WO2019154292A1 - 打磨工具 - Google Patents

打磨工具 Download PDF

Info

Publication number
WO2019154292A1
WO2019154292A1 PCT/CN2019/074318 CN2019074318W WO2019154292A1 WO 2019154292 A1 WO2019154292 A1 WO 2019154292A1 CN 2019074318 W CN2019074318 W CN 2019074318W WO 2019154292 A1 WO2019154292 A1 WO 2019154292A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
sanding tool
base
eccentric
tool according
Prior art date
Application number
PCT/CN2019/074318
Other languages
English (en)
French (fr)
Inventor
张锐
陈治国
Original Assignee
南京德朔实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810141205.XA external-priority patent/CN110142672B/zh
Priority claimed from CN201920108832.3U external-priority patent/CN209998918U/zh
Application filed by 南京德朔实业有限公司 filed Critical 南京德朔实业有限公司
Publication of WO2019154292A1 publication Critical patent/WO2019154292A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B23/00Portable grinding machines, e.g. hand-guided; Accessories therefor
    • B24B23/02Portable grinding machines, e.g. hand-guided; Accessories therefor with rotating grinding tools; Accessories therefor

Definitions

  • the present disclosure relates to a power tool, and in particular to a sanding tool.
  • the sanding tool is a commonly used power tool, usually used to polish the surface of woodwork.
  • Most of the grinding tools mainly comprise a motor, a transmission assembly and a base, wherein the transmission assembly can at least drive the base for eccentric movement.
  • a sanding member or other sanding member is mounted on the lower surface of the base, and the sanding member is moved along with the base to polish and polish the surface to be processed.
  • the eccentric structure of the sanding tool currently on the market is mounted or formed on the transmission assembly, and the eccentric structure usually includes an eccentric shaft connected to the base, or an actual structure between the motor axis of the grinding tool and the drive shaft that drives the bottom plate to move circumferentially. The eccentricity of the tool results in a larger volume of the grinding tool and a more complicated structure.
  • the prior art grinding tool also includes a fan for vacuuming or dissipating heat, and the fan, the motor, the transmission component and the eccentric structure of the conventional grinding tool are independently formed and sequentially installed along the axial direction of the motor, thereby causing the grinding tool to generally have Larger volume and weight, inconvenient operation, high no-load power and complicated structure, and inconvenient assembly.
  • a sanding tool comprising: a motor comprising a stator assembly and a rotor assembly, the rotor assembly comprising a rotor shaft rotatable about a motor axis; a housing formed with a receiving space for receiving at least a portion of the motor; Providing power to the motor; a base for mounting a sanding member; the sanding tool further comprising: an eccentric structure for generating an eccentric force or an eccentric moment; wherein the eccentric structure is mounted to the rotor assembly to cause The motor can drive the base for eccentric motion.
  • the base has a central axis that is disposed coaxially with the motor axis.
  • the base is moved centering on a central axis that is coaxial with the motor axis.
  • the base is disposed coaxially with the motor shaft.
  • the sanding tool further includes: a support member for forming or supporting the eccentric structure; the support member is coupled to the rotor assembly; the base is formed with a mounting hole for mounting the base to the motor The support member is located outside the mounting hole.
  • the sanding tool further includes: a support member for forming or supporting the eccentric structure; the support member includes a connection portion for making an connection with the rotor assembly; the base is formed with a base for Mounting holes to the motor; the connecting portion is located outside the mounting hole.
  • the working tool has an eccentricity of 0.5 mm or more and 2 mm or less.
  • the working eccentricity of the sanding tool is greater than or equal to 0.7 mm and less than or equal to 1 mm.
  • the motor is a brushless motor; the speed of the motor is greater than or equal to 8000 rpm and less than or equal to 16,000 rpm.
  • the motor has a rotational speed of 10,000 rpm or more and 14,000 rpm or less.
  • the sanding tool further includes a fan coupled to the rotor assembly of the motor, the eccentric structure being integrally formed or mounted to the fan.
  • the sanding tool further includes a weight structure for balancing the weight of the eccentric structure, the weight structure being disposed on a rotor assembly of the motor.
  • the sanding tool further includes a weight structure for balancing the weight of the eccentric structure, the weight structure being integrally formed or mounted to the fan.
  • eccentric structure and the weight structure are arranged up and down along an axial direction of the motor axis, and are disposed opposite to each other along a circumferential direction of the motor axis.
  • the power source is a battery pack disposed above a center of gravity of the sanding tool.
  • the motor is an outer rotor motor.
  • the grinding tool has no transmission components and the eccentric structure design is simpler and more efficient, which makes the grinding tool have smaller volume, lighter weight and less no-load power.
  • FIG. 1 is a schematic view of a sanding tool of a first embodiment of the present disclosure
  • Figure 2 is a perspective view showing a part of the structure of the sanding tool of Figure 1;
  • Figure 3 is an internal view of the sanding tool of Figure 1 after removing a portion of the housing;
  • Figure 4 is a cross-sectional view of a portion of the mechanism of the sanding tool of Figure 1;
  • Figure 5 is a plan view of a portion of the mechanism of the sanding tool of Figure 1;
  • Figure 6 is a perspective view of the sanding tool after removing part of the housing
  • Figure 7 is a plan view of a portion of the mechanism of the sanding tool of Figure 6;
  • Figure 8 is a perspective view of a portion of the mechanism of the sanding tool of Figure 6;
  • Figure 9 is a plan view showing a part of the structure of the sharpening tool.
  • Figure 10 is a perspective view showing a part of the structure of the sharpening tool
  • Figure 11 is a perspective view of the motor and fan of the sanding tool of Figure 1;
  • Figure 12 is a schematic view showing a partial structure of a sanding tool of a second embodiment of the present disclosure
  • Figure 13 is a cross-sectional view of a sanding tool of a third embodiment of the present disclosure.
  • Figure 14 is a front elevational view of the sanding tool omitting the housing of the third embodiment of the present disclosure
  • Figure 15 is a plan view of Figure 14;
  • Figure 16 is a cross-sectional view taken along line A-A of Figure 15;
  • Figure 17 is a front elevational view of a sanding tool of a third embodiment of the present disclosure.
  • Figure 18 is a plan view of a sanding tool of a third embodiment of the present disclosure.
  • Figure 19 is a cross-sectional view of a sanding tool of a fourth embodiment of the present disclosure.
  • Figure 1 shows a sanding tool 100 of a first embodiment of the present disclosure for sanding a workpiece.
  • the sanding tool 100 is specifically a sander, more specifically a flat sander, and the user can operate the sanding tool 100 by holding the grip with one hand or both hands.
  • the sanding tool 100 can be round sand, and the sanding tool 100 can also be a multi-tool, a polishing machine, and the like, as long as the sanding tools applicable to the technical solutions of the present disclosure are within the protection scope of the present disclosure.
  • the sharpening tool 100 includes a power source 11, a dust collecting device 12, a housing 13, a base 14, a motor 15, and a fan 16 for dissipating and vacuuming.
  • the housing 13 is formed with an accommodation space for accommodating at least a part of the motor 15.
  • the base 14 is coupled to the housing 13 at the bottom of the sanding tool 100, which is formed with a base plane 14a for mounting the sharpening member.
  • the motor 15 can drive the base 14 to perform an eccentric motion, so that the base 14 generates relative motion with respect to the surface of the workpiece, so that the sanding member rubs against the surface of the workpiece to perform the grinding action.
  • the grinding tool 100 in this embodiment is specifically a DC sanding machine.
  • the power source 11 is specifically a battery pack.
  • the power source 11 is disposed on the upper part of the whole machine and is located above the center of gravity of the whole machine. Specifically, the power source 11 is located below the grip portion 131. Above the accommodating space, such a positional distribution makes it easier for the motor 15 to drive the eccentric movement of the base 14 while the sanding tool 100 is in operation while the user feels less vibration when gripping the grip portion 131, improving the sanding efficiency while optimizing the user experience.
  • the sanding tool 100 can also be an AC/DC converting sanding tool, wherein the battery pack is arranged on the upper part of the whole machine, above the center of gravity of the whole machine, in particular, the power source 11 is located below the grip portion 131. , above the accommodation space.
  • the sanding tool 100 can also adopt alternating current.
  • the sanding tool 100 in this embodiment does not include a transmission mechanism, and the motor 15 includes a stator assembly and a rotor assembly including a rotor shaft that is rotatable about the motor axis 101.
  • the motor 15 in this embodiment is specifically an outer rotor motor, and may of course be an inner rotor motor.
  • the motor 15 includes a motor shaft 151.
  • the motor axis 101 is a central axis of the motor 15, and the motor 15 drives the fan 16 to rotate coaxially with the motor 15.
  • the fan 16 is coaxially disposed on the outer side of the motor 15, instead of being disposed under the motor 15 along the motor axis 101, which reduces the height and volume of the sanding tool 100, making the structure of the sanding tool 100 more compact and more convenient for the user to operate. .
  • the motor 15 and the base 14, the base 14, and the housing 13 may be formed by other connections to form a fixed connection, and the specific connection form is not limited.
  • the base 14 has a first mounting surface and a second surface opposite to the first mounting surface, wherein the first mounting surface faces the motor for mounting the motor; the second mounting surface is for The workpiece is polished on the base plane 14a on which the sanding member is mounted.
  • the motor may be mounted to the first mounting surface of the base 14 in an abutting or contacting manner, or the motor may be spaced apart from the first mounting surface of the base 14 by a distance, and the motor is mounted to the first mounting surface of the base 14 instead of There are restrictions.
  • the sanding tool 100 further includes a support assembly including a flexible portion 171 having a certain flexibility, the motor 15 being fixedly coupled to the base 14, one end of the flexible portion 171 being coupled to the housing 13 and the other end coupled to the base 14, the motor 15 When the rotation, the base 14 is driven to move, thereby driving the housing 13 to move.
  • the flexible portion 171 is connected to the motor 15 and the base 14, the base 14 and the housing 13.
  • the four flexible portions 171 are symmetrically distributed with respect to the motor axis 101.
  • the number of the flexible portions 171 may also be three or Two, here is not limited.
  • the base support assembly 17 includes not only the flexible portion 171 but also a rigid portion 172; the flexible portion 171 extends substantially in a direction perpendicular to the base plane 14a and connects the housing 13 and base 14; rigid portion 172 is mounted to housing 13 or base 14, and rigid portion 172 has a certain stiffness in a direction perpendicular to base plane 14a.
  • the flexibility of the flexible portion 171 is much greater than the rigid portion 172; the stiffness of the rigid portion 172 in a direction perpendicular to the base plane 14a is much greater than the flexible portion 171.
  • the rigid portion 172 has a certain rigidity in the direction perpendicular to the base plane 14a of the support assembly 17, and prevents the whole machine from jumping when the base 14 vibrates; the flexible portion 171 provides the support assembly 17 with a certain degree of flexibility, and the flexible portion 171 can be rotated when the base 14 vibrates. Torsion perpendicular to the axial direction reduces the vibration of the whole machine; thus meeting the mechanical requirements of the support assembly 17, and improving the comfort of the user.
  • the housing 13 or the base 14 is movable relative to the rigid portion 172 along the surface of the rigid portion 172.
  • the rigid portion 172 is mounted to the base 14, and the housing 13 is movable along the upper surface of the rigid portion 172 when the flexible portion 171 is twisted perpendicularly to its axial direction.
  • the rigid portion 172 can also be mounted to the housing 13 , specifically to the lower end of the housing 13 such that the base 14 can move relative to the rigid portion 172 along the lower surface of the rigid portion 172 .
  • the height of the rigid portion 172 in a direction perpendicular to the base plane 14a is less than or equal to the height of the flexible portion 171 in a direction perpendicular to the base plane 14a. This causes the user to press down the housing 13 while operating the sander 100, the flexible portion 171 is vertically twisted in its axial direction, and the housing 13 abuts against the upper surface of the rigid portion 172 while along the rigid portion 172 as the base 14 vibrates. The upper surface slides.
  • the height of the rigid portion 172 in a direction perpendicular to the base plane 14a is smaller than the height of the flexible portion 171 in a direction perpendicular to the base plane 14a.
  • the housing 13 When the sander 100 is in a non-operating stationary state, the housing 13 The lower surface 13a is spaced apart from the upper surface of the rigid portion 172 by a certain distance.
  • the height of the rigid portion 172 in a direction perpendicular to the base plane 14a is equal to the height of the flexible portion 171 in a direction perpendicular to the base plane 14a, and the lower surface 13a to the rigid portion 172 of the housing 13
  • the separation distance of the upper surface is almost zero, that is, when the sander 100 is in a non-operating stationary state, the lower surface 13a of the casing 13 is in contact with the upper surface of the rigid portion 172.
  • the rigid portion 172 and the flexible portion 171 do not contact each other in a plane parallel to the base plane 14a, and the rigid portion 172 and the flexible portion 171 do not contact each other within the base plane 14a. That is, the rigid portion 172 and the flexible portion 171 are independently provided, and there is no positional interference in a direction parallel to the base plane 14a, which sufficiently avoids the interference of the rigid portion 172 to the lateral movement of the flexible portion 171, and also causes the rigid portion 172 and The structural design and positional arrangement of the flexible portion 171 are more flexible.
  • the base 14 has one or more axes of symmetry, the base 14 is axisymmetric about the axis of symmetry, one or more rigid portions 172 are symmetrically disposed about the axis of symmetry, and the one or more flexible portions 171 are opposite
  • the symmetry axis is symmetrically disposed.
  • the base 14 has an axis of symmetry 102 and an axis of symmetry 103.
  • the four rigid portions 172 and the four flexible portions 171 are symmetrically disposed with respect to the axis 102 and the axis of symmetry 103.
  • the base has a central axis
  • the base is symmetric about the central axis
  • one or more rigid portions are symmetrically disposed with respect to the center of the central axis
  • one or more flexible portions are symmetric with respect to the center of the central axis
  • the base plane is square
  • the flexible portion is four struts disposed at the apex of the square
  • the rigid portion is a large annular bearing symmetrical about the central axis of the plane of the base.
  • the housing 13 can be more uniformly stressed when the base 14 vibrates, thereby making the operation of the whole machine more stable.
  • the asymmetric arrangement of the rigid portion 172 and the flexible portion 171 can also achieve the function of the sander 100, and the rigid portion 172 and the flexible portion 171 can reduce the jump and vibration, and therefore the specific positions of the rigid portion 172 and the flexible portion 171 are not arranged. It is limited to the above two embodiments, and is not limited herein.
  • the housing 13 or the base 14 is slidable along the surface of the rigid portion 172 with respect to the rigid portion 172.
  • the housing 13 or the base 14 is slidable along the surface of the rigid portion 172 with respect to the rigid portion 172.
  • the rigid portion 172 is four bearings fixedly mounted to the base 14, specifically a ball bearing
  • the flexible portion 171 is four support columns made of rubber.
  • the two ends of the flexible portion 171 are respectively connected to the housing 13 and
  • the base 14 is specifically connected by bolts and nuts, and may of course be other connection methods.
  • the surface of the housing 13 abuts against the balls of the bearing, thereby creating relative sliding.
  • the housing 13 or the base 14 can be rolled along the surface of the rigid portion 172 with respect to the rigid portion 172.
  • the surface of the rigid portion 172 is smooth, and a rolling member is mounted on the surface of the housing 13 or the base 14. Thereby, the housing 13 or the base 14 can be rolled along the surface of the rigid portion 172 with respect to the rigid portion 172 when it abuts against the surface of the rigid portion 172.
  • the material of the portion of the rigid portion 172 that is in contact with each other is made of a wear resistant material such as powder metallurgy.
  • the sander includes a bottom plate 24 and a support assembly 27, the support assembly 27 includes a flexible portion 271 and a rigid portion 272, and the rigid portion 272 is resistant to four.
  • a cylindrical block made of a grinding material is arranged in the same position as the rigid portion 172 in the first embodiment.
  • the sanding tool 100 further includes an eccentric structure 18 for eccentric movement of the sanding tool 100 .
  • the eccentric structure is generally disposed on the base of the sanding tool.
  • the eccentric structure 18 is mounted to the rotor assembly such that the motor 15 can drive the base 14 for eccentric motion.
  • the base 14 is moved centered on a central axis that is coaxial with the motor axis 101.
  • the base 14 has a central axis that is coaxial with the motor axis 101; as an alternative embodiment, the base 14 is disposed coaxially with the motor shaft 151. That is, there is no actual structural eccentricity between the base 14 and the motor shaft 151, but only because the eccentric structure 18 is mounted to the rotor assembly, there is a virtual eccentricity when the bottom plate 14 is driven for eccentric motion.
  • the sharpening tool 100 also includes a support for forming or supporting the eccentric structure 18; the support is coupled to the rotor assembly; further, the support is fitted to the outside of the rotor assembly.
  • the base 14 is formed with a mounting hole for mounting the base 14 to the motor 15; the support is located outside the mounting hole.
  • the sharpening tool 100 further includes a support for forming or supporting the eccentric structure 18; the support includes a joint for making an connection with the rotor assembly; the base 14 is formed with a base for 14 is mounted to the mounting hole of the motor 15; the connecting portion is located outside the mounting hole.
  • the eccentric shaft connecting the motor shaft is generally mounted in the mounting hole of the base.
  • the support member is specifically a fan 16.
  • the fan 16 is coupled to the outside of the rotor assembly of the motor 15, and the eccentric structure 18 is mounted or integrally formed with the fan 16.
  • the motor 15 rotates to drive the fan 16 to rotate together, since the fan 16 is asymmetric with respect to the motor axis 101, the motor 15 generates an eccentric force and/or an eccentric moment when it rotates, thereby driving the base 14 to perform an eccentric motion on the surface of the workpiece.
  • the specific structure of the support member is not limited to the fan.
  • the fan 16 in this embodiment is also used for vacuuming.
  • the fan 16 rotates with the motor 15, and the dust on the surface of the workpiece is sucked into the dust collecting device 12.
  • the fan 16 is a centrifugal fan, and may of course be an axial fan.
  • the fan 16 includes an impeller 161 and a vane 162 that is mounted to or integrally formed with the impeller 161.
  • the eccentric structure 18 is disposed at a lower portion of the fan 16 of the fan 16 and extends along the circumferential direction of the motor 15.
  • the eccentric structure 18 may be integrally formed with the fan 16 or may be separately formed and fixedly mounted to the fan 16.
  • the eccentric structure 18 is an eccentric block.
  • the eccentric block has a fan-shaped radial section and a rectangular cross-section. The eccentric block is disposed between the blades 162 of the fan 16 along the circumferential direction of the motor axis 101.
  • the particular configuration of the eccentric structure 18 can be other shapes, such as the uneven placement of the blades 162 of the fan 16 resulting in uneven distribution of the fan 16 with respect to the motor axis 101 to form the eccentric structure 18.
  • the specific implementation of the eccentric structure 18 is not limited herein, as long as it is disposed on the rotor assembly of the motor 15 or on the support member, and the bottom plate 14 of the sanding tool 100 can be eccentrically moved.
  • the eccentric structure 18 of the present disclosure is coupled to the fan 6, so that the fan 16 has the functions of generating dust, heat dissipation and generating an eccentric force; meanwhile, the fan 16 is not along the axial direction of the motor 15.
  • the motor 15 is mounted up and down separately, but is fitted to the outside of the rotor assembly of the motor 15, specifically the outer side of the rotor assembly of the outer rotor motor 15, so that the volume and axial height of the sanding tool 100 are reduced, and the quality is reduced, thereby making it more convenient.
  • the user's operation reduces the user's fatigue.
  • the design and installation of the no-drive assembly and the eccentric structure 18 reduces the no-load power of the sanding tool 100 and is more energy efficient.
  • the quality, size, and no-load power of the sanding tool 100 are improved.
  • the weight of the sanding tool 100 in the present embodiment is reduced to 400-500 grams, and the height of the sanding tool 100 is reduced to 5-10 mm, the no-load power is reduced to 15-20 watts.
  • the radius of rotation of the grinding tool 100 in a circular motion relative to its central axis during operation of the tool 100 is the working eccentricity of the sanding tool 100.
  • the working eccentricity e of the sanding tool 100 is related to the following variables:
  • the motor 15 rotates at an angular rate ⁇ ,
  • the working eccentricity e of the sanding tool 100 satisfies the functional relationship with the above parameters:
  • the eccentric radius r of the eccentric structure 18 is the distance from the center of gravity G of the eccentric structure 18 to the motor axis 101.
  • the univariate analysis method can be used to determine that the variation of the eccentric radius r of the eccentric block affects the working eccentricity e of the grinding tool 100. Maximum, so a better working eccentricity e is obtained by setting the eccentric radius r of the eccentric block in the case where other variables are determined.
  • the eccentric radius r of the eccentric block is greater than or equal to 2 mm and less than or equal to 4 mm. Further, the eccentric radius r of the eccentric block is greater than or equal to 2 mm and less than or equal to 3 mm.
  • the working eccentricity e of the sharpening tool 100 is greater than or equal to 0.5 mm and less than or equal to 2 mm. Further, the working eccentricity e of the sharpening tool 100 is greater than or equal to 0.7 mm and less than or equal to 1 mm, specifically 0.8 mm. A reasonable setting of the working eccentricity e can improve the grinding ability and the seismic resistance of the grinding tool 100.
  • the motor 15 is a brushless motor 15, and the number of revolutions of the motor 15 is 12,000 rpm or more. Further, the number of revolutions of the motor 15 is 14,000 rpm or more. In this embodiment, the number of revolutions of the motor 15 is 15,000 rpm.
  • FIG. 12 is a schematic view showing a part of the structure of the sanding tool of the second embodiment of the present disclosure, which is different from the sanding tool 100 of the first embodiment in that the sanding tool of the present embodiment includes, in addition to being mounted on, the fan 26.
  • the upper eccentric structure 28 further includes a weight structure 29 mounted to the fan 26.
  • the weight structure 29 and the eccentric structure 29 are disposed substantially opposite to the motor axis 201, but the center of gravity of the eccentric structure 28 and the weight structure 29 are respectively located on the upper and lower sides.
  • a plane perpendicular to the motor axis 201, that is, the center of gravity of the eccentric structure 28 and the weight structure 29, has a certain height difference in the up and down direction in the axial direction.
  • the height difference between the center of gravity of the eccentric structure 28 and the weight structure 29 that produces the moment.
  • the mass of the eccentric structure 28 and the weight structure 29 are also different, and the eccentric structure 28 and the weight structure 29 can be asymmetrically arranged with respect to the fan 26, that is, constitute a certain installation angle, and the quality difference or/and installation of the two can be utilized. The angle produces force and deflection torque.
  • the working eccentricity of the sharpening tool is the same as the working eccentricity in the first embodiment, but it should be noted that the working eccentricity e can be adjusted by adjusting the weight structure to better meet the grinding tool. Grinding ability and shock absorption requirements.
  • a third embodiment of the present disclosure provides a sanding tool 300.
  • the grinding tool 300 includes a base 1, a housing 2 and a motor 3.
  • the interior of the housing 2 is hollow to form a receiving space 21, and the housing 2 is disposed on the base 1 and is flexibly connected to the base 1, and the motor 3 is disposed in the receiving space of the housing 2.
  • the inside of the casing 21 is connected to the base 1 through the bottom end opening of the casing 2, and the stator 31 of the motor 3 is connected to the base 1, and the rotor assembly of the motor 3 is provided with an eccentric structure 33.
  • the sanding tool 300 is specifically a sander.
  • the eccentric structure 33 During the rotation of the rotor assembly, the eccentric structure 33 generates a centrifugal force of rotation and transmits it to the base 1, thereby achieving eccentric motion of the base 1, simplifying the structure, reducing the volume, reducing the cost, and reducing the vibration at a high rotational speed during the working process. Effectively reduce noise and reduce the harm of noise to the surrounding people.
  • the arrangement of the flexible connection between the base 1 and the housing 2 allows relative displacement between the base 1 and the housing 2 such that the housing 2 is not damaged during eccentric movement.
  • the motor 3 can be an inner rotor motor or an outer rotor motor, and the eccentric structure 33 can be disposed on the rotor assembly of the inner rotor motor or on the rotor assembly of the outer rotor motor.
  • the motor 3 is a brushless motor, which has good heat dissipation performance and high work efficiency.
  • the motor 3 is an outer rotor motor and the eccentric structure 33 is located on the outer rotor assembly 32 of the outer rotor motor.
  • the stator 31 is fixed to the base 1 by a fastening mechanism, and the rotating shaft 34 of the motor 3 passes through the center hole of the stator 31 and is connected to the stator 31 via the first bearing 35 and the second bearing 36.
  • the first bearing 35 and the second bearing 36 are mounted on the bearing housing.
  • the rotor assembly 32 is fixedly coupled to the rotating shaft 34.
  • the eccentric structure 33 is disposed on the outer peripheral surface of the rotor assembly 32, and the eccentric structure 33 is unevenly distributed around the axis 341 of the rotor assembly 32. Specifically, the eccentric structure 33 is fan-shaped around the axis 341 of the rotor assembly 32.
  • a fan 37 is disposed at one end of the rotating shaft 34 away from the base 1.
  • the fan 37 is rotated by the rotating shaft 34 for dissipating heat from the sharpening tool 300.
  • the base 1 and the housing 2 are connected by a plurality of support assemblies 4.
  • the support assembly 4 is specifically an elastic member. When the base 1 is eccentrically moved, the support assembly 4 is elastically deformed, the protective housing 2 is not damaged, and the elastic deformation is restored when the base 1 stops moving.
  • the lower end of the support assembly 4 is fixedly connected to the base 1.
  • the upper end of the support assembly 4 is provided with a stud 41, and the stud 41 is screwed to the housing 2.
  • the support assembly 4 is made of a rubber material.
  • the four support assemblies 4 are evenly spaced on the base 1, and in particular, the four support assemblies 4 are located near the four vertices of the base 1.
  • the eccentric structure 33 is an eccentric block that protrudes in the radial direction of the rotor assembly 32.
  • the sharpening tool 300 further includes a controller 5 located within the housing 2 and electrically coupled to the motor 3.
  • the controller 5 is connected to an alternating current to control the operation of the motor 3.
  • the controller 5 can also be connected to direct current to control the operation of the motor 3.
  • the housing 2 includes a grip 22 for the user to hold.
  • a switch can be arranged on the grip portion 22, and when the user holds the switch, the switch can be conveniently triggered to control the start and stop of the motor 3.
  • a sanding member such as a sanding member is disposed under the base 1, and the user holds the grip portion 22 of the casing 2, and after the sanding tool 300 is activated by the switch, since the rotor assembly 32 of the motor 3 is provided with the eccentric structure 33, The motor 3 has a tendency of centrifugal movement, and the eccentric movement is directly driven by the motor 3 through the motor 3, so that the grinding member is continuously rubbed on the surface of the workpiece to achieve grinding of the workpiece.
  • Fig. 19 shows a fourth embodiment of the present disclosure, wherein the same or corresponding components as those of the third embodiment adopt the reference numerals corresponding to the third embodiment.
  • the motor 3 is a motor with a brush 6, and the brush 6 is located inside the casing 2.
  • the wire is fatigued and broken during the reciprocating oscillating vibration, and the brush 6 is more reliable with respect to the wire, and there is no risk of breakage.
  • the present disclosure provides a sanding tool that is lighter in weight, smaller in size, and has less no-load power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

一种打磨工具(100),包括:电机(15),包括定子组件以及转子组件,所述转子组件包括能以电机轴线(101)为轴转动的转子轴;壳体(13),形成有用于容纳至少部分所述电机(15)的容纳空间;电源(11),用于给所述电机(15)供电;底座(14),用于安装打磨件;所述打磨工具(100)还包括:偏心结构(18),用于产生偏心力或者偏心力矩;其中,所述偏心结构(18)安装至所述转子组件以使得所述电机(15)能驱动所述底座(14)进行偏心运动。所述打磨工具质量更轻、体积更小、空载功率更小。

Description

打磨工具 技术领域
本公开涉及一种电动工具,具体涉及一种打磨工具。
背景技术
在电动工具领域,打磨工具是一种常用的电动工具,通常用对将木工制品表面进行打磨作业。大多数打磨工具主要包含电机、传动组件和底座,其中,传动组件至少能驱动底座进行偏心运动。底座的下表面上安装有打磨件或者其他打磨件,打磨件随着底座一起运动,从而对被加工表面实施打磨、抛光。目前市面上的打磨工具的偏心结构安装或形成于传动组件上,偏心结构通常包括连接至底座的偏心轴,或者打磨工具的电机轴线与驱动底板作圆周运动的驱动轴之间具有实际的结构上的偏心距,导致打磨工具的体积较大,整机结构较为复杂。
同时,现有技术中打磨工具还包括吸尘或散热用的风扇,而传统打磨工具的风扇、电机、传动组件、偏心结构独立成型且沿电机的轴向依次安装,因此导致打磨工具一般都具有较大的体积和重量,操作不便,空载功率较高且结构复杂,装配不便。
发明内容
为解决现有技术的不足,本公开的目的在于提供一种质量更轻、体积更小、空载功率更小的打磨工具。
为了实现上述目标,本公开采用如下的技术方案:
一种打磨工具,包括:电机,包括定子组件以及转子组件,所述转子组件包括能以电机轴线为轴转动的转子轴;壳体,形成有用于容纳至少部分所述电机的容纳空间;电源,用于给所述电机供电;底座,用于安装打磨件;所述打磨工具还包括:偏心结构,用于产生偏心力或者偏心力矩;其中,所述偏心结构安装至所述转子组件以使得所述电机能驱动所述底座进行偏心运动。
进一步地,所述底座具有一个中心轴线,所述中心轴线与所述电机轴线同轴设置。
进一步地,所述底座以一个中心轴线为中心进行运动,所述中心轴线与所述电机轴线同轴设置。
进一步地,所述底座与所述电机轴同轴设置。
进一步地,所述打磨工具还包括:支撑件,用于形成或者支撑所述偏心结构;所述支撑件连接至所述转子组件;所述底座形成有用于将底座安装至所述电机的安装孔;所述支撑件位于所述安装孔之外。
进一步地,所述打磨工具还包括:支撑件,用于形成或者支撑所述偏心结构;所述支撑件包括用于与所述转子组件够成连接的连接部;所述底座形成有用于将底座安装至所述电机的安装孔;所述连接部位于所述安装孔之外。
进一步地,所述打磨工具的工作偏心距大于等于0.5毫米且小于等于2毫米。
进一步地,所述打磨工具的工作偏心距大于等于0.7毫米且小于等于1毫米。
进一步地,所述电机为无刷电机;所述电机的转速大于等于8000转/分且小于等于16000转/分。
进一步地,所述电机的转速大于等于10000转/分且小于等于14000转/分。
进一步地,所述打磨工具还包括风扇,所述风扇连接至所述电机的所述转子组件,所述偏心结构一体成型或安装于所述风扇。
进一步地,所述打磨工具还包括配重结构,用于平衡所述偏心结构的重量,所述配重结构设置于所述电机的转子组件上。
进一步地,所述打磨工具还包括配重结构,用于平衡所述偏心结构的重量,所述配重结构一体成型或安装于所述风扇。
进一步地,所述偏心结构和所述配重结构沿所述电机轴线的轴向上下设置,沿所述电机轴线的周向相对设置。
进一步地,所述电源为电池包,设置于所述打磨工具的重心上方。
进一步地,所述电机为外转子电机。
该打磨工具无传动组件、偏心结构设计更加简洁高效,从而使得该打磨工 具具有更小的体积、更轻的质量、以及更小的空载功率。
附图说明
图1是本公开的第一实施例的打磨工具的示意图;
图2是图1中的打磨工具的部分结构的立体图;
图3是图1中的打磨工具在去掉部分壳体后的内视图;
图4是图1中的打磨工具的部分机构的剖视图;
图5是图1中的打磨工具的部分机构的俯视图;
图6是打磨工具去掉部分壳体后的立体图;
图7是图6中的打磨工具的部分机构的俯视图;
图8是图6中的打磨工具的部分机构的立体图;
图9是打磨工具的部分结构的平面图;
图10是打磨工具的部分结构的立体图;
图11是图1中的打磨工具的电机和风扇的立体图;
图12是本公开的第二实施例的打磨工具的部分结构的示意图;
图13是本公开的第三实施例的打磨工具的剖视图;
图14是本公开的第三实施例的打磨工具省略壳体的主视图;
图15是图14的俯视图;
图16是图15的A-A向剖视图;
图17是本公开的第三实施例的打磨工具的主视图;
图18是本公开的第三实施例的打磨工具的俯视图;
图19是本公开的第四实施例的打磨工具的剖视图。
具体实施方式
以下结合附图和具体实施例对本公开作具体的介绍。
图1所示为本公开的第一实施例的打磨工具100,用于对工件进行打磨。打 磨工具100具体为砂光机,更具体为平板砂光机,用户可通过单手或双手握持握持部以操作打磨工具100。当然,可以理解的,打磨工具100可以为圆砂,打磨工具100也可以为多功能工具,抛光机等其他打磨工具,只要本公开的技术方案所能够适用的打磨工具均在本公开的保护范围内。
如图1至图3所示,打磨工具100包括电源11、集尘装置12、壳体13、底座14、电机15以及用于散热和吸尘的风扇16。壳体13围绕形成有用于容纳至少部分电机15的容纳空间。底座14连接至壳体13,位于打磨工具100的底部,底座14形成有用于安装打磨件的底座平面14a。电机15可驱动底座14作偏心运动,从而使得底座14产生相对于工件表面的相对运动,使得打磨件摩擦工件表面,起到打磨的作用。
本实施例中的打磨工具100具体为直流砂光机,电源11具体为电池包,电源11布置在整机上部,位于整机的重心的上方,具体而言电源11位于握持部131下方、容纳空间上方,这样的位置分布使得打磨工具100工作时电机15更容易驱动底座14偏心运动同时用户握持握持部131时感受到的振动较小,提高砂光效率的同时优化了用户体验。作为一种可选择的实施方式,打磨工具100也可以是交直流转换的打磨工具,其中电池包布置在整机上部,位于整机的重心的上方,具体而言电源11位于握持部131下方、容纳空间上方。当然,可以理解的,电池包的以上位置设计只是作为优选,在其他实施例中,打磨工具100也可以采用交流电。
本实施例中的打磨工具100不包括传动机构,电机15包括定子组件以及转子组件,转子组件包括能以电机轴线101为轴转动的转子轴。本实施例中电机15具体为外转子电机,当然也可以是内转子电机,电机15包括电机轴151,电机轴线101为电机15的中心轴线,电机15驱动风扇16与电机15构成同轴转动,事实上,风扇16同轴套装于电机15的外侧,而不是沿电机轴线101设置于电机15的下方,缩小了打磨工具100的高度和体积,使打磨工具100的结构更加紧凑,更加方便用户操作。
如图3至图5所示,电机15和底座14、底座14和壳体13也可以通过其他连接形成构成固定连接,具体的连接形式也不作限定。在本公开的实施例中,所述底座14具有第一安装面、和与第一安装面相对的第二面,其中,第一安装 面面向电机,用以安装电机;第二安装面为用于安装打磨件的底座平面14a打磨件。所述电机可以以抵接或接触方式安装到底座14的第一安装面上,也可以是电机与底座14第一安装面间隔一定距离,电机安装至底座14的第一安装面,在此并非有所限制。
打磨工具100还包括支撑组件,支撑组件包括柔性部171,柔性部171具有一定柔性,电机15固定连接至底座14,柔性部171的一端连接至壳体13,另一端连接至底座14,电机15转动时驱动底座14运动,进而带动壳体13运动。在本实施例中,柔性部171连接了电机15和底座14、底座14和壳体13,4个柔性部171关于电机轴线101对称分布,当然,柔性部171的个数也可以是三个或者两个,在此不作限定。
如图6至图8所示,作为一种可选择的实施方式,底座支撑组件17不仅包括柔性部171还包括刚性部172;柔性部171基本沿垂直于底座平面14a的方向延伸且连接壳体13和底座14;刚性部172安装至壳体13或者底座14,刚性部172在垂直于底座平面14a的方向具有一定的刚度。柔性部171的柔性远大于刚性部172;刚性部172在垂直于底座平面14a的方向上的刚度远大于柔性部171。刚性部172使得支撑组件17在垂直于底座平面14a的方向具备一定刚度,抑制了底座14振动时整机发生起跳;柔性部171使得支撑组件17具备一定柔度,底座14振动时柔性部171能够垂直于轴向发生扭转,减轻了整机振动;从而满足了支撑组件17的力学要求,提高了用户使用的舒适度。
壳体13或者底座14能够相对于刚性部172沿刚性部172的表面运动,底座14振动时通过柔性部171沿垂直于其轴向方向的扭转变形,壳体13能够相对于底座14发生相对运动,减轻了整机振动。具体地,在本实施例中,刚性部172安装至底座14,壳体13能够在柔性部171发生垂直于其轴向的扭转时沿刚性部172的上表面运动。可以理解的,刚性部172也可以安装至壳体13,具体安装至壳体13的下端,使得底座14可沿刚性部172的下表面相对于刚性部172运动。
刚性部172在垂直于底座平面14a的方向上的高度小于等于柔性部171在垂直于底座平面14a的方向上的高度。这使得用户在操作砂光机100时下压壳体13,柔性部171发生垂直其轴向的扭转,壳体13抵触至刚性部172的上表面 同时随着底座14的振动沿着刚性部172的上表面滑动。本实施例中,刚性部172在垂直于底座平面14a的方向上的高度小于柔性部171在垂直于底座平面14a的方向上的高度,砂光机100处于非工作的静止状态时,壳体13的下表面13a距离刚性部172的上表面存在一定的间隔距离。作为一种可选择的实施方式,刚性部172在垂直于底座平面14a的方向上的高度等于柔性部171在垂直于底座平面14a的方向上的高度,壳体13的下表面13a至刚性部172的上表面的间隔距离几乎为0,也即是说,砂光机100处于非工作的静止状态时,壳体13的下表面13a与刚性部172的上表面相接触。
刚性部172和柔性部171在平行于底座平面14a的平面内互不接触,刚性部172和柔性部171在底座平面14a的内互不接触。也即是说,刚性部172和柔性部171独立设置,在平行于底座平面14a的方向没有位置干涉,这充分避免的刚性部172对柔性部171横向运动的干涉,同时也使得刚性部172和柔性部171的结构设计和位置排布更加灵活。作为一种可选择的实施方式,底座14具有一条或多条对称轴,底座14关于对称轴成轴对称,一个或多个刚性部172相对于对称轴对称设置,一个或多个柔性部171相对于对称轴对称设置,例如本实施例中底座14具有对称轴102和对称轴103,4个刚性部172和4个柔性部171相对称轴102和对称轴103对称设置。作为另一种可选择的实施方式,底座具有一条中心轴,底座关于中心轴成中心对称,一个或多个刚性部相对于中心轴中心对称设置,一个或多个柔性部相对于中心轴中心对称设置;例如,底座平面为正方形,柔性部为4个设置在正方形顶点的支柱,刚性部为一个大的环形轴承,关于底座平面的中心轴对称。
可以理解的,刚性部172和柔性部171对称(轴对称或中心对称)排布时,能够使得底座14振动时壳体13受力更加均匀,从而使得整机的运行更加平稳。但是刚性部172和柔性部171非对称排列也能够实现砂光机100的功能,且刚性部172和柔性部171能够减轻起跳和振动,因此对于刚性部172和柔性部171的具体位置排布不限于以上两种实施方式,在此不作限制。
壳体13或者底座14能够相对于刚性部172沿刚性部172的表面滑动。具体地,壳体13或者底座14能够相对于刚性部172沿刚性部172的表面滑动。本实施例中,刚性部172为4个固定安装至底座14的轴承,具体为球轴承,柔性部171为4个材质为橡胶的支撑柱,柔性部171的两端分别连接至壳体13和 底座14,具体连接方式为螺栓螺帽连接,当然也可以是其他连接方式。壳体13的表面抵触至轴承的滚珠,进而产生相对滑动。作为一种可选择的实施方式,壳体13或者底座14能够相对于刚性部172沿刚性部172的表面滚动,具体的,刚性部172的表面光滑,在壳体13或者底座14表面安装滚动件,从而使得,壳体13或者底座14抵触至刚性部172表面时能够相对于刚性部172沿刚性部172的表面滚动。
由于壳体13或者这底座14相对于刚性部172沿着刚性部172表面滑动或者滚动,因此与刚性部172接触的部分底座14、与刚性部172接触的部分壳体13以及与底座14壳体13接触的部分刚性部172的材质均采用耐磨材料,例如粉末冶金。
如图9和图10所示,作为另一种可选择的实施方式,砂光机包括底板24和支撑组件27,支撑组件27包括柔性部271和刚性部272,刚性部272为4个由耐磨材料制成的圆柱块,其位置排布和第一实施例中的刚性部172相同。
如图3至图6、图11所示,打磨工具100还包括用于使打磨工具100作偏心运动的偏心结构18,现有技术中,偏心结构一般设置于打磨工具的底座上,本公开中,偏心结构18安装至转子组件以使得电机15能驱动底座14进行偏心运动。底座14以一个中心轴线为中心进行运动,中心轴线与电机轴线101同轴设置。进一步地,底座14具有一个中心轴线,中心轴线与电机轴线101同轴设置;作为一种可选择的实施方式,底座14与电机轴151同轴设置。也即是说,底座14与电机轴151之间不存在实际的结构上的偏心距,只是由于偏心结构18安装至转子组件,因此底板14被驱动作偏心运动时存在一个虚拟的偏心距。
打磨工具100还包括支撑件,支撑件用于形成或者支撑偏心结构18;支撑件连接至转子组件;进一步的,支撑件套装至转子组件的外侧。底座14形成有用于将底座14安装至电机15的安装孔;支撑件位于安装孔之外。作为一种可选择的实施方式,打磨工具100还包括支撑件,支撑件用于形成或者支撑偏心结构18;支撑件包括用于与转子组件够成连接的连接部;底座14形成有用于将底座14安装至电机15的安装孔;连接部位于安装孔之外。而对于现有技术中的打磨工具100,连接电机轴的偏心轴一般安装至底座的安装孔中。本实施例中,支撑件具体为风扇16。风扇16连接至电机15的转子组件外侧,偏心结构18安 装或者一体成型于风扇16。电机15转动带动风扇16一起转动时,由于风扇16关于电机轴线101结构不对称,电机15转动时产生偏心力和/或偏心力矩,进而带动底座14在工件表面作偏心运动。当然,可以理解的,支撑件的具体结构不仅限于风扇。
本实施例中的风扇16还用于吸尘,在打磨工具100打磨工作时风扇16随电机15转动,将工件表面的尘屑吸入集尘装置12中。本实施例中风扇16为离心风扇,当然也可以是轴流风扇。风扇16包括叶轮161和叶片162,叶片162安装于叶轮161或者与叶轮161一体成型。
偏心结构18设置于风扇16叶片162的下部,沿电机15的周向延伸,本实施例中偏心结构18可与风扇16一体成型也可以单独成型并固定安装至风扇16。具体地,偏心结构18为偏心块,本实施例中偏心块的径向截面为扇形,轴向截面为矩形,偏心块沿电机轴线101的周向设置于风扇16的叶片162之间,沿径向连接至风扇16的叶轮161,当然,偏心结构18的具体结构也可以是其他形状,例如风扇16的叶片162不均匀设置导致风扇16关于电机轴线101质量不均匀分布从而形成偏心结构18。偏心结构18的具体实现形式在此不作限制,只要是设置于电机15的转子组件上,或者设置于支撑件,且能够实现打磨工具100的底板14作偏心运动即可。
相比较传统的打磨工具结构,本公开中偏心结构18被结合至风扇6,使得风扇16同时具备产生吸尘、散热以及产生偏心力的功能;同时,风扇16并不是沿电机15的轴向与电机15上下分别安装,而是套装至电机15的转子组件外侧,具体为外转子电机15的转子组件外侧,从而使得打磨工具100的体积和轴向高度都得到减少,质量被减轻,从而更加方便用户的操作,减轻用户的使用疲劳。同时,无传动组件以及该偏心结构18的设计与安装使得打磨工具100的空载功率降低,更加节能。总结来说,打磨工具100的质量、尺寸大小以及空载功率都得到了改善,具体而言,本实施例中的打磨工具100的重量减轻至400-500克,打磨工具100的高度减小为5-10毫米,空载功率降低至15-20瓦。
打磨工具100在工作时底座14相对于其中心轴线作圆周运动的转动半径为打磨工具100的工作偏心距。我们经过研究分析,得到偏心结构18如上设计时,打磨工具100的工作偏心距e与以下变量有关:
底座14的质量m1;
电机15的质量m2;
偏心块的质量m3;
柔性部171的刚度k;
偏心块的偏心半径r;
电机15转动角速率ω,
也即是说,打磨工具100的工作偏心距e与以上几个参数满足函数关系:
e=f(m1,m2,m3,k,r,ω);
具体为:e=m3ω 2r/(m1+m2+m3)ω 2-k
其中,偏心结构18的偏心半径r为偏心结构18的重心G到电机轴线101的距离;通过单变量分析方法可以得出,偏心块的偏心半径r的变化对打磨工具100的工作偏心距e影响最大,因此在其他变量确定的情况下通过设定偏心块的偏心半径r来得到更优的工作偏心距e。本实施例中,偏心块的偏心半径r大于等于2毫米且小于等于4毫米,进一步地,偏心块的偏心半径r大于等于2毫米且小于等于3毫米。在本实施例中,打磨工具100的工作偏心距e大于等于0.5毫米且小于等于2毫米,进一步地,打磨工具100的工作偏心距e大于等于0.7毫米且小于等于1毫米,具体为0.8毫米。工作偏心距e的合理设置能够提高打磨工具100的磨削能力以及抗震能力。另外,电机15为无刷电机15,电机15的转速大于等于12000转/分,进一步地,电机15的转速大于等于14000转/分,本实施例中,电机15的转速为15000转/分。
图12所示为本公开的第二实施例的打磨工具的部分结构的示意图,与第一实施例中的打磨工具100的不同之处在于本实施例中的打磨工具的除了包括安装在风扇26上的偏心结构28外还包括安装至风扇26上的配重结构29,配重结构29与偏心结构29关于电机轴线201基本相对设置,但是偏心结构28与配重结构29的重心分别位于上下两个垂直于电机轴线201的平面上,也即是说偏心结构28与配重结构29的重心沿轴向在上下方向上存在一定的高度差。事实上,正是利用偏心结构28与配重结构29的重心的高度差来产生力矩。另外,偏心结构28与配重结构29的质量也不同,同时偏心结构28与配重结构29可以相 对于风扇26非对称设置,即构成一定的安装角度,利用两者的质量差或/和安装角度产生力和偏向力矩。在本实施例中,打磨工具的工作偏心距与第一实施例中工作偏心距相同,但是需要说明的是可以通过调节配重结构对其工作偏心距e进行调节,从而更好地满足打磨工具的磨削能力以及减震要求等。
对于第一实施例中与本实施例相适应的部分均可以应用到本实施例中,具体不再赘述。
如图13所示,本公开的第三实施例提供一种打磨工具300。打磨工具300包括底座1、壳体2和电机3,壳体2的内部中空形成容纳空间21,壳体2设置于底座1上并与底座1柔性连接,电机3设置于壳体2的容纳空间21内并穿过壳体2的底端开口与底座1连接,电机3的定子31与底座1连接,电机3的转子组件上设置有偏心结构33。在本实施例中,打磨工具300具体为砂光机。
转子组件旋转的过程中,偏心结构33产生周转的离心力并传递给底座1,实现底座1的偏心运动,简化了结构,减小了体积,降低了成本,降低在工作过程中高转速时的振动,有效降低噪音,减轻噪音对周围人群的危害。底座1与壳体2之间柔性连接的设置,允许底座1与壳体2之间发生相对位移,使得底座1在偏心运动时,壳体2不会被破坏。
电机3可以为内转子电机或者外转子电机,偏心结构33可以设置在内转子电机的转子组件上或外转子电机的转子组件上。在本实施例中,电机3为无刷电机,散热性能好,工作效率高。电机3为外转子电机,偏心结构33位于外转子电机的外转子组件32上。
定子31通过紧固机构固定于底座1上,电机3的转轴34穿过定子31的中心孔并与定子31之间通过第一轴承35和第二轴承36连接。第一轴承35和第二轴承36安装于轴承座上。转子组件32与转轴34之间固定连接。偏心结构33设置于转子组件32的外周面上,偏心结构33绕转子组件32的轴线341不均匀分布,具体地,偏心结构33绕转子组件32的轴线341呈扇形分布。
转轴34远离底座1的一端设置有风扇37,风扇37在转轴34的带动下转动,用于对打磨工具300散热。
如图14所示,底座1与壳体2之间通过多个支撑组件4连接。支撑组件4具体为弹性件。底座1在偏心运动时,支撑组件4发生弹性变形,保护壳体2 不会被破坏,底座1停止运动时,弹性变形恢复。支撑组件4的下端与底座1固定连接,支撑组件4的上端设置有螺柱41,螺柱41与壳体2螺纹连接。在本实施例中,支撑组件4由橡胶材料制成。
如图15所示,四个支撑组件4于底座1上均匀间隔分布,具体地,四个支撑组件4的位置分布靠近底座1的四个顶点。在本实施例中,偏心结构33为沿转子组件32的径向突出的偏心块。
如图13至图16所示,打磨工具300还包括控制器5,控制器5位于壳体2内并与电机3电连接。控制器5连接交流电,以控制电机3运转。作为一种可选择的实施方式,控制器5也可连接直流电,以控制电机3运转。
如图17和图18所示,壳体2包括握持部22,用于供用户握持。握持部22上可以设置开关,用户在握持时,能够方便的触发开关,控制电机3启停。
使用时,在底座1下方设置打磨件之类的打磨件,用户手持于壳体2的握持部22,通过开关启动打磨工具300后,由于电机3的转子组件32上设置有偏心结构33,电机3会有离心运动的趋势,进而通过电机3直接带动底座1实现偏心运动,使得打磨件在工件表面不断摩擦,实现对工件的打磨。
对于第一实施例中与本实施例相适应的部分均可以应用到本实施例中,具体不再赘述。
图19示出了本公开的实施例四,其中与实施例三相同或相应的零部件采用与实施例三相应的附图标记。为简便起见,仅描述实施例四与实施例三的区别点。区别之处在于,电机3为带电刷6的电机,电刷6位于壳体2内。导线在往复摆动振动的过程中会疲劳折断,电刷6相对于导线来说结构更加可靠,不存在断裂的风险。
以上显示和描述了本公开的基本原理、主要特征和优点。本行业的技术人员应该了解,上述实施例不以任何形式限制本公开,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本公开的保护范围内。
工业实用性
本公开提供一种打磨工具,该打磨工具质量更轻、体积更小、空载功率更小。

Claims (16)

  1. 一种打磨工具,包括:
    电机,包括定子组件以及转子组件,所述转子组件包括能以电机轴线为轴转动的转子轴;
    壳体,形成有用于容纳至少部分所述电机的容纳空间;
    电源,用于给所述电机供电;
    底座,用于安装打磨件;
    所述打磨工具还包括:
    偏心结构,用于产生偏心力或者偏心力矩;
    其中,所述偏心结构安装至所述转子组件以使得所述电机能驱动所述底座进行偏心运动。
  2. 根据权利要求1所述的打磨工具,其特征在于:
    所述底座具有一个中心轴线,所述中心轴线与所述电机轴线同轴设置。
  3. 根据权利要求1所述的打磨工具,其特征在于:
    所述底座以一个中心轴线为中心进行运动,所述中心轴线与所述电机轴线同轴设置。
  4. 根据权利要求1所述的打磨工具,其特征在于:
    所述底座与所述电机轴同轴设置。
  5. 根据权利要求1所述的打磨工具,其特征在于:
    所述打磨工具还包括:
    支撑件,用于形成或者支撑所述偏心结构;
    所述支撑件连接至所述转子组件;
    所述底座形成有用于将底座安装至所述电机的安装孔;
    所述支撑件位于所述安装孔之外。
  6. 根据权利要求1所述的打磨工具,其特征在于:
    所述打磨工具还包括:
    支撑件,用于形成或者支撑所述偏心结构;
    所述支撑件包括用于与所述转子组件够成连接的连接部;
    所述底座形成有用于将底座安装至所述电机的安装孔;
    所述连接部位于所述安装孔之外。
  7. 根据权利要求1所述的打磨工具,其特征在于:
    所述打磨工具的工作偏心距大于等于0.5毫米且小于等于2毫米。
  8. 根据权利要求1所述的打磨工具,其特征在于:
    所述打磨工具的工作偏心距大于等于0.7毫米且小于等于1毫米。
  9. 根据权利要求1所述的打磨工具,其特征在于:
    所述电机为无刷电机;所述电机的转速大于等于8000转/分且小于等于16000转/分。
  10. 根据权利要求9所述的打磨工具,其特征在于:
    所述电机的转速大于等于10000转/分且小于等于14000转/分。
  11. 根据权利要求1所述的打磨工具,其特征在于:
    所述打磨工具还包括风扇,所述风扇连接至所述电机的所述转子组件,所述偏心结构一体成型或安装于所述风扇。
  12. 根据权利要求1所述的打磨工具,其特征在于:
    所述打磨工具还包括配重结构,用于平衡所述偏心结构的重量,所述配重结构设置于所述电机的转子组件上。
  13. 根据权利要求11所述的打磨工具,其特征在于:
    所述打磨工具还包括配重结构,用于平衡所述偏心结构的重量,所述配重结构一体成型或安装于所述风扇。
  14. 根据权利要求13所述的打磨工具,其特征在于:
    所述偏心结构和所述配重结构沿所述电机轴线的轴向上下设置,沿所述电机轴线的周向相对设置。
  15. 根据权利要求1所述的打磨工具,其特征在于:
    所述电源为电池包,设置于所述打磨工具的重心上方。
  16. 根据权利要求1至15任意一项所述的打磨工具,其特征在于:
    所述电机为外转子电机。
PCT/CN2019/074318 2018-02-11 2019-02-01 打磨工具 WO2019154292A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201810141205.XA CN110142672B (zh) 2018-02-11 2018-02-11 一种打磨工具
CN201810141205.X 2018-02-11
CN201811074260 2018-09-14
CN201811074260.8 2018-09-14
CN201920108832.3 2019-01-22
CN201920108832.3U CN209998918U (zh) 2019-01-22 2019-01-22 打磨工具

Publications (1)

Publication Number Publication Date
WO2019154292A1 true WO2019154292A1 (zh) 2019-08-15

Family

ID=67548160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074318 WO2019154292A1 (zh) 2018-02-11 2019-02-01 打磨工具

Country Status (1)

Country Link
WO (1) WO2019154292A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111515813A (zh) * 2020-04-30 2020-08-11 陈英杰 一种连接装置及设置该连接装置的工具单元

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2686806Y (zh) * 2004-03-15 2005-03-23 友迦工业股份有限公司 气动式抛光研磨机
US7311587B2 (en) * 2005-09-27 2007-12-25 Ming-Ta Cheng Polishing machine with a brake device
CN201271828Y (zh) * 2008-09-17 2009-07-15 南京德朔实业有限公司 砂光机
CN104589189A (zh) * 2015-02-02 2015-05-06 浙江金美电动工具有限公司 双轨迹偏心结构抛光机
CN106493623A (zh) * 2015-09-04 2017-03-15 南京德朔实业有限公司 打磨类工具和砂光机
CN206382997U (zh) * 2017-01-19 2017-08-08 东莞市凯保精密机械有限公司 偏心式高速大面积打磨机
CN107030608A (zh) * 2016-02-04 2017-08-11 南京德朔实业有限公司 砂光机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2686806Y (zh) * 2004-03-15 2005-03-23 友迦工业股份有限公司 气动式抛光研磨机
US7311587B2 (en) * 2005-09-27 2007-12-25 Ming-Ta Cheng Polishing machine with a brake device
CN201271828Y (zh) * 2008-09-17 2009-07-15 南京德朔实业有限公司 砂光机
CN104589189A (zh) * 2015-02-02 2015-05-06 浙江金美电动工具有限公司 双轨迹偏心结构抛光机
CN106493623A (zh) * 2015-09-04 2017-03-15 南京德朔实业有限公司 打磨类工具和砂光机
CN107030608A (zh) * 2016-02-04 2017-08-11 南京德朔实业有限公司 砂光机
CN206382997U (zh) * 2017-01-19 2017-08-08 东莞市凯保精密机械有限公司 偏心式高速大面积打磨机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111515813A (zh) * 2020-04-30 2020-08-11 陈英杰 一种连接装置及设置该连接装置的工具单元

Similar Documents

Publication Publication Date Title
EP1586416B1 (en) Anti-vibration arrangement
US7104873B1 (en) Anti-vibration arrangement
EP3144110B1 (en) Work tool
JPH11333692A (ja) 手持ち式電動工具
CN110944794B (zh) 打磨工具及其主体部和打磨部
CN111098209A (zh) 手持和手引导式随机轨道抛光或砂磨动力工具
CN213081020U (zh) 叶片泵叶片宽度加工研磨设备
WO2019154292A1 (zh) 打磨工具
EP2125290A2 (en) Low vibration sander with a flexible top handle
CN1899765B (zh) 具有至少两个平衡配重的装置、偏心刀具及手持式工具机
US20230271296A1 (en) Sander
JP4061053B2 (ja) 電動サンダ
JP2022018495A (ja) 携帯用研磨機
CN211029448U (zh) 打磨工具
CN110142672B (zh) 一种打磨工具
CN211940308U (zh) 一种新型平衡结构砂光机
CN211805391U (zh) 大偏心式无刷震动抛光机
CN209998918U (zh) 打磨工具
CN212496885U (zh) 直流砂墙机
JP2023139802A (ja) 携帯用研磨機
CN117001486A (zh) 砂光机
EP3023197B1 (en) Power tool with counterweight arrangement
JP7453271B2 (ja) 手持ち式のポリッシングまたはサンディング電動工具に取り外し可能に取り付けるのに適したプレート状の支持パッド
KR200486080Y1 (ko) 그라인더용 자동 디스크 밸런싱 장치
CN213004306U (zh) 偏心轮

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19750368

Country of ref document: EP

Kind code of ref document: A1