WO2019154405A1 - 一种往复式直线电机用动子支撑弹簧以及往复式直线电机 - Google Patents

一种往复式直线电机用动子支撑弹簧以及往复式直线电机 Download PDF

Info

Publication number
WO2019154405A1
WO2019154405A1 PCT/CN2019/074752 CN2019074752W WO2019154405A1 WO 2019154405 A1 WO2019154405 A1 WO 2019154405A1 CN 2019074752 W CN2019074752 W CN 2019074752W WO 2019154405 A1 WO2019154405 A1 WO 2019154405A1
Authority
WO
WIPO (PCT)
Prior art keywords
mover
reciprocating linear
support spring
linear motor
motor according
Prior art date
Application number
PCT/CN2019/074752
Other languages
English (en)
French (fr)
Inventor
程路
Original Assignee
日照华斯特林科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日照华斯特林科技有限公司 filed Critical 日照华斯特林科技有限公司
Priority to CN201980000963.2A priority Critical patent/CN110494642B/zh
Publication of WO2019154405A1 publication Critical patent/WO2019154405A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2250/00Special cycles or special engines
    • F02G2250/27Martini Stirling engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2270/00Constructional features
    • F02G2270/42Displacer drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2275/00Controls
    • F02G2275/20Controls for preventing piston over stroke

Definitions

  • the present invention relates to the field of motor technology, and in particular to a mover support spring for a reciprocating linear motor and a reciprocating linear motor.
  • the prior art linear motor support methods mainly include three types, namely a hard friction support linear motor, an air bearing linear motor, and a double leaf spring support linear motor.
  • the hard friction-supporting linear motor is a lightweight mover made of wear-resistant material or oil-free self-lubricating material to reduce the friction loss between the mover and the stator caused by the lateral force.
  • the linear motor of this structure has a simple structure. However, it is only suitable for applications with small loads and has a short life span.
  • Air-floating bearing linear motor is a special structure of cylinder or mover to make the mover in the working process. Some gas is used as the air-floating bearing to avoid the friction between the mover and the stator.
  • the linear motor of this structure has a long service life and the effect is also Good, but its structure is complex, processing precision is high, and the cost is very high.
  • the double leaf spring supports the linear motor to support the mover with two scroll springs.
  • the linear motor of this structure has high efficiency and good radial support force. It can be used on larger weight movers and bear larger. Load, but the scrolling leaf spring has high processing precision, low yield, and consumes a lot of materials, and the material cost is also very high.
  • the mover in the stator It will do tens of thousands of reciprocating linear motions, and as a support spring for the mover, the leaf spring also needs to do tens of thousands of times and move back and forth hundreds of millions of times, which gives the spring fatigue strength, elastic stiffness and Stability puts higher demands on it.
  • the prior art double-plate spring type linear motor adopts a plane spring, and the common plane spring is a disk-shaped scroll spring, as shown in FIG. 6.
  • the basic method of processing a disk-shaped scroll spring is to etch the scroll groove by wire-cutting the wire on the metal piece.
  • the wafer-shaped scroll spring has the following defects: the vortex groove is etched by the wire cutting slow wire during the processing, which causes serious waste of material; the vortex groove wind flux is small, in the working process The wind pressure generated in the middle is relatively large, and the resistance is generated by moving the piston back and forth; the plane spring is an involute spring, which is only a very thin support arm, and the supporting force is not strong.
  • the circumferential stiffness is good, the radial stiffness is poor and easy.
  • the technical problem to be solved by the present invention is to provide a reciprocating linear motor with a mover support spring and a reciprocating linear motor, which overcomes the deficiencies in the prior art, and the mover support spring improves the use of the linear vibration motor.
  • the life is reduced, and the processing difficulty and production cost of the mover support spring are reduced.
  • the present invention adopts the following technical means:
  • a movable support spring for a reciprocating linear motor comprising a body portion for mounting a mover portion of the connected motor; and an elastic portion for generating an elastic deformation to define the mover portion
  • the moving phase is formed by extending the body portion symmetrically to the left and right sides; the fixing portion is for mounting a stator portion that connects the motor, and is formed by bending the elastic portion.
  • the present invention also provides a reciprocating linear motor including a mover portion and a stator portion, the mover portion being disposed inside the stator portion and reciprocally movable inside the stator portion, the mover portion being supported by a mover spring and The stator parts are connected.
  • the connecting portion of the body portion and the elastic portion is provided with a first curved corner.
  • the connecting portion of the elastic portion and the fixing portion is provided with a second curved corner.
  • the body portion has a flat shape, and the elastic portion is formed to extend obliquely upward from the body portion.
  • the overall shape of the mover support spring is a flat M shape in the middle.
  • the body portion and the elastic portion are both flat, and the elastic portion is formed by extending the body portion in the horizontal direction.
  • the overall shape of the mover support spring is a C shape that is flat in the middle.
  • the body portion is provided with a mover attachment hole.
  • the fixing portion is provided with a stator connecting hole.
  • the reciprocating linear motor is a drive motor applied to the Stirling machine.
  • the mover portion is a piston of a drive motor for a Stirling machine
  • the stator portion includes a cylinder and a cylinder of a drive motor for a Stirling machine.
  • the mover portion is fixedly coupled to the body portion, and the stator portion and the fixed portion are fixedly coupled.
  • the mover portion and the body portion are tightly coupled by a fastener, and the stator portion and the fixed portion are tightly coupled by a fastener.
  • the side wall of the stator portion is provided with a mounting groove, and the fixing portion is matched with the mounting groove.
  • the mover support springs are at least two, and each of the mover support springs is perpendicular to the mover axis and disposed at a distance in the direction of the mover axis.
  • the mover support springs are two, which are located on the same side of the mover portion or on both sides of the mover portion. The two mover support springs are perpendicular to each other.
  • the present invention has the following beneficial technical effects:
  • the mover support spring of the present invention has a slat shape, it occupies less space than the spiral spring, so that it consumes less material and has a simple processing process, and does not require high-precision processing equipment. Almost no excess waste is generated, which significantly reduces material costs and process costs. Moreover, it also has a larger ventilation area, and the wind pressure generated during the high-frequency vibration work is small, the resistance generated by the movement of the mover part is small, the wind resistance generated by the mover part is reduced, and the energy efficiency is improved.
  • the width of the mover support spring of the present invention can be made larger than that of the connecting arm of the spiral spring, which improves the axial rigidity and the radial rigidity of the spring, increases the fatigue life of the support spring, and can be better used in heavy movement.
  • the load-carrying capacity is improved, the problem of the mover wear caused by the lateral force is greatly reduced, the service life of the motor is improved, and the reliability is also improved.
  • the mover support spring of the present invention has a slat shape, and the body portion, the elastic portion and the mounting portion are integrally extended, and the mounting portion is formed by bending the elastic portion so that it can be mounted on the side of the stator, and the mounting is further improved.
  • Firm Therefore, in a long period of time, the elastic deformation of the mover support spring is linearly deformed, which not only improves the life of the mover, but also makes the output power of the motor relatively stable over a long period of time, especially for heavy movers. In occasion, the performance of its comprehensive mechanical properties is excellent.
  • FIG. 1 is a schematic structural view of a mover support spring in the first embodiment.
  • FIG. 2 is a schematic structural view of a mover support spring in the second embodiment.
  • 3 is a schematic view showing the mounting structure of the third embodiment.
  • FIG. 4 is a left side view of the mounting structure of the third embodiment.
  • FIG. 5 is a schematic view showing the mounting structure of the fourth embodiment.
  • Fig. 6 is a schematic view showing the structure of a disk-shaped scroll spring in the prior art.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meaning of the above terms in the present invention can be understood in a specific case by those skilled in the art.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a reciprocating linear motor of the present invention and a mover supporting spring 1 thereof are in the form of a strip, and include a body portion 2 for mounting a mover portion of the connected motor;
  • the elastic portion 3 is configured to generate elastic deformation to define a moving phase of the mover portion, which is formed by the body portion 2 extending symmetrically to the left and right sides;
  • the fixing portion 4 is for mounting a stator portion of the connecting motor, which is end of the elastic portion 3 The part is bent downward and extended.
  • the body portion 2, the elastic portion 3, and the fixing portion 4 are integrally provided.
  • the slat-shaped mover support spring of the present invention has a strip shape as a whole, and is a thin plate, that is, a strip-shaped elastic plate, instead of the disk-shaped elastic plate of the conventional disk-shaped scroll spring ( As shown in Figure 6).
  • the slat-shaped support spring consumes less material than the disk-shaped scroll spring, and has better elastic linearity and higher reliability.
  • the connecting portion of the body portion 2 and the elastic portion 3 is provided with a first curved corner 6 .
  • a second curved corner 7 is provided at the transition of the connection between the elastic portion 3 and the fixing portion 4.
  • the main body portion 2 has a flat plate shape, and the elastic portion 3 is formed to extend obliquely upward from the main body portion 2.
  • the overall shape of the mover support spring is a flat M shape in the middle.
  • the body portion 2 is provided with a mover connecting hole.
  • the fixing portion is provided with a stator connecting hole.
  • the mover support spring 1 is viewed from a front view as a whole in a flat M shape or a bow shape, and a joint of the main body portion 2 and the elastic portion 3 is provided with a first curved corner 6 .
  • the first curved corner 6 is formed by bending the body portion 2 obliquely upward, and the connection between the elastic portion 3 and the fixing portion 4 is provided with a second curved corner 7 and the second curved corner 7 is composed of the elastic portion 3.
  • the radius of curvature of the second curved corner 7 is much smaller than the radius of curvature of the first curved corner 6, the second curved corner 7 is close to a semicircular shape, and the curved corner is increased to support the spring
  • the elastic deformation ability is beneficial to improve the fatigue life of the place.
  • the main body portion 2 has a flat plate shape, and the elastic portion 3 is extended obliquely upward from the main body portion 2, and an angle between the elastic portion 3 and the main body portion 2 is ⁇ , that is, an outer obtuse angle of the first curved corner 6, in order to improve
  • the angle can significantly reduce the stress concentration at that location.
  • the two elastic portions 3 and the fixing portion 4 are symmetrically disposed.
  • the radial rigidity of the mover support spring 1 in this embodiment is 100 times of the axial rigidity, and is supported by the mover support spring 1, and a heavier mover can be used, for example, the mover can use more permanent magnets. Get more motor thrust.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the basic structure is substantially the same as that of the first embodiment, except that the shape of the mover support spring 1 is different, and the mover support spring 1 in this embodiment is different.
  • the shape of the front view is a flat C shape in the middle, and the body portion 2 and the elastic portion 3 are both planar, and the ends of the elastic portion 3 are bent downward and extended to form the fixing portion 4.
  • the elastic portion 3 is formed such that the main body portion 2 is extended in parallel to the outside.
  • the mounting structure may be the same or similar to that of the first embodiment.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the reciprocating linear motor is a drive motor for a Stirling refrigerator, which includes a mover portion 9 and a stator portion 8, and the mover portion 9 is
  • the Stirling machine uses a piston for driving a motor, and the stator portion includes a cylinder and a cylinder of a drive motor for the Stirling machine.
  • the mover portion 9 is disposed inside the stator portion 8 and is reciprocally movable inside the stator portion 8, and the mover portion 9 is fixedly coupled to the barrel 82 of the stator portion 8 via the mover support springs 1, 1'.
  • the mover support springs 1, 1' can define the motion phase of the mover.
  • the elastic properties of the mover support springs 1, 1' directly determine the mover at a certain point in time.
  • the position, that is, the movement phase of the mover is defined, and the slat-shaped support springs 1, 1' have a high elastic consistency, so that the motion phase of the mover can be more accurately defined, and the mover is improved.
  • the linearity of the movement is defined, and the slat-shaped support springs 1, 1' have a high elastic consistency, so that the motion phase of the mover can be more accurately defined, and the mover is improved.
  • the body portion 2 is provided with a mover connection hole 5 for fixed connection with a mover
  • the fixed portion 4 is provided with a stator connection hole for fixed connection with the stator.
  • the mover portion 9 i.e., the piston
  • the mover portion 9 and the body portion 2 are connected by a fastener.
  • the stator portion and the fixed portion are locked and fastened by a fastener.
  • the fastener in this embodiment is a bolt. Of course, in other embodiments. Fasteners such as rivets or other mechanical connections may also be used.
  • the stator portion 8 is provided with a mounting groove, and the mounting groove is disposed at a side of the cylindrical body 82 to improve the strength of the mounting structure of the supporting spring.
  • the fixing portion 4 is matched with the mounting groove, that is, the fixing portion 4 can be installed and installed.
  • the mover support springs 1, 1' are two, and each of the mover support springs 1, 1' is perpendicular to the mover axis and is disposed at a certain distance in the direction of the mover axis, that is, it has a left-right positional relationship.
  • the sub-axis is also the central axis of the piston.
  • the mover support springs are two, which are located on the same side of the mover portion.
  • the two mover support springs 1, 1' are perpendicular to each other.
  • the two mover support springs 1, 1' are perpendicular to each other to be spatially perpendicular to each other, or to be perpendicular to each other in a plane perpendicular to the axis of the mover.
  • more mover support springs 1, 1' may be provided, preferably in a spaced and evenly spaced manner.
  • the reciprocating linear motor is a drive motor for a Stirling machine
  • the mover portion 9 is for a Stirling machine
  • the piston of the drive motor, the stator portion 8 includes a cylinder 81 and a cylinder 82 of a machine for a Stirling machine.
  • the fixing portion 4 and the cylindrical body 82 are fixedly connected, and the body portion 2 and the piston are fixedly connected.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the basic structure is basically the same as that of the third embodiment, except that the two mover supporting springs 1, 1' are respectively located on both sides of the mover portion 9, that is, Two mover support springs 1, 1' are respectively mounted on both sides of the stator portion 8 and the mover portion 9, which can further improve the mounting stability of the mover portion 9, and significantly reduce the movement process of the mover portion 9.
  • the lateral force in the middle is therefore more suitable for heavy turrets, reducing friction and improving the life of the Stirling machine.
  • the working principle of the invention is to generate a magnetic field after the stator coil of the reciprocating linear motor passes the variable current, and the mover portion 9 generates a left-right reciprocating linear motion under the action of the magnetic field, since the mover portion 9 and the mover support spring 1, 1' fixed connection and further connected to the stator portion 8 such that a stable relative position is maintained between the mover portion 9 and the stator portion 8, so that the mover portion 9 can be stably moved in the stator portion 8 without the stator Part 8 produces a collision that reduces the movement of the mover caused by the lateral force during the vibration. Further, under the elastic force of the mover supporting springs 1, 1', the phase of the movement of the mover portion 9 is limited, and the mover portion 9 can be quickly reset by the elastic force.
  • mover support spring 1 ' mover support spring; 2. body part; 3. elastic part; 4. fixed part; 5. mover connection hole, 6. first curved corner ; 7. second curved corner; 8. stator part; 81. cylinder; 82. cylinder; 9. moving parts; 10. fasteners and other terms, but does not rule out the possibility of using other terms.

Abstract

一种往复式直线电机用动子支撑弹簧(1),该动子支撑弹簧(1)为板条形,它包括本体部(2),用以安装连接电机的动子部分(9);弹性部(3),用以产生弹性形变以调节动子部分(9)的运动相位,其由本体部(2)向左右侧对称延长形成;固定部(4),用于安装连接电机的定子部分(8),其由弹性部(3)弯曲形成。还提供了一种往复式直线电机,包括动子部分(9)和定子部分(8),动子部分(9)设置在定子部分(8)内部并可在定子部分(8)内部往复式直线运动,动子部分(9)通过动子支撑弹簧(1)与定子部分(8)连接。该动子支撑弹簧提高了动子的安装稳定性,且具有较好的弹性一致性和轴向刚度,增加了弹簧的径向刚度,因此提高了往复式直线电机的使用寿命和可靠性,也降低了成本,更加适应重型动子的应用场合。

Description

一种往复式直线电机用动子支撑弹簧以及往复式直线电机 技术领域
本发明涉及电机技术领域,具体而言涉及一种往复式直线电机用动子支撑弹簧以及往复式直线电机。
背景技术
现有技术的直线电机支承方式主要包括三种类型,分别为硬摩擦支承直线电机、气浮轴承直线电机和双板簧支承直线电机。其中硬摩擦支承直线电机是使用耐磨物质或无油自润滑物质制作的轻量动子,以减少侧向力造成的动子和定子之间的摩擦损耗,这种结构的直线电机结构简单,但仅适用于负载较小的场合,且其自身寿命也较短。气浮轴承直线电机是使用特殊结构的气缸或动子使动子在工作过程中,有部分气体作为气浮轴承避免动子和定子之间的摩擦,这种结构的直线电机寿命长,效果也好,但是其结构复杂,加工精度要求高,成本十分高昂。双板簧支承直线电机将动子用两个涡旋式板簧支撑,这种结构的直线电机效率高,径向支撑力较好,可以使用于较大重量的动子上,承受更大的负载,但是涡旋式板簧的加工精度要求高,成品率低,且消耗的材料较多,材料成本也十分高昂,此外,在双板簧式直线电机的工作过程中,定子内的动子会做上万、上亿次的往复式直线运动,而作为动子的支撑弹簧,板弹簧也需要相应的做上万、上亿次的来回移动,这就给弹簧的疲劳强度、弹性刚度和稳定性提出了较高的要求。
现有技术双板簧式直线电机采用的是平面弹簧,常见的平面弹簧为圆片状涡旋弹簧,如图6所示。加工圆片状涡旋弹簧的基本方法是在金属片上采用线切割慢走丝的方法刻蚀涡旋槽。此种圆片状涡旋弹簧存在以下缺陷:在加工的过程中通过线切割慢走丝的方法刻蚀涡旋槽,造成材料的严重浪费;涡旋槽风通量较小,在工作的过程中产生的风压比较大,对活塞来回移动产生阻力;平面弹簧为渐开线弹簧,只是一个很细的支撑臂,支撑力度不强,虽然周向刚度不错,但是径向刚度较差,容易在较多次的弹性形变后变脆发热,导致断裂,尤其是采用重型动子时,使用一段时间后,由于抗疲劳性能不足,涡旋弹簧会将产生塑性变形,进而使动子的侧向力增大,产生更大的摩擦力,导致直线电机的寿命降低。
发明内容
本发明所要解决的技术问题在于克服上述现有技术中存在的不足而提供一种往复式直线电机用动子支撑弹簧以及往复式直线电机,所述的动子支撑弹簧提高了直线振动电机的使用寿命,且降低了动子支撑弹簧的加工难度和生产成本。
为解决上述技术问题,本发明采用了以下技术手段:
一种往复式直线电机用动子支撑弹簧,该动子支撑弹簧为板条形,它包括本体部,用以安装接连电机的动子部分;弹性部,用以产生弹性形变以限定动子部分的运动相位,其由本体部向左右侧对称延长形成;固定部,用于安装连接电机的定子部分,其由弹性部折弯形成。本发明还提供一种往复式直线电机,包括动子部分和定子部分,所述动子部分设置在定子部分内部并可在定子部分内部往复式移动,所述动子部分通过动子支撑弹簧与定子部分连接。
上述技术方案还可以通过以下措施进一步完善:
作为进一步优化,所述的本体部与弹性部的连接过渡处设置有第一弧形拐角。所述的弹性部与固定部的连接过渡处设置有第二弧形拐角。所述本体部为平板状,所述弹性部由本体部向斜上方延长形成。所述动子支撑弹簧的整体形状为中部平坦的M形。优选的,所述第一弧形拐角为α,150°≤α≤180°;更优选的,所述第一弧形拐角α=160°。
作为进一步优化,所述本体部和弹性部均为平板状,所述弹性部由本体部沿水平方向延长形成。所述动子支撑弹簧的整体形状为中部平坦的C形。
作为进一步优化,所述本体部设有动子连接孔。所述固定部设有定子连接孔。
作为进一步优化,往复式直线电机为应用于斯特林机的驱动电机。所述动子部分为斯特林机用驱动电机的活塞,所述定子部分包括斯特林机用驱动电机的缸体和筒体。
作为进一步优化,所述动子部分和本体部固定连接,所述定子部分和固定部固定连接。所述动子部分和本体部用紧固件锁紧连接,所述定子部分和固定部用紧固件锁紧连接。所述定子部分的侧壁上设有安装槽,固定部与安装槽相适配。
作为进一步优化,所述动子支撑弹簧至少为两个,各动子支撑弹簧均垂直于动子轴线且在动子轴线方向上间隔一定距离设置。所述动子支撑弹簧为两个,其位于动子部分的同一侧或者分别位于动子部分的两侧。所述两个动子支撑弹簧相互垂直。
由于采用了以上技术方案,本发明具有以下有益技术效果:
本发明的动子支撑弹簧,由于其为板条状,因此和蜗旋弹簧相比,占用的空间较小,所以其消耗的材料较少,且加工工艺简单,不需要采用高精度加工设备,也几乎不产生多余的废料,因而显著降低了材料成本和工艺成本。且其也具有更大的通风面积,在高频振动工作过程中产生的风压较小,动子部分来回移动产生的阻力较小,降低对动子部分产生的风阻,提高了能效。
本发明的动子支撑弹簧的宽度可以做的比蜗旋弹簧的连接臂更大,提高了弹簧轴向刚度 和径向刚度,增加了支撑弹簧的抗疲劳寿命,可以更好地使用在重型动子的场合,提高了带负载能力,也大大减小了侧向力导致的动子磨损问题,提高了电机的使用寿命,也使其具有更高的可靠性。
此外,本发明的动子支撑弹簧,由于其为板条形,其本体部、弹性部和安装部一体延伸,其安装部由弹性部折弯形成,使其可以安装在定子的侧面,安装更加牢固。因此,在较长的时间内,动子支撑弹簧的弹性变形均为线性变形,不仅提高了动子的寿命,也使得在较长时间内,电机的输出功率较为稳定,尤其是重型动子的场合,其综合机械性能的表现十分优异。
附图说明
图1为实施例一中动子支撑弹簧的结构示意图。
图2为实施例二中动子支撑弹簧的结构示意图。
图3为实施例三的安装结构示意图。
图4为实施例三的安装结构左视图。
图5为实施例四的安装结构示意图。
图6是现有技术中的圆片状涡旋弹簧的结构示意图。
附图标记说明:
1.动子支撑弹簧;1’动子支撑弹簧;2.本体部;3.弹性部;4.固定部;5.动子连接孔,6.第一弧形拐角;7.第二弧形拐角;8.定子部分;81.缸体;82.筒体;9.动子部分;10.紧固件。
具体实施方式
以下是本发明的具体实施例并结合附图,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明做进一步详细说明。通常在此处附图中描述和示出的本发明实施例的组件可以各种不同的配置来布置和设计。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的 方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例中的特征可以相互组合。
实施例一:
如图1所示,本发明的一种往复式直线电机及其动子支撑弹簧1,该动子支撑弹簧1为板条形,它包括本体部2,用以安装接连电机的动子部分;弹性部3,用以产生弹性形变以限定动子部分的运动相位,其由本体部2向左右侧对称延长形成;固定部4,用于安装连接电机的定子部分,其由弹性部3的端部向下弯曲并延长形成。本体部2、弹性部3和固定部4为一体设置。
需要说明的是,本发明的板条形的动子支撑弹簧为整体呈条状,且为薄板,也即条状弹性板,而非传统的圆片状涡旋弹簧的圆片状弹性板(如图6所示)。板条形支撑弹簧相比圆片状涡旋弹簧,消耗更少的材料,其弹性线性较好,可靠性更高。
所述的本体部2与弹性部3的连接过渡处设置有第一弧形拐角6。所述的弹性部3与固定部4的连接过渡处设置有第二弧形拐角7。所述本体部2为平板状,所述弹性部3由本体部2向斜上方延长形成。所述动子支撑弹簧的整体形状为中部平坦的M形。所述本体部2设有动子连接孔。所述固定部设有定子连接孔。
如图1所示动子支撑弹簧1,其由正视图上观察,整体为中部平坦的M形或者为弓形,所述的本体部2与弹性部3的连接处设置有第一弧形拐角6,第一弧形拐角6由本体部2向斜上方折弯形成,所述的弹性部3与固定部4的连接处设置有第二弧形拐角7,第二弧形拐角7由弹性部3向下方折弯形成,第二弧形拐角7的曲率半径远远小于第一弧形拐角6的曲率半径,第二弧形拐角7接近于半圆形,设置弧形拐角增大了支撑弹簧的弹性形变能力,有利于提高该处的疲劳寿命。本体部2为平板状,所述弹性部3由本体部2向斜上方延长,弹性部3和本体部2之间的夹角为α,也即第一弧形拐角6的外侧钝角,为了提高该处的疲劳寿命,设置为150°≤α≤180°在本实施例中α=160°,另外,第二弧形拐角7为连接弹性部3 和固定部4的光滑过渡圆角,设置圆角可以显著降低该处的应力集中。本实施例中两个弹性部3和固定部4均为对称设置。
此外,本实施例中的动子支撑弹簧1的径向刚度是轴向刚度的100倍,受动子支撑弹簧1支撑,可以使用更重的动子,比如动子使用更多永磁体后可获得更大的电机推力。
实施例二:
如图2所示,在本实施例中,其基本结构和实施例一基本相同,所不同之处在于,所述动子支撑弹簧1的形状不同,在本实施例中的动子支撑弹簧1的正视图的形状为中部平坦的C形,其本体部2和弹性部3均为平面形,弹性部3的端部向下弯曲并延长形成固定部4。弹性部3是有本体部2向外侧平行延长形成。其安装结构采用和实施例一的安装方式相同或相似的方式均可。
实施例三:
如图3、图4以及图2所示,在本实施例中,往复式直线电机为斯特林制冷机用驱动电机,其包括动子部分9和定子部分8,所述动子部分9为斯特林机用驱动电机的活塞,所述定子部分包括斯特林机用驱动电机的缸体和筒体。所述动子部分9设置在定子部分8内部并可在定子部分8内部往复式移动,所述动子部分9通过动子支撑弹簧1、1’与定子部分8的筒体82固定连接。动子支撑弹簧1、1’,可以限定动子的运动相位,在给予定子线圈相同电压和电流的作用下,动子支撑弹簧1、1’的弹性性能直接决定动子在某一时间点所处的位置,也即限定了动子的运动相位,板条形的支撑弹簧1、1’具有较高的弹性一致性,因此也可以更加准确地限定动子的运动相位,提高了动子运动的线性度。
所述本体部2设有动子连接孔5用于与动子固定连接,所述固定部4设有定子连接孔用于与定子固定连接。本实施例中的动子部分9(也即活塞)和本体部2固定连接,所述定子部分8的筒体82和固定部4固定连接。所述动子部分9和本体部2用紧固件锁紧连接,所述定子部分和固定部用紧固件锁紧连接,本实施例中的紧固件为螺栓,当然在其它实施方式中还可用铆钉等紧固件连接或者其他机械连接方式。所述定子部分8上设有安装槽,安装槽设置在筒体82的侧面,以提高支撑弹簧的安装结构强度,固定部4与安装槽相适配,也即固定部4可以被安装在安装槽内。所述动子支撑弹簧1、1’为两个,各动子支撑弹簧1、1’均垂直于动子轴线且在动子轴线方向上间隔一定距离设置,也即其具有左右位置关系,动子轴线也即活塞的中心轴线。所述动子支撑弹簧为两个,其位于动子部分的同一侧。所述两个动子支撑弹簧1、1’相互垂直。该两个动子支撑弹簧1、1’相互垂直是指空间上相互垂直,或者说是在同一个垂直于动子轴线的平面内的投影相互垂直。当然在其它实施方式中, 也可以设置更多个动子支撑弹簧1、1’,其安装方式最好为间隔且均布设置。
在本实施例中,所述往复式直线电机为斯特林机用驱动电机,当然也可以是其它类型的往复式直线电机,例如音频振动电机,所述动子部分9为斯特林机用驱动电机的活塞,所述定子部分8包括斯特林机用电机的缸体81和筒体82。针对斯特林电机,固定部4和筒体82固定连接,本体部2和活塞固定连接。
实施例四:
如图5所示,在本实施例中,其基本结构和实施例三基本相同,所不同之处在于,两个动子支撑弹簧1、1’分别位于动子部分9的两侧,也即两个动子支撑弹簧1、1’分别安装在定子部分8和动子部分9的两侧面,该种安装方式可以进一步提高动子部分9的安装稳固性,显著降低了动子部分9运动过程中的侧向力,因而也更加适合重型动子的场合,减小了摩擦力,并提高了斯特林机的整机寿命。
本发明的工作原理是在往复式直线电机的定子线圈通交变电流后产生磁场,动子部分9在磁场的作用下产生左右往复式直线运动,由于动子部分9与动子支撑弹簧1、1’固定连接,并进一步和定子部分8连接,使得动子部分9和定子部分8之间保持一个稳定的相对位置,使得动子部分9可以稳定地在定子部分8中运动而不会与定子部分8产生碰撞,减小了振动过程中侧向力导致的动子磨损。另外,动子支撑弹簧1、1’的弹力作用下,动子部分9的运动相位受到限定,且可以使动子部分9在弹力的作用下快速复位。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。
尽管本文较多地使用了1.动子支撑弹簧;1’动子支撑弹簧;2.本体部;3.弹性部;4.固定部;5.动子连接孔,6.第一弧形拐角;7.第二弧形拐角;8.定子部分;81.缸体;82.筒体;9.动子部分;10.紧固件等术语,但并不排除使用其它术语的可能性。使用这些术语仅仅是为了更方便地描述和解释本发明的本质;把它们解释成任何一种附加的限制都是与本发明精神相违背的。

Claims (20)

  1. 一种往复式直线电机用动子支撑弹簧,其特征在于,所述的动子支撑弹簧为板条形,它包括:
    本体部,用以安装接连电机的动子部分;
    弹性部,用以产生弹性形变以限定动子部分的运动相位,其由本体部对称地向左右两侧延伸形成;
    固定部,用于安装连接电机的定子部分,其位于弹性部外侧,并由弹性部折弯形成。
  2. 根据权利要求1所述的往复式直线电机用动子支撑弹簧,其特征在于,所述的本体部与弹性部的连接过渡处设置有第一弧形拐角。
  3. 根据权利要求1或2所述的往复式直线电机用动子支撑弹簧,其特征在于,所述的弹性部与固定部的连接过渡处设置有第二弧形拐角。
  4. 根据权利要求1或2所述的往复式直线电机用动子支撑弹簧,其特征在于,所述本体部为平板状,所述弹性部由本体部向斜上方延长形成。
  5. 根据权利要求4所述的往复式直线电机用动子支撑弹簧,其特征在于,所述动子支撑弹簧的整体形状为中部平坦的M形。
  6. 根据权利要求3所述的往复式直线电机用动子支撑弹簧,其特征在于,所述本体部和弹性部均为平板状,所述弹性部由本体部沿水平方向延长形成。
  7. 根据权利要求6所述的往复式直线电机用动子支撑弹簧,其特征在于,所述动子支撑弹簧的整体形状为中部平坦的C形。
  8. 根据权利要求1所述的往复式直线电机用动子支撑弹簧,其特征在于,所述本体部设有动子连接孔。
  9. 根据权利要求1或8所述的往复式直线电机用动子支撑弹簧,其特征在于,所述固定部设有定子连接孔。
  10. 根据权利要求2所述的往复式直线电机用动子支撑弹簧,其特征在于,所述第一弧形拐角为α,150°≤α≤180°。
  11. 根据权利要求10所述的往复式直线电机用动子支撑弹簧,其特征在于,所述第一弧形拐角α=160°。
  12. 一种往复式直线电机,包括动子部分和定子部分,所述动子部分设置在定子部分内部并可在定子部分内部往复式移动,所述动子部分通过动子支撑弹簧 与定子部分连接,其特征在于,所述动子支撑弹簧为权利要求1至11任一项所述的动子支撑弹簧。
  13. 根据权利要求12所述的往复式直线电机,其特征在于,它为应用于斯特林机的驱动电机。
  14. 根据权利要求12或13所述的往复式直线电机,其特征在于,所述动子部分和本体部固定连接,所述定子部分和固定部固定连接。
  15. 根据权利要求12或13所述的往复式直线电机,其特征在于,所述动子支撑弹簧至少为两个,各动子支撑弹簧均垂直于动子轴线且在动子轴线方向上间隔一定距离设置。
  16. 根据权利要求15所述的往复式直线电机,其特征在于,所述动子支撑弹簧为两个,其位于动子部分的同一侧或者分别位于动子部分的两侧。
  17. 根据权利要求16所述的往复式直线电机,其特征在于,所述两个动子支撑弹簧相互垂直。
  18. 根据权利要求14所述的往复式直线电机,其特征在于,所述动子部分和本体部用紧固件锁紧连接,所述定子部分和固定部用紧固件锁紧连接。
  19. 根据权利要求18所述的往复式直线电机,其特征在于,所述定子部分的侧壁上设有安装槽,固定部与安装槽相适配。
  20. 根据权利要求13所述的往复式直线电机,其特征在于,所述动子部分为斯特林机用驱动电机的活塞,所述定子部分包括斯特林机用驱动电机的缸体和筒体。
PCT/CN2019/074752 2018-02-11 2019-02-10 一种往复式直线电机用动子支撑弹簧以及往复式直线电机 WO2019154405A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980000963.2A CN110494642B (zh) 2018-02-11 2019-02-10 一种往复式直线电机用动子支撑弹簧以及往复式直线电机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810142240.3 2018-02-11
CN201810142240.3A CN108223189A (zh) 2018-02-11 2018-02-11 斯特林电机用板弹簧及该斯特林电机

Publications (1)

Publication Number Publication Date
WO2019154405A1 true WO2019154405A1 (zh) 2019-08-15

Family

ID=62661684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074752 WO2019154405A1 (zh) 2018-02-11 2019-02-10 一种往复式直线电机用动子支撑弹簧以及往复式直线电机

Country Status (2)

Country Link
CN (2) CN108223189A (zh)
WO (1) WO2019154405A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108223189A (zh) * 2018-02-11 2018-06-29 日照华斯特林科技有限公司 斯特林电机用板弹簧及该斯特林电机
CN112727995A (zh) * 2020-12-21 2021-04-30 兰州空间技术物理研究所 一种复合弹簧支撑振动系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04347460A (ja) * 1991-05-24 1992-12-02 Daikin Ind Ltd リニアモ−タ圧縮機
JP2002317761A (ja) * 2001-04-25 2002-10-31 Matsushita Electric Ind Co Ltd リニアコンプレッサ
CN101741211A (zh) * 2008-11-13 2010-06-16 中国电子科技集团公司第二十一研究所 轴向磁路斯特林制冷机用直线电机
CN102025240A (zh) * 2011-01-04 2011-04-20 中国电子科技集团公司第二十一研究所 斯特林制冷机用直线电机结构
CN102519814A (zh) * 2011-12-06 2012-06-27 中国航天科技集团公司第五研究院第五一〇研究所 一种导线高频疲劳试验装置
CN103758715A (zh) * 2014-01-13 2014-04-30 中科力函(深圳)热声技术有限公司 热声热机系统
CN108223189A (zh) * 2018-02-11 2018-06-29 日照华斯特林科技有限公司 斯特林电机用板弹簧及该斯特林电机

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180766A (en) * 1977-02-04 1979-12-25 Printronix, Inc. Reciprocating linear drive mechanism
US4211383A (en) * 1977-04-22 1980-07-08 Bbc Brown Boveri & Company Limited Arrangement for supporting vertical-axis machine housing
JP2000329164A (ja) * 1999-05-21 2000-11-28 Nok Corp ステータ
JP3566647B2 (ja) * 2000-11-01 2004-09-15 シャープ株式会社 スターリング冷凍機
JP3856684B2 (ja) * 2001-10-31 2006-12-13 シャープ株式会社 スターリング機関
CN1487653A (zh) * 2002-10-06 2004-04-07 刘奥宇 往复直线电动机
US7078832B2 (en) * 2002-10-16 2006-07-18 Matsushita Refrigeration Company Linear motor, and linear compressor using the same
GB0306077D0 (en) * 2003-03-18 2003-04-23 Johnson Electric Sa Electric motor
KR100619731B1 (ko) * 2004-07-26 2006-09-08 엘지전자 주식회사 왕복동모터 및 이를 구비한 왕복동식 압축기
JP2009022087A (ja) * 2007-07-11 2009-01-29 Sharp Corp リニアモータおよびこれを備えたスターリング冷凍機
US8615993B2 (en) * 2009-09-10 2013-12-31 Global Cooling, Inc. Bearing support system for free-piston stirling machines
KR101025109B1 (ko) * 2009-11-26 2011-03-25 엘지이노텍 주식회사 진동 모터
CN103089879B (zh) * 2011-10-31 2015-01-07 北京精密机电控制设备研究所 一种悬架式支撑弹簧
CN208106593U (zh) * 2018-02-11 2018-11-16 日照华斯特林科技有限公司 斯特林电机用板弹簧及该斯特林电机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04347460A (ja) * 1991-05-24 1992-12-02 Daikin Ind Ltd リニアモ−タ圧縮機
JP2002317761A (ja) * 2001-04-25 2002-10-31 Matsushita Electric Ind Co Ltd リニアコンプレッサ
CN101741211A (zh) * 2008-11-13 2010-06-16 中国电子科技集团公司第二十一研究所 轴向磁路斯特林制冷机用直线电机
CN102025240A (zh) * 2011-01-04 2011-04-20 中国电子科技集团公司第二十一研究所 斯特林制冷机用直线电机结构
CN102519814A (zh) * 2011-12-06 2012-06-27 中国航天科技集团公司第五研究院第五一〇研究所 一种导线高频疲劳试验装置
CN103758715A (zh) * 2014-01-13 2014-04-30 中科力函(深圳)热声技术有限公司 热声热机系统
CN108223189A (zh) * 2018-02-11 2018-06-29 日照华斯特林科技有限公司 斯特林电机用板弹簧及该斯特林电机

Also Published As

Publication number Publication date
CN108223189A (zh) 2018-06-29
CN110494642A (zh) 2019-11-22
CN110494642B (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
US7942651B2 (en) Refrigeration device with improved DC motor
WO2019154405A1 (zh) 一种往复式直线电机用动子支撑弹簧以及往复式直线电机
EP2818715B1 (en) Linear compressor
US8692422B2 (en) Spring-less buried magnet linear-resonant motor
CN1773112A (zh) 动磁式直线压缩机
JP6199293B2 (ja) 密閉型圧縮機
CN106150970B (zh) 直线压缩机
CN105119458A (zh) 一种柔性弹簧轴承支撑的直线振荡电机
CN111336088B (zh) 一种直线型臂板弹簧线性压缩机
CN111089042B (zh) 一种采用双线圈结构的动圈式线性压缩机
CN103089879B (zh) 一种悬架式支撑弹簧
CN112523990B (zh) 一种动圈式直线压缩机
CN210799741U (zh) 调心磁悬浮轴承系统及发电机
CN113279935B (zh) 一种线性压缩机偏置综合抑制结构及方法
CN204677392U (zh) 对置式气体轴承线性压缩机
CN109104012A (zh) 电动机转子、电动机及直流变频压缩机
CN204493542U (zh) 弹簧支撑件、动子组件、泵体结构及压缩机
CN202304058U (zh) 一种直线压缩机驱动的制冷机
CN111622922B (zh) 一种双气缸线性压缩机和制冷设备
CN214533416U (zh) 一种直线压缩机
CN110966311B (zh) 一种耐高压免维护的peek滑动轴承
CN112688533B (zh) 一种双定子弧形与辅助槽混合结构的c型齿永磁直线电机
CN218542925U (zh) 径向轴承、压缩机和暖通设备
CN215817863U (zh) 一种低温制冷机的动磁式往复直线振荡电机
CN202169439U (zh) 电磁式线性震动摩擦焊机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19750690

Country of ref document: EP

Kind code of ref document: A1