WO2019154135A1 - 一种基于网络抗毁度的微电网可靠性评估方法 - Google Patents
一种基于网络抗毁度的微电网可靠性评估方法 Download PDFInfo
- Publication number
- WO2019154135A1 WO2019154135A1 PCT/CN2019/073263 CN2019073263W WO2019154135A1 WO 2019154135 A1 WO2019154135 A1 WO 2019154135A1 CN 2019073263 W CN2019073263 W CN 2019073263W WO 2019154135 A1 WO2019154135 A1 WO 2019154135A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- network
- shortest path
- damage resistance
- microgrid
- path number
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/12—Discovery or management of network topologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S40/00—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
Definitions
- the invention relates to the reliability evaluation of the micro-grid, and belongs to the field of intelligent micro-grid, and particularly relates to a reliability evaluation method of the micro-grid based on the network damage resistance.
- microgrid system consisting of distributed power sources and energy storage devices has developed rapidly and has become a new hotspot in the field of power system research.
- the advantage of improving power supply reliability is the main driving force for micro-grid research.
- the existing microgrid reliability assessment is mainly aimed at improving the reliability of the microgrid after the introduction of the microgrid, but the research on the reliability assessment of the microgrid itself is scarce, so the objective and accurate microgrid with good portability is reliable.
- Sexual assessment methods are very necessary. Based on computer programs to judge the damage resistance of different network structures, a clear data reference index is established to evaluate the damage resistance values of different microgrid network structures.
- micro-grid optimization operation is more adaptive, with very important theoretical and practical significance.
- the purpose of the present invention is to address the shortcomings of the prior art, and propose a method for reliability assessment of a microgrid based on network damage resistance.
- the solution of the present invention includes the following steps:
- Step 1 Find the adjacency matrix of the abstracted network.
- the microgrid topology map is formed according to the actual connection diagram of the microgrid, and an adjacency matrix corresponding to the network structure is generated accordingly.
- Step 2 Solving the equivalent shortest path number of the corresponding network structure.
- the structural difference between the actual network and the fully connected network is evaluated based on the shortest path number between nodes, and the network reliability is evaluated by the network damage resistance.
- Step 3 Solving the corresponding network structure damage resistance index.
- a network damage resistance index is obtained, which is defined by comparing the difference between the equivalent shortest path number of the fully connected network with the strongest anti-destructive capability, indicating The difference between the target network and the fully connected network invulnerability.
- Step 4 Compare the damage resistance indicators of all the selected network structures, and select the corresponding network structure.
- step (1) is achieved by:
- each busbar and important equipment in the area are used as corresponding nodes to form an adjacency matrix R describing the network structure.
- the dimension is the transformer of all substations in the area.
- step (2) is achieved by:
- the m k (i, j) element represents the shortest path number of length k between the i and j nodes
- the circle multiplication symbol in the formula represents the multiplication of the corresponding elements of the two multiplication matrices, and the right diagonal pair of the matrix
- step (3) is achieved by:
- a network damage resistance index can be obtained, which is defined by comparing the difference between the equivalent shortest path number of the fully connected network with the strongest anti-destructive capability. It shows the difference between the target network and the fully connected network invulnerability:
- the numerator is the sum of the equivalent shortest path numbers of the whole network
- the denominator is the number of end pairs that the N-node network can establish a connection.
- the average equivalent shortest path number is 0 ⁇ Inv ⁇ 1, and the larger the Inv, the more compact the network structure and the stronger the invulnerability.
- step (4) is achieved by:
- step (3) Compare the damage resistance values of different network structures in step (3), sort the damage resistance, and select the network structure with large damage resistance value as the operation or planning scheme.
- the existing microgrid reliability assessment is based on experience to judge the reliability of the microgrid, which is subjective; the time required to directly calculate all reliability indicators is too much, and the indicators that characterize the reliability are numerous and work. low efficiency.
- the invention evaluates the reliability of the microgrid from a quantitative point of view, and the network invulnerability is a certain measure of reliability. It studies the influence of connectivity on network security reliability from the perspective of network topology, and is reliable network. A static indicator of sex. Due to the small calculation load and strong practicability, these features are beneficial to shorten the actual micro-grid maintenance time and user power-off time, and are more competitive in assisting decision-making.
- Figure 1 is a flow chart of the present invention.
- the present invention proposes a microgrid reliability evaluation method based on network invulnerability in the reliability evaluation of the microgrid.
- the method considers the micro-grid safety criterion conditions and the operational constraints, and evaluates the network damage resistance of the micro-grid network structure to evaluate the reliability of the micro-grid.
- This indicator considers the ability of the actual micro-grid to maintain connectivity throughout the network.
- damage resistance can be understood as the ability to maintain network connectivity to the greatest extent possible in the event of a fault or equipment overhaul in the distribution network, thereby reducing the load loss during the fault process.
- a fully connected network is the most compact network and the most resistant to damage.
- the evaluation of the damage resistance of the network can be evaluated by the network damage resistance index based on the equivalent shortest path number through the structural difference between the actual network and the fully connected network of the corresponding number of nodes.
- the solution of the invention comprises the following steps:
- Step 1 Find the adjacency matrix of the abstracted network.
- the microgrid topology map is formed according to the actual connection diagram of the microgrid, and an adjacency matrix corresponding to the network structure is generated accordingly.
- Step 2 Solving the equivalent shortest path number of the corresponding network structure.
- the structural difference between the actual network and the fully connected network is evaluated based on the shortest path number between nodes, and the network reliability is evaluated by using the network damage resistance.
- Step 3 Solving the corresponding network structure damage resistance index
- a network damage resistance index is obtained, which is defined by comparing the difference between the equivalent shortest path number of the fully connected network with the strongest anti-destructive capability, indicating The difference between the target network and the fully connected network invulnerability.
- Step 4 Compare the damage resistance indicators of all the selected network structures, and select the corresponding network structure.
- step (1) is achieved by:
- each busbar and important equipment in the area are used as corresponding nodes to form an adjacency matrix R describing the network structure.
- the dimension is the transformer of all substations in the area.
- step (2) is achieved by:
- the m k (i, j) element represents the shortest path number of length k between the i and j nodes
- the circle multiplication symbol in the formula represents the multiplication of the corresponding elements of the two multiplication matrices, and the right diagonal pair of the matrix
- step (3) is achieved by:
- a network damage resistance index can be obtained, which is defined by comparing the difference between the equivalent shortest path number of the fully connected network with the strongest anti-destructive capability. It shows the difference between the target network and the fully connected network invulnerability:
- the numerator is the sum of the equivalent shortest path numbers of the whole network
- the denominator is the number of end pairs that the N-node network can establish a connection.
- the average equivalent shortest path number is 0 ⁇ Inv ⁇ 1, and the larger the Inv, the more compact the network structure and the stronger the invulnerability.
- step (4) is achieved by:
- step (3) Compare the damage resistance values of different network structures in step (3), sort the damage resistance, and select the network structure with large damage resistance value as the operation or planning scheme.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
本发明公开了一种基于网络抗毁度的微电网可靠性评估方法。本发明考虑微电网安全准则条件以及运行约束下,以微电网网络结构求出的网络抗毁度评估微电网的可靠性全局指标,这一指标考虑实际微电网的全网保持连通的能力。在电力系统领域里,抗毁度则可以理解为当配电网络发生某种故障或者设备检修时,能够最大限度的保持网络的连通性,以此减少故障过程中负荷损失的能力。全连通网络是结构最紧凑的网络,也是抗毁度最强的网络。本发明通过对网络的抗毁度进行评价,可以通过实际网络与其对应节点数的全连通网络的结构性差异,利用基于等效最短路径数的网络抗毁度指标进行评价。
Description
本发明涉及微电网可靠性评估,属于智能微电网领域,具体涉及一种基于网络抗毁度的微电网可靠性评估方法。
目前,由分布式电源以及储能装置构成的微电网系统迅速发展,成为电力系统领域研究的新热点。受到现阶段微型电源制造技术水平的限制,微电网在经济性上的优势不能体现,提高供电可靠性方面的优势是推动微电网研究的主要动力。现有微电网可靠性评估主要针对引入微电网后对微电网可靠性带来的提升作用,但对于微电网自身可靠性评估的相关研究较为匮乏,因此客观、准确具有良好移植性的微电网可靠性评估方法显得十分必要,基于计算机程序判断不同网络结构抗毁度,建立了明确的数据参考指标,以评估不同微电网网络结构形态抗毁度数值。尤其对微电网规划阶段、微电网优化运行更具有适应性,具有十分重要的理论与现实意义。
发明内容
本发明的目的是针对现有技术的不足,提出了一种基于网络抗毁度的微电网可靠性评估方法。
为解决技术问题,本发明的解决方案包括以下步骤:
步骤1、求取抽象出来的网络的邻接矩阵。
依照微电网实际连接关系图形成微电网拓扑图,并据此生成对应网络结构的邻接矩阵。
步骤2、求解对应网络结构等效最短路径数。
基于节点间最短路径数评估实际网络与全连通网络的结构差异,利用网 络抗毁度评价网络可靠性。
步骤3、求解对应网络结构抗毁度指标。
通过等效最短路径数的求解,得出一种网络抗毁度指标,该抗毁度指标是通过比较与抗毁能力最强的全连通网络的等效最短路径数的差异进行定义的,表明了目标网络与全连通网络抗毁度的差异。
步骤4、对比所有待选网络结构的抗毁度指标,选取相应网络结构。
本发明中,所述步骤(1)是通过下述方式实现的:
根据微电网的拓扑,将区域内各母线、重要设备作为对应节点,形成描述网络结构的邻接矩阵R,其维数即区域内所有变电站所有变压器,当节点i与节点j之间存在联络关系时,对应的元素R
ij、R
ji为1,其余元素为0。
本发明中,所述步骤(2)是通过下述方式实现的:
求解等效最短路径数。对于一个N节点的网络,如果节点i与节点j之间有m
ij条长度为k
min的最短路径,则节点i节点j之间的等效最短路径数为
其中,μ(k
min)是相应N节点全连通网络中节点间不大于k
min的路径数;显然,0<em
ij≤1,当且仅当2节点之间有直连边时,em
ij=1。对于任意的节点i与j,若em
ij=1,则为全连通网络。
采用一种基于网络邻接矩阵的k次幂的方法,计算网络所有节点之间最短路长和最短路径数
其中,矩阵M
k中,m
k(i,j)元素表示i,j节点之间长度为k的最短路径数目,公式中圈乘符号表示两个相乘矩阵对应元素相乘,矩阵右斜对角线上元素无意义。
本发明中,所述步骤(3)是通过下述方式实现的:
通过等效最短路径数的求解,可以得出一种网络抗毁度指标,该抗毁度指标是通过比较与抗毁能力最强的全连通网络的等效最短路径数的差异进行定义的,表明了目标网络与全连通网络抗毁度的差异:
其中,分子是全网的等效最短路径数之和,分母是N节点网络可建立连接的端对数目,该函数实际上表示网络的平均等效最短路径数。只有全连通网络任意节点之间的等效最短路径数为1,因而全网平均等效最短路径数Inv=1,抗毁性最强,因其网络结构是最紧凑的,任意非全连通网络的平均等效最短路径数0<Inv<1,Inv越大,则网络结构越紧凑,抗毁性越强。
本发明中,所述步骤(4)是通过下述方式实现的:
对于步骤(3)不同网络结构的抗毁度数值进行比较,进行抗毁度排序,选择抗毁度数值较大的网络结构作为运行或规划方案。
与现有技术相比,本发明的有益效果是:
现有微电网可靠性评估从定性的角度,依照经验判断微电网可靠性,具有较大主观性;直接计算所有可靠性指标所需时间太多,而表征可靠性优劣的指标种类繁多,工作效率低下。
本发明从定量的角度对微电网可靠性进行评估,网络抗毁性是可靠性的一种确定性测度,它从网络拓扑结构的角度,研究连通性对网络安全可靠性的影响,是网络可靠性的一种静态指标。由于计算负荷小,实用性较强,这些特点有利于缩短实际微电网维护时间、用户停电时间,在辅助决策时更具有竞争性。
图1为本发明流程图。
下面结合附图和实施例对本发明作进一步说明。
如图1所示,本发明在微电网可靠性评估中,提出了基于网络抗毁度的微电网可靠性评估方法。该方法考虑微电网安全准则条件以及运行约束下,以微电网网络结构求出的网络抗毁度评估微电网的可靠性全局指标,这一指标考虑实际微电网的全网保持连通的能力。在电力系统领域里,抗毁度则可以理解为当配电网络发生某种故障或者设备检修时,能够最大限度的保持网络的连通性,以此减少故障过程中负荷损失的能力。
全连通网络是结构最紧凑的网络,也是抗毁度最强的网络。对网络的抗毁度进行评价,可以通过实际网络与其对应节点数的全连通网络的结构性差异,利用基于等效最短路径数的网络抗毁度指标进行评价。
本发明的解决方案包括以下步骤:
步骤1、求取抽象出来的网络的邻接矩阵。
依照微电网实际连接关系图形成微电网拓扑图,并据此生成对应网络结构的邻接矩阵。
步骤2、求解对应网络结构等效最短路径数。
基于节点间最短路径数评估实际网络与全连通网络的结构差异,利用网络抗毁度评价网络可靠性。
步骤3、求解对应网络结构抗毁度指标
通过等效最短路径数的求解,得出一种网络抗毁度指标,该抗毁度指标是通过比较与抗毁能力最强的全连通网络的等效最短路径数的差异进行定义的,表明了目标网络与全连通网络抗毁度的差异。
步骤4、对比所有待选网络结构的抗毁度指标,选取相应网络结构。
本发明中,所述步骤(1)是通过下述方式实现的:
根据微电网的拓扑,将区域内各母线、重要设备作为对应节点,形成描述网络结构的邻接矩阵R,其维数即区域内所有变电站所有变压器,当节点 i与节点j之间存在联络关系时,对应的元素R
ij、R
ji为1,其余元素为0。
本发明中,所述步骤(2)是通过下述方式实现的:
求解等效最短路径数。对于一个N节点的网络,如果节点i与节点j之间有m
ij条长度为k
min的最短路径,则节点i节点j之间的等效最短路径数为
其中,μ(k
min)是相应N节点全连通网络中节点间不大于k
min的路径数;显然,0<em
ij≤1,当且仅当2节点之间有直连边时,em
ij=1。对于任意的节点i与j,若em
ij=1,则为全连通网络。
采用一种基于网络邻接矩阵的k次幂的方法,计算网络所有节点之间最短路长和最短路径数
其中,矩阵M
k中,m
k(i,j)元素表示i,j节点之间长度为k的最短路径数目,公式中圈乘符号表示两个相乘矩阵对应元素相乘,矩阵右斜对角线上元素无意义。
本发明中,所述步骤(3)是通过下述方式实现的:
通过等效最短路径数的求解,可以得出一种网络抗毁度指标,该抗毁度指标是通过比较与抗毁能力最强的全连通网络的等效最短路径数的差异进行定义的,表明了目标网络与全连通网络抗毁度的差异:
其中,分子是全网的等效最短路径数之和,分母是N节点网络可建立连接的端对数目,该函数实际上表示网络的平均等效最短路径数。只有全连通网络任意节点之间的等效最短路径数为1,因而全网平均等效最短路径数Inv=1,抗毁性最强,因其网络结构是最紧凑的,任意非全连通网络的平均等 效最短路径数0<Inv<1,Inv越大,则网络结构越紧凑,抗毁性越强。
本发明中,所述步骤(4)是通过下述方式实现的:
对于步骤(3)不同网络结构的抗毁度数值进行比较,进行抗毁度排序,选择抗毁度数值较大的网络结构作为运行或规划方案。
Claims (5)
- 一种基于网络抗毁度的微电网可靠性评估方法,其特征在于包括以下步骤:步骤1、求取抽象出来的网络的邻接矩阵;依照微电网实际连接关系图形成微电网拓扑图,并据此生成对应网络结构的邻接矩阵;步骤2、求解对应网络结构等效最短路径数;基于节点间最短路径数评估实际网络与全连通网络的结构差异,利用网络抗毁度评价网络可靠性;步骤3、求解对应网络结构抗毁度指标通过等效最短路径数的求解,得出一种网络抗毁度指标,该抗毁度指标是通过比较与抗毁能力最强的全连通网络的等效最短路径数的差异进行定义的,表明了目标网络与全连通网络抗毁度的差异;步骤4、对比所有待选网络结构的抗毁度指标,选取相应网络结构。
- 根据权利要求1所述的一种基于网络抗毁度的微电网可靠性评估方法,其特征在于所述步骤(1)是通过下述方式实现的:根据微电网的拓扑,将区域内各母线、重要设备作为对应节点,形成描述网络结构的邻接矩阵R,其维数即区域内所有变电站所有变压器,当节点i与节点j之间存在联络关系时,对应的元素R ij、R ji为1,其余元素为0。
- 根据权利要求2所述的一种基于网络抗毁度的微电网可靠性评估方法,其特征在于所述步骤(2)是通过下述方式实现的:求解等效最短路径数;对于一个N节点的网络,如果节点i与节点j之间有m ij条长度为k min的最短路径,则节点i节点j之间的等效最短路径数为其中,μ(k min)是相应N节点全连通网络中节点间不大于k min的路径数; 显然,0<em ij≤1,当且仅当2节点之间有直连边时,em ij=1;对于任意的节点i与j,若em ij=1,则为全连通网络;采用一种基于网络邻接矩阵的k次幂的方法,计算网络所有节点之间最短路长和最短路径数其中,矩阵M k中,m k(i,j)元素表示i,j节点之间长度为k的最短路径数目,公式中圈乘符号表示两个相乘矩阵对应元素相乘,矩阵右斜对角线上元素无意义。
- 根据权利要求3所述的一种基于网络抗毁度的微电网可靠性评估方法,其特征在于步骤(3)是通过下述方式实现的:通过等效最短路径数的求解,可以得出一种网络抗毁度指标,该抗毁度指标是通过比较与抗毁能力最强的全连通网络的等效最短路径数的差异进行定义的,表明了目标网络与全连通网络抗毁度的差异:其中,分子是全网的等效最短路径数之和,分母是N节点网络可建立连接的端对数目,该函数实际上表示网络的平均等效最短路径数;只有全连通网络任意节点之间的等效最短路径数为1,因而全网平均等效最短路径数Inv=1,抗毁性最强,因其网络结构是最紧凑的,任意非全连通网络的平均等效最短路径数0<Inv<1,Inv越大,则网络结构越紧凑,抗毁性越强。
- 根据权利要求4所述的一种基于网络抗毁度的微电网可靠性评估方法,其特征在于步骤(4)是通过下述方式实现的:对于步骤(3)不同网络结构的抗毁度数值进行比较,进行抗毁度排序,选择抗毁度数值较大的网络结构作为运行或规划方案。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810126276.2 | 2018-02-08 | ||
CN201810126276.2A CN108449202A (zh) | 2018-02-08 | 2018-02-08 | 一种基于网络抗毁度的微电网可靠性评估方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019154135A1 true WO2019154135A1 (zh) | 2019-08-15 |
Family
ID=63191950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/073263 WO2019154135A1 (zh) | 2018-02-08 | 2019-01-25 | 一种基于网络抗毁度的微电网可靠性评估方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108449202A (zh) |
WO (1) | WO2019154135A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110738411A (zh) * | 2019-10-12 | 2020-01-31 | 上海电力大学 | 一种配电网典型接线模式的可靠性分析方法 |
CN111160716A (zh) * | 2019-12-10 | 2020-05-15 | 国网经济技术研究院有限公司 | 基于潮流介数的大电网脆弱性评估方法 |
CN112287494A (zh) * | 2020-10-20 | 2021-01-29 | 中国船舶重工集团公司第七0四研究所 | 一种船舶直流供配电系统网络结构优化设计的方法 |
CN114363851A (zh) * | 2022-01-17 | 2022-04-15 | 北京工商大学 | 一种无线传感器网络抗毁性度量方法 |
CN114881390A (zh) * | 2022-03-03 | 2022-08-09 | 国网湖北省电力有限公司电力科学研究院 | 一种计及电网安全约束的变电站主接线风险评估方法 |
CN116208527A (zh) * | 2023-02-28 | 2023-06-02 | 西安电子科技大学 | 收发信机受限的移动自组织网络的抗毁性评估方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108449202A (zh) * | 2018-02-08 | 2018-08-24 | 浙江大学华南工业技术研究院 | 一种基于网络抗毁度的微电网可靠性评估方法 |
CN110519773B (zh) * | 2019-07-16 | 2022-03-25 | 中国航空无线电电子研究所 | 一种航空网络抗毁性评估方法 |
CN115411740B (zh) * | 2022-09-23 | 2023-06-02 | 中国人民解放军国防科技大学 | 一种基于场景削减的自主供电网络拓扑优化方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110071872A1 (en) * | 2009-04-16 | 2011-03-24 | Lori Frantzve | System and method for infrastructure risk assessment and/or mitigation |
CN103607320A (zh) * | 2013-11-18 | 2014-02-26 | 华北电力大学(保定) | 电力通信网抗毁性评价方法 |
CN108449202A (zh) * | 2018-02-08 | 2018-08-24 | 浙江大学华南工业技术研究院 | 一种基于网络抗毁度的微电网可靠性评估方法 |
-
2018
- 2018-02-08 CN CN201810126276.2A patent/CN108449202A/zh active Pending
-
2019
- 2019-01-25 WO PCT/CN2019/073263 patent/WO2019154135A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110071872A1 (en) * | 2009-04-16 | 2011-03-24 | Lori Frantzve | System and method for infrastructure risk assessment and/or mitigation |
CN103607320A (zh) * | 2013-11-18 | 2014-02-26 | 华北电力大学(保定) | 电力通信网抗毁性评价方法 |
CN108449202A (zh) * | 2018-02-08 | 2018-08-24 | 浙江大学华南工业技术研究院 | 一种基于网络抗毁度的微电网可靠性评估方法 |
Non-Patent Citations (1)
Title |
---|
LI, BEN: "Study on Multi-Objective Reconfiguration of Distribution Network with Distributed Generations Considering Network Survivability", CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 February 2017 (2017-02-15) * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110738411A (zh) * | 2019-10-12 | 2020-01-31 | 上海电力大学 | 一种配电网典型接线模式的可靠性分析方法 |
CN110738411B (zh) * | 2019-10-12 | 2023-05-05 | 上海电力大学 | 一种配电网典型接线模式的可靠性分析方法 |
CN111160716A (zh) * | 2019-12-10 | 2020-05-15 | 国网经济技术研究院有限公司 | 基于潮流介数的大电网脆弱性评估方法 |
CN112287494A (zh) * | 2020-10-20 | 2021-01-29 | 中国船舶重工集团公司第七0四研究所 | 一种船舶直流供配电系统网络结构优化设计的方法 |
CN112287494B (zh) * | 2020-10-20 | 2024-05-31 | 中国船舶重工集团公司第七0四研究所 | 一种船舶直流供配电系统网络结构优化设计的方法 |
CN114363851A (zh) * | 2022-01-17 | 2022-04-15 | 北京工商大学 | 一种无线传感器网络抗毁性度量方法 |
CN114363851B (zh) * | 2022-01-17 | 2024-04-09 | 北京工商大学 | 一种无线传感器网络抗毁性度量方法 |
CN114881390A (zh) * | 2022-03-03 | 2022-08-09 | 国网湖北省电力有限公司电力科学研究院 | 一种计及电网安全约束的变电站主接线风险评估方法 |
CN114881390B (zh) * | 2022-03-03 | 2024-05-14 | 国网湖北省电力有限公司电力科学研究院 | 一种计及电网安全约束的变电站主接线风险评估方法 |
CN116208527A (zh) * | 2023-02-28 | 2023-06-02 | 西安电子科技大学 | 收发信机受限的移动自组织网络的抗毁性评估方法 |
CN116208527B (zh) * | 2023-02-28 | 2024-03-26 | 西安电子科技大学 | 收发信机受限的移动自组织网络的抗毁性评估方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108449202A (zh) | 2018-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019154135A1 (zh) | 一种基于网络抗毁度的微电网可靠性评估方法 | |
CN105976257A (zh) | 基于隶属度函数的模糊综合评价法的电网脆弱性评估方法 | |
CN106779309B (zh) | 关键线路多角度多层次的辨识方法 | |
CN110969347A (zh) | 一种输电网结构形态评估方法 | |
CN107292481B (zh) | 一种基于节点重要度的电网关键节点评估方法 | |
CN110826895A (zh) | 一种台区拓扑识别方法 | |
CN109378835A (zh) | 基于互信息冗余性最优的大规模电力系统暂态稳定评估系统 | |
CN105305507A (zh) | 交直流互联电网的pmu布点优化方法和系统 | |
CN105656036A (zh) | 考虑潮流和灵敏度一致性等值的概率静态安全分析方法 | |
CN114996635A (zh) | 一种配电网参数确定方法、装置、设备及存储介质 | |
CN111080149A (zh) | 一种高中低压一体化配电网络可靠性混合计算方法 | |
CN104063757B (zh) | 一种适应电网不同发展阶段的变电站电气主接线评估方法 | |
CN111191867B (zh) | 电力系统复杂网络的可靠性评估方法 | |
CN112257950A (zh) | 应用于电力市场的交易路径配置方法及计算机可读存储介质 | |
CN106875026B (zh) | 一种电力市场环境下中长期输电网拓展规划的混合性规划方法 | |
Chiodo et al. | Wind farm production estimation under multivariate wind speed distribution | |
CN108923433A (zh) | 一种提高电压稳定性的有效切负荷地点在线选择方法 | |
CN103258114A (zh) | 一种基于多中心性测度的最小断点集脆弱性分析方法 | |
CN108899905B (zh) | 一种复杂电网中关键节点的辨识方法及装置 | |
CN105914739A (zh) | 一种基于网络等值的直流分极接入模式下的落点选择方法 | |
CN107818414B (zh) | 一种大规模交直流混联电网n-2预想事故集的生成方法 | |
CN105762773A (zh) | 一种配电网用户故障自动优化判别方法 | |
CN117216706B (zh) | 一种配电网数据异常溯源方法、系统、计算机设备及介质 | |
CN117709033B (zh) | 降低网损的电力系统耦合网络布局优化方法及装置 | |
CN109245098A (zh) | 一种电网安全分析中故障集的生成方法、装置及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19750467 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19750467 Country of ref document: EP Kind code of ref document: A1 |