微波互联接入(worldwide interoperability for microwave access,WiMAX)BS等。
3)、CP,指将一个OFDM符号最后一定长度的部分数据复制后插入到所述OFDM符号的最前端后,所述插入的部分数据即为所述CP。
4)、CP长度,为一个OFDM符号最前端插入的部分数据的长度,也可以理解为位于一个OFDM符号中最前端,且与最后端相同部分数据的长度,即CP的长度。
5)、在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
为了更加清晰地描述本申请实施例的技术方案,下面结合附图,对本申请实施例提供的CP长度确定方法及装置进行详细说明。
图1示出了本申请实施例提供的CP长度确定方法适用的一种可能的通信系统,所述通信系统的架构中包括第一设备和第二设备。其中:
所述第一设备是基站和终端设备中的任一个,所述第二设备是基站和终端设备中除所述第一设备之外的一个。所述第一设备和所述第二设备之间传输数据时,采用OFDM调制方式,即所述第一设备和所述第二设备在传输数据时,互相收发OFDM符号。具体的,所述第一设备和所述第二设备在所述OFDM符号的传输过程中分别至少执行以下操作:
例如,所述第一设备需要向所述第二设备发送数据时,所述第一设备先在原始的 OFDM符号中插入CP,具体为:所述第一设备将所述原始的OFDM符号中最后一定长度的部分数据复制后,插入到所述原始的OFDM符号的最前端,插入到最前端数据则为所述CP,该数据的长度即为CP的长度。然后所述第一设备将处理后的OFDM符号发送给所述第二设备。所述第二设备接收到所述第一设备发送的所述处理后的OFDM符号后,根据所述CP的长度,对所述处理后的OFDM符号进行解调,得到所述原始的OFDM符号。
在现有技术中,在上述过程中,所述第一设备和所述第二设备均采用协议规定的CP长度(即normal CP或extended CP的长度),会造成通信系统的频谱利用率较低。在本申请实施例中,在上述过程中,所述第一设备和所述第二设备采用的CP长度,是可以根据当前的信道质量信息选择合适的CP长度的,且选择的该CP长度比现有技术中采用的CP长度小,可以有效解决现有技术中的缺点。本发明实施例中的具体方案通过后续实施例具体描述。
需要说明的是,图1所示的通信系统的架构中不限于包括图中所示的设备,还可以包括其它未在图中示出的设备,本领域技术人员应该理解,此处不做详述。
需要说明的是,图1所示的通信系统并不构成本申请实施例能够适用的通信系统的限定。因此本申请实施例提供的方法还可以适用于第四代(4thgeneration,4G)移动通信系统;以及适用于第五代(5th generation,5G)或未来的各种移动通信网络。
本发明实施例提供的一种CP长度确定方法,适用于图1所示的通信系统。参阅图2所示,所述方法的具体流程包括:
步骤201:第一设备接收第二设备发送的参考信号,并基于所述参考信号确定信道质量信息,所述信道质量信息用于表征所述第一设备与所述第二设备之间的信道质量。
其中,所述第一设备为终端设备和基站中的任一个,所述第二设备为终端设备和基站中除所述第一设备之外的一个。具体的,当所述第一设备为终端设备,所述第二设备为基站时,所述参考信号为下行参考信号;当所述第一设备为基站,所述第二设备为终端设备时,所述参考信号为上行参考信号。
在一种可选的实施方式中,所述信道质量信息可以包括以下至少一项或组合:SINR、CINR、多径时延分布、波束角度扩展、多普勒频移。
具体实施中,所述第二设备向所述第一设备发送的参考信号为所述第一设备已知内容的信号,所述第一设备通过分析实际接收到的参考信号和已知内容的参考信号,可以计算出信道质量信息,即估计出所述第一设备和所述第二设备之间的信道质量。这样可以使所述第一设备后续根据所述信道质量信息选择合适的CP长度完成后续的数据传输。
可选的,在所述第一设备接收所述第二设备发送的所述参考信号之前,所述第一设备还可以执行以下操作:
所述第一设备向所述第二设备发送第一指示信息,所述第一指示信息指示所述第一设备具备选择不同的CP长度的能力;
所述第一设备接收所述第二设备的第二指示信息,所述第二指示信息指示所述第二设备具备根据不同的CP长度传输数据的能力。
通过上述方法,所述第一设备和所述第二设备均可以互相知道双方均可以支持采用不同的CP长度来传输数据,这样所述第一设备就可以确定数据传输过程中所需的合适的CP长度,以使在后续与所述第二设备的数据传输过程中采用所述CP长度,进而可以提高通信系统的频谱利用率。
具体的,在上述方法中的任一指示信息(第一指示信息或第二指示信息)的收发过程中,当是终端设备向基站发送指示信息时:终端设备直接将指示信息发送给基站;当是基站向终端设备发送指示信息时:基站广播指示信息,以使终端设备接收到,或者基站直接向终端设备发送指示信息。即当所述第一设备是终端设备,所述第二设备是基站时,所述终端设备直接向所述基站发送所述第一指示信息;所述终端设备接收所述基站广播的所述第二指示信息,或者所述终端设备接收所述基站直接向所述终端设备发送的所述第二指示信息。同理,所述第一设备是基站,所述第二设备是终端设备时,指示信息的收发原理相同,此处不再赘述。
步骤202:所述第一设备根据存储的多个信道质量信息与多个CP长度的对应关系,确定所述信道质量信息对应的CP长度,所述CP长度小于normal CP的长度。
具体的,所述第一设备和所述第二设备在数据传输过程中,不同的CP长度在不同的信道质量信息下,数据传输效果不同,对应的CP长度可以保证数据在该信道质量信息表征的信道质量下的传输质量。因此,所述第一设备可以通过存储的所述对应关系确定步骤201得到的信道质量信息对应的CP长度,进而所述第一设备和所述第二设备可以采用约定的CP长度进行数据传输,从而可以保证所述第一设备和所述第二设备之间的数据传输质量,并且由于所述CP长度小于所述normal CP的长度,相对于现有技术,可以提高通信系统的频谱利用率。
在一种可选的实施方式中,所述第一设备中存储的所述对应关系的来源可以分为以下两种:
第一种:所述第一设备生成所述对应关系。
第二种:所述第一设备从所述第二设备接收所述对应关系,其中,所述对应关系为所述第二设备生成的。
在上述两种来源中,所述对应关系的生成方式相同。在一种可选的实施方式中,所述对应关系根据多个信道质量信息样本和多个CP长度样本生成。具体的,所述第一设备或者所述第二设备在根据所述多个信道质量信息样本和所述多个CP长度样本生成所述对应关系时,可以对所述多个信道质量信息样本和所述多个CP长度样本进行机器学习训练,生成所述对应关系。
其中,可选的,在机器学习训练过程中,可以但不限于采用如下所述机器学习的算法:监督学习算法,例如回归模型(Regression model)算法、K最邻近(K-nearest neighbor,KNN)分类算法、支持向量机(support vector machines,SVM)算法,贝叶斯学习(Bayesian learning)算法等;非监督学习算法,例如K均值(K-means)算法、主成分分析(principal component analysis,PCA)算法、独立分量分析(independent component analysis,ICA)算法等;加强学习算法,例如马尔可夫决策过程(markov decision processes,MDP)算法、部分可观察的马尔可夫决策过程(partially observable markov decision process,POMDP)算法、增强学习(Q-learning)算法等。
在一种可选的实施方式中,所述对应关系中包括第一信道质量信息与第一CP长度的对应关系,所述第一信道质量信息为所述多个信道质量信息样本中的一个,所述第一CP长度为所述多个CP长度样本中的一个;其中,所述第一信道质量信息和所述第一CP长度的对应关系满足以下条件:第一数据和第二数据的差异在设定差异范围内;所述第二数据为根据所述第一CP长度对第一中间数据解调后得到的,所述第一中间数据为基于所述第 一信道质量信息和所述第一CP长度对所述第一数据进行调制后得到的。具体的,所述第一中间数据为基于所述第一信道质量信息和所述第一CP长度对所述第一数据进行调制,可以为基于所述第一信道质量信息和所述第一CP长度对所述第一数据加入信道失真和噪声进行处理,得到所述第一中间数据。
具体的,所述第一数据和所述第二数据分别可以由多个比特组成,且所述第一数据和所述第二数据的比特位数相同。所述第一数据和所述第二数据的差异可以通过下述方法得到:比较所述第一数据和所述第二数据中相同比特位对应的值,将所有比特位对应的值比较得到的差值处理成一个目标值,所述目标值即可以作为所述第一数据和所述第二数据的差异。其中,将所有比特位对应的值比较得到的差值处理成所述目标值的方法可以但不限于为均方差法、均方和法、最小二乘法等等。相应的,所述设定差异范围可以为设定的数值范围,这样当所述目标值在所述设定的数值范围内时即为所述第一数据和所述第二数据的差异在设定差异范围内。例如,所述第一数据为011110,所述第二数据为0.1、0.9、0.7、0.8、0.9、0.2,比较所述第一数据和所述第二数据相同比特位对应的值,可知六个比特位对应的值分别比较得到的差值分别为0.1、0.1、0.3、0.2、0.1、0.2,通过对所有差值进行平方求和得到所述目标值为0.2,当所述设定差异范围为0到10时,则所述目标值在所述设定差异范围内。当然,上述举例指示示意性的,还可以有多种其它方式或可能性。其中,可选的,在上述过程中,所述目标值可以是得到的最小值,进而使得所述第一信道信息和所述第一CP长度对应时,数据传输误差可以减小,即数据传输质量较好。
在一种可选的实施方式中,当在所述第一设备在根据所述多个信道质量信息样本和所述多个CP长度样本生成所述对应关系过程中,所述第一中间数据可以是由所述第一设备基于所述第一信道质量信息和所述第一CP长度对第一数据进行调制得到的;所述第一中间数据还可以是由所述第二设备基于所述第一信道质量信息和所述第一CP长度对第一数据进行调制得到后,发送给所述第一设备的。具体的,对所述第一设备在这两种情况下生成所述对应关系的过程进行如下介绍:
A1、在所述第一中间数据是由所述第一设备调制得到的情况下,所述第一设备确定所述第一信道信息质量和所述第一CP长度形成对应关系具体可以为:
所述第一设备随机选择所述第一数据,并基于所述第一信道质量信息和所述第一CP长度对所述第一数据进行调制得到所述第一中间数据;所述第一设备根据所述第一CP长度对所述第一中间数据进行解调,得到所述第二数据;所述第一设备判定所述第一数据和所述第二数据的差异在所述设定差异范围内时,所述第一设备确定所述第一信道质量信息与所述第一CP长度对应。这样就得到了所述第一信道质量信息和所述第一CP长度的对应关系。
A2、在所述第一中间数据是接收的所述第二设备发送的情况下,所述第一设备确定所述第一信道信息质量和所述第一CP长度形成对应关系具体可以为:
在所述第二设备确定所述第一数据,并基于所述第一信道质量信息和所述第一CP长度对所述第一数据进行调制得到所述第一中间数据后,所述第二设备向所述第一设备发送所述第一中间数据,其中,所述第一数据可以为所述第二设备与所述第一设备约定好的;所述第一设备根据所述第一CP长度对所述第一中间数据进行解调,得到所述第二数据;所述第一设备判定所述第一数据和所述第二数据的差异在所述设定差异范围内时,所述第一设备确定所述第一信道质量信息与所述第一CP长度对应。这样就得到了所述第一信道 质量信息和所述第一CP长度的对应关系。
在一种可选的实施方式中,上述A1中的过程可以称之为离线训练过程,即由所述第一设备自身完成对应关系的训练;上述A2中的过程可以称之为在线训练过程,即在所述第一设备和所述第二设备通信时,由所述第二设备配合使所述第一设备完成对应关系的训练。因此可以根据实际需求,通过这两种训练方式中的任一种方式确定CP长度,可以保障CP长度确定的成功率和准确性。
在具体实现时,所述第一设备通过多个信道信息质量样本和多个CP长度样本,重复上述确定所述第一信道质量信息和所述第一CP长度的对应关系的过程,找出满足初始的数据(例如上述的第一数据)和解调得到的数据(例如上述的第二数据)的差异在所述设定差异范围内这一条件的多对信道质量信息样本和CP长度样本,即可以得到多个信道质量信息和多个CP长度的对应关系。可选的,初始的数据(例如上述的第一数据)和解调得到的数据(例如上述的第二数据)的差异还可以被处理成最小化的差异。
可选的,当所述对应关系为所述第一设备从所述第二设备接收时,所述第二设备生成所述对应关系的原理与上述描述中所述第一设备生成所述对应关系的具体过程相同,可以相互参见,此处不再赘述。
步骤203:所述第一设备向所述第二设备发送所述CP长度。
具体实现时,在所述第一设备向所述第二设备发送所述CP长度后,在后续所述第一设备与所述第二设备在进行数据传输时,所述第一设备和所述第二设备均根据所述CP长度进行调制和解调。也就是所述第一设备基于所述CP长度向所述第二设备发送数据,接收到所述第二设备发送的数据后基于所述CP长度对接收到的数据进行解调。同样的,所述第二设备同理,此处不再重复赘述。
在一种可选的实施方式中,所述第一设备确定所述CP长度对应的CP解调模板,所述CP解调模板用于指示所述CP长度对应的解调参数;当所述第一设备接收到所述第二设备基于所述CP长度发送的数据时,所述第一设备根据所述CP解调模板对所述数据进行解调。具体的,所述第一设备中存储着多个CP解调模板,所述多个CP解调模板分别与多个CP长度一一对应,所述第一设备可以根据每个CP长度对应的解调模板,确定对应该CP长度对应的解调参数,进而可以根据该解调参数后续解调基于该CP长度的数据。
在一种可选的实施方式中,所述第一设备和所述第二设备基于所述CP长度进行数据传输时,是利用物理下行共享信道(physical downlink shared channel,PDSCH)时频资源或者物理上行共享信道(physical uplink shared channel,PUSCH)时频资源进行传输的,因此,本申请实施例中确定的所述CP长度可以在相应的PDSCH或者PUSCH上使用,如图3a中示出的PDSCH和3b中示出的PUSCH。
在一种可选的实施方式中,所述第一设备和所述第二设备在当前帧结束时,可以停止基于所述CP长度传输数据。进一步的,由于在所述当前帧内数据传输的过程中,采用的所述CP长度比现有技术中规定的CP长度小,因此所述当前帧的下一个帧中参考信号位置相对于现有技术中的参考信号位置会随所述CP长度相对于现有技术中规定的CP长度的变化前移。这样可以节省时频资源。
采用本申请实施例提供的CP长度确定方法,第一设备基于第二设备发送的参考信号确定信道质量信息后,根据存储的多个信道质量信息与多个CP长度的对应关系,确定所述信道质量信息对应的CP长度,并将确定的CP长度发送给所述第二设备,其中所述CP 长度小于normal CP的长度。在该方法中,可以根据信道质量信息选择合适的CP长度,且选择的CP长度小于现有技术中的normal CP的长度,这样相对于现有技术,在传输过程中的无用数据变少,从而可以提高通信系统的频谱利用率。
基于以上实施例,本申请实施例还提供了一种第一设备,该第一设备应用于如图1所示的通信系统中的第一设备,用于实现图2所示CP长度确定方法。参阅图4所示,该第一设备400包括:接收单元401、处理单元402、存储单元403和发送单元404,其中:
所述接收单元401,用于接收第二设备发送的参考信号。
所述处理单元402,用于基于所述参考信号确定信道质量信息,所述信道质量信息用于表征所述第一设备与所述第二设备之间的信道质量;所述第一设备400为终端设备和基站中的任一个,所述第二设备为终端设备和基站中除所述第一设备400之外的一个。在一种可选的实施方式中,所述信道质量信息包括以下至少一项或组合:SINR、CINR、多径时延分布、波束角度扩展、多普勒频移。
所述存储单元403,用于存储多个信道质量信息与多个循环前缀CP长度的对应关系。
所述处理单元402,还用于根据所述存储单元403存储的多个信道质量信息与多个循环前缀CP长度的对应关系,确定所述信道质量信息对应的CP长度,所述CP长度小于常规normal CP的长度。
所述发送单元404,用于向所述第二设备发送所述CP长度。
在一种可选的实施方式中,所述对应关系根据多个信道质量信息样本和多个CP长度样本生成。
在一种可选的实施方式中,所述对应关系中包括第一信道质量信息与第一CP长度的对应关系,所述第一信道质量信息为所述多个信道质量信息样本中的一个,所述第一CP长度为所述多个CP长度样本中的一个;所述第一信道质量信息和所述第一CP长度的对应关系满足以下条件:第一数据和第二数据的差异在设定差异范围内;所述第二数据为根据所述第一CP长度对第一中间数据解调后得到的,所述第一中间数据为基于所述第一信道质量信息和所述第一CP长度对所述第一数据进行调制后得到的。
在一种可选的实施方式中,所述处理单元402,还用于生成所述对应关系。
在一种可选的实施方式中,所述接收单元401,还用于从所述第二设备接收所述对应关系。在此种情况中,所述对应关系为所述第二设备生成后,发送给所述第一设备400的。
在一种可选的实施方式中,所述发送单元404,还用于在所述接收单元401接收所述第二设备发送的所述参考信号之前,向所述第二设备发送第一指示信息,所述第一指示信息指示所述第一设备具备选择不同的CP长度的能力;所述接收单元401,还用于接收所述第二设备的第二指示信息,所述第二指示信息指示所述第二设备具备根据不同的CP长度传输数据的能力。
在一种可选的实施方式中,所述处理单元402,还用于确定所述CP长度对应的CP解调模板,所述CP解调模板用于指示所述CP长度对应的解调参数;
所述接收单元401,还用于接收所述第二设备基于所述CP长度发送的数据;
所述处理单元402,还用于当所述接收单元401接收到所述第二设备基于所述CP长度发送的数据时,根据所述CP解调模板对所述数据进行解调。
采用本申请实施例提供的第一设备,基于第二设备发送的参考信号确定信道质量信息后,根据存储的多个信道质量信息与多个CP长度的对应关系,确定所述信道质量信息对 应的CP长度,并将确定的CP长度发送给所述第二设备,其中所述CP长度小于normal CP的长度。在该方法中,可以根据信道质量信息选择合适的CP长度,且选择的CP长度小于现有技术中的normal CP的长度,这样相对于现有技术,在传输过程中的无用数据变少,从而可以提高通信系统的频谱利用率。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种第一设备,所述第一设备应用于如图1所示的通信系统中的第一设备,用于实现图2所示的CP长度确定方法。参阅图5所示,所述第一设备500包括:收发器501、处理器502以及存储器503,其中:
所述处理器502可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。所述处理器502还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
所述收发器501、所述处理器502以及所述存储器503之间相互连接。可选的,所述收发器501、所述处理器502以及所述存储器503通过总线504相互连接;所述总线504可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
所述第一设备500在实现本申请实施例提供的CP长度确定方法时:
所述收发器501,用于接收和发送数据;
所述处理器502,用于通过所述收发器501接收第二设备发送的参考信号,并基于所述参考信号确定信道质量信息;根据存储的多个信道质量信息与多个循环前缀CP长度的对应关系,确定所述信道质量信息对应的CP长度,所述CP长度小于常规normal CP的长度;通过所述收发器501向所述第二设备发送所述CP长度;所述信道质量信息用于表征所述第一设备500与所述第二设备之间的信道质量;所述第一设备500为终端设备和基站中的任一个,所述第二设备为终端设备和基站中除所述第一设备500之外的一个;在一种可选的实施方式中,所述信道质量信息包括以下至少一项或组合:SINR、CINR、多径时 延分布、波束角度扩展、多普勒频移;
所述存储器503,用于存储多个信道质量信息与多个循环前缀CP长度的对应关系。
在一种可选的实施方式中,所述对应关系根据多个信道质量信息样本和多个CP长度样本生成。
在一种可选的实施方式中,所述对应关系中包括第一信道质量信息与第一CP长度的对应关系,所述第一信道质量信息为所述多个信道质量信息样本中的一个,所述第一CP长度为所述多个CP长度样本中的一个;所述第一信道质量信息和所述第一CP长度的对应关系满足以下条件:第一数据和第二数据的差异在设定差异范围内;所述第二数据为根据所述第一CP长度对第一中间数据解调后得到的,所述第一中间数据为基于所述第一信道质量信息和所述第一CP长度对第一数据进行调制后得到的。
在一种可选的实施方式中,所述处理器502还用于生成所述对应关系。
在一种可选的实施方式中,所述处理器502,还用于通过所述收发器501从所述第二设备接收所述对应关系。
在一种可选的实施方式中,所述处理器502,还用于在通过所述收发器501接收所述第二设备发送的所述参考信号之前,通过所述收发器501向所述第二设备发送第一指示信息,所述第一指示信息指示所述第一设备具备选择不同的CP长度的能力;
所述处理器502,还用于通过所述收发器501接收所述第二设备的第二指示信息,所述第二指示信息指示所述第二设备具备根据不同的CP长度传输数据的能力。
所述处理器502,还用于确定所述CP长度对应的CP解调模板,所述CP解调模板用于指示所述CP长度对应的解调参数。
所述处理器502,还用于通过所述收发器501接收所述第二设备基于所述CP长度发送的数据,并根据所述CP解调模板对所述数据进行解调。
所述存储器503,还用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括计算机操作指令。所述存储器503可能包括RAM,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。所述处理器502执行所述存储器503所存放的应用程序,实现上述功能,从而实现图2所示的CP长度确定方法。
采用本申请实施例提供的第一设备,基于第二设备发送的参考信号确定信道质量信息后,根据存储的多个信道质量信息与多个CP长度的对应关系,确定所述信道质量信息对应的CP长度,并将确定的CP长度发送给所述第二设备,其中所述CP长度小于normal CP的长度。在该方法中,可以根据信道质量信息选择合适的CP长度,且选择的CP长度小于现有技术中的normal CP的长度,这样相对于现有技术,在传输过程中的无用数据变少,从而可以提高系统的频谱利用率。
综上所述,采用本申请实施例提供的CP长度确定方法及装置,第一设备基于第二设备发送的参考信号确定信道质量信息后,根据存储的多个信道质量信息与多个CP长度的对应关系,确定所述信道质量信息对应的CP长度,并将确定的CP长度发送给所述第二设备,其中所述CP长度小于normal CP的长度。在该方法中,可以根据信道质量信息选择合适的CP长度,且选择的CP长度小于现有技术中的normal CP的长度,这样相对于现有技术,在传输过程中的无用数据变少,从而可以提高通信系统的频谱利用率。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实 施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (18)

  1. 一种循环前缀长度确定方法,其特征在于,包括:
    第一设备接收第二设备发送的参考信号,并基于所述参考信号确定信道质量信息,所述信道质量信息用于表征所述第一设备与所述第二设备之间的信道质量;所述第一设备为终端设备和基站中的任一个,所述第二设备为终端设备和基站中除所述第一设备之外的一个;
    所述第一设备根据存储的多个信道质量信息与多个循环前缀CP长度的对应关系,确定所述信道质量信息对应的CP长度,所述CP长度小于常规normal CP的长度;
    所述第一设备向所述第二设备发送所述CP长度。
  2. 如权利要求1所述的方法,其特征在于,所述对应关系根据多个信道质量信息样本和多个CP长度样本生成。
  3. 如权利要求2所述的方法,其特征在于,
    所述对应关系中包括第一信道质量信息与第一CP长度的对应关系,所述第一信道质量信息为所述多个信道质量信息样本中的一个,所述第一CP长度为所述多个CP长度样本中的一个;
    所述第一信道质量信息和所述第一CP长度的对应关系满足以下条件:
    第一数据和第二数据的差异在设定差异范围内;所述第二数据为根据所述第一CP长度对第一中间数据解调后得到的,所述第一中间数据为基于所述第一信道质量信息和所述第一CP长度对所述第一数据进行调制后得到的。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备生成所述对应关系,或者所述第一设备从所述第二设备接收所述对应关系。
  5. 如权利要求1-4任一项所述的方法,其特征在于,在所述第一设备接收所述第二设备发送的所述参考信号之前,所述方法还包括:
    所述第一设备向所述第二设备发送第一指示信息,所述第一指示信息指示所述第一设备具备选择不同的CP长度的能力;
    所述第一设备接收所述第二设备的第二指示信息,所述第二指示信息指示所述第二设备具备根据不同的CP长度传输数据的能力。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备确定所述CP长度对应的CP解调模板,所述CP解调模板用于指示所述CP长度对应的解调参数;
    当所述第一设备接收到所述第二设备基于所述CP长度发送的数据时,所述第一设备根据所述CP解调模板对所述数据进行解调。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述信道质量信息包括以下至少一项或组合:信号与干扰加噪声比SINR、载波干扰噪声比CINR、多径时延分布、波束角度扩展,多普勒频移。
  8. 一种第一设备,其特征在于,包括:
    接收单元,用于接收第二设备发送的参考信号;
    处理单元,用于基于所述参考信号确定信道质量信息,所述信道质量信息用于表征所 述第一设备与所述第二设备之间的信道质量;所述第一设备为终端设备和基站中的任一个,所述第二设备为终端设备和基站中除所述第一设备之外的一个;
    存储单元,用于存储多个信道质量信息与多个循环前缀CP长度的对应关系;
    所述处理单元,还用于根据所述存储单元存储的多个信道质量信息与多个循环前缀CP长度的对应关系,确定所述信道质量信息对应的CP长度,所述CP长度小于常规normal CP的长度;
    发送单元,用于向所述第二设备发送所述CP长度。
  9. 如权利要求8所述的第一设备,其特征在于,所述对应关系根据多个信道质量信息样本和多个CP长度样本生成。
  10. 如权利要求9所述的第一设备,其特征在于,
    所述对应关系中包括第一信道质量信息与第一CP长度的对应关系,所述第一信道质量信息为所述多个信道质量信息样本中的一个,所述第一CP长度为所述多个CP长度样本中的一个;
    所述第一信道质量信息和所述第一CP长度的对应关系满足以下条件:
    第一数据和第二数据的差异在设定差异范围内;所述第二数据为根据所述第一CP长度对第一中间数据解调后得到的,所述第一中间数据为基于所述第一信道质量信息和所述第一CP长度对第一数据进行调制后得到的。
  11. 如权利要求8-10任一项所述的第一设备,其特征在于,所述处理单元,还用于:
    生成所述对应关系。
  12. 如权利要求8-10任一项所述的第一设备,其特征在于,所述接收单元,还用于:
    从所述第二设备接收所述对应关系。
  13. 如权利要求8-12任一项所述的第一设备,其特征在于,
    所述发送单元,还用于在所述接收单元接收所述第二设备发送的所述参考信号之前,向所述第二设备发送第一指示信息,所述第一指示信息指示所述第一设备具备选择不同的CP长度的能力;
    所述接收单元,还用于接收所述第二设备的第二指示信息,所述第二指示信息指示所述第二设备具备根据不同的CP长度传输数据的能力。
  14. 如权利要求8-13任一项所述的第一设备,其特征在于,
    所述处理单元,还用于确定所述CP长度对应的CP解调模板,所述CP解调模板用于指示所述CP长度对应的解调参数;
    所述接收单元,还用于接收所述第二设备基于所述CP长度发送的数据;
    所述处理单元,还用于当所述接收单元接收到所述第二设备基于所述CP长度发送的数据时,根据所述CP解调模板对所述数据进行解调。
  15. 如权利要求8-14任一项所述的第一设备,其特征在于,所述信道质量信息包括以下至少一项或组合:信号与干扰加噪声比SINR、载波干扰噪声比CINR、多径时延分布、波束角度扩展,多普勒频移。
  16. 一种计算机存储介质,其特征在于,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时用于使所述计算机执行权利要求1-7任一项所述的方法。
  17. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在计算机 上运行时,使得计算机执行权利要求1-7任一项所述的方法。
  18. 一种芯片,其特征在于,所述芯片与存储器相连,用于读取并执行所述存储器中存储的程序指令,以实现权利要求1-7任一项所述的方法。
PCT/CN2018/076675 2018-02-13 2018-02-13 一种循环前缀长度确定方法及装置 WO2019157636A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/076675 WO2019157636A1 (zh) 2018-02-13 2018-02-13 一种循环前缀长度确定方法及装置
CN201880089001.4A CN111699660B (zh) 2018-02-13 2018-02-13 一种循环前缀长度确定方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/076675 WO2019157636A1 (zh) 2018-02-13 2018-02-13 一种循环前缀长度确定方法及装置

Publications (1)

Publication Number Publication Date
WO2019157636A1 true WO2019157636A1 (zh) 2019-08-22

Family

ID=67618931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076675 WO2019157636A1 (zh) 2018-02-13 2018-02-13 一种循环前缀长度确定方法及装置

Country Status (2)

Country Link
CN (1) CN111699660B (zh)
WO (1) WO2019157636A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1585392A (zh) * 2004-06-07 2005-02-23 东南大学 正交频分多址系统中的自适应传输方案
US8422577B1 (en) * 2011-03-25 2013-04-16 Sprint Spectrum L.P. Method and system for selecting cyclic prefix length based on signal quality reports
CN104756421A (zh) * 2012-10-29 2015-07-01 Lg电子株式会社 用于收发tdd的方法和用户设备
CN107154907A (zh) * 2016-03-03 2017-09-12 北京三星通信技术研究有限公司 基于滤波的信号发送、接收方法及相应的发射机与接收机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007105765A1 (ja) * 2006-03-15 2009-07-30 パナソニック株式会社 無線送信装置及び無線送信方法
KR101357859B1 (ko) * 2007-09-19 2014-02-06 삼성전자주식회사 이동통신 시스템에서 사이클 프리픽스 길이 검출을 위한장치 및 방법
US9419836B2 (en) * 2008-04-25 2016-08-16 Nokia Solutions And Networks Oy Apparatus, methods, and computer program products providing an indication of cyclic prefix length
CN101882942B (zh) * 2009-05-07 2012-12-05 中国移动通信集团公司 上行导频信号的发送/接收方法、移动通信终端及基站
EP2850756B1 (en) * 2012-05-14 2017-04-05 Telefonaktiebolaget LM Ericsson (publ) Enhanced receiver adaptation based on relation between signals from aggressor and victim cells
KR20150043345A (ko) * 2012-08-05 2015-04-22 엘지전자 주식회사 무선 통신 시스템에서 소형 셀을 위한 순환 전치 구성 방법 및 이를 위한 장치
US9876621B2 (en) * 2013-01-09 2018-01-23 Lg Electronics Inc. Method for transmitting signal and apparatus for same
US10064041B2 (en) * 2013-01-31 2018-08-28 Lg Electronics Inc. Method for setting cyclic prefix for D2D (device-to-device) communication in radio communications system and apparatus therefor
DE102015107080B3 (de) * 2015-05-06 2016-08-25 Intel IP Corporation Verfahren und Vorrichtungen zur Kanalschätzung für Mobilsysteme ungenügender zyklischer Präfixlänge
US10411928B2 (en) * 2016-02-23 2019-09-10 Qualcomm Incorporated Dynamic cyclic prefix (CP) length
WO2017219215A1 (zh) * 2016-06-20 2017-12-28 华为技术有限公司 一种ofdm符号传输方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1585392A (zh) * 2004-06-07 2005-02-23 东南大学 正交频分多址系统中的自适应传输方案
US8422577B1 (en) * 2011-03-25 2013-04-16 Sprint Spectrum L.P. Method and system for selecting cyclic prefix length based on signal quality reports
CN104756421A (zh) * 2012-10-29 2015-07-01 Lg电子株式会社 用于收发tdd的方法和用户设备
CN107154907A (zh) * 2016-03-03 2017-09-12 北京三星通信技术研究有限公司 基于滤波的信号发送、接收方法及相应的发射机与接收机

Also Published As

Publication number Publication date
CN111699660A (zh) 2020-09-22
CN111699660B (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
US10142053B2 (en) Method and apparatus for transmitting control information to remove and suppress interference in wireless communication system
US10893473B2 (en) Envelope modulation for concurrent transmission of a wake-up signal and user data
US9647814B2 (en) Method for transmission of control channel signals
CN104221407A (zh) 用于UE特定搜索空间和ePDCCH加扰的系统和方法
CN103563473A (zh) 用于建起基本服务集的隧穿直接链路建立(tdls)的方法和装置
US10700831B2 (en) Wireless communication systems and methods of operating the same
RU2671954C1 (ru) Способ, оборудование и устройство для определения порядка модуляции и кодирования
JP5384658B2 (ja) 通信決定方法及び装置
US11431434B2 (en) Method and apparatus for secure communication in wireless communication system
WO2015122808A1 (en) Method for selecting a device to act as a relay device between a first and a second node based on received signal quality measurements
WO2019068639A1 (en) DEVICE AND METHOD FOR ASSOCIATING RESOURCE INFORMATION WITH CHANNEL MEASUREMENT INFORMATION IN WIRELESS NETWORKS
Lee et al. Frequency diversity-aware Wi-Fi using OFDM-based Bloom filters
CN105850190A (zh) 用于tim分段的话务指示映射信息元素指示符
TW201824897A (zh) 傳輸信號的方法、網路設備和終端設備
WO2019157636A1 (zh) 一种循环前缀长度确定方法及装置
TWI710269B (zh) 信號的傳輸方法及裝置
JP5221769B2 (ja) 送信機及び/又は受信機通信決定を行うための方法及び装置
WO2018126855A1 (zh) 一种下行测量参考信号的资源配置方法及装置
WO2017012448A1 (zh) 一种信号发送、解调方法以及设备和系统
WO2022141579A1 (zh) 确定参考信号序列的方法及装置
US11990997B2 (en) Communication resource allocation for rateless coding
WO2023078439A1 (zh) 参考信号接收、发送方法、第一、第二通信节点及介质
WO2021057249A1 (zh) 一种mbsfn子帧处理方法及装置和基站及用户终端
CN105072061A (zh) 无线局域网通信方法和设备
WO2014206479A1 (en) Method for transmitting signals in the downlink of a cellular wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906516

Country of ref document: EP

Kind code of ref document: A1