WO2019156342A1 - 회전축의 하중 부담을 경감시키기 위한 모터 구동 장치 - Google Patents

회전축의 하중 부담을 경감시키기 위한 모터 구동 장치 Download PDF

Info

Publication number
WO2019156342A1
WO2019156342A1 PCT/KR2018/016167 KR2018016167W WO2019156342A1 WO 2019156342 A1 WO2019156342 A1 WO 2019156342A1 KR 2018016167 W KR2018016167 W KR 2018016167W WO 2019156342 A1 WO2019156342 A1 WO 2019156342A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
motor
coils
stator
teeth
Prior art date
Application number
PCT/KR2018/016167
Other languages
English (en)
French (fr)
Inventor
김민기
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201880089205.8A priority Critical patent/CN111712996B/zh
Priority to US16/969,507 priority patent/US11398784B2/en
Priority to EP18905683.1A priority patent/EP3754821A4/en
Publication of WO2019156342A1 publication Critical patent/WO2019156342A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/02Details of starting control
    • H02P1/04Means for controlling progress of starting sequence in dependence upon time or upon current, speed, or other motor parameter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0442Active magnetic bearings with devices affected by abnormal, undesired or non-standard conditions such as shock-load, power outage, start-up or touchdown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/02Details of starting control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Definitions

  • the present invention relates to a motor drive device that can reduce the load on the rotating shaft during the initial operation of the magnetic bearing.
  • a chiller system is a chiller or a freezer that supplies cold water to cold water demand such as an air conditioner or a freezer.
  • the chiller system includes a compressor, a condenser, an expander and an evaporator through which refrigerant is circulated.
  • the compressor includes a magnetic bearing that uses a magnetic force to float a rotating shaft rotating in the motor in order to compress a large amount of refrigerant at a high rate.
  • Korean Unexamined Patent Publication Korean Unexamined Patent Publication (KR 10-2015-0179994)
  • a conventional chiller system is illustrated, and with reference to this, a compressor included in the conventional chiller system will be described.
  • FIG. 1 is a view showing a conventional chiller system.
  • FIG. 2 is a cross-sectional view illustrating a compressor included in the chiller system of FIG. 1.
  • a conventional chiller system includes a compressor 10 for compressing a refrigerant, a condenser 30 for condensing the refrigerant compressed by the compressor 10, and a refrigerant condensed in the condenser 30.
  • the suction valve 50 controls the flow of the refrigerant evaporated in the evaporator 20 and flows to the compressor 10.
  • the bypass valve 60 is for bypassing the refrigerant compressed by the compressor 10 to the evaporator 20, and controls the flow of the refrigerant flowing from the compressor 10 to the evaporator 20.
  • the piping in which the bypass valve 60 and the bypass valve 60 are installed may be omitted.
  • the compressor 10 includes a stator 11 having a plurality of teeth, and a motor unit including a rotor 12 rotating in the stator 11.
  • the stator 11 is made of a metal material.
  • a plurality of coils C1, C2, C3 are wound around the plurality of teeth of the stator 11, and a current flows through each of the plurality of coils C1, C2, C3 to generate a magnetic field.
  • the rotor 12 is composed of a magnetic material having a magnetic force, and the rotor 12 is rotated by a magnetic field generated in the plurality of coils (C1, C2, C3).
  • the rotor 12 has a first force F1 acting downward by the weight of the rotor 12, a rotor 12 made of magnetic material, and a stator 11 made of metal. A second force F2 acting between) is generated.
  • the rotor 12 is moved downward on the center line H2 of the stator 11 (for example, in an ⁇ A> state).
  • the center of the rotor 12 and the center of the stator 11 must be coincident with each other.
  • the motor portion further includes a magnetic bearing 13 for generating a magnetic force for moving the rotor 12 upwards.
  • the magnetic bearing 13 is disposed above and below the rotor 12, respectively, and generates a third force F4 for pushing the rotor 12 to the center line H2 of the stator 11.
  • the center of the rotor 12 coincides with the center line H2 of the stator 11 (eg, in a ⁇ B> state). That is, the rotor 12 and the stator 11 coincide with each other in the initial alignment process for driving the motor.
  • the magnetic bearing 13 has a problem that the greater the weight of the rotor 12, and the greater the magnetic force of the magnetic body constituting the rotor 12, the greater the lifting force.
  • the objective of this invention is providing the motor drive apparatus which can raise the reliability of motor control by unifying the arrangement structure of a stator.
  • the motor drive device in the initial alignment of the rotor and the stator, by applying a larger current than the other coils to the coil disposed farthest from the ground among the plurality of coils, so that the floating force required for the initial alignment of the rotor and stator Can be reduced in size.
  • the motor drive device by generating a floating force by applying a current to the plurality of coils, and generates additional floating force through the magnetic bearing, it is possible to reduce the size of the floating force generated in the magnetic bearing. have. Through this, the size and manufacturing cost of the magnetic bearing included in the motor can be reduced.
  • the motor drive device can improve the reliability of the motor control by uniformly disposing the positions of the plurality of teeth provided on the stator to the reference line perpendicular to the ground.
  • the housing 105 the housing 105; A stator 110 fixed to an inner surface of the housing and including a plurality of teeth wound around a plurality of coils; A rotor (120) disposed in the stator and rotating by a magnetic field generated in the plurality of coils; A rotating shaft extending in the axial direction of the rotor and disposed horizontally; Magnetic bearings (130, 135) for generating a magnetic force to raise the rotating shaft upward; And a control unit which applies current to the plurality of coils and controls the operation of the magnetic bearing, wherein the control unit can apply different magnitudes of current to the plurality of coils, respectively. It provides a motor driving device in which the first teeth of the coil winding the coil forming the smallest angle formed by the line parallel to the direction of the gravity acceleration of the winding central axis of each coil is disposed above the rotation shaft.
  • the plurality of teeth includes first to third teeth, each of which first to third coils are wound, and the first to third teeth are disposed at equal intervals with respect to the axis of rotation, and the first teeth May be disposed farther from the ground than the second and third teeth.
  • the plurality of teeth may further include fourth to sixth teeth disposed to face the first to third teeth with respect to the rotation axis.
  • the first tooth may be disposed to be perpendicular to the ground in which the housing is in contact with or parallel to the direction of gravity acceleration.
  • the first teeth are disposed in a range forming a first angle ⁇ with a line L2 perpendicular to the ground or a line parallel to the direction of gravity acceleration, and the first angle is 60 degrees or less than 60 degrees. Can be small.
  • the motor driving device may further include a backup bearing disposed at least above and below the rotary shaft and disposed closer to the rotary shaft than the magnetic bearing.
  • the magnetic bearing may be arranged closer to the rotor than the backup bearing.
  • the present invention also includes a stator 110 including a plurality of teeth each of which is wound around a plurality of coils; A rotor (120) disposed in the stator and rotating by a magnetic field generated in the plurality of coils; A rotating shaft extending in the axial direction of the rotor and disposed horizontally; And a magnetic bearing (130, 135) for generating a magnetic force to raise the rotary shaft to the upper side.
  • the rotating shaft When the motor is initially driven, the rotating shaft may be floated by applying the largest current to the coil having the smallest angle formed by the direction of gravity acceleration among the winding center shafts wound by the plurality of coils.
  • the largest current is applied to the coil corresponding to the winding center axis which is disposed within a range that forms a first angle ⁇ with a line parallel to the gravity acceleration direction among the winding center axes that the coils are respectively wound. It can be applied to float the rotating shaft.
  • the magnetic bearing is controlled to generate a magnetic force, when the magnetic force is generated in the magnetic bearing, the magnitude of the current applied to the plurality of coils Can be reduced.
  • the motor drive device during initial alignment of the rotor and the stator, by applying a larger current than the other coil to the coil disposed farthest from the ground among the plurality of coils, thereby reducing the floating force of the magnetic bearing for the initial alignment You can.
  • This allows initial alignment of the rotor and stator with a magnetic bearing that generates relatively small flotation force, thereby lowering the required performance of the magnetic bearing. Therefore, since the motor can operate normally with a relatively inexpensive magnetic bearing, the manufacturing cost and production cost of the motor driving device can be lowered.
  • the motor driving apparatus may reduce the magnitude of the floating force of the magnetic bearing by applying a current to the plurality of coils to generate a floating force and then generating additional floating force in the magnetic bearing.
  • the size and manufacturing cost of the magnetic bearing can be reduced, and the size and manufacturing cost of the entire motor can be reduced.
  • the free space generated as the size of the magnetic bearing is reduced may accommodate more refrigerant or implement a larger output in the motor.
  • the motor driving apparatus can apply the same control method to each motor by uniformly disposing the positions of the plurality of teeth provided in the stator so as to be symmetrical to the reference line perpendicular to the ground. Accordingly, the initial manual setting process may be omitted in the same type of motor, and the load of the magnetic bearing may be reduced to increase the reliability of motor control.
  • FIG. 1 is a view showing a conventional chiller system.
  • FIG. 2 is a cross-sectional view illustrating a compressor included in the chiller system of FIG. 1.
  • FIG. 3 is a block diagram illustrating a motor driving apparatus according to an exemplary embodiment of the present invention.
  • FIG. 4 is a cross-sectional view illustrating the motor unit of FIG. 3.
  • FIG. 5 is a cross-sectional view illustrating a cross section taken along a line A-A of FIG. 4.
  • FIG. 6 is a flowchart illustrating a control method of a motor driving apparatus according to an embodiment of the present invention.
  • FIG. 7 is a graph for describing the magnitude of the current applied in step S110 of FIG. 6.
  • FIG. 8 is a view for explaining the initial alignment method of the motor drive apparatus according to an embodiment of the present invention.
  • FIG. 9 is a sectional view showing a motor driving apparatus according to another embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing a motor driving apparatus according to still another embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating a motor driving apparatus according to an exemplary embodiment of the present invention.
  • 4 is a cross-sectional view illustrating the motor unit of FIG. 3.
  • a motor driving apparatus includes a motor unit 100 and a control unit 200.
  • the motor unit 100 includes various kinds of motors.
  • the motor unit 100 may include an AC motor, a DC motor, a brushless DC motor, a reluctance motor, and the like.
  • the motor unit 100 may include a Surface-Mounted Permanent-Magnet Synchronous Motor (SMPMSM), an Interior Permanent Magnet Synchronous Motor (IPMSM), and synchronous reluctance. Synchronous Reluctance Motor (Synrm) and the like.
  • SMPMSM Surface-Mounted Permanent-Magnet Synchronous Motor
  • IPMSM Interior Permanent Magnet Synchronous Motor
  • Synchronous Reluctance Motor Synchronous Reluctance Motor
  • the controller 200 may control the operation of the motor unit 100.
  • the controller 200 may control the operation of each component included in the motor unit 100.
  • the controller 200 may generate a magnitude of current applied to the plurality of coils C included in the motor unit 100, and a magnetic force that generates a floating force to float the rotating shaft 125 connected to the rotor 120.
  • the magnitude of the magnetic force of the bearing 130 can be controlled.
  • control unit 200 may reduce the magnitude of the magnetic force generated in the magnetic bearing 130 by adjusting the magnitude of the current applied to the plurality of coils (C).
  • the motor unit 100 includes a housing 105, a stator 110, a rotor 120, a rotation shaft 125, magnetic bearings 130 and 135, backup bearings 140 and 145, and a guide. Bearing 150.
  • the housing 105 forms the exterior of the motor unit 100 and has a cylindrical inner space.
  • the rotor 120, the rotation shaft 125, the magnetic bearings 130 and 135, the backup bearings 140 and 145, and the guide bearing 150 are accommodated in the inner space of the housing 105.
  • housing 105 is illustrated in a cylindrical shape with one surface open, the present invention is not limited thereto, and the housing 105 may be formed in various shapes having internal spaces.
  • the side of the housing 105 may be disposed parallel to the ground. That is, one side surface of the housing 105 may be disposed to be in contact with the support surface (107 of FIG. 5) forming the bottom. Accordingly, the rotation shaft 120 may be horizontally aligned parallel to the support surface.
  • the stator 110 may include a circular ring-shaped body fixed to an inner circumferential surface of the housing 105, and a plurality of teeth 114 extending inwardly toward the center O from the circular ring-shaped body. Can be.
  • the teeth may be arranged in plural at equal intervals along the circumference. For example, three may be arranged at 120 degree intervals as shown.
  • the stator may have a structure in which a plurality of metal plates having the shape shown in FIG. 5 are stacked along the axial direction (O).
  • the stator may be a metal material that guides lines of magnetic force.
  • Coil C may be wound on the teeth of the stator on which the metal plate is stacked.
  • Different coils C1, C2, and C3 may be wound in the plurality of teeth. Different coil currents may be applied to each coil C to generate a magnetic field for rotating the rotor 120.
  • the rotor 120 is surrounded by the stator 110 and disposed inside the stator 110.
  • the rotor 120 rotates by a magnetic field generated by the coil C wound on the stator 110.
  • the rotor 120 is disposed at the center of the plurality of teeth of the stator 110.
  • the rotor 120 is made of a magnetic material and may have different polarities although not clearly illustrated in the drawings.
  • the rotor 120 may include a permanent magnet.
  • the rotor 120 may include a permanent magnet and a ferromagnetic material for guiding a magnetic force line of the permanent magnet.
  • the side of the rotor 120 that is, the outer peripheral surface may be disposed parallel to the bottom surface.
  • the rotating shaft 125 may extend in both directions along the axial direction of the rotor 120 from the center of the rotor 120. That is, the center of the rotation shaft 125 may coincide with the center of the rotor 120.
  • the rotor 120 may be fixed to the rotation shaft 125 to be integrated with the rotation shaft 125.
  • the rotor 120 may rotate integrally with the rotation shaft 125.
  • the diameter of the rotating shaft 125 may be formed smaller than the diameter of the rotor 120.
  • the rotor 120 may be forced into the outer circumferential surface of the rotation shaft 125.
  • the rotor 120 made of a magnetic material is subject to rotational force by a varying magnetic field generated by a plurality of coils C wound on the stator 110. Accordingly, the rotor 120 and the rotation shaft 125 are rotated in the stator 110. Since the rotor 120 is self-aligned by the rotational force generated as the rotor 120 rotates, the center of the stator 110 and the center of the rotor 120 may coincide.
  • the backup bearings 140 and 145 may limit the moving range of the rotor 120 so that the rotor 120 does not contact the inner surface of the stator 110.
  • the backup bearings 140 and 145 may be disposed at both sides with the rotor 120 interposed therebetween.
  • the backup bearings 140 and 145 may respectively support portions of the rotating shaft 125 extending in both directions with the rotor 120 interposed therebetween.
  • the backup bearings 140 and 145 may radially support the rotation shaft 125.
  • the backup bearings 140 and 145 may surround the outer circumferential surface of the rotating shaft 125 in the circumferential direction. In another embodiment, the backup bearings 140 and 145 may support the outer circumferential surface of the rotating shaft 125 at least from the top and the bottom, and each of the backup bearings 140 and 145 may have a vertically divided structure.
  • the backup bearings 140 and 145 may rotatably support the rotation shaft 125 that rotates together with the rotor 120 when the rotor 120 rotates. have.
  • the backup bearing 140, 145 when the rotor 120 does not rotate and the rotating shaft 125 is lowered by its own weight together with the rotor 120, the rotating shaft 125 The downward displacement of can be limited.
  • the motor unit 100 may be operated after an initial alignment process of matching the center of the stator 110 with the center of the rotor 120.
  • the magnetic bearings 130 and 135 generate a magnetic force that floats the rotating shaft 125 upwards.
  • the magnetic bearing 130 may be composed of an electromagnet, and may generate a magnetic force of a predetermined magnitude by a constant electric signal.
  • the magnitude of the magnetic force generated in the magnetic bearing 130 may be controlled by the controller 200.
  • the magnetic bearings 130 and 135 may be disposed at both sides with the rotor 120 interposed therebetween.
  • the magnetic bearings 130 and 135 may act on portions of the rotating shaft 125 extending in both directions with the rotor 120 interposed therebetween.
  • the magnetic bearings 130 and 135 may face an outer circumferential surface of the rotating shaft 125 at least at an upper portion and a lower portion of the rotating shaft 125.
  • the magnetic bearing 130 may be composed of two pieces separated into an upper side and a lower side. In this case, the upper portion may be disposed above the rotation shaft 125, and the lower portion may be disposed below the rotation shaft 125. However, this is only one example, and although not clearly illustrated in the drawings, the magnetic bearing 130 may be formed to surround the outer circumferential surface of the rotating shaft 125.
  • the magnetic bearings 130 and 135 may be disposed on one side and the other side of the rotating shaft 125 about the rotor 120, respectively, and may be disposed closer to the rotor 120 than the backup bearings 140 and 145. have.
  • the magnetic bearings 130 and 135 upwardly displace the rotor 120 and the rotary shaft 125 which are downwardly displaced by their own weight, so that the magnetic bearings 130 and 135 are close to the rotor 120 where the magnetic weight is most concentrated along the longitudinal direction of the rotary shaft 125. Can be arranged.
  • the backup bearings 130 and 135 support the rotation of the rotation shaft 125, the backup bearings 130 and 135 may be spaced to some extent to increase the stability of the support.
  • the same current is applied to both magnetic bearings 130 and 135 to generate the same magnetic force.
  • different magnetic currents may be applied to both magnetic bearings 130 and 135 to generate magnetic forces having different magnitudes.
  • the backup bearing 140 serves to limit the maximum moving range of the rotating shaft 125. Through this, the rotor 120 is not in contact with the inner surface of the stator 110, the rotating shaft 125 is not in contact with the inner surface of the magnetic bearing 130.
  • the backup bearing 140 may be composed of two pieces separated from each other by an upper side and a lower side like the magnetic bearing 130.
  • the backup bearing 140 may be disposed closer to the rotation shaft 125 than the magnetic bearing 130. That is, an interval between the backup bearing 140 and the rotation shaft 125 may be smaller than an interval between the magnetic bearing 130 and the rotation shaft 125.
  • the guide bearing 150 serves to guide the position of the rotor 120 so that the rotor 120 does not escape from the stator 110.
  • One end of the rotating shaft 125 is formed with a plate 127.
  • the guide bearing 150 is disposed on one side and the other side around the plate 127.
  • the first piece of the pair of guide bearings 150 is disposed to face the first surface of the plate 127, and the second piece is disposed to face the second surface (the back surface of the first surface) of the plate 127. Is placed.
  • a constant current is applied to the guide bearing 150 to generate a magnetic force on the plate 127.
  • the plate 127 is the attraction or repulsive force is generated between the pair of guide bearing 150.
  • the plate 127 and the pair of guide bearings 150 may be kept spaced apart from each other. Accordingly, the pair of guide bearings 150 may restrict the rotation shaft 125 from moving in the axial direction. That is, the pair of guide bearings 150 may regulate the axial position of the rotation shaft 125.
  • the magnitude of the magnetic force generated in the guide bearing 150 may be controlled by the controller 200.
  • the guide bearing 150 may be omitted in some embodiments.
  • FIG. 5 is a cross-sectional view illustrating a cross section taken along a line A-A of FIG. 4.
  • the housing 105 may be disposed to contact one side of the support 107.
  • One side surface of the housing 105 may be a bottom surface of the housing 105.
  • the support 107 may be a bottom surface or an upper surface of an object.
  • the stator 110 may be disposed to be symmetrical with respect to the second straight line L2 (that is, the vertical line) perpendicular to the first straight line L1 coinciding with the upper surface of the support part 107.
  • the second straight line L2 may be a normal line on an upper surface of the support part 107.
  • the second straight line L2 may coincide with the direction of gravity acceleration.
  • the stator 110 includes a plurality of teeth 112, 114, and 116.
  • the first tooth 112 may be disposed on a second straight line L2 perpendicular to the support part 107. Accordingly, the virtual axis (first winding center axis) forming the center of the winding of the first coil C1 surrounding the circumference of the first tooth 112 may extend in the vertical up and down direction (ie, the gravity acceleration direction). .
  • the first tooth 112 may be disposed farther from the upper surface of the supporter 107 than the second and third teeth 114 and 116.
  • the first teeth 112 may be disposed further in the gravity direction than the second and third teeth 114 and 116.
  • the first tooth 112 may be disposed within the first angle ⁇ based on the second straight line L2.
  • the first angle ⁇ may be an acute angle.
  • the first tooth 112 may be disposed between the first guide line Lg1 and the second guide line Lg2 that form the second straight line L2 and the first angle ⁇ .
  • the first angle ⁇ may be 60 degrees or smaller than 60 degrees, but the present invention is not limited thereto.
  • the first tooth 112 may be disposed in the first areas A11 and A12 between the first guide line Lg1 and the second guide line Lg2.
  • the second tooth 114 is disposed in the second area A2 between the first guide line Lg1 and the first straight line L1, and the third tooth 116 is the second guide line Lg2 and the first line. It may be arranged in the third area A3 between the straight lines L1.
  • the first coil C1 is wound around the first tooth 112
  • the second coil C2 is wound around the second tooth 114
  • the third coil C3 is wound around the third tooth 116. Winding.
  • the virtual axis (first winding center axis) forming the center of the winding of the first coil C1 surrounding the circumference of the first tooth 112 has a first guide line Lg1 and a second guide line Lg2. ) May be disposed between.
  • An imaginary axis (second winding center axis) that forms the center of the winding of the second coil C2 surrounding the circumference of the second tooth 114 is disposed between the first guide line Lg1 and the first straight line L1.
  • the virtual axis (third winding center axis) forming the center of the winding of the second coil C3 surrounding the circumference of the third tooth 116 is between the second guide line Lg2 and the first straight line L1.
  • the smallest angle with the direction of gravity acceleration may be the first winding center axis. As the first angle ⁇ becomes smaller, the tendency of the angle formed by the gravity acceleration direction and the first winding center axis to become smaller becomes stronger.
  • the controller 200 may control the current to each of the coils C1, C2, and C3. As the current is applied to each of the coils C1, C2, and C3, a magnetic field may be generated.
  • control unit 200 applies alternating currents of different phases to the coils C1, C2, and C3.
  • control unit 200 may align the stator 110 and the rotor 120 by applying direct currents of different magnitudes to the coils C1, C2, and C3. have.
  • the controller 200 may apply a current larger than the second coil C2 and the third coil C3 to the first coil C1 of the stator 110.
  • the attraction force between the first coil C1 and the rotor 120 acts greater than the attraction force between the second coil C2 and the third coil C3 and the rotor 120 to stator the rotor 120. 110 can be moved upward.
  • the controller 200 may match the central axis of the stator 110 and the rotor 120.
  • FIG. 6 is a flowchart illustrating a control method of a motor driving apparatus according to an embodiment of the present invention.
  • FIG. 7 is a graph for describing the magnitude of the current applied in step S110 of FIG. 6.
  • the control unit 200 applies a current to each of the coils C1, C2, and C3 (S110). ).
  • the controller 200 applies different currents to the coils C1, C2, and C3.
  • the controller 200 may apply different DC currents to the coils C1, C2, and C3.
  • the control unit 200 applies the first current Ia to the first coil C1 and the second and third coils C2 and C3 to the second coil C3 and the third coil C3, respectively.
  • 3 Apply currents Ib and Ic.
  • the magnitude m1 of the first current Ia is greater than the magnitude m2 of the second and third currents Ib and Ic, and the polarities thereof may be opposite to each other.
  • the magnitude m1 of the first current Ia may be greater than twice the magnitude m2 of the second and third currents Ib and Ic.
  • the first current Ia may be a positive current
  • the second and third currents Ib and Ic may be negative currents.
  • this is only one example, and the present invention is not limited thereto.
  • the controller 200 may adjust the magnitude of the floating force of the rotor 120 acting in the upward direction of the stator 110 by adjusting the current applied to each of the coils C1, C2, and C3.
  • the controller 200 generates a magnetic force that causes the rotating shaft 125 to float on the magnetic bearings 130 and 135 (S120).
  • the size of the levitation force required by the magnetic bearing 130 can be reduced.
  • the magnitude of the magnetic force required by the magnetic bearing 130 can be reduced, and thus the size and manufacturing cost of the magnetic bearing 130 can be reduced.
  • the size and manufacturing cost of the motor unit 100 may also be reduced.
  • the controller 200 decreases the magnitude of the current applied to each of the coils C1, C2, and C3 (S130). Through this, the controller 200 may match the central axis of the rotor 120 with the central axis of the stator 110.
  • the controller 200 may rotate the rotor 120 in the stator 110 by applying AC power of different phases to each of the coils C1, C2, and C3.
  • step S130 of steps S110 to S140 described above may be omitted.
  • FIG. 8 is a view for explaining the initial alignment method of the motor drive apparatus according to an embodiment of the present invention.
  • the rotor 120 includes an upper limit guideline H1 of the backup bearing 140 and a lower limit guideline H3 of the backup bearing 140. Can move between.
  • the ⁇ A> state represents a case where the motor unit 100 is stopped.
  • the rotor 120 has a first force F1 acting downward by the weight of the rotor 120 and a second force F2 acting between the rotor 120 made of magnetic material and the stator 110 made of metal. ) Works.
  • the rotor 120 is moved downward from the center line H2 of the stator 110.
  • the second force F2 may increase as the rotor 120 moves away from the center line H2. That is, when the motor unit 100 is in the stopped state, the rotor 120 moves to be adjacent to the lower limit guideline H3.
  • the center of the rotor 120 and the center of the stator 110 must be coincident with each other.
  • the controller 200 applies DC current having different magnitudes to the respective coils C1, C2, and C3.
  • the controller 200 may apply a current larger than the second coil C2 and the third coil C3 to the first coil C1 of the stator 110.
  • the attraction force between the first coil C1 and the rotor 120 is greater than the attraction force between the second coil C2 and the third coil C3 and the rotor 120, thereby stating the rotor 120. It can be moved above the 110.
  • the third force F3 by the respective coils C1, C2, and C3 is applied to the rotor 120, and is moved above the stator 110.
  • the rotor 120 moves to be adjacent to the upper limit guideline H1, but the present invention is not limited thereto. Even if the rotor 120 is moved by the third force F3, the center of the rotor 120 may still be below the center line H2.
  • the controller 200 generates a magnetic force for moving the rotating shaft 125 to the upper side of the stator 110 to the magnetic bearing 130. That is, the fourth force F4 acts on the rotor 120.
  • the controller 200 may adjust the magnitude of the current applied to each of the coils C1, C2, and C3 to match the central axis of the rotor 120 with the central axis of the stator 110.
  • the force of the first force F1 and the second force F2 is coincident with the force of the third force F3 and the fourth force F4.
  • the magnitude of the second force F2 may vary depending on the position of the rotor 120 in the stator 110, and the magnitude of the magnetic force generated in the magnetic bearing 130 may not change linearly.
  • the controller 200 may finely adjust the current applied to each of the coils C1, C2, and C3 to match the central axis of the rotor 120 with the central axis of the stator 110.
  • controller 200 generates a third force F3 for firstly applying current to each of the coils C1, C2, and C3 to move the rotor 120 upward in an operation initialization process.
  • the size of the fourth force F4 generated at 130 may be reduced.
  • the present invention can initially align the rotor 120 and the stator 110 only by the magnetic bearing 130 that generates a relatively small flotation force, it is possible to lower the required performance of the magnetic bearing 130.
  • the motor unit 100 may operate normally even with the relatively inexpensive magnetic bearing 130, the manufacturing cost and the production cost of the motor driving device may be lowered.
  • the motor unit 100 may accommodate more refrigerant or implement a larger output by using a free space generated as the size of the magnetic bearing 130 is reduced.
  • the motor unit 100 makes the positions of the plurality of teeth 112, 114, and 116 of the stator 110 symmetrical to the reference line perpendicular to the ground, thereby providing the same control scheme to the plurality of motor driving apparatuses as shown. Applicable
  • the motor unit 100 of the present invention can omit the initial manual setting process by using the same initial alignment method, and can increase the reliability of the motor control by reducing the load of the magnetic bearing 130.
  • FIG. 9 is a sectional view showing a motor driving apparatus according to another embodiment of the present invention.
  • 10 is a cross-sectional view showing a motor driving apparatus according to still another embodiment of the present invention.
  • the same components as those of the motor driving apparatus according to an embodiment of the present invention will be omitted, and the differences will be mainly described.
  • the motor unit 101 of the motor driving apparatus includes a stator 210 and a rotor 220.
  • the stator 210 includes a plurality of teeth 211 to 216.
  • the stator 210 includes six teeth 211 to 216, and coils C11, C12, C21, C22, C31, and C32 are individually wound on each of the plurality of teeth 211 to 216.
  • the first coil C11 may be wound to the left and right about the first tooth 211.
  • stator 210 will be described with an example having six teeth (211 ⁇ 216).
  • the first coil C11 is wound around the first tooth 211
  • the fourth coil C12 is wound around the fourth tooth 214 facing the first tooth 211.
  • first tooth 211 and the fourth tooth 214 may be disposed on the second straight line L2 perpendicular to the first straight line L1 parallel to the ground.
  • first tooth 211 may be disposed between the first guide line Lg1 and the second guide line Lg2, which form the second straight line L2 and the first angle ⁇ .
  • the first angle ⁇ may be 60 degrees or smaller than 60 degrees, but the present invention is not limited thereto.
  • the control unit 200 includes the motor unit 100. In the initial alignment operation of), a DC current larger than the other coils C21, C22, C31, and C32 may be applied to the first coil C11 and the fourth coil C12.
  • the direction of the force applied to the rotor 220 is perpendicular to the winding direction of the first coil (C11) or the fourth coil (C12).
  • the force applied to the rotor 220 can be easily understood by the 'Ampere's' Right-Handed 'Screw' Rule (Ampere's right screw), which will not be described in detail below.
  • the controller 200 generates a magnetic force that causes the rotating shaft 125 to float on the magnetic bearing 130.
  • the controller 200 first applies a direct current larger than the other coils C21, C22, C31, and C32 to the first coil C11 and the fourth coil C12 in the initial alignment process.
  • a force for moving 220 upwards may be generated, and a magnitude of the force generated in the magnetic bearing 130 may be reduced.
  • FIG. 10 shows the motor unit 102 of the motor driving apparatus according to another embodiment of the present invention includes a stator 310 and a rotor 320.
  • the stator 310 includes a plurality of teeth 315.
  • a plurality of coils Ca1, Ca2, Cb1, Cb2, Cc1, and Cc2 may be wound around the stator 310.
  • Each of the coils Ca1, Ca2, Cb1, Cb2, Cc1, and Cc2 may be wound in different regions A11, A12, A21, A22, A31, and A32 of the stator 310.
  • each of the areas A11, A12, A21, A22, A31, and A32 may be set to the same size.
  • the first coil Ca1 may be wound over the plurality of teeth 315 in the first area A21 of the stator 310 so as to alternate the inner and outer surfaces about the body of the stator 310. Can be.
  • the second coil Ca2 may be wound over the plurality of teeth 315 in the second area A31 of the stator 310 so as to alternate the inner and outer surfaces about the body of the stator 310. .
  • first area A21 and the second area A31 may be disposed to be symmetrical to the second straight line L2 perpendicular to the first straight line L1 parallel to the ground.
  • the controller 200 may apply a DC current greater than the other coils Cb1, Cb2, Cc1, and Cc2 to the first coil Ca1 and the second coil Ca2 during the initial alignment operation of the motor unit 100. Can be.
  • a force directed to the upper side of the stator 310 is applied to the rotor 320.
  • the direction of the force applied to the rotor 320 is perpendicular to the winding direction of the first coil Ca1 or the second coil Ca2.
  • the controller 200 generates a magnetic force that causes the rotating shaft 125 to float on the magnetic bearing 130.
  • the controller 200 first applies a direct current larger than the other coils Cb1, Cb2, Cc1, and Cc2 to the first coil Ca1 and the second coil Ca2 in the initial alignment process, thereby providing a rotor. It is possible to generate a force for moving the 320 upwards, and to reduce the magnitude of the force generated in the magnetic bearing 130.
  • the present invention can initially align the rotor 120 and the stator 110 only by the magnetic bearing 130 that generates a relatively small flotation force, it is possible to lower the required performance of the magnetic bearing 130.
  • the motor unit according to some embodiments of the present invention can operate normally even with a relatively inexpensive magnetic bearing 130, the manufacturing cost and production cost of the motor drive device can be lowered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

본 발명은 자기 베어링의 초기 동작 시, 회전축의 하중 부담을 경감시킬 수 있는 모터 구동 장치에 관한 것이다. 상기 모터 구동 장치는, 로터와 스테이터의 초기 정렬 시, 복수의 코일 중에서 지면으로부터 가장 멀리 배치된 코일에 다른 코일보다 더 큰 전류를 인가함으로써, 로터와 스테이터를 초기 정렬시키는데 필요한 부상력의 크기를 감소시킬 수 있다.

Description

회전축의 하중 부담을 경감시키기 위한 모터 구동 장치
본 발명은 자기 베어링의 초기 동작 시, 회전축의 하중 부담을 경감시킬 수 있는 모터 구동 장치에 관한 것이다.
일반적으로 칠러 시스템은 냉수를 공조기나 냉동기 등의 냉수 수요처로 공급하는 냉각장치 또는 냉동장치이다. 칠러 시스템은 냉매가 순환되는 압축기, 응축기, 팽창기 및 증발기를 포함한다.
여기에서 압축기는, 대량의 냉매를 높은 비율로 압축하기 위해, 모터 내에서 회전하는 회전축을 자력을 이용해 부상시키는 자기 베어링을 포함한다.
여기에서, 한국 공개 특허(KR 10-2015-0179994)를 참조하면, 종래의 칠러 시스템이 도시되어 있는바, 이를 참조하여, 종래의 칠러 시스템에 포함된 압축기를 살펴보도록 한다.
도 1은 종래의 칠러 시스템을 나타내는 도면이다. 도 2는 도 1의 칠러 시스템에 포함된 압축기를 나타내는 단면도이다.
도 1을 참조하면, 종래의 칠러 시스템은, 냉매를 압축하는 압축기(10)와, 압축기(10)에서 압축된 냉매를 응축하는 응축기(30)와, 응축기(30)에서 응축된 냉매를 팽창하는 팽창밸브(40)와, 팽창밸브(40)에서 팽창된 냉매를 증발시키는 증발기(20)를 포함한다.
흡입밸브(50)는 증발기(20)에서 증발되어 압축기(10)로 유동되는 냉매의 흐름을 제어한다. 바이패스밸브(60)는 압축기(10)에서 압축되는 냉매를 증발기(20)로 바이패스하기 위한 것으로, 압축기(10)에서 증발기(20)로 유동되는 냉매의 흐름을 제어한다. 여기에서 바이패스밸브(60)와 바이패스밸브(60)가 설치된 배관은 생략되어 실시될 수 있다.
도 2를 참조하면, 압축기(10)는 복수의 티스(teeth)가 구비된 스테이터(11)와, 스테이터(11) 내에서 회전하는 로터(12)로 구성된 모터부를 포함한다.
스테이터(11)는 금속 재질로 구성된다. 스테이터(11)의 복수의 티스에는 각각 복수의 코일(C1, C2, C3)이 권선되고, 각각의 복수의 코일(C1, C2, C3)에는 전류가 흘러 자기장이 발생된다.
로터(12)는 자력을 지니는 자성체로 구성되며, 복수의 코일(C1, C2, C3)에서 발생되는 자기장에 의해 회전운동을 하게 된다.
다만, 모터가 정지 상태에 있는 경우, 로터(12)에는 로터(12)의 무게에 의해 하측으로 작용하는 제1 힘(F1)과, 자성체로 구성된 로터(12)와 금속재질로 구성된 스테이터(11) 사이에 작용하는 제2 힘(F2)이 발생한다.
제1 힘(F1)과 제2 힘(F2)에 의해, 로터(12)는 스테이터(11)의 중심선(H2)에서 하측으로 이동된다(예를 들어, <A> 상태).
이러한 정지 상태의 모터를 구동시키기 위해서는 로터(12)의 중심과 스테이터(11)의 중심을 일치시켜야 한다.
이를 위해, 모터부는 로터(12)를 상측으로 이동시키기 위한 자력을 발생시키는 자기 베어링(13)을 더 포함한다.
자기 베어링(13)은 로터(12)의 상측과 하측에 각각 배치되고, 로터(12)를 스테이터(11)의 중심선(H2)으로 밀어올리기 위한 제3 힘(F4)을 발생시킨다.
제3 힘(F4)에 의해 로터(12)의 중심은 스테이터(11)의 중심선(H2)과 일치된다(예를 들어, <B> 상태). 즉, 로터(12)와 스테이터(11)는 모터 구동을 위한 초기화 정렬 과정에서 상호 간의 중심선을 일치시킨다.
다만, 자기 베어링(13)은 로터(12)의 무게가 무거울수록, 그리고 로터(12)를 구성하는 자성체의 자력이 클수록, 더 큰 부상력을 발생시켜야 하는 문제점이 있었다.
또한, 모터에서 더 큰 부상력을 발생시키기 위한 자기 베어링(13)을 구비하는 경우, 모터 전체의 크기와 제조 비용이 상승하고, 모터 제조에 많은 제한사항이 발생하는 문제점이 있었다.
또한, 종래에는 스테이터(11)의 티스들의 위치가 임의대로 배치됨에 따라, 자기 베어링(13)에서 발생되어야 하는 부상력의 크기가 모터마다 서로 달라지는 문제점이 있었다.
본 발명의 목적은, 로터와 스테이터를 초기 정렬시키는데 필요한 부상력의 크기를 감소시킬 수 있는 모터 구동 장치를 제공하는 것이다.
또한, 본 발명의 목적은, 로터를 초기 정렬시키는데 필요한 자기 베어링의 크기와 제조 비용을 저감시킬 수 있는 모터 구동 장치를 제공하는 것이다.
또한, 본 발명의 목적은, 스테이터의 배치 구조를 통일시킴으로써, 모터 제어의 신뢰성을 높일 수 있는 모터 구동 장치를 제공하는 것이다.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명에 따른 모터 구동 장치는, 로터와 스테이터의 초기 정렬 시, 복수의 코일 중에서 지면으로부터 가장 멀리 배치된 코일에 다른 코일보다 더 큰 전류를 인가함으로써, 로터와 스테이터를 초기 정렬시키는데 필요한 부상력의 크기를 감소시킬 수 있다.
또한, 본 발명에 따른 모터 구동 장치는, 복수의 코일에 전류를 인가하여 부상력을 발생시킨 뒤, 자기 베어링을 통해 추가적인 부상력을 발생시킴으로써, 자기 베어링에서 발생되는 부상력을 크기를 감소시킬 수 있다. 이를 통해, 모터에 포함된 자기 베어링의 크기와 제조 비용은 감소될 수 있다.
또한, 본 발명에 따른 모터 구동 장치는, 스테이터에 구비된 복수의 티스의 위치를 지면으로부터 수직한 기준선에 대칭되도록 통일 배치시킴으로써, 모터 제어의 신뢰성을 높일 수 있다.
구체적으로 본 발명은, 하우징(105); 상기 하우징 내면에 고정되고, 복수의 코일이 각각 권선된 복수의 티스(teeth)를 포함하는 스테이터(110); 상기 스테이터 내에 배치되며 상기 복수의 코일에서 발생된 자기장에 의해 회전하는 로터(120); 상기 로터의 축방향으로 연장되며 수평하게 배치되는 회전축(125); 상기 회전축을 상측으로 부상시키는 자력을 발생시키는 자기 베어링(130, 135); 및 상기 복수의 코일에 전류를 인가하고, 상기 자기 베어링의 동작을 제어하는 제어부를 포함하는 모터로서, 상기 제어부는, 상기 복수의 코일에 각각 서로 다른 크기의 전류를 인가하는 것이 가능하고, 상기 복수의 코일이 각각 감기는 권선중심축 중 중력가속도 방향과 나란한 선과 이루는 각도가 가장 작은 각도를 이루는 코일이 감긴 제1티스가 상기 회전축보다 상부에 배치되는 모터 구동 장치를 제공한다.
상기 복수 개의 티스는, 제1 내지 제3 코일이 각각 권선된 제1 내지 제3 티스를 포함하고, 상기 제1 내지 제3 티스는 회전축을 기준으로 등간격의 각도로 배치되며, 상기 제1 티스는, 상기 제2 및 제3 티스보다 지면으로부터 더 멀리 배치될 수 있다.
상기 복수 개의 티스는, 상기 회전축을 기준으로 상기 제1 내지 제3 티스에 대향하여 배치되는 제4 내지 제6 티스를 더 포함할 수 있다.
상기 제1 티스는, 상기 하우징이 접하는 지면으로부터 수직하도록 배치되거나 중력가속도 방향과 나란하게 배치될 수 있다.
상기 제1 티스는, 상기 하우징이 접하는 지면으로부터 수직한 선(L2) 또는 중력가속도 방향과 나란한 선과 제1 각도(θ)를 이루는 범위 내에 배치되고, 상기 제1 각도는 60도이거나, 60도보다 작을 수 있다.
상기 모터 구동 장치는 적어도 상기 회전축의 상측 및 하측에 배치되고, 상기 자기 베어링보다 상기 회전축에 인접하도록 배치되는 백업 베어링을 더 포함할 수 있다. 상기 백업 베어링보다 상기 자기 베어링이 상기 로터에 더 가깝게 배치될 수 있다.
또한 본 발명은, 복수의 코일이 각각 권선된 복수의 티스(teeth)를 포함하는 스테이터(110); 상기 스테이터 내에 배치되며 상기 복수의 코일에서 발생된 자기장에 의해 회전하는 로터(120); 상기 로터의 축방향으로 연장되며 수평하게 배치되는 회전축(125); 및 상기 회전축을 상측으로 부상시키는 자력을 발생시키는 자기 베어링(130, 135);을 포함하는 모터의 구동 제어 방법을 제공한다.
모터의 초기 구동 시, 상기 복수의 코일이 각각 감기는 권선중심축 중 중력가속도 방향과 이루는 각도가 가장 작은 각도를 이루는 코일에 가장 큰 전류를 인가하여 회전축을 부상시킬 수 있다.
또한 모터의 초기 구동 시, 상기 복수의 코일이 각각 감기는 권선중심축 중, 중력가속도 방향과 나란한 선과 제1각도(θ)를 이루는 범위 내에 배치되는 권선중심축에 해당하는 코일에 가장 큰 전류를 인가하여 회전축을 부상시킬 수 있다.
상기 구동 제어 방법에 따르면, 상기 복수의 코일에 전류를 인가한 뒤, 상기 자기 베어링이 자력을 발생하도록 제어하고, 상기 자기 베어링에 자력이 발생되는 경우, 상기 복수의 코일에 인가되는 전류의 크기를 감소시킬 수 있다.
본 발명에 따른 모터 구동 장치는, 로터와 스테이터의 초기 정렬 시, 복수의 코일 중에서 지면으로부터 가장 멀리 배치된 코일에 다른 코일보다 더 큰 전류를 인가함으로써, 초기 정렬을 위한 자기 베어링의 부상력을 저감시킬 수 있다. 이를 통해, 상대적으로 작은 부상력을 발생시키는 자기 베어링만으로도 로터와 스테이터를 초기 정렬시킬 수 있으므로, 자기 베어링의 필요 성능을 낮출 수 있다. 따라서, 모터는 상대적으로 저렴한 자기 베어링으로 정상 동작할 수 있으므로, 모터 구동 장치의 제조 원가와 생산 비용은 낮아질 수 있다.
또한, 본 발명에 따른 모터 구동 장치는, 복수의 코일에 전류를 인가하여 부상력을 발생시킨 뒤 자기 베어링에 추가적인 부상력을 발생시킴으로써, 자기 베어링의 부상력의 크기를 감소시킬 수 있다. 이를 통해, 자기 베어링의 크기와 제조 비용을 저감시킬 수 있으며, 모터 전체의 크기와 제조 비용도 감소될 수 있다. 또한, 자기 베어링의 크기가 줄어듬에 따라 발생하는 여유 공간을 이용하여 더 많은 냉매를 수용하거나, 모터에 더 큰 출력을 구현할 수 있다.
또한, 본 발명에 따른 모터 구동 장치는, 스테이터에 구비된 복수의 티스의 위치를 지면으로부터 수직한 기준선에 대칭되도록 통일 배치시킴으로써, 각각의 모터에 동일한 제어 방식을 적용할 수 있다. 이에 따라, 동종인 모터에서 초기 수동 셋팅 과정을 생략할 수 있으며, 자기 베어링의 로드를 줄여 모터 제어의 신뢰성을 높일 수 있다.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.
도 1은 종래의 칠러 시스템을 나타내는 도면이다.
도 2는 도 1의 칠러 시스템에 포함된 압축기를 나타내는 단면도이다.
도 3은 본 발명의 일 실시예에 따른 모터 구동 장치를 나타내는 블록도이다. 
도 4는 도 3의 모터부를 나타내는 단면도이다. 
도 5는 도 4의 A-A 선을 따라 자른 단면을 설명하기 위한 단면도이다.
도 6은 본 발명의 일 실시예에 따른 모터 구동 장치의 제어 방법을 설명하기 위한 순서도이다.
도 7은 도 6의 S110 단계에서 인가되는 전류의 크기를 설명하기 위한 그래프이다. 
도 8은 본 발명의 일 실시예에 따른 모터 구동 장치의 초기 정렬 방법을 설명하기 위한 도면이다.
도 9는 본 발명의 다른 실시예에 따른 모터 구동 장치를 나타내는 단면도이다. 
도 10은 본 발명의 또 다른 실시예에 따른 모터 구동 장치를 나타내는 단면도이다.
<부호의 설명>
100: 모터부 105: 하우징
107: 지지부 110: 스테이터
120: 로터 125: 회전축
127: 플레이트 130: 자기 베어링
140: 백업 베어링 150: 가이드 베어링
200: 제어부
전술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.
이하에서는, 도 3 내지 도 10을 참조하여, 본 발명의 몇몇 실시예에 따른 모터 구동 장치를 설명하도록 한다.
도 3은 본 발명의 일 실시예에 따른 모터 구동 장치를 나타내는 블록도이다. 도 4는 도 3의 모터부를 나타내는 단면도이다. 
도 3을 참조하면, 본 발명의 일 실시예에 따른 모터 구동 장치는 모터부(100)와 제어부(200)를 포함한다.
모터부(100)는 다양한 종류의 모터를 포함한다.
구체적으로, 모터부(100)는 AC 모터, DC 모터, 브러시리스(Brushless) DC 모터 및 릴럭턴스(Reluctance) 모터 등을 포함할 수 있다.
예를 들어, 모터부(100)는 표면 부착형 영구자석 동기 모터(Surface-Mounted Permanent-Magnet Synchronous Motor; SMPMSM), 매입형 영구자석 동기 모터(Interior Permanent Magnet Synchronous Motor; IPMSM), 및 동기 릴럭턴스 모터(Synchronous Reluctance Motor; Synrm) 등을 포함할 수 있다.
제어부(200)는 모터부(100)의 동작을 제어할 수 있다. 제어부(200)는 모터부(100)에 포함된 각 구성요소의 동작을 제어할 수 있다.
예를 들어, 제어부(200)는 모터부(100)에 포함된 복수의 코일(C)에 인가되는 전류의 크기와, 로터(120)와 연결된 회전축(125)을 부상시키는 부상력을 발생시키는 자기 베어링(130)의 자력의 크기를 제어할 수 있다.
이때, 제어부(200)는 복수의 코일(C)에 인가되는 전류의 크기를 조절하여 자기 베어링(130)에서 발생되는 자력의 크기를 감소시킬 수 있다.
이에 대한 자세한 설명은 이하에서 후술하도록 한다.
도 4를 참조하면, 모터부(100)는 하우징(105), 스테이터(110), 로터(120), 회전축(125), 자기 베어링(130, 135), 백업 베어링(140, 145), 및 가이드 베어링(150)을 포함한다.
하우징(105)은 모터부(100)의 외관을 이루며, 원통 형상의 내부 공간을 구비한다. 상기 하우징(105)의 내부 공간에는, 로터(120), 회전축(125), 자기 베어링(130, 135), 백업 베어링(140, 145), 및 가이드 베어링(150)이 수용된다.
도면에서 하우징(105)은 일면이 개방된 형상으로 원통형으로 도시되었으나 본 발명이 이에 한정되는 것은 아니며, 내부 공간이 구비된 다양한 형상으로 형성될 수 있다.
하우징(105)의 측면은 지면과 평행하게 배치될 수 있다. 즉, 하우징(105)의 일측면은 바닥을 이루는 지지면(도 5의 107)에 접하도록 배치될 수 있다. 이에 따라 회전축(120)은 지지면에 평행하게 수평으로 정렬될 수 있다.
스테이터(110)는 하우징(105)의 내주면에 고정되는 원형 링 형상의 바디와, 상기 원형 링 형상의 바디에서 중심(O)을 향해 내향 연장되는 복수 개의 티스(114; teeth, 치)를 포함할 수 있다. 상기 티스는 원주를 따라 등간격으로 복수 개 배치될 수 있다. 가령 도시된 바와 같이 120도 간격으로 3개 배치될 수 있다.
상기 스테이터는 도 5에 도시된 형상의 금속판이 축방향(O)을 따라 복수 개 적층된 구조일 수 있다. 상기 스테이터는 자기력선을 가이드하는 금속 재질일 수 있다. 금속판이 적층된 스테이터의 티스에는 코일(C)이 권선될 수 있다.
복수의 티스에는 서로 다른 코일들(C1, C2, C3)이 권선될 수 있다. 각각의 코일(C)에는 서로 다른 상의 전류가 인가되어 로터(120)를 회전시키는 자기장을 발생시킬 수 있다.
로터(120)는 스테이터(110)에 의해 둘러싸여 상기 스테이터(110)의 내부에 배치된다. 상기 로터(120)는 스테이터(110)에 권선된 코일(C)에 의해 발생하는 자기장에 의해 회전한다. 상기 로터(120)는 스테이터(110)의 복수의 티스의 중심에 배치된다.
로터(120)는 자성체로 구성되며, 도면에 명확하게 도시하지는 않았으나 서로 다른 극성을 가질 수 있다. 상기 로터(120)는 영구자석을 포함할 수 있다. 또한 상기 로터(120)는 영구자석과, 영구자석의 자기력선을 안내하는 강자성체를 포함할 수 있다.
로터(120)의 측면, 즉 외주면은 바닥면에 평행하게 배치될 수 있다.
회전축(125)은 로터(120)의 중심으로부터 로터(120)의 축방향을 따라 양 쪽으로 길게 연장될 수 있다. 즉, 회전축(125)의 중심은 로터(120)의 중심과 일치할 수 있다.
로터(120)는 상기 회전축(125)에 고정되어 회전축(125)과 일체로 거동할 수 있다. 상기 로터(120)는 회전축(125)과 일체로 회전할 수 있다. 회전축(125)의 직경은 로터(120)의 직경보다 작게 형성될 수 있다. 상기 로터(120)는 회전축(125)의 외주면에 강제 압입될 수 있다.
모터부(100)의 동작 시, 자성체로 이루어진 로터(120)는 스테이터(110)에 권선된 복수의 코일(C)에서 발생되는 변화하는 자기장에 의해 회전력을 받는다. 이에 따라 상기 로터(120)와 회전축(125)은 상기 스테이터(110)의 내부에서 회전하게 된다. 로터(120)가 회전함에 따라 발생하는 회전력에 의해 로터(120)는 스스로 정렬되므로, 스테이터(110)의 중심과 로터(120)의 중심은 일치할 수 있다.
반면 모터부(100)가 멈춰있는 경우, 로터(120)는 로터(120) 자체의 무게에 의해 스테이터(110)의 중심보다 아래로 이동하게 된다. 이때, 백업 베어링(140, 145)은 로터(120)가 스테이터(110)의 내면에 접하지 않도록 로터(120)의 이동범위를 제한할 수 있다. 상기 백업 베어링(140, 145)은 상기 로터(120)를 사이에 두고 양쪽에 배치될 수 있다. 상기 백업 베어링(140, 145)은 상기 로터(120)를 사이에 두고 양쪽으로 연장되는 회전축(125) 부분을 각각 지지할 수 있다. 상기 백업 베어링(140, 145)는 상기 회전축(125)을 반경방향으로 지지할 수 있다.
일 실시예에서 상기 백업 베어링(140, 145)은 상기 회전축(125)의 외주면을 원주 방향으로 둘러쌀 수 있다. 다른 일 실시예에서, 상기 백업 베어링(140, 145)은 상기 회전축(125)의 외주면을 적어도 상부와 하부에서 지지할 수 있으며, 각 백업 베어링(140, 145)은 상하 분리된 구조일 수 있다.
일 실시예에 있어서, 상기 백업 베어링(140, 145)은, 상기 로터(120)가 회전할 때, 상기 로터(120)와 함께 회전하는 상기 회전축(125)을 반경 방향으로 회전 가능하게 지지할 수 있다. 다른 일 실시예에 있어서, 상기 백업 베어링(140, 145)은, 상기 로터(120)가 회전하지 않아 상기 로터(120)와 함께 회전축(125)이 자중에 의해 하강하는 경우, 상기 회전축(125)의 하강 변위를 제한할 수 있다.
자중에 의해 회전축(125)과 로터(120)가 하강 변위하면, 로터(120)의 중심과 스테이터(110)의 중심은 서로 일치하지 않게 된다. 이 경우, 스테이터(110)의 중심과 로터(120)의 중심을 일치시키는 초기 정렬 과정을 거친 후 모터부(100)를 동작시킬 수 있다.
자기 베어링(130, 135)은 회전축(125)을 상측으로 부상시키는 자력을 발생시킨다. 자기 베어링(130)은 전자석으로 구성될 수 있으며, 일정한 전기 신호에 의해 일정한 크기의 자력을 발생시킬 수 있다. 상기 자기 베어링(130)에서 발생되는 자력의 크기는 제어부(200)에 의해 제어될 수 있다.
자기 베어링(130, 135)은 로터(120)를 사이에 두고 양쪽에 배치될 수 있다. 상기 자기 베어링(130, 135)은 상기 로터(120)를 사이에 두고 양쪽으로 연장되는 회전축(125) 부분에 작용할 수 있다.
상기 자기 베어링(130, 135)은 적어도 회전축(125)의 상부와 하부에서 상기 회전축(125)의 외주면을 마주할 수 있다.
자기 베어링(130)은 상측부과 하측부로 분리된 2개의 피스로 구성될 수 있다. 이때, 상측부는 회전축(125)의 상측에 배치되고, 하측부는 회전축(125)의 하측에 배치될 수 있다. 다만, 이는 하나의 예시에 불과하며, 도면에 명확하게 도시하지는 않았으나, 자기 베어링(130)은 회전축(125)의 외주면을 둘러싸는 형태로 이루어질 수 있다.
이하에서는 상측부과 하측부로 분리되어, 회전축(125)의 상측과 하측에 각각 배치되는 자기 베어링(130)을 기준으로 설명하도록 한다.
추가적으로, 자기 베어링(130, 135)은 로터(120)를 중심으로 회전축(125)의 일측과 타측에 각각 배치되되, 상기 백업 베어링(140, 145)보다 상기 로터(120)에 더 가깝게 배치될 수 있다. 상기 자기 베어링(130, 135)은 자중에 의해 하강 변위하는 로터(120)와 회전축(125)을 상승 변위 시키므로, 회전축(125)의 길이방향을 따라 가장 자중이 집중되어 있는 로터(120)에 가깝게 배치될 수 있다. 상기 백업 베어링(130, 135)은, 회전축(125)의 회전을 지지할 경우, 그 지지 안정성을 높이기 위해 어느 정도 이격 배치될 수 있다.
이때, 양 쪽의 자기 베어링(130, 135)에는 동일한 전류가 인가되어 동일한 크기의 자력이 발생될 수 있다. 또한 경우에 따라서는 양 쪽 자기 베어링(130, 135)에 서로 다른 전류가 인가되어 서로 다른 크기의 자력이 발생될 수 있다.
백업 베어링(140)은 회전축(125)의 최대 이동범위를 제한하는 역할을 수행한다. 이를 통해, 로터(120)는 스테이터(110)의 내면과 접하지 않게 되며, 회전축(125)은 자기 베어링(130)의 내면과 접하지 않게 된다.
백업 베어링(140)은 자기 베어링(130)과 마찬가지로 상측부과 하측부로 서로 분리된 2개의 피스로 구성될 수 있다.
이때, 백업 베어링(140)은 자기 베어링(130)보다 회전축(125)에 더 인접하도록 배치될 수 있다. 즉, 백업 베어링(140)과 회전축(125) 사이의 간격은, 자기 베어링(130)과 회전축(125) 사이의 간격보다 작을 수 있다.
가이드 베어링(150)은 로터(120)가 스테이터(110) 내에서 이탈하지 않도록 로터(120)의 위치를 가이드하는 역할을 수행한다.
회전축(125)의 일단에는 플레이트(127)가 형성된다. 여기에서, 가이드 베어링(150)은 플레이트(127)를 중심으로 일측과 타측에 배치된다.
즉, 한쌍의 가이드 베어링(150) 중 제1 피스는 플레이트(127)의 제1면과 마주보도록 배치되고, 제2 피스는 플레이트(127)의 제2면(제1면의 이면)과 마주보도록 배치된다.
가이드 베어링(150)에는 일정한 전류가 인가되어, 플레이트(127)에 자력을 발생시킨다. 이때, 플레이트(127)는 한쌍의 가이드 베어링(150) 사이에 인력 또는 척력이 발생된다.
이를 통해, 플레이트(127)와 한쌍의 가이드 베어링(150)은 서로 이격된 상태를 유지할 수 있다. 이에 따라 상기 한쌍의 가이드 베어링(150)은 상기 회전축(125)이 축방향으로 이동하는 것을 제한할 수 있다. 즉 상기 한 쌍의 가이드 베어링(150)은 회전축(125)의 축방향 위치를 규제할 수 있다.
이때, 가이드 베어링(150)에서 발생되는 자력의 크기는 제어부(200)에 의해 제어될 수 있다.
다만, 가이드 베어링(150)은 몇몇 실시예에서 생략되어 실시될 수 있다.
도 5는 도 4의 A-A 선을 따라 자른 단면을 설명하기 위한 단면도이다.
도 5를 참조하면, 하우징(105)은 지지부(107)에 일측면이 접하도록 배치될 수 있다. 상기 하우징(105)의 일측면은 상기 하우징(105)의 저면일 수 있다.
여기에서, 지지부(107)는 바닥면 또는 어떤 물체의 상면이 될 수 있다.
지지부(107)의 상면과 일치하는 제1 직선(L1)과 직교하는 제2 직선(L2)(즉, 수직선)을 기준으로 스테이터(110)는 대칭이 되도록 배치될 수 있다. 상기 제2직선(L2)은 상기 지지부(107) 상면의 법선일 수 있다. 상기 제2직선(L2)은 중력가속도의 방향과 일치할 수 있다.
앞에서 설명한 바와 같이, 스테이터(110)는 복수의 티스(112, 114, 116)를 포함한다.
제1 티스(112)는 지지부(107)에 수직한 제2 직선(L2) 상에 배치될 수 있다. 이에 따라 상기 제1 티스(112)의 둘레를 감싸는 제1 코일(C1)의 권선의 중심을 이루는 가상의 축(제1 권선중심축)은 연직 상하 방향(즉 중력가속도 방향)으로 연장될 수 있다.
이때, 제1 티스(112)는 제2 및 제3 티스(114, 116)보다 지지부(107)의 상면으로부터 가장 멀리 배치될 수 있다. 제1티스(112)는 상기 제2 및 제3 티스(114, 116)보다 중력 방향으로 더 상부에 배치될 수 있다.
또한, 본 발명의 다른 실시예에서, 제1 티스(112)는 제2 직선(L2)을 기준으로 제1 각도(θ) 내에 배치될 수 있다. 이때, 제1 각도(θ)는 예각일 수 있다.
제1 티스(112)는 제2 직선(L2)과 제1 각도(θ)를 이루는 제1 가이드라인(Lg1)과 제2 가이드라인(Lg2) 사이에 배치될 수 있다. 여기에서, 제1 각도(θ)는 60도이거나, 60도 보다 작을 수 있으나, 본 발명이 이에 한정되는 것은 아니다.
제1 티스(112)는 제1 가이드라인(Lg1)과 제2 가이드라인(Lg2) 사이의 제1 영역(A11, A12) 내에 배치될 수 있다.
제2 티스(114)는 제1 가이드라인(Lg1)과 제1 직선(L1) 사이의 제2 영역(A2) 내에 배치되고, 제3 티스(116)는 제2 가이드라인(Lg2)과 제1 직선(L1) 사이의 제3 영역(A3) 내에 배치될 수 있다.
이때, 제1 티스(112)에는 제1 코일(C1)이 권선되고, 제2 티스(114)에는 제2 코일(C2)이 권선되고, 제3 티스(116)에는 제3 코일(C3)이 권선된다.
이에 따라 상기 제1 티스(112)의 둘레를 감싸는 제1 코일(C1)의 권선의 중심을 이루는 가상의 축(제1 권선중심축)은 제1 가이드라인(Lg1)과 제2 가이드라인(Lg2) 사이에 배치될 수 있다. 상기 제2 티스(114)의 둘레를 감싸는 제2 코일(C2)의 권선의 중심을 이루는 가상의 축(제2 권선중심축)은 제1 가이드라인(Lg1)과 제1 직선(L1) 사이에 배치될 수 있다. 그리고 상기 제3티스(116)의 둘레를 감싸는 제2 코일(C3)의 권선의 중심을 이루는 가상의 축(제3 권선중심축)은 제2가이드라인(Lg2)과 제1 직선(L1) 사이에 배치될 수 있다. 따라서 중력가속도 방향과 가장 작은 각도를 이루는 것은 상기 제1 권선중심축일 수 있다. 상기 제1 각도(θ)가 작아질수록, 중력가속도 방향과 제1 권선중심축이 이루는 각도가 작아지는 경향이 더 강해질 수 있다.
각각의 코일(C1, C2, C3)에는 전류가 인가되며, 제어부(200)는 각각의 코일(C1, C2, C3)에는 전류를 제어할 수 있다. 각각의 코일(C1, C2, C3)에는 전류가 인가됨에 따라 자기장이 발생할 수 있다.
모터부(100)의 동작 중에 제어부(200)는 각각의 코일(C1, C2, C3)에 서로 다른 상의 교류 전류를 인가한다.
다만, 모터부(100)의 동작 초기화 단계에서 제어부(200)는 각각의 코일(C1, C2, C3)에 서로 다른 크기의 직류 전류를 인가함으로써 스테이터(110)와 로터(120)를 정렬시킬 수 있다.
이때, 제어부(200)는 스테이터(110)의 제1 코일(C1)에, 제2 코일(C2) 및 제3 코일(C3) 보다 큰 전류를 인가할 수 있다.
이 경우, 제1 코일(C1)과 로터(120) 사이의 인력이 제2 코일(C2) 및 제3 코일(C3)과 로터(120) 사이의 인력보다 크게 작용하여 로터(120)를 스테이터(110)의 상측으로 이동시킬 수 있다.
이를 통해, 제어부(200)는 스테이터(110)와 로터(120)의 중심축을 일치시킬 수 있다.
도 6은 본 발명의 일 실시예에 따른 모터 구동 장치의 제어 방법을 설명하기 위한 순서도이다. 도 7은 도 6의 S110 단계에서 인가되는 전류의 크기를 설명하기 위한 그래프이다. 
도 6을 참조하면, 본 발명의 일 실시예에 따른 모터 구동 장치의 구동 초기화를 위한 제어 방법은, 우선 제어부(200)가 각각의 코일(C1, C2, C3)에 전류를 인가하는 단계(S110)를 포함한다.
이때, 제어부(200)는 각각의 코일(C1, C2, C3)에 서로 다른 전류를 인가한다. 제어부(200)는 서로 다른 직류 전류(DC current)를 각각의 코일(C1, C2, C3)에 인가할 수 있다.
구체적으로, 도 7을 참조하면, 제어부(200)는 제1 코일(C1)에 제1 전류(Ia)를 인가하고, 제2 코일(C2) 및 제3 코일(C3)에 각각 제2 및 제3 전류(Ib, Ic)를 인가한다.
이때, 제1 전류(Ia)의 크기(m1)는 제2 및 제3 전류(Ib, Ic)의 크기(m2)보다 크고, 극성은 서로 반대일 수 있다.
예를 들어, 제1 전류(Ia)의 크기(m1)는 제2 및 제3 전류(Ib, Ic)의 크기(m2)의 두 배보다 클 수 있다. 또한, 제1 전류(Ia)은 양의 전류이고, 제2 및 제3 전류(Ib, Ic)는 음의 전류일 수 있다. 다만, 이는 하나의 예시에 불과하고, 본 발명이 이에 한정되는 것은 아니다.
이를 통해, 제1 코일(C1)에는 로터(120)를 끌어당기는 가장 큰 힘이 발생하게 되고, 로터(120)는 스테이터(110)의 상측으로 이동하게 된다.
제어부(200)는 각각의 코일(C1, C2, C3)에 인가되는 전류를 조절하여, 스테이터(110)의 상측 방향으로 작용하는 로터(120)의 부상력의 크기를 조절할 수 있다.
이어서, 다시 도 6을 참조하면, 제어부(200)는 자기 베어링(130, 135)에 회전축(125)을 부상시키는 자력을 발생시킨다(S120)
S110 단계에서 로터(120)를 스테이터(110)의 상측으로 이동시키는 부상력이 기 작용함 따라, 자기 베어링(130)에서 필요로 하는 부상력의 크기는 감소될 수 있다.
따라서, 자기 베어링(130)에서 필요로 하는 자력의 크기는 감소될 수 있으며, 이에 따라 자기 베어링(130)의 크기와 제조 비용도 감소될 수 있다.
자기 베어링(130)의 크기와 제조 비용이 감소됨에 따라, 모터부(100)의 크기와 제조 비용도 함께 감소될 수 있다.
이어서, 제어부(200)는 각각의 코일(C1, C2, C3)에 인가되는 전류의 크기를 감소시킨다(S130). 이를 통해, 제어부(200)는 로터(120)의 중심축을 스테이터(110)의 중심축과 일치시킬 수 있다.
이어서, 로터(120)의 중심축과 스테이터(110)의 중심축이 일치됨에 따라, 모터부(100)의 동작 초기화는 완료된다(S140). 이어서, 제어부(200)는 각각의 코일(C1, C2, C3)에 서로 다른 상의 교류 전원을 인가함으로써, 로터(120)를 스테이터(110) 내에서 회전시킬 수 있다.
본 발명의 몇몇 실시예에서 앞에서 설명한 S110 내지 S140 단계 중 S130 단계는 생략되어 실시될 수 있다.
도 8은 본 발명의 일 실시예에 따른 모터 구동 장치의 초기 정렬 방법을 설명하기 위한 도면이다.
도 8을 참조하면, 본 발명의 일 실시예에 따른 모터 구동 장치에 있어서, 로터(120)는 백업 베어링(140)의 상한 가이드라인(H1)과 백업 베어링(140)의 하한 가이드라인(H3) 사이에서 움직일 수 있다.
<A> 상태는 모터부(100)가 정지되어 있는 경우를 나타낸다. 로터(120)에는 로터(120)의 무게에 의해 하측으로 작용하는 제1 힘(F1)과, 자성체로 구성된 로터(120)와 금속재질로 구성된 스테이터(110) 사이에 작용하는 제2 힘(F2)이 작용한다.
제1 힘(F1)과 제2 힘(F2)에 의해, 로터(120)는 스테이터(110)의 중심선(H2)에서 하측으로 이동된다.
이때, 제2 힘(F2)은 로터(120)가 중심선(H2)에서 멀어질수록 커질 수 있다. 즉, 모터부(100)가 정지 상태에 있는 경우, 로터(120)는 하한 가이드라인(H3)에 인접하도록 이동한다.
이러한 정지 상태의 모터를 구동시키기 위해서는 로터(120)의 중심과 스테이터(110)의 중심을 일치시켜야 한다.
이어서, <B> 상태에서, 제어부(200)는 각각의 코일(C1, C2, C3)에 서로 다른 크기의 직류 전류를 인가한다. 구체적으로, 제어부(200)는 스테이터(110)의 제1 코일(C1)에 제2 코일(C2) 및 제3 코일(C3) 보다 큰 전류를 인가할 수 있다.
이 경우, 제1 코일(C1)과 로터(120) 사이의 인력은, 제2 코일(C2) 및 제3 코일(C3)과 로터(120) 사이의 인력보다 크게 되어, 로터(120)를 스테이터(110)의 상측으로 이동시킬 수 있다.
즉, 로터(120)에는 각각의 코일(C1, C2, C3)에 의한 제3 힘(F3)이 인가되어, 스테이터(110)의 상측으로 이동된다.
도면에서는 로터(120)가 상한 가이드라인(H1)에 인접하도록 이동하는 것으로 도시하였으나, 본 발명이 이에 한정되는 것은 아니다. 제3 힘(F3)에 의해 로터(120)가 이동하더라도, 로터(120)의 중심은 여전히 중심선(H2)보다 아래에 있을 수 있다.
이어서, <C> 상태에서, 제어부(200)는 자기 베어링(130)에 회전축(125)을 스테이터(110)의 상측으로 이동시키는 자력을 발생시킨다. 즉, 로터(120)에는 제4 힘(F4)이 작용한다.
이와 동시에 제어부(200)는 각각의 코일(C1, C2, C3)에 인가되는 전류의 크기를 조절함으로써, 로터(120)의 중심축을 스테이터(110)의 중심축과 일치시킬 수 있다.
이때, 제1 힘(F1)과 제2 힘(F2)의 합력은 제3 힘(F3)과 제4 힘(F4)의 합력과 일치된다.
다만, 제2 힘(F2)의 크기는 스테이터(110) 내에서 로터(120)의 위치에 따라 가변되고, 자기 베어링(130)에서 발생되는 자력의 크기는 선형적으로 변화하지 않을 수 있다.
이를 보완하기 위하여, 제어부(200)는 각각의 코일(C1, C2, C3)에 인가되는 전류를 미세하게 조절하여, 로터(120)의 중심축을 스테이터(110)의 중심축과 일치시킬 수 있다.
또한, 제어부(200)는 동작 초기화 과정에서, 각각의 코일(C1, C2, C3)에 전류를 우선 인가시켜 로터(120)를 상측으로 이동시키는 제3 힘(F3)을 발생시킴으로써, 자기 베어링(130)에서 발생되는 제4 힘(F4)의 크기를 감소시킬 수 있다.
이를 통해, 본 발명은 상대적으로 작은 부상력을 발생시키는 자기 베어링(130)만으로도 로터(120)와 스테이터(110)를 초기 정렬시킬 수 있으므로, 자기 베어링(130)의 필요 성능을 낮출 수 있다.
모터부(100)는 상대적으로 저렴한 자기 베어링(130)을 구비하더라도 정상 동작할 수 있으므로, 모터 구동 장치의 제조 원가와 생산 비용은 낮아질 수 있다.
또한, 모터부(100)는 자기 베어링(130)의 크기가 줄어듬에 따라 발생하는 여유 공간을 이용하여 더 많은 냉매를 수용하거나, 더 큰 출력을 구현할 수 있다.
또한, 모터부(100)는 스테이터(110)에 구비된 복수의 티스(112, 114, 116)의 위치를 지면으로부터 수직한 기준선에 대칭되도록 함으로써, 양상되는 복수의 모터 구동 장치에 동일한 제어 방식을 적용할 수 있다.
즉, 본 발명의 모터부(100)는 동일한 초기 정렬 방식을 이용함으로써 초기의 수동 세팅 과정을 생략할 수 있으며, 자기 베어링(130)의 로드를 줄여 모터 제어의 신뢰성을 높일 수 있다.
도 9는 본 발명의 다른 실시예에 따른 모터 구동 장치를 나타내는 단면도이다. 도 10은 본 발명의 또 다른 실시예에 따른 모터 구동 장치를 나타내는 단면도이다. 이하에서는 본 발명의 일 실시예에 따른 모터 구동 장치와 동일한 구성요소는 생략하고 차이점을 위주로 설명하도록 한다.
도 9를 참조하면, 본 발명의 다른 실시예에 따른 모터 구동 장치의 모터부(101)는 스테이터(210)와 로터(220)를 포함한다.
스테이터(210)는 복수의 티스(211~216)를 포함한다.
예를 들어, 스테이터(210)는 6개의 티스(211~216)를 구비하며, 각각의 복수의 티스(211~216)에는 개별적으로 코일(C11, C12, C21, C22, C31, C32)이 권선될 수 있다. 이때, 제1 코일(C11)은 제1 티스(211)를 중심으로 좌우로 권선될 수 있다.
이하에서는 도면에 도시된 바와 같이, 스테이터(210)가 6개의 티스(211~216)를 갖는 것을 예로 들어 설명하도록 한다.
여기에서, 제1 티스(211)에는 제1 코일(C11)이 권선되고, 제1 티스(211)와 마주보는 제4 티스(214)에는 제4 코일(C12)이 권선된다.
이때, 제1 티스(211)와 제4 티스(214)는 지면에 평행한 제1 직선(L1)에 수직한 제2 직선(L2) 상에 배치될 수 있다.
다른 예로서, 제1 티스(211)는 제2 직선(L2)과 제1 각도(θ)를 이루는 제1 가이드라인(Lg1)과 제2 가이드라인(Lg2) 사이에 배치될 수 있다.
여기에서, 제1 각도(θ)는 60도이거나, 60도 보다 작을 수 있으나, 본 발명이 이에 한정되는 것은 아니다.
상기 제1 티스(211)에 감겨진 제1 코일(C11)의 권선의 중심을 이루는 가상의 축(제1 권선중심축)과 제4 티스(214)에 감겨진 제4 코일(C12)의 권선의 중심을 이루는 가상의 축(제4 권선중심축)은, 다른 권선중심축보다, 제2 직선(L2)(중력가속도 방향)과 가장 가까운 각도로 배치된다.제어부(200)는 모터부(100)의 초기 정렬 동작시, 제1 코일(C11)과 제4 코일(C12)에 다른 코일(C21, C22, C31, C32)보다 큰 직류 전류를 인가할 수 있다.
이 경우, 로터(220)에는 스테이터(210)의 상측으로 향하는 힘이 인가된다.
이때, 로터(220)에 인가되는 힘의 방향은 제1 코일(C11) 또는 제4 코일(C12)의 권선 방향과 수직을 이룬다.
로터(220)에 인가되는 힘은 '앙페르의 오른 나사의 법칙(Ampere's Right-Handed Screw Rule)'에 의해 쉽게 이해될 수 있으므로 이하에서 자세한 설명은 생략하도록 한다.
이어서, 도면에 명확하게 도시되지는 않았으나, 제어부(200)는 자기 베어링(130)에 회전축(125)을 부상시키는 자력을 발생시킨다.
즉, 본 발명은 제어부(200)는 초기 정렬 과정에서, 제1 코일(C11)과 제4 코일(C12)에 다른 코일(C21, C22, C31, C32)보다 큰 직류 전류를 우선 인가함으로써, 로터(220)를 상측으로 이동시키는 힘을 발생시키고, 자기 베어링(130)에서 발생되는 힘의 크기를 감소시킬 수 있다.
도 10은 본 발명의 또 다른 실시예에 따른 모터 구동 장치의 모터부(102)는 스테이터(310)와 로터(320)를 포함한다.
스테이터(310)는 복수의 티스(315)를 포함한다. 스테이터(310)에는 복수의 코일(Ca1, Ca2, Cb1, Cb2, Cc1, Cc2)이 권선될 수 있다.
각각의 코일(Ca1, Ca2, Cb1, Cb2, Cc1, Cc2)은 스테이터(310)의 서로 다른 영역(A11, A12, A21, A22, A31, A32)에 권선될 수 있다.
여기에서 각각의 영역(A11, A12, A21, A22, A31, A32)은 동일한 크기로 설정될 수 있다.
예를 들어, 제1 코일(Ca1)은 스테이터(310)의 제1 영역(A21) 내에서, 스테이터(310)의 바디를 중심으로 내면과 외면을 교대하도록 복수의 티스(315)에 걸쳐 권선될 수 있다.
마찬가지로, 제2 코일(Ca2)은 스테이터(310)의 제2 영역(A31) 내에서, 스테이터(310)의 바디를 중심으로 내면과 외면을 교대하도록 복수의 티스(315)에 걸쳐 권선될 수 있다.
이때, 제1 영역(A21)과 제2 영역(A31)은 지면에 평행한 제1 직선(L1)에 수직한 제2 직선(L2)에 대칭되도록 배치될 수 있다.
여기에서, 제어부(200)는 모터부(100)의 초기 정렬 동작시 제1 코일(Ca1)과 제2 코일(Ca2)에 다른 코일(Cb1, Cb2, Cc1, Cc2)보다 큰 직류 전류를 인가할 수 있다.
이 경우, 로터(320)에는 스테이터(310)의 상측으로 향하는 힘이 인가된다. 이때, 로터(320)에 인가되는 힘의 방향은 제1 코일(Ca1) 또는 제2 코일(Ca2)의 권선 방향과 수직을 이룬다.
이때, 로터(320)에 인가되는 힘은 '앙페르의 오른 나사의 법칙(Ampere's Right-Handed Screw Rule)'에 의해 쉽게 이해될 수 있으므로 이하에서 자세한 설명은 생략하도록 한다.
이어서, 도면에 명확하게 도시되지는 않았으나, 제어부(200)는 자기 베어링(130)에 회전축(125)을 부상시키는 자력을 발생시킨다.
즉, 본 발명은 제어부(200)는 초기 정렬 과정에서, 제1 코일(Ca1)과 제2 코일(Ca2)에 다른 코일(Cb1, Cb2, Cc1, Cc2)보다 큰 직류 전류를 우선 인가함으로써, 로터(320)를 상측으로 이동시키는 힘을 발생시키고, 자기 베어링(130)에서 발생되는 힘의 크기를 감소시킬 수 있다.
이를 통해, 본 발명은 상대적으로 작은 부상력을 발생시키는 자기 베어링(130)만으로도 로터(120)와 스테이터(110)를 초기 정렬시킬 수 있으므로, 자기 베어링(130)의 필요 성능을 낮출 수 있다.
따라서, 본 발명의 몇몇 실시예에 따른 모터부는 상대적으로 저렴한 자기 베어링(130)을 구비하더라도 정상 동작할 수 있으므로, 모터 구동 장치의 제조 원가와 생산 비용은 낮아질 수 있다.
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시 예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시 예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을 지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.

Claims (10)

  1. 하우징(105);
    상기 하우징 내면에 고정되고, 복수의 코일이 각각 권선된 복수의 티스(teeth)를 포함하는 스테이터(110);
    상기 스테이터 내에 배치되며 상기 복수의 코일에서 발생된 자기장에 의해 회전하는 로터(120);
    상기 로터의 축방향으로 연장되며 수평하게 배치되는 회전축(125);
    상기 회전축을 상측으로 부상시키는 자력을 발생시키는 자기 베어링(130, 135); 및
    상기 복수의 코일에 전류를 인가하고, 상기 자기 베어링의 동작을 제어하는 제어부를 포함하고,
    상기 제어부는, 상기 복수의 코일에 각각 서로 다른 크기의 전류를 인가하는 것이 가능하고,
    상기 복수의 코일이 각각 감기는 권선중심축 중 중력가속도 방향과 나란한 선과 이루는 각도가 가장 작은 각도를 이루는 코일이 감긴 제1티스가 상기 회전축보다 상부에 배치되는
    모터 구동 장치.
  2. 제1항에 있어서,
    상기 복수 개의 티스는, 제1 내지 제3 코일이 각각 권선된 제1 내지 제3 티스를 포함하고,
    상기 제1 내지 제3 티스는 회전축을 기준으로 등간격의 각도로 배치되며,
    상기 제1 티스는, 상기 제2 및 제3 티스보다 지면으로부터 더 멀리 배치되는
    모터 구동 장치.
  3. 제2항에 있어서,
    상기 복수 개의 티스는, 상기 회전축을 기준으로 상기 제1 내지 제3 티스에 대향하여 배치되는 제4 내지 제6 티스를 더 포함하는
    모터 구동 장치.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 제1 티스는, 상기 하우징이 접하는 지면으로부터 수직하도록 배치되거나 중력가속도 방향과 나란하게 배치되는
    모터 구동 장치.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 제1 티스는, 상기 하우징이 접하는 지면으로부터 수직한 선(L2) 또는 중력가속도 방향과 나란한 선과 제1 각도(θ)를 이루는 범위 내에 배치되고,
    상기 제1 각도는 60도이거나, 60도보다 작은
    모터 구동 장치.
  6. 제1항에 있어서,
    적어도 상기 회전축의 상측 및 하측에 배치되고, 상기 자기 베어링보다 상기 회전축에 인접하도록 배치되는 백업 베어링을 더 포함하는
    모터 구동 장치.
  7. 제6항에 있어서,
    상기 백업 베어링보다 상기 자기 베어링이 상기 로터에 더 가깝게 배치되는
    모터 구동 장치.
  8. 복수의 코일이 각각 권선된 복수의 티스(teeth)를 포함하는 스테이터(110);
    상기 스테이터 내에 배치되며 상기 복수의 코일에서 발생된 자기장에 의해 회전하는 로터(120);
    상기 로터의 축방향으로 연장되며 수평하게 배치되는 회전축(125); 및
    상기 회전축을 상측으로 부상시키는 자력을 발생시키는 자기 베어링(130, 135);을 포함하는 모터의 구동 제어 방법으로서,
    모터의 초기 구동 시, 상기 복수의 코일이 각각 감기는 권선중심축 중 중력가속도 방향과 이루는 각도가 가장 작은 각도를 이루는 코일에 가장 큰 전류를 인가하여 회전축을 부상시키는 모터의 구동 제어 방법.
  9. 제8항에 있어서,
    상기 모터의 초기 구동 시, 상기 복수의 코일이 각각 감기는 권선중심축 중, 중력가속도 방향과 나란한 선과 제1각도(θ)를 이루는 범위 내에 배치되는 권선중심축에 해당하는 코일에 가장 큰 전류를 인가하여 회전축을 부상시키는 모터의 구동 제어 방법.
  10. 제8항 또는 제9항에 있어서,
    상기 복수의 코일에 전류를 인가한 뒤, 상기 자기 베어링이 자력을 발생하도록 제어하고,
    상기 자기 베어링에 자력이 발생되는 경우, 상기 복수의 코일에 인가되는 전류의 크기를 감소시키는
    모터의 구동 제어 방법.
PCT/KR2018/016167 2018-02-12 2018-12-18 회전축의 하중 부담을 경감시키기 위한 모터 구동 장치 WO2019156342A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880089205.8A CN111712996B (zh) 2018-02-12 2018-12-18 减小旋转轴上的载荷的马达驱动装置
US16/969,507 US11398784B2 (en) 2018-02-12 2018-12-18 Motor driving device for reducing load on rotating shaft
EP18905683.1A EP3754821A4 (en) 2018-02-12 2018-12-18 MOTOR DRIVE DEVICE ALLOWING TO REDUCE THE LOAD ON A ROTATING SHAFT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0017293 2018-02-12
KR1020180017293A KR102069579B1 (ko) 2018-02-12 2018-02-12 회전축의 하중 부담을 경감시키기 위한 모터 구동 장치

Publications (1)

Publication Number Publication Date
WO2019156342A1 true WO2019156342A1 (ko) 2019-08-15

Family

ID=67548955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016167 WO2019156342A1 (ko) 2018-02-12 2018-12-18 회전축의 하중 부담을 경감시키기 위한 모터 구동 장치

Country Status (5)

Country Link
US (1) US11398784B2 (ko)
EP (1) EP3754821A4 (ko)
KR (1) KR102069579B1 (ko)
CN (1) CN111712996B (ko)
WO (1) WO2019156342A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4089893A1 (en) * 2021-05-10 2022-11-16 General Electric Renovables España S.L. Armature assemblies for generators and assembly methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107615A (ja) * 1989-09-20 1991-05-08 Shimadzu Corp 磁気軸受装置
JP2001190043A (ja) * 2000-01-05 2001-07-10 Sankyo Seiki Mfg Co Ltd 磁気浮上モータ
JP2004140882A (ja) * 2002-10-15 2004-05-13 Akira Chiba ベアリングレス回転機
KR20080112955A (ko) * 2007-06-22 2008-12-26 엘리콘 텍스타일 게엠베하 운트 코. 카게 회전자가 자기적으로 설치된 전기기계를 시동하는 방법 및장치
JP2017147783A (ja) * 2016-02-15 2017-08-24 三菱重工業株式会社 回転機械の起動方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3130974A1 (de) 1981-08-05 1983-02-24 Teldix Gmbh, 6900 Heidelberg Magnetlager
JPH05122895A (ja) * 1991-10-29 1993-05-18 Toshiba Corp 磁気軸受搭載回転電機
KR100403857B1 (ko) * 2000-01-05 2003-11-01 가부시기가이샤 산교세이기 세이사꾸쇼 자기부상모터
JP2004132513A (ja) * 2002-10-11 2004-04-30 Sankyo Seiki Mfg Co Ltd 磁気軸受装置、及びそれを用いた磁気浮上モータ
CN100432461C (zh) 2005-05-18 2008-11-12 江苏大学 三自由度交直流径向-轴向混合磁轴承及其控制方法
CN100385774C (zh) * 2005-05-27 2008-04-30 南京航空航天大学 无轴承开关磁阻起动发电机及控制方法
WO2009093428A1 (ja) 2008-01-24 2009-07-30 Tokyo University Of Science Educational Foundation Administrative Organization ベアリングレスモータ
CN101546947A (zh) * 2009-05-05 2009-09-30 南京航空航天大学 无轴承开关磁阻电机及其控制方法
KR100969682B1 (ko) 2009-09-18 2010-07-14 방덕제 직접구동식 전기기기
CN103997176B (zh) * 2014-05-26 2016-08-31 江苏大学 一种无轴承无刷直流电机及悬浮力控制方法
CN104092411B (zh) * 2014-07-07 2016-06-29 扬州大学 圆弧定子绕组磁悬浮支承驱动电机
CN204013145U (zh) * 2014-07-11 2014-12-10 扬州大学 感应电机
CN204858842U (zh) * 2015-07-24 2015-12-09 扬州大学 磁悬浮感应电机驱动式电动自行车
CN105846624A (zh) * 2016-05-16 2016-08-10 江苏大学 一种双定子无轴承磁通切换永磁电机
CN106402159B (zh) * 2016-12-06 2019-07-26 中国工程物理研究院材料研究所 一种永磁偏置磁悬浮转轴
CN106849401B (zh) * 2017-02-15 2019-04-02 江苏大学 一种电动汽车用飞轮储能电机
CN106953459B (zh) * 2017-04-11 2019-02-26 南京埃克锐特机电科技有限公司 一种混合磁轴承开关磁阻电机及其控制方法
CN107222131B (zh) 2017-06-27 2019-01-08 江苏大学 一种转子重力卸载型磁轴承复合电机
CN108683292A (zh) * 2018-05-04 2018-10-19 江苏大学 一种车载磁悬浮飞轮储能电池
CN113162315B (zh) * 2021-04-06 2022-09-02 南京邮电大学 一种四自由度磁悬浮开关磁阻电机及共励磁驱动方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107615A (ja) * 1989-09-20 1991-05-08 Shimadzu Corp 磁気軸受装置
JP2001190043A (ja) * 2000-01-05 2001-07-10 Sankyo Seiki Mfg Co Ltd 磁気浮上モータ
JP2004140882A (ja) * 2002-10-15 2004-05-13 Akira Chiba ベアリングレス回転機
KR20080112955A (ko) * 2007-06-22 2008-12-26 엘리콘 텍스타일 게엠베하 운트 코. 카게 회전자가 자기적으로 설치된 전기기계를 시동하는 방법 및장치
JP2017147783A (ja) * 2016-02-15 2017-08-24 三菱重工業株式会社 回転機械の起動方法

Also Published As

Publication number Publication date
EP3754821A4 (en) 2021-11-10
US20200403536A1 (en) 2020-12-24
EP3754821A1 (en) 2020-12-23
CN111712996B (zh) 2022-07-29
US11398784B2 (en) 2022-07-26
KR102069579B1 (ko) 2020-01-23
KR20190097635A (ko) 2019-08-21
CN111712996A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
WO2012148189A2 (ko) 전동기 및 이를 구비한 전기차량
WO2018147610A1 (ko) 스테이터 및 이를 포함하는 모터
WO2017052114A1 (ko) 냉각장치를 갖춘 진공펌프
WO2018128450A1 (ko) 압축기 구동장치 및 이를 구비한 칠러
WO2019235825A1 (en) Interior permanent magnet motor
WO2019156342A1 (ko) 회전축의 하중 부담을 경감시키기 위한 모터 구동 장치
WO2017052075A1 (ko) 영구자석 응용 전동기
WO2018147574A1 (ko) 리니어 압축기
WO2019225977A1 (ko) 정보 출력 장치
WO2018044141A1 (ko) 로터 위치 감지장치 및 이를 포함하는 모터
EP3824186A1 (en) Scroll compressor
WO2010041841A2 (ko) 용량가변형 압축기의 용량제어밸브
WO2017111390A1 (ko) 모터 구동 장치, 그를 포함하는 공기 조화 장치 및 모터 구동 장치의 제어방법
WO2016148321A1 (ko) 자성체 홀딩 장치
WO2020060144A1 (ko) 리니어 모터 및 리니어 압축기
WO2021261731A1 (ko) 동축 와전류 변위 센서를 갖는 자기베어링
WO2021187820A1 (ko) 고정자 비대칭 슈를 이용한 전동기 및 그 제작 방법
WO2022092870A1 (ko) 모터
WO2022085985A1 (ko) 컨시퀀트 극형 매입 영구자석 모터
EP3711141A1 (en) Motor
WO2018169232A1 (ko) 영구자석을 가지는 전동기 및 이를 구비한 압축기
WO2021221391A1 (en) Motor assembly and a cleaner comprising the same
WO2019117471A1 (en) Compressor
WO2021133029A1 (ko) 전기모터용 스테이터 및 이를 포함하는 전기모터
WO2020067739A1 (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018905683

Country of ref document: EP

Effective date: 20200914