WO2022120574A1 - 物理小区的波束管理方法以及相关装置 - Google Patents

物理小区的波束管理方法以及相关装置 Download PDF

Info

Publication number
WO2022120574A1
WO2022120574A1 PCT/CN2020/134549 CN2020134549W WO2022120574A1 WO 2022120574 A1 WO2022120574 A1 WO 2022120574A1 CN 2020134549 W CN2020134549 W CN 2020134549W WO 2022120574 A1 WO2022120574 A1 WO 2022120574A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
terminal device
beams
information
network
Prior art date
Application number
PCT/CN2020/134549
Other languages
English (en)
French (fr)
Inventor
罗海燕
酉春华
曾清海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/134549 priority Critical patent/WO2022120574A1/zh
Priority to CN202080107427.5A priority patent/CN116547922A/zh
Publication of WO2022120574A1 publication Critical patent/WO2022120574A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a beam management method for a physical cell and a related device.
  • coverage extension is mainly achieved by adding base stations, integrated access and backhaul (IAB) nodes or relay nodes at the coverage holes, but adding sites means increasing network resources.
  • IAB integrated access and backhaul
  • a physical cell identity (PCI) is allocated to each newly added site, and the number of PCIs is limited. Therefore, the deployment of a large number of sites may easily lead to adjacent cells of one or more sites using the same PCI, so that the terminal device cannot correctly identify the adjacent cells through the PCI, resulting in the problem of PCI conflict.
  • Embodiments of the present application provide a beam management method and related apparatus for a physical cell, which are used to avoid the problem of PCI conflict caused by a PCI being shared by different adjacent cells, which is easy to occur in a large number of deployment sites.
  • a first aspect of the embodiments of the present application provides a communication method, where the communication method includes:
  • the first network device determines that the first network manages one or more first beams and the second network device manages one or more second beams; wherein the one or more first beams and the one or more second beams belong to the same physical cell; the second network device is a device accessing a physical cell; the first network device determines resource information corresponding to one or more second beams.
  • the first network device sends resource information to the second network device; the resource information is used by the second network device to provide communication services for terminal devices requesting access to one or more second beams.
  • the first network device configures resource information of one or more second beams for the second network device. Then the first network device sends the resource information to the second network device. In this way the second network device can manage one or more second beams of the physical cell.
  • the second network device is responsible for providing communication services such as access service and resource scheduling for terminal devices requesting to access the one or more second beams. Because the one or more second beams managed by the second network device and the one or more first beams managed by the first network device belong to the same physical cell. That is, the second network is not managing a new physical cell.
  • the terminal device since the PCI detected by the terminal device from the first network device and the second network device is the same, the terminal device only perceives the physical cell, and does not distinguish between the first network device and the second network device. .
  • the terminal device can select and access a beam with a larger signal strength. Switching between the first network device and the second network device when the terminal device moves is avoided, network signaling overhead is saved and service quality is improved.
  • the resource information includes at least one of the following: an identifier corresponding to one or more second beams, a set of preamble sequence numbers corresponding to each second beam, and a random access corresponding to each second beam.
  • Channel time-frequency resource information includes at least one of the following: an identifier corresponding to one or more second beams, a set of preamble sequence numbers corresponding to each second beam, and a random access corresponding to each second beam.
  • the second network device provides a communication service for a terminal device requesting to access one or more second beams through the content included in the resource information. For example, access service, resource scheduling service, data transmission service, etc.
  • the method further includes:
  • the first network device sends at least one of the following to the second network device:
  • SI System information
  • time-frequency resource information corresponding to system information
  • time-frequency resource information corresponding to demodulation reference signal (DMRS)
  • channel state information reference signal channel state information reference signal
  • CSI- RS channel state information reference signal
  • cell radio network temporary identifier cell radio network temporary identifier, C-RNTI
  • control resource set control-resource set, CORESET
  • the first network device transmits the above-mentioned at least one parameter to the second network device, so that the second network device can manage one or more second beams of the physical cell.
  • the second network device is implemented to provide communication services for terminal devices requesting access to one or more second beams.
  • the method further includes: the first network device receives capability information of the second network device sent by the second network device; the capability information includes at least one of the following: used to indicate that the second network device is a connection The information of the in-point type device and the transmit power of the second network device.
  • the first network device may determine that the second network device may act as an access point in combination with the information used to indicate that the second network device is an access point type device and/or the transmit power of the second network device , which can provide access services, resource scheduling and other services for terminal devices requesting access to the network device. In order to facilitate the subsequent first network device to reasonably configure some beams of the physical cell managed by the second network device.
  • the capability information further includes at least one of the following: the number of transmitting and receiving antennas of the second network device, the location information, the number of beams supported, the number of terminal devices supporting access, the time of the request size of the frequency resource.
  • the capability information further includes the parameters shown above, so as to assist the subsequent first network device to reasonably configure the partial beams of the physical cell managed by the second network device.
  • the first network device determining that the first network device manages one or more first beams and the second network device manages one or more second beams includes: the first network device determining according to the capability information One or more second beams are managed by the second network device.
  • the first network device may acquire capability information of the second network device, and then determine the one or more beams based on the capability information. or multiple second beams.
  • the method further includes: the first network device receives location information and a beam measurement result of the second network device, where the beam measurement result includes a beam measurement result obtained by the second network device measuring a beam of a physical cell; Then, the first network device determining that the first network device manages one or more first beams and the second network device manages one or more second beams includes: the first network device determining the first beam according to the capability information and the beam measurement result. Two network devices manage the one or more second beams.
  • the first network device may acquire beam measurement results and capability information of the second network device . Then, the first network device determines, in combination with the beam measurement results, that the second network device manages one or more second beams.
  • the method when the first terminal device switches from the third beam to the fourth beam, the third beam is one of the one or more second beams, and the fourth beam is the one or more beams one of the first beams; the method further includes:
  • the first network device receives the cell radio network temporary identifier (cell radio network temporary identifier, C-RNTI) and the identifier of the fourth beam sent by the second network device to the first terminal device;
  • the identification of the C-RNTI and the fourth beam provides a communication service for the first terminal device.
  • the second network device determines, according to the L1 measurement report of the first terminal device, that the fourth beam is the first beam Terminal equipment provides services.
  • the first network device receives the C-RNTI of the first terminal device and the identifier of the fourth beam sent by the second network device. In this way, the first network device can provide communication services for the first terminal device, so that in the beam switching scenario of the first terminal device, the first terminal device continues to perform data transmission under the scheduling of the first network device.
  • the one or more second beams include a third beam, and the first terminal device accesses the third beam; when the first terminal device moves from the signal coverage of the third beam to the signal coverage of the fourth beam In the case of signal coverage, the fourth beam is one of the one or more first beams managed by the first network device; the method further includes:
  • the first network device receives message 1 sent by the first terminal device, where message 1 includes a random access preamble; the first network device determines according to the random access preamble of message 1 that the first terminal device requests beam failure recovery in the fourth beam ; The first network device sends a message 2 to the first terminal device, the message 2 includes a random access response message; the first network device sends to the second network device information for instructing the second network device to stop scheduling the first terminal device.
  • the first terminal device moves from the signal coverage of the third beam managed by the second network device to the signal coverage of the fourth beam managed by the first network device, and the first terminal device moves to the first
  • the network device initiates a beam failure recovery (BFR) request to enable the first network device to provide services for the first terminal device, so that the first terminal device continues to operate in the first terminal device in the case of a beam failure scenario in the first terminal device.
  • BFR beam failure recovery
  • Data transmission is performed under the scheduling of network equipment.
  • the first network device sends information for instructing the second network device to stop scheduling the first terminal device to the second network device, so that the second network device can stop scheduling the first terminal device, so that the first network device can The first terminal device provides communication services.
  • the one or more first beams include a fourth beam, and the first terminal device accesses the fourth beam; the method further includes: the first network device receives the layer 1 (Layer 1) of the first terminal device. 1, L1) measurement report; the first network device determines the third beam according to the L1 measurement report; the third beam is one of the one or more second beams managed by the second network device; then, the first network device reports to the first A terminal device sends the identifier of the third beam, and the identifier of the third beam is used by the first terminal device to switch from the fourth beam to the third beam; the first network device sends the C-RNTI and the C-RNTI of the first terminal device to the second network device. The identity of the third beam.
  • Layer 1 Layer 1
  • the first network device determines the third beam according to the L1 measurement report
  • the third beam is one of the one or more second beams managed by the second network device
  • the first network device reports to the first A terminal device sends the identifier of the third beam, and the identifier of the
  • the first terminal device is within the signal coverage range of the second beam managed by the first network device.
  • the first network device determines, according to the L1 measurement report of the first terminal device, that the third beam managed by the second network device provides services for the first terminal device.
  • the first network device sends the identifier of the third beam to the first terminal device, so that the first terminal device switches from the fourth beam to the third beam.
  • the first network device sends the C-RNTI of the first terminal device and the identifier of the third beam to the second network device, so that in the beam switching scenario of the first terminal device, the first terminal device continues to operate on the second network device data transmission under the schedule.
  • one or more of the first beams include a fourth beam, and the first terminal device accesses the fourth beam; when the first terminal device moves from the signal coverage of the fourth beam to the signal coverage of the third beam Signal coverage, when the first terminal device initiates a beam failure recovery request to the first network device, the third beam is one of one or more second beams managed by the second network device, and the method further includes:
  • the first network device receives information from the second network device used to instruct the first network device to stop scheduling the first terminal device; the first network device stops scheduling the first terminal device according to the information used to instruct the first network device to stop scheduling the first terminal device Terminal Equipment.
  • the first terminal device moves from the signal coverage of the fourth beam managed by the first network device to the signal coverage of the third beam managed by the second network device.
  • the first terminal device initiates a beam failure recovery request to the second network device, so that the second network device provides services for the first terminal device.
  • the first terminal device continues to perform data transmission under the scheduling of the second network device.
  • the first network device receives information from the second network device for instructing the first network device to stop scheduling the first terminal device. In this way, the first network device can stop scheduling the first terminal device, so that the second network device can provide a communication service for the first terminal device.
  • the method further includes: the first network device receives a Layer 3 (Layer 3, L3) measurement report of the first terminal device; the first network device determines, according to the L3 measurement report, to send the first terminal device from The first network device switches to the fourth network device; the first network device sends a handover request message to the fourth network device; the first network device receives a handover request confirmation message from the fourth network device, and the handover request confirmation message includes the fourth network device to The handover command message sent by the first terminal device; the handover command message includes a random access channel dedicated parameter; the random access channel dedicated parameter includes the C-RNTI allocated by the fourth network device for the first terminal device, and the identifier of the sixth beam and the random access preamble corresponding to the sixth beam, where the sixth beam is a beam managed by the fourth network device; the first network device sends information to the second network device for instructing the second network device to stop scheduling the first terminal device.
  • Layer 3 Layer 3, L3
  • the first terminal device is within the signal coverage range of the third beam managed by the second network device.
  • the first network device determines to switch the first terminal device from the third beam to the beam managed by the fourth network device according to the L3 measurement report of the first terminal device.
  • the first network device sends a handover request message to the fourth network device, and then receives a handover request confirmation message sent by the fourth network device.
  • the handover request confirmation message includes a handover command message.
  • the fourth network device then sends a handover command message to the first terminal device. In this way, the first terminal device switches from the third beam to the sixth beam according to the information of the third beam carried in the switching command message, thereby realizing the switching of the first terminal device between the first network device and the fourth network device.
  • the first network device sends information for instructing the second network device to stop scheduling the first terminal device to the second network device, so as to instruct the second network device to stop scheduling the first terminal device.
  • the second network device can stop scheduling the first terminal device in time.
  • the method further includes: the first network device receives a handover request message from the fourth network device; the first network device sends a handover request confirmation message to the fourth network device, where the handover request confirmation message includes the first The handover command message sent by the network device to the first terminal device; the handover command message includes a random access channel dedicated parameter; the random access channel dedicated parameter includes the C-channel allocated by the first network device or the second network device for the first terminal device.
  • the third beam is one of the one or more second beams managed by the second network device; the first network device sends a message to the second network The device sends the C-RNTI of the first terminal device and the random access preamble corresponding to the third beam.
  • the first terminal device is within the signal coverage range of the sixth beam managed by the fourth network device.
  • the first network device receives the handover request message sent by the fourth network device.
  • the first network device sends a handover request confirmation message to the fourth network device.
  • the handover request confirmation message includes a handover command message.
  • the fourth network device can send the handover command message to the first terminal device.
  • the handover command message includes the identification of the third beam. In this way, the first terminal device can determine to switch from the sixth beam managed by the fourth network device to the third beam managed by the second network device according to the identifier of the third beam.
  • the first network device sends information such as the C-RNTI allocated by the first network device to the first terminal device and the random access preamble corresponding to the third beam to the second network device.
  • the first terminal device is switched between the second network device and the fourth network device, so that after the first terminal device is switched to the second network device, the second network device provides communication services for the first terminal device.
  • a second aspect of the embodiments of the present application provides a communication method, where the communication method includes:
  • the second network device receives resource information corresponding to one or more second beams sent by the first network device; the one or more second beams and one or more first beams managed by the first network device belong to the same physical cell ; the second network device is a device that accesses the physical cell; then, the second network device provides a communication service for terminal devices requesting access to the one or more second beams according to the resource information.
  • the network device receives resource information corresponding to one or more second beams sent by the first network device. Then, the second network device is responsible for providing communication services such as access service and resource scheduling for terminal devices requesting to access the one or more second beams according to the resource information. Because the one or more second beams managed by the second network device and the one or more first beams managed by the first network device belong to the same physical cell. That is, the second network is not managing a new physical cell. Therefore, there is no need to allocate a new PCI, thereby avoiding the problem of PCI conflict caused by a PCI being shared by different adjacent cells, which is likely to occur in a large number of deployment sites.
  • the terminal device since the PCI detected by the terminal device from the first network device and the second network device is the same, the terminal device only perceives the physical cell, and does not distinguish between the first network device and the second network device. .
  • the terminal device can select and access a beam with a larger signal strength. Switching between the first network device and the second network device when the terminal device moves is avoided, network signaling overhead is saved and service quality is improved.
  • the resource information includes at least one of the following: an identifier corresponding to the one or more second beams, a contention-based preamble sequence number set corresponding to each second beam, each second beam Corresponding random access channel time-frequency resource information.
  • the second network device provides a communication service for a terminal device requesting to access one or more second beams through the content included in the resource information. For example, access service, resource scheduling service, data transmission service, etc.
  • the method further includes: the second network device receives at least one of the following sent by the first network device: system information, time-frequency resource information corresponding to the system information, and time-frequency corresponding to the demodulation reference signal Resource information, time-frequency resource information corresponding to channel state information reference signal, cell wireless network temporary identity set, time-frequency resource information of control resource set, scheduling time-frequency resource information.
  • the second network device receives the above at least one parameter sent by the first network device, so that the second network device can manage one or more second beams of the physical cell.
  • the second network device is implemented to provide communication services for terminal devices requesting access to one or more second beams.
  • the method further includes: the second network device determines the time-frequency resource corresponding to the system information according to the time-frequency resource information corresponding to the system information; Send this system information.
  • the second network device determines the time-frequency resource of the system information, and broadcasts the system information of the physical cell.
  • a terminal device in one or more second beam periods managed by the second network device can receive the system information and request to access the one or more second beams.
  • the method further includes: the second network device sends capability information of the second network device to the first network device; the capability information includes at least one of the following: used to indicate that the second network device is connected The information of the in-point type device and the transmit power of the second network device.
  • the first network device may determine that the second network device may act as an access point in combination with the information used to indicate that the second network device is an access point type device and/or the transmit power of the second network device , which can provide access services, resource scheduling and other services for terminal devices requesting access to the network device. In order to facilitate the subsequent first network device to reasonably configure some beams of the physical cell managed by the second network device.
  • the capability information further includes at least one of the following: the number of transmitting and receiving antennas of the second network device, the location information, the number of beams supported, the number of terminal devices supporting access, the time of the request size of the frequency resource.
  • the capability information further includes the parameters shown above, so as to assist the subsequent first network device to reasonably configure the partial beams of the physical cell managed by the second network device.
  • the method further includes: the second network device sends a beam measurement result of the second network device to the first network device, where the beam measurement result includes a beam measurement obtained by the second network device measuring the beam of the physical cell result.
  • the second network device may send the beams of the second network device to the first network device measurement results.
  • the first network device may determine that the second network device manages one or more second beams in combination with the beam measurement results.
  • the one or more second beams include a third beam
  • the first terminal device accesses the third beam
  • the method further includes: the second network device receives an L1 measurement report sent by the first terminal device Then, the second network device determines the fourth beam according to the L1 measurement report; the fourth beam is one of the one or more first beams managed by the first network device; the second network device sends the first The identifier of the four beams; the identifier of the fourth beam is used by the first terminal device to switch from the third beam to the fourth beam; the second network device sends the C-RNTI of the first terminal device and the identifier of the fourth beam to the first terminal device .
  • the second network device determines, according to the L1 measurement report of the first terminal device, that the fourth beam is the first beam Terminal equipment provides services.
  • the second network device sends the identifier of the fourth beam to the first terminal device, so that the first terminal device switches from the third beam to the fourth beam.
  • the second network device sends the C-RNTI and the identifier of the fourth beam allocated by the second network device to the first terminal device to the first network device.
  • the first network device can provide communication services for the first terminal device, so that in the beam switching scenario of the first terminal device, the first terminal device continues to perform data transmission under the scheduling of the first network device.
  • the one or more second beams include a third beam, and the first terminal device accesses the third beam; when the first terminal device moves from the signal coverage of the third beam to the signal coverage of the fourth beam Signal coverage, when the first terminal device initiates a beam failure recovery request to the first network device, the fourth beam is one of the one or more first beams managed by the first network device, and the method further includes:
  • the second network device receives information from the first network device used to instruct the second network device to stop scheduling the first terminal device; the second network device stops scheduling the first terminal device according to the information used to instruct the second network device to stop scheduling the first terminal device Terminal Equipment.
  • the first terminal device moves from the signal coverage of the third beam managed by the second network device to the signal coverage of the fourth beam managed by the first network device, and the first terminal device moves to the first
  • the network device initiates a beam failure recovery request so that the first network device provides services for the first terminal device.
  • the second network device receives information from the first network device used to instruct the second network device to stop scheduling the first terminal device, so that the second network device can stop scheduling the first terminal device, so that the first network device is the first terminal device Terminal equipment provides communication services.
  • the method further includes:
  • the second network device receives the C-RNTI of the first terminal device and the identifier of the third beam sent by the first network device; the second network device is the first terminal device according to the C-RNTI of the first terminal device and the identifier of the third beam Provide communication services.
  • the first terminal device is within the signal coverage range of the second beam managed by the first network device.
  • the first network device determines, according to the L1 measurement report of the first terminal device, that the third beam managed by the second network device provides services for the first terminal device.
  • the second network device receives the C-RNTI of the first terminal device and the identifier of the third beam sent by the first network device, so that in the beam switching scenario of the first terminal device, the first terminal device continues to operate in the second network device. Data transmission is performed under scheduling.
  • one or more of the first beams include a fourth beam, and the first terminal device accesses the fourth beam; when the first terminal device moves from the signal coverage of the fourth beam to the signal coverage of the third beam
  • the third beam is one of one or more second beams managed by the second network device; the method further includes:
  • the second network device receives message 1 from the first terminal device, where message 1 includes a random access preamble; then, the second network device determines, according to the random access preamble of message 1, that the first terminal device fails to request beaming in the third beam Recovery; the second network device sends a message 2 to the first network device, where the message 2 includes a random access response message; the second network device sends information to the first network device for instructing the first network device to stop scheduling the first terminal device.
  • the first terminal device moves from the signal coverage of the fourth beam managed by the first network device to the signal coverage of the third beam managed by the second network device.
  • the first terminal device initiates a beam failure recovery request to the second network device, so that the second network device provides services for the first terminal device.
  • the first terminal device continues to perform data transmission under the scheduling of the second network device.
  • the second network device sends information to the first network device for instructing the first network device to stop scheduling the first terminal device. In this way, the first network device can stop scheduling the first terminal device, so that the second network device can provide a communication service for the first terminal device.
  • the method when the first terminal device is switched from the first network device to the fourth network device, the method further includes:
  • the second network device receives the information sent by the first network device to instruct the second network device to stop scheduling the first terminal device; then, the second network device stops according to the information used to instruct the second network device to stop scheduling the first terminal device The first terminal device is scheduled.
  • the first terminal device is within the signal coverage range of the third beam managed by the second network device.
  • the first network device determines to switch the first terminal device from the third beam to the beam managed by the fourth network device according to the L3 measurement report of the first terminal device.
  • the second network device receives the information sent by the first network device and used to instruct the second network device to stop scheduling the first terminal device. Then the second network device stops scheduling the first terminal device. In this way, after the first terminal device switches to the sixth beam managed by the fourth network device, the second network device can stop scheduling the first terminal device in time.
  • the method when the first terminal device is switched from the fourth network device to the first network device, the method further includes:
  • the second network device receives the C-RNTI of the first terminal device and the random access preamble corresponding to the third beam sent by the first network device; then the second network device receives the C-RNTI of the first terminal device and the third beam according to the random access preamble;
  • the corresponding random access preamble provides a communication service for the first terminal device.
  • the first terminal device is within the signal coverage range of the sixth beam managed by the fourth network device.
  • the first network device receives the handover request message sent by the fourth network device.
  • the second network device receives the C-RNTI of the first terminal device and the random access preamble corresponding to the third beam sent by the first network device. In this way, the first terminal device is switched between the second network device and the fourth network device, so that after the first terminal device is switched to the second network device, the second network device provides communication services for the first terminal device.
  • a third aspect of the embodiments of the present application provides a first network device, where the first network device includes:
  • a processing unit configured to determine that the first network manages one or more first beams and the second network device manages one or more second beams; wherein one or more first beams and one or more second beams belong to the same a physical cell; the second network device is a device accessing the physical cell; determining resource information corresponding to one or more second beams;
  • the transceiver unit is configured to send resource information to the second network device; the resource information is used by the second network device to provide communication services for terminal devices requesting access to one or more second beams.
  • the resource information includes at least one of the following: an identifier corresponding to one or more second beams, a set of preamble sequence numbers corresponding to each second beam, and a random access corresponding to each second beam.
  • Channel time-frequency resource information includes at least one of the following: an identifier corresponding to one or more second beams, a set of preamble sequence numbers corresponding to each second beam, and a random access corresponding to each second beam.
  • the transceiver unit is also used for:
  • System information time-frequency resource information corresponding to system information, time-frequency resource information corresponding to demodulation reference signal, time-frequency resource information corresponding to CSI-RS, cell wireless network temporary identity set, control resource set time-frequency resource information, scheduling time frequency resource information.
  • the transceiver unit is also used for:
  • Receive capability information of the second network device sent by the second network device includes at least one of the following: information used to indicate that the second network device is an access point type device, and transmit power of the second network device.
  • the capability information further includes at least one of the following: the number of transmitting and receiving antennas of the second network device, the location information, the number of beams supported, the number of terminal devices supporting access, the time of the request size of the frequency resource.
  • processing unit is specifically used for:
  • the one or more second beams are determined to be managed by the second network device according to the capability information.
  • the transceiver unit is also used for:
  • the beam measurement result includes the beam measurement result obtained by the second network device measuring the beam of the physical cell
  • the processing unit is specifically used for:
  • the second network device manages the one or more second beams.
  • the transceiver unit when the first terminal device switches from the third beam to the fourth beam, the third beam is one of the one or more second beams, and the fourth beam is the one or more beams one of the first beams; the transceiver unit is also used for:
  • Processing units are also used to:
  • a communication service is provided for the first terminal device according to the C-RNTI of the first terminal device and the identification of the fourth beam.
  • the one or more second beams include a third beam, and the first terminal device accesses the third beam; when the first terminal device moves from the signal coverage of the third beam to the signal coverage of the fourth beam
  • the fourth beam is one of one or more first beams managed by the first network device; the transceiver unit is also used for:
  • Processing units are also used to:
  • the first terminal device requests beam failure recovery in the fourth beam; the first network device sends message 2 to the first terminal device, and message 2 includes a random access response message;
  • Transceiver units are also used to:
  • the one or more first beams include a fourth beam, and the first terminal device accesses the fourth beam; the transceiver unit is further configured to:
  • Processing units are also used to:
  • the third beam is one of the one or more second beams managed by the second network device;
  • the transceiver unit is also used to:
  • the one or more first beams include a fourth beam, and the first terminal device accesses the fourth beam; when the first terminal device moves from the signal coverage of the fourth beam to the third beam
  • the third beam is one of one or more second beams managed by the second network device, and the transceiver unit is also used for:
  • Processing units are also used to:
  • the transceiver unit is further used for:
  • the processing unit is also used to:
  • the first network device sends a handover request message to the fourth network device;
  • the transceiver unit is also used to:
  • the handover request confirmation message includes a handover command message sent by the fourth network device to the first terminal device;
  • the handover command message includes a random access channel dedicated parameter; the random access channel dedicated parameter Including the C-RNTI allocated by the fourth network device for the first terminal device, the identifier of the sixth beam, and the random access preamble corresponding to the sixth beam, where the sixth beam is the beam managed by the fourth network device; to the second network device Sending information for instructing the second network device to stop scheduling the first terminal device.
  • the transceiver unit is further used for:
  • the handover request confirmation message includes a handover command message sent by the first network device to the first terminal device;
  • the handover command message includes a random access channel dedicated message parameters;
  • the random access channel dedicated parameters include the C-RNTI allocated by the first network device or the second network device to the first terminal device, the identifier of the third beam, and the random access preamble corresponding to the third beam;
  • the third The beam is one of one or more second beams managed by the second network device; the C-RNTI of the first terminal device and the random access preamble corresponding to the third beam are sent to the second network device.
  • a fourth aspect of the embodiments of the present application provides a second network device, where the second network device includes:
  • a transceiver unit configured to receive resource information corresponding to one or more second beams sent by the first network device; the one or more second beams and one or more first beams managed by the first network device belong to the same physical cell; the second network device is a device that accesses the physical cell;
  • the processing unit is configured to provide a communication service for terminal equipment requesting to access the one or more second beams according to the resource information.
  • the resource information includes at least one of the following: an identifier corresponding to the one or more second beams, a contention-based preamble sequence number set corresponding to each second beam, each second beam Corresponding random access channel time-frequency resource information.
  • the transceiver unit is further used for:
  • processing unit is also used for:
  • the transceiver unit is also used to:
  • the system information is sent in the time-frequency resource corresponding to the system information.
  • the transceiver unit is further used for:
  • the capability information includes at least one of the following: information used to indicate that the second network device is an access point type device, and transmit power of the second network device.
  • the capability information further includes at least one of the following: the number of transmitting and receiving antennas of the second network device, the location information, the number of beams supported, the number of terminal devices supporting access, the time of the request size of the frequency resource.
  • the transceiver unit is further used for:
  • the beam measurement result includes the beam measurement result obtained by the second network device measuring the beam of the physical cell.
  • the one or more second beams include a third beam, and the first terminal device accesses the third beam; the transceiver unit is further configured to:
  • the processing unit is also used to:
  • a fourth beam is determined according to the L1 measurement report; the fourth beam is one of the one or more first beams managed by the first network device;
  • the transceiver unit is also used to:
  • the identifier of the fourth beam is used by the first terminal device to switch from the third beam to the fourth beam;
  • the one or more second beams include a third beam, and the first terminal device accesses the third beam; when the first terminal device moves from the signal coverage of the third beam to the signal coverage of the fourth beam Signal coverage, when the first terminal device initiates a beam failure recovery request to the first network device, the fourth beam is one of the one or more first beams managed by the first network device, and the transceiver unit is further used for:
  • the processing unit is also used to:
  • the transceiver unit when the first terminal device switches from the fourth beam to the third beam, the third beam is one of the one or more second beams, and the fourth beam is managed by the first network device one of the one or more first beams; the transceiver unit is also used for:
  • the processing unit is also used to:
  • a communication service is provided for the first terminal device according to the C-RNTI of the first terminal device and the identification of the third beam.
  • one or more of the first beams include a fourth beam, and the first terminal device accesses the fourth beam; when the first terminal device moves from the signal coverage of the fourth beam to the signal coverage of the third beam When the signal is covered, the third beam is one of one or more second beams managed by the second network device; the transceiver unit is also used for:
  • the processing unit is also used to:
  • the sending unit is also used to:
  • the transceiver unit when the first terminal device is switched from the first network device to the fourth network device, the transceiver unit is further configured to:
  • the processing unit is also used to:
  • the transceiver unit when the first terminal device is switched from the fourth network device to the first network device, the transceiver unit is further configured to:
  • the processing unit is also used to:
  • a communication service is provided for the first terminal device according to the C-RNTI of the first terminal device and the random access preamble corresponding to the third beam.
  • a fifth aspect of an embodiment of the present application provides a network device, the network device includes: a processor, a memory, and a transceiver; the processor is used for the transceiver to send and receive signals; a computer program is stored in the memory; the processor is further used for The computer program stored in the memory is invoked and executed, so that the processor executes the first aspect or any possible implementation manner of the first aspect.
  • a sixth aspect of an embodiment of the present application provides a network device, the network device includes: a processor, a memory, and a transceiver; the processor is used for the transceiver to send and receive signals; a computer program is stored in the memory; the processor is further used for The computer program stored in the memory is invoked and executed, so that the processor executes the second aspect or any possible implementation manner of the second aspect.
  • a seventh aspect of the embodiments of the present application provides a computer program product including instructions, characterized in that, when it runs on a computer, it causes the computer to execute any one of the first to second aspects above, or the first Implementations of any of the aspects and the second aspect.
  • An eighth aspect of the embodiments of the present application provides a computer-readable storage medium, including computer instructions, when the computer instructions are executed on a computer, the computer causes the computer to execute any one of the first aspect to the second aspect, or the first aspect. Implementations of any of the aspects and the second aspect.
  • a ninth aspect of an embodiment of the present application provides a chip device, including a processor that is connected to a memory and calls a program stored in the memory, so that the processor executes any one of the first to second aspects above , or an implementation of any of the first and second aspects.
  • a tenth aspect of an embodiment of the present application provides a communication system, where the communication system includes the first network device according to the third aspect and the second network device according to the fourth aspect.
  • the first network device determines one or more first beams managed by the first network device and one or more second beams managed by the second network device. Wherein, one or more first beams and one or more second beams belong to the same physical cell.
  • the second network device is a device accessing the physical cell. Then, the first network device determines resource information corresponding to one or more second beams, and sends the resource information to the second network device.
  • the resource information is used by the second network device to provide access services and resource scheduling for terminal devices that request access to the one or more second beams.
  • resource information of one or more second beams is configured for the second network device by the first network device, so that the second network device can manage one or more second beams of the physical cell, It is responsible for providing access services and resource scheduling for terminal devices requesting access to the one or more second beams. Since the second network device manages one or more second beams of a physical cell, rather than a new physical cell, there is no need to allocate a new PCI, thereby avoiding the easy occurrence of a large number of deployment sites due to one PCI being adjacent to different physical cells. The problem of PCI conflict caused by cell sharing.
  • FIG. 1A is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • 1B is another schematic structural diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a gNB according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an embodiment of a communication method according to an embodiment of the present application.
  • FIG. 4A is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • 4B is a schematic diagram of a control plane protocol stack of a terminal device, a control plane protocol stack of a first network device, and a control plane protocol stack of a second network device according to an embodiment of the present application;
  • 4C is a schematic diagram of a user plane protocol stack of a terminal device, a user plane protocol stack of a first network device, and a user plane protocol stack of a second network device according to an embodiment of the present application;
  • FIG. 5 is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • FIG. 6A is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • FIG. 6B is a schematic diagram of an application scenario of the communication method according to the embodiment of the present application.
  • FIG. 7A is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • FIG. 7B is a schematic diagram of another application scenario of the communication method according to the embodiment of the present application.
  • FIG. 7C is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • FIG. 8 is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • FIG. 9A is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • FIG. 9B is a schematic diagram of another application scenario of the communication method according to the embodiment of the present application.
  • FIG. 10A is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • FIG. 10B is a schematic diagram of another application scenario of the communication method according to the embodiment of the present application.
  • FIG. 11 is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • FIG. 12 is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • FIG. 13A is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • FIG. 13B is a schematic diagram of another application scenario of the communication method according to the embodiment of the present application.
  • FIG. 14 is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • FIG. 15A is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • 15B is a schematic diagram of another application scenario of the communication method according to the embodiment of the present application.
  • FIG. 16A is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • 16B is a schematic diagram of another application scenario of the communication method according to the embodiment of the present application.
  • FIG. 17A is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • 17B is a schematic diagram of another application scenario of the communication method according to the embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a first network device according to an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a second network device according to an embodiment of the present application.
  • FIG. 20 is another schematic structural diagram of a first network device according to an embodiment of the present application.
  • 21 is another schematic structural diagram of a second network device according to an embodiment of the present application.
  • FIG. 22 is a schematic diagram of a communication system according to an embodiment of the present application.
  • At least one (item) means one or more
  • plural means two or more
  • at least two (item) means two or three and three
  • “and/or” is used to describe the relationship of related objects, indicating that there can be three kinds of relationships, for example, “A and/or B” can mean: only A exists, only B exists, and both A and B exist three A case where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, c can be single or multiple.
  • FIG. 1A is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • the physical cell 1 of the next generation Node B (gNB) in the 5G system includes the signal coverage of the beam 1 .
  • User equipment 1 (user equipment, UE1) and node (Node) X are within the signal coverage of physical cell 1.
  • UE1 can access the physical cell 1
  • NodeX can access the physical cell 1 as a UE.
  • NodeX is an access point type device and has functions such as providing access services and resource scheduling for UEs.
  • the main feature of NodeX different from existing IAB nodes is that when NodeX acts as an access point type device, the physical cell identifier (PCI) of the physical cell it manages and the broadcast system information and NodeX as the physical access point for UE access
  • PCI physical cell identifier
  • NodeX is only used to expand the signal coverage of the physical cells it accesses, and does not introduce new cells.
  • the name of NodeX is only an example, and it can be called by other names as well.
  • NodeX accesses the physical cell 1 of the gNB as a UE.
  • the gNB determines to add beam 2 in the physical cell, and NodeX manages beam 2.
  • NodeX manages beam 2 of physical cell 1.
  • the PCI of the physical cell 1 of the NodeX is the same as the PCI of the physical cell 1 of the gNB, and the system information of the physical cell 1 broadcast by the NodeX is the same as the system information of the physical cell 1 broadcast by the gNB.
  • the NodeX is placed on the edge of the physical cell 1 of the gNB as the signal coverage extension of the physical cell 1, so as to provide coverage extension services for the gNB. That is, the signal coverage of the physical cell 1 is expanded from the signal coverage of the beam 1 originally to include the signal coverage of the beam 1 and the signal coverage of the beam 2 . NodeX manages some beams of physical cell 1 and does not belong to the newly added physical cell.
  • the signal strength of beam 1 received by UE3 from gNB is not as strong as that of beam 2 received by UE3 from NodeX, so UE3 can choose to access beam 2 managed by NodeX. Since UE3 detects only one PCI, UE3 cannot differentiate between gNB and NodeX. The UE3 can detect the signal strengths of different beams in the physical cell 1, and select a beam with a larger signal strength to access. For example, when the signal strength of the beam 2 managed by the NodeX received by the UE3 is higher, the UE3 selects the random access resource corresponding to the beam 2 and requests to access the beam 2 .
  • physical cell 1 includes the signal coverage of beam 1. That is, the UE2 originally belongs to the terminal equipment outside the signal coverage of the physical cell 1 . However, after the coverage extension service provided by NodeX, physical cell 1 includes the signal coverage of beam 1 and the signal coverage of beam 2. UE2 falls into the signal coverage of physical cell 1 . The UE2 can access the beam 2 managed by the NodeX through the NodeX, and finally send the data of the UE2 to the gNB through the relay of the NodeX to realize cellular network communication.
  • the second network device accesses the physical cell of the first network device (eg, the gNB shown in FIG. 1 ) as a terminal device.
  • the first network device determines one or more first beams managed by the first network device and one or more second beams managed by the second network device.
  • the first network device determines resource information corresponding to one or more second beams.
  • the first network device sends resource information corresponding to the one or more second beams to the second network device.
  • the resource information is used by the second network device to provide access services and resource scheduling for terminal devices that request access to the one or more second beams.
  • FIG. 1B is another schematic structural diagram of a communication system according to an embodiment of the present application.
  • the physical cell includes beam 1 , beam 2 , beam 3 and beam 4 .
  • the first network device manages beam 1, beam 2 and beam 3.
  • the second network device first accesses the physical cell of the first network device as a terminal device. Then, the first network device configures the beam 4 to be managed by the second network device for the second network device, so that the second network device can provide access services and resource scheduling for terminal devices requesting access to the beam 4 .
  • the second network device is placed on the edge of the physical cell as a signal coverage extension of the physical cell, so as to provide coverage extension services for the first network device.
  • the terminal equipment may also be referred to as user equipment (user equipment, UE).
  • a terminal device is a device with a wireless transceiver function, which can communicate with one or more core network ( core network, CN) devices (or also called core devices) communicate.
  • core network core network
  • a terminal device may also be referred to as an access terminal, terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, user agent, or user device, and the like.
  • Terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle; can also be deployed on water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal device may also include limited devices, such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities, and the like.
  • limited devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities, and the like.
  • it includes information sensing devices such as barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), and laser scanners.
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a smart phone (smart phone), a mobile phone (mobile phone), a wireless local loop (wireless local loop) , WLL) station, personal digital assistant (personal digital assistant, PDA) and so on.
  • the terminal device can also be a handheld device with wireless communication function, a computing device or other device connected to a wireless modem, an in-vehicle device, a wearable device, a drone device or a terminal in the Internet of Things, the Internet of Vehicles, a 5G network, and Any form of terminal in the future network, relay user equipment, or terminal in the future evolved PLMN, etc.
  • the relay user equipment may be, for example, a 5G home gateway (residential gateway, RG).
  • the terminal device can be a virtual reality (VR) terminal, an augmented reality (AR) terminal, a wireless terminal in industrial control (industrial control), a wireless terminal in self-driving (self driving), telemedicine Wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home wireless terminals, etc.
  • This embodiment of the present application does not limit the type or type of the terminal device.
  • Both the first network device and the second network device may be access network devices, which are devices that provide wireless communication functions for terminal devices, and may also be referred to as access devices, (R)AN devices, or network devices.
  • the access device includes but is not limited to: gNB, a long term evolution (long term evolution, LTE) base station (next generation evolved Node B, ng-eNB) used to connect to the evolution of the 5G core network, evolution type in the LTE system Base station (evolved node B, eNB), radio network controller (radio network controller, RNC), node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS) ), home base station (home evolved nodeB, or home node B, HNB), base band unit (BBU), transmitting and receiving point (TRP), transmitting point (transmitting point, TP), small base station Equipment (pico), mobile switching center, or network equipment in future networks, etc. It is
  • FIG. 1B shows an example in which the first network device manages three beams of the physical cell and the second network device manages one beam of the physical cell.
  • a physical cell includes at least two beams.
  • the first network device manages at least one beam of the physical cell.
  • the second network device manages at least one beam of the physical cell.
  • the beams of the physical cells managed by the first network device and the second network device are different.
  • the access network device is a gNB as an example for introduction.
  • FIG. 2 is a schematic structural diagram of a gNB according to an embodiment of the present application.
  • the gNBs are connected through the Xn interface, and the gNB and the 5th generation mobile communication technology core (5GC) are connected through the NG interface.
  • gNB1 and gNB2 are connected through an Xn interface.
  • gNB1 is connected to 5GC through NG interface 1
  • gNB2 is connected to 5GC through NG interface 2.
  • gNB can be composed of centralized unit (central unit, CU) and distributed unit (distributed unit, DU). That is, the functions of the base station of the original access network equipment are divided, and some functions of the base station are deployed in one gNB-CU, and the remaining functions are deployed in the gNB-DU. Multiple gNB-DUs share one gNB-CU, which can save cost and facilitate network expansion.
  • CU central unit
  • DU distributed unit
  • the segmentation of the gNB-CU and the gNB-DU may be segmented according to the protocol stack.
  • the radio resource control radio resource control
  • service data adaptation protocol service data adaptation protocol, SDAP
  • packet data convergence protocol packet data convergence protocol
  • PDCP packet data convergence protocol
  • Radio link control radio link control
  • RLC radio link control
  • MAC medium access control
  • PHY physical (physical, PHY) layer protocol stack
  • the gNB-CU and gNB-DU are connected through the F1 interface.
  • the above example is only for introducing the gNB-CU and the gNB-DU, and the protocol stacks deployed by the gNB-CU and the gNB-DU are not limited in the embodiments of this application.
  • the gNB-CU When the gNB-CU is further divided according to the control plane and the user plane, it can be divided into a gNB-CU-CP (or CU-CP) and at least one gNB-CU-UP (or CU-UP).
  • the CU-CP is mainly responsible for RRC and PDCP entities corresponding to signaling radio bearers (signalling radio bearers, SRB).
  • the CU-UP is mainly responsible for the SDAP and the PDCP entity corresponding to the data radio bearer (DRB).
  • DRB data radio bearer
  • the embodiment of this application does not limit the protocol that the gNB-CU-CP and at least one gNB-CU-UP are mainly responsible for .
  • gNB1 includes gNB-CU1, gNB-DU1 and gNB-DU2.
  • gNB-CU1 is connected to gNB-DU1 through F1 interface 1, and is connected to gNB-DU2 through F1 interface 2.
  • the structure of gNB2 is similar to that of gNB1, and will not be described one by one here.
  • FIG. 3 is a schematic diagram of an embodiment of a communication method according to an embodiment of the present application.
  • the communication method includes:
  • the first network device determines that the first network device manages one or more first beams and the second network device manages one or more second beams.
  • the one or more first beams and the one or more second beams belong to the same physical cell.
  • the second network device is a device accessing the physical cell.
  • the second network device accesses the physical cell as a terminal device.
  • the second network device is an access point type device.
  • the access point type device means that a network device can be used as an access point, and the network device can provide services such as access services and resource scheduling for terminal devices that request access to the network device. Moreover, the network device can provide functions such as signal coverage extension services.
  • the PCI of the physical cell managed by the access point type device is the same as the PCI of the physical cell of the network device to which it is connected.
  • the system information of the physical cell broadcast by the access point type device is the same as the system information of the physical cell broadcast by the network device to which it accesses. That is, the access point type device is used to extend the signal coverage of the physical cell and does not add new physical cells.
  • the first network device is gNB
  • the second network device is NodeX.
  • NodeX accesses a physical cell as a terminal device, and NodeX establishes an RRC connection with gNB.
  • NodeX is an access point type device.
  • a physical cell includes signal coverage areas corresponding to beams 1 to 4 respectively.
  • the gNB determines that the gNB manages beam 1 to beam 3 of the physical cell, and determines that the NodeX manages beam 4 of the physical cell.
  • the one or more second beams are described below.
  • the one or more second beams may be beams originally included in the physical cell, that is, beams generated by the first network device.
  • the one or more second beams may be beams newly generated by the second network device in the physical cell after the first network device determines the second network device as an access point. These newly generated beams are managed by the second network device.
  • the partial beams in the one or more second beams are: the partial beams originally managed by the first network device in the physical cell. Another part of the one or more second beams is a beam newly generated by the first network device in the physical cell.
  • the one or more second beams managed by the second network device implement signal coverage extension of the physical cell, which is not specifically limited in this application.
  • the first network device finds that the second network device can serve as the access point, the first network device can modify the original physical cell supporting three beams to the physical cell supporting four beams. And, beam 1 to beam 3 are managed by the first network device, and beam 4 is managed by the second network device. In other examples, beam 1 and beam 2 may also be managed by the first network device, and beam 3 and beam 4 may be managed by the second network device.
  • the first network device may acquire capability information of the second network device, and then determine the one or more first beams based on the capability information. Two beams.
  • this embodiment further includes step 301a, and step 301a is performed before step 301 .
  • Step 301a The second network device sends capability information of the second network device to the first network device.
  • the capability information of the second network device includes at least one of the following:
  • the capability information further includes at least one item:
  • step 301 For the specific use of the parameters included in the capability information, please refer to the related introduction to step 301 later, and details are not repeated here.
  • step 301a is a possible implementation manner for the first network device to acquire capability information of the second network device.
  • the capability information of the second network device may also be pre-configured in the first network device, or sent to the first network device through other devices, which is not specifically limited in this application.
  • the second network device sends capability information of the second network device to the first network device through a newly defined RRC message.
  • the name of the newly defined RRC message is NodeXCapabilityInformation.
  • the second network device sends the capability information of the second network device to the first network device through the newly added information element in the existing RRC message.
  • a new cell is added to the user equipment capability information (UECapabilityInformation).
  • the name of the newly added information element may be Node X Capability Information (NodeXCapabilityInformation).
  • the first network device determines that the second network device is an access point type device
  • the following examples illustrate several possible implementation ways.
  • the capability information of the second network device includes information used to indicate that the second network device is an access point type device.
  • the first network device determines, according to the information for indicating that the second network device is an access point type, that the second network device is an access point type device, or determines that the second network device can serve as an access point.
  • the first network device determines that the second network device is an access point type device according to the newly defined RRC message or the newly added information element in the RRC message, or determines that the second network device can serve as an access point.
  • the first network device determines whether the second network device is an access point type device according to the transmit power carried by the UE capability information of the second network device. For example, when the transmit power is 23dBm (decibel milliwatts), the second network device is an ordinary UE; when the transmit power is 30dBm or other values, the first network device may determine that the second network device is an access point type device.
  • the above step 301 specifically includes: the first network device determines according to the capability information of the second network device that the first network device manages one or more first beams and the second network device manages one or more second beams beam.
  • the following describes a process for the first network device to determine that the second network device manages one or more second beams in combination with the capability information of the second network device.
  • the first network device may determine that the second network device can serve as an access point according to the information used to indicate that the second network device is an access point type device or the transmit power information.
  • the second network device can provide functions such as access service and resource scheduling for the terminal device. In this way, the first network device can configure the one or more second beams to be managed by the second network device, and further use the second network device to provide signal coverage extension services.
  • the first network device determines which second beam or beams are managed by the second network device according to the number of transmitting and receiving antennas of the second network device, the number of beams supported by the second network device, and the location information of the second network device.
  • the first network device determines that the second network device is between beam 2 and beam 3 of the physical cell.
  • the number of beams supported and managed by the second network device is 1, and the number of transceiver antennas is 2.
  • the first network device can add beam 4 and manage it by the second network device.
  • the first network device determines the size of the scheduling time-frequency resource for the second network device to manage the beam 4 according to the size of the time-frequency resource requested by the second network device.
  • the first network device determines the number of C-RNTIs allocated to the second network device according to the number of terminal devices that the second network device supports access to, and the like.
  • the first network device configures the corresponding C-RNTI to the second network device according to the number of terminal devices, so that the second network device can request access to the management of the second network device.
  • Terminal devices of one or more second beams are allocated corresponding C-RNTIs.
  • the first network device may acquire beam measurement results of the second network device. Then, the first network device determines, in combination with the beam measurement results, that the second network device manages one or more second beams.
  • this embodiment further includes step 301b. Step 301b is performed before step 301 .
  • Step 301b The second network device sends the beam measurement result to the first network device.
  • the beam measurement result includes a beam measurement result obtained by the second network device measuring the beam of the physical cell.
  • the second network device measures the beam of the physical cell, and reports the measurement report to the first network device.
  • the measurement report includes beam measurement results.
  • the beam measurement results include beam measurement results based on a synchronization signal and a physical broadcast channel block (SS/PBCH block) or a synchronization signal block (SSB).
  • the beam measurement result includes a beam measurement result based on a channel state information reference signal (CSI-RS).
  • CSI-RS channel state information reference signal
  • the terminal device reports a measurement result list (ResultsPerSSB-IndexList) corresponding to an SSB identifier (eg, an SSB index (SSB index)).
  • ResultsPerSSB-IndexList includes a set of SSB identifiers and corresponding measurement results (MeasQuantityResults).
  • the terminal device reports a measurement result list (ResultsPerCSI-RS-IndexList) corresponding to a CSI-RS identifier (eg, a CSI-RS index (CSI-RS-index)).
  • ResultsPerSSB-IndexList includes CSI-RS identifiers and corresponding measurement results (MeasQuantityResults).
  • the measurement results may include: Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Interference Plus Noise Ratio (SINR) Wait.
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Interference Plus Noise Ratio
  • step 301 specifically includes:
  • the first network device determines that the first network device manages one or more first beams and the second network device manages one or more second beams according to the capability information of the second network device and the beam measurement result.
  • the first network device may determine that the second network device manages one or more second beams in combination with capability information of the second network device. For the specific determination process, please refer to the foregoing related introduction, and details are not repeated here. In addition to referring to the capability information of the second network device, the second network device may further determine that the second network device manages one or more second beams in combination with the beam measurement result.
  • the first network device determines according to the beam measurement result that the RSRP (or RSRQ, or SINR) of beam 2 and beam 3 of the physical cell measured by the second network device are higher. Then, the first network device adds a new beam 4 between the beam 2 and the beam 3, and the second network device manages the beam 4. In this way, a better communication environment can be provided for terminal devices at the edge of beam 2 and beam 3, and the signal coverage can be extended.
  • RSRP or RSRQ, or SINR
  • the first network device sends resource information corresponding to the one or more second beams to the second network device.
  • the resource information includes at least one of the following:
  • the identifiers corresponding to the one or more second beams may be a synchronization signal and a physical broadcast channel block index (synchronization signal and physical broadcast channel block index, SS/PBCH block index), or a synchronization signal block index (synchronization signal and block index).
  • signal block index, SSB index hereafter collectively referred to as SSB index.
  • each second beam corresponds to an SSB index.
  • the random access channel (RACH) time-frequency resource information corresponding to each SSB index.
  • the RACH time-frequency resource information includes physical random access channel configuration identifier (prach-ConfigIndex), message 1 frequency division multiplexing (msg1-FDM), message 1 frequency domain start (msg1-FrequencyStart), and the like.
  • the resource information may not include the random access channel time-frequency resource information corresponding to each second beam.
  • the parameter ssb-perRACH-OccasionAndCB-PreamblesPerSSB in the system information broadcast by the first network device includes a random access occasion (RACH occasion, RO) corresponding to each second beam.
  • the second network device may determine the preamble index corresponding to each second beam managed by the second network device and the corresponding preamble index according to the SSB index and ssb-perRACH-OccasionAndCB-PreamblesPerSSB corresponding to one or more second beams managed by the second network device RO.
  • the first network device also sends at least one of the following items to the second network device:
  • System information time-frequency resource information corresponding to system information, time-frequency resource information corresponding to demodulation reference signal, time-frequency resource information corresponding to CSI-RS, cell wireless network temporary identity set, control resource set time-frequency resource information, scheduling time frequency resource information.
  • the system information is the same as the system information of the physical cell used by the first network device.
  • the above-mentioned time-frequency resource information includes a time domain starting position, a time domain period, a frequency domain starting position, a time domain ending position, a frequency domain ending position, a radio bearer (radio bearer, RB) starting number, RB At least one of the closing labels.
  • the first network device sends the parameters shown above to the second network device through one or more RRC messages; or, the second network device can obtain the above-mentioned parameters by reading the broadcast message of the first network device in the physical cell some parameters.
  • the system information may be acquired by the second network device by reading a broadcast message of the first network device in the physical cell.
  • the first network device broadcasts the updated system information block 1 (system information block, SIB1).
  • SIB1 system information block 1
  • the physical cell is changed from originally only including beam 1 to beam 3 to the physical cell including beam 1 to beam 4 . That is, a new beam 4 is added to the physical cell.
  • the updated ssb-perRACH-OccasionAndCB-PreamblesPerSSB in SIB1 is modified from the original correspondence between three SSB indexes and RACH resources to the correspondence between four SSB indexes and RACH resources.
  • ssb-perRACH-OccasionAndCB-PreamblesPerSSB indicates the RACH occasion associated with each SSB index, and the number of contention-based random access preambles corresponding to each SSB index.
  • the second network device provides a communication service for a terminal device requesting to access the one or more second beams according to the resource information.
  • step 303 For the related introduction of step 303, refer to the embodiments shown in FIG. 4A and FIG. 5 to introduce the process of the second network device providing access service and resource scheduling for the terminal device, which will not be described in detail here.
  • the first network device determines that the first network device manages one or more first beams and the second network device manages one or more second beams.
  • the one or more first beams and the one or more second beams belong to the same physical cell.
  • the second network device is a device that accesses a physical cell.
  • the first network device determines resource information corresponding to one or more second beams, and sends the resource information to the second network device.
  • the resource information is used by the second network device to provide access services and resource scheduling for terminal devices that request access to the one or more second beams. It can be known from the technical solutions of the embodiments of the present application that the first network device configures resource information of one or more second beams for the second network device.
  • the second network device can manage one or more second beams of the physical cell.
  • the second network device is responsible for providing access services and resource scheduling for terminal devices requesting access to the one or more second beams. Because the one or more second beams managed by the second network device and the one or more first beams managed by the first network device belong to the same physical cell. That is, the second network is not managing a new physical cell. Therefore, there is no need to allocate a new PCI, thereby avoiding the problem of PCI conflict caused by a PCI being shared by different adjacent cells, which is likely to occur in a large number of deployment sites.
  • the terminal device since the PCI detected by the terminal device from the first network device and the second network device is the same, the terminal device only perceives the physical cell, and does not distinguish between the first network device and the second network device. .
  • the terminal device can select and access a beam with a larger signal strength. Switching between the first network device and the second network device when the terminal device moves is avoided, network signaling overhead is saved and service quality is improved.
  • FIG. 4A is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • the communication method includes:
  • the second network device sends the SSB and system information to the terminal device.
  • the SSB is the SSB corresponding to the one or more second beams respectively.
  • the second network device acquires system information, time-frequency resources corresponding to the system information, and time-frequency resources corresponding to the SSB from the first network device.
  • the second network device broadcasts the system information on the time-frequency resource corresponding to the system information, and broadcasts the SSB on the time-frequency resource corresponding to the SSB.
  • the second network device sends a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a master information block (master information block, MIB) on the time-frequency resource corresponding to the SSB index.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • MIB master information block
  • the second network device broadcasts the system information on the time-frequency resource corresponding to the system information.
  • SIBx, x may be an integer greater than 1 or less than or equal to N, where N is the maximum number of SIBs defined by the current protocol.
  • the second network device may send the SSB first, and then send the system information after a period of time (eg, ten milliseconds).
  • the second network device obtains the SSB indexes corresponding to the one or more second beams respectively, and the RACH time-frequency resources corresponding to each SSB index from the resource information.
  • the second network device monitors the channel on the RACH time-frequency resource corresponding to each SSB index, so as to receive information sent by the terminal device requesting to access one or more second beams managed by the second network device, for example, the terminal device message 1 (message1, Msg1) of the random access procedure.
  • the terminal device sends message 1 to the second network device.
  • message 1 includes a random access preamble (preamble).
  • the terminal device determines the beam included in the physical cell, the SSB index of each beam, the RACH time-frequency resource corresponding to each SSB index, and each The random access preamble set corresponding to the SSB index, etc.
  • the terminal device receives the SSBs of one or more second beams sent by the second network device.
  • the terminal device determines that the RSRP (or RSRQ, or SINR) of the SSB of the third beam included in the one or more second beams is higher.
  • the terminal device determines the SSB index of the third beam, and selects a random access preamble from the set of random access preambles corresponding to the SSB index.
  • the terminal device sends message 1 to the second network device on the RACH time-frequency resource corresponding to the SSB index.
  • the message 1 is the message 1 in the four-step random access procedure, and the message 1 includes the random access preamble.
  • the second network device is NodeX
  • the terminal device receives the SSB and system information of beam 4 sent by NodeX.
  • the terminal device determines that the signal quality of beam 4 is the best; then, the terminal device determines the SSB index corresponding to beam 4.
  • the terminal device determines the RACH resource and the random access preamble set corresponding to the SSB index, and selects the random access preamble from the random access preamble set.
  • the terminal device sends a message 1 to NodeX on the RACH resource corresponding to the SSB index, and the message 1 includes the random access preamble.
  • the second network device determines that the terminal device requests to access the third beam according to the random access preamble and the mapping relationship between the random access preamble and the identifiers of one or more second beams managed by the second network device.
  • the third beam is one of the one or more beams.
  • the mapping relationship between the random access preamble and the identifiers of the one or more second beams includes the mapping relationship between the random access preamble and the SSB indexes of the one or more second beams.
  • the second network device receives the message 1 of the terminal device on the RACH time-frequency resources corresponding to one or more second beams managed by the second network device.
  • Message 1 includes a random access preamble.
  • the second network device determines whether the random access preamble belongs to the random access corresponding to the one or more second beams according to the mapping relationship between the random access preamble and the SSB index of the one or more second beams preamble. If yes, the second network device determines the SSB index of the third beam that the terminal device requests to access according to the random access preamble.
  • the second network device determines that the random access preamble does not belong to the random access preamble in the random access preamble set corresponding to the beam managed by the second network device, the second network device ignores or rejects the random access preamble.
  • the access request of the terminal device if the second network device determines that the random access preamble does not belong to the random access preamble in the random access preamble set corresponding to the beam managed by the second network device, the second network device ignores or rejects the random access preamble. The access request of the terminal device.
  • the second network device sends message 2 to the terminal device.
  • the second network device determines that the terminal device requests to access the third beam managed by the second network device, the second network device sends a message 2 (msg2) to the terminal device.
  • the message 2 includes a temporary cell radio network temporary identifier (temporary cell radio network temporary identifier, T-CRNTI), a time advance (time advance, TA), and a second network device configured for the terminal device for the terminal device to send the message 3.
  • Time-frequency resources for example, uplink grants
  • the first network device configures scheduling time-frequency resources for the second network device.
  • the time-frequency resource configured by the second network device for the terminal device for the terminal device to send the message 3 is determined by the second network device from the scheduled time-frequency resource. That is, the second network device allocates corresponding scheduling time-frequency resources to the terminal device.
  • the second network device selects the C-RNTI from the C-RNTI set included in the resource information allocated by the first network device to the second network device as the T-CRNTI to allocate to the terminal device.
  • the terminal device sends message 3 to the second network device.
  • Message 3 includes an RRC message.
  • the RRC message is an RRC setup request (RRCSetupRequest) message.
  • the second network device processes the message 3 to obtain a processed message 3, where the processed message 3 includes an RRC establishment request message.
  • the protocol stack of the terminal device Before introducing step 406, the protocol stack of the terminal device, the protocol stack of the first network device and the protocol stack of the second network device are first introduced. Please refer to FIG. 4B.
  • FIG. 4B respectively shows the control plane protocol stack of the terminal device, the control plane protocol stack of the second network device, and the control plane protocol stack of the first network device.
  • the control plane protocol stack of the terminal device includes a radio resource control (RRC) layer, a packet data convergence protocol (PDCP) layer, a radio link control (radio link control, RLC) layer, and media intervention control. (media access control, MAC) layer and physical (physical, PHY) layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC radio link control
  • media intervention control media access control, MAC
  • physical (physical, PHY) layer physical (physical, PHY) layer.
  • the RRC layer of the terminal device corresponds to the RRC layer of the first network device
  • the PDCP layer of the terminal device corresponds to the PDCP layer of the first network device
  • the RLC layer of the terminal device corresponds to the RLC layer of the second network device
  • the MAC layer of the terminal device corresponds to the MAC layer of the second network device
  • the PHY layer of the terminal device corresponds to the PHY layer of the second network device.
  • the second network device includes an RLC layer, a MAC layer, a PHY layer, and an adaptation (Adaptation, Adaptation) layer.
  • the Adapt layer is used by the first network device and the second network device to identify the first terminal device, and can also be used to identify the data radio bearer (DRB) or signaling radio bearer (SRB) of the first terminal device ) or a logical channel (logical channel, LCH), which can also be used to identify the beam currently accessed by the first terminal device.
  • DRB data radio bearer
  • SRB signaling radio bearer
  • LCH logical channel
  • the name of the Adapt layer is just an example, and may also be called other names, which are not specifically limited in this application.
  • the Adapt layer of the second network device corresponds to the Adapt layer of the first network device
  • the RLC layer of the second network device corresponds to the RLC layer of the first network device
  • the MAC layer of the second network device corresponds to the MAC layer of the first network device
  • the PHY layer of the second network device corresponds to the PHY layer of the second network device.
  • the first network device includes an RRC layer, a PDCP layer, an Adapt layer, an RLC layer, a MAC layer, and a PHY layer.
  • the Adapt layer of the first network device corresponds to the Adapt layer of the second network device.
  • the RLC layer of the first network device corresponds to the RLC layer of the second network device.
  • the MAC layer of the first network device corresponds to the MAC layer of the second network device.
  • the PHY layer of the first network device corresponds to the PHY layer of the second network device.
  • Step 406 is described below with reference to FIG. 4B .
  • the second network device removes the PHY layer, the MAC layer and the RLC layer of the message 3. It should be noted that removing a certain layer can be understood as removing the packet header of the PDU of the layer, so as to obtain the service data unit (SDU) of the layer, which will not be described in detail later.
  • the second network device removes the message 3 of the PHY layer, the MAC layer and the RLC layer as the SDU of the Adapt layer, and encapsulates the Adapt layer outside the SDU, that is, adds the packet header of the Adapt layer, thereby forming the protocol data unit of the Adapt layer ( protocol data unit, PDU).
  • the header of the Adapt layer encapsulated in the message 3 that removes the PHY layer, the MAC layer, and the RLC layer contains the C-RNTI allocated by the second network device for the terminal device (may also be other devices for the first network device and the second network device).
  • the device identifies the identity of the terminal device) and the identity of the third beam, that is, the SSB index corresponding to the third beam.
  • the third beam is a beam managed by the second network device that the terminal device requests to access.
  • the second network device then encapsulates the RLC layer, the MAC layer and the PHY layer outside the Adapt layer to obtain the processed message 3 .
  • the identifier of the third beam may not be included in the packet header of the Adapt layer, but is included in the RRC establishment request message as an information element (information element, IE).
  • the second network device sends the processed message 3 to the first network device.
  • the first network device In order for the first network device to distinguish whether the data sent by the second network device (including two types of control plane messages and user plane messages) comes from the second network device or data forwarded by the second network device from other terminal devices. Two possible implementations are shown below.
  • a dedicated logical channel LCH is established between the first network device and the second network device, and the dedicated LCH is used for the second network device to transmit messages from other terminal devices.
  • the first network device and the second network device pre-agreed an LCH with a logical channel identifier (logical channel identifier, LCID) equal to 1 for transmitting messages from other terminal devices. That is, the message of the terminal device includes the Adapt layer, and the first network device can determine which terminal device the message is by reading the C-RNTI in the Adapt layer.
  • the second network device adds a first indication to the RLC header, MAC header or PHY header of the message to indicate whether the message exists in the Adapt layer.
  • the first network device may determine which terminal device the message is by reading the Adapt layer of the message.
  • the first network device may identify that the processed message 3 is a message of the terminal device in any of the following manners. Then, the first network device parses the processed message 3 to obtain the RRC establishment request message included in the original message 3 .
  • the first network device sends a message 4 to the second network device, where the message 4 includes an RRC establishment response message sent by the first network device to the terminal device.
  • the message 4 encapsulates the messages obtained by the PDCP layer, the Adapt layer, the RLC layer, the MAC layer and the PHY layer outside the RRC establishment response message.
  • the encapsulation Adapt layer includes the identifier of the terminal device in the packet header of the Adapt layer.
  • the Adapt layer header also includes: SRB ID or LCID. Wherein, the SRB ID or the LCID is used by the first network device to indicate which channel the second network device should send the RRC establishment response message to the terminal device.
  • the second network device processes the message 4 to obtain a processed message 4, where the processed message 4 includes an RRC establishment response message.
  • the second network device After receiving the message 4 sent by the first network device, the second network device removes the PHY layer, the MAC layer, and the RLC layer encapsulated outside the message 4 . Then, the second network device reads the identification of the terminal device, such as the C-RNTI, from the Adapt layer header. Optionally, the second network device reads the SRB ID or LCID from the Adapt layer header. Next, the second network device removes the Adapt layer of the message 4 that removes the PHY layer, the MAC layer, and the RLC layer encapsulated outside, and encapsulates the RLC layer, the MAC layer, and the PHY layer outside to obtain the processed message 4 .
  • the second network device sends the processed message 4 to the terminal device.
  • the processed message 4 includes an RRC setup response message.
  • the first network device forwards the RRC establishment response message to the terminal device through the second network device, thereby enabling the terminal device to establish an RRC connection to the first network device.
  • the second network device sends the processed message 4 to the terminal device through the channel indicated by the SRB ID or the LCID.
  • the terminal device may send uplink data to the first network device through the second network device.
  • this embodiment further includes steps 411 to 413 , and steps 411 to 413 are performed after step 410 .
  • the terminal device sends the encapsulated first data to the second network device.
  • the user plane protocol stack of the terminal device, the user plane protocol stack of the second network device and the user plane protocol stack of the first network device are first introduced.
  • FIG. 4C is a schematic diagram of a user plane protocol stack of the terminal device, a user plane protocol stack of the second network device, and a user plane protocol stack of the first network device.
  • the terminal device includes a PHY layer, a MAC layer, an RLC layer, a PDCP layer and an SDAP layer.
  • the second network device includes a PHY layer, a MAC layer, an RLC layer and an Adapt layer.
  • the first network device includes a PHY layer, a MAC layer, an RLC layer, an Adapt layer, a PDCP layer, and an SDAP layer.
  • the Adapt layer is used by the first network device and the second network device to identify the first terminal device, and can also be used to identify the data radio bearer (DRB) or signaling radio bearer (SRB) of the first terminal device ) or a logical channel (logical channel, LCH), which can also be used to identify the beam currently accessed by the first terminal device.
  • DRB data radio bearer
  • SRB signaling radio bearer
  • LCH logical channel
  • the PHY layer of the terminal device corresponds to the PHY layer of the second network device
  • the MAC layer of the terminal device corresponds to the MAC layer of the second network device
  • the RLC layer of the terminal device corresponds to the RLC layer of the second network device.
  • the PDCP layer of the terminal device corresponds to the PDCP layer of the first network device
  • the SDAP layer of the terminal device corresponds to the SDAP layer of the first network device.
  • the PHY layer of the second network device corresponds to the PHY layer of the first network device
  • the MAC layer of the second network device corresponds to the MAC layer of the first network device
  • the RLC layer of the second network device corresponds to the RLC layer of the first network device
  • the Adapt layer of the second network device corresponds to the Adapt layer of the first network device.
  • the encapsulated first data refers to data obtained by the first terminal device encapsulating the SDAP layer, the PDCP layer, the RLC layer, the MAC layer, and the PHY layer outside the first data.
  • the second network device may configure uplink resources for sending data for the first terminal device.
  • the specific configuration method is similar to the method in which the existing access network equipment configures the uplink resources for the terminal equipment, which is not described in detail in this document.
  • the second network device processes the encapsulated first data to obtain the processed first data.
  • Step 411 will be described below with reference to FIG. 4C .
  • the second network device After the second network device receives the encapsulated first data, the second network device removes the PHY layer, the MAC layer and the RLC layer of the encapsulated first data. Then, the second network device encapsulates the Adapt layer outside the first data from which the PHY layer, the MAC layer, and the RLC layer are removed. For example, in the Adpat layer of the first data encapsulation that removes the PHY layer, the MAC layer and the RLC layer, the C-RNTI allocated by the second network device to the terminal device (may also be other used for the first network device and the second network device) is included in the Adpat layer. device identification identification of the terminal device). The second network device then encapsulates the RLC layer, the MAC layer and the PHY layer outside the Adapt layer to obtain processed first data.
  • the second network device sends the processed first data to the first network device.
  • the terminal device forwards the first data to the first network device through the second network device, thereby realizing uplink data transmission between the terminal device and the first network device.
  • the first network device may send downlink data to the terminal device.
  • this embodiment further includes steps 414 to 416 , and steps 414 to 416 are performed after step 410 .
  • the first network device sends the encapsulated second data to the second network device.
  • the encapsulated second data refers to data obtained by the first network device encapsulating the SDAP layer, the PDCP layer, the Adapt layer, the RLC layer, the MAC layer, and the PHY layer outside the second data.
  • the Adapt layer in the encapsulated second data includes the identifier of the first terminal device. For example, the C-RNTI allocated by the second network device to the terminal device (may also be other identifiers used by the first network device and the second network device to identify the terminal device).
  • the second network device processes the encapsulated second data to obtain the processed second data.
  • the second network device After the second network device receives the encapsulated second data, the second network device removes the PHY layer, the MAC layer and the RLC layer of the encapsulated second data. Then, the second network device reads the identifier of the terminal device in the Adapt layer in the second data that removes the PHY layer, the MAC layer and the RLC layer, that is, determines the terminal device. Optionally, the second network device reads the DRB identifier or LCID from the Adapt layer to determine the DRB or LCH of the terminal device. Next, the second network device removes the Adapt layer of the second data, and then encapsulates the RLC layer, the MAC layer, and the PHY layer to obtain the processed second data.
  • the second network device sends the processed second data to the terminal device.
  • the second network device sends the processed second data to the terminal device through the DRB indicated by the DRB identifier of the Adapt layer; or, the second network device sends the processed second data to the terminal device through the LCH indicated by the LCID of the Adapt layer. .
  • the first network device forwards the second data to the terminal device through the second network device, thereby implementing downlink data transmission between the terminal device and the first network device.
  • FIG. 5 is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • the communication method includes:
  • the second network device sends the SSB and system information to the terminal device.
  • Step 501 is similar to step 401 in the aforementioned embodiment shown in FIG. 4A .
  • Step 501 is similar to step 401 in the aforementioned embodiment shown in FIG. 4A .
  • the terminal device sends a message A to the second network device.
  • the message A includes a random access preamble and an RRC setup request message.
  • the second network device determines that the terminal device requests to access the third beam according to the random access preamble and the mapping relationship between the random access preamble and the identifiers of one or more second beams managed by the second network device.
  • Step 503 is similar to step 403 in the embodiment shown in FIG. 4A.
  • Step 503 please refer to the related introduction of step 403 in the embodiment shown in FIG. 4A, which will not be repeated here.
  • the second network device processes the message A to obtain a processed message A, where the processed message A includes an RRC establishment request message.
  • Step 406 in the embodiment shown in FIG. 4A is combined.
  • the second network device removes the PHY layer, the MAC layer and the RLC layer of the message A. Then, the second network removes the message A of the PHY layer, the MAC layer and the RLC layer as the SDU of the Adapt layer, and encapsulates the Adapt layer outside the SDU, that is, adds the packet header of the Adapt layer, thereby forming the PDU of the Adapt layer.
  • the C-RNTI allocated by the second network device to the terminal device is included in the packet header of the Adapt layer encapsulated outside the message A with the PHY layer, the MAC layer, and the RLC layer removed.
  • the Adapt layer header encapsulated outside the message A in which the PHY layer, the MAC layer, and the RLC layer are removed by the second network device further includes the identifier of the third beam.
  • the second network device then encapsulates the RLC layer, the MAC layer, and the PHY layer outside the Adapt layer, and obtains the processed message A, where the processed message A includes the RRC establishment request message.
  • the first beam identifier may not be included in the packet header of the Adapt layer, but is included in the RRC establishment request message as an information element.
  • the second network device sends the processed message A to the first network device.
  • Step 505 is similar to step 407 in the foregoing embodiment shown in FIG. 4A .
  • Step 505 please refer to the relevant introduction of step 407 in the foregoing embodiment shown in FIG. 4A , which will not be repeated here.
  • the first network device sends a message B to the second network device, where the message B includes an RRC establishment response message.
  • the message B is a message obtained by encapsulating the PDCP layer, the Adapt layer, the RLC layer, the MAC layer and the PHY layer outside the RRC establishment response message.
  • the Adapt layer contains the identifier of the terminal device.
  • the Adapt layer also includes SRB ID or LCID.
  • the second network device processes the message B to obtain a processed message B, where the processed message B includes an RRC establishment response message;
  • the second network device After receiving the message B from the first network device, the second network device removes the PHY layer, the MAC layer, and the RLC layer encapsulated outside the message B. Then, the second network device reads the identifier of the terminal device from the Adapt layer header. For example, C-RNTI. Optionally, the second network device reads the SRB ID or LCID from the Adapt layer header. Next, the second network device removes the Adapt layer of the message B that removes the PHY layer, the MAC layer, and the RLC layer encapsulated outside, and encapsulates the RLC layer, the MAC layer, and the PHY layer outside to obtain the processed message B.
  • the identifier of the terminal device For example, C-RNTI.
  • the second network device reads the SRB ID or LCID from the Adapt layer header.
  • the second network device removes the Adapt layer of the message B that removes the PHY layer, the MAC layer, and the RLC layer encapsulated outside, and encapsul
  • the second network device sends the processed message B to the terminal device.
  • the first network device sends an RRC establishment response message to the terminal device through the second network device, thereby enabling the terminal device to establish an RRC connection to the first network device.
  • data transmission may be performed between the first network device and the terminal device.
  • uplink data transmission or downlink data transmission.
  • the specific uplink data transmission process between the first network device and the terminal device is similar to steps 411 to 413 in the foregoing embodiment shown in FIG. 4A .
  • the process of downlink data transmission between the first network device and the terminal device is similar to steps 414 to 416 in the aforementioned embodiment shown in FIG. 4A .
  • please refer to the related introductions of steps 411 to 416 in the embodiment shown in FIG. 4A which will not be repeated here.
  • FIG. 4A and FIG. 5 show a process in which the second network device provides an access service, resource scheduling and data forwarding for the terminal device.
  • resource information of one or more second beams is configured for the second network device through the first network device.
  • the second network device can manage one or more second beams of the physical cell.
  • the second network device is responsible for providing access services and resource scheduling for terminal devices requesting access to the one or more second beams. Because the one or more second beams managed by the second network device and the one or more first beams managed by the first network device belong to the same physical cell. That is, the second network is not managing a new physical cell.
  • the PCI of the physical cell of the second network device is the same as the PCI of the physical cell of the first network device, so there is no need to allocate a new PCI.
  • the problem of PCI conflict caused by a PCI being shared by different adjacent cells, which is likely to occur in a large number of deployment sites, is avoided.
  • the following takes the first terminal device as an example to introduce the process of the first network device performing beam management on the first terminal device.
  • the first network device sends an RRC reconfiguration message to the first terminal device, where the RRC reconfiguration message includes the CSI measurement configuration CSI-MeasConfig.
  • the CSI measurement configuration includes a CSI resource configuration (CSI-ResourceConfig), a CSI reporting configuration (CSI-ReportConfig), a trigger state, and the like.
  • the CSI resource configuration may include SSB resource information and CSI-RS resource information.
  • the SSB resource information includes SSB resource identifier (SS/PBCH Block Resource indicator, SSBRI) or SSB index, frequency corresponding to SSB, SSB subcarrier interval, SSB period, SSB measurement timing configuration (SSB measurement timing configuration, SSB-MTC ), System Frame Number (SFN) offset, etc.
  • CSI-RS resource information includes frequency points corresponding to CSI-RS, BWP corresponding to CSI-RS, CSI-RS resource identifier, CSI-RS resource mapping, CSI-RS time configuration including slot offset and period, CSI-RS RS density, etc.
  • the CSI reporting configuration may include the L1-RSRP parameter and the SSB index; or, the ReportConfig may include the L1-RSRP parameter and the CSI-RS resource indicator (CSI-RS resource indicator, CRI).
  • CSI measurement configuration mainly includes SSB frequency point, SSB subcarrier spacing, SSB measurement time configuration (ie SSB-MTC), CSI-RS frequency point, CSI-RS resource identifier, CSI-RS time slot configuration, CSI-RS associated SSB logo.
  • SSB-MTC SSB measurement time configuration
  • CSI-RS frequency point CSI-RS resource identifier
  • CSI-RS time slot configuration CSI-RS associated SSB logo.
  • the first terminal device reports a CSI measurement report through uplink control information (uplink control information, UCI).
  • uplink control information uplink control information, UCI.
  • the measurement report includes SSBRI, and L1-RSRP corresponding to SSBRI (or, differential RSRP corresponding to SSBRI; or L1-SINR corresponding to SSBRI); or, L1-RSRP or differential RSRP or L1-SINR corresponding to CRI .
  • Transmission configuration indicator state (TCI state) configuration and notification.
  • the network can perform beam indication to terminal equipment through different signaling, instruct the terminal equipment how to receive downlink physical channels or physical signals, and instruct the terminal equipment How the device sends uplink physical channels or physical signals.
  • the corresponding beam that is, the SSB index or the CSI-RS index, can be determined according to the TCI indication.
  • the first network device configures the TCI state set for the first terminal device through the RRC reconfiguration message.
  • the TCI state subset 1 corresponding to the control resource set (Control-resource set, CORESET) is given in the ControlResourceSet (CORESET can be understood as part of the PDCCH)
  • the PDSCH-Config contains the TCI state subset 2 corresponding to the PDSCH.
  • Each TCI state has a corresponding TCI state ID and Quasi co-location (QCL) information.
  • the QCL information includes cell identity, BWP identity, reference signal identity (CSI-RS resource identity or SSB index), and quasi co-location (Quasi co-location, QCL) type, etc. It is worth noting that determining the TCI means determining the CSI-RS resource identifier or SSB index, which is equivalent to determining the beam.
  • the first network device notifies the first terminal device of one TCI state ID corresponding to CORESET through a MAC layer control instruction (for example, a media access control-control element (MAC CE)) (the TCI state ID is The first network device is selected from the TCI state subset 1), and the first terminal device PDSCH is notified by the MAC layer control instruction to correspond to a maximum of 8 TCI state IDs (this TCI state ID is the first network device from the TCI state subset 2. selected). Finally, the first network device gives 1 TCI state ID corresponding to the PDSCH through downlink control information (DCI) (the TCI state ID is selected by the first network device from a maximum of 8 TCI state IDs). For the case where the first terminal device accesses the second network device, the second network device sends a TCI state related indication to the first terminal device through MAC CE or DCI.
  • a MAC layer control instruction for example, a media access control-control element (MAC CE)
  • the first network device configures a radio link monitoring configuration (RadioLinkMonitoringConfig) and a beam failure recovery (beam failure recovery, BFR) configuration (BeamFailureRecoveryConfig) for the first terminal device.
  • RadioLinkMonitoringConfig Radio Link MonitoringConfig
  • BFR beam failure recovery
  • BeamFailureRecoveryConfig BeamFailureRecoveryConfig
  • the beam failure recovery configuration includes the SSB index (or CSI-RS resource index), preamble index, and RACH-ConfigGeneric corresponding to at least one beam in the random access process triggered by the BFR.
  • the first terminal device may determine the location information of the RACH time-frequency resource according to the RACH-ConfigGeneric.
  • the beam failure recovery configuration includes at least one beam corresponding to The identifier, the corresponding RACH time-frequency resource, and the corresponding preamble index.
  • the network side does not include a random access preamble for a certain beam dedicated to the first terminal device in the beam failure recovery configuration.
  • the first terminal device selects the random access preamble corresponding to the beam that the first terminal device wishes to access according to the mapping relationship between the beam identifier and the random access preamble. Then, the first terminal device sends the random access preamble in message 1 in the four-step random access, or the first terminal device sends the random access preamble in message A in the two-step random access.
  • the mapping relationship between the beam identifier and the random access preamble may be broadcast by the first terminal device when the first terminal device accesses the network device before beam failure recovery occurs. For example, the mapping relationship between the SSB index and the preamble index set.
  • the first network device can determine which terminal device the first terminal device is based on the location information of the time-frequency resource where the first terminal device initiates the random access process and the random access preamble sent by the first terminal device on the time-frequency resource Reconnect to the network through the RACH procedure.
  • the first network device may determine that the first terminal device re-accesses the network through the RACH process according to the identifier of the first terminal device carried by the first terminal device in msgA or msg3.
  • the second network device when the first terminal device is located in the coverage area of the first beam managed by the second network device , the second network device will be responsible for the processing of the PHY layer, the MAC layer and the RLC layer of the data of the first terminal device. That is, the second network device receives the uplink control information (uplink control information, UCI) of the first terminal device, and determines whether the first terminal device changes the beam according to the UCI.
  • uplink control information uplink control information
  • the second network device should determine which TCI states the first network device has configured for the first terminal device. For example, the first network device notifies the second network device of basic configuration information such as the ControlResourceSet configured for the CORESET of the first terminal device and the PDSCH-Config configured for the PDSCH of the first terminal device respectively.
  • the second network device determines which TCI state in the subsequent TCI state set 1 is in the active state (for CORESET), and determines which TCI states in the TCI state set 2 are in the active state (for PDSCH), and converts the above TCI state through the MAC CE. Notify the first terminal device.
  • the second network device may also indicate one or two TCI states for the PDSCH to the first terminal device through the DCI.
  • the second network device configures the ControlResourceSet configured by CORESET for the first terminal device and configures PDSCH-Config for the PDSCH of the first terminal device; then, the second network device configures the second network device for the first terminal device.
  • basic configuration information such as PDSCH-Config configured for the PDSCH of the first terminal device is sent to the first network device, and then the first network device notifies the first terminal device through an RRC message.
  • Scenario 1 a beam switch scenario in which the first terminal device is within the signal coverage of the third beam managed by the second network device, and the first terminal device switches from the third beam to the fourth beam.
  • the third beam is one of the one or more second beams managed by the second network.
  • the fourth beam is one of the one or more first beams managed by the first network device.
  • FIG. 6A is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • the communication method includes:
  • the first terminal device sends an L1 measurement report to the second network device.
  • the L1 measurement report includes: channel quality information (channel quality information, CQI) measured by the first terminal device, rank indication (rank indication, RI), precoding matrix indication (precoding matrix indication, PMI), CRI, SSBRI, layer indication (Layer indicator, LI), L1-RSRP or L1-SINR, etc.
  • the first terminal device reports the L1 measurement report of the first terminal device to the second network device through the uplink control information.
  • the physical cell includes beam 1 to beam 4.
  • gNB manages beam 1 to beam 3
  • NodeX manages beam 4.
  • UE1 is located within the signal coverage of beam 4 managed by NodeX, and UE1 accesses beam 4 managed by NodeX.
  • UE1 measures the received signal strength of the beam sent by gNB and the signal strength of the beam sent by NodeX, and obtains the L1 measurement report. Then, UE1 reports the L1 measurement report to NodeX, so that NodeX can decide which beam has higher signal quality and is more suitable for serving UE1.
  • the second network device determines a fourth beam according to the L1 measurement report.
  • the fourth beam is one of the one or more first beams managed by the first network device.
  • NodeX determines according to the L1 measurement report that the signal quality of beam 2 is the best, which is more suitable for serving the first terminal device. Then, NodeX decides to serve UE1 by beam 2.
  • the second network device sends the identifier of the fourth beam to the first terminal device.
  • the identifier of the fourth beam includes the SSB index corresponding to the fourth beam or the CSI-RS index corresponding to the fourth beam.
  • the identifier of the fourth beam includes the TCI state ID corresponding to the fourth beam. That is, the second network device indicates the TCI through the TCI state ID, and the first terminal device determines the TCI according to the TCI state ID, and the TCI indicates the fourth beam.
  • the TCI includes the SSB index corresponding to the fourth beam or the CSI-RS index corresponding to the fourth beam.
  • the first terminal device can determine which beam to switch to through TCI.
  • the second network device sends the identifier of the fourth beam to the first terminal device through the downlink control information DCI.
  • DCI downlink control information
  • the second network device sends the identifier of the fourth beam to the first terminal terminal device through the MAC CE.
  • COREST related TCI state For example, NodeX sends the TCI state or SSB index or CSI-RS index corresponding to beam 2 to the UE through the MAC CE.
  • the first terminal device switches from the third beam to the fourth beam.
  • the first terminal device determines the fourth beam according to the identifier of the fourth beam; then, the first terminal device performs beam switching from the third beam to the fourth beam.
  • UE1 starts to access beam 4 managed by NodeX.
  • UE1 performs beam switching from beam 4 to beam 2 managed by the gNB.
  • the second network device sends the C-RNTI of the first terminal device and the identifier of the fourth beam to the first network device.
  • the second network device determines that the first terminal device is served by the fourth beam.
  • the second network device may send the C-RNTI of the first terminal device and the identifier of the fourth beam to the first network device, so as to notify the first network device to provide services for the first terminal device switched from the third beam to the fourth beam .
  • step 603 may be performed first, and then step 605; or, step 605 may be performed first, and then step 603 may be performed; or, step 603 and step 605 may be performed simultaneously according to the situation, which is not limited in this application.
  • the fourth beam is beam 2 .
  • NodeX forwards the C-RNTI allocated by NodeX for the first terminal device, the TCI state ID corresponding to beam 2, the buffer status report (Buffer status report, BSR) and other information to the gNB.
  • BSR buffer status report
  • the second network device further sends data transmission status information of the first terminal device to the first network device.
  • the data transmission status information includes at least one of the following:
  • Sequence information data transmission timer, HARQ process number, new data indication, transport block size, redundancy version, process time information corresponding to the HARQ process number of the sent data unit for which no feedback information has been received, data transmission timer, HARQ process number, Data unit transmission acknowledgment information, data unit acknowledgment information, maximum sending state variable, maximum receiving state variable, sending state variable, receiving state variable, and transmission window of the HARQ process.
  • the data transmission timer may be an RLC or MAC reordering timer, or may be a HARQ round trip time (Round Trip Time, RTT) timer, etc., which is not specifically limited in this application.
  • the data transmission timer also includes some transmit variables and receive variables of the RLC layer. For example, TX_Next_Ack, TX_Next, RX_Next, POLL_SN, RETX_COUNT, etc.
  • TX_Next_Ack TX_Next, RX_Next, POLL_SN, RETX_COUNT, etc.
  • the first network device may determine the data transmission state information of the first terminal device, so that the first network device provides services for the first terminal device. Therefore, in the beam switching scenario of the first terminal device, the first terminal device continues to perform data transmission under the scheduling of the first network device.
  • the first network device provides a communication service for the first terminal device according to the C-RNTI of the first terminal device and the identifier of the fourth beam.
  • the first terminal device switches from the third beam to the fourth beam.
  • the first network device receives the C-RNTI of the first terminal device and the identifier of the fourth beam
  • the first network device provides a communication service for the first terminal device. For example, resource scheduling, data transmission and other services. It is implemented that in the beam switching scenario of the first terminal device, the first terminal device continues to perform data transmission under the scheduling of the first network device.
  • the second network device determines, according to the L1 measurement report of the first terminal device, that the fourth beam is the first terminal device Provide services.
  • the second network device sends the identifier of the fourth beam to the first terminal device, so that the first terminal device switches from the third beam to the fourth beam.
  • the second network device sends the C-RNTI and the identifier of the fourth beam allocated by the second network device to the first terminal device to the first network device.
  • the first network device can provide a scheduling service for the first terminal device, so that in the beam switching scenario of the first terminal device, the first terminal device continues to perform data transmission under the scheduling of the first network device.
  • Scenario 2 The first terminal device originally had a beam failure within the signal coverage of the third beam managed by the second network device, and then moved to the signal coverage of the fourth beam managed by the first network device.
  • the first network device initiates beam failure recovery (BFR) to implement a scenario in which the first network device continues to provide services for the first terminal device.
  • BFR beam failure recovery
  • the second scenario is introduced based on the CFRA method and the four-step random access procedure in conjunction with the embodiment shown in FIG. 7A .
  • Scenario 2 is introduced based on the CFRA method and the four-step random access process in conjunction with the embodiment shown in FIG. 7B .
  • FIG. 7A is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • the communication method includes:
  • the first terminal device sends a message 1 to a first network device, where the message 1 includes a random access preamble.
  • the first terminal device rapidly moves from the signal coverage of the third beam managed by the second network device to the signal coverage of the fourth beam managed by the first network device.
  • the PHY layer of the first terminal device detects the occurrence of beam failure and indicates a candidate beam, which is referred to as the fourth beam in this embodiment, to the MAC layer of the first terminal device.
  • the PHY layer of the first terminal device performs the beam search process.
  • the PHY layer of the first terminal device records the signal strength corresponding to the received beam, and uses the beam with the highest signal strength as a candidate beam. Then, the PHY layer of the first terminal device informs the MAC layer of the first terminal device of the identification of the candidate beam.
  • the MAC layer of the first terminal device determines the RACH time-frequency resource and the random access preamble corresponding to the fourth beam according to the beam failure recovery configuration.
  • the MAC layer of the first terminal device indicates the RACH time-frequency resource and the corresponding random access preamble corresponding to the fourth beam of the PHY layer of the first terminal device.
  • the first terminal device sends a message 1 to the first network device on the RACH time-frequency resource corresponding to the second quadruple beam, where the message 1 includes a random access preamble.
  • the first network device determines, according to the random access preamble of message 1, that the first terminal device requests beam failure recovery in the fourth beam.
  • the first network device can uniquely determine which terminal device requests to re-access the network through the RACH process through the random access preamble sent by the first terminal device. First, the first network device determines that the random access preamble of message 1 belongs to the first terminal device's random access preamble for beam failure recovery according to the relationship between each terminal device and the allocated random access preamble for beam failure recovery. Random access preamble, that is, the first terminal device recovers from failure to apply for a beam. Then, the first network device determines, according to the mapping relationship between the beam identifier of the first terminal device for beam recovery failure and the random access preamble of the first terminal device for beam failure recovery, whether the first terminal device requests The fourth beam performs beam failure recovery.
  • NodeX manages beam 4, and gNB manages beam 1 to beam 3.
  • UE1 accesses beam 4, and UE1 quickly moves from the signal coverage of beam 4 to the signal coverage of beam 2.
  • UE1 detects that a beam failure has occurred, then UE1 requests beam failure recovery from the gNB, so that the gNB can determine that the UE1 re-accesses the network through the RACH procedure.
  • the first network device sends a message 2 to the first terminal device, where the message 2 includes a random access response message.
  • parameters such as Time Advance (TA).
  • the first network device After the first network device receives the message 1 in step 701, the first network device determines in combination with the foregoing step 702 that the first terminal device requests to re-access the network through the RACH process.
  • the first network device can send a random access response message to the first terminal device through message 2, so as to inform the first terminal device that the beam recovery request is successful, so that the first terminal device can perform data transmission under the scheduling of the first network device.
  • the first network device sends, to the second network device, information for instructing the second network device to stop scheduling the first terminal device.
  • the first terminal device accesses the third beam managed by the second network device, and the first network device saves the context of the first terminal device during the random access process of the first terminal device.
  • the first network device queries the context of the first terminal device, the first network device determines that the first terminal device was originally scheduled by the second network device, and that the first terminal device originally accessed the second network Which beam of the device.
  • the first network device notifies the second network device that the first terminal device is provided with a scheduling service by the first network device, so as to instruct the second network device to stop scheduling the first terminal device.
  • the information used to instruct the second network device to stop scheduling the first terminal device is a stop transmission user equipment identifier (StopTransmissionUEID), where the StopTransmissionUEID includes the C-RNTI of the first terminal device.
  • the first network device instructs the second network device to stop scheduling the first terminal device through the StopTransmissionUEID.
  • the second network device stops scheduling the first terminal device according to the information used to instruct the second network device to stop scheduling the first terminal device.
  • NodeX receives the indication information sent by the gNB, and stops scheduling UE1 according to the indication information.
  • the NodeX receives the StopTransmissionUEID sent by the gNB, where the StopTransmissionUEID includes the C-RNTI of the first terminal device; then, the NodeX stops scheduling the UE1 according to the StopTransmissionUEID.
  • FIG. 7C is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application, which is based on a CBRA manner and a four-step random access process.
  • the communication method includes:
  • the first terminal device sends a message 1 to the first network device, where the message 1 includes a random access preamble.
  • the MAC layer of the first terminal device determines the RACH time-frequency resource corresponding to the fourth beam according to the beam failure recovery configuration.
  • the first terminal device selects the random access preamble according to the mapping relationship between the beam identifier broadcasted by the access network device and the random access preamble.
  • the MAC layer of the first terminal device indicates the RACH time-frequency resource and the corresponding random access preamble corresponding to the fourth beam of the PHY layer of the first terminal device. Then, the first terminal device sends a message 1 to the first network device on the RACH time-frequency resource corresponding to the fourth beam, where the message 1 includes a random access preamble.
  • the first network device determines, according to the random access preamble, that a terminal device requests to access the fourth beam.
  • the random access preamble corresponding to the beam is for multiple terminal devices to compete for access for random access. Therefore, the first network device according to the random access preamble of message 1, and The mapping relationship between the beam identifier and the random access preamble determines that the terminal equipment requests to access the second beam.
  • the first network device sends message 2 to the first terminal device.
  • the first terminal device sends a message 3 to the first network device, where the message 3 includes the identifier of the first terminal device.
  • the identifier of the first terminal device is the identifier of the first terminal device that has been allocated to the first terminal device before the beam failure occurs.
  • the first network device determines, according to the identifier of the first terminal device, that the first terminal device requests to access the second beam.
  • the first network device can determine through the identifier of the first terminal device included in message 3 that it is the first terminal device that applies for accessing the fourth beam .
  • the first network device sends message 4 to the first terminal device.
  • the first network device can notify the first terminal device that the random access is successful through the message 4, so that the first terminal device can perform data transmission under the scheduling of the first network device.
  • the first network device sends, to the second network device, information used to instruct the second network device to stop scheduling the first terminal device.
  • the second network device stops scheduling the first terminal device according to the information used to instruct the second network device to stop scheduling the first terminal device.
  • Steps 712 to 713 are similar to steps 704 to 705 in the embodiment shown in FIG. 7A .
  • steps 704 to 705 in the embodiment shown in FIG. 7A please refer to the related introductions of steps 704 to 705 in the embodiment shown in FIG. 7A , which will not be repeated here.
  • scenario 2 based on the CBRA method and the two-step random access process in conjunction with the embodiment shown in FIG. 8 .
  • FIG. 8 is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • the communication method includes:
  • the first terminal device sends a message A to a first network device, where the message A includes a random access request and an identifier of the first terminal device.
  • the first terminal device rapidly moves from the signal coverage of the third beam managed by the second network device to the signal coverage of the fourth beam managed by the first network device.
  • the PHY layer of the first terminal device detects the occurrence of beam failure and indicates a candidate beam, which is referred to as the fourth beam in this embodiment, to the MAC layer of the first terminal device.
  • the MAC layer of the first terminal device determines the RACH time-frequency resource according to the beam failure recovery configuration.
  • the MAC layer of the first terminal device indicates the RACH time-frequency resource of the PHY layer of the first terminal device. Then, the first terminal device sends the message A to the first network device on the RACH resource corresponding to the fourth beam.
  • the message A includes the random access preamble corresponding to the fourth beam and the identifier of the first terminal device.
  • the random access preamble corresponding to the fourth beam is not specially configured to the first terminal device in the beam failure configuration, but is shared with other terminal devices. For example, one of the random access preamble sets corresponding to the fourth beam obtained from the system information. Then, the first network device may determine, through the identifier of the first terminal device in the message A, that the first terminal device requests to apply for beam failure recovery in the fourth beam. That is, the first terminal device requests beam failure recovery from the first network device through the message A, so that the second network device can determine that the first terminal device requests to re-access the network through the RACH procedure.
  • the first network device determines, according to the identifier of the first terminal device and the random access preamble in the message A, that the first terminal device requests to access the fourth beam.
  • the first network device judges that the first terminal device re-accesses the network through the RACH process according to the identifier of the first terminal device included in msgA and no RRC message is found in msgA. And, the first network device determines that the first terminal device requests to access the fourth beam according to the mapping relationship between the beam identifier and the random access preamble.
  • the first network device sends a message B to the first terminal device, where the message B is a random access response message, for example, parameters such as a time advance (Time Advance, TA).
  • TA time advance
  • the first network device After the first network device receives the message A in step 801, the first network device determines in combination with the foregoing step 802 that the first terminal device requests to re-access the network through the RACH process.
  • the first network device may send a random access response message to the first terminal device through message B, so as to inform the first terminal device that the beam recovery request is successful, so that the first terminal device can perform data transmission under the scheduling of the first network device.
  • the first network device sends, to the second network device, information used to instruct the second network device to stop scheduling the first terminal device.
  • the second network device stops scheduling the first terminal device according to the information used to instruct the second network device to stop scheduling the first terminal device.
  • Steps 804 to 805 are similar to steps 704 to 705 in the embodiment shown in FIG. 7A .
  • steps 704 to 705 in the embodiment shown in FIG. 7A .
  • the first terminal device moves from the signal coverage of the third beam managed by the second network device to the signal coverage of the fourth beam managed by the first network device.
  • the first terminal device initiates a beam failure recovery request to the first network device to enable the first network device to provide services for the first terminal device, so that in the scenario where the first terminal device has a beam failure, the first terminal device continues to operate in the first terminal device.
  • Data transmission is performed under the scheduling of network equipment.
  • the first network device sends information for instructing the second network device to stop scheduling the first terminal device to the second network device, so that the second network device can stop scheduling the first terminal device, so that the first network device can The first terminal device provides communication services.
  • Scenario 3 A beam switching scenario in which the first terminal device is within the signal coverage of the third beam managed by the second network device, and the first terminal device switches from the third beam to the fifth beam.
  • the fifth beam is a beam managed by the third network device.
  • the third network device first accesses the physical cell of the first network device as a terminal device.
  • the third network device is an access point type device.
  • the first network device configures resource information of the fifth beam of the physical cell for the third network device, and sends the resource information of the fifth beam to the third network device.
  • the resource information of the fifth beam is used by the third network device to manage the fifth beam of the physical cell. That is, the fifth beam managed by the third network device and one or more first beams managed by the first network device belong to the same physical cell. That is, the PCI of the physical cell adopted by the third network device is the same as the PCI of the physical cell adopted by the first network device.
  • the system information of the physical cell broadcast by the third network device is the same as the system information of the physical cell broadcast by the first network device.
  • FIG. 9A is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • the communication method includes:
  • the first terminal device sends an L1 measurement report to the second network device.
  • the second network device determines the fifth beam according to the L1 measurement report.
  • the second network device sends the identifier of the fifth beam to the first terminal device.
  • the first terminal device switches from the third beam to the fifth beam.
  • Steps 901 to 904 are similar to steps 601 to 604 of the embodiment shown in FIG. 6A .
  • steps 601 to 604 of the embodiment shown in FIG. 6A please refer to the related introductions of steps 601 to 604 of the embodiment shown in FIG. 6A , which will not be repeated here.
  • the second network device sends the C-RNTI of the first terminal device and the identifier of the fifth beam to the first network device.
  • step 903 can be executed first, and then step 905; or, step 905 can be executed first, and then step 903; or, according to the situation, step 903 and step 905 can be executed at the same time.
  • the first network device sends the C-RNTI of the first terminal device and the identifier of the fifth beam to the third network device.
  • the fifth beam is a beam managed by the third network device
  • the third network device is a device that accesses the first network device.
  • the second network device may send the C-RNTI of the first terminal device and the identifier of the fifth beam to the first network device.
  • the first network device sends the C-RNTI of the first terminal device and the identifier of the fifth beam to the third network device.
  • the third network device can determine that after the first terminal device switches to the fifth beam, the third network device provides scheduling services for the first terminal device.
  • UE1 accesses beam 4 of NodeX1.
  • NodeX1 decides to switch the first terminal device to beam 5 managed by NodeX2 according to the L1 measurement report of UE1.
  • NodeX1 indicates the identifier of beam 5 to UE1, so that UE1 can switch from beam 4 to beam 5.
  • NodeX1 sends information such as the C-RNTI of the first terminal device, the identifier of beam 5 (for example, the corresponding TCI state ID or SSB index or CSI-RS index) and BSR to the gNB.
  • the gNB sends the C-RNTI of the first terminal device, the identifier of beam 5 (for example, the TCI state ID corresponding to beam 5, or the SSB index corresponding to beam 5, or the CSI-RS index corresponding to beam 5) and BSR to NodeX2 and other information, so that NodeX2 can provide scheduling services for UE1.
  • the identifier of beam 5 for example, the TCI state ID corresponding to beam 5, or the SSB index corresponding to beam 5, or the CSI-RS index corresponding to beam 5
  • the second network device sends the data transmission state information of the first terminal device to the first network device, and then the first network device sends the data transmission state information to the third network device.
  • the third network device can determine the data transmission state information of the first terminal device, so that the third network device can provide services for the first terminal device. Therefore, in the beam switching scenario of the first terminal device, the first terminal device continues to perform data transmission under the scheduling of the third network device.
  • the data transmission state information please refer to the related introduction of step 604 in the embodiment shown in FIG. 6A, which will not be repeated here.
  • NodeX1 sends the data transmission status information of UE1 to gNB, and then gNB sends it to NodeX2, so that NodeX2 can provide services for UE1, so that in the beam switching scenario of UE1, UE1 continues to operate in NodeX2.
  • Data transmission is performed under scheduling.
  • the third network device provides a communication service for the first terminal device according to the C-RNTI of the first terminal device and the identifier of the fourth beam.
  • Step 907 is similar to step 606 in the embodiment shown in FIG. 6A.
  • Step 907 please refer to the relevant introduction of step 606 in the embodiment shown in FIG. 6A, which will not be repeated here.
  • the first terminal device is within the signal coverage range of the first beam managed by the second network device.
  • the second network device determines, according to the L1 measurement report of the first terminal device, that the fifth beam managed by the third network device provides services for the first terminal device.
  • the second network device sends the identifier of the fifth beam to the first terminal device, so that the first terminal device switches from the third beam to the fifth beam managed by the third network device.
  • the second network device first sends the C-RNTI of the first terminal device and the identifier of the fifth beam to the first network device.
  • the first network device sends the C-RNTI of the first terminal device and the identifier of the fifth beam to the third network device. Therefore, in the beam switching scenario of the first terminal device, the first terminal device continues to perform data transmission under the scheduling of the third network device.
  • Scenario 4 The first terminal device moves from the signal coverage of the third beam managed by the second network device to the signal coverage of the fifth beam managed by the third network device.
  • the fifth beam is a beam managed by the third network device.
  • the third network device first accesses the physical cell of the first network device as a terminal device.
  • the third network device is an access point type device.
  • the first network device configures resource information of the fifth beam of the physical cell for the third network device, and sends the resource information of the fifth beam to the third network device.
  • the resource information of the fifth beam is used by the third network device to manage the fifth beam of the physical cell. That is, the fifth beam managed by the third network device and one or more first beams managed by the first network device belong to the same physical cell. That is, the PCI of the physical cell adopted by the third network device is the same as the PCI of the physical cell adopted by the first network device.
  • the system information of the physical cell broadcast by the third network device is the same as the system information of the physical cell broadcast by the first network device.
  • FIG. 10A is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • the communication method includes:
  • the first terminal device sends a message 1 to a third network device, where the message 1 includes a random access preamble.
  • the third network device determines, according to the random access preamble of message 1, that the first terminal device requests the fifth beam to perform beam failure recovery.
  • the first network device sends the identifier of at least one terminal device and the partial or all beam failure recovery configuration corresponding to the at least one terminal device to the third network device.
  • the first network device sends the beam failure recovery configuration of the at least one terminal device with respect to the beam managed by the third network device to the third network device.
  • the third network device sends a message 2 to the first terminal device, where the message 2 is a random access response message.
  • Steps 1001 to 1003 are similar to steps 701 to 703 in the embodiment shown in FIG. 7A .
  • steps 701 to 703 in the embodiment shown in FIG. 7A please refer to the related introductions of steps 701 to 703 in the embodiment shown in FIG. 7A , which will not be repeated here.
  • UE1 initially accesses beam 4 managed by NodeX1.
  • UE1 moves from the signal coverage of beam 4 managed by NodeX1 to the signal coverage of beam 5 managed by NodeX2.
  • UE1 detects the occurrence of beam failure, and initiates a beam recovery request to NodeX2, and requests to access beam 4 of NodeX2, so as to enable Node2 to provide services for the first terminal device.
  • the third network device sends the C-RNTI of the first terminal device to the first network device.
  • the first terminal device re-accesses the network through the BFR process.
  • the third network device may send the C-RNTI of the first terminal device to the first network device, so as to inform the first network device that the first terminal device is continuously provided with services by the third network device.
  • the first network device sends, to the second network device, information for instructing the second network device to stop scheduling the first terminal device.
  • step 1005 the first network device determines that the third network device provides services for the first terminal device. Then, the first network device sends information for instructing the second network device to stop scheduling the first terminal device to the second network device, so as to notify the second network device to stop scheduling the first terminal device.
  • the second network device stops scheduling the first terminal device according to the information used to instruct the second network device to stop scheduling the first terminal device.
  • the information used to instruct the second network device to stop scheduling the first terminal device is similar to the information used to instruct the second network device to stop scheduling the first terminal device in step 705 in the embodiment shown in FIG. 7A . See the related introduction above.
  • the operations performed between the first terminal device and the third network device are similar to steps 706 to 711 shown in FIG. Repeat.
  • the third network device instructs the second network device to stop scheduling the first terminal device through the first network device, and the specific execution process is similar to the foregoing steps 1004 to 1006, which will not be repeated here.
  • FIG. 11 is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • the communication method includes:
  • the first terminal device sends a message A to a third network device, where the message A includes a random access preamble and an identifier of the first terminal device.
  • the third network device determines, according to the random access preamble of the message A and the identifier of the first terminal device, that the first terminal device requests to access the fifth beam.
  • the third network device sends a message B to the first terminal device, where the message B is a random access response message.
  • Steps 1101 to 1103 are similar to steps 801 to 803 in the embodiment shown in FIG. 8 .
  • steps 801 to 803 in the embodiment shown in FIG. 8 please refer to the related introductions of steps 801 to 803 in the embodiment shown in FIG. 8 , which will not be repeated here.
  • the third network device sends the C-RNTI of the first terminal device to the first network device.
  • the first network device sends information to the second network device for instructing the second network device to stop scheduling the first terminal device.
  • the second network device stops scheduling the first terminal device according to the information used to instruct the second network device to stop scheduling the first terminal device.
  • Steps 1104 to 1106 are similar to steps 1004 to 1006 in the embodiment shown in FIG. 10A .
  • steps 1004 to 1006 are similar to steps 1004 to 1006 in the embodiment shown in FIG. 10A .
  • the first terminal device moves from the signal coverage of the first beam managed by the second network device to the signal coverage of the fifth beam managed by the third network device.
  • the first terminal device initiates a beam failure recovery request to the third network device, so that the third network device provides services for the first terminal device. It is implemented that in a scenario where a beam failure occurs in the first terminal device, the first terminal device continues to perform data transmission under the scheduling of the third network device.
  • the third network device sends the C-RNTI of the first terminal device to the first network device (specifically, it may be obtained during the beam failure recovery process of the first terminal device), then the first network device can instruct the second network device to stop scheduling The first terminal device, so that the first network device provides a communication service for the first terminal device.
  • Scenario 5 A beam switching scenario in which the first terminal device is within the signal coverage of the fourth beam managed by the first network device, and the first terminal device switches from the fourth beam to the third beam managed by the second network device.
  • FIG. 12 is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • the communication method includes:
  • the first terminal device sends an L1 measurement report to the first network device.
  • the first network device determines a third beam according to the L1 measurement report.
  • the first network device sends the identifier of the third beam to the first terminal device.
  • the first terminal device switches from the fourth beam to the third beam.
  • the first network device sends the C-RNTI of the first terminal device and the identifier of the third beam to the second network device.
  • step 1203 can be executed first, and then step 1205; or, step 1205 can be executed first, and then step 1203; or, according to the situation, step 1203 and step 1205 can be executed at the same time.
  • the second network device provides a communication service for the first terminal device according to the C-RNTI of the first terminal device and the identifier of the third beam.
  • Steps 1201 to 1206 are similar to steps 601 to 606 of the embodiment shown in FIG. 6A .
  • steps 601 to 606 of the embodiment shown in FIG. 6A please refer to the related introductions of steps 601 to 606 of the embodiment shown in FIG. 6A , which will not be repeated here.
  • UE1 accesses beam 2 managed by gNB, and UE1 sends L1 measurement report to gNB.
  • the gNB determines that the signal quality of the beam 4 managed by the NodeX is better, and is more suitable for serving UE1. Then the gNB sends the identifier of beam 4 to UE1 for UE1 to switch from beam 2 to beam 4.
  • the gNB sends the identity of UE1 to NodeX, so that NodeX provides services for UE1.
  • the first terminal device is within the signal coverage range of the fourth beam managed by the first network device.
  • the first network device determines, according to the L1 measurement report of the first terminal device, that the third beam managed by the second network device provides services for the first terminal device.
  • the first network device sends the identifier of the third beam to the first terminal device, so that the first terminal device switches from the fourth beam to the third beam.
  • the first network device sends the C-RNTI of the first terminal device and the identifier of the third beam to the second network device, so that in the beam switching scenario of the first terminal device, the first terminal device continues to operate on the second network device data transmission under the schedule.
  • Scenario 6 The first terminal device moves from the signal coverage of the fourth beam managed by the first network device to the signal coverage of the third beam managed by the second network device. A scenario in which the first terminal device initiates a beam failure recovery request to the second network device.
  • FIG. 13A is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • the communication method includes:
  • the first terminal device sends a message 1 to a second network device, where the message 1 includes a random access preamble.
  • the second network device determines, according to the random access preamble of message 1, that the first terminal device requests beam failure recovery in the third beam.
  • the second network device sends a message 2 to the first terminal device, where the message 2 includes a random access response message.
  • the second network device sends, to the first network device, information for instructing the first network device to stop scheduling the first terminal device.
  • the first network device stops scheduling the first terminal device according to the information used to instruct the first network device to stop scheduling the first terminal device.
  • Steps 1301 to 1305 are similar to steps 701 to 705 of the embodiment shown in FIG. 7A .
  • steps 701 to 705 of the embodiment shown in FIG. 7A please refer to the related introductions of steps 701 to 705 of the embodiment shown in FIG. 7A , which will not be repeated here.
  • UE1 initially accesses beam 2 managed by gNB.
  • UE1 moves from the signal coverage of beam 2 to the signal coverage of beam 4 managed by NodeX.
  • UE1 detects the occurrence of beam failure and sends a beam failure recovery request to NodeX. That is, UE1 requests NodeX to access beam 4 managed by NodeX, so as to realize that NodeX provides services for the first terminal device.
  • FIG. 14 is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • the communication method includes:
  • the first terminal device sends a message A to the second network device, where the message A includes a random access preamble and an identifier of the first terminal device.
  • the second network device determines, according to the random access preamble and the identifier of the first terminal device, that the first terminal device requests to access the third beam.
  • the second network device sends a message B to the first terminal device, where the message B is a random access response message.
  • the second network device sends, to the first network device, information for instructing the first network device to stop scheduling the first terminal device.
  • the first network device stops scheduling the first terminal device according to the information used to instruct the first network device to stop scheduling the first terminal device.
  • Steps 1401 to 1405 are similar to steps 801 to 805 of the embodiment shown in FIG. 8 .
  • steps 801 to 805 of the embodiment shown in FIG. 8 please refer to the related introductions of steps 801 to 805 of the embodiment shown in FIG. 8 , which will not be repeated here.
  • the first terminal device moves from the signal coverage of the fourth beam managed by the first network device to the signal coverage of the third beam managed by the second network device.
  • the first terminal device initiates a beam failure recovery request to the second network device, so that the second network device provides services for the first terminal device.
  • the above-mentioned embodiment shown in FIG. 13A or FIG. 14 implements that in a scenario where a beam failure occurs in the first terminal device, the first terminal device continues to perform data transmission under the scheduling of the second network device.
  • the second network device sends information to the first network device for instructing the first network device to stop scheduling the first terminal device. In this way, the first network device can stop scheduling the first terminal device, so that the second network device can provide a communication service for the first terminal device.
  • Scenario 7 The first terminal device is within the signal coverage range of the third beam managed by the second network device. The first terminal device is handed over from the signal coverage of the third beam managed by the second network device to the signal coverage of the sixth beam managed by the fourth network device.
  • the fourth network device is the same type of device as the first network device.
  • the fourth network device and the second network device are different types of devices.
  • the PCI of the physical cell adopted by the fourth network device and the PCI of the physical cell adopted by the second network device are different.
  • the system information of the fourth network device and the system information of the second network device are different.
  • FIG. 15A is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • the communication method includes:
  • the first terminal device sends an L3 measurement report to the first network device.
  • the first terminal device sends an L3 measurement report to the first network device through an RRC message, and the L3 measurement report includes the first terminal device measuring the signal sent by the gNB and/or the signal sent by the NodeX, and the obtained reference signal received power (reference signal received power, RSRP) or reference signal received quality (reference signal received quality, RSRQ).
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • the first network device switches the first terminal device from the first network device to the fourth network device according to the L3 measurement report.
  • the first network device determines, according to the L3 measurement report, which beam the first terminal device switches to which beam managed by the fourth network device.
  • the first network device only determines that the first terminal should switch to the fourth network device, and at the same time sends the L3 measurement report to the fourth network device, and the fourth network device determines that the first terminal device should switch to the fourth network device. Which beam is managed by the fourth network device.
  • the third beam is a beam managed by the second network device.
  • the second network device is a device that accesses the physical cell of the first network device, and the second network device is an access point type device.
  • UE1 is within the signal coverage of beam 4 of NodeX.
  • gNB1 receives the L3 measurement report sent by UE1. According to the L3 measurement report, gNB1 decides to hand over UE1 from beam 4 of the currently accessed NodeX to the beam managed by gNB2.
  • the first network device sends a handover request (handover request) message to the fourth network device.
  • the handover request message includes an L3 measurement report reported by the first terminal device.
  • gNB1 sends a handover request message to gNB2 through the Xn interface.
  • the fourth network device sends a handover request acknowledgement (handover request acknowledgement) message to the first network device.
  • the handover request confirmation message includes a handover command (handovercommand) message sent by the fourth network device to the first terminal device.
  • the handover request confirmation message includes a handover command message, the handover command message includes a random access channel dedicated (rach-configDedicated) parameter, and the rach-configDedicated parameter includes the C-RNTI, the sixth beam allocated by the fourth network device to the first terminal device and the random access preamble sequence number corresponding to the sixth beam.
  • the sixth beam is a beam managed by the fourth network device. That is, the fourth network device determines that the first terminal device should switch to the sixth beam according to the L3 measurement report included in the handover request message in step 1503.
  • gNB2 sends a handover request confirmation message to gNB1.
  • the handover request confirmation message includes a handover command message.
  • the handover command message includes the rach-configDedicated parameter.
  • the rach-configDedicated parameter includes the C-RNTI allocated by gNB2 for UE1, the SSB index corresponding to the sixth beam, the random access preamble index corresponding to the sixth beam, and other rach-configGeneric parameters.
  • the rach-configDedicated parameter includes the C-RNTI allocated by the gNB2 to the UE1, the CSI-RS resource index and the corresponding preamble index corresponding to the sixth beam, and other rach-configGeneric parameters.
  • the first network device sends a handover command message to the first terminal device.
  • the first terminal device switches from the first network device to the fourth network device.
  • the first network device forwards the handover command message sent by the fourth network device to the first terminal device. Then, the first terminal device determines the sixth beam according to the identifier of the sixth beam included in the handover command message. The terminal device switches from the third beam managed by the second network device to the sixth beam managed by the fourth network device.
  • the first network device sends, to the second network device, information for instructing the second network device to stop scheduling the first terminal device.
  • the information used to instruct the second network device to stop scheduling the first terminal device is indication information.
  • the first network device instructs the second network device to stop scheduling the first terminal device through the indication information.
  • the information used to instruct the second network device to stop scheduling the first terminal device includes StopTransmissionUEID, where StopTransmissionUEID includes the C-RNTI allocated by the first network device or the second network device to the first terminal device.
  • the second network device stops scheduling the first terminal device according to the information used to instruct the second network device to stop scheduling the first terminal device.
  • Step 1508 is similar to step 1405 in the foregoing embodiment shown in FIG. 14 .
  • Step 1508 please refer to the relevant introduction of step 1405 in the foregoing embodiment shown in FIG. 14 , which will not be repeated here.
  • the first terminal device is within the signal coverage range of the third beam managed by the second network device.
  • the first network device determines to switch the first terminal device from the third beam to the beam managed by the fourth network device according to the L3 measurement report of the first terminal device.
  • the first network device sends a handover request message to the fourth network device, and then receives a handover request confirmation message sent by the fourth network device.
  • the handover request confirmation message includes a handover command message.
  • the fourth network device then sends a handover command message to the first terminal device.
  • the first terminal device switches from the third beam to the sixth beam according to the information of the third beam carried in the switching command message, thereby implementing the switching of the first terminal device between the first network device and the fourth network device.
  • the fourth network device provides a scheduling service for the first terminal device. And, the first network device sends information for instructing the second network device to stop scheduling the first terminal device to the second network device, so as to instruct the second network device to stop scheduling the first terminal device. In this way, after the first terminal device switches to the sixth beam managed by the fourth network device, the second network device can stop scheduling the first terminal device in time.
  • Scenario 8 The first terminal device is within the signal coverage range of the sixth beam managed by the fourth network device. The first terminal device is handed over from the signal coverage of the sixth beam managed by the fourth network device to the signal coverage of the third beam managed by the second network device.
  • the fourth network device is the same type of device as the first network device.
  • the fourth network device and the second network device are different types of devices.
  • the PCI of the physical cell adopted by the fourth network device and the PCI of the physical cell adopted by the second network device are different.
  • the system information of the fourth network device and the system information of the second network device are different.
  • FIG. 16A is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • the communication method includes:
  • the first terminal device sends an L3 measurement report to a fourth network device.
  • the fourth network device determines, according to the L3 measurement report, to switch the first terminal device from the fourth network device to the first network device.
  • the fourth network device determines, according to the L3 measurement report of the first terminal device, which beam the first terminal device switches to which beam managed by the first network device or the second network device.
  • the fourth network device only determines that the first terminal should switch to the first network device. At the same time, the fourth network device sends the L3 measurement report of the first terminal device to the first network device. The first network device determines, according to the L3 measurement report, to which beam the first terminal device switches to which beam managed by the first network device or the second network device.
  • the fourth network device sends a handover request message to the first network device.
  • Steps 1601 to 1603 are similar to steps 1501 to 1503 of the embodiment shown in FIG. 15A .
  • steps 1501 to 1503 of the embodiment shown in FIG. 15A please refer to the related introductions of steps 1501 to 1503 of the embodiment shown in FIG. 15A , which will not be repeated here.
  • the first network device sends a handover request confirmation message to the fourth network device, where the handover request confirmation message includes a handover command message sent by the first network device to the first terminal device.
  • the handover command message includes a rach-configDedicated parameter, where the rach-configDedicated parameter includes the C-RNTI allocated by the first network device for the first terminal device, the identifier of the third beam, the RACH time-frequency resource corresponding to the third beam, and the corresponding The random access preamble sequence number.
  • the third beam is a beam managed by the second network device.
  • the first network device determines, according to the handover request message, that the third beam has higher signal quality and is more suitable for serving the first terminal device, so the first network device decides to switch the first terminal device from the sixth beam to the third beam.
  • the sixth beam is a beam managed by the fourth network device.
  • gNB1 determines that UE1 will be served by NodeX. That is, it is decided to switch the first terminal device from the beam of gNB2 to the beam 4. Then the rach-configDedicated parameter includes the C-RNTI allocated by gNB1 to UE1, the SSB index of beam 4, the random access preamble sequence number corresponding to beam 4, and other rach-configGeneric parameters. Alternatively, the rach-configDedicated parameter includes the C-RNTI allocated by gNB1 to UE1, the CSI-RS resource index of beam 4, the random access preamble sequence number corresponding to beam 4, and other rach-configGeneric parameters.
  • the fourth network device sends a handover command message to the first terminal device.
  • the first terminal device switches from the fourth network device to the first network device.
  • the first network device forwards the handover command message sent by the fourth network device to the first terminal device. Then, the first terminal device determines the third beam according to the identifier of the third beam included in the handover command message, and switches from the sixth beam of the fourth network device to the third beam managed by the second network device.
  • the first network device sends the C-RNTI of the first terminal device and the random access preamble corresponding to the third beam to the second network device.
  • the first network device allocates the C-RNTI to the first terminal device.
  • the first network device sends the C-RNTI of the first terminal device and the random access preamble (eg, preamble index) corresponding to the third beam to the second network device.
  • the random access preamble eg, preamble index
  • the first network device may also send the RACH time-frequency resource corresponding to the third beam and the identifier of the third beam to the second network device.
  • gNB1 sends to NodeX the C-RNTI allocated by gNB1 for UE1, the SSB index (or CSI-RS resource index) corresponding to the third beam, the random access preamble sequence number corresponding to the third beam, and Other rach-configGeneric parameters etc are sent to NodeX.
  • the second network device determines to provide a communication service for the first terminal device according to the C-RNTI allocated by the first network device to the first terminal device and the random access preamble corresponding to the third beam.
  • the second network device may determine that the first terminal device is a terminal device switched from the fourth network device to the second network device. Then, the second network device provides the communication service for the first terminal device. For example, the second network device provides services such as resource scheduling and data transmission for the first terminal device.
  • the first terminal device is within the signal coverage range of the sixth beam managed by the fourth network device.
  • the fourth network device determines to switch the first terminal device from the sixth beam to the beam managed by the first network device or the second network device according to the L3 measurement report of the first terminal device. Then, the fourth network device sends a handover request message to the first network device.
  • the first network device sends a handover request confirmation message to the fourth network device.
  • the handover request confirmation message includes a handover command message. Then, the fourth network device sends a handover command message to the first terminal device.
  • the handover command message includes the identification of the third beam.
  • the first terminal device can determine to switch from the sixth beam managed by the fourth network device to the third beam managed by the second network device according to the identifier of the third beam.
  • the first network device sends information such as the C-RNTI allocated by the first network device to the first terminal device and the preamble index corresponding to the third beam to the second network device.
  • the first terminal device is switched between the second network device and the fourth network device, so that after the first terminal device is switched to the second network device, the second network device provides communication services for the first terminal device.
  • Scenario 9 The first terminal device is within the signal coverage range of the third beam managed by the second network device. The first terminal device is handed over from the signal coverage of the third beam managed by the second network device to the signal coverage of the seventh beam managed by the fifth network device.
  • the fifth network device is a physical cell that first accesses the fourth network device as a terminal device.
  • the fifth network device is an access point type device.
  • the fourth network device configures resource information of the seventh beam of the physical cell for the fifth network device, and sends the resource information of the seventh beam to the fifth network device.
  • the resource information of the seventh beam is used by the fifth network device to manage the seventh beam of the physical cell. That is, the seventh beam managed by the fifth network device and the beam managed by the fourth network device belong to the same physical cell. That is, the PCI used by the fifth network device is the same as the PCI used by the fourth network device.
  • the system information broadcast by the fifth network device is the same as the system information broadcast by the fourth network device.
  • the first network device and the fourth network device are devices of the same type, and the first network device and the second network device are devices of different types.
  • the fifth network device and the second network device are of the same type, and the PCI adopted by the fifth network device is different from the PCI adopted by the second network device.
  • the system information of the fifth network device is different from the system information of the second network device.
  • FIG. 17A is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • the communication method includes:
  • the first terminal device sends an L3 measurement report to the first network device.
  • the first network device determines to switch the first terminal device from the first network device to the fourth network device according to the L3 measurement report.
  • the first network device sends a handover request message to the fourth network device.
  • the fourth network device sends a handover request confirmation message to the first network device, where the handover request confirmation message includes a handover command message sent by the fourth network device to the first terminal device.
  • the handover command message includes the C-RNTI allocated by the fourth network device to the first terminal device, the identifier of the seventh beam, the RACH time-frequency resource corresponding to the seventh beam, and the random access preamble (for example, the preamble corresponding to the seventh beam). index).
  • the seventh beam is a beam managed by the fifth network device, and the fifth network device is an access point device that accesses the fourth network device.
  • gNB1 decides to handover UE1 from gNB1 to gNB2 according to the L3 measurement report of UE1.
  • gNB1 sends a handover request message to gNB2.
  • the gNB2 may decide that the NodeX2 will serve the UE1 according to the L3 measurement report of the UE1, and determine to access the UE1 to the beam 6 managed by the NodeX2.
  • the handover request message carries the measurement report of the UE1, and the gNB2 may obtain the L3 measurement report of the UE1 in the handover request message.
  • gNB2 sends a handover request confirmation message to gNB1, where the handover request confirmation message includes a handover command message.
  • the handover command message includes the C-RNTI allocated by gNB2 for UE1, the SSB index of beam 6, the RACH time-frequency resource corresponding to the SSB index, and the random access preamble sequence number corresponding to the SSB index.
  • the first network device sends a handover command message to the first terminal device.
  • the first terminal device switches from the first network device to the fourth network device.
  • the first terminal device switches from the third beam to the seventh beam managed by the fifth network device.
  • Steps 1701 to 1706 are similar to steps 1501 to 1506 of the embodiment shown in FIG. 15A .
  • steps 1501 to 1506 of the embodiment shown in FIG. 15A please refer to the related introductions of steps 1501 to 1506 of the embodiment shown in FIG. 15A , which will not be repeated here.
  • the first network device sends, to the second network device, information for instructing the second network device to stop scheduling the first terminal device.
  • the first terminal device accesses the beam 4 of the second network device, and the first network device stores the context of the first terminal device.
  • the first network device determines, according to the context of the first terminal device, that the second network device originally provided services for the first terminal device. That is, the first terminal device originally accesses the third beam managed by the second network device. Then the first network device instructs the second network device to stop scheduling the first terminal device.
  • the information used to instruct the second network device to stop scheduling the first terminal device is indication information
  • the first network device instructs the second network device to stop scheduling the first terminal device through the indication information.
  • the information used to instruct the second network device to stop scheduling the first terminal device is StopTransmissionUEID, where StopTransmissionUEID includes the C-RNTI allocated by the second network device to the first terminal device.
  • the second network device stops scheduling the first terminal device according to the information used to instruct the second network device to stop scheduling the first terminal device.
  • the fourth network device sends the C-RNTI of the first terminal device and the identifier of the seventh beam to the fifth network device.
  • the fourth network device may send the C-RNTI and the identifier of the seventh beam allocated by the fourth network device to the first terminal device to the fifth network device.
  • the fifth network device provides services such as access service and resource scheduling for the first terminal device.
  • the fourth network device sends the RACH time-frequency resource corresponding to the seventh beam and the random access preamble corresponding to the seventh beam to the fifth network device; or, the fourth network device may be
  • the resource information of the beam managed by the fifth network device configured by the fifth network device includes the RACH time-frequency resource corresponding to the seventh beam and the random access preamble corresponding to the seventh beam, so that the fifth network device provides services for the terminal device .
  • the first terminal device is within the signal coverage range of the third beam managed by the second network device.
  • the first network device determines to switch the first terminal device from the third beam to the beam managed by the fourth network device according to the L3 measurement report of the first terminal device.
  • the first network device sends a handover request message to the fourth network device.
  • the fourth network device sends a handover request confirmation message to the first network device.
  • the handover request confirmation message includes a handover command message.
  • the first network device sends a handover command message to the first terminal device.
  • the first terminal device can determine the seventh beam according to the identifier of the seventh beam included in the handover command message.
  • the first terminal device switches from the third beam to the seventh beam.
  • the fourth network device sends the C-RNTI allocated by the fourth network device to the first terminal device, the identifier of the seventh beam, the RACH time-frequency resource corresponding to the seventh beam, and the random access preamble corresponding to the seventh beam to the fifth network device code serial number.
  • the fifth network device can provide the communication service for the first terminal device.
  • the fifth network device may provide services such as access service, resource scheduling, and data transmission for the first terminal device, so as to realize the handover of the first terminal device between the second network device and the fifth network device.
  • the fifth network device may provide a scheduling service for the first terminal device.
  • the first network device sends information for instructing the second network device to stop scheduling the first terminal device to the second network device, so that the second network device stops scheduling the first terminal device.
  • FIG. 18 is a schematic structural diagram of a first network device 1800 according to an embodiment of the present application.
  • the first network device 1800 can be used in FIG. 3, FIG. 4A, FIG. 5, FIG. 6A, FIG. 7A, FIG. 7C, FIG. 8, FIG. 9A, FIG. 10A, FIG. 11, FIG. 12, FIG. 13A, FIG. 14A, FIG. 15A
  • FIG. 16A and FIG. 17A For the steps performed by the first network device in the embodiments shown in FIG. 16A and FIG. 17A , reference may be made to the relevant descriptions in the foregoing method embodiments.
  • the first network device 1800 includes a processing unit 1801 and a transceiver unit 1802 .
  • the processing unit 1801 is configured to determine that the first network manages one or more first beams and the second network device manages one or more second beams; wherein one or more first beams and one or more second beams belong to the same physical cell; the second network device is a device accessing the physical cell; determine resource information corresponding to one or more second beams;
  • the transceiver unit 1802 is configured to send resource information to a second network device; the resource information is used by the second network device to provide a communication service for a terminal device requesting to access one or more second beams.
  • the resource information includes at least one of the following: an identifier corresponding to one or more second beams, a set of preamble sequence numbers corresponding to each second beam, and a random access corresponding to each second beam.
  • Channel time-frequency resource information includes at least one of the following: an identifier corresponding to one or more second beams, a set of preamble sequence numbers corresponding to each second beam, and a random access corresponding to each second beam.
  • the transceiver unit 1802 is further used for:
  • System information time-frequency resource information corresponding to system information, time-frequency resource information corresponding to demodulation reference signal, time-frequency resource information corresponding to CSI-RS, cell wireless network temporary identity set, control resource set time-frequency resource information, scheduling time frequency resource information.
  • the transceiver unit 1802 is further used for:
  • Receive capability information of the second network device sent by the second network device includes at least one of the following: information used to indicate that the second network device is an access point type device, and transmit power of the second network device.
  • the capability information further includes at least one of the following: the number of transmitting and receiving antennas of the second network device, the location information, the number of beams supported, the number of terminal devices supporting access, the time of the request size of the frequency resource.
  • processing unit 1801 is specifically used for:
  • One or more second beams are determined to be managed by the second network device according to the capability information.
  • the transceiver unit 1802 is further used for:
  • the beam measurement result includes the beam measurement result obtained by the second network device measuring the beam of the physical cell
  • the processing unit 1801 is specifically used for:
  • the second network device manages the one or more second beams.
  • the transceiver unit 1802 is also used for:
  • the processing unit 1801 is also used for:
  • a communication service is provided for the first terminal device according to the C-RNTI of the first terminal device and the identification of the fourth beam.
  • the one or more second beams include a third beam, and the first terminal device accesses the third beam; when the first terminal device moves from the signal coverage of the third beam to the signal coverage of the fourth beam In the case of signal coverage, the fourth beam is one of the one or more first beams managed by the first network device; the transceiver unit 1802 is further configured to:
  • the processing unit 1801 is also used for:
  • the first terminal device requests beam failure recovery in the fourth beam; the first network device sends message 2 to the first terminal device, and message 2 includes a random access response message;
  • the transceiver unit 1802 is also used for:
  • the one or more first beams include a fourth beam, and the first terminal device accesses the fourth beam; the transceiver unit 1802 is further configured to:
  • the processing unit 1801 is also used for:
  • the third beam is one of the one or more second beams managed by the second network device;
  • the transceiver unit 1802 is also used for:
  • the one or more first beams include a fourth beam, and the first terminal device accesses the fourth beam; when the first terminal device moves from the signal coverage of the fourth beam to the third beam
  • the third beam is one of the one or more second beams managed by the second network device.
  • the transceiver unit 1802 is also used for :
  • the processing unit 1801 is also used for:
  • the transceiver unit 1802 is further used for:
  • the processing unit 1801 is also used for:
  • the first network device sends a handover request message to the fourth network device;
  • the transceiver unit 1802 is also used for:
  • the handover request confirmation message includes a handover command message sent by the fourth network device to the first terminal device;
  • the handover command message includes a random access channel dedicated parameter; the random access channel dedicated parameter Including the C-RNTI allocated by the fourth network device for the first terminal device, the identifier of the sixth beam, and the random access preamble corresponding to the sixth beam, where the sixth beam is the beam managed by the fourth network device; to the second network device Sending information for instructing the second network device to stop scheduling the first terminal device.
  • the transceiver unit 1802 is further used for:
  • the handover request confirmation message includes a handover command message sent by the first network device to the first terminal device;
  • the handover command message includes a random access channel dedicated message parameters;
  • the random access channel dedicated parameters include the C-RNTI allocated by the first network device or the second network device to the first terminal device, the identifier of the third beam, and the random access preamble corresponding to the third beam;
  • the third The beam is one of one or more second beams managed by the second network device; the C-RNTI of the first terminal device and the random access preamble corresponding to the third beam are sent to the second network device.
  • the processing unit 1801 is configured to determine that the first network manages one or more first beams and the second network device manages one or more second beams; wherein one or more first beams and one or multiple second beams belong to the same physical cell; the second network device is a device that accesses the physical cell; determines resource information corresponding to one or more second beams; the transceiver unit 1802 is used for sending to the second network device Resource information; the resource information is used by the second network device to provide communication services for terminal devices requesting access to one or more second beams.
  • the resource information of one or more second beams is configured for the second network device by the first network device, so that the second network device manages one or more second beams of the physical cell, and is responsible for requesting access to the one or more second beams Terminal devices of the second beam provide access services and resource scheduling. Since the second network device manages one or more second beams of a physical cell, rather than a new physical cell, there is no need to allocate a new PCI, thereby avoiding the easy occurrence of a large number of deployment sites due to one PCI being adjacent to different physical cells. The problem of PCI conflict caused by cell sharing.
  • FIG. 19 is a schematic structural diagram of a second network device 1900 according to an embodiment of the present application.
  • the second network device 1900 can be used in FIG. 3, FIG. 4A, FIG. 5, FIG. 6A, FIG. 7A, FIG. 7C, FIG. 8, FIG. 9A, FIG. 10A, FIG. 11, FIG. 12, FIG. 13A, FIG. 14A, FIG. 15A
  • FIG. 16A and FIG. 17A For the steps performed by the second network device in the embodiments shown in FIG. 16A and FIG. 17A , reference may be made to the relevant descriptions in the foregoing method embodiments.
  • the second network device 1900 includes a transceiver unit 1901 and a processing unit 1902 .
  • the transceiver unit 1901 is configured to receive resource information corresponding to one or more second beams sent by the first network device; the one or more second beams belong to one or more first beams managed by the first network device the same physical cell; the second network device is a device accessing the physical cell;
  • the processing unit 1902 is configured to provide a communication service for a terminal device requesting to access the one or more second beams according to the resource information.
  • the resource information includes at least one of the following: an identifier corresponding to the one or more second beams, a contention-based preamble sequence number set corresponding to each second beam, each second beam Corresponding random access channel time-frequency resource information.
  • the transceiver unit 1901 is also used for:
  • processing unit 1902 is further configured to:
  • the transceiver unit 1901 is also used for:
  • the system information is sent in the time-frequency resource corresponding to the system information.
  • the transceiver unit 1901 is also used for:
  • the capability information includes at least one of the following: information used to indicate that the second network device is an access point type device, and transmit power of the second network device.
  • the capability information further includes at least one of the following: the number of transmitting and receiving antennas of the second network device, the location information, the number of beams supported, the number of terminal devices supporting access, the time of the request size of the frequency resource.
  • the transceiver unit 1901 is also used for:
  • the beam measurement result includes the beam measurement result obtained by the second network device measuring the beam of the physical cell.
  • the one or more second beams include a third beam, and the first terminal device accesses the third beam; the transceiver unit 1901 is further configured to:
  • the processing unit 1902 is also used to:
  • a fourth beam is determined according to the L1 measurement report; the fourth beam is one of the one or more first beams managed by the first network device;
  • the transceiver unit 1901 is also used for:
  • the identifier of the fourth beam is used by the first terminal device to switch from the third beam to the fourth beam;
  • the one or more second beams include a third beam, and the first terminal device accesses the third beam; when the first terminal device moves from the signal coverage of the third beam to the signal coverage of the fourth beam Signal coverage, when the first terminal device initiates a beam failure recovery request to the first network device, the fourth beam is one of one or more first beams managed by the first network device, and the transceiver unit 1901 is also used for:
  • the processing unit 1902 is also used to:
  • the transceiver unit 1901 is also used for:
  • the processing unit 1902 is also used to:
  • a communication service is provided for the first terminal device according to the C-RNTI of the first terminal device and the identification of the third beam.
  • one or more of the first beams include a fourth beam, and the first terminal device accesses the fourth beam; when the first terminal device moves from the signal coverage of the fourth beam to the signal coverage of the third beam
  • the third beam is one of one or more second beams managed by the second network device; the transceiver unit 1901 is also used for:
  • the processing unit 1902 is also used to:
  • the transceiver unit 1901 is also used for:
  • the transceiver unit 1901 is further configured to:
  • the processing unit 1902 is also used to:
  • the transceiver unit 1901 when the first terminal device is switched from the fourth network device to the first network device, the transceiver unit 1901 is further configured to:
  • the processing unit 1902 is also used to:
  • a communication service is provided for the first terminal device according to the C-RNTI of the first terminal device and the random access preamble corresponding to the third beam.
  • the transceiver unit 1901 is configured to receive resource information corresponding to one or more second beams sent by the first network device; the one or more second beams are associated with one or more of the second beams managed by the first network device.
  • the multiple first beams belong to the same physical cell; the second network device is a device accessing the physical cell; the processing unit 1902 is configured to provide a terminal device requesting access to the one or more second beams according to the resource information Communication service.
  • the resource information of one or more second beams is configured for the second network device by the first network device, so that the second network device manages one or more second beams of the physical cell, and is responsible for requesting access to the one or more second beams Terminal devices of the second beam provide access services and resource scheduling.
  • the second network device manages one or more second beams of a physical cell, rather than a new physical cell, there is no need to allocate a new PCI, thereby avoiding the easy occurrence of a large number of deployment sites due to one PCI being adjacent to different physical cells.
  • the present application also provides a first network device.
  • FIG. 20 is another schematic structural diagram of the first network device 2000 in the embodiment of the present application.
  • the first network device 2000 can be used to execute the operations shown in FIGS. 3 , 4A and 5 . , Fig. 6A, Fig. 7A, Fig. 7C, Fig. 8, Fig. 9A, Fig. 10A, Fig. 11, Fig. 12, Fig. 13A, Fig. 14A, Fig. 15A, Fig. 16A and Fig. 17A
  • FIGS. 3 , 4A and 5 .
  • Fig. 6A Fig. 7A, Fig. 7C, Fig. 8
  • Fig. 9A Fig. 10A
  • Fig. 11 Fig. 12
  • Fig. 13A Fig. 14A
  • Fig. 15A Fig. 16A
  • Fig. 17A For the steps, reference may be made to the relevant descriptions in the foregoing method embodiments.
  • the network device 2000 includes: a processor 2001 , a memory 2002 and a transceiver 2003 .
  • the processor 2001, the memory 2002 and the transceiver 2003 are respectively connected through a bus, and the memory stores computer instructions.
  • the processing unit 1801 in the foregoing embodiment may specifically be the processor 2001 in this embodiment, and thus the specific implementation of the processor 2001 will not be described again.
  • the transceiver unit 1802 in the foregoing embodiment may specifically be the transceiver 2003 in this embodiment, so the specific implementation of the transceiver 2003 will not be described again.
  • FIG. 21 is another schematic structural diagram of the second network device 2100 in the embodiment of the present application, and the second network device 2100 can be used to execute FIG. 3 , FIG. 4A , and FIG. 5 , Fig. 6A, Fig. 7A, Fig. 7C, Fig. 8, Fig. 9A, Fig. 10A, Fig. 11, Fig. 12, Fig. 13A, Fig. 14A, Fig. 15A, Fig. 16A and Fig. 17A
  • FIG. 21 is another schematic structural diagram of the second network device 2100 in the embodiment of the present application, and the second network device 2100 can be used to execute FIG. 3 , FIG. 4A , and FIG. 5 , Fig. 6A, Fig. 7A, Fig. 7C, Fig. 8, Fig. 9A, Fig. 10A, Fig. 11, Fig. 12, Fig. 13A, Fig. 14A, Fig. 15A, Fig. 16A and Fig. 17A
  • FIG. 21 is
  • the network device 2100 includes: a processor 2101 , a memory 2102 and a transceiver 2103 .
  • the processor 2101, the memory 2102 and the transceiver 2103 are respectively connected through a bus, and the memory stores computer instructions.
  • the processing unit 1902 in the foregoing embodiment may specifically be the processor 2101 in this embodiment, so the specific implementation of the processor 2101 will not be described again.
  • the transceiver unit 1901 in the foregoing embodiment may specifically be the transceiver 2103 in this embodiment, so the specific implementation of the transceiver 2103 will not be described again.
  • an embodiment of the present application further provides a communication system, where the communication system includes a first network device as shown in FIG. 18 and a second network device as shown in FIG. 19 .
  • the first network device shown in FIG. 18 is used to execute FIG. 3, FIG. 4A, FIG. 5, FIG. 6A, FIG. 7A, FIG. 7C, FIG. All or part of the steps performed by the first network device in the embodiments shown in FIGS. 14A, 15A, 16A and 17A.
  • the second network device shown in Fig. 19 is used for executing Fig. 3, Fig. 4A, Fig. 5, Fig. 6A, Fig. 7A, Fig. 7C, Fig. 8, Fig. 9A, Fig. 10A, Fig. 11, Fig. 12, Fig. 13A, Fig. 14A , all or part of the steps performed by the second network device in the embodiments shown in FIG. 15A , FIG. 16A and FIG. 17A .
  • Embodiments of the present application also provide a computer program product including instructions, which, when run on a computer, causes the computer to execute the operations shown in FIG. 3, FIG. 4A, FIG. 5, FIG. 6A, FIG. 7A, FIG. 7C, FIG. 8, Figures 9A, 10A, 11, 12, 13A, 14A, 15A, 16A and 17A show the communication method of the embodiment.
  • Embodiments of the present application further provide a computer-readable storage medium, including computer instructions, when the computer instructions are run on a computer, the computer can execute the above-mentioned FIG. 3 , FIG. 4A , FIG. 5 , FIG. 6A , FIG. 7A , and FIG. 7C, FIG. 8, FIG. 9A, FIG. 10A, FIG. 11, FIG. 12, FIG. 13A, FIG. 14A, FIG. 15A, FIG. 16A and FIG. 17A
  • An embodiment of the present application further provides a chip device, including a processor for connecting to a memory and calling a program stored in the memory, so that the processor executes the above-mentioned FIG. 3 , FIG. 4A , FIG. 5 , FIG. 6A , and FIG. 7A , Figure 7C, Figure 8, Figure 9A, Figure 10A, Figure 11, Figure 12, Figure 13A, Figure 14A, Figure 15A, Figure 16A and Figure 17A shown in the embodiment of the communication method.
  • the processor mentioned in any of the above may be a general-purpose central processing unit, a microprocessor, an application-specific integrated circuit (ASIC), or one or more of the above-mentioned Fig. 3, 4A, 5, 6A, 7A, 7C, 8, 9A, 10A, 11, 12, 13A, 14A, 15A, 16A, and 17A
  • ASIC application-specific integrated circuit
  • the memory mentioned in any one of the above can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), and the like.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computing device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, removable hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes.

Abstract

本申请实施例公开一种物理小区的波束管理方法以及相关装置,用于避免大量部署站点容易出现的由于一个物理小区标识PCI被邻近不同小区共用所导致的PCI冲突的问题。本申请实施例提供的通信方法包括:第一网络设备确定所述第一网络设备管理一个或多个第一波束以及第二网络设备管理一个或多个第二波束,其中,所述一个或多个第一波束与所述一个或多个第二波束属于同一物理小区,所述第二网络设备为接入所述物理小区的设备;所述第一网络设备确定所述一个或多个第二波束所对应的资源信息;所述第一网络设备向所述第二网络设备发送所述资源信息,所述资源信息用于所述第二网络设备为请求接入所述一个或多个第二波束的终端设备提供通信服务。

Description

物理小区的波束管理方法以及相关装置 技术领域
本申请涉及通信技术领域,尤其涉及一种物理小区的波束管理方法以及相关装置。
背景技术
蜂窝网的现网部署中,存在各种由于不同原因导致的覆盖漏洞问题。例如,高层建筑信号阻挡、室内或地下室信号衰减大,偏远地区无信号,水表井楼内阻挡等。随着家庭网络、工业IoT的进一步发展,更多设备遍布在城市和乡村各个角落的物,从楼宇、街道到楼道转角、地下室,深到地下管网等,对网络信号的覆盖有更广更深的要求。
目前主要通过在覆盖漏洞处增加基站、接入回传一体化(integrated access and backhaul,IAB)节点或relay节点等实现覆盖延伸,但是通过增加站点就意味着增加网络资源。如为各个新增的站点分配物理小区标识(physical cell identity,PCI),而PCI的个数有限。因此,大量的站点部署容易导致一个或多个站点的邻近小区采用相同的PCI,使得终端设备无法正确通过PCI识别邻近的小区,造成PCI冲突的问题。
发明内容
本申请实施例提供了一种物理小区的波束管理方法以及相关装置,用于避免大量部署站点容易出现的由于一个PCI被邻近不同小区共用所导致的PCI冲突的问题。
本申请实施例第一方面提供一种通信方法,通信方法包括:
第一网络设备确定第一网络管理一个或多个第一波束以及第二网络设备管理一个或多个第二波束;其中,一个或多个第一波束与一个或多个第二波束属于同一物理小区;第二网络设备为接入物理小区的设备;第一网络设备确定一个或多个第二波束所对应的资源信息。第一网络设备向第二网络设备发送资源信息;资源信息用于第二网络设备为请求接入一个或多个第二波束的终端设备提供通信服务。
本实施例中,第一网络设备为第二网络设备配置一个或多个第二波束的资源信息。然后第一网络设备向第二网络设备发送该资源信息。这样第二网络设备可以管理物理小区的一个或多个第二波束。第二网络设备负责为请求接入该一个或多个第二波束的终端设备提供接入服务和资源调度等通信服务。由于第二网络设备管理的一个或多个第二波束与第一网络设备管理的一个或多个第一波束属于同一物理小区。即第二网络管理的并不是一个新的物理小区。因此无需分配新的PCI,从而避免了大量部署站点容易出现的由于一个PCI被邻近不同小区共用所导致的PCI冲突的问题。并且,相比于增加IAB节点的技术方案,由于终端设备从第一网络设备和第二网络设备检测的PCI相同,终端设备只感知物理小区,并不区分识别第一网络设备和第二网络设备。终端设备接收到物理小区的多个波束的信号时,终端设备可以选择并接入信号强度较大的波束。避免了终端设备移动时在第一网络设备和第二网络设备之间的切换,节省了网络信令开销和提升服务质量。
一种可能的实现方式中,资源信息包括以下至少一项:一个或多个第二波束分别对应 的标识、每个第二波束对应的前导码序号集合、每个第二波束对应的随机接入信道时频资源信息。
在该可能的实现方式中,第二网络设备通过上述资源信息包括的内容为请求接入一个或多个第二波束的终端设备提供通信服务。例如,接入服务、资源调度服务、数据传输服务等。
另一种可能的实现方式中,该方法还包括:
第一网络设备向第二网络设备发送以下至少一项:
系统信息(system information,SI)、系统信息对应的时频资源信息、解调参考信号(demodulation reference signal,DMRS)对应的时频资源信息、信道状态信息参考信号(channel state information reference signal,CSI-RS)对应的时频资源信息、小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)集合、控制资源集(control-resource set,CORESET)时频资源信息、调度时频资源信息。
在该可能的实现方式中,第一网络设备向第二网络设备上述至少一项参数,以便于第二网络设备管理该物理小区的一个或多个第二波束。实现第二网络设备为请求接入一个或多个第二波束的终端设备提供通信服务。
另一种可能的实现方式中,该方法还包括:第一网络设备接收第二网络设备发送的第二网络设备的能力信息;能力信息包括以下至少一项:用于指示第二网络设备为接入点类型设备的信息、第二网络设备的发射功率。
在该可能的实现方式中,第一网络设备可以结合用于指示第二网络设备为接入点类型设备的信息和/或第二网络设备的发射功率确定第二网络设备可以作为一个接入点,能够为请求接入该网络设备的终端设备提供接入服务、资源调度等服务。以便于后续第一网络设备合理地配置由第二网络设备管理物理小区的部分波束。
另一种可能的实现方式中,该能力信息还包括以下至少一项:第二网络设备的收发天线个数、位置信息、支持的波束个数、支持接入的终端设备个数、请求的时频资源的大小。
在该可能的实现方式中,能力信息还包括上述示出的参数,以辅助后续第一网络设备合理地配置由第二网络设备管理物理小区的部分波束。
另一种可能的实现方式中,第一网络设备确定第一网络设备管理一个或多个第一波束以及第二网络设备管理一个或多个第二波束,包括:第一网络设备根据能力信息确定一个或多个第二波束由第二网络设备管理。
在该可能的实现方式中,为了更合理地配置由第二网络设备管理的一个或多个第二波束,第一网络设备可以获取第二网络设备的能力信息,再结合该能力信息确定该一个或多个第二波束。
另一种可能的实现方式中,该方法还包括:第一网络设备接收第二网络设备的位置信息和波束测量结果,波束测量结果包括第二网络设备测量物理小区的波束得到的波束测量结果;然后,第一网络设备确定第一网络设备管理一个或多个第一波束以及第二网络设备管理一个或多个第二波束,包括:第一网络设备根据所述能力信息和波束测量结果确定第二网络设备管理所述一个或多个第二波束。
在该可能的实现方式中,为了第一网络设备能够更合理地配置由第二网络设备管理的一个或多个第二波束,第一网络设备可以获取第二网络设备的波束测量结果和能力信息。然后,第一网络设备再结合波束测量结果确定第二网络设备管理一个或多个第二波束。
另一种可能的实现方式中,当第一终端设备从第三波束切换至第四波束时,第三波束为一个或多个第二波束中的一个波束,第四波束为该一个或多个第一波束中的一个波束;该方法还包括:
第一网络设备接收第二网络设备发送第一终端设备的小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)和第四波束的标识;然后,第一网络设备根据第一终端设备的C-RNTI和第四波束的标识为第一终端设备提供通信服务。
在该可能的实现方式中,在第一终端设备处于第二网络设备管理的第三波束的信号覆盖范围内,第二网络设备根据第一终端设备的L1测量报告确定由第四波束为第一终端设备提供服务。第一网络设备接收第二网络设备发送第一终端设备的C-RNTI和第四波束的标识。这样第一网络设备可以为第一终端设备提供通信服务,从而实现在第一终端设备的波束切换场景下,第一终端设备继续在第一网络设备的调度下进行数据传输。
另一种可能的实现方式中,一个或多个第二波束包括第三波束,第一终端设备接入第三波束;当第一终端设备从第三波束的信号覆盖范围移动至第四波束的信号覆盖范围时,第四波束为第一网络设备管理的一个或多个第一波束中的一个波束;该方法还包括:
第一网络设备接收第一终端设备发送的消息1,消息1包括随机接入前导码;第一网络设备根据消息1的随机接入前导码确定第一终端设备请求在第四波束进行波束失败恢复;第一网络设备向第一终端设备发送消息2,消息2包括随机接入响应消息;第一网络设备向第二网络设备发送用于指示第二网络设备停止调度第一终端设备的信息。
在该可能的实现方式中,第一终端设备从第二网络设备管理的第三波束的信号覆盖范围移动至第一网络设备管理的第四波束的信号覆盖范围,且第一终端设备向第一网络设备发起波束失败恢复(beam failure recovery,BFR)请求以实现由第一网络设备为第一终端设备提供服务,从而实现在第一终端设备发生波束失败场景下,第一终端设备继续在第一网络设备的调度下进行数据传输。并且,第一网络设备向第二网络设备发送用于指示第二网络设备停止调度第一终端设备的信息,这样第二网络设备可以停止对第一终端设备的调度,以便于第一网络设备为第一终端设备提供通信服务。
另一种可能的实现方式中,一个或多个第一波束包括第四波束,第一终端设备接入第四波束;该方法还包括:第一网络设备接收第一终端设备的层1(Layer 1,L1)测量报告;第一网络设备根据L1测量报告确定第三波束;第三波束为第二网络设备管理的一个或多个第二波束中的一个波束;然后,第一网络设备向第一终端设备发送第三波束的标识,第三波束的标识用于第一终端设备从第四波束切换至第三波束;第一网络设备向第二网络设备发送第一终端设备的C-RNTI和第三波束的标识。
在该可能的实现方式中,在第一终端设备处于第一网络设备管理的第二波束的信号覆盖范围内。第一网络设备根据第一终端设备的L1测量报告确定由第二网络设备管理的第三波束为第一终端设备提供服务。第一网络设备向第一终端设备发送第三波束的标识,以便 于第一终端设备从第四波束切换至第三波束。此外,第一网络设备向第二网络设备发送第一终端设备的C-RNTI和第三波束的标识,从而实现在第一终端设备的波束切换场景下,第一终端设备继续在第二网络设备的调度下进行数据传输。
另一种可能的实现方式中,一个或多个第一波束包括第四波束,第一终端设备接入第四波束;当第一终端设备从第四波束的信号覆盖范围移动至第三波束的信号覆盖范围,第一终端设备向第一网络设备发起波束失败恢复请求时,第三波束为第二网络设备管理的一个或多个第二波束中的一个波束,该方法还包括:
第一网络设备接收第二网络设备的用于指示第一网络设备停止调度第一终端设备的信息;第一网络设备根据用于指示第一网络设备停止调度第一终端设备的信息停止调度第一终端设备。
在该可能的实现方式中,第一终端设备从第一网络设备管理的第四波束的信号覆盖范围移动至第二网络设备管理的第三波束的信号覆盖范围。第一终端设备向第二网络设备发起波束失败恢复请求以实现由第二网络设备为第一终端设备提供服务。在第一终端设备发生波束失败场景下,第一终端设备继续在第二网络设备的调度下进行数据传输。第一网络设备接收第二网络设备的用于指示第一网络设备停止调度第一终端设备的信息。这样第一网络设备可以停止对第一终端设备的调度,以便于第二网络设备为第一终端设备提供通信服务。
另一种可能的实现方式中,该方法还包括:第一网络设备接收第一终端设备的层3(Layer 3,L3)测量报告;第一网络设备根据L3测量报告确定将第一终端设备从第一网络设备切换至第四网络设备;第一网络设备向第四网络设备发送切换请求消息;第一网络设备接收第四网络设备的切换请求确认消息,切换请求确认消息包括第四网络设备向第一终端设备发送的切换命令消息;该切换命令消息包括随机接入信道专用参数;该随机接入信道专用参数包括第四网络设备为第一终端设备分配的C-RNTI、第六波束的标识以及第六波束对应的随机接入前导码,第六波束为第四网络设备管理的波束;第一网络设备向第二网络设备发送用于指示第二网络设备停止调度第一终端设备的信息。
在该可能的实现方式中,第一终端设备处于第二网络设备管理的第三波束的信号覆盖范围内。第一网络设备根据第一终端设备的L3测量报告确定将第一终端设备从第三波束切换至第四网络设备管理的波束。然后,第一网络设备向第四网络设备发送切换请求消息,再接收第四网络设备发送的切换请求确认消息。该切换请求确认消息包括切换命令消息。第四网络设备再向第一终端设备发送切换命令消息。这样第一终端设备根据切换命令消息携带的第三波束的信息从第三波束切换至第六波束,从而实现第一终端设备在第一网络设备与第四网络设备之间的切换。并且,第一网络设备向第二网络设备发送用于指示第二网络设备停止调度第一终端设备的信息,以指示第二网络设备停止调度第一终端设备。这样在第一终端设备切换至第四网络设备管理的第六波束之后,第二网络设备可以及时停止对第一终端设备的调度。
另一种可能的实现方式中,该方法还包括:第一网络设备接收第四网络设备的切换请求消息;第一网络设备向第四网络设备发送切换请求确认消息,切换请求确认消息包括第 一网络设备向第一终端设备发送的切换命令消息;切换命令消息包括随机接入信道专用参数;该随机接入信道专用参数包括第一网络设备或第二网络设备为第一终端设备分配的C-RNTI、第三波束的标识、以及第三波束对应的随机接入前导码;第三波束为第二网络设备管理的一个或多个第二波束中的一个波束;第一网络设备向第二网络设备发送第一终端设备的C-RNTI和第三波束对应的随机接入前导码。
在该可能的实现方式中,第一终端设备处于第四网络设备管理的第六波束的信号覆盖范围内。第一网络设备接收第四网络设备发送的切换请求消息。第一网络设备向第四网络设备发送切换请求确认消息。该切换请求确认消息包括切换命令消息。这样第四网络设备可以向第一终端设备发送切换命令消息。切换命令消息包括第三波束的标识。这样第一终端设备可以根据第三波束的标识确定从第四网络设备管理的第六波束切换至第二网络设备管理的第三波束。第一网络设备向第二网络设备发送第一网络设备为第一终端设备分配的C-RNTI和第三波束对应的随机接入前导码等信息。这样实现第一终端设备在第二网络设备与第四网络设备之间的切换,使得第一终端设备切换至第二网络设备之后,第二网络设备为第一终端设备提供通信服务。
本申请实施例第二方面提供一种通信方法,通信方法包括:
第二网络设备接收第一网络设备发送的一个或多个第二波束所对应的资源信息;该一个或多个第二波束与第一网络设备管理的一个或多个第一波束属于同一物理小区;第二网络设备为接入该物理小区的设备;然后,第二网络设备根据该资源信息为请求接入该一个或多个第二波束的终端设备提供通信服务。
本实施例中,网络设备接收第一网络设备发送的一个或多个第二波束所对应的资源信息。然后,第二网络设备根据资源信息负责为请求接入该一个或多个第二波束的终端设备提供接入服务和资源调度等通信服务。由于第二网络设备管理的一个或多个第二波束与第一网络设备管理的一个或多个第一波束属于同一物理小区。即第二网络管理的并不是一个新的物理小区。因此无需分配新的PCI,从而避免了大量部署站点容易出现的由于一个PCI被邻近不同小区共用所导致的PCI冲突的问题。并且,相比于增加IAB节点的技术方案,由于终端设备从第一网络设备和第二网络设备检测的PCI相同,终端设备只感知物理小区,并不区分识别第一网络设备和第二网络设备。终端设备接收到物理小区的多个波束的信号时,终端设备可以选择并接入信号强度较大的波束。避免了终端设备移动时在第一网络设备和第二网络设备之间的切换,节省了网络信令开销和提升服务质量。
一种可能的实现方式中,该资源信息包括以下至少一项:该一个或多个第二波束分别对应的标识、每个第二波束对应的基于竞争的前导码序号集合、每个第二波束对应的随机接入信道时频资源信息。
在该可能的实现方式中,第二网络设备通过上述资源信息包括的内容为请求接入一个或多个第二波束的终端设备提供通信服务。例如,接入服务、资源调度服务、数据传输服务等。
另一种可能的实现方式中,该方法还包括:第二网络设备接收第一网络设备发送的以下至少一项:系统信息、系统信息对应的时频资源信息、解调参考信号对应的时频资源信 息、信道状态信息参考信号对应的时频资源信息、小区无线网络临时标识集合、控制资源集时频资源信息、调度时频资源信息。
在该可能的实现方式中,第二网络设备接收第一网络设备发送的上述至少一项参数,以便于第二网络设备管理该物理小区的一个或多个第二波束。实现第二网络设备为请求接入一个或多个第二波束的终端设备提供通信服务。
另一种可能的实现方式中,该方法还包括:第二网络设备根据系统信息对应的时频资源信息确定系统信息对应的时频资源;然后,第二网络设备在系统信息对应的时频资源发送该系统信息。
在该可能的实现方式中,第二网络设备确定系统信息的时频资源,并广播物理小区的系统信息。这样,在第二网络设备管理的一个或多个第二波束周期的终端设备可以接收该系统信息,并请求接入该一个或多个第二波束。
另一种可能的实现方式中,该方法还包括:第二网络设备向第一网络设备发送第二网络设备的能力信息;该能力信息包括以下至少一项:用于指示第二网络设备为接入点类型设备的信息、第二网络设备的发射功率。
在该可能的实现方式中,第一网络设备可以结合用于指示第二网络设备为接入点类型设备的信息和/或第二网络设备的发射功率确定第二网络设备可以作为一个接入点,能够为请求接入该网络设备的终端设备提供接入服务、资源调度等服务。以便于后续第一网络设备合理地配置由第二网络设备管理物理小区的部分波束。
另一种可能的实现方式中,该能力信息还包括以下至少一项:第二网络设备的收发天线个数、位置信息、支持的波束个数、支持接入的终端设备个数、请求的时频资源的大小。
在该可能的实现方式中,能力信息还包括上述示出的参数,以辅助后续第一网络设备合理地配置由第二网络设备管理物理小区的部分波束。
另一种可能的实现方式中,该方法还包括:第二网络设备向第一网络设备发送第二网络设备的波束测量结果,波束测量结果包括第二网络设备测量物理小区的波束得到的波束测量结果。
在该可能的实现方式中,为了第一网络设备能够更合理地配置由第二网络设备管理的一个或多个第二波束,第二网络设备可以向第一网络设备发送第二网络设备的波束测量结果。这样,第一网络设备可以结合波束测量结果确定第二网络设备管理一个或多个第二波束。
另一种可能的实现方式中,一个或多个第二波束包括第三波束,第一终端设备接入第三波束;该方法还包括:第二网络设备接收第一终端设备发送的L1测量报告;然后,第二网络设备根据L1测量报告确定第四波束;第四波束为第一网络设备管理的一个或多个第一波束中的其中一个波束;第二网络设备向第一终端设备发送第四波束的标识;第四波束的标识用于第一终端设备从第三波束切换至第四波束;第二网络设备向第一终端设备发送第一终端设备的C-RNTI和第四波束的标识。
在该可能的实现方式中,在第一终端设备处于第二网络设备管理的第三波束的信号覆盖范围内,第二网络设备根据第一终端设备的L1测量报告确定由第四波束为第一终端设备 提供服务。第二网络设备向第一终端设备发送第四波束的标识,以便于第一终端设备从第三波束切换至第四波束。第二网络设备向第一网络设备发送第二网络设备为第一终端设备分配的C-RNTI和第四波束的标识。这样第一网络设备可以为第一终端设备提供通信服务,从而实现在第一终端设备的波束切换场景下,第一终端设备继续在第一网络设备的调度下进行数据传输。
另一种可能的实现方式中,一个或多个第二波束包括第三波束,第一终端设备接入第三波束;当第一终端设备从第三波束的信号覆盖范围移动至第四波束的信号覆盖范围,第一终端设备向第一网络设备发起波束失败恢复请求时,第四波束为第一网络设备管理的一个或多个第一波束中的一个波束,该方法还包括:
第二网络设备接收第一网络设备的用于指示第二网络设备停止调度第一终端设备的信息;第二网络设备根据用于指示第二网络设备停止调度第一终端设备的信息停止调度第一终端设备。
在该可能的实现方式中,第一终端设备从第二网络设备管理的第三波束的信号覆盖范围移动至第一网络设备管理的第四波束的信号覆盖范围,且第一终端设备向第一网络设备发起波束失败恢复请求以实现由第一网络设备为第一终端设备提供服务。第二网络设备接收第一网络设备的用于指示第二网络设备停止调度第一终端设备的信息,这样第二网络设备可以停止对第一终端设备的调度,以便于第一网络设备为第一终端设备提供通信服务。
另一种可能的实现方式中,当第一终端设备从第四波束切换至第三波束时,第三波束为一个或多个第二波束中的一个波束,第四波束为第一网络设备管理的一个或多个第一波束中的一个波束;该方法还包括:
第二网络设备接收第一网络设备发送的第一终端设备的C-RNTI和第三波束的标识;第二网络设备根据第一终端设备的C-RNTI和第三波束的标识为第一终端设备提供通信服务。
在该可能的实现方式中,在第一终端设备处于第一网络设备管理的第二波束的信号覆盖范围内。第一网络设备根据第一终端设备的L1测量报告确定由第二网络设备管理的第三波束为第一终端设备提供服务。第二网络设备接收第一网络设备发送的第一终端设备的C-RNTI和第三波束的标识,从而实现在第一终端设备的波束切换场景下,第一终端设备继续在第二网络设备的调度下进行数据传输。
另一种可能的实现方式中,一个或多个第一波束包括第四波束,第一终端设备接入第四波束;当第一终端设备从第四波束的信号覆盖范围移动至第三波束的信号覆盖范围时,第三波束为第二网络设备管理的一个或多个第二波束中的一个波束;该方法还包括:
第二网络设备接收第一终端设备的消息1,消息1包括随机接入前导码;然后,第二网络设备根据消息1的随机接入前导码确定第一终端设备请求在第三波束进行波束失败恢复;第二网络设备向第一网络设备发送消息2,消息2包括随机接入响应消息;第二网络设备向第一网络设备发送用于指示第一网络设备停止调度第一终端设备的信息。
在该可能的实现方式中,第一终端设备从第一网络设备管理的第四波束的信号覆盖范围移动至第二网络设备管理的第三波束的信号覆盖范围。第一终端设备向第二网络设备发起波束失败恢复请求以实现由第二网络设备为第一终端设备提供服务。在第一终端设备发 生波束失败场景下,第一终端设备继续在第二网络设备的调度下进行数据传输。第二网络设备向第一网络设备发送用于指示第一网络设备停止调度第一终端设备的信息。这样第一网络设备可以停止对第一终端设备的调度,以便于第二网络设备为第一终端设备提供通信服务。
另一种可能的实现方式中,当第一终端设备从第一网络设备切换至第四网络设备时,该方法还包括:
第二网络设备接收第一网络设备发送的用于指示第二网络设备停止调度第一终端设备的信息;然后,第二网络设备根据用于指示第二网络设备停止调度第一终端设备的信息停止调度第一终端设备。
在该可能的实现方式中,第一终端设备处于第二网络设备管理的第三波束的信号覆盖范围内。第一网络设备根据第一终端设备的L3测量报告确定将第一终端设备从第三波束切换至第四网络设备管理的波束。第二网络设备接收第一网络设备发送的用于指示第二网络设备停止调度第一终端设备的信息。那么第二网络设备停止调度第一终端设备。这样在第一终端设备切换至第四网络设备管理的第六波束之后,第二网络设备可以及时停止对第一终端设备的调度。
另一种可能的实现方式中,当第一终端设备从第四网络设备切换至第一网络设备时,该方法还包括:
第二网络设备接收第一网络设备发送的第一终端设备的C-RNTI和第三波束对应的随机接入前导码;然后,第二网络设备根据第一终端设备的C-RNTI和第三波束对应的随机接入前导码为第一终端设备提供通信服务。
在该可能的实现方式中,第一终端设备处于第四网络设备管理的第六波束的信号覆盖范围内。第一网络设备接收第四网络设备发送的切换请求消息。第二网络设备接收第一网络设备发送的第一终端设备的C-RNTI和第三波束对应的随机接入前导码。这样实现第一终端设备在第二网络设备与第四网络设备之间的切换,使得第一终端设备切换至第二网络设备之后,第二网络设备为第一终端设备提供通信服务。
本申请实施例第三方面提供一种第一网络设备,该第一网络设备包括:
处理单元,用于确定第一网络管理一个或多个第一波束以及第二网络设备管理一个或多个第二波束;其中,一个或多个第一波束与一个或多个第二波束属于同一物理小区;第二网络设备为接入物理小区的设备;确定一个或多个第二波束所对应的资源信息;
收发单元,用于向第二网络设备发送资源信息;资源信息用于第二网络设备为请求接入一个或多个第二波束的终端设备提供通信服务。
一种可能的实现方式中,资源信息包括以下至少一项:一个或多个第二波束分别对应的标识、每个第二波束对应的前导码序号集合、每个第二波束对应的随机接入信道时频资源信息。
另一种可能的实现方式中,收发单元还用于:
向第二网络设备发送以下至少一项:
系统信息、系统信息对应的时频资源信息、解调参考信号对应的时频资源信息、CSI-RS 对应的时频资源信息、小区无线网络临时标识集合、控制资源集时频资源信息、调度时频资源信息。
另一种可能的实现方式中,收发单元还用于:
接收第二网络设备发送的第二网络设备的能力信息;能力信息包括以下至少一项:用于指示第二网络设备为接入点类型设备的信息、第二网络设备的发射功率。
另一种可能的实现方式中,该能力信息还包括以下至少一项:第二网络设备的收发天线个数、位置信息、支持的波束个数、支持接入的终端设备个数、请求的时频资源的大小。
另一种可能的实现方式中,处理单元具体用于:
根据能力信息确定一个或多个第二波束由第二网络设备管理。
另一种可能的实现方式中,收发单元还用于:
接收第二网络设备的位置信息和波束测量结果,波束测量结果包括第二网络设备测量物理小区的波束得到的波束测量结果;
处理单元具体用于:
根据所述能力信息和波束测量结果确定第二网络设备管理所述一个或多个第二波束。
另一种可能的实现方式中,当第一终端设备从第三波束切换至第四波束时,第三波束为一个或多个第二波束中的一个波束,第四波束为该一个或多个第一波束中的一个波束;该收发单元还用于:
接收第二网络设备发送第一终端设备的C-RNTI和第四波束的标识;
处理单元还用于:
根据第一终端设备的C-RNTI和第四波束的标识为第一终端设备提供通信服务。
另一种可能的实现方式中,一个或多个第二波束包括第三波束,第一终端设备接入第三波束;当第一终端设备从第三波束的信号覆盖范围移动至第四波束的信号覆盖范围时,第四波束为第一网络设备管理的一个或多个第一波束中的一个波束;该收发单元还用于:
接收第一终端设备发送的消息1,消息1包括随机接入前导码;
处理单元还用于:
根据消息1的随机接入前导码确定第一终端设备请求在第四波束进行波束失败恢复;第一网络设备向第一终端设备发送消息2,消息2包括随机接入响应消息;
收发单元还用于:
向第二网络设备发送用于指示第二网络设备停止调度第一终端设备的信息。
另一种可能的实现方式中,一个或多个第一波束包括第四波束,第一终端设备接入第四波束;该收发单元还用于:
接收第一终端设备的L1测量报告;
处理单元还用于:
根据L1测量报告确定第三波束;第三波束为第二网络设备管理的一个或多个第二波束中的一个波束;
该收发单元还用于:
向第一终端设备发送第三波束的标识,第三波束的标识用于第一终端设备从第四波束 切换至第三波束;
向第二网络设备发送第一终端设备的C-RNTI和第三波束的标识。
另一种可能的实现方式中,该一个或多个第一波束包括第四波束,第一终端设备接入第四波束;当第一终端设备从第四波束的信号覆盖范围移动至第三波束的信号覆盖范围,第一终端设备向第一网络设备发起波束失败恢复请求时,第三波束为第二网络设备管理的一个或多个第二波束中的一个波束,该收发单元还用于:
接收第二网络设备的用于指示第一网络设备停止调度第一终端设备的信息;
处理单元还用于:
根据用于指示第一网络设备停止调度第一终端设备的信息停止调度第一终端设备。
另一种可能的实现方式中,该收发单元还用于:
接收第一终端设备的L3测量报告;
该处理单元还用于:
根据L3测量报告确定将第一终端设备从第一网络设备切换至第四网络设备;第一网络设备向第四网络设备发送切换请求消息;
该收发单元还用于:
接收第四网络设备的切换请求确认消息,切换请求确认消息包括第四网络设备向第一终端设备发送的切换命令消息;该切换命令消息包括随机接入信道专用参数;该随机接入信道专用参数包括第四网络设备为第一终端设备分配的C-RNTI、第六波束的标识以及第六波束对应的随机接入前导码,第六波束为第四网络设备管理的波束;向第二网络设备发送用于指示第二网络设备停止调度第一终端设备的信息。
另一种可能的实现方式中,该收发单元还用于:
接收第四网络设备的切换请求消息;向第四网络设备发送切换请求确认消息,切换请求确认消息包括第一网络设备向第一终端设备发送的切换命令消息;切换命令消息包括随机接入信道专用参数;该随机接入信道专用参数包括第一网络设备或第二网络设备为第一终端设备分配的C-RNTI、第三波束的标识、以及第三波束对应的随机接入前导码;第三波束为第二网络设备管理的一个或多个第二波束中的一个波束;向第二网络设备发送第一终端设备的C-RNTI和第三波束对应的随机接入前导码。
本申请实施例第四方面提供一种第二网络设备,第二网络设备包括:
收发单元,用于接收第一网络设备发送的一个或多个第二波束所对应的资源信息;该一个或多个第二波束与第一网络设备管理的一个或多个第一波束属于同一物理小区;第二网络设备为接入该物理小区的设备;
处理单元,用于根据该资源信息为请求接入该一个或多个第二波束的终端设备提供通信服务。
一种可能的实现方式中,该资源信息包括以下至少一项:该一个或多个第二波束分别对应的标识、每个第二波束对应的基于竞争的前导码序号集合、每个第二波束对应的随机接入信道时频资源信息。
另一种可能的实现方式中,该收发单元还用于:
接收第一网络设备发送的以下至少一项:系统信息、系统信息对应的时频资源信息、解调参考信号对应的时频资源信息、信道状态信息参考信号对应的时频资源信息、小区无线网络临时标识集合、控制资源集时频资源信息、调度时频资源信息。
另一种可能的实现方式中,该处理单元还用于:
根据系统信息对应的时频资源信息确定系统信息对应的时频资源;
该收发单元还用于:
在系统信息对应的时频资源发送该系统信息。
另一种可能的实现方式中,该收发单元还用于:
向第一网络设备发送第二网络设备的能力信息;该能力信息包括以下至少一项:用于指示第二网络设备为接入点类型设备的信息、第二网络设备的发射功率。
另一种可能的实现方式中,该能力信息还包括以下至少一项:第二网络设备的收发天线个数、位置信息、支持的波束个数、支持接入的终端设备个数、请求的时频资源的大小。
另一种可能的实现方式中,该收发单元还用于:
向第一网络设备发送第二网络设备的波束测量结果,波束测量结果包括第二网络设备测量物理小区的波束得到的波束测量结果。
另一种可能的实现方式中,一个或多个第二波束包括第三波束,第一终端设备接入第三波束;该收发单元还用于:
接收第一终端设备发送的L1测量报告;
该处理单元还用于:
根据L1测量报告确定第四波束;第四波束为第一网络设备管理的一个或多个第一波束中的其中一个波束;
该收发单元还用于:
向第一终端设备发送第四波束的标识;第四波束的标识用于第一终端设备从第三波束切换至第四波束;
向第一终端设备发送第一终端设备的C-RNTI和第四波束的标识。
另一种可能的实现方式中,一个或多个第二波束包括第三波束,第一终端设备接入第三波束;当第一终端设备从第三波束的信号覆盖范围移动至第四波束的信号覆盖范围,第一终端设备向第一网络设备发起波束失败恢复请求时,第四波束为第一网络设备管理的一个或多个第一波束中的一个波束,该收发单元还用于:
接收第一网络设备的用于指示第二网络设备停止调度第一终端设备的信息;
该处理单元还用于:
根据用于指示第二网络设备停止调度第一终端设备的信息停止调度第一终端设备。
另一种可能的实现方式中,当第一终端设备从第四波束切换至第三波束时,第三波束为一个或多个第二波束中的一个波束,第四波束为第一网络设备管理的一个或多个第一波束中的一个波束;该收发单元还用于:
接收第一网络设备发送的第一终端设备的C-RNTI和第三波束的标识;
该处理单元还用于:
根据第一终端设备的C-RNTI和第三波束的标识为第一终端设备提供通信服务。
另一种可能的实现方式中,一个或多个第一波束包括第四波束,第一终端设备接入第四波束;当第一终端设备从第四波束的信号覆盖范围移动至第三波束的信号覆盖范围时,第三波束为第二网络设备管理的一个或多个第二波束中的一个波束;该收发单元还用于:
接收第一终端设备的消息1,消息1包括随机接入前导码;
该处理单元还用于:
根据消息1的随机接入前导码确定第一终端设备请求在第三波束进行波束失败恢复;
该发送单元还用于:
向第一网络设备发送消息2,消息2包括随机接入响应消息;
向第一网络设备发送用于指示第一网络设备停止调度第一终端设备的信息。
另一种可能的实现方式中,当第一终端设备从第一网络设备切换至第四网络设备时,该收发单元还用于:
接收第一网络设备发送的用于指示第二网络设备停止调度第一终端设备的信息;
该处理单元还用于:
根据用于指示第二网络设备停止调度第一终端设备的信息停止调度第一终端设备。
另一种可能的实现方式中,当第一终端设备从第四网络设备切换至第一网络设备时,该收发单元还用于:
接收第一网络设备发送的第一终端设备的C-RNTI和第三波束对应的随机接入前导码;
该处理单元还用于:
根据第一终端设备的C-RNTI和第三波束对应的随机接入前导码为第一终端设备提供通信服务。
本申请实施例第五方面提供一种网络设备,该网络设备包括:处理器、存储器和收发器;该处理器用于该收发器收发信号;该存储器中存储有计算机程序;该处理器还用于调用并运行该存储器中存储的计算机程序,使得处理器执行上述第一方面或第一方面中的任一种可能的实现方式。
本申请实施例第六方面提供一种网络设备,该网络设备包括:处理器、存储器和收发器;该处理器用于该收发器收发信号;该存储器中存储有计算机程序;该处理器还用于调用并运行该存储器中存储的计算机程序,使得处理器执行上述第二方面或第二方面中的任一种可能的实现方式。
本申请实施例第七方面提供一种包括指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得该计算机执行上述第一方面至第二方面中的任一方面,或第一方面和第二方面中的任一方面的任一种的实现方式。
本申请实施例第八方面提供一种计算机可读存储介质,包括计算机指令,当该计算机指令在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面,或第一方面和第二方面中的任一方面的任一种的实现方式。
本申请实施例第九方面提供一种芯片装置,包括处理器,用于与存储器相连,调用该存储器中存储的程序,以使得该处理器执行上述第一方面至第二方面中的任一方面,或第 一方面和第二方面中的任一方面的任一种的实现方式。
本申请实施例第十方面提供一种通信系统,该通信系统包括如第三方面的第一网络设备以及如第四方面的第二网络设备。
经由上述技术方案可知,第一网络设备确定第一网络设备管理的一个或多个第一波束以及第二网络设备管理的一个或多个第二波束。其中,一个或多个第一波束与一个或多个第二波束属于同一物理小区。第二网络设备为接入该物理小区的设备。然后,第一网络设备确定一个或多个第二波束所对应的资源信息,并向第二网络设备发送资源信息。资源信息用于第二网络设备为请求接入该一个或多个第二波束的终端设备提供接入服务和资源调度。经由本申请实施例的技术方案可知,通过第一网络设备为第二网络设备配置一个或多个第二波束的资源信息,以实现第二网络设备管理物理小区的一个或多个第二波束,负责为请求接入该一个或多个第二波束的终端设备提供接入服务和资源调度。由于第二网络设备管理的是物理小区的一个或多个第二波束,并不是一个新的物理小区,因此无需分配新的PCI,从而避免了大量部署站点容易出现的由于一个PCI被邻近不同物理小区共用所导致的PCI冲突的问题。
附图说明
图1A为本申请实施例通信系统的一个架构示意图;
图1B为本申请实施例通信系统的另一个架构示意图;
图2为本申请实施例gNB的一个结构示意图;
图3为本申请实施例通信方法的一个实施例示意图;
图4A为本申请实施例通信方法的另一个实施例示意图;
图4B为本申请实施例终端设备的控制面协议栈、第一网络设备的控制面协议栈和第二网络设备的控制面协议栈的示意图;
图4C为本申请实施例终端设备的用户面协议栈、第一网络设备的用户面协议栈和第二网络设备的用户面协议栈的示意图;
图5为本申请实施例通信方法的另一个实施例示意图;
图6A为本申请实施例通信方法的另一个实施例示意图;
图6B为本申请实施例通信方法的一个应用场景示意图;
图7A为本申请实施例通信方法的另一个实施例示意图;
图7B为本申请实施例通信方法的另一个应用场景示意图;
图7C为本申请实施例通信方法的另一个实施例示意图;
图8为本申请实施例通信方法的另一个实施例示意图;
图9A为本申请实施例通信方法的另一个实施例示意图;
图9B为本申请实施例通信方法的另一个应用场景示意图;
图10A为本申请实施例通信方法的另一个实施例示意图;
图10B为本申请实施例通信方法的另一个应用场景示意图;
图11为本申请实施例通信方法的另一个实施例示意图;
图12为本申请实施例通信方法的另一个实施例示意图;
图13A为本申请实施例通信方法的另一个实施例示意图;
图13B为本申请实施例通信方法的另一个应用场景示意图;
图14为本申请实施例通信方法的另一个实施例示意图;
图15A为本申请实施例通信方法的另一个实施例示意图;
图15B为本申请实施例通信方法的另一个应用场景示意图;
图16A为本申请实施例通信方法的另一个实施例示意图;
图16B为本申请实施例通信方法的另一个应用场景示意图;
图17A为本申请实施例通信方法的另一个实施例示意图;
图17B为本申请实施例通信方法的另一个应用场景示意图;
图18为本申请实施例第一网络设备的一个结构示意图;
图19为本申请实施例第二网络设备的一个结构示意图;
图20为本申请实施例第一网络设备的另一个结构示意图;
图21为本申请实施例第二网络设备的另一个结构示意图;
图22为本申请实施例通信系统的一个示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地描述。
本申请的说明书、权利要求书及附图中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
请参阅图1A,图1A为本申请实施例通信系统的一个架构示意图。在图1A中,5G系统中的下一代基站(next generation Node B,gNB)的物理小区1包括波束1的信号覆盖范围。 用户设备1(user equipment,UE1)和节点(Node)X在物理小区1的信号覆盖范围内。UE1可以接入该物理小区1,而NodeX可以以UE的身份接入该物理小区1。
NodeX为接入点类型设备,具有为UE提供接入服务和资源调度等功能。NodeX区别于现有IAB节点的主要特征在于,NodeX作为接入点类型设备时,其管理的物理小区的物理小区标识(physical cell identifier,PCI)以及广播的系统信息和NodeX作为UE接入的物理小区的PCI以及该物理小区广播的系统信息相同。即NodeX只是用于扩展其接入的物理小区的信号覆盖范围,并不引入新小区。NodeX的名称仅为示例,也可以被称为其他名称。
例如,如图1A所示,NodeX作为UE接入gNB的物理小区1。gNB确定在物理小区新增波束2,并由NodeX管理波束2。NodeX作为接入点类型设备,管理物理小区1的波束2。NodeX的物理小区1的PCI与gNB的物理小区1的PCI相同,NodeX广播的物理小区1的系统信息与gNB广播的物理小区1的系统信息相同。
NodeX放置在gNB的物理小区1的边缘作为物理小区1的信号覆盖延伸,以实现为gNB提供覆盖延伸服务。也就是物理小区1的信号覆盖范围从原本包括波束1的信号覆盖范围扩大为包括波束1的信号覆盖范围和波束2的信号覆盖范围。NodeX管理物理小区1的部分波束,并不属于新增的物理小区。
对于UE3来说,UE3接收来自gNB的波束1的信号强度不如UE3接收来自NodeX的波束2的信号强度大,所以UE3可以选择接入NodeX管理的波束2。由于UE3只检测到一个PCI,因此UE3无法区分gNB和NodeX。UE3可以检测的物理小区1内的不同波束的信号强度,并选择信号强度较大的波束接入。例如,当UE3接收到的NodeX管理的波束2的信号强度更大时,UE3选择该波束2对应的随机接入资源请求接入该波束2。
对于UE2来说,在未经NodeX提供覆盖延伸服务之前,物理小区1包括波束1的信号覆盖范围。即UE2本来属于物理小区1的信号覆盖范围之外的终端设备。但是,经过NodeX提供的覆盖延伸服务后,物理小区1包括波束1的信号覆盖范围和波束2的信号覆盖范围。UE2落入物理小区1的信号覆盖范围。UE2可以通过NodeX接入NodeX管理的波束2,最终将UE2的数据通过NodeX的中继发送到gNB实现蜂窝网通信。
本申请实施例中,第二网络设备(例如,上述图1A所示的NodeX)以终端设备的身份接入第一网络设备(例如,上述图1所示的gNB)的物理小区。第一网络设备确定第一网络设备管理的一个或多个第一波束以及第二网络设备管理的一个或多个第二波束。然后,第一网络设备确定一个或多个第二波束所对应的资源信息。第一网络设备向第二网络设备发送该一个或多个第二波束所对应的资源信息。该资源信息用于第二网络设备为请求接入该一个或多个第二波束的终端设备提供接入服务和资源调度。
图1B为本申请实施例通信系统的另一个架构示意图。在图1B中,物理小区包括波束1、波束2、波束3和波束4。第一网络设备管理波束1、波束2和波束3。第二网络设备首先以终端设备的身份接入第一网络设备的物理小区。然后,第一网络设备为第二网络设备配置由第二网络设备管理波束4,这样第二网络设备可以为请求接入波束4的终端设备提供接入服务和资源调度。并且,第二网络设备放置在物理小区的边缘作为物理小区的信号覆盖延伸,实现为第一网络设备提供覆盖延伸服务。
本申请中,终端设备也可以称为用户设备(user equipment,UE)。终端设备是一种具有无线收发功能的设备,可以经无线接入网(radio access network,RAN)中的无线接入网设备(或者也可以称为接入设备)与一个或多个核心网(core network,CN)设备(或者也可以称为核心设备)进行通信。
终端设备也可称为接入终端、终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、用户代理或用户装置等。终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
或者,终端设备还可以包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
或者,终端设备还可以是蜂窝电话(cellular phone)、无绳电话、会话启动协议(session initiation protocol,SIP)电话、智能电话(smart phone)、手机(mobile phone)、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)等。或者,终端设备还可以是具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它设备、车载设备、可穿戴设备、无人机设备或物联网、车联网中的终端、5G网络以及未来网络中的任意形态的终端、中继用户设备或者未来演进的PLMN中的终端等。其中,中继用户设备例如可以是5G家庭网关(residential gateway,RG)。例如终端设备可以是虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请实施例对终端设备的类型或种类等并不限定。
第一网络设备和第二网络设备均可以为接入网设备,是一种为终端设备提供无线通信功能的设备,也可以称为接入设备、(R)AN设备或网络设备等。如该接入设备包括但不限于:gNB、用于连接5G核心网的演进的长期演进(long term evolution,LTE)基站的(next generation evolved Node B,ng-eNB)、LTE系统中的演进型基站(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved nodeB,或home node B,HNB)、基带单元(base band unit,BBU)、传输接收点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、小基站设备(pico)、移动交换中心,或者未来网络中的网络设备等。可理解,本申请对无线接入网设备的具体类型不作限定。采用不同无线接入技术的系统中,具备无线接入网设备功能的设备的名称可能会有所不同。
需要说明的是,上述图1B示出的第一网络设备管理物理小区的三个波束和第二网络设 备管理物理小区的一个波束的示例。在实际应用中,物理小区包括至少两个波束。第一网络设备管理物理小区的至少一个波束。第二网络设备管理物理小区的至少一个波束。第一网络设备与第二网络设备管理的物理小区的波束不相同。
下面介绍第一网络设备作为接入网设备的一种可能的分割结构,这里以接入网设备为gNB为例进行介绍。对于其他类型的接入网设备同样适用。请参阅图2,图2为本申请实施例gNB的一个结构示意图。
在5G通信系统中,gNB之间通过Xn接口连接,gNB与第五代移动通信技术核心网(the 5th generation mobile communication technology core,5GC)通过NG接口连接。如图2所示,gNB1与gNB2之间通过Xn接口连接。gNB1通过NG接口1与5GC连接,gNB2通过NG接口2与5GC连接。
gNB可以由集中单元(central unit,CU)和分布式单元(distributed unit,DU)构成。即对原接入网设备的基站的功能进行分割,将基站的部分功能部署在一个gNB-CU,将剩余功能部署在gNB-DU。多个gNB-DU共享一个gNB-CU,这样既可以节省成本,也易于网络扩展。
gNB-CU和gNB-DU的切分可以按照协议栈切分。例如,将无线资源控制(radio resource control,RRC)、服务数据适应协议(service data adaptation protocol,SDAP)以及分组数据汇聚协议(packet data convergence protocol,PDCP)层协议栈部署在gNB-CU。无线链路控制(radio link control,RLC)层、介质访问控制(media access control,MAC)层以及物理(physical,PHY)层协议栈部署在gNB-DU。gNB-CU和gNB-DU之间通过F1接口连接。上述示例仅仅为了介绍gNB-CU和gNB-DU,本申请实施例中对gNB-CU和gNB-DU所部署的协议栈不做限定。
当gNB-CU进一步根据控制面和用户面进行划分时,可以分为gNB-CU-CP(或CU-CP)和至少一个gNB-CU-UP(或CU-UP)。其中,CU-CP主要负责RRC以及信令无线承载(signalling radio bearers,SRB)对应的PDCP实体。CU-UP主要负责SDAP以及数据无线承载(data radio bearer,DRB)对应的PDCP实体。上述示例仅仅是对gNB-CU的一种介绍,具体对gNB-CU的划分不做限定。并且,针对gNB-CU划分为gNB-CU-CP和至少一个gNB-CU-UP的情况,本申请实施例中对gNB-CU-CP和至少一个gNB-CU-UP主要负责的协议不做限定。
例如,如图2所示,gNB1包括gNB-CU1、gNB-DU1和gNB-DU2。gNB-CU1通过F1接口1与gNB-DU1,通过F1接口2与gNB-DU2连接。gNB2的结构与gNB1的结构类似,这里不再一一说明。
下面结合具体实施例介绍本申请实施例的技术方案。
请参阅图3,图3为本申请实施例通信方法的一个实施例示意图。在图3中,该通信方法包括:
301、第一网络设备确定第一网络设备管理一个或多个第一波束和第二网络设备管理一个或多个第二波束。
其中,该一个或多个第一波束和该一个或多个第二波束属于同一物理小区。第二网络设备为接入该物理小区的设备。
第二网络设备作为终端设备接入该物理小区。第二网络设备为接入点类型设备。
其中,接入点类型设备指一个网络设备可以作为一个接入点,该网络设备能够为请求接入该网络设备的终端设备提供接入服务、资源调度等服务。并且,该网络设备能够提供信号覆盖延伸服务等功能。接入点类型设备管理的物理小区的PCI与其接入的网络设备的物理小区的PCI相同。并且,接入点类型设备广播的该物理小区的系统信息与其接入的网络设备广播的该物理小区的系统信息相同。即接入点类型设备用于扩展物理小区的信号覆盖范围,并不增加新的物理小区。
例如,如图1B所示,第一网络设备为gNB,第二网络设备为NodeX。首先,NodeX作为终端设备接入物理小区,NodeX与gNB建立RRC连接。NodeX为接入点类型设备。物理小区包括波束1至波束4分别对应的信号覆盖范围。gNB确定gNB管理物理小区的波束1至波束3,以及确定NodeX管理物理小区的波束4。
下面介绍该一个或多个第二波束。
1、该一个或多个第二波束可以是物理小区原本包括的波束,即第一网络设备生成的波束。
2、该一个或多个第二波束可以是:第一网络设备确定第二网络设备作为接入点之后,第二网络设备在该物理小区新生成的波束。这些新生成的波束由第二网络设备管理。
3、该一个或多个第二波束中的部分波束是:第一网络设备原本在物理小区管理的部分波束。该一个或多个第二波束中的另一部分波束是:第一网络设备在该物理小区新生成的波束。
该一个或多个由第二网络设备管理的第二波束实现该物理小区的信号覆盖延伸,具体本申请不做限定。
例如,如图1B所示,若物理小区原本只包括波束1至波束3。但是由于第一网络设备发现第二网络设备可以作为接入点,第一网络设备可以将原本物理小区支持三个波束修改为物理小区支持四个波束。并且,波束1至波束3由第一网络设备管理,波束4由第二网络设备管理。在其他示例中,也可以由第一网络设备管理波束1和波束2,由第二网络设备管理波束3和波束4。
为了第一网络设备更合理地配置由第二网络设备管理的一个或多个第二波束,第一网络设备可以获取第二网络设备的能力信息,再结合该能力信息确定该一个或多个第二波束。可选的,本实施例还包括步骤301a,且步骤301a在步骤301之前执行。
步骤301a:第二网络设备向第一网络设备发送第二网络设备的能力信息。
其中,第二网络设备的能力信息包括以下至少一项:
1、用于指示第二网络设备为接入点类型设备的信息;
2、第二网络设备的发射功率。
可选的,能力信息还包括至少一项:
1、第二网络设备的收发天线个数;
2、第二网络设备的位置信息;
3、第二网络设备的支持的波束个数;
4、第二网络设备支持接入的终端设备的个数;
5、第二网络设备请求时频资源的大小。
能力信息包括的参数的具体用途请参阅后文对步骤301的相关介绍,这里不再赘述。
上述步骤301a是第一网络设备获取第二网络设备的能力信息的一种可能的实现方式。在实际应用中,第二网络设备的能力信息也可以预先配置在第一网络设备,或者是,通过其他设备发送给第一网络设备,具体本申请不做限定。
本实施例中,上述步骤301a中第二网络设备发送第二网络设备的能力信息的具体发送方式有多种,下面示出两种可能的实现方式。
1、上述步骤301a中,第二网络设备通过新定义的RRC消息向第一网络设备发送第二网络设备的能力信息。例如,该新定义的RRC消息的名称为节点X能力信息(NodeXCapabilityInformation)。
2、上述步骤301a中,第二网络设备通过已有RRC消息中的新增信元向第一网络设备发送第二网络设备的能力信息。例如,在用户设备能力信息(UECapabilityInformation)中新增信元。该新增信元的名称可以为节点X能力信息(NodeXCapabilityInformation)。
而第一网络设备确定第二网络设备为接入点类型设备的方式有多种,下面举例示出几种可能的实现方式。
1、第二网络设备的能力信息包括用于指示第二网络设备为接入点类型设备的信息。第一网络设备根据该用于指示第二网络设备为接入点类型的信息确定该第二网络设备是一个接入点类型设备,或者,确定该第二网络设备可以作为一个接入点。
2、第一网络设备根据新定义的RRC消息或RRC消息中的新增信元确定该第二网络设备是一个接入点类型设备,或者,确定该第二网络设备可以作为一个接入点。
3、第一网络设备根据第二网络设备的UE能力信息携带的发送功率确定第二网络设备是否为接入点类型设备。例如,当发送功率为23dBm(分贝毫瓦)时,第二网络设备为普通UE;当发送功率为30dBm或其他值时,第一网络设备可以确定该第二网络设备为接入点类型设备。
那么,基于上述步骤301a,上述步骤301具体包括:第一网络设备根据第二网络设备的能力信息确定第一网络设备管理一个或多个第一波束和第二网络设备管理一个或多个第二波束。
下面结合上述第二网络设备的能力信息介绍第一网络设备确定第二网络设备管理一个或多个第二波束的过程。
第一网络设备根据用于指示第二网络设备为接入点类型设备的信息或者发射功率信息可以确定第二网络设备可以作为一个接入点。第二网络设备能够为终端设备提供接入服务和资源调度等功能。这样第一网络设备可以配置该一个或多个第二波束由该第二网络设备管理,并进一步使用该第二网络设备提供信号覆盖延伸服务。
第一网络设备根据第二网络设备的收发天线个数、第二网络设备支持的波束个数和第二网络设备的位置信息确定由第二网络设备管理哪个或哪几个第二波束。
例如,如图1B所示,第一网络设备确定第二网络设备处于物理小区的波束2和波束3之 间。第二网络设备支持管理的波束个数为1,收发天线个数为2。那么,第一网络设备可以新增波束4并由第二网络设备管理。第一网络设备根据第二网络设备请求时频资源的大小确定用于第二网络设备管理波束4的调度时频资源的大小。并且,第一网络设备根据第二网络设备支持接入的终端设备的个数确定为第二网络设备分配的C-RNTI的个数等。
由于一个C-RNTI对应一个终端设备,因此第一网络设备根据终端设备的个数配置相应的C-RNTI给第二网络设备,以便于第二网络设备为请求接入该第二网络设备管理的一个或多个第二波束的终端设备分配相应的C-RNTI。
为了第一网络设备能够更合理地配置由第二网络设备管理的一个或多个第二波束,第一网络设备可以获取第二网络设备的波束测量结果。然后,第一网络设备再结合波束测量结果确定第二网络设备管理一个或多个第二波束。可选的,本实施例还包括步骤301b。步骤301b在步骤301之前执行。
步骤301b:第二网络设备向第一网络设备发送波束测量结果。
其中,波束测量结果包括第二网络设备测量物理小区的波束得到的波束测量结果。
具体的,第二网络设备测量物理小区的波束,并向第一网络设备上报测量报告。该测量报告包括波束测量结果。该波束测量结果包括基于同步信号和物理广播信道块(synchronization signal and physical broadcast channel block,SS/PBCH block)或同步信号块(synchronization signalblock,SSB)的波束测量结果。或者,该波束测量结果包括基于信道状态信息参考信号(channel state information reference signal,CSI-RS)的波束测量结果。
例如,终端设备上报SSB标识(例如,SSB索引(SSB index))对应的测量结果列表(ResultsPerSSB-IndexList)。ResultsPerSSB-IndexList包括一组SSB标识以及对应的测量结果(MeasQuantityResults)。或者,终端设备上报CSI-RS标识(例如,CSI-RS索引(CSI-RS-index))对应的测量结果列表(ResultsPerCSI-RS-IndexList)。ResultsPerSSB-IndexList包括CSI-RS标识以及对应的测量结果(MeasQuantityResults)。
其中,测量结果(MeasQuantityResults)可以包括:参考信号接收功率(Reference Signal Received Power,RSRP),参考信号接收质量(Reference Signal Received Quality,RSRQ)以及信号干扰噪声比(signal to interference plus noise ratio,SINR)等。
那么,基于步骤301a和步骤301b,上述步骤301具体包括:
第一网络设备根据第二网络设备的能力信息和波束测量结果确定第一网络设备管理一个或多个第一波束和第二网络设备管理一个或多个第二波束。
第一网络设备可以结合第二网络设备的能力信息确定第二网络设备管理一个或多个第二波束。具体的确定过程请参阅前述相关介绍,这里不再赘述。除了参考第二网络设备的能力信息之外,第二网络设备还可以进一步结合波束测量结果确定第二网络设备管理一个或多个第二波束。
例如,如图1B所示,第一网络设备根据波束测量结果确定第二网络设备测量得到的物理小区的波束2和波束3的RSRP(或RSRQ,或SINR)较高。那么,第一网络设备在波束2与波 束3之间新增一个波束4,并由第二网络设备管理波束4。这样既可以为处于波束2和波束3的边缘的终端设备提供更良好的通信环境,又可以起到信号覆盖延伸的作用。
302、第一网络设备向第二网络设备发送该一个或多个第二波束对应的资源信息。
其中,资源信息包括以下至少一项:
1、一个或多个第二波束分别对应的标识;
具体的,该一个或多个第二波束分别对应的标识可以为同步信号和物理广播信道块索引(synchronization signal and physical broadcast channel block index,SS/PBCH block index),或者为同步信号块索引(synchronization signal block index,SSB index)。后文统称为SSB index。
2、每个第二波束对应的前导码序号集合;
具体的,每个第二波束对应一个SSB index。每个SSB index对应的基于竞争的前导码序号(preamble index)集合。
3、每个第二波束对应的随机接入信道时频资源信息。
每个第二波束对应一个SSB index。每个SSB index对应的随机接入信道(random access channel,RACH)时频资源信息。例如,RACH时频资源信息包括物理随机接入信道配置标识(prach-ConfigIndex)、消息1频分复用(msg1-FDM)、消息1频域起始(msg1-FrequencyStart)等。
需要说明的是,资源信息也可以不包括每个第二波束对应的随机接入信道时频资源信息。第一网络设备广播的系统信息中的参数ssb-perRACH-OccasionAndCB-PreamblesPerSSB包括每个第二波束对应的随机接入场合(RACH occasion,RO)。第二网络设备可以根据第二网络设备管理的一个或多个第二波束对应的SSB index和ssb-perRACH-OccasionAndCB-PreamblesPerSSB确定第二网络设备管理的每个第二波束对应的preamble index以及对应的RO。
需要说明的是,在步骤302的过程中,第一网络设备还向第二网络设备发送以下至少一项:
系统信息、系统信息对应的时频资源信息、解调参考信号对应的时频资源信息、CSI-RS对应的时频资源信息、小区无线网络临时标识集合、控制资源集时频资源信息、调度时频资源信息。
其中,该系统信息为与第一网络设备采用的物理小区的系统信息相同。
可选的,上述的时频资源信息包括时域起始位置、时域周期、频域起始位置、时域结束位置、频域结束位置、无线承载(radio bearer,RB)起始编号、RB结束标号中的至少一项。
需要说明的是,第一网络设备通过一条或多条RRC消息向第二网络设备发送上述示出的参数;或者,第二网络设备可以通过读取第一网络设备在物理小区的广播消息获取上述部分参数。例如,系统信息可以是第二网络设备通过读取第一网络设备在物理小区的广播消息获取的。
针对物理小区包括的波束发生变更的情况,第一网络设备为第二网络设备配置完成后, 第一网络设备广播更新后的系统信息块1(system information block,SIB1)。
例如,如图1B所示,物理小区从原本只包括波束1至波束3变更为物理小区包括波束1至波束4。即物理小区新增波束4。SIB1中的更新后的ssb-perRACH-OccasionAndCB-PreamblesPerSSB从原来包含三个SSB index和RACH资源的对应关系,修改为四个SSB index和RACH资源的对应关系。并且,ssb-perRACH-OccasionAndCB-PreamblesPerSSB指示每个SSB index关联的RACH occasion,每个SSB index对应的基于竞争的随机接入前导码个数。
303、第二网络设备根据资源信息为请求接入该一个或多个第二波束的终端设备提供通信服务。
步骤303的相关介绍可以参阅后文图4A和图5所示的实施例介绍第二网络设备为终端设备提供接入服务和资源调度的过程,这里不详细说明。
本申请实施例中,第一网络设备确定第一网络设备管理一个或多个第一波束和第二网络设备管理一个或多个第二波束。该一个或多个第一波束与该一个或多个第二波束属于同一物理小区。第二网络设备为接入物理小区的设备。然后,第一网络设备确定一个或多个第二波束所对应的资源信息,并向第二网络设备发送资源信息。资源信息用于第二网络设备为请求接入该一个或多个第二波束的终端设备提供接入服务和资源调度。经由本申请实施例的技术方案可知,第一网络设备为第二网络设备配置一个或多个第二波束的资源信息。从而实现第二网络设备管理物理小区的一个或多个第二波束。第二网络设备负责为请求接入该一个或多个第二波束的终端设备提供接入服务和资源调度。由于第二网络设备管理的一个或多个第二波束与第一网络设备管理的一个或多个第一波束属于同一物理小区。即第二网络管理的并不是一个新的物理小区。因此无需分配新的PCI,从而避免了大量部署站点容易出现的由于一个PCI被邻近不同小区共用所导致的PCI冲突的问题。并且,相比于增加IAB节点的技术方案,由于终端设备从第一网络设备和第二网络设备检测的PCI相同,终端设备只感知物理小区,并不区分识别第一网络设备和第二网络设备。终端设备接收到物理小区的多个波束的信号时,终端设备可以选择并接入信号强度较大的波束。避免了终端设备移动时在第一网络设备和第二网络设备之间的切换,节省了网络信令开销和提升服务质量。
下面结合图4A所示的实施例示出在四步随机接入过程中,第二网络设备为终端设备提供接入服务的过程。请参阅图4A,图4A为本申请实施例通信方法的另一个实施例示意图。在图4A中,该通信方法包括:
401、第二网络设备向终端设备发送SSB和系统信息。
SSB为一个或多个第二波束分别对应的SSB。
在上述图3所示的实施例的步骤302中,第二网络设备从第一网络设备获取系统信息、系统信息对应的时频资源和SSB对应的时频资源。第二网络设备在系统信息对应的时频资源上广播系统信息,以及在SSB对应的时频资源广播SSB。
例如,第二网络设备在SSB index对应的时频资源上发送主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS) 以及主信息块(master information block,MIB)。第二网络设备在系统信息对应的时频资源上广播系统信息。例如,SIBx,x可以为大于1或小于或等于N的整数,N为当前协议定义的SIB的最大编号。
步骤401中,第二网络设备可以先发送SSB,并在一段时间间隔(例如,十毫秒)之后再发送系统信息。
上述图3所示的实施例的步骤302中,第二网络设备从资源信息获取该一个或多个第二波束分别对应的SSB index,以及每个SSB index对应的RACH时频资源。第二网络设备在该每个SSB index对应的RACH时频资源上监听信道,以便于接收请求接入第二网络设备管理的一个或多个第二波束的终端设备发送的信息,例如,终端设备的随机接入过程的消息1(message1,Msg1)。
402、终端设备向第二网络设备发送消息1。
其中,消息1包括随机接入前导码(preamble)。
终端设备通过上述步骤302中第一网络设备或第二网络设备广播的更新后的SIB1确定物理小区所包括的波束、每个波束的SSB index、每个SSB index对应的RACH时频资源以及每个SSB index对应的随机接入前导码集合等。终端设备接收第二网络设备发送的一个或多个第二波束的SSB。终端设备确定该一个或多个第二波束中包括的第三波束的SSB的RSRP(或RSRQ,或SINR)较高。那么终端设备确定第三波束的SSB index,并从该SSB index对应的随机接入前导码集合中选择随机接入前导码。然后,终端设备在该SSB index对应的RACH时频资源上向第二网络设备发送消息1。消息1为四步随机接入过程中的消息1,消息1包括该随机接入前导码。
例如,如图1B所示,第二网络设备为NodeX,终端设备接收NodeX发送的波束4的SSB和系统信息。终端设备确定波束4的信号质量最佳;然后,终端设备确定波束4对应的SSB index。终端设备确定SSB index对应的RACH资源和随机接入前导码集合,并从该随机接入前导码集合中选择随机接入前导码。然后,终端设备在该SSB index对应的RACH资源上向NodeX发送消息1,消息1包括该随机接入前导码。
403、第二网络设备根据随机接入前导码,以及随机接入前导码与第二网络设备管理的一个或多个第二波束的标识之间的映射关系确定终端设备请求接入第三波束。
其中,第三波束为该一个或多个波束的其中一个波束。随机接入前导码与一个或多个第二波束的标识之间的映射关系包括随机接入前导码与一个或多个第二波束的的SSB index之间的映射关系。
具体的,第二网络设备在第二网络设备管理的一个或多个第二波束对应的RACH时频资源接收到终端设备的消息1。消息1包括随机接入前导码。然后,第二网络设备根据随机接入前导码与一个或多个第二波束的SSB index之间的映射关系判断该随机接入前导码是否属于该一个或多个第二波束对应的随机接入前导码。若是,则第二网络设备根据该随机接入前导码确定终端设备请求接入的第三波束的SSB index。
需要说明的是,如果第二网络设备确定该随机接入前导码不属于第二网络设备管理的波束对应的随机接入前导码集合中的随机接入前导码,则第二网络设备忽略或拒绝该终端 设备的接入请求。
例如,如图1B所示,若第一网络设备为第二网络设备配置的波束4对应的SSB index=3、波束4对应的SSB index对应的preamble index=4-15以及波束4对应的RACH时频资源信息。第二网络设备在该波束4对应的RACH时频资源上接收到终端设备发送的preamble index=5,那么第二网络设备可以确定终端设备请求接入的是SSB index=3对应的波束4。
404、第二网络设备向终端设备发送消息2。
若第二网络设备确定终端设备请求接入第二网络设备管理的第三波束,则第二网络设备向终端设备发送消息2(msg2)。消息2包括临时小区无线网络临时标识(temporary cell radio network temporary identifier,T-CRNTI)、时间提前量(time advance,TA)、以及第二网络设备为终端设备配置的用于终端设备发送消息3的时频资源(例如,上行授权uplink grant)等。
由上述图3所示的实施例的步骤302可知,第一网络设备为第二网络设备配置调度时频资源。第二网络设备为终端设备配置的用于终端设备发送消息3的时频资源是第二网络设备是从该调度时频资源中确定的。即由第二网络设备为该终端设备分配相应的调度时频资源。第二网络设备根据第一网络设备为第二网络设备分配的资源信息中包含的C-RNTI集合中选择C-RNTI作为T-CRNTI分配给终端设备。
405、终端设备向第二网络设备发送消息3。
消息3包括RRC消息。例如,RRC消息为RRC建立请求(RRCSetupRequest)消息。
406、第二网络设备对消息3进行处理,得到处理后的消息3,处理后的消息3包括RRC建立请求消息。
在介绍步骤406之前,首先介绍终端设备的协议栈、第一网络设备的协议栈和第二网络设备的协议栈。请参阅图4B,图4B分别示出了终端设备的控制面协议栈、第二网络设备的控制面协议栈和第一网络设备的控制面协议栈。
终端设备的控制面协议栈包括无线资源控制(radio resource control,RRC)层、数据包汇聚协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体介入控制(media access control,MAC)层以及物理(physical,PHY)层。
终端设备的RRC层与第一网络设备的RRC层对应,终端设备的PDCP层与第一网络设备的PDCP层对应。终端设备的RLC层与第二网络设备的RLC层对应,终端设备的MAC层与第二网络设备的MAC层对应,终端设备的PHY层与第二网络设备的PHY层对应。
第二网络设备包括RLC层、MAC层、PHY层、以及适配(Adaptation,Adapt)层。Adapt层用于第一网络设备和第二网络设备识别第一终端设备,也可以用于识别第一终端设备的数据无线承载(data radio bearer,DRB)或者信令无线承载(signal radio bearer,SRB)或者逻辑信道(logical channel,LCH),还可以用于识别第一终端设备当前所接入的波束。Adapt层的名称只是一种示例,也可以被称为其他名称,具体本申请不做限定。
第二网络设备的Adapt层与第一网络设备的Adapt层对应,第二网络设备的RLC层与第一网络设备的RLC层对应,第二网络设备的MAC层与第一网络设备的MAC层对应,第二网络设备 的PHY层与第二网络设备的PHY层对应。
第一网络设备包括RRC层、PDCP层、Adapt层、RLC层、MAC层以及PHY层。
第一网络设备的Adapt层与第二网络设备的Adapt层对应。第一网络设备的RLC层与第二网络设备的RLC层对应。第一网络设备的MAC层与第二网络设备的MAC层对应。第一网络设备的PHY层与第二网络设备的PHY层对应。
下面结合图4B介绍步骤406。第二网络设备接收到消息3之后,第二网络设备去除消息3的PHY层、MAC层和RLC层。需要说明的是,去除某一层可以理解为去除该层PDU的包头,从而获取该层的业务数据单元(service data unit,SDU),后续不再赘述。然后,第二网络设备将去除PHY层、MAC层和RLC层的消息3作为Adapt层的SDU,在该SDU外封装Adapt层,即添加上Adapt层的包头,从而形成Adapt层的协议数据单元(protocol data unit,PDU)。例如,在去除PHY层、MAC层和RLC层的消息3外封装的Adapt层包头中包含第二网络设备为终端设备分配的C-RNTI(也可能是其他用于第一网络设备和第二网络设备识别终端设备的标识)和第三波束的标识,即第三波束对应的SSB index。第三波束为终端设备请求接入的第二网络设备管理的波束。第二网络设备接着在Adapt层之外封装RLC层、MAC层和PHY层,得到处理后的消息3。其中,第三波束的标识也可以不包含在Adapt层的包头中,而是作为信息元素(information element,IE)包含在RRC建立请求消息中。
407、第二网络设备向第一网络设备发送处理后的消息3。
为了第一网络设备区分第二网络设备发送的数据(包含控制面消息和用户面消息两种类型)是来自于第二网络设备,还是第二网络设备转发的来自其他终端设备的数据。下面示出两种可能的实现方式。
1、第一网络设备与第二网络设备之间建立专用的逻辑信道LCH,该专用的LCH用于第二网络设备传输来自其他终端设备的消息。例如,第一网络设备与第二网络设备预先约定逻辑信道标识(logical channel identifier,LCID)等于1的LCH用于传输来自其他终端设备的消息。也就是终端设备的消息包括有Adapt层,第一网络设备通过读取Adapt层中的C-RNTI可以确定是哪个终端设备的消息。
2、第二网络设备在消息的RLC报文头、MAC报文头或PHY报文头中增加第一指示,用于指示消息是否存在Adapt层。当第一指示指示消息存在Adapt层,则第一网络设备可以通过读取消息的Adapt层确定是哪个终端设备的消息。
第一网络设备接收到处理后的消息3之后,可以按照以下任一种方式识别该处理后的消息3是终端设备的消息。然后,第一网络设备解析处理后的消息3,得到原消息3中包括的RRC建立请求消息。
408、第一网络设备向第二网络设备发送消息4,消息4包括第一网络设备向终端设备发送的RRC建立响应消息。
可以理解的是,消息4为RRC建立响应消息外面封装了PDCP层、Adapt层、RLC层、MAC层和PHY层得到的消息。其中,封装Adapt层即将终端设备的标识包含在Adapt层的包头。可选的,Adapt层包头还包括:SRB ID或LCID。其中,SRB ID或LCID用于第一网络设备指示第二网络设备应该通过哪个通道给终端设备发送RRC建立响应消息。
409、第二网络设备对消息4进行处理,得到处理后的消息4,处理后的消息4包括RRC建立响应消息。
第二网络设备收到第一网络设备发送的消息4后,去除消息4外面封装的PHY层、MAC层以及RLC层。然后,第二网络设备从Adapt层包头中读取终端设备的标识,例如C-RNTI。可选的,第二网络设备从Adapt层包头中读取SRB ID或LCID。接着,第二网络设备将去除外面封装的PHY层、MAC层和RLC层的消息4的Adapt层去除,并在外面封装RLC层、MAC层和PHY层,得到处理后的消息4。
410、第二网络设备向终端设备发送处理后的消息4。其中,处理后的消息4包括RRC建立响应消息。
第一网络设备通过第二网络设备向终端设备转发该RRC建立响应消息,从而实现终端设备建立到第一网络设备的RRC连接。例如,第二网络设备通过SRB ID或LCID指示的通道向终端设备发送处理后的消息4。
本实施例中,终端设备可以通过第二网络设备向第一网络设备发送上行数据。可选的,本实施例还包括步骤411至步骤413,且步骤411至步骤413在步骤410之后执行。
411、终端设备向第二网络设备发送封装后的第一数据。
在介绍步骤411之前,先介绍终端设备的用户面协议栈、第二网络设备的用户面协议栈和第一网络设备的用户面协议栈。请参阅图4C,图4C为终端设备的用户面协议栈、第二网络设备的用户面协议栈和第一网络设备的用户面协议栈的一个示意图。
终端设备包括PHY层、MAC层、RLC层、PDCP层和SDAP层。第二网络设备包括PHY层、MAC层、RLC层和Adapt层。第一网络设备包括PHY层、MAC层、RLC层、Adapt层、PDCP层和SDAP层。Adapt层用于第一网络设备和第二网络设备识别第一终端设备,也可以用于识别第一终端设备的数据无线承载(data radio bearer,DRB)或者信令无线承载(signal radio bearer,SRB)或者逻辑信道(logical channel,LCH),还可以用于识别第一终端设备当前所接入的波束。
终端设备的PHY层与第二网络设备的PHY层对应,终端设备的MAC层与第二网络设备的MAC层对应,终端设备的RLC层与第二网络设备的RLC层对应。终端设备的PDCP层与第一网络设备的PDCP层对应,终端设备的SDAP层与第一网络设备的SDAP层对应。
第二网络设备的PHY层与第一网络设备的PHY层对应,第二网络设备的MAC层与第一网络设备的MAC层对应,第二网络设备的RLC层与第一网络设备的RLC层对应,第二网络设备的Adapt层与第一网络设备的Adapt层对应。
封装后的第一数据是指第一终端设备在第一数据外封装了SDAP层、PDCP层、RLC层、MAC层和PHY层得到的数据。
需要说明的是,在步骤411之前,第二网络设备可以为第一终端设备配置用于发送数据的上行资源。具体的配置方式与已有接入网设备为终端设备配置上行资源的方式类似,具体本文不做详细介绍。
412、第二网络设备对封装后的第一数据进行处理,得到处理后的第一数据。
下面结合图4C介绍步骤411。第二网络设备接收到封装后的第一数据之后,第二网络设 备去除封装后的第一数据的PHY层、MAC层和RLC层。然后,第二网络设备在去除PHY层、MAC层和RLC层的第一数据外封装Adapt层。例如,在去除PHY层、MAC层和RLC层的第一数据外封装的Adpat层中包含第二网络设备为终端设备分配的C-RNTI(也可能是其他用于第一网络设备和第二网络设备识别终端设备的标识)。第二网络设备接着在Adapt层之外封装RLC层、MAC层和PHY层,得到处理后的第一数据。
413、第二网络设备向第一网络设备发送处理后的第一数据。
由上述步骤411至步骤413可知,终端设备通过第二网络设备将第一数据转发至第一网络设备,从而实现终端设备与第一网络设备之间的上行数据传输。
本实施例中,第一网络设备可以向终端设备发送下行数据。可选的,本实施例还包括步骤414至步骤416,且步骤414至步骤416在步骤410之后执行。
414、第一网络设备向第二网络设备发送封装后的第二数据。
封装后的第二数据是指第一网络设备在第二数据外封装了SDAP层、PDCP层、Adapt层、RLC层、MAC层和PHY层得到的数据。其中,封装后的第二数据中Adapt层包括第一终端设备的标识。例如,第二网络设备为终端设备分配的C-RNTI(也可能是其他用于第一网络设备和第二网络设备识别终端设备的标识)。
415、第二网络设备对封装后的第二数据进行处理,得到处理后的第二数据。
第二网络设备接收到封装后的第二数据之后,第二网络设备去除封装后的第二数据的PHY层、MAC层和RLC层。然后,第二网络设备读取去除PHY层、MAC层和RLC层的第二数据中Adapt层中的终端设备的标识,即确定终端设备。可选的,第二网络设备从Adapt层中读取DRB标识或者LCID,确定终端设备的DRB或LCH。接着,第二网络设备去除第二数据的Adapt层,再外封装RLC层、MAC层和PHY层,得到处理后的第二数据。
416、第二网络设备向终端设备发送处理后的第二数据。
例如,第二网络设备通过Adapt层的DRB标识指示的DRB向终端设备发送处理后的第二数据;或者,第二网络设备通过Adapt层的LCID指示的LCH向终端设备发送处理后的第二数据。
由步骤413至步骤416可知,第一网络设备通过第二网络设备将第二数据转发至终端设备,从而实现终端设备与第一网络设备之间的下行数据传输。
下面结合图5所示的实施例示出在两步随机接入过程中,第二网络设备为终端设备提供接入服务的过程。请参阅图5,图5为本申请实施例通信方法的另一个实施例示意图。在图5中,该通信方法包括:
501、第二网络设备向终端设备发送SSB和系统信息。
步骤501与前述图4A所示的实施例的步骤401类似,具体请参阅前述图4A所示的实施例的步骤401的相关介绍,这里不再赘述。
502、终端设备向第二网络设备发送消息A。
其中,消息A包括随机接入前导码和RRC建立请求消息。
503、第二网络设备根据随机接入前导码,以及随机接入前导码与第二网络设备管理的一个或多个第二波束的标识之间的映射关系确定终端设备请求接入第三波束。
步骤503与前述图4A所示的实施例中步骤403类似,具体请参阅前述图4A所示的实施例 中的步骤403的相关介绍,这里不再赘述。
504、第二网络设备对消息A进行处理,得到处理后的消息A,处理后的消息A包括RRC建立请求消息。
结合上述图4A所示的实施例中的步骤406。第二网络设备去除消息A的PHY层、MAC层和RLC层。然后,第二网络将去除PHY层、MAC层和RLC层的消息A作为Adapt层的SDU,在该SDU外封装Adapt层,即添加上Adapt层的包头,从而形成Adapt层的PDU。例如,在去除PHY层、MAC层和RLC层的消息A外封装的Adapt层包头中包含第二网络设备为终端设备分配的C-RNTI。可选的,第二网络设备在去除PHY层、MAC层和RLC层的消息A外封装的Adapt层包头还包含第三波束的标识。第二网络设备接着在Adapt层之外封RLC层、MAC层和PHY层,得到处理后的消息A,处理后的消息A包括RRC建立请求消息。
需要说明的是,第一波束标识也可以不包含在Adapt层的包头中,而是作为信息元素包含在RRC建立请求消息中。
505、第二网络设备向第一网络设备发送处理后的消息A。
步骤505与前述图4A所示的实施例中的步骤407类似,具体请参阅前述图4A所示的实施例中的步骤407的相关介绍,这里不再赘述。
506、第一网络设备向第二网络设备发送消息B,消息B包括RRC建立响应消息。
可以理解的是,消息B为RRC建立响应消息外面封装了PDCP层、Adapt层、RLC层、MAC层和PHY层,得到的消息。其中,Adapt层中包含终端设备的标识。可选的,Adapt层中还包含SRB ID或LCID。
507、第二网络设备对消息B进行处理,得到处理后的消息B,处理后的消息B包括RRC建立响应消息;
第二网络设备接收到第一网络设备的消息B之后,去除消息B外面封装的PHY层、MAC层以及RLC层。然后,第二网络设备从Adapt层包头中读取终端设备的标识。例如,C-RNTI。可选的,第二网络设备从Adapt层包头中读取SRB ID或LCID。接着,第二网络设备将去除外面封装的PHY层、MAC层和RLC层的消息B的Adapt层去除,并在外面封装RLC层、MAC层和PHY层,得到处理后的消息B。
508、第二网络设备向终端设备发送处理后的消息B。
第一网络设备通过第二网络设备向终端设备发送RRC建立响应消息,从而实现终端设备建立到第一网络设备的RRC连接。
需要说明的是,在图5所示的两步随机接入过程之后,第一网络设备与终端设备之间可以进行数据传输。例如,上行数据传输,或下行数据传输。具体第一网络设备与终端设备之间的上行数据传输的过程与前述图4A所示的实施例的步骤411至步骤413类似。第一网络设备与终端设备之间的下行数据传输的过程与前述图4A所示的实施例的步骤414至步骤416类似。具体请参阅前述图4A所示的实施例中步骤411至步骤416的相关介绍,这里不再赘述。
上述图4A和图5所示的实施例示出了第二网络设备为终端设备提供接入服务、资源调度和数据转发的过程。经过本申请实施例的技术方案可知,通过第一网络设备为第二网络 设备配置一个或多个第二波束的资源信息。从而实现第二网络设备管理物理小区的一个或多个第二波束。第二网络设备负责为请求接入该一个或多个第二波束的终端设备提供接入服务和资源调度。由于第二网络设备管理的一个或多个第二波束与第一网络设备管理的一个或多个第一波束属于同一物理小区。即第二网络管理的并不是一个新的物理小区。第二网络设备的物理小区的PCI与第一网络设备的物理小区的PCI相同,因此无需分配新的PCI。从而避免了大量部署站点容易出现的由于一个PCI被邻近不同小区共用所导致的PCI冲突的问题。
下面以第一终端设备为例,介绍第一网络设备对第一终端设备进行波束管理的过程。
1、第一终端设备的波束测量配置和上报。
第一网络设备向第一终端设备发送RRC重配置消息,该RRC重配置消息包括CSI测量配置CSI-MeasConfig。CSI测量配置中包含CSI资源配置(CSI-ResourceConfig)、CSI上报配置(CSI-ReportConfig)、触发状态等。
其中,CSI资源配置可以包括SSB资源信息和CSI-RS资源信息。
例如,SSB资源信息包括SSB资源标识(SS/PBCH Block Resource indicator,SSBRI)或SSB index,SSB对应的频点,SSB子载波间隔,SSB周期,SSB测量时间配置(SSB measurement timing configuration,SSB-MTC),系统帧号(System Frame Number,SFN)偏置等。例如,CSI-RS资源信息包括CSI-RS对应的频点,CSI-RS对应的BWP,CSI-RS资源标识,CSI-RS资源映射,CSI-RS时间配置包含时隙偏置和周期,CSI-RS密度等。
CSI上报配置可以包括L1-RSRP参数和SSB index;或者,ReportConfig可以包括L1-RSRP参数和CSI-RS资源指示(CSI-RS resource indicator,CRI)。
CSI测量配置主要包括SSB频点,SSB子载波间隔,SSB测量时间配置(即SSB-MTC),CSI-RS频点,CSI-RS资源标识,CSI-RS时隙配置,CSI-RS关联的SSB标识。
然后,第一终端设备通过上行控制信息(uplink control information,UCI)上报CSI测量报告)。例如,该测量报告包括SSBRI,以及SSBRI对应的L1-RSRP(或者,SSBRI对应的差分RSRP;或者,SSBRI对应的L1-SINR);或者,包括CRI对应的L1-RSRP或差分RSRP或L1-SINR。
2、传输配置指示状态(transmission configuration indicator state,TCI state)配置和通知。
TCI state:3GPP Release 15(R15)中,对于每一个物理信道或者物理信号,网络都可以通过不同的信令对终端设备进行波束指示,指导终端设备如何接收下行物理信道或者物理信号,以及指导终端设备如何发送上行物理信道或者物理信号。根据TCI指示可以确定对应的波束,即SSB index或CSI-RS index。
第一网络设备通过RRC重配置消息给第一终端设备配置TCI状态集合。例如,在ControlResourceSet中给出控制资源集合(Control-resource set,CORESET)对应的TCI状态子集1(CORESET可以理解为部分PDCCH),在PDSCH-Config中包含PDSCH对应的TCI状态子集2。
每个TCI状态具有对应的TCI state ID和准共站(Quasi co-location,QCL)信息。其 中,QCL信息包含小区标识、BWP标识、参考信号标识(CSI-RS资源标识或者SSB index)以及准共站(Quasi co-location,QCL)类型等。值得注意的是:确定TCI即确定了CSI-RS资源标识或者SSB index,相当于确定了波束。
接着第一网络设备通过MAC层控制指令(例如,媒体接入控制控制元素(media access control-control element,MAC CE))通知第一终端设备CORESET对应的1个TCI state ID(该TCI state ID是第一网络设备从TCI状态子集1中选择的),通过MAC层控制指令通知第一终端设备PDSCH对应的最多8个TCI state ID(该TCI state ID是第一网络设备从TCI状态子集2中选择的)。最后第一网络设备通过下行控制信息(downlink control information,DCI)给出PDSCH对应的1个TCI state ID(该TCI state ID是第一网络设备从最多8个TCI state ID中选择的)。对于第一终端设备接入第二网络设备的情况,则是第二网络设备通过MAC CE或者DCI发送TCI state相关指示给第一终端设备。
3、针对第一终端设备的波束失败(beam failure)的管理。
第一网络设备给第一终端设备配置无线链路监视配置(RadioLinkMonitoringConfig),以及波束失败恢复(beam failure recovery,BFR)配置(BeamFailureRecoveryConfig)。当第一终端设备检测到发生波束失败时,第一终端设备将根据第一网络设备为第一终端设备配置的波束失败恢复配置中的参数发起BFR。在BFR过程中触发随机接入过程。
其中,波束失败恢复配置包括BFR触发的随机接入过程中,至少一个波束对应的SSB index(或者CSI-RS resource index)、preamble index,以及RACH-ConfigGeneric等。第一终端设备根据RACH-ConfigGeneric可以确定RACH时频资源的位置信息。
对于免竞争随机接入(Contention Free Random Access,CFRA)方式,因为网络侧无法确定最终第一终端设备会从哪个波束接入进行波束失败恢复,所以在波束失败恢复配置中包含至少一个波束对应的标识、对应的RACH时频资源以及对应的preamble index。
对于基于竞争的随机接入(Contention Based Random Access,CBRA)方式,网络侧在波束失败恢复配置中不包含给第一终端设备专用的针对某个波束的随机接入前导码。对于CBRA方式,第一终端设备根据波束标识与随机接入前导码之间的映射关系选择第一终端设备希望接入的波束对应的随机接入前导码。然后,第一终端设备在四步随机接入中的消息1发送该随机接入前导码,或,第一终端设备在两步随机接入的消息A发送该随机接入前导码。该波束标识与随机接入前导码之间的映射关系可以是第一终端设备在发生波束失败恢复之前第一终端设备接入网络设备广播的。比如,SSB index和preamble index集合之间的映射关系。
对于CFRA方式,第一网络设备可以根据第一终端设备发起随机接入过程的时频资源的位置信息和第一终端设备在该时频资源上发送的随机接入前导码可以确定是哪个终端设备通过RACH流程重新接入网络。
对于CBRA方式,第一网络设备可以根据第一终端设备在msgA或者msg3携带的第一终端设备的标识,确定是第一终端设备通过RACH流程重新接入网络。
在本申请实施例引入第二网络设备的方案中,由前述图3、图4A和图5所示的实施例可知,当第一终端设备位于第二网络设备管理的第一波束的覆盖范围时,第二网络设备将负 责第一终端设备的数据的PHY层、MAC层和RLC层的处理。也就是第二网络设备接收第一终端设备的上行控制信息(uplink control information,UCI),并根据该UCI确定第一终端设备是否更换波束的决策。
那么,第二网络设备应当确定第一网络设备为第一终端设备配置了哪些TCI状态。例如,第一网络设备将分别为第一终端设备的CORESET配置的ControlResourceSet以及为第一终端设备的PDSCH配置的PDSCH-Config等基本配置信息告知第二网络设备。第二网络设备后续TCI状态集合1中哪个TCI state处于激活状态(针对CORESET),以及确定TCI状态集合2中的哪几个TCI state处于激活状态(针对PDSCH),并通过MAC CE将上述TCI state通知第一终端设备。此外,第二网络设备还可以通过DCI指示第一终端设备针对PDSCH的一个或2个TCI state。
或者,第二网络设备为第一终端设备配置CORESET配置的ControlResourceSet以及为第一终端设备的PDSCH配置PDSCH-Config;然后,第二网络设备将第二网络设备为第一终端设备配置CORESET配置的ControlResourceSet以及为第一终端设备的PDSCH配置PDSCH-Config等基本配置信息发送给第一网络设备,再由第一网络设备通过RRC消息告知第一终端设备。
下面结合具体实施例介绍本申请实施例的一些可能的场景。
场景一:第一终端设备处于第二网络设备管理的第三波束的信号覆盖范围内,第一终端设备从第三波束切换至第四波束的波束切换(beam switch)场景。第三波束为第二网络管理的一个或多个第二波束中的其中一个波束。第四波束为第一网络设备管理的一个或多个第一波束中的其中一个波束。
下面结合图6A所示的实施例场景一。请参阅图6A,图6A为本申请实施例通信方法的另一个实施例示意图。在图6A中,该通信方法包括:
601、第一终端设备向第二网络设备发送L1测量报告。
L1测量报告包括:第一终端设备测量得到的信道质量信息(channel quality information,CQI),秩指示(rank indication,RI),预编码矩阵指示(precoding matrix indication,PMI),CRI,SSBRI,层指示(Layer indicator,LI),L1-RSRP或L1-SINR等。
具体的,第一终端设备通过上行控制信息向第二网络设备上报第一终端设备的L1测量报告。
例如,如图6B所示,物理小区包括波束1至波束4。gNB管理波束1至波束3,NodeX管理波束4。UE1位于NodeX管理的波束4的信号覆盖范围内,UE1接入NodeX管理的波束4。UE1测量接收到的gNB发送的波束的信号强度和NodeX发送的波束的信号强度,得到L1测量报告。然后,UE1向NodeX上报L1测量报告,以便于NodeX决定哪个波束的信号质量更高,更适合为UE1提供服务。
602、第二网络设备根据L1测量报告确定第四波束。
其中,第四波束为第一网络设备管理的一个或多个第一波束中的其中一个波束。
例如,如图6B所示,NodeX根据L1测量报告确定波束2的信号质量最佳,更适合为第一 终端设备提供服务。那么,NodeX决定由波束2为UE1提供服务。
603、第二网络设备向第一终端设备发送第四波束的标识。
第四波束的标识包括第四波束对应的SSB index或第四波束对应的CSI-RS index。
可选的,第四波束的标识包括第四波束对应的TCI state ID。即第二网络设备通过TCI state ID指示TCI,第一终端设备根据该TCI state ID确定TCI,该TCI指示该第四波束。例如,该TCI包括第四波束对应的SSB index或第四波束对应的CSI-RS index。关于TCI的相关介绍请参阅前文,即可知第一终端设备可以通过TCI确定切换至哪个波束。
具体的,第二网络设备通过下行控制信息DCI向第一终端设备发送第四波束的标识。比如PDSCH相关的TCI state。例如,NodeX通过DCI向UE1发送波束2对应的TCI state或者SSB index或者CSI-RS index。或者,第二网络设备通过MAC CE向第一终端终端设备发送第四波束的标识。比如COREST相关的TCI state。例如,NodeX通过MAC CE向UE发送波束2对应的TCI state或SSB index或CSI-RS index。
604、第一终端设备从第三波束切换至第四波束。
第一终端设备根据第四波束的标识确定第四波束;然后,第一终端设备从第三波束做波束切换至第四波束。
例如,如图6B所示,UE1开始接入的是NodeX管理的波束4。UE1执行波束切换,从波束4切换至gNB管理的波束2。
605、第二网络设备向第一网络设备发送第一终端设备的C-RNTI和第四波束的标识。
第二网络设备确定由第四波束为第一终端设备提供服务。第二网络设备可以向第一网络设备发送第一终端设备的C-RNTI和第四波束的标识,以便于通知第一网络设备为从第三波束切换至第四波束的第一终端设备提供服务。
需要说明的是,步骤603和步骤605之间没有固定的执行顺序。例如,可以先执行步骤603,再执行步骤605;或者,也可以先执行步骤605,再执行步骤603;或者,也可以依据情况同时执行步骤603和步骤605,具体本申请不做限定。
例如,如图6B所示,第四波束为波束2。NodeX将NodeX为第一终端设备分配的C-RNTI、波束2对应的TCI state ID、缓存状态报告(Buffer status report,BSR)等信息转发给gNB。
本实施例中,第二网络设备还向第一网络设备发送第一终端设备的数据传输状态信息。该数据传输状态信息包括以下至少一项:
已发送的未收到反馈信息的数据单元的序列信息、数据传输定时器、混合自动重传请求HARQ进程号、新数据指示、传输块大小、冗余版本、HARQ进程号对应的进程时间信息、HARQ进程的数据单元传输确认信息、数据单元的确认信息、最大发送状态变量、最大接收状态变量、发送状态变量、接收状态变量和传输窗口。
可选的,数据传输定时器可以是RLC或MAC的重排序定时器,还可以是HARQ往返时间(Round Trip Time,RTT)定时器等,具体本申请不做限定。并且,数据传输定时器还包括RLC层的一些发送变量和接收变量。例如,TX_Next_Ack,TX_Next,RX_Next,POLL_SN,RETX_COUNT等,具体可以参见通信标准3GPP TS38.322 v16.1.0的7.1章节和7.3章节的相关介绍。
第一网络设备可以确定第一终端设备的数据传输状态信息,以便于第一网络设备为第一终端设备提供服务。从而实现在第一终端设备的波束切换场景下,第一终端设备继续在第一网络设备的调度下进行数据传输。
606、第一网络设备根据第一终端设备的C-RNTI和第四波束的标识为第一终端设备提供通信服务。
在步骤604中,第一终端设备从第三波束切换至第四波束。第一网络设备接收到第一终端设备的C-RNTI和第四波束的标识之后,第一网络设备为第一终端设备提供通信服务。例如,资源调度,数据传输等服务。实现在第一终端设备的波束切换场景下,第一终端设备继续在第一网络设备的调度下进行数据传输。
本申请实施例中,在第一终端设备处于第二网络设备管理的第三波束的信号覆盖范围内,第二网络设备根据第一终端设备的L1测量报告确定由第四波束为第一终端设备提供服务。第二网络设备向第一终端设备发送第四波束的标识,以便于第一终端设备从第三波束切换至第四波束。然后,第二网络设备向第一网络设备发送第二网络设备为第一终端设备分配的C-RNTI和第四波束的标识。这样第一网络设备可以为第一终端设备提供调度服务,从而实现在第一终端设备的波束切换场景下,第一终端设备继续在第一网络设备的调度下进行数据传输。
场景二:第一终端设备原本在第二网络设备管理的第三波束的信号覆盖范围内发生了波束失败,接着移动至第一网络设备管理的第四波束的信号覆盖范围,第一终端设备向第一网络设备发起波束失败恢复(beam failure recovery,BFR)以实现由第一网络设备为第一终端设备继续提供服务的场景。
首先结合图7A所示的实施例基于CFRA方式和四步随机接入过程介绍场景二。结合图7B所示的实施例介绍基于CFRA方式和四步随机接入过程介绍场景二。
请参阅图7A,图7A为本申请实施例通信方法的另一个实施例示意图。在图7A中,该通信方法包括:
701、第一终端设备向第一网络设备发送消息1,消息1包括随机接入前导码。
第一终端设备从第二网络设备管理的第三波束的信号覆盖范围快速移动至第一网络设备管理的第四波束的信号覆盖范围。第一终端设备的PHY层检测到发生波束失败并向第一终端设备的MAC层指示候选的波束,本实施例称第四波束。
具体的,第一终端设备的PHY层执行波束搜索过程。在波束搜索过程中,第一终端设备的PHY层对接收到的波束对应的信号强度进行记录,并将信号强度最大的波束作为候选的波束。然后,第一终端设备的PHY层将该候选的波束的标识告知第一终端设备的MAC层。
然后,第一终端设备的MAC层根据波束失败恢复配置确定第四波束对应的RACH时频资源和随机接入前导码。关于波束失败恢复配置请参阅前述的相关介绍。第一终端设备的MAC层指示第一终端设备的PHY层第四波束所对应的RACH时频资源和对应的随机接入前导码。第一终端设备在该第二四波束对应的RACH时频资源上向第一网络设备发送消息1,消息1包括随机接入前导码。
702、第一网络设备根据消息1的随机接入前导码确定是第一终端设备请求在第四波束 进行波束失败恢复。
由前述关于波束失败恢复配置和CFRA方式可知,第一网络设备可以通过第一终端设备发送的随机接入前导码可以唯一确定是哪个终端设备请求通过RACH流程重新接入网络。首先,第一网络设备根据各个终端设备与分配到的用于波束失败恢复的随机接入前导码之间的关系确定消息1的随机接入前导码属于第一终端设备的用于波束失败恢复的随机接入前导码,即第一终端设备在申请波束失败恢复。然后,第一网络设备根据第一终端设备的用于波束恢复失败的波束标识与第一终端设备的用于波束失败恢复的随机接入前导码之间的映射关系确定是第一终端设备请求在第四波束进行波束失败恢复。
例如,如图7B所示,NodeX管理波束4,gNB管理波束1至波束3。UE1接入波束4,UE1从波束4的信号覆盖范围快速移动至波束2的信号覆盖范围。UE1检测到发生波束失败,那么UE1向gNB请求波束失败恢复,以便于gNB确定该UE1是通过RACH流程重新接入网络。
703、第一网络设备向第一终端设备发送消息2,消息2包括随机接入响应消息。例如,时间提前量(Time Advance,TA)等参数。
第一网络设备在步骤701中接收到消息1之后,第一网络设备结合上述步骤702确定第一终端设备请求通过RACH流程重新接入网络。第一网络设备可以通过消息2向第一终端设备发送随机接入响应消息,以便于告知第一终端设备波束恢复请求成功,这样第一终端设备可以在第一网络设备的调度下进行数据传输。
704、第一网络设备向第二网络设备发送用于指示第二网络设备停止调度第一终端设备的信息。
由上述图4A所示的实施例可知,第一终端设备接入第二网络设备管理的第三波束,第一网络设备在第一终端设备的随机接入过程中保存有第一终端设备的上下文。在上述步骤703中,第一网络设备查询第一终端设备的上下文,第一网络设备确定该第一终端设备本来是由第二网络设备负责调度的,以及第一终端设备原本接入第二网络设备的哪个波束。第一网络设备通知第二网络设备该第一终端设备由该第一网络设备提供调度服务,以指示第二网络设备停止调度该第一终端设备。
可选地,用于指示第二网络设备停止调度第一终端设备的信息是停止传输用户设备标识(StopTransmissionUEID),该StopTransmissionUEID包括第一终端设备的C-RNTI。第一网络设备通过该StopTransmissionUEID指示第二网络设备停止调度第一终端设备。
705、第二网络设备根据用于指示第二网络设备停止调度第一终端设备的信息停止调度第一终端设备。
例如,NodeX接收gNB发送的指示信息,并根据该指示信息停止调度UE1。
例如,NodeX接收gNB发送的StopTransmissionUEID,该StopTransmissionUEID包括第一终端设备的C-RNTI;然后,NodeX根据StopTransmissionUEID停止调度UE1。
请参阅图7C,图7C为本申请实施例通信方法的另一个实施例示意图,基于CBRA方式和四步随机接入过程。在图7C中,通信方法包括:
706、第一终端设备向第一网络设备发送消息1,消息1包括随机接入前导码。
第一终端设备的MAC层根据波束失败恢复配置确定第四波束对应的RACH时频资源。第一 终端设备根据接入网络设备广播的波束标识和随机接入前导码之间的映射关系,选择随机接入前导码。第一终端设备的MAC层指示第一终端设备的PHY层第四波束所对应的RACH时频资源和对应的随机接入前导码。然后,第一终端设备在该第四波束对应的RACH时频资源上向第一网络设备发送消息1,消息1包括随机接入前导码。
707、第一网络设备根据随机接入前导码确定有终端设备请求接入第四波束。
由上述CBRA方式的相关介绍可知,波束对应的随机接入前导码是给多个终端设备竞争接入该用于随机接入,因此,第一网络设备根据消息1的随机接入前导码,以及波束标识和随机接入前导码之间的映射关系,确定终端设备请求接入第二波束。
708、第一网络设备向第一终端设备发送消息2。
709、第一终端设备向第一网络设备发送消息3,消息3包括第一终端设备的标识。
第一终端设备的标识为第一终端设备在发生波束失败之前已被分配的第一终端设备的标识。
710、第一网络设备根据第一终端设备的标识确定是第一终端设备请求接入第二波束。
由于第二波束对应的随机接入前导码是给多个终端设备竞争使用的,因此第一网络设备可以通过消息3包括的第一终端设备的标识确定是第一终端设备申请接入第四波束。
711、第一网络设备向第一终端设备发送消息4。
第一网络设备通过消息4可以告知第一终端设备随机接入成功,这样第一终端设备可以在第一网络设备的调度下进行数据传输。
712、第一网络设备向第二网络设备发送用于指示第二网络设备停止调度第一终端设备的信息。
713、第二网络设备根据用于指示第二网络设备停止调度第一终端设备的信息停止调度第一终端设备。
步骤712至步骤713与前述图7A所示的实施例中的步骤704至步骤705类似,具体请参阅前述图7A所示的实施例中的步骤704至步骤705的相关介绍,这里不再赘述。
下面结合图8所示的实施例介绍基于CBRA方式和两步随机接入过程介绍场景二。
请参阅图8,图8为本申请实施例通信方法的另一个实施例示意图。在图8中,该通信方法包括:
801、第一终端设备向第一网络设备发送消息A,消息A包括随机接入请求和第一终端设备的标识。
第一终端设备从第二网络设备管理的第三波束的信号覆盖范围快速移动至第一网络设备管理的第四波束的信号覆盖范围。第一终端设备的PHY层检测到发生波束失败并向第一终端设备的MAC层指示候选的波束,本实施例称第四波束。
第一终端设备的MAC层根据波束失败恢复配置确定RACH时频资源。关于波束失败恢复配置请参阅前述的相关介绍。第一终端设备的MAC层指示第一终端设备的PHY层RACH时频资源。然后,第一终端设备在该第四波束对应的RACH资源上向第一网络设备发送消息A。消息A包括第四波束对应的随机接入前导码和第一终端设备的标识。
对于CBRA方式,该第四波束对应的随机接入前导码不是在波束失败配置中专门配置给 第一终端设备的,而是和其他终端设备共享的。比如从系统信息中获取的第四波束对应的随机接入前导码集合中的一个。那么第一网络设备可以通过消息A的第一终端设备的标识确定是第一终端设备请求申请在第四波束的波束失败恢复。即第一终端设备通过消息A向第一网络设备请求波束失败恢复,这样,第二网络设备可以确定第一终端设备请求通过RACH流程重新接入网络。
802、第一网络设备根据消息A中的第一终端设备的标识和随机接入前导码确定是第一终端设备请求接入第四波束。
具体的,第一网络设备根据msgA中包含的第一终端设备的标识,此外又没在msgA中找到任何RRC消息,从而判断所述第一终端设备通过RACH流程重新接入网络。并且,第一网络设备根据波束标识和随机接入前导码之间的映射关系,确定第一终端设备请求接入第四波束。
803、第一网络设备向第一终端设备发送消息B,消息B为随机接入响应消息,例如,时间提前量(Time Advance,TA)等参数。
第一网络设备在步骤801中接收到消息A之后,第一网络设备结合上述步骤802确定第一终端设备请求通过RACH流程重新接入网络。第一网络设备可以通过消息B向第一终端设备发送随机接入响应消息,以便于告知第一终端设备波束恢复请求成功,这样第一终端设备可以在第一网络设备的调度下进行数据传输。
804、第一网络设备向第二网络设备发送用于指示第二网络设备停止调度第一终端设备的信息。
805、第二网络设备根据用于指示第二网络设备停止调度第一终端设备的信息停止调度第一终端设备。
步骤804至步骤805与前述图7A所示的实施例中的步骤704至步骤705类似,具体请参阅前述图7A所示的实施例中的步骤704至步骤705的相关介绍,这里不再赘述。
本申请实施例中,第一终端设备从第二网络设备管理的第三波束的信号覆盖范围移动至第一网络设备管理的第四波束的信号覆盖范围。第一终端设备向第一网络设备发起波束失败恢复请求以实现由第一网络设备为第一终端设备提供服务,从而实现在第一终端设备发生波束失败场景下,第一终端设备继续在第一网络设备的调度下进行数据传输。并且,第一网络设备向第二网络设备发送用于指示第二网络设备停止调度第一终端设备的信息,这样第二网络设备可以停止对第一终端设备的调度,以便于第一网络设备为第一终端设备提供通信服务。
场景三:第一终端设备处于第二网络设备管理的第三波束的信号覆盖范围内,第一终端设备从第三波束切换至第五波束的波束切换场景。
其中,第五波束为第三网络设备管理的波束。第三网络设备首先以终端设备的身份接入第一网络设备的物理小区。第三网络设备为接入点类型设备。然后,第一网络设备为第三网络设备配置物理小区的第五波束的资源信息,并向第三网络设备发送第五波束的资源信息。该第五波束的资源信息用于第三网络设备管理物理小区的第五波束。也就是第三网络设备管理的第五波束与第一网络设备管理的一个或多个第一波束属于同一物理小区。即 第三网络设备采用的物理小区的PCI与第一网络设备采用的物理小区的PCI相同。第三网络设备广播的物理小区的系统信息与第一网络设备广播的物理小区的系统信息相同。
下面结合图9A所示的实施例介绍场景三。请参阅图9A,图9A为本申请实施例通信方法的另一个实施例示意图。在图9A中,该通信方法包括:
901、第一终端设备向第二网络设备发送L1测量报告。
902、第二网络设备根据L1测量报告确定第五波束。
903、第二网络设备向第一终端设备发送第五波束的标识。
904、第一终端设备从第三波束切换至第五波束。
步骤901至步骤904与前述图6A所示的实施例的步骤601至步骤604类似,具体请参阅前述图6A所示的实施例的步骤601至步骤604的相关介绍,这里不再赘述。
905、第二网络设备向第一网络设备发送第一终端设备的C-RNTI和第五波束的标识。
步骤903与步骤905之间没有固定的执行顺序,可以先执行步骤903,再执行步骤905;或者,可以先执行步骤905,再执行步骤903;或者,依据情况同时执行步骤903和步骤905。
906、第一网络设备向第三网络设备发送第一终端设备的C-RNTI和第五波束的标识。
在上述步骤905和步骤906中,第五波束是第三网络设备管理的波束,第三网络设备为接入第一网络设备的设备。第二网络设备可以向第一网络设备发送第一终端设备的C-RNTI和第五波束的标识。然后,第一网络设备向第三网络设备发送第一终端设备的C-RNTI和第五波束的标识。这样第三网络设备可以确定第一终端设备切换至第五波束之后,第三网络设备为第一终端设备提供调度服务。
例如,如图9B所示,UE1接入NodeX1的波束4。NodeX1根据UE1的L1测量报告决定将第一终端设备切换至NodeX2管理的波束5。NodeX1向UE1指示波束5的标识,以便于UE1从波束4切换至波束5。NodeX1向gNB发送第一终端设备的C-RNTI、波束5的标识(例如对应的TCI state ID或者SSB index或CSI-RS index)以及BSR等信息。然后,gNB向NodeX2发送第一终端设备的C-RNTI、波束5的标识(例如,波束5对应的TCI state ID,或波束5对应的SSB index,或波束5对应的CSI-RS index)以及BSR等信息,以便于NodeX2为UE1提供调度服务。
本实施例中,第二网络设备向第一网络设备发送第一终端设备的数据传输状态信息,再由第一网络设备向第三网络设备发送该数据传输状态信息。这样第三网络设备可以确定该第一终端设备的数据传输状态信息,以便于第三网络设备为第一终端设备提供服务。从而实现在第一终端设备的波束切换场景下,第一终端设备继续在第三网络设备的调度下进行数据传输。关于数据传输状态信息的相关介绍请参阅前述图6A所示的实施例步骤604的相关介绍,这里不再赘述。
例如,如图9B所示,NodeX1将UE1的数据传输状态信息发送给gNB,再由gNB发送给NodeX2,以便于NodeX2为UE1提供服务,从而实现在UE1的波束切换场景下,UE1继续在NodeX2的调度下进行数据传输。
907、第三网络设备根据第一终端设备的C-RNTI和第四波束的标识为第一终端设备提供通信服务。
步骤907与前述图6A所示的实施例中步骤606类似,具体请参阅前述图6A所示的实施例 中步骤606的相关介绍,这里不再赘述。
本申请实施例中,第一终端设备处于第二网络设备管理的第一波束的信号覆盖范围内。第二网络设备根据第一终端设备的L1测量报告确定由第三网络设备管理的第五波束为第一终端设备提供服务。第二网络设备向第一终端设备发送第五波束的标识,以便于第一终端设备从第三波束切换至第三网络设备管理的第五波束。然后,第二网络设备先向第一网络设备发送第一终端设备的C-RNTI和第五波束的标识。然后,第一网络设备向第三网络设备发送第一终端设备的C-RNTI和第五波束的标识。从而实现在第一终端设备的波束切换场景下,第一终端设备继续在第三网络设备的调度下进行数据传输。
场景四:第一终端设备从第二网络设备管理的第三波束的信号覆盖范围移动至第三网络设备管理的第五波束的信号覆盖范围。第一终端设备向第三网络设备发起波束失败恢复请求的场景。
其中,第五波束为第三网络设备管理的波束。第三网络设备首先以终端设备的身份接入第一网络设备的物理小区。第三网络设备为接入点类型设备。然后,第一网络设备为第三网络设备配置物理小区的第五波束的资源信息,并向第三网络设备发送第五波束的资源信息。该第五波束的资源信息用于第三网络设备管理物理小区的第五波束。也就是第三网络设备管理的第五波束与第一网络设备管理的一个或多个第一波束属于同一物理小区。即第三网络设备采用的物理小区的PCI与第一网络设备采用的物理小区的PCI相同。第三网络设备广播的物理小区的系统信息与第一网络设备广播的物理小区的系统信息相同。
下面结合图10A所示的实施例基于CFRA方式和四步随机接入中的前2个步骤介绍场景四。请参阅图10A,图10A为本申请实施例通信方法的另一个实施例示意图。在图10A中,该通信方法包括:
1001、第一终端设备向第三网络设备发送消息1,消息1包括随机接入前导码。
1002、第三网络设备根据消息1的随机接入前导码确定第一终端设备请求第五波束进行波束失败恢复。
在步骤1002之前,可选的,第一网络设备给第三网络设备发送至少一个终端设备的标识和至少一个终端设备对应的部分或全部波束失败恢复配置。例如,第一网络设备向第三网络设备发送至少一个终端设备的关于第三网络设备管理的波束的波束失败恢复配置。
1003、第三网络设备向第一终端设备发送消息2,消息2为随机接入响应消息。
步骤1001至步骤1003与前述图7A所示的实施例中步骤701至步骤703类似,具体请参阅前述图7A所示的实施例中步骤701至步骤703的相关介绍,这里不再赘述。
例如,如图10B所示,UE1一开始接入NodeX1管理的波束4。UE1从NodeX1管理的波束4的信号覆盖范围移动至NodeX2管理的波束5的信号覆盖范围。UE1检测到发生波束失败,并向NodeX2发起波束恢复请求,以及请求接入NodeX2的波束4,以便于实现由Node2为第一终端设备提供服务。
1004、第三网络设备向第一网络设备发送第一终端设备的C-RNTI。
第一终端设备通过该BFR流程重新接入网络。第三网络设备可以向第一网络设备发送第一终端设备的C-RNTI,以告知第一网络设备第一终端设备由该第三网络设备继续提供服务。
1005、第一网络设备向第二网络设备发送用于指示第二网络设备停止调度第一终端设备的信息。
在步骤1005中,第一网络设备确定由第三网络设备为第一终端设备提供服务。那么,第一网络设备向第二网络设备发送用于指示第二停止调度该第一终端设备的信息,以通知第二网络设备停止调度第一终端设备。
1006、第二网络设备根据用于指示第二网络设备停止调度第一终端设备的信息停止调度第一终端设备。
关于用于指示第二网络设备停止调度第一终端设备的信息与前述图7A所示的实施例中的步骤705中的用于指示第二网络设备停止调度第一终端设备的信息类似,具体可以参阅前述的相关介绍。
在场景四中,若采用的是CBRA方式和基于四步随机接入过程,则第一终端设备与第三网络设备之间执行的操作与图7C所示的步骤706至步骤711类似,这里不再赘述。在该方式下,第三网络设备通过第一网络设备指示第二网络设备停止调度第一终端设备,具体执行流程与前述步骤1004至步骤1006类似,这里不再赘述。
下面结合图11所示的实施例基于CBRA方式和两步随机接入介绍场景四。请参阅图11,图11为本申请实施例通信方法的另一个实施例示意图。在图11中,该通信方法包括:
1101、第一终端设备向第三网络设备发送消息A,消息A包括随机接入前导码和第一终端设备的标识。
1102、第三网络设备根据消息A的随机接入前导码和第一终端设备的标识确定第一终端设备请求接入第五波束。
1103、第三网络设备向第一终端设备发送消息B,消息B为随机接入响应消息。
步骤1101至步骤1103与前述图8所示的实施例中的步骤801至步骤803类似,具体请参阅前述图8所示的实施例中的步骤801至步骤803的相关介绍,这里不再赘述。
1104、第三网络设备向第一网络设备发送第一终端设备的C-RNTI。
1105、第一网络设备向第二网络设备发送用于指示第二网络设备停止调度第一终端设备的信息。
1106、第二网络设备根据用于指示第二网络设备停止调度第一终端设备的信息停止调度第一终端设备。
步骤1104至步骤1106与前述图10A所示的实施例的步骤1004至步骤1006类似,具体请参阅前述图10A所示的实施例的步骤1004至步骤1006的相关介绍,这里不再赘述。
本申请实施例中,第一终端设备从第二网络设备管理的第一波束的信号覆盖范围移动至第三网络设备管理的第五波束的信号覆盖范围。第一终端设备向第三网络设备发起波束失败恢复请求以实现由第三网络设备为第一终端设备提供服务。实现在第一终端设备发生波束失败场景下,第一终端设备继续在第三网络设备的调度下进行数据传输。第三网络设备向第一网络设备发送第一终端设备的C-RNTI(具体可以是在第一终端设备的波束失败恢复过程中获取得到),那么第一网络设备可以指示第二网络设备停止调度第一终端设备,以便于第一网络设备为第一终端设备提供通信服务。
场景五:第一终端设备处于第一网络设备管理的第四波束的信号覆盖范围内,第一终端设备从第四波束切换至第二网络设备管理的第三波束的波束切换场景。
下面结合图12所示的实施例介绍场景五。请参阅图12,图12为本申请实施例通信方法的另一个实施例示意图。在图12中,该通信方法包括:
1201、第一终端设备向第一网络设备发送L1测量报告。
1202、第一网络设备根据L1测量报告确定第三波束。
1203、第一网络设备向第一终端设备发送第三波束的标识。
1204、第一终端设备从第四波束切换至第三波束。
1205、第一网络设备向第二网络设备发送第一终端设备的C-RNTI和第三波束的标识。
步骤1203和步骤1205之间没有固定的执行顺序,可以先执行步骤1203,再执行步骤1205;或者,可以先执行步骤1205,再执行步骤1203;或者,依据情况同时执行步骤1203和步骤1205。
1206、第二网络设备根据第一终端设备的C-RNTI和第三波束的标识为第一终端设备提供通信服务。
步骤1201至步骤1206与前述图6A所示的实施例的步骤601至步骤606类似,具体请参阅前述图6A所示的实施例的步骤601至步骤606的相关介绍,这里不再赘述。
例如,如图6B所示,UE1接入gNB管理的波束2,UE1向gNB发送L1测量报告。gNB根据该L1测量报告确定NodeX管理的波束4的信号质量更好,更适合为UE1提供服务。那么gNB向UE1发送波束4的标识,以用于UE1从波束2切换至波束4。此外,gNB向NodeX发送UE1的标识,从而实现由NodeX为UE1提供服务。
本申请实施例中,在第一终端设备处于第一网络设备管理的第四波束的信号覆盖范围内。第一网络设备根据第一终端设备的L1测量报告确定由第二网络设备管理的第三波束为第一终端设备提供服务。第一网络设备向第一终端设备发送第三波束的标识,以便于第一终端设备从第四波束切换至第三波束。此外,第一网络设备向第二网络设备发送第一终端设备的C-RNTI和第三波束的标识,从而实现在第一终端设备的波束切换场景下,第一终端设备继续在第二网络设备的调度下进行数据传输。
场景六:第一终端设备从第一网络设备管理的第四波束的信号覆盖范围移动至第二网络设备管理的第三波束的信号覆盖范围。第一终端设备向第二网络设备发起波束失败恢复请求的场景。
下面结合图13A所示的实施例基于CFRA方式和四步随机接入中的前2个步骤介绍场景六。请参阅图13A,图13A为本申请实施例通信方法的另一个实施例示意图。在图13A中,该通信方法包括:
1301、第一终端设备向第二网络设备发送消息1,消息1包括随机接入前导码。
1302、第二网络设备根据消息1的随机接入前导码确定第一终端设备请求在第三波束进行波束失败恢复。
1303、第二网络设备向第一终端设备发送消息2,消息2包括随机接入响应消息。
1304、第二网络设备向第一网络设备发送用于指示第一网络设备停止调度第一终端设 备的信息。
1305、第一网络设备根据用于指示第一网络设备停止调度第一终端设备的信息停止调度第一终端设备。
步骤1301至步骤1305与前述图7A所示的实施例的步骤701至步骤705类似,具体请参阅前述图7A所示的实施例的步骤701至步骤705的相关介绍,这里不再赘述。
例如,如图13B所示,UE1一开始接入gNB管理的波束2。UE1从波束2的信号覆盖范围移动至NodeX管理的波束4的信号覆盖范围。UE1检测到发生波束失败,并向NodeX发起波束失败恢复请求。即UE1向NodeX请求接入NodeX管理的波束4,以便于实现由NodeX为第一终端设备提供服务。
在场景六中,若采用的是CBRA方式和基于四步随机接入过程,则第一终端设备与第二网络设备之间执行的操作与图7C所示的步骤706至步骤711类似,这里不再赘述。在该方式下,第二网络设备指示第一网络设备停止调度第一终端设备的具体执行流程与前述步骤1304至步骤1305类似,这里不再赘述。
下面结合图14所示的实施例基于CBRA方式和两步随机接入过程介绍上述场景六。请参阅图14,图14为本申请实施例通信方法的另一个实施例示意图。在图14中,该通信方法包括:
1401、第一终端设备向第二网络设备发送消息A,消息A包括随机接入前导码和第一终端设备的标识。
1402、第二网络设备根据随机接入前导码和第一终端设备的标识确定第一终端设备请求接入第三波束。
1403、第二网络设备向第一终端设备发送消息B,消息B为随机接入响应消息。
1404、第二网络设备向第一网络设备发送用于指示第一网络设备停止调度第一终端设备的信息。
1405、第一网络设备根据用于指示第一网络设备停止调度第一终端设备的信息停止调度第一终端设备。
步骤1401至步骤1405与前述图8所示的实施例的步骤801至步骤805类似,具体请参阅前述图8所示的实施例的步骤801至步骤805的相关介绍,这里不再赘述。
上述图13A和图14所示的实施例中,第一终端设备从第一网络设备管理的第四波束的信号覆盖范围移动至第二网络设备管理的第三波束的信号覆盖范围。第一终端设备向第二网络设备发起波束失败恢复请求以实现由第二网络设备为第一终端设备提供服务。上述图13A或图14所示的实施例,实现在第一终端设备发生波束失败场景下,第一终端设备继续在第二网络设备的调度下进行数据传输。第二网络设备向第一网络设备发送用于指示第一网络设备停止调度第一终端设备的信息。这样第一网络设备可以停止对第一终端设备的调度,以便于第二网络设备为第一终端设备提供通信服务。
场景七:第一终端设备处于第二网络设备管理的第三波束的信号覆盖范围内。第一终端设备从第二网络设备管理的第三波束的信号覆盖范围切换(handover)到第四网络设备管理的第六波束的信号覆盖范围。
第四网络设备与第一网络设备是同类型的设备。第四网络设备与第二网络设备是不同类型的设备。第四网络设备采用的物理小区的PCI和第二网络设备采用的物理小区的PCI是不同的。第四网络设备的系统信息和第二网络设备的系统信息是不同的。
下面结合图15A所示的实施例介绍上述场景七。请参阅图15A,图15A为本申请实施例通信方法的另一个实施例示意图。在图15A中,该通信方法包括:
1501、第一终端设备向第一网络设备发送L3测量报告。
第一终端设备通过RRC消息向第一网络设备发送L3测量报告,L3测量报告包括第一终端设备测量gNB发送的信号和/或NodeX发送的信号,得到的参考信号接收功率(reference signal received power,RSRP)或参考信号接收质量(reference signal received quality,RSRQ)。
1502、第一网络设备根据L3测量报告将第一终端设备从第一网络设备切换至第四网络设备。
一种可能的实现方式中,第一网络设备根据L3测量报告,确定第一终端设备切换到第四网络设备管理的哪个波束。
另一种可能的实现方式中,第一网络设备只确定第一终端应该切换到第四网络设备,同时将L3测量报告发送给第四网络设备,由第四网络设备确定第一终端设备切换到第四网络设备管理的哪个波束。
其中,第三波束为第二网络设备管理的波束。第二网络设备为接入第一网络设备的物理小区的设备,第二网络设备为接入点类型设备。
例如,如图15B所示,UE1处于NodeX的波束4的信号覆盖范围内。gNB1接收UE1发送的L3测量报告。gNB1根据该L3测量报告决定将UE1从当前接入的NodeX的波束4切换(handover)至gNB2管理的波束。
1503、第一网络设备向第四网络设备发送切换请求(handover request)消息。
可选的,切换请求消息包括第一终端设备上报的L3测量报告。
例如,如图15B所示,gNB1通过Xn接口向gNB2发送切换请求消息。
1504、第四网络设备向第一网络设备发送切换请求确认(handover request acknowledgement)消息。切换请求确认消息包括第四网络设备向第一终端设备发送的切换命令(handovercommand)消息。
其中,切换请求确认消息包括切换命令消息,切换命令消息包括随机接入信道专用(rach-configDedicated)参数,rach-configDedicated参数包括第四网络设备为第一终端设备分配的C-RNTI、第六波束的标识以及第六波束对应的随机接入前导码序号。第六波束为第四网络设备管理的波束。即第四网络设备根据上述步骤1503的切换请求消息中包含的L3测量报告确定第一终端设备应该切换到第六波束。
例如,如图15B所示,gNB2向gNB1发送切换请求确认消息。该切换请求确认消息包括切换命令消息,。切换命令消息包括rach-configDedicated参数。rach-configDedicated参数包括gNB2为UE1分配的C-RNTI、第六波束对应的SSB index、该第六波束对应的随机接入前导码序号(preamble index)以及其他rach-configGeneric参数等。或者, rach-configDedicated参数包括gNB2给UE1分配的C-RNTI、第六波束对应的CSI-RS resource index以及对应的preamble index,以及其他rach-configGeneric参数等。
1505、第一网络设备向第一终端设备发送切换命令消息。
1506、第一终端设备从第一网络设备切换至第四网络设备。
在上述步骤1505至步骤1506中,第一网络设备将第四网络设备发送的切换命令消息转发给第一终端设备。然后,第一终端设备根据切换命令消息包括的第六波束的标识确定第六波束。终端设备从第二网络设备管理的第三波束切换到到第四网络设备管理的第六波束。
1507、第一网络设备向第二网络设备发送用于指示第二网络设备停止调度第一终端设备的信息。
一种可能的实现方式中,用于指示第二网络设备停止调度第一终端设备的信息为指示信息。第一网络设备通过该指示信息指示第二网络设备停止调度第一终端设备。
另一种可能的实现方式中,用于指示第二网络设备停止调度第一终端设备的信息包括StopTransmissionUEID,StopTransmissionUEID包括第一网络设备或第二网络设备为第一终端设备分配的C-RNTI。
1508、第二网络设备根据用于指示第二网络设备停止调度第一终端设备的信息停止调度第一终端设备。
步骤1508与前述图14所示的实施例的步骤1405类似,具体请参阅前述图14所示的实施例的步骤1405的相关介绍,这里不再赘述。
本申请实施例中,第一终端设备处于第二网络设备管理的第三波束的信号覆盖范围内。第一网络设备根据第一终端设备的L3测量报告确定将第一终端设备从第三波束切换至第四网络设备管理的波束。然后,第一网络设备向第四网络设备发送切换请求消息,再接收第四网络设备发送的切换请求确认消息。该切换请求确认消息包括切换命令消息。第四网络设备再向第一终端设备发送切换命令消息。第一终端设备根据切换命令消息携带的第三波束的信息从第三波束切换至第六波束,从而实现第一终端设备在第一网络设备与第四网络设备之间的切换。这样第一终端设备切换至第四网络设备之后,第四网络设备为第一终端设备提供调度服务。并且,第一网络设备向第二网络设备发送用于指示第二网络设备停止调度第一终端设备的信息,以指示第二网络设备停止调度第一终端设备。这样在第一终端设备切换至第四网络设备管理的第六波束之后,第二网络设备可以及时停止对第一终端设备的调度。
场景八:第一终端设备处于第四网络设备管理的第六波束的信号覆盖范围内。第一终端设备从第四网络设备管理的第六波束的信号覆盖范围切换(handover)到第二网络设备管理的第三波束的信号覆盖范围。
第四网络设备与第一网络设备是同类型的设备。第四网络设备与第二网络设备是不同类型的设备。第四网络设备采用的物理小区的PCI和第二网络设备采用的物理小区的PCI是不同的。第四网络设备的系统信息和第二网络设备的系统信息是不同的。
下面结合图16A所示的实施例介绍场景八。请参阅图16A,图16A为本申请实施例通信方法的另一个实施例示意图。在图16A中,该通信方法包括:
1601、第一终端设备向第四网络设备发送L3测量报告。
1602、第四网络设备根据L3测量报告确定将第一终端设备从第四网络设备切换至第一网络设备。
一种可能实现方式中,第四网络设备根据第一终端设备的L3测量报告,确定第一终端设备切换到第一网络设备或第二网络设备管理的哪个波束。
另一种可能实现方式中,第四网络设备只确定第一终端应该切换到第一网络设备。同时第四网络设备将第一终端设备的L3测量报告发送给第一网络设备。第一网络设备根据L3测量报告确定第一终端设备切换到第一网络设备或第二网络设备管理的哪个波束。
1603、第四网络设备向第一网络设备发送切换请求消息。
步骤1601至步骤1603与前述图15A所示的实施例的步骤1501至步骤1503类似,具体请参阅前述图15A所示的实施例的步骤1501至步骤1503的相关介绍,这里不再赘述。
1604、第一网络设备向第四网络设备发送切换请求确认消息,切换请求确认消息包括第一网络设备向第一终端设备发送的切换命令消息。
切换命令消息包括rach-configDedicated参数,该rach-configDedicated参数包括第一网络设备为第一终端设备分配的C-RNTI、第三波束的标识、第三波束对应的RACH时频资源以及第三波束对应的随机接入前导码序号。
其中,第三波束为第二网络设备管理的波束。第一网络设备根据切换请求消息确定第三波束的信号质量较高,更适合为第一终端设备提供服务,因此第一网络设备决定将第一终端设备从第六波束切换至第三波束。第六波束为第四网络设备管理的波束。
例如,如图16B所示,gNB1确定将由NodeX为UE1提供服务。即决定将第一终端设备从gNB2的波束切换至波束4。那么该rach-configDedicated参数包括gNB1为UE1分配C-RNTI、波束4的SSB index、波束4对应的随机接入前导码序号、以及其他rach-configGeneric参数等。或者,那么该rach-configDedicated参数包括gNB1为UE1分配C-RNTI、波束4的CSI-RS resource index、波束4对应的随机接入前导码序号、以及其他rach-configGeneric参数等。
1605、第四网络设备向第一终端设备发送切换命令消息。
1606、第一终端设备从第四网络设备切换至第一网络设备。
在上述步骤1605至步骤1606中,第一网络设备将第四网络设备发送的切换命令消息转发给第一终端设备。然后,第一终端设备根据切换命令消息包括的第三波束的标识确定第三波束,并从第四网络设备的第六波束切换到第二网络设备管理的第三波束。
1607、第一网络设备向第二网络设备发送第一终端设备的C-RNTI以及第三波束对应的随机接入前导码。
具体的,第一网络设备为第一终端设备分配C-RNTI。第一网络设备向第二网络设备发送第一终端设备的C-RNTI以及第三波束对应的随机接入前导码(例如,preamble index)。
可选的,第一网络设备还可以向第二网络设备发送第三波束对应的RACH时频资源和第三波束的标识。
例如,如图16B所示,gNB1向NodeX发送gNB1为UE1分配的C-RNTI、第三波束对应的SSB index(或CSI-RS resource index)、第三波束对应的随机接入前导码序号、以及其他 rach-configGeneric参数等发送给NodeX。
1608、第二网络设备根据第一网络设备为第一终端设备分配的C-RNTI以及第三波束对应的随机接入前导码确定为第一终端设备提供通信服务。
第二网络设备接收到第一终端设备发送的随机接入前导码之后,第二网络设备可以确定该第一终端设备是是从第四网络设备切换至该第二网络设备的终端设备。然后,第二网络设备为第一终端设备提供通信服务。例如,第二网络设备为第一终端设备提供资源调度、数据传输等服务。
本申请实施例中,第一终端设备处于第四网络设备管理的第六波束的信号覆盖范围内。第四网络设备根据第一终端设备的L3测量报告确定将第一终端设备从第六波束切换至第一网络设备或第二网络设备管理的波束。然后,第四网络设备向第一网络设备发送切换请求消息。第一网络设备向第四网络设备发送切换请求确认消息。该切换请求确认消息包括切换命令消息。然后,第四网络设备向第一终端设备发送切换命令消息。切换命令消息包括第三波束的标识。这样第一终端设备可以根据第三波束的标识确定从第四网络设备管理的第六波束切换至第二网络设备管理的第三波束。第一网络设备向第二网络设备发送第一网络设备为第一终端设备分配的C-RNTI和第三波束对应的preamble index等信息。这样实现第一终端设备在第二网络设备与第四网络设备之间的切换,使得第一终端设备切换至第二网络设备之后,第二网络设备为第一终端设备提供通信服务。
场景九:第一终端设备处于第二网络设备管理的第三波束的信号覆盖范围内。第一终端设备从第二网络设备管理的第三波束的信号覆盖范围切换(handover)到第五网络设备管理的第七波束的信号覆盖范围。
第五网络设备为首先以终端设备的身份接入第四网络设备的物理小区。第五网络设备为接入点类型设备。第四网络设备为第五网络设备配置物理小区的第七波束的资源信息,并向第五网络设备发送第七波束的资源信息。第七波束的资源信息用于第五网络设备管理物理小区的第七波束。也就是第五网络设备管理的第七波束与第四网络设备管理的波束属于同一物理小区。即第五网络设备采用的PCI与第四网络设备采用的PCI相同。第五网络设备广播的系统信息与第四网络设备广播的系统信息相同。
第一网络设备与第四网络设备是同类型的设备,第一网络设备与第二网络设备是不同类型的设备。第五网络设备与第二网络设备是同类型的设备,第五网络设备采用的PCI与第二网络设备采用的PCI是不同的。第五网络设备的系统信息与第二网络设备的系统信息是不同的。
下面结合图17A所示的实施例介绍场景九。请参阅图17A,图17A为本申请实施例通信方法的另一个实施例示意图。在图17A中,该通信方法包括:
1701、第一终端设备向第一网络设备发送L3测量报告。
1702、第一网络设备根据L3测量报告确定将第一终端设备从第一网络设备切换至第四网络设备。
1703、第一网络设备向第四网络设备发送切换请求消息。
1704、第四网络设备向第一网络设备发送切换请求确认消息,该切换请求确认消息包 括第四网络设备向第一终端设备发送的切换命令消息。
切换命令消息中包括第四网络设备为第一终端设备分配的C-RNTI、第七波束的标识、第七波束对应的RACH时频资源和第七波束对应的随机接入前导码(例如,preamble index)。其中,第七波束为第五网络设备管理的波束,第五网络设备为接入第四网络设备的接入点设备。
例如,如图17B所示,gNB1根据UE1的L3测量报告决定将UE1从gNB1切换至gNB2。gNB1向gNB2发送切换请求消息。gNB2可以根据UE1的L3测量报告决定将由NodeX2为UE1提供服务,并确定将UE1接入NodeX2管理的波束6。切换请求消息中携带UE1的测量报告,gNB2可以是在切换请求消息中获取该UE1的L3测量报告。那么gNB2向gNB1发送切换请求确认消息,该切换请求确认消息包括切换命令消息。该切换命令消息包括gNB2为UE1分配的C-RNTI、波束6的SSB index、该SSB index对应的RACH时频资源以及该SSB index对应的随机接入前导码序号。
1705、第一网络设备向第一终端设备发送切换命令消息。
1706、第一终端设备从第一网络设备切换至第四网络设备。
具体的,第一终端设备从第三波束切换至第五网络设备管理的第七波束。
步骤1701至步骤1706与前述图15A所示的实施例的步骤1501至步骤1506类似,具体请参阅图15A所示的实施例的步骤1501至步骤1506的相关介绍,这里不再赘述。
1707、第一网络设备向第二网络设备发送用于指示第二网络设备停止调度第一终端设备的信息。
第一终端设备接入第二网络设备的波束4,第一网络设备保存有第一终端设备的上下文。第一网络设备根据第一终端设备的上下文确定原本是由第二网络设备为第一终端设备提供服务的。即第一终端设备原本接入的是第二网络设备管理的第三波束。那么第一网络设备指示第二网络设备停止调度第一终端设备。
例如,用于指示第二网络设备停止调度第一终端设备的信息为指示信息,第一网络设备通过该指示信息指示第二网络设备停止调度第一终端设备。
再例如,用于指示第二网络设备停止调度第一终端设备的信息为StopTransmissionUEID,StopTransmissionUEID包括第二网络设备为第一终端设备分配的C-RNTI。
1708、第二网络设备根据用于指示第二网络设备停止调度第一终端设备的信息停止调度第一终端设备。
1709、第四网络设备向第五网络设备发送第一终端设备的C-RNTI和第七波束的标识。
步骤1709中,第四网络设备可以向第五网络设备发送第四网络设备为第一终端设备分配的C-RNTI和第七波束的标识。这样第五网络设备为该第一终端设备提供接入服务和资源调度等服务。
本实施例中,可选的,第四网络设备向第五网络设备发送第七波束对应的RACH时频资源和第七波束对应的随机接入前导码;或者,第四网络设备可以是在为第五网络设备配置第五网络设备管理的波束的资源信息中包括第七波束对应的RACH时频资源和第七波束对应的随机接入前导码,以用于第五网络设备为终端设备提供服务。
本申请实施例中,第一终端设备处于第二网络设备管理的第三波束的信号覆盖范围内。第一网络设备根据第一终端设备的L3测量报告确定将第一终端设备从第三波束切换至第四网络设备管理的波束。然后,第一网络设备向第四网络设备发送切换请求消息。第四网络设备向第一网络设备发送切换请求确认消息。该切换请求确认消息包括切换命令消息。然后,第一网络设备向第一终端设备发送切换命令消息。这样第一终端设备可以根据切换命令消息包括的第七波束的标识确定第七波束。然后,第一终端设备从第三波束切换至第七波束。第四网络设备向第五网络设备发送第四网络设备为第一终端设备分配的C-RNTI、第七波束的标识、第七波束对应的RACH时频资源和第七波束对应的随机接入前导码序号。这样第五网络设备可以为该第一终端设备提供通信服务。例如,第五网络设备可以为该第一终端设备提供接入服务、资源调度以及数据传输等服务,实现第一终端设备在第二网络设备与第五网络设备之间的切换。第一终端设备切换至第五网络设备之后,第五网络设备可以为第一终端设备提供调度服务。并且,第一网络设备向第二网络设备发送用于指示第二网络设备停止调度第一终端设备的信息,以使得第二网络设备停止对第一终端设备的调度。
下面对本申请实施例提供的第一网络设备进行描述。请参阅图18,图18为本申请实施例第一网络设备1800的一个结构示意图。该第一网络设备1800可以用于图3、图4A、图5、图6A、图7A、图7C、图8、图9A、图10A、图11、图12、图13A、图14A、图15A、图16A和图17A所示的实施例中第一网络设备执行的步骤,可以参考上述方法实施例中的相关描述。
该第一网络设备1800包括处理单元1801和收发单元1802。
该处理单元1801,用于确定第一网络管理一个或多个第一波束以及第二网络设备管理一个或多个第二波束;其中,一个或多个第一波束与一个或多个第二波束属于同一物理小区;第二网络设备为接入物理小区的设备;确定一个或多个第二波束所对应的资源信息;
该收发单元1802,用于向第二网络设备发送资源信息;资源信息用于第二网络设备为请求接入一个或多个第二波束的终端设备提供通信服务。
一种可能的实现方式中,资源信息包括以下至少一项:一个或多个第二波束分别对应的标识、每个第二波束对应的前导码序号集合、每个第二波束对应的随机接入信道时频资源信息。
另一种可能的实现方式中,该收发单元1802还用于:
向第二网络设备发送以下至少一项:
系统信息、系统信息对应的时频资源信息、解调参考信号对应的时频资源信息、CSI-RS对应的时频资源信息、小区无线网络临时标识集合、控制资源集时频资源信息、调度时频资源信息。
另一种可能的实现方式中,该收发单元1802还用于:
接收第二网络设备发送的第二网络设备的能力信息;能力信息包括以下至少一项:用于指示第二网络设备为接入点类型设备的信息、第二网络设备的发射功率。
另一种可能的实现方式中,该能力信息还包括以下至少一项:第二网络设备的收发天线个数、位置信息、支持的波束个数、支持接入的终端设备个数、请求的时频资源的大小。
另一种可能的实现方式中,该处理单元1801具体用于:
根据能力信息确定一个或多个第二波束由第二网络设备管理。
另一种可能的实现方式中,该收发单元1802还用于:
接收第二网络设备的位置信息和波束测量结果,波束测量结果包括第二网络设备测量物理小区的波束得到的波束测量结果;
该处理单元1801具体用于:
根据所述能力信息和波束测量结果确定第二网络设备管理所述一个或多个第二波束。
另一种可能的实现方式中,当第一终端设备从第三波束切换至第四波束时,第三波束为一个或多个第二波束中的一个波束,第四波束为该一个或多个第一波束中的一个波束;该收发单元1802还用于:
接收第二网络设备发送第一终端设备的C-RNTI和第四波束的标识;
该处理单元1801还用于:
根据第一终端设备的C-RNTI和第四波束的标识为第一终端设备提供通信服务。
另一种可能的实现方式中,一个或多个第二波束包括第三波束,第一终端设备接入第三波束;当第一终端设备从第三波束的信号覆盖范围移动至第四波束的信号覆盖范围时,第四波束为第一网络设备管理的一个或多个第一波束中的一个波束;该收发单元1802还用于:
接收第一终端设备发送的消息1,消息1包括随机接入前导码;
该处理单元1801还用于:
根据消息1的随机接入前导码确定第一终端设备请求在第四波束进行波束失败恢复;第一网络设备向第一终端设备发送消息2,消息2包括随机接入响应消息;
该收发单元1802还用于:
向第二网络设备发送用于指示第二网络设备停止调度第一终端设备的信息。
另一种可能的实现方式中,一个或多个第一波束包括第四波束,第一终端设备接入第四波束;该收发单元1802还用于:
接收第一终端设备的L1测量报告;
该处理单元1801还用于:
根据L1测量报告确定第三波束;第三波束为第二网络设备管理的一个或多个第二波束中的一个波束;
该收发单元1802还用于:
向第一终端设备发送第三波束的标识,第三波束的标识用于第一终端设备从第四波束切换至第三波束;
向第二网络设备发送第一终端设备的C-RNTI和第三波束的标识。
另一种可能的实现方式中,该一个或多个第一波束包括第四波束,第一终端设备接入第四波束;当第一终端设备从第四波束的信号覆盖范围移动至第三波束的信号覆盖范围,第一终端设备向第一网络设备发起波束失败恢复请求时,第三波束为第二网络设备管理的一个或多个第二波束中的一个波束,该收发单元1802还用于:
接收第二网络设备的用于指示第一网络设备停止调度第一终端设备的信息;
该处理单元1801还用于:
根据用于指示第一网络设备停止调度第一终端设备的信息停止调度第一终端设备。
另一种可能的实现方式中,该收发单元1802还用于:
接收第一终端设备的L3测量报告;
该处理单元1801还用于:
根据L3测量报告确定将第一终端设备从第一网络设备切换至第四网络设备;第一网络设备向第四网络设备发送切换请求消息;
该收发单元1802还用于:
接收第四网络设备的切换请求确认消息,切换请求确认消息包括第四网络设备向第一终端设备发送的切换命令消息;该切换命令消息包括随机接入信道专用参数;该随机接入信道专用参数包括第四网络设备为第一终端设备分配的C-RNTI、第六波束的标识以及第六波束对应的随机接入前导码,第六波束为第四网络设备管理的波束;向第二网络设备发送用于指示第二网络设备停止调度第一终端设备的信息。
另一种可能的实现方式中,该收发单元1802还用于:
接收第四网络设备的切换请求消息;向第四网络设备发送切换请求确认消息,切换请求确认消息包括第一网络设备向第一终端设备发送的切换命令消息;切换命令消息包括随机接入信道专用参数;该随机接入信道专用参数包括第一网络设备或第二网络设备为第一终端设备分配的C-RNTI、第三波束的标识、以及第三波束对应的随机接入前导码;第三波束为第二网络设备管理的一个或多个第二波束中的一个波束;向第二网络设备发送第一终端设备的C-RNTI和第三波束对应的随机接入前导码。
本申请实施例中,该处理单元1801,用于确定第一网络管理一个或多个第一波束以及第二网络设备管理一个或多个第二波束;其中,一个或多个第一波束与一个或多个第二波束属于同一物理小区;第二网络设备为接入物理小区的设备;确定一个或多个第二波束所对应的资源信息;该收发单元1802,用于向第二网络设备发送资源信息;资源信息用于第二网络设备为请求接入一个或多个第二波束的终端设备提供通信服务。通过第一网络设备为第二网络设备配置一个或多个第二波束的资源信息,以实现第二网络设备管理物理小区的一个或多个第二波束,负责为请求接入该一个或多个第二波束的终端设备提供接入服务和资源调度。由于第二网络设备管理的是物理小区的一个或多个第二波束,并不是一个新的物理小区,因此无需分配新的PCI,从而避免了大量部署站点容易出现的由于一个PCI被邻近不同物理小区共用所导致的PCI冲突的问题。
下面对本申请实施例提供的第二网络设备进行描述。请参阅图19,图19为本申请实施例第二网络设备1900的一个结构示意图。该第二网络设备1900可以用于图3、图4A、图5、图6A、图7A、图7C、图8、图9A、图10A、图11、图12、图13A、图14A、图15A、图16A和图17A所示的实施例中第二网络设备执行的步骤,可以参考上述方法实施例中的相关描述。
该第二网络设备1900包括收发单元1901和处理单元1902。
该收发单元1901,用于接收第一网络设备发送的一个或多个第二波束所对应的资源信息;该一个或多个第二波束与第一网络设备管理的一个或多个第一波束属于同一物理小区;第二网络设备为接入该物理小区的设备;
该处理单元1902,用于根据该资源信息为请求接入该一个或多个第二波束的终端设备提供通信服务。
一种可能的实现方式中,该资源信息包括以下至少一项:该一个或多个第二波束分别对应的标识、每个第二波束对应的基于竞争的前导码序号集合、每个第二波束对应的随机接入信道时频资源信息。
另一种可能的实现方式中,该收发单元1901还用于:
接收第一网络设备发送的以下至少一项:系统信息、系统信息对应的时频资源信息、解调参考信号对应的时频资源信息、信道状态信息参考信号对应的时频资源信息、小区无线网络临时标识集合、控制资源集时频资源信息、调度时频资源信息。
另一种可能的实现方式中,该处理单元1902还用于:
根据系统信息对应的时频资源信息确定系统信息对应的时频资源;
该收发单元1901还用于:
在系统信息对应的时频资源发送该系统信息。
另一种可能的实现方式中,该收发单元1901还用于:
向第一网络设备发送第二网络设备的能力信息;该能力信息包括以下至少一项:用于指示第二网络设备为接入点类型设备的信息、第二网络设备的发射功率。
另一种可能的实现方式中,该能力信息还包括以下至少一项:第二网络设备的收发天线个数、位置信息、支持的波束个数、支持接入的终端设备个数、请求的时频资源的大小。
另一种可能的实现方式中,该收发单元1901还用于:
向第一网络设备发送第二网络设备的波束测量结果,波束测量结果包括第二网络设备测量物理小区的波束得到的波束测量结果。
另一种可能的实现方式中,一个或多个第二波束包括第三波束,第一终端设备接入第三波束;该收发单元1901还用于:
接收第一终端设备发送的L1测量报告;
该处理单元1902还用于:
根据L1测量报告确定第四波束;第四波束为第一网络设备管理的一个或多个第一波束中的其中一个波束;
该收发单元1901还用于:
向第一终端设备发送第四波束的标识;第四波束的标识用于第一终端设备从第三波束切换至第四波束;
向第一终端设备发送第一终端设备的C-RNTI和第四波束的标识。
另一种可能的实现方式中,一个或多个第二波束包括第三波束,第一终端设备接入第三波束;当第一终端设备从第三波束的信号覆盖范围移动至第四波束的信号覆盖范围,第一终端设备向第一网络设备发起波束失败恢复请求时,第四波束为第一网络设备管理的一 个或多个第一波束中的一个波束,该收发单元1901还用于:
接收第一网络设备的用于指示第二网络设备停止调度第一终端设备的信息;
该处理单元1902还用于:
根据用于指示第二网络设备停止调度第一终端设备的信息停止调度第一终端设备。
另一种可能的实现方式中,当第一终端设备从第四波束切换至第三波束时,第三波束为一个或多个第二波束中的一个波束,第四波束为第一网络设备管理的一个或多个第一波束中的一个波束;该收发单元1901还用于:
接收第一网络设备发送的第一终端设备的C-RNTI和第三波束的标识;
该处理单元1902还用于:
根据第一终端设备的C-RNTI和第三波束的标识为第一终端设备提供通信服务。
另一种可能的实现方式中,一个或多个第一波束包括第四波束,第一终端设备接入第四波束;当第一终端设备从第四波束的信号覆盖范围移动至第三波束的信号覆盖范围时,第三波束为第二网络设备管理的一个或多个第二波束中的一个波束;该收发单元1901还用于:
接收第一终端设备的消息1,消息1包括随机接入前导码;
该处理单元1902还用于:
根据消息1的随机接入前导码确定第一终端设备请求在第三波束进行波束失败恢复;
该收发单元1901还用于:
向第一网络设备发送消息2,消息2包括随机接入响应消息;
向第一网络设备发送用于指示第一网络设备停止调度第一终端设备的信息。
另一种可能的实现方式中,当第一终端设备从第一网络设备切换至第四网络设备时,该收发单元1901还用于:
接收第一网络设备发送的用于指示第二网络设备停止调度第一终端设备的信息;
该处理单元1902还用于:
根据用于指示第二网络设备停止调度第一终端设备的信息停止调度第一终端设备。
另一种可能的实现方式中,当第一终端设备从第四网络设备切换至第一网络设备时,该收发单元1901还用于:
接收第一网络设备发送的第一终端设备的C-RNTI和第三波束对应的随机接入前导码;
该处理单元1902还用于:
根据第一终端设备的C-RNTI和第三波束对应的随机接入前导码为第一终端设备提供通信服务。
本申请实施例中,该收发单元1901,用于接收第一网络设备发送的一个或多个第二波束所对应的资源信息;该一个或多个第二波束与第一网络设备管理的一个或多个第一波束属于同一物理小区;第二网络设备为接入该物理小区的设备;该处理单元1902,用于根据该资源信息为请求接入该一个或多个第二波束的终端设备提供通信服务。通过第一网络设备为第二网络设备配置一个或多个第二波束的资源信息,以实现第二网络设备管理物理小区的一个或多个第二波束,负责为请求接入该一个或多个第二波束的终端设备提供接入服 务和资源调度。由于第二网络设备管理的是物理小区的一个或多个第二波束,并不是一个新的物理小区,因此无需分配新的PCI,从而避免了大量部署站点容易出现的由于一个PCI被邻近不同物理小区共用所导致的PCI冲突的问题。
本申请还提供一种第一网络设备,请参阅图20,本申请实施例中第一网络设备2000的另一个结构示意图,该第一网络设备2000可以用于执行图3、图4A、图5、图6A、图7A、图7C、图8、图9A、图10A、图11、图12、图13A、图14A、图15A、图16A和图17A所示实施例中第一网络设备执行的步骤,可以参考上述方法实施例中的相关描述。
该网络设备2000包括:处理器2001、存储器2002和收发器2003。
一种可能的实现方式中,该处理器2001、存储器2002和收发器2003分别通过总线相连,该存储器中存储有计算机指令。
前述实施例中的处理单元1801具体可以是本实施例中的处理器2001,因此该处理器2001的具体实现不再赘述。前述实施例中的收发单元1802则具体可以是本实施例中的收发器2003,因此收发器2003的具体实现不再赘述。
本申请还提供一种第二网络设备,请参阅图21,本申请实施例中第二网络设备2100的另一个结构示意图,该第二网络设备2100可以用于执行图3、图4A、图5、图6A、图7A、图7C、图8、图9A、图10A、图11、图12、图13A、图14A、图15A、图16A和图17A所示实施例中第二网络设备执行的步骤,可以参考上述方法实施例中的相关描述。
该网络设备2100包括:处理器2101、存储器2102和收发器2103。
一种可能的实现方式中,该处理器2101、存储器2102和收发器2103分别通过总线相连,该存储器中存储有计算机指令。
前述实施例中的处理单元1902具体可以是本实施例中的处理器2101,因此该处理器2101的具体实现不再赘述。前述实施例中的收发单元1901则具体可以是本实施例中的收发器2103,因此收发器2103的具体实现不再赘述。
请参阅图22,本申请实施例还提供一种通信系统,该通信系统包括如图18所示的第一网络设备和如图19所示的第二网络设备。其中,图18所示的第一网络设备用于执行图3、图4A、图5、图6A、图7A、图7C、图8、图9A、图10A、图11、图12、图13A、图14A、图15A、图16A和图17A所示的实施例中第一网络设备执行的全部或部分步骤。图19所示的第二网络设备用于执行图3、图4A、图5、图6A、图7A、图7C、图8、图9A、图10A、图11、图12、图13A、图14A、图15A、图16A和图17A所示的实施例中第二网络设备执行的全部或部分步骤。
本申请实施例还提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得该计算机执行如上述图3、图4A、图5、图6A、图7A、图7C、图8、图9A、图10A、图11、图12、图13A、图14A、图15A、图16A和图17A所示的实施例的通信方法。
本申请实施例还提供了一种计算机可读存储介质,包括计算机指令,当该计算机指令在计算机上运行时,使得计算机执行如上述图3、图4A、图5、图6A、图7A、图7C、图8、图9A、图10A、图11、图12、图13A、图14A、图15A、图16A和图17A所示的实施例的通信方法。
本申请实施例还提供一种芯片装置,包括处理器,用于与存储器相连,调用该存储器中存储的程序,以使得该处理器执行上述图3、图4A、图5、图6A、图7A、图7C、图8、图9A、图10A、图11、图12、图13A、图14A、图15A、图16A和图17A所示的实施例的通信方法。
其中,上述任一处提到的处理器,可以是一个通用中央处理器,微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述图3、图4A、图5、图6A、图7A、图7C、图8、图9A、图10A、图11、图12、图13A、图14A、图15A、图16A和图17A所示的实施例的通信方法的程序执行的集成电路。上述任一处提到的存储器可以为只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁盘或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (28)

  1. 一种通信方法,其特征在于,所述方法包括:
    第一网络设备确定所述第一网络设备管理一个或多个第一波束以及第二网络设备管理一个或多个第二波束,其中,所述一个或多个第一波束与所述一个或多个第二波束属于同一物理小区,所述第二网络设备为接入所述物理小区的设备;
    所述第一网络设备确定所述一个或多个第二波束所对应的资源信息;
    所述第一网络设备向所述第二网络设备发送所述资源信息,所述资源信息用于所述第二网络设备为请求接入所述一个或多个第二波束的终端设备提供通信服务。
  2. 根据权利要求1所述的方法,其特征在于,所述资源信息包括以下至少一项:
    所述一个或多个第二波束分别对应的标识、每个所述第二波束对应的前导码序号集合、每个所述第二波束对应的随机接入信道时频资源信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备向所述第二网络设备发送以下至少一项:
    系统信息SI、所述系统信息SI对应的时频资源信息、解调参考信号DMRS对应的时频资源信息、信道状态信息参考信号CSI-RS对应的时频资源信息、小区无线网络临时标识C-RNTI集合、控制资源集CORESET时频资源信息、调度时频资源信息。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备接收来自所述第二网络设备的所述第二网络设备的能力信息;
    所述能力信息包括以下至少一项:
    用于指示所述第二网络设备为接入点类型设备的信息、所述第二网络设备的发射功率。
  5. 根据权利要求4所述的方法,其特征在于,所述能力信息还包括以下至少一项:
    所述第二网络设备的收发天线个数、位置信息、支持的波束个数、支持接入的终端设备个数、请求的时频资源的大小。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第一网络设备确定所述第一网络设备管理一个或多个第一波束以及第二网络设备管理一个或多个第二波束,包括:
    所述第一网络设备根据所述能力信息确定所述一个或多个第二波束由所述第二网络设备管理。
  7. 根据权利要求4或5所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备接收所述第二网络设备的位置信息和波束测量结果,所述波束测量结果包括所述第二网络设备测量所述物理小区的波束得到的波束测量结果;
    所述第一网络设备确定所述第一网络设备管理一个或多个第一波束以及第二网络设备管理一个或多个第二波束,包括:
    所述第一网络设备根据所述能力信息和所述波束测量结果确定所述第二网络设备管理所述一个或多个第二波束。
  8. 一种通信方法,其特征在于,所述方法包括:
    第二网络设备接收来自第一网络设备的一个或多个第二波束所对应的资源信息,所述一个或多个第二波束与所述第一网络设备管理的一个或多个第一波束属于同一物理小区, 所述第二网络设备为接入所述物理小区的设备;
    所述第二网络设备根据所述资源信息为请求接入所述一个或多个第二波束的终端设备提供通信服务。
  9. 根据权利要求8所述的方法,其特征在于,所述资源信息包括以下至少一项:
    所述一个或多个第二波束分别对应的标识、每个所述第二波束对应的基于竞争的前导码序号集合、每个所述第二波束对应的随机接入信道时频资源信息。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    所述第二网络设备接收来自所述第一网络设备的以下至少一项:
    系统信息SI、所述系统信息SI对应的时频资源信息、解调参考信号DMRS对应的时频资源信息、信道状态信息参考信号CSI-RS对应的时频资源信息、小区无线网络临时标识C-RNTI集合、控制资源集CORESET时频资源信息、调度时频资源信息。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二网络设备向所述第一网络设备发送所述第二网络设备的能力信息;
    所述能力信息包括以下至少一项:
    用于指示所述第二网络设备为接入点类型设备的信息、所述第二网络设备的发射功率。
  12. 根据权利要求11所述的方法,其特征在于,所述能力信息还包括以下至少一项:
    所述第二网络设备的收发天线个数、位置信息、支持的波束个数、支持接入的终端设备个数、请求的时频资源的大小。
  13. 根据权利要求8至12中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二网络设备向所述第一网络设备发送所述第二网络设备的位置信息和波束测量结果,所述波束测量结果包括所述第二网络设备测量所述物理小区的波束得到的波束测量结果。
  14. 一种第一网络设备,其特征在于,所述第一网络设备包括:
    处理单元,用于确定所述第一网络设备管理一个或多个第一波束以及第二网络设备管理一个或多个第二波束,其中,所述一个或多个第一波束与所述一个或多个第二波束属于同一物理小区,所述第二网络设备为接入所述物理小区的设备;确定所述一个或多个第二波束所对应的资源信息;
    收发单元,用于向所述第二网络设备发送所述资源信息,所述资源信息用于所述第二网络设备为请求接入所述一个或多个第二波束的终端设备提供通信服务。
  15. 根据权利要求14所述的第一网络设备,其特征在于,所述资源信息包括以下至少一项:
    所述一个或多个第二波束分别对应的标识、每个所述第二波束对应的前导码序号集合、每个所述第二波束对应的随机接入信道时频资源信息。
  16. 根据权利要求14或15所述的第一网络设备,其特征在于,所述收发单元还用于:
    向所述第二网络设备发送以下至少一项:
    系统信息SI、所述系统信息SI对应的时频资源信息、解调参考信号DMRS对应的时频资源信息、信道状态信息参考信号CSI-RS对应的时频资源信息、小区无线网络临时标识 C-RNTI集合、控制资源集CORESET时频资源信息、调度时频资源信息。
  17. 根据权利要求14至16中任一项所述的第一网络设备,其特征在于,所述收发单元还用于:
    接收来自所述第二网络设备的所述第二网络设备的能力信息;
    所述能力信息包括以下至少一项:
    用于指示所述第二网络设备为接入点类型设备的信息、所述第二网络设备的发射功率。
  18. 根据权利要求17所述的第一网络设备,其特征在于,所述能力信息还包括以下至少一项:
    所述第二网络设备的收发天线个数、位置信息、支持的波束个数、支持接入的终端设备个数、请求的时频资源的大小。
  19. 根据权利要求17或18所述的第一网络设备,其特征在于,所述处理单元具体用于:
    根据所述能力信息确定所述一个或多个第二波束由所述第二网络设备管理。
  20. 根据权利要求17或18所述的第一网络设备,其特征在于,所述收发单元还用于:
    接收所述第二网络设备的位置信息和波束测量结果,所述波束测量结果包括所述第二网络设备测量所述物理小区的波束得到的波束测量结果;
    所述处理单元具体用于:
    根据所述能力信息和所述波束测量结果确定所述第二网络设备管理所述一个或多个第二波束。
  21. 一种第二网络设备,其特征在于,所述第二网络设备包括:
    收发单元,用于接收来自第一网络设备的一个或多个第二波束所对应的资源信息,所述一个或多个第二波束与所述第一网络设备管理的一个或多个第一波束属于同一物理小区,所述第二网络设备为接入所述物理小区的设备;
    处理单元,用于根据所述资源信息为请求接入所述一个或多个第二波束的终端设备提供通信服务。
  22. 根据权利要求21所述的第二网络设备,其特征在于,所述资源信息包括以下至少一项:
    所述一个或多个第二波束分别对应的标识、每个所述第二波束对应的基于竞争的前导码序号集合、每个所述第二波束对应的随机接入信道时频资源信息。
  23. 根据权利要求21或22所述的第二网络设备,其特征在于,所述收发单元还用于:
    接收来自所述第一网络设备的以下至少一项:
    系统信息SI、所述系统信息SI对应的时频资源信息、解调参考信号DMRS对应的时频资源信息、信道状态信息参考信号CSI-RS对应的时频资源信息、小区无线网络临时标识C-RNTI集合、控制资源集CORESET时频资源信息、调度时频资源信息。
  24. 根据权利要求21至23中任一项所述的第二网络设备,其特征在于,所述收发单元还用于:
    向所述第一网络设备发送所述第二网络设备的能力信息;
    所述能力信息包括以下至少一项:
    用于指示所述第二网络设备为接入点类型设备的信息、所述第二网络设备的发射功率。
  25. 根据权利要求24所述的第二网络设备,其特征在于,所述能力信息还包括以下至少一项:
    所述第二网络设备的收发天线个数、位置信息、支持的波束个数、支持接入的终端设备个数、请求的时频资源的大小。
  26. 根据权利要求21至25中任一项所述的第二网络设备,其特征在于,所述收发单元还用于:
    向所述第一网络设备发送所述第二网络设备的位置信息和波束测量结果,所述波束测量结果包括所述第二网络设备测量所述物理小区的波束得到的波束测量结果。
  27. 一种网络设备,其特征在于,所述网络设备包括处理器,所述处理器用于调用所述存储器中的计算机程序或计算机指令,使得所述网络设备执行如权利要求1至7中任一项所述的方法;或者,使得所述网络设备执行如权利要求8至13中任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如权利要求1至7中任一项所述的方法;或者,使得计算机执行如权利要求8至13中任一项所述的方法。
PCT/CN2020/134549 2020-12-08 2020-12-08 物理小区的波束管理方法以及相关装置 WO2022120574A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/134549 WO2022120574A1 (zh) 2020-12-08 2020-12-08 物理小区的波束管理方法以及相关装置
CN202080107427.5A CN116547922A (zh) 2020-12-08 2020-12-08 物理小区的波束管理方法以及相关装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/134549 WO2022120574A1 (zh) 2020-12-08 2020-12-08 物理小区的波束管理方法以及相关装置

Publications (1)

Publication Number Publication Date
WO2022120574A1 true WO2022120574A1 (zh) 2022-06-16

Family

ID=81973938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134549 WO2022120574A1 (zh) 2020-12-08 2020-12-08 物理小区的波束管理方法以及相关装置

Country Status (2)

Country Link
CN (1) CN116547922A (zh)
WO (1) WO2022120574A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102612024A (zh) * 2012-04-13 2012-07-25 北京邮电大学 一种中继站物理小区标识的自配置方法
US20130039342A1 (en) * 2011-08-12 2013-02-14 Telefonaktiebolaget L M Ericsson (Publ) User Equipment, Network Node, Second Network Node and Methods Therein
CN110149642A (zh) * 2018-02-12 2019-08-20 华为技术有限公司 一种中继节点同步信号的发送方法及装置
CN111201721A (zh) * 2017-10-12 2020-05-26 高通股份有限公司 波束管理方案

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130039342A1 (en) * 2011-08-12 2013-02-14 Telefonaktiebolaget L M Ericsson (Publ) User Equipment, Network Node, Second Network Node and Methods Therein
CN102612024A (zh) * 2012-04-13 2012-07-25 北京邮电大学 一种中继站物理小区标识的自配置方法
CN111201721A (zh) * 2017-10-12 2020-05-26 高通股份有限公司 波束管理方案
CN110149642A (zh) * 2018-02-12 2019-08-20 华为技术有限公司 一种中继节点同步信号的发送方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM EUROPE: "Challenges with Type II Relay Operation", 3GPP DRAFT; R1-093113 CHALLENGES WITH TYPE II RELAY OPERATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. Shenzhen, China; 20090819, 19 August 2009 (2009-08-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050351485 *

Also Published As

Publication number Publication date
CN116547922A (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
US11832239B2 (en) Resource selection method for V2X operation of terminal in wireless communication system, and terminal using method
US11805461B2 (en) Method for measurement report event operation and network signaling in UE autonomous handover
US11412429B2 (en) Method for measurement report event operation and network signaling in UE autonomous handover
US20190182682A1 (en) Method and apparatus for performing random access in wireless communication system supporting beamforming
KR20220133145A (ko) 이동통신 시스템에서 라이트 커넥션을 수행하는 방법 및 장치
US20220295571A1 (en) Rach-report indicating rat or node in a dual-connectivity / multi-rat configuration
KR20180106506A (ko) 차세대 이동통신에서 대기 모드 동작을 효과적으로 하는 방법 및 장치
US11778647B2 (en) Method and apparatus for requesting system information by using preamble in next generation mobile communication system
JP6062088B2 (ja) ユーザ端末、及びプロセッサ
TWI688302B (zh) 重新導向通訊裝置的裝置及方法
KR20160121437A (ko) 이동 통신 시스템에서 mac pdu를 수신하는 방법 및 장치
JP5905575B2 (ja) 通信制御方法及び基地局
JPWO2013183731A1 (ja) 通信制御方法、基地局、ユーザ端末、プロセッサ、及び記憶媒体
US20230379773A1 (en) Method and device for handling lbt failure indicator when daps handover is configured in wireless communication system
KR20200048209A (ko) 비면허 대역의 이동통신 시스템에서 셀 재선택 절차를 수행하는 방법 및 장치
US10070329B2 (en) Device and method
US20230224765A1 (en) Method and device for group handover in communication system
WO2022120574A1 (zh) 物理小区的波束管理方法以及相关装置
US20230276279A1 (en) Method and apparatus for activating or deactivating a scg in wireless communication system
US11832135B2 (en) Method and apparatus for secondary base station change in mobile wireless communication system
WO2022089200A1 (zh) 用于小区切换的方法和装置
KR20230127592A (ko) 무선 이동 통신 시스템에서 부 셀그룹을 활성화하거나 비활성화하는 방법 및 장치
KR20230127597A (ko) 무선 이동 통신 시스템에서 부 셀그룹을 활성화하거나 비활성화하는 방법 및 장치
KR20230127598A (ko) 무선 이동 통신 시스템에서 부 셀그룹을 활성화하거나 비활성화하는 방법 및 장치
KR20230127605A (ko) 무선 이동 통신 시스템에서 부 셀그룹을 활성화하거나 비활성화하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964519

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107427.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964519

Country of ref document: EP

Kind code of ref document: A1