WO2019154060A1 - 一种中继节点同步信号的发送方法及装置 - Google Patents

一种中继节点同步信号的发送方法及装置 Download PDF

Info

Publication number
WO2019154060A1
WO2019154060A1 PCT/CN2019/072615 CN2019072615W WO2019154060A1 WO 2019154060 A1 WO2019154060 A1 WO 2019154060A1 CN 2019072615 W CN2019072615 W CN 2019072615W WO 2019154060 A1 WO2019154060 A1 WO 2019154060A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
relay node
information
node
signal information
Prior art date
Application number
PCT/CN2019/072615
Other languages
English (en)
French (fr)
Inventor
袁世通
戴明增
李铕
石小丽
王瑞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020207026261A priority Critical patent/KR102492605B1/ko
Priority to EP19751484.7A priority patent/EP3749003A4/en
Priority to BR112020016301-5A priority patent/BR112020016301A2/pt
Publication of WO2019154060A1 publication Critical patent/WO2019154060A1/zh
Priority to US16/990,483 priority patent/US11811495B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/212Time-division multiple access [TDMA]
    • H04B7/2125Synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15564Relay station antennae loop interference reduction
    • H04B7/15571Relay station antennae loop interference reduction by signal isolation, e.g. isolation by frequency or by antenna pattern, or by polarization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present invention relates to communication technologies, and in particular, to a method and apparatus for transmitting a synchronization signal of a relay node in a wireless communication system.
  • High bandwidth is an inevitable requirement for the development of future wireless networks, including New Radio (NR) for 5th generation mobile networks or 5th generation wireless systems (5G) wireless networks. Due to the low frequency band, such as below the 6G Hertz (GHz) band, the bandwidth is gradually exhausted, and the high frequency band will become the choice of frequency bands that the wireless network seeks to use in the future. In the current NR study, high frequency bands (such as the 20-30 GHz band) and 6G frequency bands are important frequency bands for NR extended bandwidth. On the other hand, a relay node (RN) that introduces enhanced coverage is an important means to solve network capacity and coverage extension. At present, NR considers the application of high frequency, and uses beam-based transmission, which is quite different from the traditional Long Term Evolution (LTE) system. This difference will lead to the deployment of relay nodes that need to overcome some of the problems that traditional networks do not have.
  • LTE Long Term Evolution
  • An embodiment of the present application provides a method and an apparatus for transmitting a relay node synchronization signal, which solves how a relay node may be configured as a layer 2 or layer 3 relay, how to obtain synchronization signal information from the network, and according to the synchronization signal information.
  • a first aspect provides a method for transmitting a synchronization signal, including: a relay node receiving synchronization signal information sent by an upper node through an air interface, where the synchronization signal information includes at least one of the following information: a subcarrier spacing of the synchronization signal, and a relay The frequency band information of the node operation, the information of the relay node physical broadcast channel PBCH, the period of the synchronization signal, and the indication information of the synchronization signal acquisition mode; the relay node transmits the synchronization signal according to the information of the synchronization signal.
  • the relay node sends the synchronization signal information by using an air interface message
  • the air interface message may include an RRC message, such as an RRC reconfiguration message, an RRC connection reestablishment message, or may also be a MAC CE.
  • RRC message such as an RRC reconfiguration message, an RRC connection reestablishment message, or may also be a MAC CE.
  • the NR supports the function of part of the bandwidth
  • different relay nodes in one cell can work on the same or different partial bandwidths as the Donor node, so as to better adapt to the service requirements of different locations in the cell, therefore,
  • the synchronization signal information of the relay node is configured through the air interface, which has greater flexibility and freedom to adapt to the needs of network service changes.
  • the relay node sends a synchronization signal information request to the upper node to request acquisition of the synchronization signal information of the relay node.
  • the relay node actively sends a synchronization signal information request to the upper node, and the relay node may determine the time for acquiring the synchronization signal information according to the current state, and the air interface transmission efficiency is higher.
  • the synchronization signal includes a synchronization signal sequence
  • the synchronization signal information further includes: a physical cell identifier PCI
  • the relay node is configured to generate a synchronization signal sequence according to the PCI.
  • the relay node can determine the synchronization signal sequence transmitted by itself by synchronizing the PCI in the signal information.
  • the synchronization signal information further includes information of a partial bandwidth corresponding to the synchronization signal information
  • the relay node sends the synchronization signal on a part of the bandwidth according to the information of the partial bandwidth corresponding to the synchronization signal information.
  • the synchronization signal information further includes: a transmission power corresponding to the synchronization signal, and the relay node transmits the synchronization signal by using the transmission power.
  • the relay node may transmit the same or different power on different synchronization signal/physical broadcast channel blocks by the configuration of the transmission power, or the partial synchronization signal/physical broadcast channel block is different from the other part of the synchronization signal/physical
  • the transmission power on the broadcast channel block can adapt to the channel conditions in different directions and meet the coverage requirements of the relay node.
  • the method for transmitting the synchronization signal further includes: the relay node receiving an identifier of the relay node sent by the upper node, and acquiring the relay node according to the identifier of the relay node Synchronization signal information.
  • the relay node may determine whether the upper node performs configuration or reconfiguration of the synchronization signal information by using the identifier of the relay node, thereby avoiding the lack of the identifier and causing the wrong configuration.
  • the method for transmitting the synchronization signal further includes: the relay node receives the identifier of another relay node sent by the upper node and the synchronization signal information of the other relay node, and the other The identity of one relay node and the synchronization signal information of the other relay node are forwarded to another relay node.
  • the relay node may determine which subordinate relay node to forward the synchronization signal information to ensure that the subordinate relay node can correctly receive the synchronization signal information.
  • a second aspect provides a method for transmitting synchronization signal information, including: a network node transmitting synchronization signal information to a relay node through an air interface, where the synchronization signal information includes at least one of the following information: a subcarrier spacing of the synchronization signal, and a relay The frequency band information of the node operation, the information of the relay node physical broadcast channel, the period of the synchronization signal, and the indication information of the synchronization signal acquisition mode; and the network node receives the confirmation message sent by the relay node.
  • the network node configures the synchronization signal information to the relay node through the air interface, which can effectively reduce the deployment cost and enable rapid deployment.
  • the network node can configure the relay node to work on the same or different BWP according to the service requirements in the current cell, thereby enhancing the flexibility and freedom of service deployment.
  • the network node receives the synchronization signal information request sent by the relay node, and the synchronization signal information request is used to request the network node to send the synchronization signal information of the relay node to the relay node.
  • the network may perform configuration of the synchronization signal information on the relay node based on the request, and ensure that the relay node that needs to acquire the synchronization signal information is configured, and the signaling efficiency is high.
  • the network node receives the synchronization signal information configuration request sent by the operation management and maintenance node, where the synchronization signal information configuration request is used to instruct the network node to send the synchronization signal information to the relay node.
  • the operation management and maintenance node controls the network node to send synchronization signal information to the relay node, thereby improving the security of the relay node management, and optimizing the relay node in the network through unified management of the operation management and maintenance nodes. Deployment in .
  • the synchronization signal includes a synchronization signal sequence
  • the synchronization signal information further includes: a physical cell identifier PCI, so that the relay node generates a synchronization signal sequence according to the PCI.
  • the network node performs PCI configuration on the relay node, and can control whether the synchronization signal of the relay node is the same as the synchronization signal of the network node, and configure the relay node as the layer 2 relay or layer 3 as needed. Next, to optimize the traffic transmission in the cell.
  • the synchronization signal information further includes information of a partial bandwidth corresponding to the synchronization signal information
  • the relay node transmits the synchronization signal on a part of the bandwidth according to the information of the partial bandwidth corresponding to the synchronization signal information.
  • the synchronization signal information further includes: a transmission power corresponding to the synchronization signal.
  • the relay node may transmit the same or different power on different synchronization signal/physical broadcast channel blocks by using the configuration of the transmission power, or the partial synchronization signal/physical broadcast channel block is different from the other
  • the transmission power on a part of the synchronization signal/physical broadcast channel block can adapt to the channel conditions in different directions and meet the coverage requirements of the relay node.
  • the method for transmitting the synchronization signal further includes: the upper node transmitting the identifier of the relay node together with the synchronization signal information to the relay node, so that the relay node is configured according to the relay node. Identify the synchronization signal information of the acquisition relay node.
  • the network node indicates that the synchronization signal information is configured for the relay corresponding to the identifier of the relay node by using the identifier of the relay node, and avoids generating an error when configuring or reconfiguring multiple relay nodes in one time.
  • the network node sends the identifier of the another relay node and the synchronization signal information of the another relay node to the relay node, so that the relay node will The identity of one relay node and the synchronization signal information of the other relay node are forwarded to another relay node.
  • the network may configure multiple relay nodes at one time, and the identifier of another relay node may enable the relay node to correctly acquire its own synchronization signal information, thereby improving configuration efficiency and saving configuration signaling.
  • the identity of another relay node can help the relay node to correctly forward and route the synchronization signal information.
  • a relay device which is used to implement the function of a method for transmitting a synchronization signal provided by any of the possible implementation manners of the foregoing first aspect
  • the hardware implementation can also be implemented by hardware implementation of the corresponding software.
  • the hardware or software includes one or more corresponding units of the above functions.
  • the structure of the relay device includes a processor and a memory, where the code stores data and data, and the memory is coupled to the processor, and the processor is configured to support the user equipment to perform the first Aspect or method of transmitting a synchronization signal provided by any of the possible implementations of the first aspect.
  • the relay device may further include a communication interface coupled to the processor or the memory.
  • a network device configured to implement the function of a synchronization signal sending method provided by any of the foregoing second aspect or the second aspect of the second aspect, the function It can be implemented by hardware or by software.
  • the hardware or software includes one or more corresponding units of the above functions.
  • the structure of the network device includes a processor and a memory, where the memory and/or the code required by the baseband processor are stored, and the memory is coupled to the processor, and the processor and/or baseband processing
  • the device is configured to support the function of the network device to perform the method of transmitting the synchronization signal provided by the second aspect or any of the possible implementations of the second aspect.
  • the network device can also include a communication interface coupled to the memory or processor.
  • a still further aspect of the present application provides a computer readable storage medium having stored therein instructions that, when executed on a computer, cause the computer to perform the first aspect or the first aspect described above
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the synchronization provided by any of the above first aspect or any of the possible implementations of the first aspect A method of transmitting a signal, or a method of transmitting a synchronization signal provided by any of the possible implementations of the second aspect or the second aspect described above.
  • a communication system including a plurality of devices, including a relay device and a network device; wherein the relay device is a relay device provided by the foregoing aspects, The method for transmitting a synchronization signal provided by the relay device, which is provided by any one of the foregoing first aspect or the first aspect of the first aspect; and/or the network device is provided by the network device provided in the foregoing aspects, for supporting The network device performs the method for transmitting the synchronization signal provided by the second aspect or any of the possible implementation manners of the second aspect.
  • a device which is a processor, an integrated circuit or a chip, for performing the steps performed by a processing unit of a relay node in an embodiment of the present invention, for example, obtaining a sending by a superior node Synchronization signal information, a synchronization signal is generated based on the synchronization signal information, and the synchronization signal is output.
  • the content of the synchronization signal information, the transmission and acquisition of the synchronization signal information have been described in the foregoing other aspects or embodiments, and are not described herein again.
  • the apparatus being a processor, an integrated circuit or a chip for performing the steps performed by the processing unit of the network device in the embodiment of the present invention to generate synchronization of the relay node Signal information and output.
  • the content of the synchronization signal information, the transmission and acquisition of the synchronization signal information have been described in the foregoing other aspects or embodiments, and are not described herein again.
  • the apparatus is further configured to acquire a synchronization signal information request sent by the relay node, where the synchronization signal information request is used to request the network device to send the synchronization signal information of the relay device to the relay device; Synchronizing signal information of the relay device is generated and output according to the synchronization signal information request.
  • 1-1 is an IAB communication system provided by an embodiment of the present application.
  • FIG. 1-3 are respectively a user plane and a control plane protocol stack structure of a layer 2 relay system according to an embodiment of the present application;
  • FIG. 1-5 are respectively a user plane and a control plane protocol stack structure of a layer 3 relay system according to an embodiment of the present application;
  • 2-1 and 2-2 are examples of symbol positions of a SS/PBCH Block in a radio frame according to an embodiment of the present application;
  • FIG. 3 is a flowchart of a process for acquiring a synchronization signal and a sending process by a relay node according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of obtaining, by a relay node, synchronization signal information from a Donor node according to an embodiment of the present disclosure
  • FIG. 5 is a flowchart of configuring a synchronization signal for a relay node by a Donor node according to an embodiment of the present disclosure
  • FIG. 6 is a flowchart of requesting synchronization signal information of a relay node according to an embodiment of the present disclosure
  • FIG. 7 is a flowchart of acquiring synchronization signal information of a relay node in an access process according to an embodiment of the present disclosure
  • FIG. 8 is a flowchart of a relay node acquiring synchronization signal information in a contention resolution message according to an embodiment of the present disclosure
  • FIG. 9 is a flowchart of acquiring synchronization signal information in a two-step random access process according to an embodiment of the present application.
  • FIG. 10 is a flowchart of a Donor node handover according to an embodiment of the present application.
  • FIG. 11 is a flowchart of a synchronization signal configuration with a multi-level relay node according to an embodiment of the present application
  • FIG. 12 is a schematic structural diagram of a relay device according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a possible logical structure of a network device according to an embodiment of the present application.
  • NR is considering introducing an integrated Access and Backhaul (IAB) solution to further reduce deployment costs and increase deployment flexibility, thereby introducing integrated access backhaul.
  • IAB integrated Access and Backhaul
  • the relay node integrated with the backhaul is referred to as a relay transmission reception point (rTRP) to distinguish the relay of the LTE.
  • rTRP relay transmission reception point
  • 3GPP Third Generation Partnership Project
  • NR IAB as the standardization target for Release 16, which is currently in its infancy.
  • the scheme in which the base station transmits the synchronization signal in the NR has been determined in the standard, and the difference from the LTE synchronization signal transmission method is that the transmission of the air interface synchronization signal in the NR is based on the synchronization signal/physical broadcast due to the introduction of the high frequency.
  • SS/PBCH Block Synchronization Signal/Physical Broadcast Channel Block
  • Numerology refers to physical layer waveform parameters, including Subcarrier Spacing (SCS) and Cyclic Prefix (CP) configuration.
  • 1-1 is a schematic structural diagram of a communication system to which the embodiment of the present application is applied.
  • the communication system mentioned in the embodiment of the present application includes, but is not limited to, a Narrow Band-Internet of Things (NB-IoT) system, a Long Term Evolution (LTE) system, and a next-generation 5G.
  • NB-IoT Narrow Band-Internet of Things
  • LTE Long Term Evolution
  • 5G next-generation 5G.
  • D2D Device to Device
  • An IAB system includes at least one base station 100, and one or more User Equipment (UE) 101 served by the base station 100, one or more relay nodes rTRP 110, and one or more services served by the rTRP 110
  • the UE 111 typically the base station 100 is referred to as a Donor Next Generation Node B (DgNB), and the rTRP 110 is connected to the base station 100 via a wireless backhaul link 113.
  • the donor base station is also referred to herein as a host node, ie, a Donor node.
  • the base station includes, but is not limited to, an evolved Node B (eNB), a radio network controller (RNC), a Node B (NB), a base station controller (BSC), Base Transceiver Station (BTS), home base station (for example, Home evolved NodeB, or Home Node B, HNB), Baseband Unit (BBU), or Next Generation New Radio (NR, New Radio) base station ( Such as gNB) and so on.
  • eNB evolved Node B
  • RNC radio network controller
  • NB Node B
  • BSC base station controller
  • BTS Base Transceiver Station
  • home base station for example, Home evolved NodeB, or Home Node B, HNB
  • BBU Baseband Unit
  • NR Next Generation New Radio
  • the integrated access and backhaul system may also include a plurality of other relay nodes, such as rTRP 120 and rTRP 130, which are connected to the relay node rTRP 110 via wireless backhaul link 123 for access to the network, rTRP 130
  • the rTRP 120 serves one or more UEs 121
  • the rTRP 130 serves one or more UEs 131 by connecting to the relay node rTRP 110 over the wireless backhaul link 133.
  • both relay node rTRP 110 and rTRP 120 are connected to the network via a wireless backhaul link.
  • the wireless backhaul link is from the perspective of a relay node, such as the wireless backhaul link 113 is a backhaul link of the relay node rTRP 110, and the wireless backhaul link 123 is a relay node rTRP 120.
  • Backhaul link As shown in Figure 1-1, a relay node, such as 120, can connect to another network through a wireless backhaul link, such as 123, to connect to another network, and the relay node can go through multiple levels of wireless. The node is connected to the network.
  • a node that provides wireless backhaul link resources such as 110
  • a superior node of the relay node 120 is referred to as a superior node of the relay node 120
  • 120 is referred to as a lower node of the relay node 110.
  • a subordinate node can be regarded as a user equipment UE of a superior node. It should be understood that in the integrated access and backhaul system shown in FIG. 1-1, one relay node is connected to one upper node, but in the future relay system, in order to improve the reliability of the wireless backhaul link, one relay A node, such as 120, may have multiple upper nodes serving a relay node at the same time.
  • the rTRP 130 in the figure may also be connected to the relay node rTRP 120 through the backhaul link 134, that is, both the rTRP 110 and the rTRP 120 are The superior node of rTRP 130.
  • the user equipment UE 101, 111, 121, 131 may be a stationary or mobile device.
  • the mobile device can be a mobile phone, a smart terminal, a tablet, a laptop, a video game console, a multimedia player, or even a mobile relay node.
  • a stationary device is usually located at a fixed location, such as a computer, an access point (connected to a network via a wireless link, such as a stationary relay node), and the like.
  • the name of the relay node rTRP 110, 120, 130 does not limit the scenario or network it deploys, and may be any other name such as relay, RN, and the like.
  • the use of rTRP in this application is only for convenience of description.
  • the wireless links 102, 112, 122, 132, 113, 123, 133, 134 may be bidirectional links, including uplink and downlink transmission links.
  • the wireless backhaul links 113, 123, 133, 134 may be used by the upper node to provide services for the lower nodes, such as the upper level.
  • the node 100 provides a wireless backhaul service for the lower node 110. It should be understood that the uplink and downlink of the backhaul link may be separate, ie, the uplink and downlink are not transmitted through the same node.
  • the downlink transmission refers to a superior node, such as node 100, a lower-level node, such as node 110, transmitting information or data
  • uplink transmission refers to a lower-level node, such as node 110, to a higher-level node, such as node 100, transmitting information or data.
  • the node is not limited to being a network node or a UE.
  • the UE may act as a relay node to serve other UEs.
  • the wireless backhaul link may in turn be an access link in some scenarios.
  • the backhaul link 123 may also be regarded as an access link for the node 110, and the backhaul link 113 is also an access link of the node 100.
  • the above-mentioned upper-level node may be a base station or a relay node
  • the lower-level node may be a relay node or a UE with a relay function.
  • the lower-level node may also be a UE.
  • the relay nodes shown in Figure 1-1 can exist in two forms: one exists as an independent access node, and can independently manage UEs accessing the relay node.
  • the relay node usually has an independent physical cell identifier (PCI).
  • PCI physical cell identifier
  • the relay of this form usually needs to have a complete protocol stack function, such as a radio resource control (RRC) function.
  • RRC radio resource control
  • the relay is usually called a layer 3 relay; the relay of another form does not have a separate PCI, and it belongs to the same cell as the Donor node, such as Donor eNB and Donor gNB, and does not manage the user.
  • the protocol stack of layer 2 and layer 3 relay is shown in Figure 1-2 to Figure 1-5.
  • a Donor node refers to a node that can access the core network through the node, or an anchor base station of the radio access network, through which the base station can access the network.
  • the anchor base station is responsible for data processing of the Packet Data Convergence Protocol (PDCP) layer, or is responsible for receiving data of the core network and forwarding it to the relay node, or receiving data of the relay node and forwarding it to the core network.
  • PDCP Packet Data Convergence Protocol
  • FIG 1-2 and Figure 1-3 are the protocol stack protocol diagrams of the user plane and control plane of the Layer 2 relay system, respectively.
  • the Next Generation User Plane (NG-UP) in the figure is mainly a user plane gateway, and the Next Generation Control Plane (NG-CP) is a control plane node.
  • the user plane protocol layer of the UE includes: a physical layer (Physical Layer, PHY), a medium access control (MAC) layer, a radio link control (Radio, Link Control, RLC) layer, a PDCP layer, and service data.
  • SDAP Service Data Adaptation Protocol
  • IP Internet Protocol
  • the air interface protocol layer of the layer 2 relay and the UE mainly includes: a PHY layer, a MAC layer, and an RLC layer, and a protocol stack of an interface that communicates with the Donor node through the backhaul link includes: a PHY layer, a MAC layer, an RLC layer, and a suitable layer.
  • Adaptation Adpt.
  • the protocol stack of the interface of the Donor node, that is, the DgNB and the layer 2 relay includes: a PHY layer, a MAC layer, an RLC layer, an Adpt. layer, a PDCP layer, and a SDAP layer.
  • the DgNB and the NG-UP are generally wired connections, and the service bearer is usually established through a tunnel.
  • the protocol stack of the DgNB corresponding to the NG-UP includes: L1 (Layer 1, L1), L2 (Layer 2, L2), IP layer, and user data.
  • the protocol stack of the NG-UP includes: L1, L2, IP layer, UDP layer, GTP-U layer, and IP layer.
  • Figure 1-3 shows the control plane protocol stack structure of the Layer 2 relay system.
  • the protocol stack of the UE includes: a PHY layer, a MAC layer, an RLC layer, a PDCP layer, an RRC layer, and a Non-Access Stratum (NAS), a Layer 2 relay control plane protocol stack, and a user plane protocol stack. No longer.
  • the control plane interface protocol stack of the DgNB and Layer 2 relay includes: a PHY layer, a MAC layer, an RLC layer, an Adpt. layer, a PDCP layer, and an RRC layer.
  • the DgNB and the core network control plane network element NG-CP are usually connected by wire.
  • the protocol stack of the DgNB on the interface includes: L1, L2, IP layer, Stream Control Transmission Protocol (SCTP) layer, and S1.
  • S1 Application Protocol (S1-AP) layer where S1 is the code of the interface.
  • the protocol stack of the NG-CP on the S1 interface includes: an L1, an L2, an IP layer, an SCTP layer, an S1-AP layer, and a NAS layer, where the NAS layer corresponds to the NAS layer of the UE.
  • Figures 1-4 and 1-5 are the user plane and control plane protocol stack structures of the Layer 3 relay system, respectively.
  • the layer 3 relay and the UE support a complete air interface protocol stack on the air interface, including: PHY layer, MAC layer, RLC layer, PDCP layer, and SDAP layer.
  • the protocol stack of the relay node includes: a PHY layer, a MAC layer, an RLC layer, a PDCP layer, an IP layer, a UDP layer, and a GTP-U layer.
  • the protocol stack of the S1 interface of the DgNB includes: a PHY layer, a MAC layer, an RLC layer, a PDCP layer, an IP layer, a UDP layer, and a GTP-U layer.
  • the user plane protocol stack structure of other peer 2 relay systems will not be described again.
  • Figure 1-5 shows the control plane protocol stack structure of the Layer 3 relay protocol.
  • the layer 3 relay system control plane protocol stack structure, the layer 3 relay and the UE support the complete control plane protocol stack on the air interface, including: PHY layer, MAC layer , RLC layer, PDCP layer, and RRC layer.
  • the protocol stack of the interface between the layer 3 relay and the DgNB includes: a PHY layer, a MAC layer, an RLC layer, a PDCP layer, an IP layer, an SCTP layer, and an S1-AP layer.
  • the protocol stacks of the DgNB and Layer 3 relay interfaces include: a PHY layer, a MAC layer, an RLC layer, a PDCP layer, an IP layer, an SCTP layer, and an S1-AP layer.
  • the control plane protocol stack structure of other peer 2 relay systems will not be described again.
  • the relay node of any of the above forms needs to send a synchronization signal to the UE or device it serves in order to provide the service correctly.
  • the synchronization signal in the NR differs from LTE in that it includes not only the synchronization signal sequence but also the resources of the synchronization signal block SS/PBCH Block at the time of transmission of the radio frame.
  • the generation of the synchronization signal sequence mainly depends on the PCI, and a Primary Synchronization Signal (PSS) sequence and a Secondary Synchronization Signal (SSS) sequence can be generated through the PCI.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • 2-1 and 2-2 are examples of symbol positions of a SS/PBCH Block in a radio frame according to an embodiment of the present application.
  • Figure 2-1 shows the symbol position map of the SS/PBCH Block in the 15KHz (Kilo Herz, KHz) and 30KHz subcarrier spacing in the time domain
  • Figure 2-2 shows the SS/PBCH Block in the 120KHz and 24KHz subcarrier spacing.
  • the symbol position map of the domain shows the time-domain symbol position map of the SS/PBCH Block in 1 ms
  • Figure 2-2 shows the time-domain symbol position map of the SS/PBCH Block in 0.25 ms.
  • 211 and 221 in Figure 2-1 represent one symbol of 15KHz and 30KHz subcarrier spacing, respectively, for 15KHz subcarrier spacing, 1ms includes 14 symbols, and for 30KHz subcarrier spacing, 1ms includes 28 symbols, no matter how much subcarrier spacing
  • a time slot includes 14 symbols. Therefore, for a 15KHz subcarrier interval, 1ms is a time slot, and for a 30KHz subcarrier interval, 1ms includes 2 time slots, that is, the symbol 0-13 in Figure 2-1 is one.
  • the time slot, 14-27 is another time slot. Similarly, within 0.125 ms, for 120 KHz, including 2 time slots, for 240 KHz, including 4 time slots.
  • two SS/PBCH blocks, 212 and 213, are included in 1 ms, and the sign bit start positions are 2 and 8, respectively.
  • the starting position of the symbol bits of each SS/PBCH Block is ⁇ 4, 8, 16, 20 ⁇ , and there are 4 different SS/PBCHs.
  • Blocks are 222, 223, 224, 225, respectively.
  • the other is that the starting position of the sign bit of each SS/PBCH block is ⁇ 2, 8, 16, 22 ⁇ , and the four different SS/PBCH blocks are 226, 227, 228, 229, respectively.
  • each SS/PBCH Block is ⁇ 4, 8, 16, 20 ⁇ , respectively, and 4 different SS/PBCH Blocks are 232, 233, 234, 235, 240KHz, and each SS/PBCH.
  • the sign bit positions of the block are ⁇ 8,12,16,20,32,36,40,44 ⁇ , and the 8 different SS/PBCH blocks are 242,243,244,245,246,247,248. , 249.
  • Each of the above SS/PBCH Blocks occupies 4 sign bits in the time domain. Since the number of SS/PBCH blocks defined by NR can be 4, 8, 64, the value of L will be different for different subcarrier spacings.
  • L For 15KHz and 30KHz subcarrier spacing, the maximum L is 8, for 120KHz and 240KHz. Carrier spacing, L is 64. For 15KHz and 30KHz subcarrier spacing, for bands less than 3GHz (Giga Herz, GHz), L is 4, for bands greater than 3GHz to 6GHz, L is 8, for bands greater than 6GHz, L is 64. Therefore, the value of L can be determined by the frequency band.
  • the SS/PBCH Block in 1ms for 15KHz and 30KHz subcarrier spacing is shown in Figure 2-1.
  • the SS/PBCH Block in 0.125ms for 120KHz and 240KHz subcarrier spacing is shown in Figure 2-2.
  • the transmission is performed according to ⁇ 2, 8 ⁇ + 14*n, where ⁇ 2, 8 ⁇ represents the index of the first symbol of the SS/PBCH Block, that is, the position, the same applies hereinafter, and details are not described herein again.
  • ⁇ 2, 8 ⁇ represents the index of the first symbol of the SS/PBCH Block, that is, the position, the same applies hereinafter, and details are not described herein again.
  • n 0, 1
  • n 0, 1, 2, 3.
  • the position of the SS/PBCH block in a synchronization signal period is traversed by the above formula by the above formula, and the same applies hereinafter, and details are not described herein again.
  • n 0,1,2,3,5,6,7,8,10,11, 12,13,15,16,17,18.
  • n 0,1,2,3,5,6, 7,8,10,11,12,13,15,16,17,18.
  • the above is mainly the starting position of the SS/PBCH block in the time domain.
  • one SS/PBCH block occupies 4 symbols, and NR specifies that the PSS occupies the zeroth sign bit (the symbol number is from 0 to 3), and the SSS occupies the first
  • the second sign bit the PBCH occupies the second and third sign bits.
  • the SS/PBCH block occupies a continuous 240 subcarriers (numbered from 0-239) in the frequency domain, the subcarriers occupying the zeroth sign bit of the PSS are 56-182, and 0-55 and 183-239 are set to zero.
  • the subcarriers in which the SSS occupies the second sign bit are 56-182, and 48-55 and 183-191 are set to 0.
  • Subcarriers 0-47 and 192-239 of the second sign bit, and 0-239 subcarriers of the first and third sign bits are used for transmission of the PBCH.
  • the transmission of the synchronization signal also needs to determine the location of the frequency domain resource. Therefore, the synchronization signal information also includes the information of the partial bandwidth (BWP) corresponding to the synchronization signal information, and the relay The node transmits the synchronization signal on a part of the bandwidth according to the information of the partial bandwidth corresponding to the synchronization signal information.
  • BWP partial bandwidth
  • the relay The node transmits the synchronization signal on a part of the bandwidth according to the information of the partial bandwidth corresponding to the synchronization signal information.
  • one or more BWPs can be supported. If there are multiple BWPs, and different BWPs can transmit synchronization signals, then information of the BWP needs to be specified.
  • the synchronization signal further includes information of the PBCH
  • the information of the PBCH mainly includes at least one of the following information: an index explicit indication (ssb-Index Explicit), a half frame index (halfFrameIndex), a system frame number (systemFrameNumber), and a common subcarrier spacing.
  • subCarrierSpacingCommon subcarrier offset
  • ssb-subcarrierOffset Demodulation Reference Signal (DMRS) type A position (dmrs-TypeA-Position)
  • SIB1 PDCCH configuration pdcchConfigSIB1
  • cell blocking cellBarred
  • same Frequency cell reselection IntraFreqReselection
  • the relay node receives the synchronization signal information sent by the upper node through the air interface, and the synchronization signal information includes at least one of the following information: the subcarrier spacing of the synchronization signal, and the frequency band information of the relay node working.
  • the synchronization signal information further includes: a physical cell identifier (PCI), the PCI is used to generate a synchronization signal sequence, and the synchronization signal sequence is transmitted on the synchronization signal resource.
  • PCI physical cell identifier
  • the frequency band information of the working of the relay node refers to a frequency range in which the communication device operates.
  • Frequency Division Duplexing including uplink and downlink frequency bands
  • the communication device includes but is not limited to a base station and a relay node. And terminal.
  • the frequency band information of the working of the relay node is corresponding by number.
  • the frequency band of two Time Division Duplexing is defined in the 3GPP 38.813 protocol: n77 and n78, and the corresponding uplink of n77 (Uplink, The UL) frequency range is 3300MHz-4200MHz, the downlink (DL) frequency range is 3300MHz-4200MHz, the n78 corresponds to the UL frequency range of 3300MHz-3800MHz, and the DL frequency range is 3300MHz-3800MHz.
  • the frequency band information of the working of the relay node may be indicated by the number of the frequency band, or may be other methods, such as giving an operating frequency range, which is not limited in this embodiment.
  • the relay node can determine the number and location of the SS/PBCH block by including the frequency band information of the relay node operation in the synchronization signal information. For details, refer to the following embodiments.
  • the period of the synchronization signal refers to the period of the SS/PBCH Block transmission under the different subcarrier intervals described above, and the SS/PBCH Block transmitted in one SS/PBCH Block period is different.
  • the different SS/PBCH Blocks refer to 212 and 213, or 222, 223, 224, 225, etc. as shown in FIG. 2-1, which are not enumerated here, and those skilled in the art should understand that SS/PBCH Block
  • the period refers to the interval at which a group of SS/PBCH Blocks are transmitted at the air interface, and one group of SS/PBCH Blocks belongs to the same period. Since the period of the synchronization signal of the NR is configurable, it is necessary to specify the period of the synchronization signal so that the relay node can correctly configure the transmission period of the synchronization signal.
  • the layer 3 relay has an independent physical cell identifier PCI, and the relay without the physical cell identifier PCI can be further divided into layer 2 relay and layer 1
  • the layer 1 relay mainly amplifies the signal, and there is no higher layer protocol processing, and the high layer protocol refers to the protocol above the MAC layer or the MAC layer.
  • the relay mainly includes layer 2 and layer 3 relays, and the layer 2 relay has the function of layer 2 protocol stack, including MAC, RLC, and/or PDCP functions.
  • NR implements control and architecture. The bearer separation is usually integrated with the RRC and PDCP functions. Therefore, the Layer 2 trunk mainly includes the MAC and RLC functions.
  • the present embodiment does not limit the function placement of the layer 2 protocol stack.
  • it may include MAC, RLC, and PDCP, and in some scenarios, only the MAC, RLC, and/or adaptation layers may be included.
  • the MAC, the RLC, and the RRC function may be included.
  • the MAC, the RLC, the PDCP, and the RRC function are included in the scenario.
  • the synchronization signal is different from the Donor node because the PCI and Donor nodes are different.
  • the synchronization signal of the relay node is the same as that of the Donor node. It should be understood that the synchronization signal of the relay node here is the same as the Donor node, which means that the PSS, SSS, and PBCH of the synchronization signal are the same, but the Donor node
  • the period of the relay node may be different from that of the relay node. Depending on the specific implementation, this embodiment does not impose restrictions.
  • the indication information of the synchronization signal acquisition mode is mainly used in the layer 2 relay scenario. If only the Donor node and the relay node support working on the same carrier frequency, and there is no other BWP, the synchronization of the relay node at this time. The signal is exactly the same as the synchronization signal of the Donor node, and the relay node can obtain all the synchronization signal information from the synchronization signal of the Donor node. At this time, the indication information of the synchronization signal acquisition manner is used to indicate whether the synchronization signal information is configured by the network, such as Donor, or is automatically acquired by the relay node from the Donor node synchronization information. It should be understood that if it is an explicit configuration, that is, the synchronization signal information is configured by the network, the indication information of the synchronization signal acquisition manner may not be required.
  • the relay node In order to enable the relay node to provide services for the UE, the relay node first needs to obtain the correct synchronization signal information and send it in the air interface.
  • the method is: the relay node receives the synchronization signal information sent by the upper node through the air interface, and the synchronization signal
  • the information includes at least one of the following information: subcarrier spacing of the synchronization signal, frequency band information of the relay node operation, information of the relay node physical broadcast channel PBCH, period of the synchronization signal, indication information of the synchronization signal acquisition mode, and relay
  • the node transmits a synchronization signal according to the information of the synchronization signal.
  • the synchronization signal may include a synchronization signal sequence
  • the synchronization signal information may further include a physical cell identifier PCI
  • the relay node generates a synchronization signal sequence according to the PCI.
  • the generation of a specific synchronization signal sequence is generated by a generator polynomial, which should be familiar to those skilled in the art and will not be described again.
  • the synchronization signal information further includes partial bandwidth BWP information corresponding to the synchronization signal information, and the relay node transmits the synchronization signal on the partial bandwidth BWP according to the partial bandwidth BWP information corresponding to the synchronization signal.
  • the synchronization signal information further includes: a transmission power corresponding to the synchronization signal, and the relay node transmits the synchronization signal by using the transmission power.
  • the relay node transmits the synchronization signal information through the air interface, which can effectively reduce the deployment cost and enable rapid deployment.
  • the synchronization signal in the NR is different from the traditional LTE synchronization signal, the synchronization signal information is automatically obtained through the air interface, thereby avoiding manual configuration and improving configuration efficiency.
  • the NR supports the function of the partial bandwidth BWP, different relay nodes in one cell can work on the same or different BWPs as the Donor node, so as to better adapt to the service requirements of different locations in the cell, therefore,
  • the synchronization signal information of the relay node is configured through the air interface, which has greater flexibility and freedom to adapt to the needs of network service changes.
  • FIG. 3 is a flowchart of a process for acquiring a synchronization signal and a sending process by a relay node according to an embodiment of the present disclosure.
  • the network element included in FIG. 3 has a base station, such as a gNB (Next Generation Node B, gNB), an Access and Mobility Management Function (AMF)/Session Management Function (SMF), and a user plane.
  • gNB Next Generation Node B
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • UPF Unified Data Management
  • AUSF Authentication Server Function
  • OAM Operations, Administration and Maintenance
  • the AMF/SMF is also referred to as a Mobility Management Entity (MME), and the UPF is also referred to as a Serving Gateway.
  • MME Mobility Management Entity
  • UPF is also referred to as a Serving Gateway.
  • S-GW Packet Data Network Gateway
  • P-GW Packet Data Network Gateway
  • HSS Home Subscriber Server
  • the relay node is started, that is, the relay node is powered on and started.
  • the relay node performs an attach process as a normal UE during the power-on startup process, and the attach process includes an authentication process, and the authentication process is completed through interaction between the AMF/SMF and the UDM/AUSF.
  • the relay node is identified as a relay node.
  • the relay node can be attached to the current base station and the network element AMF/SMF of the core network.
  • the base station establishes a secure connection to the OAM node according to the APN (Access Point Number, APN) provided by the relay node.
  • APN Access Point Number
  • the relay node may be connected to the OAM node through the user plane gateway UPF, and the OAM node identifies the identifier of the relay node, when determining After the node is a legal relay node, the OAM node provides initial parameters for the relay node, where the initial parameters include a list of Donor nodes.
  • the relay node After the relay node obtains the initial parameters from the OAM node, the base station currently accessed by the relay node may not be the base station in the Donor node list, or the AMF/SMF selected by the currently accessed base station does not support the connection of the relay node. In, then the relay node treats itself as the UE and performs a Detach process to clear the data in the currently accessed base station and AMF/SMF, thereby completing the first phase process, ie, the first phase is relaying
  • the node accesses itself as a UE and obtains initial parameters.
  • the detachment process is defined by standard protocols, such as the 3GPP 38.501 protocol, and should be well known to those of ordinary skill in the art and will not be described again.
  • the relay node performs the second phase process after obtaining the foregoing Donor node list. Since the relay node has obtained the Donor node list, it can perform the attach process itself as a relay node. In this process, the relay node accesses a candidate node in the initial configuration parameters of the first phase, and performs the authentication process to the AMF/SMF and the UDM/AUSF. After the authentication is passed, the Donor node is relayed. The process of establishing a bearer to the control plane of the AMF/SMF. The Donor node establishes a user plane secure channel connection to the OAM node for the relay node so that the relay node can obtain configuration information from the OAM node.
  • the OAM node After the relay node is connected to the OAM node, the OAM node further configures the relay node.
  • the OAM node configures the relay node to include information such as synchronization signal information and a Cell Global Identifier (CGI), and sends the information to the relay node through the air interface of the Donor node.
  • CGI Cell Global Identifier
  • the synchronization signal information is as described above and will not be described again.
  • the name of CGI may be different in different systems. For example, it is also called Evolved Universal Terrestrial Radio Access Network (CGI, ECGI) in LTE. It should be understood that the field Any changes or substitutions that are easily conceived by a person skilled in the art should fall within the technical scope disclosed in the present embodiment.
  • the OAM module of the relay node establishes a connection to the OAM node through IP, and the transmission of its data, such as configuration parameters, is established on the IP layer.
  • the relay node If the synchronization signal information includes the indication information of the synchronization signal acquisition mode, and the relay node is instructed to acquire the synchronization signal information through the synchronization signal of the Donor node, the relay node generates the synchronization signal by using the synchronization signal information acquired from the Donor node, and transmits the synchronization signal. There is no need to obtain synchronization signal information from the network.
  • the synchronization signal information may include only the indication information of the synchronization signal acquisition mode, and the relay node is instructed to acquire the synchronization signal information from the Donor node, and the synchronization signal information does not include other synchronization signal information parameters, and details are not described herein. .
  • step S306 further includes an acknowledgement message after the relay node receives the synchronization signal and the CGI information, that is, sends an acknowledgement message to the network, indicating that the relay node receives the configuration information.
  • the OAM configuration information is application layer data above the IP layer, that is, OAM control/configuration data.
  • the relay node sends a synchronization signal according to the information of the synchronization signal.
  • the UE served by the relay node may select to camp or access to the relay node by sending a synchronization signal to the middle node. If the synchronization signal information only includes the indication information of the synchronization signal acquisition mode, the relay node automatically acquires the synchronization signal information from the Donor node, and generates a synchronization signal and a PBCH information of the relay node according to the acquired synchronization signal information, and performs the air interface in the air interface. send.
  • the relay node may also initiate the establishment process of S1 and X2, and the process of updating the bearer configuration and updating the cell information by the Donor node.
  • the above process is not shown in Fig. 3, but the establishment process of S1 and X2 exists and will not be described again.
  • the OAM node in the above figure is only a functional entity. In this embodiment, only the OAM node is taken as an example. In a future network, the function can be integrated into other nodes, such as AMF/SMF, and this embodiment does not impose constraints. It should be understood that the OAM node may also be any other entity or module having a configuration function, and any changes or substitutions that are easily conceivable by those skilled in the art are within the scope of the present application.
  • the relay node may obtain synchronization signal information from the OAM node, thereby generating a synchronization signal according to the synchronization signal information and transmitting, and solving the configuration problem of the relay node synchronization signal information, and the scheme performs synchronization signal information through the OAM node.
  • the one-time configuration can simplify the implementation.
  • FIG. 4 is a flowchart of obtaining synchronization signal information from a Donor node by a relay node provided by the present application.
  • the synchronization information of the Donor node does not need to be configured to the relay node through the OAM node, but is configured to the relay node through Donor. It should be understood that the scenario herein is not limited to layer 2 relay, and layer 3 relay may also be sent to the relay node through the Donor node.
  • the method is: the network node sends the synchronization signal information to the relay node through the air interface, where the synchronization signal information includes at least one of the following information: a subcarrier spacing of the synchronization signal, a frequency band information of the working of the relay node, and a physical state of the relay node.
  • the method may further include: the network node receiving the synchronization signal information configuration request sent by the operation management and maintenance node, where the synchronization signal information configuration request is used to instruct the network node to send the synchronization signal information to the relay node. Proceed as follows:
  • S401-S405 is the same as steps S301-S305 in FIG. 3 and will not be described again.
  • the OAM node only configures the CGI for the relay node, and does not perform the configuration of the synchronization signal information.
  • the OAM node may control the Donor node to configure the synchronization signal information for the relay node, or the OAM node may control the relay node to actively request the Donor node configuration, or the OAM node indicates the relay node. Automatically obtained from the SS/PBCH block read by the Donor node.
  • the configuration parameter sent by the OAM node may include an indication information of the synchronization signal acquisition mode, and the indication information of the synchronization signal acquisition mode is used to indicate the manner in which the relay node acquires the synchronization signal information.
  • the synchronization signal information may be obtained by using an OAM node configuration (as shown in FIG. 3), or the Donor node is configured as a relay node, or the relay node actively requests from the Donor node, or the relay node automatically Obtained by reading the SS/PBCH block sent by the Donor node.
  • the acquisition mode indication is optional when the synchronization signal information sent by the OAM node to the relay node already includes all the information of the relay node transmitting the synchronization signal.
  • the manner of acquiring the synchronization signal information may be determined by using one of the foregoing manners by using a protocol definition manner.
  • the indication information of the synchronization signal acquisition manner is not needed.
  • the indication information of the manner of acquiring the synchronization signal information may further include PCI or CGI information of the Donor node.
  • the indication information of the synchronization signal acquisition manner included in the configuration parameter of the OAM node is usually configured by the OAM node in advance in the system of the OAM node according to the network planning network optimization, or may be other manners, for example, the OAM node is based on the relay node.
  • the properties, such as layer 2 nodes or layer 3 nodes, automatically determine configuration parameters. The specific method is not limited in this application.
  • the relay node will automatically read the message sent by the Donor node. SS/PBCH block, and obtain synchronization signal information related parameters. At this time, the relay node will skip the step of S407 described below and directly proceed to the synchronization signal transmission process of step S408.
  • step S406 above should also include an acknowledgement message after the relay node receives the synchronization signal and the CGI information, that is, sends an acknowledgement message to the network, indicating that the relay node receives the configuration information.
  • the configuration information sent by the OAM node is application layer data above the IP layer, that is, OAM control/configuration data.
  • the OAM node may instruct the Donor node to send synchronization signal information to the relay node, or indicate the relay.
  • the node actively requests the Donor node to send synchronization signal information.
  • the relay node and the Donor node are required to interact.
  • the synchronization signal information may be encapsulated in an RRC message for transmission, such as an RRC reconfiguration message.
  • the OAM node instructs the Donor node to send the synchronization signal information to the relay node, it may indicate that the Donor will send the synchronization signal information to the relay node in the synchronization signal information sent to the relay node, or by means of a protocol definition, the application does not Make a limit.
  • the relay node does not need to actively request the Donor node to send the synchronization signal information, and after receiving the configuration information of the OAM node, waits for the receiving Donor node to send the synchronization signal information.
  • RRC reconfiguration message only uses the RRC reconfiguration message as an example, and does not limit the use of the RRC reconfiguration message, and may also be an RRC connection reconfiguration message or other RRC configuration message.
  • This application only uses a specific message name as an example, and does not limit the use of a specific message. Any change or replacement of any RRC message that is easily conceivable by those skilled in the art is within the scope of the present application, and examples of the latter RRC message. All the same, no longer repeat them.
  • step S407 herein includes any of the above two schemes, that is, the Donor node actively performs configuration of synchronization signal information to the relay node, or the relay node actively requests the Donor node to transmit synchronization signal information.
  • the OAM node configuration relay node automatically acquires synchronization signal information from the SS/PBCH block transmitted by the Donor node, step S407 is not performed.
  • the relay node may also initiate the establishment process of S1 and X2, and the process of updating the bearer configuration and updating the cell information by the Donor node.
  • the above process is not shown in Fig. 3, but the establishment process of S1 and X2 exists and will not be described again.
  • the relay node can obtain the synchronization signal information from the Donor node, simplify the configuration process, improve the configuration efficiency, and realize fast synchronization signal information acquisition.
  • the OAM node may configure synchronization signal information for the relay node in multiple manners. Steps S406 and S407 of FIG. 4 described above differ according to the manner in which the synchronization signal information is configured.
  • the OAM node instructs the relay node to automatically obtain the synchronization signal information by sending the SS/PBCH block through the Donor node.
  • the following embodiment is only used for the OAM node to instruct the Donor node to configure the synchronization signal information for the relay node, or in the indication.
  • the OAM node requests the Donor node to configure the synchronization signal information for the relay node, and after receiving the request of the OAM node, the Donor node sends the synchronization signal information to the relay node through the air interface.
  • the steps are as follows:
  • the OAM node sends a synchronization signal configuration request to the Donor node, where the synchronization signal configuration request includes an identifier of the relay node, where the identifier may be an IP address, or a CGI, or a MAC address, or any other of the relay node.
  • the identification is not limited in this embodiment, and any change or replacement of the identifier of any relay node that is easily conceived by those skilled in the art should fall within the technical scope disclosed in this embodiment.
  • the Donor node can obtain the information of the air interface transmission of the relay node, such as the Cell Radio Network Temporary Identifier (C-RNTI), by using the identifier of the relay node.
  • C-RNTI Cell Radio Network Temporary Identifier
  • the Donor node After receiving the synchronization signal configuration request sent by the OAM node, the Donor node returns a synchronization signal information configuration response message to the OAM node, confirming that the request is received, and continuing to step S503.
  • the Donor node sends synchronization signal information to the relay node by using an RRC reconfiguration message. As described above, if the relay node indicates in the synchronization signal information of the received OAM node that Donor will send synchronization signal information to the relay node, or the protocol defines that the Donor node will transmit synchronization signal information, the relay node waits for reception. The Donor node sends synchronization signal information. After receiving the synchronization signal information sent by the Donor node, the relay node proceeds to step S504, and simultaneously performs the step S408 shown in FIG. 4, that is, transmits the synchronization signal. The synchronization signal information is as described above and will not be described again.
  • the relay node sends an acknowledgement message to the Donor node, where the acknowledgement message may be an RRC reconfiguration complete message.
  • the network actively triggers the transmission of the synchronization signal information, which allows the relay node to acquire the synchronization signal information faster, accelerate the acquisition process of the relay node synchronization signal information, and reduce the air interface signaling overhead.
  • steps S406 and S407 of FIG. 4 above may also be that the relay node actively initiates a synchronization signal request to acquire synchronization signal information.
  • FIG. 6 is a flowchart of requesting synchronization signal information of a relay node according to an embodiment of the present disclosure. The steps are as follows:
  • Steps S601-S602 are the same as steps S501-S502, and are not described again.
  • the relay node If the relay node receives the synchronization signal information from the OAM node, the relay node actively initiates a synchronization signal information request to the Donor node, or is a protocol definition, and the relay node actively sends the configuration parameter to the Donor node after receiving the configuration parameter of the OAM node. After the synchronization signal information request is initiated, the relay node sends a synchronization signal information request to the Donor node after receiving the configuration of the synchronization signal information of the OAM node.
  • the synchronization signal information request includes an indication of the request synchronization signal, and may also include an identifier of the relay node, and the specific identifier is as described above, and details are not described herein again.
  • the synchronization signal information request may be an RRC message or a specific MAC Control Element (CE).
  • the Donor node After receiving the synchronization signal information request, the Donor node sends the synchronization signal information to the relay node.
  • the synchronization signal information may be carried in an RRC message, such as an RRC reconfiguration message, or may be carried in the MAC CE.
  • the synchronization signal information is as described above and will not be described again.
  • the relay node After receiving the synchronization signal information, the relay node sends an acknowledgement message to the Donor node to confirm receipt of the synchronization signal information.
  • the acknowledgment message may be configured for the synchronization signal, and the synchronization signal configuration may be completed by using an RRC message, such as an RRC reconfiguration complete message, or a MAC CE.
  • the above-mentioned synchronization signal information request, synchronization signal information and synchronization signal configuration completion may be part of the RRC parameters, and the RRC message name is given a uniform name.
  • the synchronization signal information request is part of the RRC Connection Request message
  • the RRC Connection Request is a unified message name that can be used for multiple requests.
  • the synchronization signal information is part of the RRC reconfiguration
  • the synchronization signal configuration completion is part of the RRC reconfiguration complete message. This is only an example, and does not constitute a limitation on which RRC message the synchronization signal information request, the synchronization signal information, and the synchronization signal configuration completion belong to.
  • the relay node After the relay node acquires the synchronization signal information, it performs the same as step S408 shown in FIG. 4, that is, the synchronization signal is transmitted.
  • the relay node actively requests the synchronization signal information, and according to the state of the relay node, it can select when to request the transmission of the synchronization signal information, which is more flexible.
  • the relay node has completed the parameter configuration of the second phase described above, ie, the synchronization signal has been sent and the UE is served.
  • the relay node is restarted, or a Donor node is reselected from the list of Donor nodes provided in step S303 of FIG. 3 or step S403 shown in FIG.
  • the re-access to the Donor node can perform the processes of the foregoing first and second phases, as an alternative, it is also possible to directly access the Donor node.
  • FIG. 7 is a flowchart of obtaining synchronization signal information by a relay node in an access process according to an embodiment of the present disclosure. Proceed as follows:
  • Steps S701-S702 are conventional random access procedures, and since the process is well known to those of ordinary skill in the art, no further details are provided.
  • the relay node sends a message 3 to the Donor node, where the message 3 is the third message in the random access process, that is, the message initiated to the Donor node after receiving the random access response.
  • Message 3 depends on different purposes, and the content carried may be different. For example, if the UE initiates a service request, message 3 includes an RRC connection setup request message, and if the UE is in the connected state and loses synchronization, message 3 contains data. .
  • the relay node needs to acquire the synchronization signal information of the Donor node, the synchronization signal information request may be sent in the message 3.
  • the synchronization signal information request is an RRC message, such as an RRC connection request message, and the synchronization signal information request may include an indication of requesting the synchronization signal.
  • the identity of the relay node may also be included in the RRC message.
  • the identifier of the relay node is as described above and will not be described again.
  • the indication of the request synchronization signal is used to notify the Donor node that the relay node needs the Donor node to send synchronization signal information to the relay node.
  • the Donor node sends an RRC reconfiguration message to the relay node.
  • the RRC reconfiguration message includes indication information of the synchronization signal information or the synchronization signal synchronization signal acquisition manner. If the synchronization signal information is included in the RRC reconfiguration message, the relay node generates the synchronization signal by using the synchronization signal information, and the synchronization signal information is as described above and will not be described again.
  • the Donor node can configure the working carrier frequency of the relay node to be the same as Donor.
  • the indication information of the synchronization signal acquisition mode may be sent only to the relay node, and the indication information of the synchronization signal acquisition mode indicates that the relay node automatically reads the synchronization signal information from the SS/PBCH block of the Donor node, and uses the read synchronization signal information. Generate a sync signal.
  • the Donor node's working carrier frequency is not divided into at least two BWPs
  • the Donor node can configure the relay node to operate at a different carrier frequency.
  • the Donor node needs The synchronization signal information is configured for the relay node, and the synchronization signal information is as described above, and will not be described again.
  • the relay node sends an acknowledgement message to the Donor node, where the acknowledgement message may be an RRC reconfiguration complete message, and acknowledges receipt of the synchronization signal information.
  • the relay node sends a synchronization signal according to the received synchronization signal information. If the synchronization signal information received by the relay node indicates that the relay node automatically reads the synchronization signal information from the SS/PBCH block of the Donor node, the relay node acquires the synchronization signal information by reading the SS/PBCH block of the Donor node. And generate a synchronization signal and PBCH, and send.
  • the relay node can implement fast access and reduce the service interruption delay through the Donor node, without having to perform the parameter configuration process again through the OAM node, speeding up the startup process and reducing the service interruption delay.
  • FIG. 8 is a flowchart of a relay node acquiring synchronization signal information in a contention resolution message according to an embodiment of the present disclosure. Proceed as follows:
  • Steps S801-S803 are the same as steps S701-S703 shown in FIG. 7, and are not described again.
  • the Donor node sends the synchronization signal information to the relay node in the contention resolution message.
  • the synchronization signal information is encapsulated in an RRC reconfiguration message, which is part of a contention resolution message.
  • the synchronization signal information is as described above and will not be described again. It should be understood that when the synchronization signal information is encapsulated in the RRC reconfiguration message and transmitted in the contention resolution message, the RRC reconfiguration message should not be used as a content authentication code for Integrity (MAC-). Part of I).
  • the synchronization signal information may also include indication information of the synchronization signal acquisition mode, and the indication information of the synchronization signal acquisition mode indicates that the relay node automatically reads the synchronization signal information from the SS/PBCH block of the Donor node, as described above. Said, no longer repeat them.
  • the relay node can obtain the synchronization signal information more quickly, thereby accelerating the configuration process.
  • FIG. 9 is a flowchart of acquiring synchronization signal information in a two-step random access procedure according to an embodiment of the present application. The steps are as follows:
  • the relay node sends a random access preamble to the Donor node.
  • the relay node may also carry part of data or signaling in the message that sends the random access preamble. Since it is the first message, the amount of data carried will be very limited. Therefore, only some basic information can be transmitted, such as the identity of the relay node and the indication of the request synchronization signal.
  • the indication of the request synchronization signal is used to notify the Donor node to configure synchronization signal information for the relay node.
  • the identifier of the relay node is as described above and will not be described again.
  • the Donor node After receiving the random access preamble and the data or signaling sent by the preamble, the Donor node sends a random access response to the relay node, or message 2. It should be understood that any change or substitution of the message name is within the scope of the present application.
  • the random access response message including the synchronization signal information, the content of the synchronization signal information is as described above, and will not be described again.
  • the synchronization signal information may be encapsulated in an RRC reconfiguration message and transmitted together to the relay node via message 2.
  • the relay node After receiving the synchronization signal information, the relay node confirms the message to the Donor node, and confirms that the synchronization signal information is received.
  • the acknowledgment message is encapsulated in an RRC reconfiguration complete message for transmission. If the synchronization signal information received by the relay node includes all the information for generating the synchronization signal, the following steps of S904 are performed.
  • the indication information of the synchronization signal acquisition mode indicates that the relay node automatically reads the synchronization signal information from the SS/PBCH block of the Donor node, and then relays The node obtains the synchronization signal information by reading the SS/PBCH block of the Donor node, as described above, and details are not described herein.
  • the relay node receives the synchronization signal information of step S902, or automatically acquires the synchronization signal information according to step S903, and may send the transmission synchronization signal according to the synchronization signal information.
  • synchronization signal acquisition can be realized in the two-step random access process, which speeds up the startup process and minimizes the interrupt delay.
  • a relay node may be able to connect to multiple optional Donor nodes due to air interface changes or bandwidth changes, in this case, possibly due to the bandwidth of the backhaul link or the backhaul link channel.
  • the reason for the change in quality is that the relay node can switch from one Donor node to another Donor node.
  • the handover here refers to the handover of the relay node itself, not the handover of the UE under the relay node, and the handover may be initiated by the network or may be caused by the measurement result of the relay node.
  • FIG. 10 is a flowchart of a Donor node handover according to an embodiment of the present application. Proceed as follows:
  • the source Donor node initiates a handover request to the target Donor node.
  • the switch is for the relay node to switch from the source Donor node to the target Donor node.
  • the handover request message indicates a handover to be a relay node, and includes an identifier of the relay node. The identifier of the relay node can be as described above and will not be described again.
  • the target Donor node may need to re-acquire the security parameters and interact with the AMF/SMF of the core network to obtain new security parameters.
  • the process of obtaining the security parameters complies with the protocol specification of the handover process, such as the 3GPP 23.501 protocol, and will not be described again.
  • the target Donor node sends a handover response message to the source Donor node, where the handover response message includes synchronization signal information of the target Donor node, and the synchronization signal information is as described above, and details are not described herein.
  • the handover response message includes synchronization signal information of the target Donor node, and the synchronization signal information is as described above, and details are not described herein.
  • other handover information is also included, such as a C-RNTI configured for the relay node, a dedicated access preamble, and an access time-frequency resource, so that the relay node can access the target Donor node.
  • the target Donor node may directly send the synchronization signal information to the relay node through the original Donor node in the handover response message, or may notify the relay node to automatically acquire from the target Donor node by using the indication information of the synchronization signal acquisition manner, depending on the Donor. Node, this application does not impose restrictions.
  • the synchronization signal information is encapsulated in a transparent container and sent to the source Donor node as part of the handover response message.
  • the transparency may be one, such as an RRC connection reconfiguration message, and the synchronization signal information may be part of an IE (Information Element) of the RRC connection reconfiguration message.
  • the IE may be reconfigurationWithSync, or mobilityControlInformation.
  • the source Donor node does not parse the transparent container, but forwards the transparent container to the relay node, that is, the RRC connection reconfiguration message is directly forwarded to the relay node. It should be understood that this is just an example, and may be other IEs, and even other RRC messages, which are not limited.
  • the source node After receiving the handover response message of the target Donor node, the source node does not parse the transparent container, but forwards the transparent container to the relay node, that is, the RRC connection reconfiguration message is directly forwarded to the relay node.
  • the relay node acquires synchronization signal information therein.
  • the relay node After receiving the RRC connection reconfiguration message (ie, a transparent container) of the target Donor node, the relay node uses the random access parameter therein to perform access at the target Donor node.
  • the access process may be a contention-based access process or a non-competitive access process. This process is familiar to those of ordinary skill in the art and will not be described again.
  • the synchronization signal information obtained in the above step S1003 includes the indication information of the synchronization signal acquisition mode, and indicates that the relay node automatically obtains the synchronization signal information from the target Donor node, the synchronization signal information is acquired in the process of accessing the target Donor node.
  • the specific synchronization signal information is as described above and will not be described again.
  • the relay node After accessing the target Donor node, the relay node sends an acknowledgement message to the target cell, where the acknowledgement message may be a connection reconfiguration complete message. After receiving the connection reconfiguration complete message, the target Donor node requests the core network node to modify the route, so that the data sent to the relay node is sent to the target Donor node, and the data forwarded by the source Donor node is received. This process is the same as the traditional switching process, and will not be described again.
  • the relay node can switch to the target Donor node and acquire synchronization signal information from the target Donor node as a cell or node under the target Donor node.
  • the relay node After receiving the synchronization signal information sent by the target Donor node through the RRC message, the relay node generates a synchronization signal and transmits the information in the air interface. The relay node completes the handover of the target Donor node from the source Donor node, and provides a service for the terminal as a cell or node under the target Donor node.
  • the Donor node can be dynamically changed according to the service change situation of the relay node and the backhaul link, and the synchronization signal information is acquired through the handover process, thereby simplifying the signaling process.
  • the configured synchronization signal information when the Donor node performs the configuration of the synchronization signal information for the relay node, the configured synchronization signal information further includes the transmission power of the synchronization signal, and further, the synchronization signal information may further include the synchronization signal/physical.
  • Each SS/PBCH block can use the same transmission power or different transmission power.
  • the SS/PBCH block can use the same transmission power, and the other SS/PBCH block uses different transmission power.
  • the main reason is that the SS/PBCH block of the NR is time-divisionally transmitted in all directions in the form of a beam.
  • each SS/PBCH block has a corresponding transmission power, and the transmission power of some SS/PBCH blocks is different from the transmission power of other SS/PBCH blocks.
  • the synchronization signal refers to a general term for all SS/PBCH blocks transmitted during the period of one synchronization signal
  • the SS/PBCH block refers to the PSS transmitted on a specific time-frequency resource within one cycle of the synchronization signal.
  • SSS and PBCH A plurality of SS/PBCH blocks constitute a synchronization signal.
  • the time-frequency resources occupied by the SS/PBCH block are as described in Figure 2-1 and Figure 2-2, and are not described here.
  • the transmit power of the Donor node on different SS/PBCH blocks can be configured to meet different coverage requirements or control the coverage of the relay node.
  • the relay node receives the identifier of another relay node sent by the upper node and the synchronization signal information of the other relay node, and identifies the identifier of the another relay node and the other
  • the synchronization signal information of one relay node is forwarded to the other relay node.
  • the message sent by the relay node to the another relay node may further include a correspondence between the identifier of the relay node and the synchronization signal information.
  • multi-hop relay will be supported. When there is a multi-hop relay under the Donor node, sometimes one or more other relay nodes exist between the relay node (or called the target relay node) that needs to be configured and the Donor.
  • the Donor node when the Donor node is configured for the relay node, the configured information needs to be forwarded through the intermediate relay node to reach the target relay node.
  • the synchronization signal information may change.
  • one or more relay nodes under the Donor node are required. Reconfiguring, and the information of the synchronization signal of the one or more relay nodes may be different from the information of the synchronization signals of other relay nodes, for example, the transmission power of the SS/PBCH block is different, therefore, it is necessary for this one Or multiple relay nodes to configure.
  • FIG. 11 is a flowchart of a synchronization signal configuration with a multi-level relay node according to an embodiment of the present application.
  • the figure includes two relay nodes, which are a first relay node and a second relay node, respectively, wherein the first relay node is a superior node of the second relay node. It should be understood that other relay nodes may also be included, and the relay nodes have a superordinate relationship. Proceed as follows:
  • the Donor node sends an RRC reconfiguration message to the lower-level relay node, where the identifier of the relay node is included, and the synchronization signal information corresponding to the identifier of the relay node, that is, the identifier of the relay node and the synchronization signal information have a corresponding relationship.
  • the Donor node may actively initiate the reconfiguration process of the synchronization signal information, or may be a configuration process in which the Donor sends the synchronization signal information due to the joining of one of the following relay nodes.
  • the reconfiguration of the synchronization signal information initiated by the Donor node herein may be triggered by other nodes, or may be triggered by the network, which is not limited in this embodiment.
  • the first relay node After receiving the RRC reconfiguration message, the first relay node first determines whether the synchronization signal information in the RRC reconfiguration message is sent to itself, for example, the first relay node acquires the relay node in the RRC reconfiguration message. If the identifier is included, the synchronization signal information of the first relay node in the RRC reconfiguration message is obtained, and step S1141 is performed to return an RRC reconfiguration complete message to the Donor node. After the first relay node acquires its own synchronization signal information in step S1102, a new synchronization signal may be generated according to the synchronization signal information, and transmitted in an air interface.
  • the synchronization signal information of the node is forwarded to another relay node.
  • the forwarded RRC reconfiguration message may include synchronization signal information of a plurality of other relay nodes.
  • the RRC reconfiguration message further includes an identifier of another relay node and another Corresponding relationship of the synchronization signal information of the relay node, that is, the identifier of the another relay node and the synchronization signal information of the another relay node are sent in the same message, and the identifier of the another relay node is
  • the synchronization signal information of the other relay node has a corresponding relationship. It is assumed here that each relay node knows all subordinate relay nodes and their routes, that is, the topology relationship of all subordinate relay nodes.
  • the RRC reconfiguration message sent by the Donor to the first relay node includes the identifier of the first relay node, the identifier of the first relay node and its corresponding synchronization signal information should not be included when forwarding. .
  • the first relay node determines to forward the RRC reconfiguration message, and then sends an RRC reconfiguration message to another relay node, that is, the second relay node.
  • the second relay node After receiving the RRC reconfiguration message, the second relay node performs the same check in S1102. If the identifier of the own relay node is included, step S11042 is performed to send an RRC reconfiguration complete message to the Donor node.
  • the first relay node finds that the RRC reconfiguration message includes the identifier of another relay node, and the other relay node is the next node of the relay node, the first intermediate node determines that it needs to go to another intermediate level.
  • the node forwards the RRC reconfiguration message. It is assumed here that the first relay node knows all the subordinate relay nodes and their routes, that is, the topology relationship of all the subordinate relay nodes. If the first relay node does not know all the subordinate relay nodes and their routes, the first relay node may find that the RRC reconfiguration message includes the identifier of another relay node, and the identifier of the other relay node is not the first relay. The direct subordinate node of the node, the first relay node directly sends an RRC reconfiguration message containing another relay node to its direct subordinate relay node.
  • the Donor node sends the RRC reconfiguration message including the identifier of the first relay node
  • the first relay node sends an acknowledgement message to the Donor node
  • the acknowledgement message may be an RRC reconfiguration complete message
  • the message The identifier of the first relay node is included.
  • the second relay node returns an RRC reconfiguration complete message, where the message includes the identity of the second relay node.
  • the first relay node waits for an RRC reconfiguration complete message of its subordinate relay node, and synthesizes a RRC reconfiguration complete message of all nodes into a message to the Donor node.
  • the above embodiment is also applicable to the scenario where the Donor node reconfigures the synchronization signal.
  • the synchronization signal of one node is reconfigured, a synchronization indication is included in the synchronization signal information, and the reconfiguration indication corresponds to the identifier of the relay node.
  • synchronization signal information configuration or reconfiguration can be configured for multiple relay nodes at the same time. Especially when the Donor synchronization signal changes, the Donor node can update the synchronization signal information of multiple relay nodes at one time. Avoid separate configuration of each relay node, saving signaling overhead.
  • the synchronization signal information further includes BWP information corresponding to the synchronization signal information, and the relay node sends the synchronization signal on the BWP according to the BWP information corresponding to the synchronization signal information.
  • a relatively large carrier frequency is divided into different bandwidth parts, that is, each BWP belongs to a carrier frequency and occupies a part of the bandwidth of the carrier frequency.
  • Different BWPs can have different Numerology, that is, different subcarrier spacings can be used, and different BWPs can independently transmit SS/PBCH blocks. The SS/PBCH block of each BWP transmission may be different.
  • the transmission power of each SS/PBCH block may be different. Therefore, the synchronization signal information should include the information of the BWP, that is, which BWP the synchronization signal information corresponds to, and the relay After the node generates a synchronization signal according to the synchronization signal information, it transmits on the corresponding BWP.
  • the synchronization signal can be configured for different BWPs.
  • different BWPs can be used to support different types of services, and different locations may be due to geographical locations. The difference is also in the business. Therefore, configuring the relay node on different BWPs can enable the Donor node to flexibly support different services in different locations of a cell.
  • the Numerology can be configured to adapt to the service.
  • the relay node can work on different BWPs with Donor. Therefore, the synchronization signal information will be different.
  • This method enhances the service adaptation and adjustment capabilities of the NR network. Optimize network bandwidth to accommodate business deployment.
  • the synchronization signal information can be transmitted through an RRC message.
  • the RRC message structure including the synchronization signal information can be as follows:
  • physCellIdPart1 is the first part of PCI, and the value ranges from 0-335 (including 0 and 335).
  • physCellIdPart2 is the second part of PCI, with values ranging from 0-2 (including 0 and 2).
  • the numerologyParm is used to determine the subcarrier spacing.
  • the specific value refers to 38.211. It can be understood by those skilled in the art that the value of the corresponding Numerology is different from different SS/PBCH blocks.
  • freqIndex is used to specify the frequency band information of the working of the relay node, which is indicated by an index. The above is just an example, and the specific value is defined according to the protocol.
  • the ssPeriod is the transmission period of the SS/PBCH block. The definition of the period has been described in the foregoing embodiment, and will not be described again.
  • PhysBroadcastCh is the configuration information of the PBCH. It should be understood that the PBCH and the MIB (Master Information Block (MIB) defined in the 3GPP 38.331 protocol have certain differences.
  • the PBCH here is mainly used to determine some initialization parameters, and some dynamic The parameters do not need to be transmitted, and the relay node can be obtained from the Donor node. Therefore, the PBCH is different from the MIB defined in the 3GPP 38.331 protocol, and some or all of the parameters can be selected as needed.
  • PBCH parameters refer to the MIB information in 38.331.
  • the transmission power of each SS/PBCH block, the index information of the BWP, the identifier of the relay node, and the indication information of the synchronization signal acquisition manner may be included.
  • the parameters in the RRC message of the synchronization signal information in this embodiment may be configured according to different scenarios, that is, some parameters are available. Selected. For example, if the Donor node instructs the relay node to automatically acquire synchronization signal information from the synchronization signal of the Donor node, it may include only the indication information ssAcquiringWay of the synchronization signal acquisition mode; and in the case of layer 2 relay, especially in support In the scenario of different BWPs, you can configure the subcarrier spacing, the half frame index information in the PBCH, the DMRS information, and the BWP index information.
  • the specific configuration of the specific synchronization signal information can be flexibly configured as needed. Any changes or substitutions that may occur to one of ordinary skill in the art are within the scope of the present application. It should be understood that if the OAM node performs synchronization signal information configuration on the relay node, the transmission format may be different from the foregoing RRC message format, but the content is the same and will not be described again.
  • each parameter may be transmitted in a format of type, length, and value, for example, using a type code.
  • the length indicates the length corresponding to the value of the type code, usually expressed in bytes or bits, and the value is the size of the specific configured value, such as the value of physCellIdPart1. It is 99. It should be understood that this is just an example and does not limit the configuration of the fields of the synchronization signal information.
  • the specific representation of the type, length, and value of each field depends on the protocol definition and will not be described again.
  • each network element such as a relay node, a Donor node, and an OAM node
  • each network element includes hardware structures and/or software modules corresponding to each function in order to implement the above functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in conjunction with the network elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiment of the present application may divide the function module into the relay node and the Donor node according to the foregoing method example.
  • the function module may be divided into individual function modules, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 12 is a schematic diagram of a possible structure of a relay device involved in the foregoing embodiment provided by the present application.
  • a relay node is also referred to as a relay device.
  • the relay device 1200 includes at least a receiving unit 1210, a processing unit 1240, and a transmitting unit 1220.
  • the receiving unit 1210 is configured to receive synchronization signal information that is sent by the upper node through the air interface, where the synchronization signal information includes at least one of the following information: a subcarrier spacing of the synchronization signal, frequency band information of the relay node, and a physical broadcast channel of the relay node.
  • the receiving unit 1210 is further configured to receive the identifier of another relay device sent by the upper node and the synchronization signal information of the other relay device; the sending unit 1220 is configured to use the identifier of the another relay device and the another The synchronization signal information of the device is forwarded to the other relay device.
  • the processing unit 1240 may further include a synchronization signal acquisition module 1241 and a synchronization signal generation module 1242.
  • the synchronization signal acquisition module 1241 is configured to send a synchronization signal request to the upper node to request acquisition of synchronization signal information of the relay device.
  • the synchronization signal request may include an indication of requesting synchronization signal information, and the identity of the relay device may also be transmitted together with the synchronization signal request.
  • the synchronization signal acquisition module 1241 can also be configured to acquire synchronization signal information sent by the OAM node.
  • the synchronization signal generating module 1242 may generate parameters required for the physical layer to send the synchronization signal according to the synchronization signal information obtained by the synchronization signal acquisition module, and the parameters required for the physical layer to send the synchronization signal may include the BWP index and the bandwidth, the transmission power, the DMRS, and the PSS. Related parameters, related parameters of SSS, and related parameters of PBCH.
  • the relevant parameters of the PSS include physCellIdPart2 (ie, the synchronization signal group to which the PSS belongs); the relevant parameters of the SSS include physCellIdPart1; the relevant parameters of the PBCH include at least one of the following information: ssb-Index Explicit, field index, subcarrier spacing The subcarrier offset, the DMRS location, the configuration of the physical PDCCH of the SIB1, the cell prohibition access indication, the cell frequency selection indication, etc., and the specific parameters are not described above.
  • the relay device 1200 may further include a baseband processing unit 1230 for performing baseband processing on the synchronization signal parameters of the synchronization signal generating module 1242, and transmitting by the transmitting unit 1220, and also for receiving from the upper node (for example, the Donor node).
  • the obtained synchronization signal information is subjected to baseband processing to acquire synchronization signal information of the relay device.
  • the baseband processing unit 1230 is further configured to process the synchronization signal of the relay device, and send the obtained synchronization signal information to the synchronization signal acquisition module 1241.
  • the above baseband signal processing mainly includes channel coding and baseband signal modulation. Different air interface technologies, the baseband processing process will be different.
  • the baseband processing of LTE or NR mainly includes the processes of resource demapping, de-precoding, demodulation, channel decoding, and descrambling.
  • the bit stream is obtained by baseband processing, and if the data needs to be sent to the higher layer for processing, it is handed over to the processing unit 1240.
  • the baseband processing unit can also process the data stream from the upper layer.
  • the baseband processing of LTE or NR mainly includes: scrambling, channel coding, modulation, layer mapping and precoding, resource mapping, and inverse Fourier transform.
  • the baseband signal stream is formed and sent to the transmitting unit for transmission. It should be understood that the foregoing process of receiving and transmitting the baseband is only an example, and is not limited to the embodiment.
  • the baseband processing is familiar to those skilled in the art and will not be described again.
  • the processing unit 1240 can be implemented by one or more processors, and the baseband processing unit 1230 can be implemented by a baseband processor.
  • the processor and baseband processor can be a central processing unit, a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, transistor logic device, hardware component, etc., or any combination thereof.
  • the processor and the baseband processor may be separate chips or may be integrated to form one chip.
  • the relay device 1200 may further include an antenna 1201.
  • the antenna 1201 may be part of the receiving unit 1210 and the transmitting unit 1220, or may be separate from the receiving unit 1210 and the transmitting unit 1220, as an independent The device is present.
  • the receiving unit 1210 is configured to process the received radio frequency signal.
  • the receiving unit 1210 may include a radio frequency front end circuit and a radio frequency receiving circuit. It should be understood that the receiving unit 1210 in FIG. 12 is only an example, and the receiving unit 1210 may also include other units or interfaces and the like.
  • the above RF front-end circuit mainly includes a filter and an amplifier, and is used for filtering and amplifying the signal received by the antenna and transmitting the signal to the RF receiving circuit.
  • the RF receiving circuit it is mainly used for mixing, filtering, power amplifier, analog-to-digital conversion, etc. of the signal outputted by the RF front-end circuit to form a signal suitable for processing by the baseband processing unit 1230.
  • the signals received by the relay node from other nodes or devices are transmitted to the baseband processing unit 1230 through the processing of the receiving unit 1210.
  • the transmitting unit 1220 includes a radio frequency transmitting circuit and a radio frequency front end circuit. It should be understood that the transmitting unit in FIG. 12 may also include other units or interfaces in a specific implementation.
  • the radio frequency transmitting circuit may be an inverse process of processing the signal by the radio frequency receiving circuit, and is mainly used to implement conversion of the baseband signal to the high frequency signal.
  • the radio frequency transmitting circuit may include digital-to-analog conversion, mixing, filtering, and power amplifier.
  • the processing of the signal by the RF front-end circuit may also be an inverse process of the signal processing by the RF front-end circuit, for example, amplifying, filtering, etc. the signal, and transmitting the processed signal through the antenna 1201.
  • the signals that the processing unit 1240 of the relay node needs to transmit to other nodes, terminals, or devices are transmitted through the antenna 1201 after being processed by the transmitting unit 1220.
  • the receiving unit 1210 and the transmitting unit 1220 may share one or more antennas. It should be understood that there may be multiple antennas in a wireless network to implement multiple input multiple output techniques to increase system throughput. The figure is only an illustration, but does not limit the number of antennas.
  • the receiving unit 1210 may be a receiver
  • the sending unit 1220 may be a transmitter
  • the receiver and the transmitter may constitute a communication interface.
  • the communication interface may also include other physical interfaces, such as a configuration interface, for configuring the relay node by wired connection, including configuration of synchronization signal information.
  • the receiver and the transmitter may include only the radio frequency receiving circuit and the radio frequency transmitting circuit, and the radio frequency front end circuit in the receiving unit 1210 and the radio frequency front end circuit in the transmitting unit 1220 may be implemented in another independent device, and the radio frequency receiving is performed.
  • the circuit and the RF transmitting circuit are integrated in one chip to form a radio frequency transceiver.
  • the communication interface includes a RF front end circuit and a RF transceiver circuit, and a coupling between the RF front end circuit and the RF transceiver.
  • the communication interface can also include other interfaces, such as a configuration interface.
  • the receiver and transmitter can also include the transceiver interface of other modules.
  • the receiver and transmitter are physical RF transceiver circuits, receivers and transmitters. It is only a name and can exist in multiple modules. It can be implemented in software or in hardware. This application does not impose restrictions.
  • the relay device described above may further include a storage unit 1250 (eg, a memory) for storing the code required by the processing unit 1240 and/or the baseband processing unit 1230.
  • a storage unit 1250 eg, a memory
  • the functions of the aforementioned processing unit 1240 or baseband processing unit 1230 may be implemented when processing unit 1240 or baseband processing unit 1230 executes the code in the memory.
  • FIG. 13 is a schematic diagram of a possible structure of a network device involved in the foregoing embodiment provided by the present application.
  • the network device 1300 includes at least: the identifier of the relay node and the synchronization signal information request may be received in the same message.
  • the processing unit 1340 is configured to generate synchronization signal information of the relay node, where the synchronization signal information includes at least one of the following information: a subcarrier spacing of the synchronization signal, frequency band information of the relay node, and a physical state of the relay node.
  • the receiving unit 1310 is further configured to receive a synchronization signal information request sent by the relay node, where the synchronization signal information request is used to request the network device to send the synchronization signal information of the relay node to the relay node.
  • the receiving unit 1310 is further configured to receive a synchronization signal information configuration request sent by the operation management and maintenance node, where the synchronization signal information configuration request is used to instruct the network node to send the synchronization signal information of the relay node to the relay node; and the processing unit 1340 uses The synchronization signal information of the relay node is generated according to the synchronization signal information configuration request.
  • the processing unit 1340 may further include a synchronization signal information configuration module 1341, configured to process the synchronization signal information request sent by the relay node, and determine synchronization signal information for the relay node that sends the synchronization signal request. Determining the synchronization signal information includes: according to the location of the relay node, or the service distribution of the current cell, such as a certain location service congestion, determining that the relay node is configured to work on a certain BWP; The node is configured to work on the same carrier frequency or BWP as the Donor node. After determining the BWP or carrier frequency of the relay node, the processing unit 1340 generates synchronization signal information for the relay node, and responds to the synchronization signal information request sent by the relay node.
  • a synchronization signal information configuration module 1341 configured to process the synchronization signal information request sent by the relay node, and determine synchronization signal information for the relay node that sends the synchronization signal request.
  • the processing unit 1340 is further configured to process the synchronization signal information configuration request from the OAM node, generate synchronization signal information for the relay node according to the indication information of the synchronization signal acquisition manner, and configure synchronization signal information from the OAM node. Request a response. If the indication information of the synchronization signal acquisition manner included in the synchronization signal information configuration request sent by the OAM node indicates that the network device 1300 actively sends the synchronization signal information to the relay node, the processing unit 1340 generates synchronization signal information for the designated relay node, and It is transmitted through the transmitting unit 1320.
  • the processing unit 1340 is further configured to acquire an identifier of the relay node, where the sending unit 1320 is configured to transmit the identifier of the relay node to the relay node together with the synchronization signal information of the relay node, so that the relay node is configured according to the The identifier of the relay node acquires synchronization signal information of the relay node.
  • the network device 1300 may further include a baseband processing unit 1330 configured to perform baseband signal processing on the synchronization signal information to be transmitted (such as the synchronization signal information to be sent by the synchronization signal information configuration module 1341), and transmit the signal through the sending unit 1320,
  • the baseband signal processing is performed on the synchronization signal information request message received from the relay node, and the result of the baseband signal processing is transmitted to a higher layer, such as the synchronization signal information configuration module 1341.
  • the above baseband signal processing mainly includes channel coding and baseband signal modulation. Different air interface technologies, the baseband processing process will be different.
  • the baseband processing of LTE or NR mainly includes the processes of resource demapping, de-precoding, demodulation, channel decoding, and descrambling.
  • the bit stream is obtained by baseband processing, and if the data needs to be sent to the higher layer for processing, it is handed over to the processing unit 1340.
  • the baseband processing unit 1330 can also process the data stream from the processing unit 1340.
  • the baseband processing of LTE or NR mainly includes: scrambling, channel coding, modulation, layer mapping and precoding, resource mapping, and inverse Fourier transform, and the baseband signal stream is sent to the transmitting unit 1320 for transmission. It should be understood that the foregoing process of receiving and transmitting the baseband is only an example, and is not limited to the embodiment. The baseband processing is familiar to those skilled in the art and will not be described again.
  • the processing unit 1340 can be implemented by one or more processors, and the baseband processing unit 1330 can be implemented by a baseband processor.
  • the processor and baseband processor can be a central processing unit, a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, transistor logic device, hardware component, etc., or any combination thereof.
  • the processor and the baseband processor may be separate chips or may be integrated to form one chip.
  • the network device 1300 may further include an antenna 1301. It should be understood that the antenna 1301 may be part of the receiving unit 1310 and the transmitting unit 1320, or may be separate from the receiving unit 1310 and the transmitting unit 1320 as an independent The device is present.
  • the receiving unit 1310 is configured to process the received radio frequency signal.
  • the receiving unit 1310 includes a radio frequency front end circuit and a radio frequency receiving circuit. It should be understood that the receiving unit 1310 in FIG. 13 is only an example, and the receiving unit 1310 may also include other units or interfaces and the like. In the hardware implementation, the radio frequency front end circuit and the radio frequency receiving circuit of the receiving unit 1310 are as described in the foregoing FIG. 12 and will not be described again.
  • the receiving unit 1310 is further configured to receive a message from another network element, such as an OAM node.
  • the signals received by the network node from the relay device are transmitted to the baseband processing unit 1330 through the processing of the receiving unit 1310, or the other interfaces of the receiving unit 1310 receive information from other network elements, such as OAM nodes.
  • the transmitting unit 1320 includes a radio frequency transmitting circuit and a radio frequency front end circuit. It should be understood that the transmitting unit 1320 in FIG. 13 may also include other units or interfaces in a specific implementation. The basic functions of the above-mentioned radio frequency transmitting circuit and radio frequency receiving circuit are as described above and will not be described again.
  • the signals that the processing unit 1340 of the network device needs to send to other relay devices and terminals are sent through the antenna 1301 after being processed by the sending unit 1320; or the processing unit 1340 of the network device passes the sending unit.
  • Other interfaces of the 1320 send messages to other network elements, such as OAM nodes.
  • the sending unit 1320 is further configured to send the identifier of the another relay node and the synchronization signal information of the another relay node to the relay node, so that the relay node identifies the identifier of the another relay node and the The synchronization signal information of the other relay device is sent to the other relay node.
  • the receiving unit 1310 and the transmitting unit 1320 may share one or more antennas. It should be understood that there may be multiple antennas in a wireless network to implement multiple input multiple output techniques to increase system throughput. The figure is only an illustration, but does not limit the number of antennas.
  • the receiving unit 1310 may be a receiver
  • the sending unit 1320 may be a transmitter
  • the receiver and the transmitter may constitute a communication interface.
  • the communication interface may also include other physical interfaces, such as an interface to communicate with the core network, for connecting to other network elements, such as gateway devices, by wire.
  • the receiver and the transmitter may include only the radio frequency receiving circuit and the radio frequency transmitting circuit, and the radio frequency front end circuit in the receiving unit 1310 and the radio frequency front end circuit in the transmitting unit 1320 may be implemented in another independent device, and the radio frequency receiving is performed.
  • the circuit and the RF transmitting circuit are integrated in one chip to form a radio frequency transceiver.
  • the communication interface includes a RF front-end circuit and a RF transceiver, and a coupling between the RF front-end circuit and the RF transceiver.
  • the communication interface may also include other wired interfaces such as an Ethernet interface and a fiber interface. It should be understood that the communication interface should not be simply understood as just a radio frequency interface.
  • the receiver and transmitter can also include the transceiver interface of other modules. Here is just a physical example to illustrate the receiver and transmitter, but it should not be understood that the receiver and transmitter are physical RF transceivers, receivers and transmitters. It is only a name and can exist in multiple modules. It can be implemented in software or in hardware. This application does not impose restrictions.
  • the network device may further include a storage unit 1350 (eg, a memory) for storing the code required by the processing unit 1340 and/or the baseband processing unit 1330.
  • a storage unit 1350 eg, a memory
  • the functions of the aforementioned processing unit 1340 or baseband processing unit 1330 may be implemented when the processing unit 1340 or the baseband processing unit 1330 executes the code in the memory.
  • a readable storage medium stores computer execution instructions, when a device (which may be a single chip microcomputer, a chip, etc.) or a processor executes FIG. 3-11. In the step of transmitting the synchronization signal in the relay node or the Donor node, the computer execution instruction in the storage medium is read.
  • the aforementioned readable storage medium may include various media that can store program codes, such as a USB flash drive, a removable hard disk, a read only memory, a random access memory, a magnetic disk, or an optical disk.
  • a computer program product comprising computer executed instructions stored in a computer readable storage medium; at least one processor of the device may be The step of reading the storage medium reads the computer execution instruction, and the at least one processor executing the computer execution instruction to cause the device to implement the relay node and the Donor node in the transmission method of the synchronization signal provided in FIG. 3 to FIG.
  • a communication system including at least a relay node, a Donor node.
  • the relay node may be the relay node provided in FIG. 12, and is used to perform the steps of the relay node in the sending method of the synchronization signal provided in FIG. 3 to FIG. 11; and/or, the Donor node may be the FIG.
  • the network device provided, and the steps performed by the network node in the method of transmitting the synchronization signal provided by FIGS. 3-11.
  • the communication system may include a plurality of relay nodes, and the Donor node may simultaneously configure the synchronization signal information for the plurality of relay nodes.
  • the synchronization signal may be generated according to the synchronization signal information, and the information of the PBCH may be determined, and the synchronization signal is performed on the resource specified by the SS/PBCH block. Sending solves the problem of configuring the synchronization signal information when the relay node starts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种中继系统中发送同步信号的方法及装置,涉及通信技术领域,用于中继节点通过空口获取同步信号信息,并根据获取的同步信号信息发送同步信号。中继节点可以自动获取同步信号信息或者网络根据需要为中继节点配置不同的同步信号信息,有效提升了配置效率,并使得业务的部署更灵活。所述方法包括:中继节点接收上级节点通过空口发送的同步信号信息,同步信号信息包括以下信息中的至少一种:同步信号的子载波间隔、中继节点工作的频带信息、中继节点物理广播信道PBCH的信息、同步信号的周期、同步信号获取方式的指示信息,中继节点根据同步信号的信息发送同步信号。

Description

一种中继节点同步信号的发送方法及装置
本申请要求于2018年2月12日提交中国国家知识产权局、申请号为201810147102.4、发明名称为“一种中继节点同步信号的发送方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术,具体涉及无线通信系统中中继节点的同步信号的发送方法和装置。
背景技术
高带宽是未来无线网络,包括第五代移动通信(5th generation mobile networks or 5th generation wireless systems,5G)无线网络的新空口(New Radio,NR)发展的必然需求。由于低频段,如6G赫兹(Giga Herz,GHz)频段以下,带宽逐渐耗尽,高频段将成为未来无线网络寻求可使用的频段选择。在当前NR研究中,高频段(如20-30GHz频段)以及6G频段是NR扩展带宽的重要频段。另一方面,引入增强覆盖的中继节点(Relay Node,RN)是解决网络容量和覆盖延伸重要手段。目前NR考虑高频的应用,采用基于波束(beam)的传输,和传统的长期演进系统(Long Term Evolution,LTE)存在很大的不同。这种不同会带来中继节点的部署需要克服传统网络没有的一些问题。
发明内容
本申请的实施例提供一种中继节点同步信号的发送方法及装置,解决了中继节点可能被配置为层2或层3中继时,如何从网络获取同步信号信息,并根据同步信号信息在空口发送同步信号的问题。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种发送同步信号的方法,包括:中继节点接收上级节点通过空口发送的同步信号信息,同步信号信息包括以下信息中的至少一种:同步信号的子载波间隔、中继节点工作的频带信息、中继节点物理广播信道PBCH的信息、同步信号的周期、同步信号获取方式的指示信息;中继节点根据同步信号的信息发送同步信号。上述技术方案中,中继节点通过空口消息发送同步信号信息,空口消息可以包括RRC消息,如RRC重配消息、RRC连接重建消息,或者也可以是MAC CE。通过空口传输,可以有效降低部署成本,并能够实现快速的部署。同时,通过空口自动获取同步信号信息,可以避免人工配置,提升配置效率。另一方面,由于NR支持部分带宽的功能,使得一个小区中的不同中继节点可以和Donor节点工作在相同或者不同的部分带宽上,以更好的适应小区中不同位置的业务需求,因此,通过空口对中继节点的同步信号信息进行配置,具有更大的灵活性和自由度,以适应网络业务变化的需要。
在第一方面的一种可能的实现方式中,中继节点向上级节点发送同步信号信息请求,以请求获取中继节点的同步信号信息。上述技术方案中,通过中继节点主动向上级节点发送同步信号信息请求,中继节点可以根据当前的状态确定获取同步信号信息的时间,空口传输效率更高。
在第一方面的一种可能的实现方式中,同步信号包括同步信号序列,同步信号信息还包括:物理小区识别符PCI,中继节点根据PCI用于生成同步信号序列。上述技术方案中,中继节点通过同步信号信息中的PCI,可以确定自己发送的同步信号序列。
在第一方面的一种可能的实现方式中,同步信号信息还包括同步信号信息对应的部分带宽的信息,中继节点根据同步信号信息对应的部分带宽的信息在部分带宽上发送所述同步信号。上述技术方案中,通过对部分带宽上的同步信号进行配置,可以更灵活地根据小区业务分布情况,将中继节点配置在不同的部分带宽上,以满足小区中不同的业务需求。
在第一方面的一种可能的实现方式中,同步信号信息还包括:同步信号对应的发送功率,中继节 点采用发送功率发送所述同步信号。上述技术方案中,通过发送功率的配置,中继节点可以在不同的同步信号/物理广播信道块上发送相同或不同的功率,或者部分同步信号/物理广播信道块不同于另一部分同步信号/物理广播信道块上的发送功率,可以适应不同方向上的信道状况,满足中继节点的覆盖要求。
在第一方面的一种可能的实现方式中,同步信号的发送方法还包括:所述中继节点接收上级节点发送的中继节点的标识,并根据中继节点的标识获取所述中继节点的同步信号信息。上述技术方案中,通过中继节点的标识,中继节点可以确定上级节点是否对其进行同步信号信息的配置或者重配,避免缺少标识而导致错误的配置。
在第一方面的一种可能的实现方式中,同步信号的发送方法还包括:中继节点接收上级节点发送的另一个中继节点的标识和另一个中继节点的同步信号信息,并将另一个中继节点的标识以及另一个中继节点的同步信号信息转发给另一个中继节点。上述技术方案中,通过另一个中继节点的标识,中继节点可以确定将同步信号信息转发给哪一个下级中继节点,确保下级中继节点可以正确接收到同步信号信息。
第二方面,提供一种发送同步信号信息的方法,包括:网络节点通过空口向中继节点发送同步信号信息,同步信号信息包括以下信息中的至少一种:同步信号的子载波间隔、中继节点工作的频带信息、中继节点物理广播信道的信息、同步信号的周期、同步信号获取方式的指示信息;网络节点接收中继节点发送的确认消息。上述技术方案中,网络节点通过空口向中继节点进行同步信号信息的配置,可以有效降低部署成本,并能够实现快速的部署。同时,通过空口自动获取同步信号信息,可以避免人工配置,提升配置效率。另一方面,由于NR支持部分带宽的功能,使得网络节点可以根据当前小区中的业务需求,将中继节点配置在相同或不同的BWP上工作,增强了业务部署的灵活性和自由度。
在第二方面的一种可能的实现方式中,网络节点接收中继节点发送的同步信号信息请求,同步信号信息请求用于请求网络节点向中继节点发送中继节点的同步信号信息。上述技术方案中,网络可以基于请求对中继节点进行同步信号信息的配置,确保是对需要获取同步信号信息的中继节点进行配置,信令效率高。
在第二方面的一种可能的实现方式中,网络节点接收运行管理和维护节点发送的同步信号信息配置请求,同步信号信息配置请求用于指示网络节点向中继节点发送所述同步信号信息。上述技术方案中,通过运行管理和维护节点控制网络节点向中继节点发送同步信号信息,提升了中继节点管理的安全性,通过运行管理和维护节点的统一管理,可以优化中继节点在网络中的部署。
在第二方面的一种可能的实现方式中,同步信号包括同步信号序列,同步信号信息还包括:物理小区识别符PCI,以使中继节点根据PCI生成同步信号序列。上述技术方案中,网络节点对中继节点进行PCI的配置,可以控制中继节点的同步信号是否和网络节点的同步信号相同,并根据需要将中继节点配置为层2中继或层3中继,以优化小区中的业务传输。
在第二方面的一种可能的实现方式中,同步信号信息还包括同步信号信息对应的部分带宽的信息,中继节点根据同步信号信息对应的部分带宽的信息在部分带宽上发送同步信号。上述技术方案中,通过对部分带宽上的同步信号进行配置,可以更灵活地根据小区业务分布情况,将中继节点配置在不同的部分带宽上,以满足小区中不同的业务需求。
在第二方面的一种可能的实现方式中,同步信号信息还包括:同步信号对应的发送功率。上述技术方案中,上述技术方案中,通过发送功率的配置,中继节点可以在不同的同步信号/物理广播信道块上发送相同或不同的功率,或者部分同步信号/物理广播信道块不同于另一部分同步信号/物理广播信道块上的发送功率,可以适应不同方向上的信道状况,满足中继节点的覆盖要求。
在第二方面的一种可能的实现方式中,同步信号的发送方法还包括:上级节点将中继节点的标识 与同步信号信息一起发送给中继节点,以使中继节点根据中继节点的标识获取中继节点的同步信号信息。上述技术方案中,网络节点通过中继节点的标识,指示同步信号信息是为对应中继节点的标识的中继进行配置的,避免在一次性配置或重配多个中继节点时产生错误。
在第二方面的一种可能的实现方式中,网络节点将另一个中继节点的标识与所述另一个中继节点的同步信号信息发送给所述中继节点,以使中继节点将另一个中继节点的标识以及另一个中继节点的同步信号信息转发给另一个中继节点。上述技术方案中,网络可以一次性配置多个中继节点,通过另一个中继节点的标识,可以使得中继节点可以正确获取自己的同步信号信息,提升了配置效率,节省了配置信令,同时另一个中继节点的标识可以帮助中继节点进行同步信号信息的正确转发和路由。
在本申请的又一方面,提供了一种中继设备,中继设备用于实现上述第一方面的任一种可能的实现方式所提供的同步信号的发送方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的单元。
在一种可能的实现方式中,中继设备的结构中包括处理器和存储器,该存储器中存储代码和数据,该存储器与处理器耦合,该处理器被配置为支持该用户设备执行上述第一方面或第一方面的任一种可能的实现方式所提供的同步信号的发送方法。可选的,中继设备还可以包括通信接口,该通信接口与处理器或存储器耦合。
在本申请的又一方面,提供了一种网络设备,网络设备用于实现上述第二方面或第二方面的任一种可能的实现方式所提供的同步信号的发送方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的单元。
在一种可能的实现方式中,网络设备的结构中包括处理器和存储器,该存储器中存储处理和/或基带处理器所需代码,该存储器与处理器耦合,该处理器和/或基带处理器被配置为支持网络设备执行上述第二方面或第二方面的任一种可能的实现方式所提供的同步信号的发送方法的功能。可选的,网络设备还可以包括通信接口,该通信接口与存储器或处理器耦合。
本申请的又一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得该计算机执行上述第一方面或第一方面的任一种可能的实现方式所提供的同步信号的发送方法,或者执行上述第二方面或第二方面的任一种可能的实现方式所提供的同步信号的发送方法。
本申请的又一方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得该计算机执行上述第一方面或第一方面的任一种可能的实现方式所提供的同步信号的发送方法,或者执行上述第二方面或第二方面的任一种可能的实现方式所提供的同步信号的发送方法。
本申请的又一方面,提供一种通信系统,该通信系统包括多个设备,该多个设备包括中继设备、网络设备;其中,中继设备为上述各方面所提供的中继设备,用于支持中继设备执行上述第一方面或第一方面的任一种可能的实现方式所提供的同步信号的发送方法;和/或,网络设备为上述各方面所提供的网络设备,用于支持网络设备执行上述第二方面或第二方面的任一种可能的实现方式所提供的同步信号的发送方法。
在申请的又一方面,提供一种装置,所述装置为一个处理器、集成电路或者芯片,用于执行本发明实施例中由中继节点的处理单元执行的步骤,例如,获取上级节点发送的同步信号信息,根据所述同步信号信息生成同步信号,并输出所述同步信号。同步信号信息的内容、同步信号信息的发送和获取方式在前述其它方面或实施例中已经描述过,此处不再赘述。
在申请的又一方面,提供另一种装置,所述装置为一个处理器、集成电路或者芯片,用于执行本发明实施例中由网络设备的处理单元执行的步骤,生成中继节点的同步信号信息并输出。同步信号信 息的内容、同步信号信息的发送和获取方式在前述其它方面或实施例中已经描述过,此处不再赘述。在一种可能的实现方式中,该装置还用于获取中继节点发送的同步信号信息请求,同步信号信息请求用于请求网络设备向中继设备发送中继设备的同步信号信息;该装置用于根据所述同步信号信息请求生成中继设备的同步信号信息并输出。
可以理解,上述提供的任一种定时方法的装置、计算机存储介质或者计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1-1为本申请实施例提供的IAB通信系统;
图1-2和图1-3分别为本申请实施例提供的层2中继系统用户面和控制面协议栈结构;
图1-4和图1-5分别为本申请实施例提供的层3中继系统用户面和控制面协议栈结构;
图2-1和图2-2为本申请实施例提供的SS/PBCH Block在无线帧中符号位置的示例;
图3为本申请实施例提供的中继节点获取同步信号信息及发送过程的流程图;
图4为本申请实施例提供的中继节点从Donor节点获取同步信号信息的流程图;
图5为本申请实施例提供的Donor节点为中继节点配置同步信号信息的流程图;
图6为本申请实施例提供的中继节点请求同步信号信息的流程图;
图7为本申请实施例提供的中继节点在接入过程中获取同步信号信息的流程图;
图8为本申请实施例提供的中继节点在竞争解决消息获取同步信号信息的流程图;
图9为本申请实施例提供的两步随机接入过程中获取同步信号信息的流程图;
图10为本申请实施例提供的Donor节点切换的流程图;
图11为本申请实施例提供的具有多级中继节点的同步信号配置流程图;
图12为本申请的实施例提供的中继设备的一种可能的结构示意图;
图13为本申请的实施例提供的网络设备的一种可能的逻辑结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本申请中所有节点、消息的名称仅仅是本申请为描述方便而设定的名称,在实际网络中的名称可能不同,不应理解本申请限定各种节点、消息的名称,相反,任何具有和本申请中用到的节点或消息具有相同或类似功能的名称都视作本申请的方法或等效替换,都在本申请的保护范围之内,以下不再赘述。
考虑到未来无线网络的高带宽,NR考虑引入一体化的接入和回程(Integrated Access and Backhaul,IAB)方案以进一步降低部署成本,提高部署灵活性,并由此引入具有接入回程一体化的中继,本申请将接入回程一体化的中继节点称为中继传输接收点(relay Transmission Reception Point,rTRP)以区分LTE的中继。第三代合作伙伴计划(Third Generation Partnership Project,3GPP)已确定将NR IAB作为版本(release)16的标准化目标,目前刚处于研究起步阶段。
另一方面,NR中基站发送同步信号的方案已经在标准中确定了,和LTE的同步信号传输方式不同的地方在于NR中由于高频的引入使得空口同步信号的传输是基于同步信号/物理广播信道块(Synchronization Signal/Physical Broadcast Channel block,SS/PBCH Block)的方式。另一方面,在NR中引入了多种波形参数(Numerology),同步信号在无线帧中的传输所占用的符号位置和 Numerology相关。Numerology是指物理层波形参数,包括子载波间隔(Subcarrier Spacing,SCS),循环前缀(Cyclic Prefix,CP)的配置。
由于NR和LTE同步信号的不同,在NR的IAB系统中,确保中继节点获取同步信号参数的配置,并在空口进行同步信号的发送是一个需要解决的问题。
图1-1为本申请实施例所适用的通信系统的结构示意图。
需要说明的是,本申请实施例提及的通信系统包括但不限于:窄带物联网(Narrow Band-Internet of Things,NB-IoT)系统、长期演进(Long Term Evolution,LTE)系统,下一代5G移动通信系统或者5G之后的通信系统,或者设备到设备(Device to Device,D2D)通信系统。
在图1-1所示的通信系统中,给出了一体化的接入和回程IAB系统。一个IAB系统至少包括一个基站100,及基站100所服务的一个或多个用户设备(User Equipment,UE)101,一个或多个中继节点rTRP 110,及该rTRP 110所服务的一个或多个UE 111,通常基站100被称为宿主基站(Donor Next Generation Node B,DgNB),rTRP 110通过无线回程链路113连接到基站100。宿主基站在本申请中也称为宿主节点,即,Donor节点。基站包括但不限于:演进型节点B(evolved Node Base,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU)、或下一代新空口(NR,New Radio)基站(比如gNB)等。
一体化的接入和回程系统还可以包括多个其他中继节点,例如rTRP 120和rTRP 130,rTRP 120是通过无线回程链路123连接到中继节点rTRP 110以接入到网络的,rTRP 130是通过无线回程链路133连接到中继节点rTRP 110以接入到网络的,rTRP 120为一个或多个UE 121服务,rTRP 130为一个或多个UE 131服务。图1-1中,中继节点rTRP 110和rTRP 120都通过无线回程链路连接到网络。在本申请中,所述无线回程链路都是从中继节点的角度来看的,比如无线回程链路113是中继节点rTRP 110的回程链路,无线回程链路123是中继节点rTRP 120的回程链路。如图1-1所示,一个中继节点,如120,可以通过无线回程链路,如123,连接另一个中继节点110,从而连接到网络,而且,中继节点可以经过多级无线中继节点连接到网络。通常,把提供无线回程链路资源的节点,如110,称为中继节点120的上级节点,而120则称为中继节点110下级节点。通常,下级节点可以被看作是上级节点的一个用户设备UE。应理解,图1-1所示的一体化接入和回程系统中,一个中继节点连接一个上级节点,但是在未来的中继系统中,为了提高无线回程链路的可靠性,一个中继节点,如120,可以有多个上级节点同时为一个中继节点提供服务,如图中的rTRP 130还可以通过回程链路134连接到中继节点rTRP 120,即,rTRP 110和rTRP 120都为rTRP 130的上级节点。在本申请中,所述用户设备UE 101,111,121,131,可以是静止或移动设备。例如移动设备可以是移动电话,智能终端,平板电脑,笔记本电脑,视频游戏控制台,多媒体播放器,甚至是移动的中继节点等。静止设备通常位于固定位置,如计算机,接入点(通过无线链路连接到网络,如静止的中继节点)等。中继节点rTRP110,120,130的名称并不限制其所部署的场景或网络,可以是比如relay,RN等任何其他名称。本申请使用rTRP仅是方便描述的需要。
在图1-1中,无线链路102,112,122,132,113,123,133,134可以是双向链路,包括上行和下行传输链路,特别地,无线回程链路113,123,133,134可以用于上级节点为下级节点提供服务,如上级节点100为下级节点110提供无线回程服务。应理解,回程链路的上行和下行可以是分离的,即,上行链路和下行链路不是通过同一个节点进行传输的。所述下行传输是指上级节点,如节点100,向下级节点,如节点110,传输信息或数据,上行传输是指下级节点,如节点110,向上级节点,如节点100,传输信息或数据。所述节点不限于是网络节点还是UE,例如,在D2D场景下,UE可以充当中继 节点为其他UE服务。无线回程链路在某些场景下又可以是接入链路,如回程链路123对节点110来说也可以被视作接入链路,回程链路113也是节点100的接入链路。应理解,上述上级节点可以是基站,也可以是中继节点,下级节点可以是中继节点,也可以是具有中继功能的UE,如D2D场景下,下级节点也可以是UE。
图1-1所示的中继节点,如110,120,130,可以有两种存在的形态:一种是作为一个独立的接入节点存在,可以独立管理接入到中继节点的UE,此时的中继节点通常具有独立的物理小区标识(Physical Cell Identifier,PCI),这种形态的中继通常需要有完全的协议栈功能,比如无线资源控制(Radio Resource Control,RRC)的功能,这种中继通常被称为层3中继;而另一种形态的中继节点没有独立的PCI,其和Donor节点,如Donor eNB,Donor gNB,属于同一个小区,不会对用户进行管理。层2和层3中继的协议栈如图1-2到图1-5所示。Donor节点是指通过该节点可以接入到核心网的节点,或者是无线接入网的一个锚点基站,通过该锚点基站可以接入到网络。锚点基站负责分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层的数据处理,或者负责接收核心网的数据并转发给中继节点,或者接收中继节点的数据并转发给核心网。
图1-2和图1-3分别为层2中继系统用户面和控制面的协议栈协议架构图。图中的下一代用户面(Next Generation User Plane,NG-UP)主要是用户面网关,下一代控制面(Next Generation Control Plane,NG-CP)为控制面节点。其中UE的用户面协议层包括:物理层(Physical Layer,PHY)、媒体接入控制(Medium Access Control,MAC)层、无线链路控制(Radio,Link Control,RLC)层、PDCP层、业务数据适配协议层(Service Data Adaptation Protocol,SDAP)以及因特网协议(Internet Protocl,IP)层,其中DSAP层主要是提供业务适配功能,包括服务质量(Quality of Service,QoS)管理,流管理的功能。层2中继和UE进行通信的空口协议层主要包括:PHY层、MAC层、RLC层,而通过回程链路与Donor节点通信的接口的协议栈包括:PHY层、MAC层、RLC层以及适配层(Adaptation,Adpt.),其中适配层主要提供包括承载管理、安全管理的功能。对应地,Donor节点,即DgNB和层2中继的接口的协议栈包括:PHY层、MAC层、RLC层、Adpt.层、PDCP层以及SDAP层。DgNB和NG-UP之间一般为有线连接,通常通过隧道建立业务承载,DgNB对应NG-UP的协议栈包括:L1(Layer 1,L1)、L2(Layer 2,L2)、IP层、用户数据包协议层(User Datagram Protocol,UDP)以及通用分组无线业务隧道协议用户面(General Packet Radio Service Tunnelling Protocol User Plane,GTP-U)层。对应地,NG-UP的协议栈包括:L1、L2、IP层、UDP层、GTP-U层以及IP层。上述各协议层及功能为本领域普通技术人员所熟知,不再赘述。
同样地,图1-3为层2中继系统的控制面协议栈结构。UE的协议栈包括:PHY层、MAC层、RLC层、PDCP层、RRC层以及非接入层(Non-Access Stratum,NAS)、层2中继的控制面协议栈和用户面协议栈相同,不再赘述。DgNB和层2中继的控制面接口协议栈包括:PHY层、MAC层、RLC层、Adpt.层、PDCP层以及RRC层。DgNB和核心网控制面网元NG-CP之间通常通过有线连接,DgNB在该接口上的协议栈包括:L1、L2、IP层、流控制传输协议(Stream Control Transmission Protocol,SCTP)层以及S1应用协议(S1 Application Protocol,S1-AP)层,其中S1为接口的代号。对应地,NG-CP在S1接口的协议栈包括:L1、L2、IP层、SCTP层、S1-AP层以及NAS层,其中NAS层和UE的NAS层对应。
类似地,图1-4和图1-5分别为层3中继系统的用户面和控制面协议栈结构。和层2中继系统中用户面协议栈不同的是层3中继和UE在空口上支持完整的空口协议栈,包括:PHY层、MAC层、RLC层、PDCP层以及SDAP层。而在中继和DgNB之间的接口上,中继节点的协议栈包括:PHY层、MAC层、RLC层、PDCP层、IP层、UDP层以及GTP-U层。对应地,DgNB的S1接口的协议栈包括:PHY层、MAC层、RLC层、PDCP层、IP层、UDP层以及GTP-U层。其他同层2中继系统的用户面协议栈结构,不再 赘述。
图1-5为层3中继协议的控制面协议栈结构。和层2中继系统中控制面协议栈不同的是层3中继系统控制面协议栈结构中,层3中继和UE在空口上支持完整的控制面协议栈,包括:PHY层、MAC层、RLC层、PDCP层以及RRC层。而层3中继和DgNB之间的接口的协议栈包括:PHY层、MAC层、RLC层、PDCP层、IP层、SCTP层以及S1-AP层。对应地,DgNB和层3中继接口的协议栈包括:PHY层、MAC层、RLC层、PDCP层、IP层、SCTP层以及S1-AP层。其他同层2中继系统的控制面协议栈结构,不再赘述。
上述任意一种形态的中继节点,为了正确提供服务,都需要向它所服务的UE或设备发送同步信号。但是,如前所述,NR中的同步信号和LTE的不同,不仅包括同步信号序列,还包括同步信号块SS/PBCH Block在无线帧发送时的资源。同步信号序列的生成主要依赖于PCI,通过PCI可以生成主同步信号(Primary Synchronization Signal,PSS)序列和辅同步信号(Secondary Synchronization Signal,SSS)序列。图2-1和图2-2为本申请实施例提供的SS/PBCH Block在无线帧中符号位置的示例。其中图2-1为15K赫兹(Kilo Herz,KHz)和30KHz子载波间隔的SS/PBCH Block在时域的符号位置图,图2-2为120KHz和24KHz子载波间隔的SS/PBCH Block在时域的符号位置图。图2-1给出的是1ms内的SS/PBCH Block的时域符号位置图,图2-2给出的是0.25ms内的SS/PBCH Block的时域符号位置图。图2-1中的211和221分别表示15KHz和30KHz子载波间隔的一个符号,对15KHz子载波间隔,1ms包括14个符号,对30KHz子载波间隔,1ms包括28个符号,无论子载波间隔多少,一个时隙包括14个符号,因此,对15KHz子载波间隔,1ms就是一个时隙,而对30KHz子载波间隔,1ms包括2个时隙,即图2-1中的符号0-13为一个时隙,14-27为另一个时隙。同样地,在0.125ms内,对120KHz,包括2个时隙,对240KHz,包括4个时隙。对15KHz子载波间隔,在1ms内包含2个SS/PBCH Block,即212和213,符号位起始位置分别为2和8。对30KHz子载波间隔,有两种SS/PBCH Block的模式,一种是每个SS/PBCH Block的符号位起始位置分别为{4,8,16,20},有4个不同SS/PBCH Block,分别为222,223,224,225,另一种是每个SS/PBCH Block的符号位起始位置分别为{2,8,16,22},4个不同的SS/PBCH Block分别为226,227,228,229。同样地,对120KHz,每个SS/PBCH Block的符号位起始位置分别为{4,8,16,20},4个不同的SS/PBCH Block分别为232,233,234,235,对240KHz,每个SS/PBCH Block的符号位起始位置分别为{8,12,16,20,32,36,40,44},8个不同的SS/PBCH Block分别为242,243,244,245,246,247,248,249。上述每个SS/PBCH Block在时域上占4个符号位。由于现在NR定义的SS/PBCH Block数L可以为4,8,64,对不同子载波间隔,L的值会不一样,对15KHz和30KHz子载波间隔,最大L为8,对120KHz和240KHz子载波间隔,L为64。对15KHz和30KHz子载波间隔,对小于3GHz(Giga Herz,GHz)频段,L为4,对大于3GHz到6GHz频段,L为8,对大于6GHz频段,L为64。因此,通过频段就可以确定L的值。
图2-1中给出了15KHz和30KHz子载波间隔时在1ms内的SS/PBCH Block,图2-2中给出了120KHz及240KHz子载波间隔时在0.125ms内的SS/PBCH Block。当L大于图2-1和图2-2给出的SS/PBCH Block数量时,会在后续的时隙继续按照同样的模式进行发送,方法如下:
对15KHz子载波间隔,按照{2,8}+14*n进行发送,其中{2,8}表示SS/PBCH Block的第一个符号的索引,即位置,以下相同,不再赘述。对小于3GHz或等于3GHz频段,n=0,1,对大于3GHz且小于等于6GHz频段,n=0,1,2,3。一个同步信号周期内的SS/PBCH Block的位置由上述公式遍历n的上述取值,以下相同,不再赘述。
对30KHz子载波间隔,按照{4,8,16,20}+28*n进行发送,对小于3GHz或等于3GHz频段,n=0,对大于3GHz且小于等于6GHz频段,n=0,1。
对30KHz子载波间隔,按照{2,8}+14*n进行发送,对小于3GHz或等于3GHz频段,n=0,1,对大 于3GHz且小于等于6GHz频段,n=0,1,2,3。
对120KHz子载波间隔,按照{4,8,16,20}+28*n进行发送,对大于6GHz频段,n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18。
对240KHz子载波间隔,按照{8,12,16,20,32,36,40,44}+56*n进行发送,对大于6GHz频段,n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18。
上述主要是SS/PBCH block在时域的起始位置,如上所述,一个SS/PBCH block占用4个符号,NR规定PSS占用第零符号位(符号编号从0到3),而SSS占用第二符号位,PBCH占用第二和第三符号位。此外,SS/PBCH block在频域上占用连续的240个子载波(编号从0-239),PSS占用第零符号位的子载波为56-182,而0-55以及183-239设置为0。而SSS占用第二符号位的子载波为56-182,而48-55以及183-191设置为0。第二符号位的子载波0-47和192-239,以及第一和第三符号位的0-239子载波用于PBCH的传输。
除上述SS/PBCH Block的时域配置外,同步信号的发送还需要确定频域资源的位置,所以,同步信号信息还包括同步信号信息对应的部分带宽(Bandwidth Part,BWP)的信息,中继节点根据同步信号信息对应的部分带宽的信息在部分带宽上发送同步信号。在NR中,可以支持一个或多个BWP,如果有多个BWP,且不同BWP可以传同步信号,那么需要指定BWP的信息。
此外,同步信号还包括PBCH的信息,PBCH的信息主要包括如下信息中的至少一个:索引显式指示(ssb-IndexExplicit)、半帧索引(halfFrameIndex)、系统帧号(systemFrameNumber)、通用子载波间隔(subCarrierSpacingCommon)、子载波偏移(ssb-subcarrierOffset)、解调参考信号(Demodulation Reference Signal,DMRS)类型A位置(dmrs-TypeA-Position)、SIB1 PDCCH配置(pdcchConfigSIB1)、小区阻塞(cellBarred)、同频小区重选(intraFreqReselection)。每个PBCH字段的具体含义可以参考3GPP 38.331协议,应为普通技术人员所理解,不再赘述。
根据以上SS/PBCH Block的发送方式,中继节点接收上级节点通过空口发送的同步信号信息,同步信号信息包括至少以下信息中的一种:同步信号的子载波间隔、中继节点工作的频带信息、PBCH的信息、同步信号的周期、同步信号获取方式的指示信息,中继节点根据同步信号的信息发送同步信号。同步信号信息还包括:物理小区识别符(PCI),PCI用于生成同步信号序列,同步信号序列在同步信号资源上进行传输。
所述中继节点工作的频带信息是指通信设备工作的频率范围,对频分复用(Frequency Division Duplexing,FDD),包括上行和下行频带,所述通信设备包括但不限于基站、中继节点和终端。通常,中继节点工作的频带信息是通过编号来对应的,例如,在3GPP 38.813协议定义了两个时分复用(Time Division Duplexing,TDD)的频带:n77和n78,n77对应的上行(Uplink,UL)频率范围为3300MHz-4200MHz,下行(Downlink,DL)频率范围为3300MHz-4200MHz;n78对应的UL频率范围为3300MHz-3800MHz,DL频率范围为3300MHz-3800MHz。应理解,这里仅是一个示例,NR中继可以工作在任何规定的频带。中继节点工作的频带信息可以通过频带的编号来进行指示,也可以是其他方式,比如给出工作频率范围,本实施例不做限定。本领域普通技术人员容易想到的任何改变或替换,都应属于在本实施例揭露的技术范围。通过在同步信号信息中包含中继节点工作的频带信息,中继节点就可以确定SS/PBCH block的数量及位置,具体参见以下实施例。
同步信号的周期是指上述不同子载波间隔下,SS/PBCH Block传输的周期,一个SS/PBCH Block周期内传输的SS/PBCH Block不同。所述不同的SS/PBCH Block是指如图2-1所示的212和213,或者222、223、224、225等,这里不一一列举,本领域普通技术人员应理解,SS/PBCH Block周期是指一组SS/PBCH Block在空口传输的间隔,一组SS/PBCH Block属于同一个周期。由于NR的同步信号的周期是可以配置的,因此,需要指定同步信号的周期,使得中继节点可以正确配置同步信号的发送 周期。
如前所述,由于中继包括多种形态,对层3中继,有独立的物理小区标识PCI,而对没有物理小区标识PCI的中继,可以进一步分为层2中继和层1中继,一般来说层1中继主要是对信号进行放大,没有高层协议处理,高层协议是指MAC层或MAC层之上的协议。在未来NR中,中继主要包括层2和层3中继,层2中继则具有层2协议栈的功能,包括MAC、RLC、和/或PDCP的功能,目前NR在架构上实现控制和承载分离,通常将RRC和PDCP功能集成在一起,因此,层2中继主要包括MAC和RLC功能。应理解,本实施例不限制层2协议栈的功能放置,在有些场景下,可以是包含MAC、RLC、PDCP的,而在有些场景下可能只包含MAC、RLC、和/或适配层,而在有些场景下可能包括MAC、RLC以及部分RRC功能,甚至有些场景下包括MAC、RLC、PDCP及部分RRC功能,本实施例不做约束。
对层3中继,通常,由于PCI和Donor节点不同,因此,同步信号和Donor节点不同。而对层2中继,中继节点的同步信号则和Donor节点相同,应理解,这里的中继节点的同步信号则和Donor节点相同是指同步信号的PSS、SSS、PBCH相同,但是Donor节点和中继节点的周期可以配置不一样,依赖于具体实现,本实施例不做约束。
同步信号获取方式的指示信息则主要用于在层2中继场景下,如果仅Donor节点和中继节点支持在同一个载频进行工作,且没有其他的BWP时,此时中继节点的同步信号和Donor节点的同步信号完全一致,而中继节点则可以从Donor节点的同步信号中获取所有同步信号信息。此时,同步信号获取方式的指示信息用于指示同步信号信息是由网络配置,如Donor进行配置,还是由中继节点从Donor节点同步信息中自动获取。应理解,如果是显式配置,即,由网络配置同步信号信息,那么同步信号获取方式的指示信息可以不需要。
为了使得中继节点启动后可以为UE提供服务,中继节点首先需要获取正确的同步信号信息并在空口进行发送,其方法为:中继节点接收上级节点通过空口发送的同步信号信息,同步信号信息包括以下信息中的至少一种:同步信号的子载波间隔、中继节点工作的频带信息、中继节点物理广播信道PBCH的信息、同步信号的周期、同步信号获取方式的指示信息,中继节点根据所述同步信号的信息发送同步信号。
上述同步信号可以包括同步信号序列,同步信号信息还可以包括物理小区识别符PCI,中继节点根据PCI生成同步信号序列。具体的同步信号序列的生成是由生成多项式来生成,应为本领域普通技术人员所熟悉,不再赘述。
考虑到NR中对部分带宽BWP的支持,同步信号信息还包括同步信号信息对应的部分带宽BWP信息,中继节点根据同步信号对应的部分带宽BWP信息在部分带宽BWP上发送同步信号。
进一步,考虑到NR中的同步信号发送是以波束的方式进行发送的,每个波束的发送功率可以一样,也可以不一样。因此,同步信号信息还包括:同步信号对应的发送功率,中继节点采用所述发送功率发送同步信号。
中继节点通过空口进行同步信号信息的传输,可以有效降低部署成本,并能够实现快速的部署。同时,由于NR中的同步信号不同于传统的LTE的同步信号,通过空口自动获取同步信号信息,可以避免人工配置,提升配置效率。另一方面,由于NR支持部分带宽BWP的功能,使得一个小区中的不同中继节点可以和Donor节点工作在相同或者不同的BWP上,以更好的适应小区中不同位置的业务需求,因此,通过空口对中继节点的同步信号信息进行配置,具有更大的灵活性和自由度,以适应网络业务变化的需要。
图3为本申请实施例提供的中继节点获取同步信号信息及发送过程的流程图。图3中包括的网元有基站,如gNB(Next Generation Node B,gNB),接入和移动管理功能(Access and Mobility  Management Function,AMF)/会话管理功能(Session Management Function,SMF),用户面功能(User Plane Function,UPF),统一数据管理(Unified Data Management,SMF)/鉴权服务器功能(Authentication Server Function,AUSF),运行管理和维护(Operations,Administration and maintenance,OAM)节点,宿主节点,即Donor节点以及邻居基站。应理解,上述网元的名称并不限定本实施例的方法,在有些实现中,AMF/SMF也被称为移动管理实体(Mobility Management Entity,MME),UPF也被称为服务网关(Serving Gateway,S-GW)/分组数据网网关(Packet Data Network Gateway,P-GW),UDM/AUSF也被称为归属用户服务器(Home Subscriber Server,HSS)。本领域普通技术人员容易想到的任何改变或替换,都应属于在本实施例揭露的技术范围。步骤如下:
S301、中继节点启动,即中继节点加电并启动。
S302、中继节点在加电启动过程中,作为普通的UE执行附着过程,附着过程包括鉴权过程,通过AMF/SMF以及UDM/AUSF之间的交互完成鉴权过程。在鉴权过程中,中继节点被识别为中继节点。当鉴权通过后,中继节点就可以附着到当前的基站以及核心网的网元AMF/SMF,基站根据中继节点提供的APN(Access Point Number,APN)建立到OAM节点的安全连接。附着过程在标准中,如3GPP 23.501中有定义,应为本领域普通技术人员所熟悉,不再赘述。
S303、上述中继节点作为UE的附着过程以及到OAM节点的承载建立之后,中继节点就可以通过用户面网关UPF连接到OAM节点,OAM节点对中继节点的标识符进行识别,当判定中继节点为合法中继节点后,OAM节点为中继节点提供初始参数,其中初始参数包括Donor节点列表。
S304、中继节点从OAM节点获得初始参数后,由于中继节点当前接入的基站可能不是Donor节点列表中的基站,或者当前接入的基站选择的AMF/SMF并不支持中继节点的接入,那么中继节点将自己作为UE并执行去附着(Detach)过程以清除在当前接入到的基站和AMF/SMF中的数据,从而完成第一阶段过程,即,第一阶段是中继节点将自己作为UE进行接入并获取初始参数的。去附着过程由标准协议,如3GPP 38.501协议,所定义,应为本领域普通技术人员所熟知,不再赘述。
S305、中继节点获得上述Donor节点列表后执行第二阶段的过程。由于中继节点已经获得Donor节点列表,因此可以将自己作为中继节点执行附着过程。这一过程中,中继节点接入到第一阶段初始配置参数中的某个donor节点,并同样执行到AMF/SMF以及UDM/AUSF的鉴权过程,鉴权通过后,Donor节点为中继节点建立到AMF/SMF的控制面承载的过程。Donor节点为中继节点建立到OAM节点的用户面安全通道连接以便中继节点可以从OAM节点获得配置信息。
S306、中继节点连接到OAM节点后,OAM节点对中继节点进行进一步的配置。OAM节点为中继节点配置包括同步信号信息、小区全球识别符(Cell Global Identifier,CGI)等信息,并通过Donor节点的空口发送给中继节点。其中同步信号信息如前所述,不再赘述。CGI在不同系统中的名字可能不同,如,在LTE中也被称为演进的通用陆地无线接入网CGI(Evolved Universal Terrestrial Radio Access Network(E-UTRAN)CGI,ECGI),应理解,本领域普通技术人员容易想到的任何改变或替换,都应属于在本实施例揭露的技术范围。这一步中,中继节点的OAM模块通过IP建立到OAM节点的连接,其数据,如配置参数,的传输是建立在IP层之上的。
如果同步信号信息中包含同步信号获取方式的指示信息,指示中继节点通过Donor节点的同步信号获取同步信号信息,则中继节点将利用从Donor节点获取的同步信号信息生成同步信号并发送,而不需要从网络获取同步信号信息。在后续实施例中,同步信号信息中可以只包括同步信号获取方式的指示信息,指示中继节点从Donor节点获取同步信号信息,同步信号信息中将不包含其他同步信号信息的参数,不再赘述。
应理解,上述S306步骤中还应包括中继节点收到同步信号、CGI信息后的确认消息,即,向网络发送确认消息,表示中继节点接收到配置信息。OAM的配置信息是在IP层之上的应用层数据,即,OAM 控制/配置数据。
S307、中继节点根据同步信号的信息发送同步信号。中继节点所服务的UE可以通过中节点发送同步信号选择驻留或接入到中继节点。如果同步信号信息中仅包括同步信号获取方式的指示信息,中继节点将从Donor节点自动获取同步信号信息,并根据获取的同步信号信息生成中继节点的同步信号以及PBCH信息,并在空口进行发送。
应理解,上述S306步骤之后,中继节点还可以发起S1和X2的建立过程,Donor节点更新承载配置以及更新小区信息的过程。上述过程在图3中并没有给出,但S1和X2的建立过程是存在的,不再赘述。
上述图中的OAM节点只是一个功能实体,本实施例仅以OAM节点为示例,在未来的网络中,该功能可以集成到其他的节点,如AMF/SMF,本实施例不做约束。应理解,OAM节点也可能是其他任何具有配置功能的实体或模块,本领域普通技术人员容易想到的任何改变或替换,都在本申请的保护范围之内。
通过本实施例,中继节点可以从OAM节点获得同步信号信息,从而根据同步信号信息生成同步信号并进行发送,解决中继节点同步信号信息的配置问题,该方案通过OAM节点来进行同步信号信息的一次性配置即可,简化了实现方案。
图4为本申请提供的中继节点从Donor节点获取同步信号信息的流程图。在有些场景下,尤其是层2中继的时候,Donor节点的同步信息不需要通过OAM节点配置给中继节点,而是通过Donor配置给中继节点。应理解,这里的场景不限于层2中继,层3中继也可以通过Donor节点发送给中继节点。其方法是:网络节点通过空口向中继节点发送同步信号信息,所述同步信号信息包括以下信息中的至少一种:同步信号的子载波间隔、中继节点工作的频带信息、中继节点物理广播信道的信息、同步信号的周期、同步信号获取方式的指示信息;网络节点接收中继节点发送的确认消息。上述方法还可以进一步包括:网络节点接收运行管理和维护节点发送的同步信号信息配置请求,同步信号信息配置请求用于指示网络节点向中继节点发送所述同步信号信息。步骤如下:
S401-S405同图3中的步骤S301-S305,不再赘述。
S406、和图3中的步骤S306不同的是,这一步中OAM节点仅为中继节点配置CGI,不进行同步信号信息的配置。当OAM节点不为中继节点配置同步信号信息时,OAM节点可以控制Donor节点为中继节点配置同步信号信息,或者OAM节点可以控制中继节点主动请求Donor节点配置,或者OAM节点指示中继节点自动从Donor节点发送的SS/PBCH block读取而获得。在OAM节点发送的配置参数中可以包含一个同步信号获取方式的指示信息,同步信号获取方式的指示信息用于指示中继节点获取同步信号信息的方式。具体地,同步信号信息的获取方式可以是:OAM节点配置(如图3所示的方案),或者Donor节点为中继节点配置,或者中继节点主动从Donor节点请求,或者中继节点自动从Donor节点发送的SS/PBCH block读取而获得。当OAM节点发送给中继节点的同步信号信息中已经包括了中继节点发送同步信号的所有信息时,获取方式指示是可选的。可选地,也可以通过协议定义的方式确定采用上述方式中的一种来进行同步信号信息的获取方式,此时,就不需要同步信号获取方式的指示信息。同步信号信息的获取方式的指示信息中还可以包括Donor节点的PCI或者CGI信息。这里OAM节点在配置参数中的包含的同步信号获取方式的指示信息通常是OAM节点根据网规网优预先在OAM节点的系统中配置的,也可以是其他方式,如,OAM节点根据中继节点的属性,如层2节点或层3节点,自动确定配置参数。具体方式本申请不做限定。
如上所述,如果OAM节点发送的配置参数中同步信号获取方式的指示信息指示中继节点通过Donor节点发送的SS/PBCH block自动获取同步信号信息,则中继节点将自动读取Donor节点发送的SS/PBCH block,并获取同步信号信息相关参数。此时,中继节点将跳过下述的S407的步骤而直接进入S408 步骤的同步信号发送过程。
应理解,上述S406步骤中还应包括中继节点收到同步信号、CGI信息后的确认消息,即,向网络发送确认消息,表示中继节点接收到配置信息。OAM节点发送的配置信息是在IP层之上的应用层数据,即,OAM控制/配置数据。
S407、如果中继节点的同步信号信息不是通过中继节点自动读取Donor节点的SS/PBCH block自动获取的,则,OAM节点可以指示Donor节点向中继节点发送同步信号信息,或者指示中继节点主动请求Donor节点发送同步信号信息。通过上述任一方式获取的时候,都需要中继节点和Donor节点进行交互。此时,同步信号信息可以封装在RRC消息来进行发送,如RRC重配消息。
如果OAM节点指示Donor节点向中继节点发送同步信号信息,则可以在发送给中继节点的同步信号信息中指示Donor将向中继节点发送同步信号信息,或者通过协议定义的方式,本申请不做限定。此时中继节点不需要主动请求Donor节点发送同步信号信息,收到OAM节点的配置信息后,等待接收Donor节点发送同步信号信息。
应理解,上面只是以RRC重配消息作为例子,并不限定采用RRC重配消息,也可以是RRC连接重配消息或其他RRC配置消息。本申请只是以具体消息名作为一个例子,并不限定使用某个具体的消息,本领域技术人员容易想到的任何RRC消息的改变或替换,都在本申请的保护范围,后面的RRC消息的例子都相同,不再赘述。
应理解,这里的步骤S407包括上述两种方案的任一方式,即,Donor节点主动向中继节点进行同步信号信息的配置,或者中继节点主动请求Donor节点发送同步信号信息。当OAM节点配置中继节点自动从Donor节点发送的SS/PBCH block中获取同步信号信息时,步骤S407不被执行。
应理解,上述S407步骤之后,中继节点还可以发起S1和X2的建立过程,Donor节点更新承载配置以及更新小区信息的过程。上述过程在图3中并没有给出,但S1和X2的建立过程是存在的,不再赘述。
通过上述方案,中继节点可以从Donor节点获取同步信号信息,简化配置流程,提升配置效率,可以实现快速的同步信号信息的获取。
在一种可选的方案中,如上述实施例所述,OAM节点可以有多种方式为中继节点配置同步信号信息。上述图4步骤S406和S407根据同步信号信息配置方式的不同,其步骤有所不同。OAM节点指示中继节点通过Donor节点发送SS/PBCH block自动获取同步信号信息的方式如前所述,下述实施例仅用于OAM节点指示Donor节点为中继节点配置同步信号信息,或者指示中继节点主动请求Donor节点发送同步信号信息的实施方法。图5为本申请实施例提供的Donor节点为中继节点配置同步信号信息的流程图。具体地,OAM节点同时请求Donor节点为中继节点配置同步信号信息,Donor节点收到OAM节点的请求后,通过空口向中继节点发送同步信号信息。其步骤如下:
S501、OAM节点向Donor节点发送同步信号配置请求,同步信号配置请求中包括中继节点的标识,所述标识可以是IP地址,或者是CGI,或者MAC地址,或者是该中继节点的任何其他标识,本实施例不做限定,本领域普通技术人员容易想到的任何中继节点的标识的改变或替换,都应属于在本实施例揭露的技术范围。Donor节点通过中继节点的标识,可以获得中继节点的空口传输的信息,如小区无线网临时标识(Cell Radio Network Temporary Identifier,C-RNTI)。
S502、Donor节点收到OAM节点发送的同步信号配置请求后,向OAM节点回复同步信号信息配置响应消息,确认请求收到,并继续步骤S503。
S503、Donor节点通过RRC重配消息向中继节点发送同步信号信息。如前所述,如果中继节点在收到的OAM节点的同步信号信息中指示Donor将向中继节点发送同步信号信息,或者协议定义Donor 节点将发送同步信号信息,则,中继节点等待接收Donor节点发送同步信号信息。中继节点收到Donor节点发送的同步信号信息后,继续步骤S504,同时进行图4所示的S408步骤,即,发送同步信号。同步信号信息如前所述,不再赘述。
S504、中继节点向Donor节点发送确认消息,确认消息可以为RRC重配完成消息。
通过上述方案,网络主动触发同步信号信息的发送,可以让中继节点更快获取同步信号信息,加快中继节点同步信号信息获取过程,减少空口信令开销。
在一种可选的方案中,如前所述,上述图4步骤S406和S407还可以是中继节点主动发起同步信号请求以获取同步信号信息。图6为本申请实施例提供的中继节点请求同步信号信息的流程图。其步骤如下:
步骤S601-S602同步骤S501-S502,不再赘述。
S603、如果中继节点从OAM节点接收到的同步信号信息中指示中继节点主动向Donor节点发起同步信号信息请求,或者是协议定义,中继节点收到OAM节点的配置参数后主动向Donor节点发起同步信号信息请求,则中继节点在收到OAM节点的同步信号信息的配置后,向Donor节点发送同步信号信息请求。同步信号信息请求中包括请求同步信号的指示,还可以包括中继节点的标识,具体的标识如上所述,不再赘述。同步信号信息请求可以是RRC消息,也可以是一个特定的MAC控制元素(Control Element,CE)。
S604、Donor节点收到同步信号信息请求后,向中继节点发送同步信号信息,同步信号信息可以承载在RRC消息,如RRC重配消息中,也可以承载在MAC CE中。同步信号信息如前所述,不再赘述。
S605、中继节点收到同步信号信息后,向Donor节点发送确认消息,确认收到同步信号信息。确认消息可以为同步信号配置完成,同步信号配置完成可以通过RRC消息,如RRC重配完成消息,或者MAC CE进行传输。
应理解,上述同步信号信息请求,同步信号信息以及同步信号配置完成可以是RRC参数的一部分,而RRC消息名称则用统一的名称。如,同步信号信息请求是RRC连接请求消息的一部分,而RRC连接请求是一个统一的消息名称,可以用于多种请求。同样地,同步信号信息是RRC重配的一部分,同步信号配置完成是RRC重配完成消息的一部分。这只是一个示例,并不对同步信号信息请求,同步信号信息以及同步信号配置完成属于哪个RRC消息构成限定。
中继节点获取到同步信号信息后,执行同图4所示的步骤S408,即,同步信号发送。
通过上述方案,中继节点主动请求同步信号信息,可以根据中继节点的状态,可以选择什么时候请求同步信号信息的发送,更加灵活。
在一种可选的方案中,中继节点已经完成上述第二阶段的参数配置,即,已经发送同步信号并为UE提供服务。在某些情况下,如供电中断或其他原因等导致中继节点重新启动,或者从图3所示步骤S303,或者图4所示步骤S403提供的Donor节点列表中重新选择一个Donor节点。此时,如果重新接入到Donor节点可以执行前述第一和第二阶段的过程,作为一种可选方案,也可以直接接入到Donor节点。图7为本申请实施例提供的中继节点在接入过程中获取同步信号信息的流程图。步骤如下:
步骤S701-S702为常规的随机接入过程,由于该过程已为本领域普通技术人员所熟知,不再赘述。
S703、中继节点向Donor节点发送消息3,消息3为随机接入过程中的第三条消息,即,接收随机接入响应后向Donor节点发起的消息。消息3依赖于不同的目的,携带的内容会有所不同,例如,如果是UE发起业务请求,则消息3包含RRC连接建立请求消息,如果UE处于连接态而失去同步,则消息3中包含数据。当中继节点需要获取Donor节点的同步信号信息时,可以在消息3中发送同步信 号信息请求,同步信号信息请求是RRC消息,如RRC连接请求消息,同步信号信息请求可以包括请求同步信号的指示,RRC消息中还可以包括中继节点的标识。中继节点的标识如前所述,不再赘述。请求同步信号的指示用于通知Donor节点,中继节点需要Donor节点向中继节点发送同步信号信息。
S704、同常规的随机接入的竞争解决,由于该过程已为本领域普通技术人员所熟知,不再赘述。
S705、Donor节点发送RRC重配消息给中继节点。RRC重配消息中包括同步信号信息或同步信号同步信号获取方式的指示信息。如果RRC重配消息中包含同步信号信息,则中继节点使用该同步信号信息生成同步信号,同步信号信息如前所述,不再赘述。
如果Donor节点的载频没有被划分成至少两个BWP,且Donor节点将中继节点配置为层2中继,那么Donor节点可以配置中继节点的工作载频和Donor相同,此时,Donor节点可以仅向中继节点发送一个同步信号获取方式的指示信息,同步信号获取方式的指示信息指示中继节点自动从Donor节点的SS/PBCH block中读取同步信号信息,并用读取的同步信号信息生成同步信号。
在一种可选的方案中,尽管Donor节点的工作载频没有被划分成至少两个BWP,Donor节点也可以将中继节点配置成工作在某个不同的载频,此时,Donor节点需要为中继节点配置同步信号信息,同步信号信息如前所述,不再赘述。
S706、中继节点向Donor节点发送确认消息,确认消息可以为RRC重配完成消息,确认收到同步信号信息。
S707、中继节点根据接收到的同步信号信息发送同步信号。如果中继节点收到的同步信号信息中指示中继节点自动从Donor节点的SS/PBCH block中读取同步信号信息,则中继节点通过读取Donor节点的SS/PBCH block以获取同步信号信息,并生成同步信号及PBCH,并进行发送。
通过上述方案,中继节点通过Donor节点可以实现快速接入,降低业务中断时延,而不必通过OAM节点进行再次的参数配置过程,加快了启动过程,减小业务中断时延。
在一种可选的方案中,上述Donor节点在收到中继节点在消息3发送的同步信号请求消息后,也可以在竞争解决消息发送同步信号信息。图8为本申请实施例提供的中继节点在竞争解决消息获取同步信号信息的流程图。步骤如下:
步骤S801-S803同图7所示步骤S701-S703,不再赘述。
S804、Donor节点在竞争解决消息中向中继节点发送同步信号信息。所述同步信号信息被封装在RRC重配消息中,RRC重配消息是竞争解决消息的一部分。同步信号信息如前所述,不再赘述。应理解,当同步信号信息被封装在RRC重配消息中并在竞争解决消息中进行传输时,RRC重配消息不应作为竞争解决的一致性消息鉴权码(Message Authentication Code for Integrity,MAC-I)的一部分。
类似地,上述同步信号信息中也可以包含同步信号获取方式的指示信息,同步信号获取方式的指示信息指示中继节点自动从Donor节点的SS/PBCH block中读取同步信号信息,具体如前所述,不再赘述。
S805-S806、同步骤S706-S707,不再赘述。
通过上述方案,中继节点可以更快速的获得同步信号信息,从而加快配置过程。
在一种可选的方案中,未来的无线网络,包括5G接入网可能会考虑更快的接入方式,即,采用两步随机接入过程。如果采用两步随机接入过程,那么在随机接入的第一条消息中会发送部分数据信息。图9为本申请实施例提供的两步随机接入过程中获取同步信号信息的流程图。其步骤如下:
S901、中继节点向Donor节点发送随机接入前导。中继节点在发送该随机接入前导的消息中还可以携带部分数据或者信令。由于是第一条消息,携带的数据量会非常有限,因此,仅能传输一些基本 信息,比如中继节点的标识、请求同步信号的指示。其中请求同步信号的指示用于通知Donor节点为中继节点配置同步信号信息。中继节点的标识如前所述,不再赘述。
S902、Donor节点收到随机接入前导及随前导一起发送的数据或信令后,向中继节点发送随机接入响应,或者叫消息2。应理解,任何消息名称的改变或替换,都在本申请的保护范围之内。在随机接入响应消息中,包括同步信号信息,同步信号信息包括的内容如前所述,不再赘述。同步信号信息可以封装在RRC重配消息中,并通过消息2一起传输给中继节点。
S903、中继节点收到同步信号信息后,向Donor节点确认消息,确认收到同步信号信息。确认消息封装在RRC重配完成消息中进行传输。如果中继节点收到的同步信号信息中包括生成同步信号的所有信息,则执行以下S904的步骤。如果中继节点收到的同步信号信息中包括同步信号获取方式的指示信息,同步信号获取方式的指示信息指示中继节点自动从Donor节点的SS/PBCH block中读取同步信号信息,则中继节点通过读取Donor节点的SS/PBCH block获取同步信号信息,具体如前所述,不再赘述。
S904、中继节点收到步骤S902的同步信号信息,或者根据步骤S903自动获取同步信号信息后,可以根据同步信号信息发送发送同步信号。
通过上述方案,在两步随机接入过程中即可实现同步信号获取,加快了启动过程,最小化中断时延。
在一种可选的方案中,由于空口变化或者带宽变化的需要,一个中继节点可能能够连接到多个可选的Donor节点,此时,可能由于回程链路的带宽,或者回程链路信道质量的变化的原因,中继节点可以从一个Donor节点切换到另一个Donor节点。应理解,这里的切换是指中继节点本身的切换,不是中继节点下面的UE的切换,这一切换可能是网络主动发起的,也可能是中继节点的测量结果导致的。图10为本申请实施例提供的Donor节点切换的流程图。步骤如下:
S1001、源Donor节点向目标Donor节点发起切换请求。该切换为中继节点从源Donor节点切换到目标Donor节点。切换请求消息中指示切换为中继节点的切换,且包括中继节点的标识。中继节点的标识可以如前所述,不再赘述。目标Donor节点收到切换指示后,可能需要重新获取安全参数,并与核心网的AMF/SMF进行交互,获得新的安全参数。获取安全参数的过程遵从切换过程的协议规范,如3GPP 23.501协议,不再赘述。
S1002、目标Donor节点向源Donor节点发送切换响应消息,切换响应消息中包括目标Donor节点的同步信号信息,同步信号信息如前所述,不再赘述。当然,其中也包括其他切换的信息,如为中继节点配置的C-RNTI,专用接入前导,接入的时频资源,使得中继节点可以接入到目标Donor节点。目标Donor节点可以直接将同步信号信息在切换响应消息中通过原Donor节点发送给中继节点,也可以是通过同步信号获取方式的指示信息通知中继节点自动从目标Donor节点获取,具体依赖于Donor节点,本申请不做约束。同步信号信息被封装在一个透明容器(transparent container)中,作为切换响应消息的一部分发送给源Donor节点。透明容易可以是一个,比如RRC连接重配消息,同步信号信息可以是RRC连接重配消息的某个IE(Information Element)的一部分,例如,IE可以是reconfigurationWithSync,或者mobilityControlInformation。源Donor节点对透明容器不做解析,而是将透明容器转发给中继节点,即RRC连接重配消息直接转发给中继节点。应理解,这里只是一个示例,也可以是其他的IE,甚至其他的RRC消息,不做限定。
S1003、源节点收到目标Donor节点的切换响应消息后,源Donor节点对透明容器不做解析,而是将透明容器转发给中继节点,即RRC连接重配消息直接转发给中继节点。中继节点获取其中的同步信号信息。
S1004、中继节点收到目标Donor节点的RRC连接重配消息(即,透明容器)后,利用其中的随机接入参数,在目标Donor节点进行接入。接入过程可以是基于竞争的接入过程,也可以是非竞争的接入过程,这一过程为普通技术人员所熟悉,不再赘述。
如果上述步骤S1003中获得的同步信号信息中包含同步信号获取方式的指示信息,指示中继节点自动获从目标Donor节点获取同步信号信息,则在接入到目标Donor节点的过程中获取同步信号信息,具体的同步信号信息如前所述,不再赘述。
S1005、中继节点接入到目标Donor节点后,向目标小区发送确认消息,确认消息可以为连接重配完成消息。目标Donor节点收到连接重配完成消息后,会向核心网节点请求路由修改,使得后续发往中继节点的数据都发送到目标Donor节点,并接收源Donor节点转发的数据。这一过程同传统的切换过程,不再赘述。
通过以上步骤S1004和S1005,中继节点就可以切换到目标Donor节点,并从目标Donor节点获取同步信号信息,并作为目标Donor节点下的一个小区或节点。
S1006、中继节点收到目标Donor节点通过RRC消息发送的同步信号信息后,生成同步信号并在空口进行发送。该中继节点就完成了从源Donor节点切换目标Donor节点,并作为目标Donor节点下的一个小区或节点为终端提供服务。
通过本实施例,可以根据中继节点的业务变化情况以及回程链路的情况,动态改变Donor节点,通过切换过程获取同步信号信息,简化信令流程。
在一种可选的方案中,Donor节点在为中继节点进行同步信号信息的配置时,配置的同步信号信息还包括同步信号的发送功率,进一步地,同步信号信息还可以包括同步信号/物理广播信道块SS/PBCH block对应的的发送功率。各个SS/PBCH block可以采用相同的发送功率,也可以采用不同的发送功率,可以部分SS/PBCH block采用相同的发送功率,而另一部分SS/PBCH block采用不同的发送功率。主要是由于NR的SS/PBCH block是以波束的形式在各个方向进行分时传输的,由于各个方向的物理环境差异可能较大,因此可以调节不同方向的波束的发送功率以满足覆盖要求。因此,在配置同步信号的时候,每个SS/PBCH block都会有一个对应的发射功率,其中某些SS/PBCH block的发射功率不同于其他的SS/PBCH block的发射功率。这里的同步信号是指一个同步信号的周期内传输的所有的SS/PBCH block的一个统称,而SS/PBCH block是指同步信号的一个周期内的在某个特定时频资源上发送的PSS,SSS以及PBCH。多个SS/PBCH block构成同步信号。SS/PBCH block所占用的时频资源,具体的如图2-1和图2-2所述,不再赘述。
通过本实施例,可以配置Donor节点在不同SS/PBCH block上的发送功率,满足不同的覆盖要求,或者控制中继节点的覆盖范围。
在一种可选的方案中,中继节点接收上级节点发送的另一个中继节点的标识和另一个中继节点的同步信号信息,并将所述另一个中继节点的标识以及所述另一个中继节点的同步信号信息转发给所述另一个中继节点。进一步地,中继节点发送给所述另一个中继节点的消息中还可以包括中继节点的标识和同步信号信息的对应关系。在NR的IAB系统中,将支持多跳中继。当Donor节点下面存在多跳中继的时候,有时候需要配置的中继节点(或者称为目标中继节点)与Donor之间还存在一个或多个其它的中继节点。此时,Donor节点在进行中继节点配置的时候,配置的信息需要经过中间的中继节点转发才能到达目标中继节点。而在某些情况下,由于Donor同步信息的变化,比如某个频段子载波间隔的配置变化等,会导致同步信号信息的变化,此时,需要对Donor节点下的一个或多个中继节点进行重新配置,而该一个或多个中继节点的同步信号的信息与其它中继节点的同步信号的信息可能会 有所差异,比如SS/PBCH block的发射功率不同,因此,需要为这一个或多个中继节点进行配置。
图11为本申请实施例提供的具有多级中继节点的同步信号配置流程图。图中包括两个中继节点,分别为第一中继节点和第二中继节点,其中第一中继节点为第二中继节点的上级节点。应理解,还可以包括其他中继节点,且中继节点之间具有上下级关系。步骤如下:
S1101、Donor节点向下级中继节点发送RRC重配消息,其中包括中继节点的标识,以及中继节点的标识所对应的同步信号信息,即,中继节点的标识和同步信号信息存在对应关系。这里Donor节点可以主动发起同步信号信息的重配过程,也可以是由于下面某个中继节点的加入而导致Donor发送同步信号信息的配置过程。应理解,这里Donor节点发起同步信号信息的重配置可能是其他节点触发,也可能是网络触发的,本实施例不做限定。
S1102、第一中继节点收到RRC重配消息后,首先判断RRC重配消息中的同步信号信息是否是发送给自己的,例如,第一中继节点获取RRC重配消息中的中继节点的标识,如果包括自己的标识,则获取RRC重配置消息中第一中继节点的同步信号信息,并执行S1141步骤,向Donor节点返回RRC重配完成消息。在步骤S1102第一中继节点获取自己的同步信号信息之后,就可以根据该同步信号信息生成新的同步信号,并在空口发送。
如果第一中继节点发现RRC重配消息里包括另一个中继节点的标识,另一个中继节点为中继节点下一级节点,中继节点将另一个中继节点的标识以及另一个中继节点的同步信号信息转发给另一个中继节点。转发的RRC重配消息中可能包括多个另一个中继节点的同步信号信息,为了区分不同的中继节点的同步信号信息,RRC重配消息中还包含另一个中继节点的标识和另一个中继节点的同步信号信息的对应关系,即,所述另一个中继节点的标识和所述另一个中继节点的同步信号信息在同一消息发送,且所述另一个中继节点的标识和所述另一个中继节点的同步信号信息具有对应关系。这里假定每个中继节点知道所有下级中继节点及其路由,即所有下级中继节点的拓扑关系。应理解,如果Donor发送给第一中继节点的RRC重配消息里包括第一中继节点的标识,在转发的时候,不应该再包括第一中继节点的标识及其对应的同步信号信息。
S1103、经过上述1102,第一中继节点确定转发RRC重配消息,则向另一个中继节点,即,第二中继节点,发送RRC重配消息。第二中继节点收到RRC重配消息后,执行S1102同样的检查,如果包含自己的中继节点的标识,则执行S11042步骤,向Donor节点发送RRC重配完成消息。
具体地,如果第一中继节点发现RRC重配消息里包括另一个中继节点的标识,另一个中继节点为中继节点下一级节点,则第一中级节点确定需要将向另一个中级节点转发RRC重配消息。这里假定第一中继节点知道所有下级中继节点及其路由,即所有下级中继节点的拓扑关系。如果第一中继节点不知道所有下级中继节点及其路由,第一中继节点可以发现RRC重配消息里包括另一个中继节点的标识,另一个中继节点的标识不是第一中继节点的直接下级节点,则第一中继节点直接将包含另一个中继节点的RRC重配消息发送给它的直接下级中继节点。
S11041和S11042,如上所述,如果Donor节点发送RRC重配消息中包括第一中继节点的标识,则第一中继节点向Donor节点发送确认消息,确认消息可以为RRC重配完成消息,消息中包括第一中继节点的标识。类似地,第二中继节点返回RRC重配完成消息,消息中包括第二中继节点的标识。在一种可选的方案中,第一中继节点等待其下级中继节点的RRC重配完成消息,并将所有节点的RRC重配完成消息合成一条消息发送给Donor节点。
上述实施例同样适用于Donor节点对同步信号进行重新配置的场景。此时,如果对一个节点的同步信号进行重新配置,在同步信号信息中包含一个重配置指示,该重配置指示和中继节点的标识相对应。
通过本实施例,可以同时为多个中继节点配置进行同步信号信息配置或者重配置,尤其对Donor 同步信号发生变化的情况下,Donor节点可以一次性更新多个中继节点的同步信号信息,避免对每个中继节点进行单独配置,节省信令开销。
在一种可选的方案中,同步信号信息还包括同步信号信息对应的BWP信息,中继节点根据同步信号信息对应的BWP信息在BWP上发送同步信号。在NR中,由于载频的带宽比较大,为了适应不同的业务需要,将一个比较大的载频划分成不同的带宽部分,即各个BWP是属于一个载频的,且占载频的一部分带宽。不同的BWP可以有不同的Numerology,即,可以有不同的子载波间隔,而且不同的BWP可以独立传输SS/PBCH block。各个BWP传输的SS/PBCH block可能不同,比如,各SS/PBCH block传输功率,子载波间隔可以不同,因此,同步信号信息应该包含BWP的信息,即同步信号信息是对应哪个BWP的,中继节点根据同步信号信息产生同步信号后,在对应的BWP上发送。
通过本实施例,可以针对不同的BWP进行同步信号的配置,当Donor配置的中继节点工作在不同的BWP的时候,由于不同的BWP可以用于支持不同类型的业务,而不同位置可能由于地域的不同,业务也存在差异。因此,把中继节点配置在不同的BWP上,可以使得Donor节点在一个小区的不同位置可以灵活支持不同的业务。根据业务的需要,配置适应业务的Numerology,此时的中继节点可以和Donor工作在不同的BWP上,因此,同步信号信息会不同,这一方式增强了NR网络的业务适应和调节能力,最优化网络带宽以适应业务的部署。
在上述所有实施例中,同步信号信息可以通过RRC消息传输。在一种可选的方案中,包括同步信号信息的RRC消息结构可以如下所示:
Figure PCTCN2019072615-appb-000001
上述消息中physCellIdPart1为PCI的第一部分,值的范围从0-335(包括0和335)。physCellIdPart2为PCI的第二部分,值的范围从0-2(包括0和2)。numerologyParm是用于确定子载波间隔的,具体的值参考38.211,本领域普通技术人员可以理解,从对不同的SS/PBCH block,对应的Numerology的取值不同。freqIndex用于指定中继节点工作的频带信息,通过一个index来指示,上述只是一个示例,具体取值依据协议定义。ssPeriod则为SS/PBCH block的传输周期,周期的定义在前述实施例中已说明,不再赘述。physBroadcastCh是PBCH的配置信息,应理解,这里的PBCH和3GPP 38.331协议中定义的MIB(Master Information Block,MIB)具有一定的差异,这里的PBCH主要 是用于确定一些初始化的参数,而有些动态的参数则不需要传输,中继节点可以从Donor节点获取。所以,PBCH相对3GPP 38.331协议中定义的MIB不同,可以根据需要选取部分或全部参数进行配置。具体的PBCH的参数可以参考38.331里的MIB信息。此外还可以包括每个SS/PBCH block的传输功率,BWP的索引信息,中继节点的标识,同步信号获取方式的指示信息。
应理解,以上仅是一个同步信号信息携带在RRC消息中的一个示例,本实施例的同步信号信息的RRC消息中的参数可以根据不同的场景选取不同的参数进行配置,即,部分参数是可选的。例如,如果Donor节点指示中继节点自动从Donor节点的同步信号中获取同步信号信息,则,可以仅包括同步信号获取方式的指示信息ssAcquiringWay;而在层2中继的情况下,尤其是在支持不同BWP的场景下,可以配置子载波间隔,PBCH中的半帧索引信息,DMRS信息,BWP索引信息等。应理解,具体同步信号信息的具体配置,可以根据需要灵活配置。本领域普通人员可以想到的任何改变或替换,都在本申请的保护范围。应理解,如果是OAM节点对中继节点进行同步信号信息配置,其传输格式可能不同于上述RRC消息格式,但内容相同,不再赘述。
应理解,上述只是用RRC传输同步信号信息时,RRC的同步信号信息的一种可能的数据结构的表示方式,但并不限制同步信号信息可以有其他的表示方式。例如,OAM节点给中继节点进行同步信号信息时,可能采用其他结构化的表示方式来传输同步信号信息,例如,可以用类型、长度、值的格式来传输各个参数,例如,用一个类型码来表示某个字段的含义,如physCellIdPart1的类型码为二进制的000001,长度表示类型码的值对应的长度,通常以字节或比特表示,值为具体的配置的值的大小,如physCellIdPart1的值为99。应理解,这里只是一个示例,并不限定同步信号信息的字段的配置。各字段的类型、长度、值的具体的表示方式依赖于协议定义,不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如中继节点、Donor节点、OAM节点,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的网元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对中继节点、Donor节点进行功能模块的划分,例如,可以划分成各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图12为本申请的提供的上述实施例中所涉及的中继设备的一种可能的结构示意图。在本申请中,中继节点又称为中继设备。中继设备1200至少包括接收单元1210,处理单元1240和发送单元1220。接收单元1210,用于接收上级节点通过空口发送的同步信号信息,同步信号信息包括以下信息中的至少一种:同步信号的子载波间隔、中继节点工作的频带信息、中继节点物理广播信道的信息、同步信号的周期、同步信号获取方式的指示信息;处理单元1240,用于根据同步信号信息生成同步信号;发送单元1220,用于发送所述处理器生成的同步信号。
接收单元1210还用于接收上级节点发送的另一个中继设备的标识和另一个中继设备的同步信号信息;发送单元1220用于将所述另一个中继设备的标识以及所述另一个中继设备的同步信号信息转发给所述另一个中继设备。
处理单元1240还可以包括同步信号获取模块1241和同步信号生成模块1242。同步信号获取模块 1241用于向上级节点发送同步信号请求,以请求获取该中继设备的同步信号信息。同步信号请求中可以包括请求同步信号信息的指示,中继设备的标识还可以与同步信号请求一起发送。同步信号获取模块1241还可以用于获取OAM节点发送的同步信号信息。同步信号生成模块1242可以根据同步信号获取模块获得的同步信号信息生成物理层发送同步信号所需的参数,物理层发送同步信号所需的参数可以包括BWP index及带宽,发射功率,DMRS,PSS的相关参数,SSS的相关参数,以及PBCH的相关参数。具体地,PSS的相关参数包括physCellIdPart2(即PSS所属的同步信号组);SSS的相关参数包括physCellIdPart1;PBCH的相关参数包括下列信息中的至少一种:ssb-IndexExplicit,半帧索引、子载波间隔、子载波偏移、DMRS位置、SIB1的物理PDCCH的配置,小区禁止接入指示,小区频选指示等,具体参数如前所述,不再赘述。
关于同步信号信息的内容、同步信号信息的配置以及获取方式等可以参见前面方法实施例中的描述,此处不再赘述。
中继设备1200还可以包括基带处理单元1230,用于对同步信号生成模块1242的同步信号参数进行基带处理,并通过发送单元1220进行发送,也用于对从上级节点(例如,Donor节点)接收到的同步信号信息进行基带处理,获取该中继设备的同步信号信息。该基带处理单元1230还可以用于对中继设备的同步信号进行处理,并将获得的同步信号信息发送给同步信号获取模块1241。上述基带信号处理主要包括信道编码和基带信号调制。不同的空口技术,基带处理过程会有所差异,如LTE或NR的基带处理主要包括资源解映射、解预编码、解调、信道解码、解扰的过程。通过基带处理,获得比特流,如果数据需要发送给高层进行处理,则交给处理单元1240。基带处理单元也可以对来自高层的数据流进行处理,例如,LTE或NR的基带处理主要包括:加扰、信道编码、调制、层映射和预编码、资源映射以及反傅里叶变化的过程,形成基带信号流发送给发送单元进行发送。应理解,上述对基带的接收处理和发送处理过程仅是一个示例,不对本实施例构成限制,基带处理已为本领域普通技术人员所熟悉,不再赘述。
所述处理单元1240可以通过一个或多个处理器实现,所述基带处理单元1230可以通过基带处理器实现。处理器和基带处理器可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件等或者其任意组合。该处理器与基带处理器可以是分离的两个芯片,也可以集成在一起形成一个芯片。
除此之外,中继设备1200还可以包括天线1201应理解,天线1201可以是接收单元1210和发送单元1220的一部分,也可以是与接收单元1210和发送单元1220相分离的,作为一个独立的器件存在。接收单元1210用于对接收的射频信号进行处理,在硬件实现上,接收单元1210可以包括射频前端电路和射频接收电路。应理解,图12中的接收单元1210仅是一个示例,接收单元1210也可以包括其他单元或者接口等。硬件实现上,上述射频前端电路主要包括滤波器和放大器,用于将天线接收到的信号经过滤波和放大后传输给射频接收电路。在射频接收电路中则主要用于对射频前端电路输出的信号进行混频、滤波、功放、模数转换等形成适于基带处理单1230元处理的信号。上述图3-图11中继节点从其它节点或设备接收到的信号均会经过接收单元1210的处理传输给基带处理单元1230。
相应地,发送单元1220包括射频发送电路和射频前端电路。应理解,图12中的发送单元在具体实现时也可以包括其他单元或者接口。上述射频发送电路可以是射频接收电路对信号的处理的逆过程,主要用于实现基带信号到高频信号的变换,例如,射频发送电路可以包括数模转换、混频、滤波、功放。射频前端电路对信号的处理也可以是射频前端电路对信号处理的逆过程,例如,对信号进行放大、滤波等,并将处理后的信号通过天线1201进行发送。上述图3-图11中,中继节点的处理单元1240需要发送给其它节点、终端或设备的信号均会经过发送单元1220的处理后通过天线1201发送出去。
上述中继设备中,接收单元1210和发送单元1220,可以共用一个或多个天线。应理解,在无线网络中可以有多个天线以实现多输入多输出技术以提升系统吞吐量。图中仅是一个示意,但并不限制天线的数目。
在硬件实现上,上述接收单元1210可以为接收器,发送单元1220可以为发送器,接收器和发送器可以构成通信接口。应理解,通信接口还可以包括其他物理接口,如配置接口,用于通过有线方式连接中继节点对其进行配置,包括同步信号信息的配置。接收器和发送器中可以仅包括射频接收电路和射频发送电路,而接收单元1210中的射频前端电路和发送单元1220中的射频前端电路可以是在另外的独立的器件中实现,而将射频接收电路和射频发送电路集成在一个芯片中实现,形成射频收发器。在射频前端和射频收发器在分离的器件实现时,通信接口包括射频前端电路和射频收发电路,射频前端电路和射频收发器之间进行耦合。通信接口还可以包括其他的接口,如配置接口。接收器和发送器还可以包括其他模块的收发接口,这里只是用一个物理示例来说明接收器和发送器,但不应理解接收器和发送器就是物理上的射频收发电路,接收器和发送器仅是一个名称,可以在多个模块中都存在,可以以软件的方式实现,也可以以硬件的方式实现,本申请不做约束。
上述中继设备在硬件实现上还可以包括:存储单元1250(例如,存储器),用于存储处理单元1240和/或基带处理单元1230所需的代码。当处理单元1240或基带处理单元1230执行该存储器中的代码时就可以实现前述处理单元1240或基带处理单元1230的功能。
图13为本申请提供的上述实施例中所涉及的网络设备的一种可能的结构示意图,网络设备1300至少包括:中继节点的标识可以和同步信号信息请求可以在同一消息中接收到。处理单元1340,用于生成中继节点的同步信号信息,同步信号信息包括以下信息中的至少一种:同步信号的子载波间隔、所述中继节点工作的频带信息、所述中继节点物理广播信道的信息、同步信号的周期、同步信号获取方式的指示信息;发送单元1320,用于通过空口向中继节点发送同步信号信息;接收单元1310,用于接收中继节点发送的确认消息。
上述接收单元1310,还用于接收所述中继节点发送的同步信号信息请求,同步信号信息请求用于请求网络设备向中继节点发送中继节点的同步信号信息。
接收单元1310,还用于接收运行管理和维护节点发送的同步信号信息配置请求,同步信号信息配置请求用于指示网络节点将中继节点的同步信号信息发送给中继节点;处理单元1340,用于根据同步信号信息配置请求生成中继节点的同步信号信息。
处理单元1340,还可以包括同步信号信息配置模块1341,用于对中继节点发送的同步信号信息请求进行处理,并为发送同步信号请求的中继节点确定同步信号信息。确定同步信号信息包括处理单元根据中继节点的位置,或者当前小区的业务分布情况,如某个位置业务比较拥塞等,确定将中继节点配置在某个BWP上进行工作;也可以将中继节点配置成和Donor节点在同样的载频或BWP工作。处理单元1340确定中继节点工作的BWP或载频后,为中继节点生成同步信号信息,并对中继节点发送的同步信号信息请求进行相应。
处理单元1340还可以用于对来自OAM节点的同步信号信息配置请求进行处理,并根据其中的同步信号获取方式的指示信息为中继节点生成同步信号信息,并对来自OAM节点的同步信号信息配置请求进行响应。如果OAM节点发送的同步信号信息配置请求中包含的同步信号获取方式的指示信息指示网络设备1300向中继节点主动发送同步信号信息,则处理单元1340为指定的中继节点生成同步信号信息,并通过发送单元1320发送出去。
处理单元1340,还用于获取中继节点的标识,发送单元1320用于将中继节点的标识与中继节点 的同步信号信息一起传输给中继节点,以使所述中继节点根据所述中继节点的标识获取所述中继节点的同步信号信息。
网络设备1300还可以包括基带处理单元1330,用于对要发送的同步信号信息(如同步信号信息配置模块1341要发送的同步信号信息)进行基带信号处理,并通过发送单元1320进行发送,也用于对从中继节点接收的同步信号信息请求消息进行基带信号处理,并将基带信号处理的结果发送给高层,如同步信号信息配置模块1341。上述基带信号处理主要包括信道编码和基带信号调制。不同的空口技术,基带处理过程会有所差异,如LTE或NR的基带处理主要包括资源解映射、解预编码、解调、信道解码、解扰的过程。通过基带处理,获得比特流,如果数据需要发送给高层进行处理,则交给处理单元1340。基带处理单元1330也可以对来自处理单元1340的数据流进行处理。例如,LTE或NR的基带处理主要包括:加扰、信道编码、调制、层映射和预编码、资源映射以及反傅里叶变化的过程,形成基带信号流发送给发送单元1320进行发送。应理解,上述对基带的接收处理和发送处理过程仅是一个示例,不对本实施例构成限制,基带处理已为本领域普通技术人员所熟悉,不再赘述。
所述处理单元1340可以通过一个或多个处理器实现,所述基带处理单元1330可以通过基带处理器实现。处理器和基带处理器可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件等或者其任意组合。该处理器与基带处理器可以是分离的两个芯片,也可以集成在一起形成一个芯片。
除此之外,网络设备1300还可以包括天线1301,应理解,天线1301可以是接收单元1310和发送单元1320的一部分,也可以是与接收单元1310和发送单元相1320分离的,作为一个独立的器件存在。
接收单元1310用于对接收的射频信号进行处理,在硬件实现上,接收单元1310包括射频前端电路和射频接收电路。应理解,图13中的接收单元1310仅是一个示例,接收单元1310也可以包括其他单元或者接口等。硬件实现上,接收单元1310的射频前端电路和射频接收电路如前图12所述,不再赘述。接收单元1310还用于接收来自其他网元,如OAM节点,的消息。上述图3-图11网络节点从中继设备接收到的信号均会经过接收单元1310的处理传输给基带处理单元1330,或者接收单元1310的其他接口接收来自其他网元,如OAM节点,的信息。
发送单元1320包括射频发送电路和射频前端电路。应理解,图13中的发送单元1320在具体实现时也可以包括其他单元或者接口。上述射频发送电路和射频接收电路的基本功能如前所述,不再赘述。上述图3-图11中,网络设备的处理单元1340需要发送给其它中继设备、终端的信号均会经过发送单元1320的处理后通过天线1301发送出去;或者网络设备的处理单元1340通过发送单元1320的其他接口发送消息到其他网元,如OAM节点。
发送单元1320还用于将另一个中继节点的标识与所述另一个中继节点的同步信号信息发送给中继节点,以使中继节点将所述另一个中继节点的标识以及所述另一个中继设备的同步信号信息发送给所述另一个中继节点。
上述网络设备中,接收单元1310和发送单元1320,可以共用一个或多个天线。应理解,在无线网络中可以有多个天线以实现多输入多输出技术以提升系统吞吐量。图中仅是一个示意,但并不限制天线的数目。
在硬件实现上,上述接收单元1310可以为接收器,发送单元1320可以为发送器,接收器和发送器可以构成通信接口。应理解,通信接口还可以包括其他物理接口,如和核心网络进行通信的接口,用于通过有线方式连接到其他网元,如网关设备。接收器和发送器中可以仅包括射频接收电路和射频发送电路,而接收单元1310中的射频前端电路和发送单元1320中的射频前端电路可以是在另外的独 立的器件中实现,而将射频接收电路和射频发送电路集成在一个芯片中实现,形成射频收发器。在射频前端电路和射频收发器在分离的器件实现时,通信接口包括射频前端电路和射频收发器,射频前端电路和射频收发器之间进行耦合。通信接口还可以包括其他有线接口,如以太网接口、光纤接口。应理解,通信接口不应简单理解为只是射频接口。接收器和发送器还可以包括其他模块的收发接口,这里只是用一个物理示例来说明接收器和发送器,但不应理解接收器和发送器就是物理上的射频收发器,接收器和发送器仅是一个名称,可以在多个模块中都存在,可以以软件的方式实现,也可以以硬件的方式实现,本申请不做约束。
上述网络设备在硬件实现上还可以包括:存储单元1350(例如,存储器),用于存储处理单元1340和/或基带处理单元1330所需的代码。当处理单元1340或基带处理单元1330执行该存储器中的代码时就可以实现前述处理单元1340或基带处理单元1330的功能。
在本申请的另一实施例中,还提供一种可读存储介质,可读存储介质中存储有计算机执行指令,当一个设备(可以是单片机,芯片等)或者处理器执行图3-图11所提供的同步信号的发送方法中中继节点、Donor节点的步骤时,读取存储介质中的计算机执行指令。前述的可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请的另一实施例中,还提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中;设备的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得设备实施图3-图11所提供的同步信号的发送方法中中继节点、Donor节点的步骤。
在本申请的另一实施例中,还提供一种通信系统,该通信系统至少包括中继节点、Donor节点。其中,中继节点可以为图12所提供的中继节点,用于执行图3-图11所提供的同步信号的发送方法中中继节点的步骤;和/或,Donor节点可以为图13所提供的网络设备,且用于执行图3-图11所提供的同步信号的发送方法中由网络节点执行的步骤。应理解,该通信系统可以包括多个中继节点,Donor节点可以同时为多个中继节点进行同步信号信息的配置。
在本申请实施例中,当中继节点从Donor节点或OAM节点节点获取同步信号信息后,可以根据同步信号信息生成同步信号以及确定PBCH的信息,在SS/PBCH block指定的资源上进行同步信号的发送,解决了中继节点启动时同步信号信息的配置问题。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (46)

  1. 一种发送同步信号的方法,其特征在于,包括:
    中继节点接收上级节点通过空口发送的同步信号信息,所述同步信号信息包括以下信息中的至少一种:同步信号的子载波间隔、所述中继节点工作的频带信息、所述中继节点物理广播信道的信息、同步信号的周期、同步信号获取方式的指示信息;
    所述中继节点根据所述同步信号的信息发送同步信号。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述中继节点向所述上级节点发送同步信号信息请求,以请求获取所述中继节点的同步信号信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述同步信号包括同步信号序列,所述同步信号信息还包括:物理小区识别符PCI,所述中继节点根据所述PCI生成所述同步信号序列。
  4. 根据权利要求1-3所述的方法,其特征在于,所述同步信号信息还包括所述同步信号信息对应的部分带宽的信息,所述中继节点根据所述同步信号信息对应的部分带宽的信息在所述部分带宽上发送所述同步信号。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述同步信号信息还包括:所述同步信号对应的发送功率,所述中继节点采用所述发送功率发送所述同步信号。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    所述中继节点接收所述上级节点发送的所述中继节点的标识,并根据所述中继节点的标识获取所述中继节点的所述同步信号信息。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:所述中继节点接收所述上级节点发送的另一个中继节点的标识和另一个中继节点的同步信号信息,并将所述另一个中继节点的标识以及所述另一个中继节点的同步信号信息转发给所述另一个中继节点。
  8. 一种发送同步信号信息的方法,其特征在于,包括:
    网络节点通过空口向中继节点发送同步信号信息,所述同步信号信息包括以下信息中的至少一种:同步信号的子载波间隔、所述中继节点工作的频带信息、所述中继节点物理广播信道的信息、同步信号的周期、同步信号获取方式的指示信息;
    所述网络节点接收中继节点发送的确认消息。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述网络节点接收所述中继节点发送的同步信号信息请求,所述同步信号信息请求用于请求所述网络节点向所述中继节点发送所述中继节点的所述同步信号信息。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    所述网络节点接收运行管理和维护节点发送的同步信号信息配置请求,所述同步信号信息配置请求用于指示所述网络节点向所述中继节点发送所述同步信号信息。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述同步信号信息还包括:物理小区识别符PCI,以使所述中继节点根据所述PCI生成同步信号序列。
  12. 根据权利要求8-11任一项所述的方法,其特征在于,所述同步信号信息还包括所述同步信号信息对应的部分带宽的信息,以使所述中继节点根据所述同步信号信息对应的部分带宽的信息在所述部分带宽上发送所述同步信号。
  13. 根据权利要求8-12任一项所述的方法,其特征在于,所述同步信号信息还包括:所述同步信号对应的发送功率。
  14. 根据权利要求8-13任一项所述的方法,其特征在于,所述方法还包括:
    所述上级节点将所述中继节点的标识与所述同步信号信息一起发送给所述中继节点,以使所述中继节点根据所述中继节点的标识获取所述中继节点的同步信号信息。
  15. 根据权利要求8-13任一项所述的方法,其特征在于,所述方法还包括:
    所述网络节点将另一个中继节点的标识与所述另一个中继节点的同步信号信息发送给所述中继节点,以使所述中继节点将所述另一个中继节点的标识以及所述另一个中继节点的同步信号信息转发给所述另一个中继节点。
  16. 一种中继设备,其特征在于,包括:接收单元,用于接收上级节点通过空口发送的同步信号信息,所述同步信号信息包括以下信息中的至少一种:同步信号的子载波间隔、所述中继设备工作的频带信息、所述中继设备物理广播信道的信息、同步信号的周期、同步信号获取方式的指示信息;
    处理单元,用于根据所述同步信号信息生成同步信号;
    发送单元,用于发送所述处理器生成的同步信号。
  17. 根据权利要求16所述的中继设备,其特征在于,所述同步信号为同步信号序列,所述同步信号信息还包括:物理小区识别符PCI,所述处理单元用于根据所述PCI生成所述同步信号序列。
  18. 根据权利要求16或17所述的中继设备,其特征在于,所述同步信号信息还包括所述同步信号信息对应的部分带宽的信息,所述发送单元在所述同步信号信息对应的部分带宽上发送所述同步信号。
  19. 根据权利要求16-18任一项所述的中继设备,其特征在于,所述同步信号信息还包括:所述同步信号对应的发送功率,所述发送单元采用所述发送功率发送所述同步信号。
  20. 根据权利要求16-19任一项所述的设备,其特征在于,所述处理单元还用于获取所述中继设备的标识,所述处理单元根据所述中继设备的标识获取所述中继设备的同步信号信息。
  21. 根据权利要求16-20任一项所述的中继设备,其特征在于,所述接收单元还用于接收上级节点发送的另一个中继设备的标识和另一个中继设备的同步信号信息,所述发送单元用于将所述另一个中继设备的标识以及所述另一个中继设备的同步信号信息转发给所述另一个中继设备。
  22. 一种网络设备,其特征在于,包括:
    处理单元,用于生成中继节点的同步信号信息,所述同步信号信息包括以下信息中的至少一种:同步信号的子载波间隔、所述中继节点工作的频带信息、所述中继节点物理广播信道的信息、同步信号的周期、同步信号获取方式的指示信息;
    发送单元,用于通过空口向中继节点发送同步信号信息;
    接收单元,用于接收所述中继节点发送的确认消息。
  23. 根据权利要求22所述的网络设备,其特征在于,所述接收单元,还用于接收所述中继节点发送的同步信号信息请求,所述同步信号信息请求用于请求所述网络设备向所述中继节点发送所述中继节点的同步信号信息。
  24. 根据权利要求22所述的网络设备,其特征在于,所述接收单元还用于接收运行管理和维护节点发送的同步信号信息配置请求,所述同步信号信息配置请求用于指示所述网络设备将所述中继设备的同步信号信息发送给所述中继节点;所述处理单元,还用于根据所述同步信号信息配置请求生成所述中继节点的同步信号信息。
  25. 根据权利要求22-24任一项所述的网络设备,其特征在于,所述同步信号信息还包括:物理小区识别符PCI,以使所述中继节点根据所述PCI生成同步信号序列。
  26. 根据权利要求22-25任一项所述的网络设备,其特征在于,所述同步信号信息还包括所述同步信号信息对应的部分带宽的信息,以使所述中继节点根据所述同步信号信息对应的部分带宽的信息在所述部分带宽上发送所述同步信号。
  27. 根据权利要求22-26任一项所述的网络设备,其特征在于,所述同步信号信息还包括:所述同步信号的发送功率。
  28. 根据权利要求22-27任一项所述的网络设备,其特征在于,所述处理单元还用于获取所述中继节点的标识,所述发送单元用于将所述中继节点的标识与所述中继节点的同步信号信息一起传输给所述中继节点,以使所述中继节点根据所述中继节点的标识获取所述中继节点的同步信号信息。
  29. 根据权利要求22-28任一项所述的网络设备,其特征在于,还包括:所述发送单元还用于将另一个中继节点的标识与所述另一个中继节点的同步信号信息发送给所述中继节点,以使所述中继节点将所述另一个中继节点的标识以及所述另一个中继设备的同步信号信息发送给所述另一个中继节点。
  30. 一种中继设备,其特征在于,包括:
    接收器,用于接收上级节点通过空口发送的同步信号信息,所述同步信号信息包括以下信息中的至少一种:同步信号的子载波间隔、所述中继设备工作的频带信息、所述中继设备物理广播信道的信息、同步信号的周期、同步信号获取方式的指示信息;
    处理器,用于根据所述同步信号信息生成同步信号;
    发送器,用于发送所述处理器生成的同步信号。
  31. 根据权利要求30所述的中继设备,其特征在于,所述同步信号为同步信号序列,所述同步信号信息还包括:物理小区识别符PCI,所述处理单元用于根据所述PCI生成所述同步信号序列。
  32. 根据权利要求30或31所述的中继设备,其特征在于,所述同步信号信息还包括所述同步信号信息对应的部分带宽的信息,所述发送单元在所述同步信号信息对应的部分带宽上发送所述同步信号。
  33. 根据权利要求30-32任一项所述的中继设备,其特征在于,所述同步信号信息还包括:所述同步信号对应的发送功率,所述发送单元采用所述发送功率发送所述同步信号。
  34. 根据权利要求30-33任一项所述的中继设备,其特征在于,所述处理器还用于获取所述中继设备的标识,所述处理器根据所述中继设备的标识获取所述中继设备的同步信号信息。
  35. 根据权利要求30-34任一项所述的中继设备,其特征在于,所述接收器还用于接收上级节点发送的另一个中继设备的标识和另一个中继设备的同步信号信息,所述发送器还用于将所述另一个中继设备的标识以及所述另一个中继设备的同步信号信息转发给所述另一个中继设备。
  36. 一种网络设备,其特征在于,包括:
    处理器,用于生成中继节点的同步信号信息,所述同步信号信息包括以下信息中的至少一种:同步信号的子载波间隔、所述中继节点工作的频带信息、所述中继节点物理广播信道的信息、同步信号的周期、同步信号获取方式的指示信息;
    发送器,用于通过空口向中继节点发送同步信号信息;
    接收器,用于接收所述中继节点发送的确认消息。
  37. 根据权利要求36所述的网络设备,其特征在于,所述接收器,还用于接收所述中继节点发送的同步信号信息请求,所述同步信号信息请求用于请求所述网络设备向所述中继节点发送所述中继节点的同步信号信息。
  38. 根据权利要求36所述的网络设备,其特征在于,所述接收器还用于接收运行管理和维护节点发送的同步信号信息配置请求,所述同步信号信息配置请求用于指示所述网络设备将所述中继设备的同步信号信息发送给所述中继节点;所述处理器,还用于根据所述同步信号信息配置请求生成所述中继节点的同步信号信息。
  39. 根据权利要求36-38任一项所述的网络设备,其特征在于,所述同步信号信息还包括:物理小区识别符PCI,以使所述中继节点根据所述PCI生成同步信号序列。
  40. 根据权利要求36-39任一项所述的网络设备,其特征在于,所述同步信号信息还包括所述同步信号信息对应的部分带宽的信息,以使所述中继节点根据所述同步信号信息对应的部分带宽的信息在所述部分带宽上发送所述同步信号。
  41. 根据权利要求36-40任一项所述的网络设备,其特征在于,所述同步信号信息还包括:所述同步信号的发送功率。
  42. 根据权利要求36-41任一项所述的网络设备,其特征在于,所述处理器还用于获取所述中继节点的标识,所述发送器还用于将所述中继节点的标识与所述中继节点的同步信号信息一起传输给所述中继节点,以使所述中继节点根据所述中继节点的标识获取所述中继节点的同步信号信息。
  43. 根据权利要求36-42任一项所述的网络设备,其特征在于,还包括:所述发送器还用于将另一个中继节点的标识与所述另一个中继节点的同步信号信息发送给所述中继节点,以使所述中继节点将所述另一个中继节点的标识以及所述另一个中继设备的同步信号信息发送给所述另一个中继节点。
  44. 一种可读存储介质,其特征在于,所述可读存储介质上存储有程序,当所述程序运行时,实现如权利要求1-7任一项所述的发送同步信号的方法,或者实现如权利要求8-15任一项所述的发送同步信号的方法。
  45. 一种包含指令的计算机程序产品,其特征在于,所述计算机程序产品运行时,实现如权利要求1-7任一项所述的发送同步信号的方法,或者实现如权利要求8-15任一项所述的发送同步信号的方法。
  46. 一种芯片系统,其特征在于,所述设备包括存储器、处理器,所述存储器中存储代码和数据,所述存储器与所述处理器耦合,所述处理器运行所述存储器中的代码使得所述设备执行实现如权利要求1-7任一项所述的发送同步信号的方法,或者执行实现如权利要求8-15任一项所述的发送同步信号的方法。
PCT/CN2019/072615 2018-02-12 2019-01-22 一种中继节点同步信号的发送方法及装置 WO2019154060A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207026261A KR102492605B1 (ko) 2018-02-12 2019-01-22 중계 노드에 의한 동기화 신호 송신 방법 및 장치
EP19751484.7A EP3749003A4 (en) 2018-02-12 2019-01-22 METHOD AND DEVICE FOR SENDING A SYNCHRONIZATION SIGNAL FROM A RELAY NODE
BR112020016301-5A BR112020016301A2 (pt) 2018-02-12 2019-01-22 Método para enviar sinal de sincronização por nó de retransmissão, e aparelho
US16/990,483 US11811495B2 (en) 2018-02-12 2020-08-11 Method for sending synchronization signal by relay node, and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810147102.4 2018-02-12
CN201810147102.4A CN110149642B (zh) 2018-02-12 2018-02-12 一种中继节点同步信号的发送方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/990,483 Continuation US11811495B2 (en) 2018-02-12 2020-08-11 Method for sending synchronization signal by relay node, and apparatus

Publications (1)

Publication Number Publication Date
WO2019154060A1 true WO2019154060A1 (zh) 2019-08-15

Family

ID=67548208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072615 WO2019154060A1 (zh) 2018-02-12 2019-01-22 一种中继节点同步信号的发送方法及装置

Country Status (6)

Country Link
US (1) US11811495B2 (zh)
EP (1) EP3749003A4 (zh)
KR (1) KR102492605B1 (zh)
CN (1) CN110149642B (zh)
BR (1) BR112020016301A2 (zh)
WO (1) WO2019154060A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3780738A1 (en) * 2019-08-16 2021-02-17 Nokia Solutions and Networks Oy Associating iab mt to iab du at handover-target gnb
WO2021032905A1 (en) 2019-08-16 2021-02-25 Nokia Solutions And Networks Oy Controlling operations of an integrated access and backhaul (iab) node
WO2021055476A1 (en) * 2019-09-16 2021-03-25 Qualcomm Incorporated Discovery signals for mobile relays
CN115039443A (zh) * 2020-02-12 2022-09-09 华为技术有限公司 一种通信方法及通信装置
US12041498B2 (en) 2020-06-17 2024-07-16 Nokia Solutions And Networks Oy Controlling operations of an integrated access and backhaul (IAB) node

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019204966A1 (zh) * 2018-04-23 2019-10-31 北京小米移动软件有限公司 无线回传链路恢复、建立方法及装置
CN114731576A (zh) * 2019-11-28 2022-07-08 苹果公司 用于空闲或非活动用户装备的链路选择
CN113382423B (zh) * 2020-03-09 2023-08-22 维沃移动通信有限公司 信号传输方法、信息指示方法和相关设备
CN111901817A (zh) * 2020-03-09 2020-11-06 中兴通讯股份有限公司 数据包传输方法、装置、通信节点及存储介质
CN111901865A (zh) * 2020-07-16 2020-11-06 中兴通讯股份有限公司 信号传输方法、装置、节点和存储介质
CN115669211A (zh) * 2020-08-12 2023-01-31 Oppo广东移动通信有限公司 中继方法和终端
US20220069893A1 (en) * 2020-08-25 2022-03-03 Qualcomm Incorporated Autonomous acquisition of configuration information in radio frequency repeaters
US20220077922A1 (en) * 2020-09-09 2022-03-10 Qualcomm Incorporated Synchronization signal block forwarding
KR20220036061A (ko) 2020-09-15 2022-03-22 삼성전자주식회사 전자 장치, 그 제어 방법 및 전자 시스템
WO2022120574A1 (zh) * 2020-12-08 2022-06-16 华为技术有限公司 物理小区的波束管理方法以及相关装置
JPWO2022254531A1 (zh) * 2021-05-31 2022-12-08
WO2023154372A1 (en) * 2022-02-10 2023-08-17 Kyocera Corporation Inter-cell service continuity
US20230300742A1 (en) * 2022-02-12 2023-09-21 Apple Inc. Power efficient communication with wireless smart repeater
KR20240071386A (ko) * 2022-04-28 2024-05-22 지티이 코포레이션 네트워크 노드에 대한 리소스 구성을 위한 시스템 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102792762A (zh) * 2010-03-16 2012-11-21 索尼公司 中继站和通信控制方法
CN104796368A (zh) * 2014-01-17 2015-07-22 电信科学技术研究院 一种同步信息的发送、检测方法及用户设备
CN105517139A (zh) * 2014-09-25 2016-04-20 中兴通讯股份有限公司 一种设备到设备通信的同步方法和用户设备
CN106575993A (zh) * 2014-08-06 2017-04-19 夏普株式会社 用于设备到设备通信的同步信号
CN106688288A (zh) * 2014-09-25 2017-05-17 三星电子株式会社 用于d2d系统中的通信的同步过程及资源控制方法和装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009290783A (ja) * 2008-05-30 2009-12-10 Canon Inc 通信システム、通信システムの制御方法、プログラム及び記憶媒体
CN101938775B (zh) * 2009-06-29 2017-07-18 宏达国际电子股份有限公司 处理移动装置移动性的方法及其相关通信装置
CN101958743B (zh) * 2009-07-13 2014-12-10 中兴通讯股份有限公司 中继链路的同步信号映射方法及装置
US9125133B2 (en) * 2009-08-12 2015-09-01 Qualcomm Incorporated Method and apparatus for relay backhaul design in a wireless communication system
US9014079B2 (en) * 2009-10-29 2015-04-21 Telefonaktiebolaget L M Ericsson (Publ) Intra-subframe time multiplexing
GB201010410D0 (en) * 2010-06-22 2010-08-04 Nokia Siemens Networks Oy Relaying communications
JP2013239817A (ja) * 2012-05-14 2013-11-28 Sharp Corp 中継装置、無線端末装置、通信システム及び通信方法
US9768925B2 (en) * 2012-11-04 2017-09-19 Lg Electronics Inc. Method for transmitting/receiving synchronizing signals in wireless communication system and device therefor
BR112016006508A2 (pt) 2013-09-27 2017-08-01 Ericsson Telefon Ab L M método, nó de rede e dispositivos sem fio de retransmissão e fora de cobertura para operar retransmissão de informação de controle de dispositivo para dispositivo
WO2015068595A1 (ja) * 2013-11-08 2015-05-14 シャープ株式会社 端末装置、基地局装置、通信方法、および集積回路
JP6472537B2 (ja) * 2015-04-03 2019-02-20 ホアウェイ・テクノロジーズ・カンパニー・リミテッド データ伝送方法、ユーザ機器、及び基地局
CN106303900B (zh) * 2015-05-15 2020-10-30 索尼公司 无线通信设备和无线通信方法
US10117199B2 (en) * 2015-09-24 2018-10-30 Lg Electronics Inc. Method of transmitting channel state information and apparatus therefor
US20200305197A1 (en) * 2016-03-11 2020-09-24 Lg Electronics Inc. System information signal reception method, user equipment, system information signal transmitting method and base station
US11026193B2 (en) * 2016-03-24 2021-06-01 Lg Electronics Inc. Method for transmitting synchronization signal and base station, and method for receiving synchronization signal and user equipment
US10098059B2 (en) * 2016-04-29 2018-10-09 Qualcomm Incorporated Discovering physical cell identifiers in wireless communications
WO2017217719A1 (en) * 2016-06-12 2017-12-21 Lg Electronics Inc. Method for receiving signals and wireless device thereof
CN107634925B (zh) * 2016-07-18 2020-10-02 中兴通讯股份有限公司 同步信道的发送、接收方法及装置、传输系统
CN111935814B (zh) * 2016-07-18 2021-11-16 中兴通讯股份有限公司 同步信号的发送、接收方法及装置、传输系统
US11343694B2 (en) * 2017-05-19 2022-05-24 Qualcomm Incorporated Options to provide a network icon in non-standalone mode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102792762A (zh) * 2010-03-16 2012-11-21 索尼公司 中继站和通信控制方法
CN104796368A (zh) * 2014-01-17 2015-07-22 电信科学技术研究院 一种同步信息的发送、检测方法及用户设备
CN106575993A (zh) * 2014-08-06 2017-04-19 夏普株式会社 用于设备到设备通信的同步信号
CN105517139A (zh) * 2014-09-25 2016-04-20 中兴通讯股份有限公司 一种设备到设备通信的同步方法和用户设备
CN106688288A (zh) * 2014-09-25 2017-05-17 三星电子株式会社 用于d2d系统中的通信的同步过程及资源控制方法和装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3780738A1 (en) * 2019-08-16 2021-02-17 Nokia Solutions and Networks Oy Associating iab mt to iab du at handover-target gnb
WO2021032905A1 (en) 2019-08-16 2021-02-25 Nokia Solutions And Networks Oy Controlling operations of an integrated access and backhaul (iab) node
EP4014693A4 (en) * 2019-08-16 2023-08-30 Nokia Solutions and Networks Oy CONTROL OF OPERATIONS OF AN INTEGRATED ACCESS AND BACKHAUL (IAB) NODE
WO2021055476A1 (en) * 2019-09-16 2021-03-25 Qualcomm Incorporated Discovery signals for mobile relays
CN115039443A (zh) * 2020-02-12 2022-09-09 华为技术有限公司 一种通信方法及通信装置
CN115039443B (zh) * 2020-02-12 2024-05-14 华为技术有限公司 一种通信方法及通信装置
US12041498B2 (en) 2020-06-17 2024-07-16 Nokia Solutions And Networks Oy Controlling operations of an integrated access and backhaul (IAB) node

Also Published As

Publication number Publication date
CN110149642B (zh) 2021-12-10
EP3749003A1 (en) 2020-12-09
KR102492605B1 (ko) 2023-01-27
KR20200118199A (ko) 2020-10-14
BR112020016301A2 (pt) 2020-12-15
CN110149642A (zh) 2019-08-20
US11811495B2 (en) 2023-11-07
US20210013959A1 (en) 2021-01-14
EP3749003A4 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
WO2019154060A1 (zh) 一种中继节点同步信号的发送方法及装置
JP7338748B2 (ja) ソース基地局、ターゲット基地局、及びこれらの方法
AU2021282555B2 (en) Radio access network node, radio terminal, and methods and non-transitory computer-readable media therefor
WO2021063131A1 (zh) 信息发送方法及装置、信息接收方法及装置
US10045266B2 (en) Scheme for transmitting and receiving information in wireless communication system
EP4102888A1 (en) Handover of terminal between nodes supporting two rats
TWI736239B (zh) 在iab節點間之量測中之靜音模式信號
WO2015042954A1 (zh) 站间同步的方法及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019751484

Country of ref document: EP

Effective date: 20200902

Ref document number: 20207026261

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020016301

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020016301

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200811