WO2019154279A1 - 一种双(氯代邻苯二甲酰亚胺)的制备方法 - Google Patents

一种双(氯代邻苯二甲酰亚胺)的制备方法 Download PDF

Info

Publication number
WO2019154279A1
WO2019154279A1 PCT/CN2019/074225 CN2019074225W WO2019154279A1 WO 2019154279 A1 WO2019154279 A1 WO 2019154279A1 CN 2019074225 W CN2019074225 W CN 2019074225W WO 2019154279 A1 WO2019154279 A1 WO 2019154279A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorophthalimide
bis
reaction
chlorophthalic anhydride
solvent
Prior art date
Application number
PCT/CN2019/074225
Other languages
English (en)
French (fr)
Inventor
钱汇东
Original Assignee
苏州科尔力化工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州科尔力化工有限公司 filed Critical 苏州科尔力化工有限公司
Publication of WO2019154279A1 publication Critical patent/WO2019154279A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/48Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide

Definitions

  • the present invention relates to a process for the preparation of bis(chlorophthalimide).
  • Polyimide and polyetherimide are the newest engineering plastics with the best performance in industrialization. They have dual temperature resistances that are both high temperature resistant and low temperature resistant. They also have good thermal insulation properties, high toughness, high strength and resistance. Chemical corrosion, low density, etc., make it have a wide range of applications, such as polyimide film, polyimide insulation materials, medical industry, etc., especially in defense new materials and 3D printing technology, it has The superiority of the alternative. And bis(chlorophthalimide) has great technical advantages in the preparation of polyimide or polyetherimide, and can directly synthesize polyimide or polyetherimide in one step. The operation is simple, the cost is low, and it is very advantageous for industrial production.
  • a diamine monomer, a process for its synthesis and a polyimide prepared therefrom are described in CN 102491911 A, which is synthesized by the nucleophilicity of 2-fluoro-4-nitrophenol with 4-nitrochlorobenzene.
  • FNNB was prepared, FNNB was used as a catalyst with Pd/C, and hydrazine hydrate was used as a reducing agent to prepare a diamine monomer.
  • the diamine monomer was polycondensed with 6FDA to prepare a polyimide.
  • the method introduces an ether group and a fluorine-containing hydrophobic group into a polyimide to prepare a polyimide having a weak polarity, which can be used for the development of a moisture sensitive original.
  • the method is not easy to obtain raw materials, which is not conducive to industrial production.
  • a method for preparing a bisbromophthalimide is described in CN102924361A, which comprises putting phthalic anhydride and a catalyst into fuming sulfuric acid, adding a bromine agent dropwise, producing tetrabromophthalic anhydride, and tetrabromo
  • the phthalic anhydride and the diamine are dissolved in an organic solvent, and after heating, the product is dehydrated at a high temperature to obtain a product of dibromophthalimide.
  • a method for preparing an aromatic dianhydride and a polyimide is described in CN 105324384 A, which is an aromatic dianhydride and a diamine reacted in an organic solvent to form a polyimide having a microporous structure, which is improved.
  • the processing properties of polyimide are described in CN 105324384 A, which is an aromatic dianhydride and a diamine reacted in an organic solvent to form a polyimide having a microporous structure, which is improved.
  • the processing properties of polyimide adopts multi-step preparation of dianhydride, the raw material is expensive, the process is complicated and cumbersome, and it is not suitable for industrial production.
  • a process for the preparation of bis(halogenated phthalimide) is described in CN 101128426 A, in which at least one halophthalic anhydride and at least one diamine are dispersed in a solvent. Under the action of the amidation catalyst, it is heated to above 150 ° C and maintained at a solid content of 15%. After the reaction is completed, the bis(halogenated phthalimide) is isolated. The method performs only one-step reaction to obtain bis(halogenated phthalimide), which can be directly used for the synthesis of poly(ether)imide. Although the process is relatively simple, the method still requires the presence of amidation catalyst and is difficult to separate and purify the product.
  • a process for the preparation of bis(phthalimide) is described in CN 106232678 A by subjecting a substituted phthalic anhydride to an organic diamine in a solvent such as molten diphenyl sulfone or sulfolane.
  • the reaction directly produces bis(phthalimide).
  • the method does not need to add a catalyst, the method requires extremely strict water content in the reaction system. In the reaction process, the water molecule content must be less than 100 ppm, which is extremely demanding for industrial production processes and equipment.
  • the invention overcomes the problems of complicated process and difficult separation and purification in the production of bis(chlorophthalimide) in the prior art, and provides a simple step, convenient operation, safe process and low cost, and is suitable for industrial production.
  • the present invention adopts the following technical solutions:
  • An object of the present invention is to provide a process for preparing bis(chlorophthalimide), which comprises chlorophthalic anhydride and a diamine compound in the presence of a solvent at 40 to 300 ° C. , vacuuming to -0.02 ⁇ -0.08MPa reaction, after the reaction is completed, the filter cake is obtained by filtration, the filter cake is washed in boiling water, and filtered to obtain bis(chlorophthalimide);
  • the structural formula of the diamine compound is:
  • R is a hydrocarbon group
  • the chlorophthalic anhydride is 3-chlorophthalic anhydride, 4-chlorophthalic anhydride or 3-chlorophthalic anhydride and 4-chloro neighbor a mixture of phthalic anhydride.
  • the hydrocarbon group is a functional group containing only two atoms of carbon and hydrogen, and specifically, a hydrocarbon group in which two hydrogen atoms are absent from the alkane molecule, and an ethyl group, a propyl group, a butyl group or the like is preferable.
  • the diamine compound is ethylenediamine, propylenediamine, butanediamine, 4,4'-diaminodiphenyl ether, p-phenylenediamine, 4,4'-diaminodiphenyl sulfone or 2,2'-bis(trifluoromethyl)diaminobiphenyl.
  • the molar ratio of the chlorophthalic anhydride to the diamine compound is from 1.5 to 4:1. It is more preferably 2 to 3:1, still more preferably 2.1 to 2.6:1.
  • the solvent is a solvent which is liquid at 20 to 80 ° C and has a boiling point of 150 to 350 ° C and does not participate in the condensation reaction of the chlorophthalic anhydride and the diamine compound. .
  • the solvent is one or more of silicone oil, glycerin, glycerin carbonate, long-chain alkane, paraffin, ethylene glycol carbonate, diphenyl ether, polychlorinated benzene.
  • the ratio of the total mass of the chlorophthalic anhydride and the diamine compound to the solvent is from 1:2 to 10. More preferably, it is 1:3-6.
  • the filtrate obtained when the filter cake is obtained by filtration is recovered and recycled.
  • recycling after the filtrate is recovered means that the filtrate can be directly added to the reaction system of the present invention instead of a part of the solvent.
  • the filtration is carried out using suction filtration.
  • the reaction temperature is from 100 to 200 °C.
  • the preparation method is characterized in that: the chlorophthalic anhydride and the diamine compound are added to the solvent, stirred and mixed, and the reaction system is heated. The temperature is up to 40-300 ° C, the vacuum is maintained and the pressure of the reaction system is maintained at -0.02 to -0.08 MPa, and the reaction is carried out for 8 to 16 hours. After the reaction is completed, the reaction cake is suction filtered to obtain the filter cake. The filter cake was added to water, heated to boiling, stirred and washed, and then suction filtered to obtain the bis(chlorophthalimide).
  • the chlorophthalic anhydride is prepared by adding phthalic anhydride and water to the reactor, stirring at 25 to 80 ° C and introducing chlorine gas, and maintaining the reaction for 8 to 12 hours.
  • the chlorophthalic anhydride is then obtained by filtration, washing, and dehydration.
  • the preparation method is as follows: dissolving phthalic anhydride in water, introducing chlorine gas, heating the reaction system to 25-80 ° C, and continuously reacting for 8-12 hours, which is satisfied for preparation. a chlorophthalic anhydride required for the bis(chlorophthalimide) process; the chlorophthalic anhydride prepared as described above and the diamine compound are added to the solvent In the middle, stirring and mixing, heating the temperature of the reaction system to 40-300 ° C, vacuuming and maintaining the pressure of the reaction system is -0.02 to -0.08 MPa, the reaction is 8 to 16 hours, after the reaction is completed, the reaction is filtered. The filter cake was obtained, and the filter cake was added to water, heated to boiling, stirred and washed, and then subjected to suction filtration to obtain the bis(chlorophthalimide).
  • the reaction of the invention does not require a catalyst and does not require a dehydrating agent.
  • the solvent of the present invention can simultaneously act as a catalyst, a solvent and a dehydrating agent.
  • the system is maintained under a negative pressure state, and the pressure is controlled at -0.02 to -0.08 MPa to ensure The water formed by the reaction can be continuously evaporated from the reaction system under the micro-vacuum state, and does not remain in the reaction system.
  • the filter cake of the present invention is a crude product.
  • surface impurities can be directly washed away, the product particles are expanded in boiling water, and internal impurities are dissolved in water, whereby a purified product can be obtained, and the purification method is simple.
  • the present invention has the following advantages compared with the prior art:
  • the method for producing the imide precursor bis(chlorophthalimide) of the invention is simple and convenient, and the reaction is carried out under a slight vacuum, and the safety is high, only the solvent is used, and the catalyst and the dehydrating agent are not needed, and The post-treatment is simple, suitable for industrial production, low production cost and good product quality.
  • Step (1) adding 310.8 g (2.1 mol) of phthalic anhydride and 2488 g of water to the reaction flask, stirring and dispersing uniformly at 70 ° C, and slowly introducing 149.1 g (2.1 mol) of chlorine into the system under constant stirring. Reaction for 12 hours. Then, the temperature was lowered to room temperature for suction filtration, and the filter cake was washed with 300 g of water, and then dehydrated in a reaction flask for 12 hours under vacuum, and poured out slowly to obtain a chlorophthalic anhydride solid which satisfies the process requirements.
  • Step (2) 383.4 g (2.1 mol) of chlorophthalic anhydride obtained by the method of the step (1) and 60 g (1 mol) of ethylenediamine are put into 1500 g of silicone oil, stirred to uniformly disperse and mix, and heated.
  • the reaction system was brought to 150 ° C, and the negative pressure was -0.05 MPa.
  • the reaction was stirred for 16 hours.
  • the mixture was filtered, and the filtrate was recycled for recycling.
  • the filter cake was bis(phthaloyl). 398.4g of crude product, the crude product yield is 97.8%.
  • the crude product is put into boiling water and stirred for washing. After boiling, the surface of the product and the impurities inside the particles are removed. After suction filtration, the double (chlorinated) with ethylene structure is obtained.
  • the product of phthalimide was 376.4 g, and the product yield was 96.7%; the purity was 99.4% by high performance liquid chromatography.
  • Step (1) 310.8 g (2.1 mol) of phthalic anhydride and 2488 g of water were added to the reaction flask, stirred and dispersed uniformly at 70 ° C, and 149.1 g (2.1 mol) of chlorine gas was slowly introduced into the system under constant stirring. Reaction for 12 hours. Then, the temperature was lowered to room temperature for suction filtration, and the filter cake was washed with 300 g of water, and then dehydrated in a reaction flask for 12 hours under vacuum, and poured out slowly to obtain a chlorophthalic anhydride solid which satisfies the process requirements.
  • Step (2) 346.9 g (1.9 mol) of chlorophthalic anhydride obtained in the step (1) and 86.4 g (0.8 mol) of p-phenylenediamine are put into 1800 g of liquid paraffin, and stirred to uniformly disperse and mix.
  • the reaction system was heated to 170 ° C, and the negative pressure was -0.08 MPa, and the reaction was continuously stirred for 10 hours, followed by suction filtration, and the filtrate was recovered and recycled, and the filter cake was 389.5 g of crude bis(phthalimide).
  • the crude product yield was 96.3%.
  • the crude product was put into boiling water and stirred for washing. After boiling, the surface of the product and the impurities inside the particles were removed. After suction filtration, an aromatic structure of bis(chlorophthalimide) was obtained.
  • the product yield is 322.5g, and the product yield is 92.1%.
  • the purity is 99.6% after high performance liquid chromatography.
  • Step (1) 310.8 g (2.1 mol) of phthalic anhydride and 2488 g of water were added to the reaction flask, stirred and dispersed uniformly at 70 ° C, and 149.1 g (2.1 mol) of chlorine gas was slowly introduced into the system under constant stirring. Reaction for 12 hours. Then, the temperature was lowered to room temperature for suction filtration, and the filter cake was washed with 300 g of water, and then dehydrated in a reaction flask for 12 hours under vacuum, and poured out slowly to obtain a chlorophthalic anhydride solid which satisfies the process requirements.
  • Step (2) 273.8 g (1.5 mol) of chlorophthalic anhydride obtained in the step (1) and 224 g (0.7 mol) of 2,2'-bis(trifluoromethyl)diaminobiphenyl are put into In 2000 g of glycerin carbonate, the mixture was uniformly dispersed and mixed by stirring, and the reaction system was heated to 180 ° C, and the negative pressure was -0.07 MPa, and the reaction was continuously stirred for 14 hours, followed by suction filtration, and the filtrate was recycled for use, and the filter cake was double ( Substituted phthalimide) crude product 456.1g, crude product yield 96.5%, the crude product was put into boiling water and stirred for washing.
  • Step (1) 310.8 g (2.1 mol) of phthalic anhydride and 2488 g of water were added to the reaction flask, stirred and dispersed uniformly at 70 ° C, and 149.1 g (2.1 mol) of chlorine gas was slowly introduced into the system under constant stirring. Reaction for 12 hours. Then, the temperature was lowered to room temperature for suction filtration, and the filter cake was washed with 300 g of water, and then dehydrated in a reaction flask for 12 hours under vacuum, and poured out slowly to obtain a chlorophthalic anhydride solid which satisfies the process requirements.
  • Step (2) 237.3 g (1.3 mol) of chlorophthalic anhydride obtained in the step (1) and 100 g (0.5 mol) of 4,4'-diaminodiphenyl ether are put into 2000 g of ethylene carbonate carbonate. In the middle, stir and uniformly disperse and mix, heat the reaction system to 190 ° C, pump to a negative pressure of -0.05 MPa, continue to stir the reaction for 10 hours, then perform suction filtration, and recycle the filtrate for recycling. The filter cake is double (substituted ortho-benzene).
  • the crude product was 308.8 g, and the crude product yield was 96.7%. The crude product was put into boiling water and stirred for washing.
  • Step (1) 310.8 g (2.1 mol) of phthalic anhydride and 2488 g of water were added to the reaction flask, stirred and dispersed uniformly at 70 ° C, and 149.1 g (2.1 mol) of chlorine gas was slowly introduced into the system under constant stirring. Reaction for 12 hours. Then, the temperature was lowered to room temperature for suction filtration, and the filter cake was washed with 300 g of water, and then dehydrated in a reaction flask for 12 hours under vacuum, and poured out slowly to obtain a chlorophthalic anhydride solid which satisfies the process requirements.
  • Step (2) 365.1 g (2.0 mol) of chlorophthalic anhydride obtained by the step (1) and 198.6 g (0.8 mol) of 4,4'-diaminodiphenyl sulfone are put into 3000 g of polychlorobenzene. Stir and uniformly disperse and mix, heat the reaction system to 180 ° C, pump to a negative pressure of -0.04 MPa, continue to stir the reaction for 12 hours, then filter by suction, recycle the filtrate for recycling, the filter cake is double (substituted phthalic acid)
  • the crude product was 513.0 g, and the crude product yield was 95.9%. The crude product was put into boiling water and stirred for washing.
  • the product (422.6g) of (chlorophthalimide) has a product yield of 91.5%; the purity is 99.7% by high performance liquid chromatography.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Indole Compounds (AREA)
  • Furan Compounds (AREA)

Abstract

本发明涉及一种双(氯代邻苯二甲酰亚胺)的制备方法,将邻苯二甲酸酐溶解在水中,通入氯气,加热反应体系至25~80℃,持续反应8~12小时,得到满足用于制备双(氯代邻苯二甲酰亚胺)工艺要求的氯代邻苯二甲酸酐;将制得的氯代邻苯二甲酸酐和二胺类化合物在溶剂的存在下,在40~300℃下,抽真空至-0.02~-0.08MPa反应8~16小时,反应结束后,经过滤得到滤饼,将滤饼在沸水中洗涤,过滤得到双(氯代邻苯二甲酰亚胺)。本发明生产聚酰亚胺的前体双(氯代邻苯二甲酰亚胺)的方法简单方便,在微负压下进行反应,安全性高,仅使用溶剂,无需使用催化剂和脱水剂,且后处理简单,适合工业化生产,生产成本低,产品质量好。

Description

一种双(氯代邻苯二甲酰亚胺)的制备方法 技术领域
本发明涉及一种双(氯代邻苯二甲酰亚胺)的制备方法。
背景技术
聚酰亚胺、聚醚酰亚胺是目前工业化中性能最为优异的新型工程塑料,其具有既耐高温又耐低温的双重耐温性能,同时又具有保温性能好,韧性强,强度高,耐化学腐蚀,密度低等特点,使其具有非常广泛的应用,如应用于聚酰亚胺薄膜、聚酰亚胺绝缘材料、医疗行业等,尤其在国防新材料与3D打印技术中,其有着不可替代的优越性。而双(氯代邻苯二甲酰亚胺)在应用于制备聚酰亚胺或聚醚酰亚胺中,有着巨大的技术优势,可直接一步合成聚酰亚胺或聚醚酰亚胺,操作简便,成本低廉,十分有利于工业化生产。
目前国内制备聚酰亚胺、聚醚酰亚胺主要途径仍是使用二酐与二胺缩聚生产,该方法虽可制得各种结构的聚酰亚胺、聚醚酰亚胺,但生产流程复杂,所需条件苛刻,反应过程不易控制,工业化生产成本较高,在国内,工业化制备双(氯代邻苯二甲酰亚胺)以及用其制备聚酰亚胺、聚醚酰亚胺鲜有报道,目前此方法在国内仍处于空白阶段。在国内外专利与文献报道中,GE等公司已经将制备双(氯代邻苯二甲酰亚胺)工业化,并用于生产聚酰亚胺、聚醚酰亚胺,但其方法仍具有原料复杂,反应体系中需加入催化剂,反应过程中需加脱水剂,产品分离纯化困难等缺点。具体如下:
在CN 102491911 A中描述了一种二胺单体、其合成方法和由其制备的聚酰亚胺,其合成方法为2-氟-4-硝基苯酚与4-硝基氯苯发生亲核取代,制备出FNNB,将FNNB用Pd/C做催化剂,水合肼做还原剂制备出二胺单体,二胺单体与6FDA发生缩聚反应,制备聚酰亚胺。该方法在聚酰亚胺中引入醚基和含氟疏水基团,制备出极性较弱的聚酰亚胺,可用于湿敏原件的研发。但该方法原料不易得,不利于工业化生产。
在CN102924361A中描述一种双溴邻苯二甲酰亚胺的制备方法,该方法是将邻苯二甲酸酐和催化剂投入到发烟硫酸中,滴加溴 剂,生产四溴苯酐,将四溴苯酐与二胺溶解在有机溶剂中,加热反应后经高温脱水得到产品双溴邻苯二甲酰亚胺。该方法在制备双溴邻苯酰亚胺时,工艺复杂,需使用发烟硫酸等危险化学品,中间过程不易控制,不适合于工业化生产。
在CN 105324384 A中描述了一种芳香族二酐及聚酰亚胺的制备方法,该方法为芳香族二酐与二胺在有机溶剂中反应,生成带微孔结构的聚酰亚胺,改善了聚酰亚胺的加工性能。但该方法采用多步骤制备二酐,原料价格昂贵,工艺复杂繁琐,不利于工业化生产。
在CN 101128426 A中描述一种制备双(卤代邻苯二甲酰亚胺)的方法,在该方法中,使用至少一种卤代邻苯二甲酸酐和至少一种二胺分散在溶剂中,在酰胺化催化剂的作用下,加热到150℃以上,保持在15%的固含量,反应完全后分离得到双(卤代邻苯二甲酰亚胺)。该方法只进行一步反应,制得双(卤代邻苯二甲酰亚胺),可直接用于合成聚(醚)酰亚胺。此方法虽然工序比较简单,但此方法仍需要酰胺化的催化剂存在,并在产品分离提纯时比较困难。
在CN 106232678 A中描述一种制备双(邻苯二甲酰亚胺)的方法,该方法是在熔融的二苯砜、环丁砜等溶剂中,将取代的邻苯二甲酸酐与有机二胺进行反应,直接制得双(邻苯二甲酰亚胺)。该方法虽然不需加催化剂,但此方法对反应体系中水含量要求极为严格,在反应过程中,要求水分子含量必须小于100ppm,这对工业化生产工艺及设备的要求都极为苛刻。
以上方法在制备双(氯代邻苯二甲酰亚胺)或聚(醚)酰亚胺时,都存在一定的缺点,因此,非常有必要开发一种反应过程简单、容易控制、成本低廉且产品质量好,有利于工业化生产的双(氯代邻苯二甲酰亚胺)的制备方法。
发明内容
本发明克服了现有技术中生产制造双(氯代邻苯二甲酰亚胺)时工艺复杂和分离纯化困难的问题,提供一种步骤简单,操作方便,过程安全,成本低廉,适合工业化生产的双(氯代邻苯二甲酰亚胺)的制备方法。
为解决以上技术问题,本发明采取如下技术方案:
本发明的一个目的是提供一种双(氯代邻苯二甲酰亚胺)的制备方法,将氯代邻苯二甲酸酐和二胺类化合物在溶剂的存在下,在40~300℃下,抽真空至-0.02~-0.08MPa反应,反应结束后,经过滤得到滤饼,将所述的滤饼在沸水中洗涤,过滤得到双(氯代邻苯二甲酰亚胺);
所述的氯代邻苯二甲酸酐的结构式为:
Figure PCTCN2019074225-appb-000001
所述的二胺类化合物的结构式为:
H 2N-R-NH 2
所述的双(氯代邻苯二甲酰亚胺)的结构通式为:
Figure PCTCN2019074225-appb-000002
其中R为烃基、
Figure PCTCN2019074225-appb-000003
Figure PCTCN2019074225-appb-000004
本发明中,所述的氯代邻苯二甲酸酐为3-氯代邻苯二甲酸酐、4-氯代邻苯二甲酸酐或3-氯代邻苯二甲酸酐和4-氯代邻苯二甲酸酐的混合物。
本发明中,烃基为只含碳、氢两种原子的官能团,具体为烷烃 分子中少掉两个氢原子而成的烃基,优选为乙基、丙基、丁基等。
优选地,所述的二胺类化合物为乙二胺、丙二胺、丁二胺、4,4`-二氨基二苯醚、对苯二胺、4,4'-二氨基二苯砜或2,2'-二(三氟甲基)二氨基联苯。
优选地,所述的氯代邻苯二甲酸酐和所述的二胺类化合物的投料摩尔比为1.5~4:1。进一步优选为2~3:1,更优选为2.1~2.6:1。
本发明中,所述的溶剂为在20~80℃下为液体、沸点为150~350℃,不参与所述的氯代邻苯二甲酸酐和所述的二胺类化合物的缩合反应的溶剂。
优选地,所述的溶剂为硅油、甘油、碳酸甘油酯、长链烷烃、石蜡、乙二醇碳酸酯、二苯醚、多氯苯中的一种或几种。
优选地,所述的氯代邻苯二甲酸酐和所述的二胺类化合物的总质量与所述的溶剂的投料质量比为1:2~10。进一步优选为1:3~6。
优选地,反应结束后,过滤得到所述的滤饼时的滤液回收后循环使用。
本发明中,滤液回收后循环使用是指滤液能够直接加入到本发明的反应体系中代替部分溶剂。
优选地,采用抽滤进行所述的过滤。
优选地,所述的反应温度为100~200℃。
优选地,所述的制备方法的具体实施方式为:将所述的氯代邻苯二甲酸酐和所述的二胺类化合物加入到所述的溶剂中,搅拌混合,加热所述的反应体系的温度至40~300℃,抽真空并保持反应体系的压力为-0.02~-0.08MPa,反应8~16小时,反应完全后,将反应物抽滤得到所述的滤饼,将所述的滤饼加入水中,加热至沸腾,搅拌洗涤,然后经抽滤得到所述的双(氯代邻苯二甲酰亚胺)。
进一步优选地,所述的氯代邻苯二甲酸酐的制备方法为:将邻苯二甲酸酐和水加入反应器中,在25~80℃下搅拌并通入氯气,保温反应8~12小时,然后经过滤、洗涤、脱水制得所述的氯代邻苯二甲酸酐。
最为优选地,所述的制备方法的具体实施方式为:将邻苯二甲酸酐溶解在水中,通入氯气,加热反应体系至25~80℃,持续反应 8~12小时,得到满足用于制备双(氯代邻苯二甲酰亚胺)工艺要求的氯代邻苯二甲酸酐;将按上述方法制备的氯代邻苯二甲酸酐和所述的二胺类化合物加入到所述的溶剂中,搅拌混合,加热所述的反应体系的温度至40~300℃,抽真空并保持反应体系的压力为-0.02~-0.08MPa,反应8~16小时,反应完全后,将反应物抽滤得到所述的滤饼,将所述的滤饼加入水中,加热至沸腾,搅拌洗涤,然后经抽滤得到所述的双(氯代邻苯二甲酰亚胺)。
Figure PCTCN2019074225-appb-000005
本发明的反应无需催化剂,也无需脱水剂,本发明的溶剂可同时担当催化剂、溶剂以及脱水剂,另外,在反应过程中,保持体系负压状态,压力控制在-0.02~-0.08MPa,保证反应生成的水在微真空状态下能够自动持续从反应体系中蒸发出去,不残留在反应体系中。
本发明的滤饼为粗品,经滤饼在沸水中搅拌洗涤时,表面杂质可以直接冲洗掉,产物颗粒在沸水中膨胀,内部杂质溶解在水中,从而可以得到纯化的产品,且纯化方法简单。
由于以上技术方案的实施,本发明与现有技术相比具有如下优点:
本发明生产酰亚胺的前体双(氯代邻苯二甲酰亚胺)的方法简单方便,在微负压下进行反应,安全性高,仅使用溶剂,无需使用催化剂和脱水剂,且后处理简单,适合工业化生产,生产成本低,产品质量好。
具体实施方式
下面结合具体实施例对本发明做进一步详细的说明,但本发明并不限于以下实施例。实施例中采用的实施条件可以根据具体使用的不同要求做进一步调整,未注明的实施条件为本行业中的常规条件。本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
步骤(1)、将310.8g(2.1mol)邻苯二甲酸酐和2488g水加入反应瓶中,于70℃搅拌分散均匀,恒温搅拌下向体系中缓慢通入149.1g(2.1mol)氯气,持续反应12小时。然后,将温度降至室温抽滤,滤饼用300g清水洗涤,再投入反应瓶中真空脱水12小时,倒出缓慢冷却,得到满足工艺要求的氯代邻苯二甲酸酐固体。
步骤(2):将按照步骤(1)方法制得的383.4g(2.1mol)氯代邻苯二甲酸酐与60g(1mol)乙二胺投入到1500g硅油中,搅拌使其均匀分散混合,加热反应体系至150℃,抽至负压为-0.05MPa,持续搅拌反应16小时,经高效液相色谱检测反应完全后进行抽滤,将滤液回收循环使用,滤饼为双(邻苯二甲酰亚胺)粗品398.4g,粗品收率为97.8%,将粗品投入到沸水中搅拌洗涤,经水煮后,产品表面及颗粒内部杂质除去,抽滤后,得到含乙撑结构的双(氯代邻苯二甲酰亚胺)产品376.4g,产品收率为96.7%;经高效液相色谱检测,纯度达99.4%。
实施例2
步骤(1):将310.8g(2.1mol)邻苯二甲酸酐和2488g水加入反应瓶中,于70℃搅拌分散均匀,恒温搅拌下向体系中缓慢通入149.1g(2.1mol)氯气,持续反应12小时。然后,将温度降至室温抽滤,滤饼用300g清水洗涤,再投入反应瓶中真空脱水12小时,倒出缓慢冷却,得到满足工艺要求的氯代邻苯二甲酸酐固体。
步骤(2):将步骤(1)制得的氯代邻苯二甲酸酐346.9g(1.9mol) 与86.4g(0.8mol)对苯二胺投入到1800g液体石蜡中,搅拌使其均匀分散混合,加热反应体系至170℃,抽至负压为-0.08MPa,持续搅拌反应10小时后进行抽滤,将滤液回收循环使用,滤饼为双(邻苯二甲酰亚胺)粗品389.5g,粗品收率为96.3%,将粗品投入到沸水中搅拌洗涤,经水煮后,产品表面及颗粒内部杂质除去,抽滤后,得到芳香族结构的双(氯代邻苯二甲酰亚胺)产品322.5g,产品收率为92.1%,经高效液相色谱检测,纯度达99.6%。
实施例3
步骤(1):将310.8g(2.1mol)邻苯二甲酸酐和2488g水加入反应瓶中,于70℃搅拌分散均匀,恒温搅拌下向体系中缓慢通入149.1g(2.1mol)氯气,持续反应12小时。然后,将温度降至室温抽滤,滤饼用300g清水洗涤,再投入反应瓶中真空脱水12小时,倒出缓慢冷却,得到满足工艺要求的氯代邻苯二甲酸酐固体。
步骤(2):将步骤(1)制得的273.8g(1.5mol)氯代邻苯二甲酸酐与224g(0.7mol)2,2'-二(三氟甲基)二氨基联苯投入到2000g碳酸甘油酯中,搅拌使其均匀分散混合,加热反应体系至180℃,抽至负压为-0.07MPa,持续搅拌反应14小时后进行抽滤,将滤液回收循环使用,滤饼为双(取代的邻苯二甲酰亚胺)粗品456.1g,粗品收率为96.5%,将粗品投入到沸水中搅拌洗涤,经水煮后,产品表面及颗粒内部杂质除去,抽滤后,得到联苯型含氟结构的双(氯代邻苯二甲酰亚胺)产品433.8g,产品收率为95.5%;经高效液相色谱检测,纯度达99.7%。
实施例4
步骤(1):将310.8g(2.1mol)邻苯二甲酸酐和2488g水加入反应瓶中,于70℃搅拌分散均匀,恒温搅拌下向体系中缓慢通入149.1g(2.1mol)氯气,持续反应12小时。然后,将温度降至室温抽滤,滤饼用300g清水洗涤,再投入反应瓶中真空脱水12小时,倒出缓慢冷却,得到满足工艺要求的氯代邻苯二甲酸酐固体。
步骤(2):将步骤(1)制得的237.3g(1.3mol)氯代邻苯二 甲酸酐与100g(0.5mol)4,4`-二氨基二苯醚投入到2000g乙二醇碳酸酯中,搅拌使其均匀分散混合,加热反应体系至190℃,抽至负压为-0.05MPa,持续搅拌反应10小时后进行抽滤,将滤液回收循环使用,滤饼为双(取代的邻苯二甲酰亚胺)粗品308.8g,粗品收率为96.7%,将粗品投入到沸水中搅拌洗涤,经水煮后,产品表面及颗粒内部杂质除去,抽滤后,得到芳香族含醚结构的双(氯代邻苯二甲酰亚胺)产品241.9g,产品收率为91.4%;经高效液相色谱检测,纯度达99.5%。
实施例5
步骤(1):将310.8g(2.1mol)邻苯二甲酸酐和2488g水加入反应瓶中,于70℃搅拌分散均匀,恒温搅拌下向体系中缓慢通入149.1g(2.1mol)氯气,持续反应12小时。然后,将温度降至室温抽滤,滤饼用300g清水洗涤,再投入反应瓶中真空脱水12小时,倒出缓慢冷却,得到满足工艺要求的氯代邻苯二甲酸酐固体。
步骤(2):将步骤(1)制得的365.1g(2.0mol)氯代邻苯二甲酸酐与198.6g(0.8mol)4,4'-二氨基二苯砜投入到3000g多氯苯中,搅拌使其均匀分散混合,加热反应体系至180℃,抽至负压为-0.04MPa,持续搅拌反应12小时后进行抽滤,将滤液回收循环使用,滤饼为双(取代的邻苯二甲酰亚胺)粗品513.0g,粗品收率为95.9%,将粗品投入到沸水中搅拌洗涤,经水煮后,产品表面及颗粒内部杂质除去,抽滤后,得到芳香族含砜结构的双(氯代邻苯二甲酰亚胺)产品422.6g,产品收率91.5%;经高效液相色谱检测,纯度达99.7%。
对比例1
将按照实施例1步骤(1)所述方法制备的氯代邻苯二甲酸酐237.3g(1.3mol)与59.4g(0.5mol)间苯二胺投入到1300g甘油中,搅拌使其均匀分散混合,加热反应体系至150℃,不启用负压装置,常压下持续搅拌反应15小时后进行抽滤,将滤液回收循环使用,滤饼为双(氯代邻苯二甲酰亚胺)粗品196.2g,粗品收率仅为70.4%, 将粗品投入到沸水中搅拌洗涤,经水煮后,产品表面及颗粒内部杂质除去,抽滤后,得到芳香族含砜结构的双(氯代邻苯二甲酰亚胺)产品120.9g,产品收率仅为55.3%;经高效液相色谱检测,纯度为99.2%。
对比例2
将按照实施例1步骤(1)所述方法制备的的219.1g(1.2mol)氯代邻苯二甲酸酐与99.1g(0.5mol)二氨基二苯甲烷投入到1900g二苯醚中,搅拌使其均匀分散混合,加热反应体系至170℃,不启用负压装置,常压下持续搅拌反应16小时后进行抽滤,将滤液回收循环使用,滤饼为双(氯代邻苯二甲酰亚胺)粗品190.3g,粗品收率仅为63.4%,将粗品投入到常温水中搅拌洗涤,不经水煮,抽滤后,得到芳香族含砜结构的双(氯代邻苯二甲酰亚胺)产品150.8g,产品收率仅为57.2%;经高效液相色谱检测,纯度为92.7%。
以上对本发明做了详尽的描述,其目的在于让熟悉此领域技术的人士能够了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,凡根据本发明的精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围内。

Claims (11)

  1. 一种双(氯代邻苯二甲酰亚胺)的制备方法,其特征在于:将氯代邻苯二甲酸酐和二胺类化合物在溶剂的存在下,在40~300℃下,抽真空至-0.02~-0.08MPa反应,反应结束后,经过滤得到滤饼,将所述的滤饼在沸水中洗涤,过滤得到双(氯代邻苯二甲酰亚胺);
    所述的氯代邻苯二甲酸酐的结构式为:
    Figure PCTCN2019074225-appb-100001
    所述的二胺类化合物的结构式为:
    H 2N-R-NH 2
    所述的双(氯代邻苯二甲酰亚胺)的结构通式为:
    Figure PCTCN2019074225-appb-100002
    其中,R为烃基、
    Figure PCTCN2019074225-appb-100003
    Figure PCTCN2019074225-appb-100004
  2. 根据权利要求1所述的双(氯代邻苯二甲酰亚胺)的制备 方法,其特征在于:所述的氯代邻苯二甲酸酐为3-氯代邻苯二甲酸酐、4-氯代邻苯二甲酸酐或3-氯代邻苯二甲酸酐和4-氯代邻苯二甲酸酐的混合物。
  3. 根据权利要求1所述的双(氯代邻苯二甲酰亚胺)的制备方法,其特征在于:所述的氯代邻苯二甲酸酐和所述的二胺类化合物的投料摩尔比为1.5~4:1。
  4. 根据权利要求1所述的双(氯代邻苯二甲酰亚胺)的制备方法,其特征在于:所述的氯代邻苯二甲酸酐和所述的二胺类化合物的总质量与所述的溶剂的投料质量比为1:2~10。
  5. 根据权利要求1所述的双(氯代邻苯二甲酰亚胺)的制备方法,其特征在于:所述的溶剂为在20~80℃下为液体、沸点为150~350℃,不参与所述的氯代邻苯二甲酸酐和所述的二胺类化合物的缩合反应的溶剂。
  6. 根据权利要求1所述的双(氯代邻苯二甲酰亚胺)的制备方法,其特征在于:所述的溶剂为硅油、甘油、碳酸甘油酯、长链烷烃、石蜡、乙二醇碳酸酯、二苯醚、多氯苯中的一种或几种。
  7. 根据权利要求1所述的双(氯代邻苯二甲酰亚胺)的制备方法,其特征在于:反应结束后,过滤得到所述滤饼时的滤液回收后循环使用。
  8. 根据权利要求1所述的双(氯代邻苯二甲酰亚胺)的制备方法,其特征在于:采用抽滤进行所述的过滤。
  9. 根据权利要求1所述的双(氯代邻苯二甲酰亚胺)的制备方法,其特征在于:所述的反应温度为100~200℃。
  10. 根据权利要求1所述的双(氯代邻苯二甲酰亚胺)的制备方法,其特征在于:所述的制备方法的具体实施方式为:将所述的氯代邻苯二甲酸酐和所述的二胺类化合物加入到所述的溶剂中,搅拌混合,加热所述的反应体系的温度至40~300℃,抽真空并保持反应体系的压力为-0.02~-0.08MPa,反应8~16小时,反应完全后,将反应物抽滤得到所述的滤饼,将所述的滤饼加入水中,加热至沸腾,搅拌洗涤,然后经抽滤得到所述的双(氯代邻苯二甲酰亚胺)。
  11. 根据权利要求1至10中任一项所述的双(氯代邻苯二甲 酰亚胺)的制备方法,其特征在于:所述的氯代邻苯二甲酸酐的制备方法为:将邻苯二甲酸酐和水加入反应器中,在25~80℃下搅拌并通入氯气,保温反应8~12小时,然后经过滤、洗涤、脱水制得所述的氯代邻苯二甲酸酐。
PCT/CN2019/074225 2018-02-09 2019-01-31 一种双(氯代邻苯二甲酰亚胺)的制备方法 WO2019154279A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810133141.9 2018-02-09
CN201810133141.9A CN108164452B (zh) 2018-02-09 2018-02-09 一种双(氯代邻苯二甲酰亚胺)的制备方法

Publications (1)

Publication Number Publication Date
WO2019154279A1 true WO2019154279A1 (zh) 2019-08-15

Family

ID=62513478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074225 WO2019154279A1 (zh) 2018-02-09 2019-01-31 一种双(氯代邻苯二甲酰亚胺)的制备方法

Country Status (2)

Country Link
CN (1) CN108164452B (zh)
WO (1) WO2019154279A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110229129B (zh) * 2019-06-22 2023-07-25 上海旭流化学科技有限公司 一种制备4-氯苯酐的设备及其方法
CN114195697B (zh) * 2021-12-21 2023-07-04 四川大学 一种二氯双邻苯二酰亚胺类中间体及其合成方法和应用
CN114014794A (zh) * 2021-12-21 2022-02-08 四川大学 二氯双邻苯二酰亚胺类中间体生产中产物精制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101128426A (zh) * 2004-12-22 2008-02-20 通用电气公司 制备双(卤代邻苯二甲酰亚胺)的方法
CN104704042A (zh) * 2012-10-12 2015-06-10 陶氏环球技术有限公司 密封剂组合物
CN106232678A (zh) * 2014-04-15 2016-12-14 沙特基础工业全球技术有限公司 制备双(邻苯二甲酰亚胺)的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2644640A1 (en) * 2012-03-30 2013-10-02 SABIC Innovative Plastics IP B.V. Polyetherimides, methods of manufacture, and articles formed therefrom

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101128426A (zh) * 2004-12-22 2008-02-20 通用电气公司 制备双(卤代邻苯二甲酰亚胺)的方法
CN104704042A (zh) * 2012-10-12 2015-06-10 陶氏环球技术有限公司 密封剂组合物
CN106232678A (zh) * 2014-04-15 2016-12-14 沙特基础工业全球技术有限公司 制备双(邻苯二甲酰亚胺)的方法

Also Published As

Publication number Publication date
CN108164452A (zh) 2018-06-15
CN108164452B (zh) 2019-06-18

Similar Documents

Publication Publication Date Title
WO2019154279A1 (zh) 一种双(氯代邻苯二甲酰亚胺)的制备方法
CN102604093B (zh) 聚酰亚胺的制备方法
CN110563678A (zh) 一种3,3',4,4'-联苯四甲酸二酐的制备方法
CN112851611A (zh) 一种4,4’-联苯醚四甲酸二酐的制备方法
CN107759787B (zh) 一种聚酰亚胺材料的制备方法
CN110963939B (zh) 一种c16侧链取代的含氟二胺单体的制备方法
CN110963938B (zh) 一种c15侧链取代的含氟二胺单体的制备方法
CN115400793B (zh) 一种制备高纯度双[(3,4-二酸酐)苯基]对苯二甲酸酯的方法
CN112574148B (zh) 一种4,4′-(4,4′-异亚丙基二苯氧基)双(邻苯二甲酸酐)的制备方法
CN110938004B (zh) 一种c14侧链取代的含氟二胺单体的制备方法
CN111018737B (zh) 一种c12侧链取代的含氟二胺单体的制备方法
CN110938005B (zh) 一种c13侧链取代的含氟二胺单体的制备方法
CN111039815B (zh) 一种c11侧链取代的含氟二胺单体的制备方法
CN111116401B (zh) 一种c7侧链取代的含氟二胺单体的制备方法
CN110981746B (zh) 一种c5侧链取代的含氟二胺单体的制备方法
CN114230540A (zh) 一种合成α-BPDA的方法
CN111087322A (zh) 一种c8侧链取代的含氟二胺单体的制备方法
CN113620814B (zh) 一种2,2-双(4-氨基苯基)六氟丙烷的绿色制备方法
CN111039816A (zh) 一种c10侧链取代的含氟二胺单体的制备方法
CN117661366B (zh) 一种高强度耐水复合瓦楞纸的制备工艺
CN114195697B (zh) 一种二氯双邻苯二酰亚胺类中间体及其合成方法和应用
CN1634904A (zh) 芳基双醚二酐类单体的合成方法
CN113234006B (zh) 一种含金刚烷侧基三芳胺的双马来酰亚胺合成方法
CN110963985B (zh) 一种4,4‘-(六氟亚异丙基)二邻苯二甲酸酐的制备方法
CN106699709A (zh) 2,2`‑二(三氟甲基)‑4,4`,5,5`‑联苯二酐的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19750307

Country of ref document: EP

Kind code of ref document: A1