WO2019154003A1 - 一种传输控制方法、终端设备及网络设备 - Google Patents

一种传输控制方法、终端设备及网络设备 Download PDF

Info

Publication number
WO2019154003A1
WO2019154003A1 PCT/CN2019/071120 CN2019071120W WO2019154003A1 WO 2019154003 A1 WO2019154003 A1 WO 2019154003A1 CN 2019071120 W CN2019071120 W CN 2019071120W WO 2019154003 A1 WO2019154003 A1 WO 2019154003A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
control information
transmission control
feedback
parameter group
Prior art date
Application number
PCT/CN2019/071120
Other languages
English (en)
French (fr)
Inventor
葛士斌
王潇涵
刘永
金黄平
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19750288.3A priority Critical patent/EP3742643A4/en
Publication of WO2019154003A1 publication Critical patent/WO2019154003A1/zh
Priority to US16/986,167 priority patent/US11818714B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method, a network device, and a terminal for processing a transport block.
  • a transport block may be, for example but not limited to, a data block containing a medium access control (MAC) protocol data unit (PDU), which may be at a time.
  • PDU medium access control protocol data unit
  • a time period may be, for example, a Transmission Time Interval (TTI).
  • TTI Transmission Time Interval
  • For a network device, each time period can also send up to two transport blocks to the same terminal.
  • the TBs are scheduled by Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • HARQ hybrid automatic repeat request
  • ID hybrid automatic repeat request
  • the two TBs scheduled in the same DCI are identified by the same HARQ ID, and the terminal can distinguish by the difference between the fields occupied by the two TBs.
  • the terminal may not be able to distinguish the two or more transport blocks, so that the two or more transport blocks cannot be used. Give feedback.
  • the embodiment of the present application provides a transport block control method, which can accurately distinguish the respective transport blocks of at least two transmission control information, and make effective feedback.
  • the embodiments of the present application also provide corresponding terminal devices and network devices.
  • a first aspect of the embodiments of the present application provides a transmission control method, including: receiving N pieces of transmission control information, where each piece of transmission control information is used to schedule one transmission block, and each piece of transmission control information includes F transmission parameter sets.
  • the fields are respectively the first transmission parameter group field to the Fth transmission parameter group field, and only one transmission parameter group field of each of the F transmission parameter group fields of the transmission control information is valid, and each transmission control of the N pieces of transmission control information
  • the effective transmission parameter group field of the information is different from the effective transmission parameter group field of other transmission control information, N is an integer greater than 1, and F is an integer greater than or equal to N; generating respective scheduled transmissions for N pieces of transmission control information
  • the block transmission feedback information includes: N feedback fields, which are respectively a first feedback field to an Nth feedback field, wherein the Mth feedback field is used for the Q transmission of the effective transmission parameter group field in the N pieces of transmission control information
  • M is an integer
  • Q is an integer
  • the transmission control information may be DCI
  • the transmission parameter group field may be a transport block configuration information field in the DCI
  • the configuration information field may include the following parameters: modulation and coding scheme (MCS) ), new data indicator (NDI) and redundancy version (RV).
  • the N pieces of transmission control information are from P network devices, 1 ⁇ P ⁇ N. It can be seen from the first possible implementation manner of the first aspect that whether the N pieces of transmission control information are from the same network device or from different network devices, the transmission blocks transmitted by the network device in the same time period can be accurately distinguished, if P is greater than 1
  • the valid transmission parameter group fields in the N transmission control information are determined, or one of the P network devices is pre-configured as the control terminal, and the control terminal is connected to other network devices.
  • the effective transmission parameter group field is assigned.
  • the same time period in the embodiment of the present application may be the same transmission time interval (TTI), or the same time slot (slot), or other time length units.
  • At least one of the N pieces of transmission control information includes a transmission resource indication, where the transmission resource indication is used to indicate at least A transmission resource that transmits feedback information.
  • the transmission feedback information includes an ACK response to the correctly demodulated transport block and a NACK response to the transport block that is not correctly demodulated, and the transmission resource indication may indicate the uplink resource used by the transmission feedback information during transmission.
  • the method further includes: determining, according to the selection policy, a target transmission resource indication for transmitting feedback information, where, when the N pieces of transmission control information When only one of the transmission resource indications is included, the selection policy is an indication policy for selecting the one transmission resource indication as the target transmission resource indication; when at least two of the N pieces of transmission control information include the transmission resource indication, and the at least two transmission resources When the indication is the same, the selection policy is to select the same transmission resource indication as the indication policy of the target transmission resource indication; when at least two of the N pieces of transmission control information include the transmission resource indication, the selection policy is to select the specified transmission resource indication as the target.
  • An indication policy for transmitting resource indications when the N pieces of transmission control information When only one of the transmission resource indications is included, the selection policy is an indication policy for selecting the one transmission resource indication as the target transmission resource indication; when at least two of the N pieces of transmission control information include the transmission resource indication, and the at least two transmission resources When the indication is the same, the selection policy is to select the same transmission resource indication as the indication
  • the transmission resource is used to indicate the indicated transmission resource for feedback. If all of the N DCIs carry the same transmission resource indication, the transmission resource indication of one of the DCIs is arbitrarily selected, and the transmission resource indicated by the transmission resource indication is used for feedback. If more than one DCI in the N DCI carries the transmission resource indication, and each transmission resource indication is not the same, the network device may perform the selection according to a pre-specified setting, for example, specify a control resource set in the N DCIs.
  • the CORESET indicates that the DCI with the smallest identifier (ID) carries the transmission resource indication as the target transmission resource to be used, or specifies the transmission resource indication carried by the DCI with the smallest CORESET ID in the DCI carrying the indication of the transmission resource as the target transmission resource to be used.
  • CORESET is the time-frequency resource that carries DCI. Each CORESET will have an ID. The network side can configure multiple CORESETs, so there will be multiple CORESET IDs. The CORESET ID will not be repeated in the same time period. Of course, the indication of the location is as small as the CORESET ID. In fact, it can also be the specified option with the largest CORESET ID or other methods, and it is not limited to the identification method only by the CORESET ID.
  • the target transmission resource may be selected by using a quasi-colocation (QCL) value range, a Demodulation Reference Signal (DMRS) group identifier, or the like.
  • QCL quasi-colocation
  • DMRS Demodulation Reference
  • the method further includes: transmitting the transmission feedback information on the transmission resource indicated by the target transmission resource indication, and transmitting the feedback
  • the order of the N feedback fields in the information is the order of the transmission attributes of the N pieces of transmission control information.
  • the transmission attribute may include a control resource set CORESET, a quasi-colocation (QCL), a format Format, or a Demodulation Reference Signal (DMRS) group.
  • Each type of transport attribute will have an attribute value sequence number, a sequence number, a range of values, or a sequence identifier.
  • the order of the CORESET ID can be numbered starting from 1, CORESET 1, CORESET 2, CORESET 3, and the number is incremented by 1 so that if there are two DCIs, DCI1 and DCI2 respectively, the CORESET ID of DCI1 is CORESET 1.
  • DCI1 is used to schedule TB1
  • DCI2's CORESET ID is CORESET2
  • DCI2 is used to schedule TB2.
  • the order of transmission attributes is CORESET 1--CORESET 2, that is, CORESET 1 is ranked first and CORESET 2 is ranked after.
  • the two feedback fields in the transmission feedback information are respectively a first feedback field and a second feedback field, the first feedback field is sequentially arranged before the second feedback field, and the order of the first feedback field and the second feedback field is CORESET 1 Corresponding to the order of CORESET 2, so the first feedback field indicates feedback to TB1, and the second feedback field indicates feedback to TB2.
  • the order of the DMRS group is used, the order of the N feedback fields in the transmission feedback information is the DMRS group in which the Demodulation Reference Signal (DMRS) port included in each of the N pieces of transmission control information is located. order of.
  • DMRS Demodulation Reference Signal
  • Each DCI will contain a DMRS port, which has been previously assigned to the DMRS group.
  • one TB corresponds to one DMRS group, and each DMRS group has a number or identifier.
  • Each DMRS group has different numbers, such as DMRS group1 and DMRS group2, so the transmission feedback can be arranged in the number order of the DMRS group.
  • ACK/NACK for each of the scheduled transport blocks in the field.
  • the principle of other transmission attributes is basically the same as the CORESET ID and DMRS group, and will not be enumerated too much here. Determining the feedback order of the feedback fields by the order in each of the attributes of the DMRS group, CORESET ID, QCL, or Format can achieve ordered feedback to the multiple transport blocks without additionally adding other fields or information to indicate.
  • the order of the N feedback fields in the transmission feedback information may be an order of the transmission parameter group fields that are valid in the N pieces of transmission control information.
  • Each transmission control information has F transmission parameter group fields, which are respectively a first transmission parameter group field to an Fth transmission parameter group field, which can be understood as being sequentially arranged, for example, the first transmission parameter group field is transmitted.
  • the bits occupied by the control information are from 9-12, and the bits occupied by the second transmission parameter group field are from 13-15, and other transmission parameter group fields may be sequentially arranged backward.
  • the order in which the valid transmission parameter group fields are arranged is the order in which the positions of each valid transmission parameter group field are in the respective transmission control information.
  • DCI1 includes sequentially arranged first transmission parameter group field and second transmission parameter group field, wherein valid
  • the transmission parameter group field is a first transmission parameter group field
  • the DCI2 includes a first transmission parameter group field and a second transmission parameter group field, wherein the valid transmission parameter group field is a second transmission parameter group field.
  • the two feedback fields in the transmission feedback information are respectively a first feedback field and a second feedback field.
  • the first feedback field is sequentially arranged before the second feedback field, and the first feedback field corresponds to the effective transmission parameter group field as the first transmission.
  • the transport block scheduled by the DCI of the parameter group field, and the second feedback field corresponds to the transport block scheduled by the DCI of the second transmission parameter group field, so the first feedback field indicates that the DCI1 is scheduled.
  • the feedback of TB2 indicates the feedback of TB1 scheduled by DCI2.
  • a second aspect of the embodiments of the present application provides a transmission control method, including: receiving N pieces of transmission control information, where each piece of transmission control information is used to schedule one transport block, and the transmission attributes of the N pieces of transmission control information are respectively the same type Transmitting one of the first transmission attribute to the Nth transmission attribute, and the transmission attribute of any transmission control information is different from the transmission attribute of other transmission control information, N is an integer greater than 1; for each of N transmission control information The scheduled transmission block generates transmission feedback information, and the transmission feedback information includes N feedback fields, which are respectively a first feedback field to an Nth feedback field, and an Mth feedback field is used to transmit a Q transmission to the N transmission control information.
  • the transport block scheduled by the transmission control information of the attribute performs feedback
  • M is an integer
  • Q is an integer
  • the third feedback field may be used to feed back the transport block scheduled by the transmission control information whose transmission attribute is the second transmission attribute in the eight pieces of transmission control information, and the third feedback field may be the first of the eight feedback fields arranged in order. 7 feedback fields.
  • the transmission control information may be a DCI
  • the transmission attributes may be different numbers, different identifiers, or different value ranges.
  • the transmission attribute may include a control resource set CORESET, a quasi-colocation (QCL), a format Format, or a Demodulation Reference Signal (DMRS) group.
  • Each CORESET will have its own ID, which is the CORESET ID.
  • Different transmission attributes may mean that the CORESET ID is different.
  • the transmission attributes of CORESET ID1 and CORESET ID2 are different.
  • CORESET, QCL, Format, and DMRS groups are four different types of transport attributes. It can be seen from the second aspect that the transport blocks scheduled by the at least two pieces of transmission control information can be accurately distinguished. Even if the HARQs of the two transport blocks are the same, the transmission attributes of the transmission control information in the same type of transmission attributes may be used. Make an accurate distinction and make effective feedback.
  • the N pieces of transmission control information are from P network devices, 1 ⁇ P ⁇ N. It can be seen from the first possible implementation manner of the second aspect that whether the N pieces of transmission control information are from the same network device or from different network devices, the transmission blocks transmitted by the network device in the same time period can be accurately distinguished, if P is greater than 1
  • the same time period in the embodiment of the present application may be the same TTI, may be the same slot, or other time length units.
  • At least one of the N pieces of transmission control information includes a transmission resource indication, where the transmission resource indication is used to indicate at least The transmission resource of the feedback information is transmitted, and the transmission feedback information is used to feedback the transmission block scheduled by the N pieces of transmission control information.
  • the transmission feedback information includes an ACK response to the correctly demodulated transport block and a NACK response to the transport block that is not correctly demodulated, and the transmission resource indication may indicate the uplink resource used by the transmission feedback information during transmission.
  • the method further includes: determining, according to the selection policy, a target transmission resource indication for transmitting feedback information, where, when the N pieces of transmission control information are When only one of the transmission resource indications is included, the selection policy is an indication policy for selecting the one transmission resource indication as the target transmission resource indication; when at least two of the N pieces of transmission control information include the transmission resource indication, and the at least two transmission resources When the indication is the same, the selection policy is to select the same transmission resource indication as the indication policy of the target transmission resource indication; when at least two of the N pieces of transmission control information include the transmission resource indication, the selection policy is to select the specified transmission resource indication as the target An indication policy for transmitting resource indications.
  • the transmission resource is used to indicate the indicated transmission resource for feedback. If all of the N DCIs carry the same transmission resource indication, the transmission resource indication of one of the DCIs is arbitrarily selected, and the transmission resource indicated by the transmission resource indication is used for feedback. If more than one DCI in the N DCI carries the transmission resource indication, and each transmission resource indication is not the same, the network device may perform the selection according to a pre-specified setting, for example, specify a control resource set in the N DCIs.
  • the CORESET indicates that the DCI with the smallest identifier (ID) carries the transmission resource indication as the target transmission resource to be used, or specifies the transmission resource indication carried by the DCI with the smallest CORESET ID in the DCI carrying the indication of the transmission resource as the target transmission resource to be used.
  • CORESET is the time-frequency resource that carries DCI. Each CORESET will have an ID. The network side can configure multiple CORESETs, so there will be multiple CORESET IDs. The CORESET ID will not be repeated in the same time period. Of course, the indication of the location is as small as the CORESET ID. In fact, it can also be the specified option with the largest CORESET ID or other methods, and it is not limited to the identification method only by the CORESET ID.
  • the target transmission resource may be selected by using a quasi-colocation (QCL) value range, a Demodulation Reference Signal (DMRS) group identifier, or the like.
  • QCL quasi-colocation
  • DMRS Demodulation Reference
  • the method further includes: transmitting the transmission feedback information on the transmission resource indicated by the target transmission resource indication, and transmitting the feedback
  • the order of the N feedback fields in the information is the order of the transmission attributes of the N pieces of transmission control information.
  • the transmission attribute may include a control resource set CORESET, a quasi-colocation (QCL), a format Format, or a Demodulation Reference Signal (DMRS) group.
  • Each type of transport attribute has a sequence number, a range of values, or a sequence identifier.
  • the order of the CORESET ID can be numbered starting from 1, CORESET 1, CORESET 2, CORESET 3, and the number is incremented by 1 so that if there are two DCIs, DCI1 and DCI2 respectively, the CORESET ID of DCI1 is CORESET 1.
  • DCI1 is used to schedule TB1
  • DCI2's CORESET ID is CORESET 2
  • DCI2 is used to schedule TB2.
  • the order of transmission attributes is CORESET 1--CORESET 2, that is, CORESET 1 is ranked first and CORESET 2 is ranked after.
  • the two feedback fields in the transmission feedback information are respectively a first feedback field and a second feedback field, the first feedback field is sequentially arranged before the second feedback field, and the order of the first feedback field and the second feedback field is CORESET 1 Corresponding to the order of CORESET 2, so the first feedback field indicates feedback to TB1, and the second feedback field indicates feedback to TB2.
  • the order of the DMRS group is used, the order of the N feedback fields in the transmission feedback information is the DMRS group in which the Demodulation Reference Signal (DMRS) port included in each of the N pieces of transmission control information is located. order of.
  • DMRS Demodulation Reference Signal
  • Each DCI will contain a DMRS port, which has been previously assigned to the DMRS group.
  • one TB corresponds to one DMRS group, and each DMRS group has a number or identifier.
  • Each DMRS group has different numbers, such as DMRS group1 and DMRS group2, so the transmission feedback can be arranged in the number order of the DMRS group.
  • ACK/NACK for each of the scheduled transport blocks in the field.
  • the principle of other transmission attributes is basically the same as that of the CORESET ID and DMRS group. Therefore, the list of feedback parameters can be determined by the order of each attribute such as DMRS group, CORESETID, QCL or Format. Ordered feedback to multiple transport blocks is achieved with additional fields or information to indicate.
  • a third aspect of the embodiments of the present application provides a transmission control method, including: receiving N pieces of transmission control information, where each piece of transmission control information is used to schedule one transmission block, and each piece of transmission control information includes G transmission parameter sets
  • the field is a first transmission parameter group field to a Gth transmission parameter group field, and only one transmission parameter group field of each of the G transmission parameter group fields of each transmission control information is valid, N is an integer greater than 1, and G is greater than or An integer equal to 1; that is, if there are two or more transmission control information, there may be only one transmission parameter group field in each transmission control information, and of course, there may be multiple transmission parameter group fields to determine a transmission scheme.
  • the transmission scheme is associated with a combined result of the valid transmission parameter set fields of the N pieces of transmission control information.
  • the transmission control information may be a DCI
  • the transmission scheme is associated with a combination result of valid transmission parameter group fields of the N pieces of transmission control information, and may be the same or no valid transmission parameter group field in each DCI. the same. If N is greater than 2, it may be that the transmission parameter group fields valid in each DCI are the same or different. It is also possible that some are the same, and some are different.
  • the transmission scheme of the transport block can be determined, thereby facilitating the reception of the transport block.
  • the method may include: if the effective transmission parameter group fields in the two transmission control information are the same, the transmission schemes of the two transmission blocks scheduled by the two transmission control information are a transmission diversity transmission scheme or a spatial multiplexing transmission scheme; If the effective transmission parameter group field in the transmission control information is different, the transmission scheme of the two transmission blocks scheduled by the two transmission control information is a spatial multiplexing transmission scheme or a spatial multiplexing transmission scheme.
  • the transmit diversity scheme can utilize multiple channels to carry multiple signal replicas of the same information, the receiver receives multiple signals, and combines the multiple signals according to certain rules. Transmit diversity mainly reduces the bit error rate and improves transmission reliability.
  • the space division multiplexing scheme can make full use of the multipath components in spatial propagation, and transmit multiple different signals at the same time-frequency resource, thereby increasing the capacity.
  • the space division multiplexing scheme mainly improves data rate and spectrum efficiency.
  • the transmission parameter group field, the transmission scheme of the two transport blocks scheduled by DCI1 and DCI2 is a transmit diversity transmission scheme, the spatial multiplexing transmission scheme between DCI1 and DCI3, and the spatial multiplexing transmission scheme between DCI2 and DCI3.
  • the N pieces of transmission control information are from P network devices, 1 ⁇ P ⁇ N. It can be seen from the second possible implementation manner of the third aspect that whether the N pieces of transmission control information are from the same network device or from different network devices, the transmission plan can be determined. If P is greater than 1, the P network devices are between There is an interaction for the cooperative transmission mode, and one of the P network devices is pre-configured as a control terminal, and the control terminal determines the transmission mode of the N pieces of transmission control information.
  • At least one of the N pieces of transmission control information includes a transmission resource indication, and the transmission resource indication At least used to indicate the transmission resource for transmitting feedback information.
  • the transmission feedback information includes an ACK response to the correctly demodulated transport block and a NACK response to the transport block that is not correctly demodulated, and the transmission resource indication may indicate the uplink resource used by the transmission feedback information during transmission.
  • the method further includes: determining, according to the selection policy, a target transmission resource indication for transmitting feedback information, where, when the N pieces of transmission control information When only one of the transmission resource indications is included, the selection policy is an indication policy for selecting the one transmission resource indication as the target transmission resource indication; when at least two of the N pieces of transmission control information include the transmission resource indication, and the at least two transmission resources When the indication is the same, the selection policy is to select the same transmission resource indication as the indication policy of the target transmission resource indication; when at least two of the N pieces of transmission control information include the transmission resource indication, the selection policy is to select the specified transmission resource indication as the target.
  • An indication policy for transmitting resource indications when the N pieces of transmission control information When only one of the transmission resource indications is included, the selection policy is an indication policy for selecting the one transmission resource indication as the target transmission resource indication; when at least two of the N pieces of transmission control information include the transmission resource indication, and the at least two transmission resources When the indication is the same, the selection policy is to select the same transmission resource indication as the indication
  • the transmission resource is used to indicate the indicated transmission resource for feedback. If all of the N DCIs carry the same transmission resource indication, the transmission resource indication of one of the DCIs is arbitrarily selected, and the transmission resource indicated by the transmission resource indication is used for feedback. If more than one DCI in the N DCI carries the transmission resource indication, and each transmission resource indication is not the same, the network device may perform the selection according to a pre-specified setting, for example, specify a control resource set in the N DCIs.
  • the CORESET indicates that the DCI with the smallest identifier (ID) carries the transmission resource indication as the target transmission resource to be used, or specifies the transmission resource indication carried by the DCI with the smallest CORESET ID in the DCI carrying the indication of the transmission resource as the target transmission resource to be used.
  • CORESET is the time-frequency resource that carries DCI. Each CORESET will have an ID. The network side can configure multiple CORESETs, so there will be multiple CORESET IDs. The CORESET ID will not be repeated in the same time period. Of course, the indication of the location is as small as the CORESET ID. In fact, it can also be the specified option with the largest CORESET ID or other methods, and it is not limited to the identification method only by the CORESET ID.
  • the target transmission resource may be selected by using a quasi-colocation (QCL) value range, a Demodulation Reference Signal (DMRS) group identifier, or the like.
  • QCL quasi-colocation
  • DMRS Demodulation Reference
  • the method further includes: transmitting the transmission feedback information on the transmission resource indicated by the target transmission resource indication, and transmitting the feedback
  • the order of the X feedback fields in the information is the order of the effective transmission parameter groups in the N pieces of transmission control information, and X is an integer less than or equal to N.
  • the valid transmission parameter group fields of the Y transmission control information in the N pieces of transmission control information are the same, the feedbacks of the transmission blocks scheduled by the Y transmission control information are the same, and only one feedback field needs to be used for feedback.
  • a fourth aspect of the present application provides a transmission control method, including: transmitting at least one piece of transmission control information, where the at least one piece of transmission control information includes N pieces of transmission control information received by a terminal device, of course, at least one piece can be associated with N pieces. If the value is equal to N, it means that the N pieces of transmission control information received by the terminal device are from one network device. If the number is N, the N pieces of transmission control information received by the terminal device are from two or more.
  • each transmission control information is used to schedule one transport block, and each transmission control information includes F transmission parameter group fields, which are respectively a first transmission parameter group field to an Fth transmission parameter group field, and each Only one transmission parameter group field in the F transmission parameter group field of the piece transmission control information is valid, and the effective transmission parameter group field of each piece of transmission control information in the N pieces of transmission control information is different from the effective transmission parameter of other transmission control information.
  • the N is an integer greater than 1, and F is an integer greater than or equal to N; receiving for the N transmissions
  • the transmission feedback information of the transport block scheduled by each of the information, the transmission feedback information includes N feedback fields, which are respectively a first feedback field to an Nth feedback field, where the Mth feedback field is used for the N transmissions
  • the effective transmission parameter group field in the control information is fed back to the transport block scheduled by the transmission control information of the Qth transmission parameter group field, where M is an integer, and 1 ⁇ M ⁇ N, Q is an integer, and 1 ⁇ Q ⁇ F .
  • the transmission control information may be DCI.
  • the transmission parameter group field may be referred to as a first transmission parameter group field and a second transmission parameter group field, and may also be referred to as a transmission parameter group field 1 and a transmission parameter group field 2. Only one transmission parameter group field is valid in DCI1 and DCI2, and the transmission parameter group field in DCI1 and DCI2 is different. That is, if the first transmission parameter group field in DCI1 is valid, the second transmission parameter group field in DCI2 is valid. If the second transmission parameter group field in DCI1 is valid, the first transmission parameter group field in DCI2 is valid.
  • the transmission parameter group field may be a transport block configuration information field in the DCI, and the DCI may include two or more transport block configuration information fields, and each transport block configuration information field includes the following parameters: modulation and coding scheme (modulation and coding scheme, MCS), new data indicator (NDI) and redundancy version (RV).
  • MCS modulation and coding scheme
  • NDI new data indicator
  • RV redundancy version
  • the transport block scheduled by the DCI can be enabled by the field including the MCS, NDI, and RV in the DCI.
  • the indication manner configured by the network device in the DCI can enable the terminal device to accurately distinguish the transport blocks scheduled by the at least two pieces of transmission control information, even if the HARQs of the two transport blocks are the same, Different transmission parameter group fields make an accurate distinction and make effective feedback.
  • At least one of the N pieces of transmission control information includes a transmission resource indication, where the transmission resource indicates at least a transmission resource for indicating transmission of feedback information, where The transmission feedback information is used to feed back a transport block scheduled by the N pieces of transmission control information.
  • the transmission feedback information includes an ACK response to the correctly demodulated transport block and a NACK response to the transport block that is not correctly demodulated, and the transmission resource indication may indicate the uplink resource used by the transmission feedback information during transmission.
  • the receiving the feedback information for the N pieces of transmission control information may include: indicating, by the target transmission resource indication
  • the transmission feedback information is received on the transmission resource, and an order of the N feedback fields in the transmission feedback information is an order of transmission attributes of the N pieces of transmission control information.
  • the transmission attribute may include a control resource set CORESET, a quasi-colocation (QCL), a format Format, or a Demodulation Reference Signal (DMRS) group.
  • QCL quasi-colocation
  • DMRS Demodulation Reference Signal
  • the order of the CORESET ID can be numbered starting from 1, CORESET 1, CORESET 2, CORESET 3, and the number is incremented by 1 so that if there are two DCIs, DCI1 and DCI2 respectively, the CORESET ID of DCI1 is CORESET 1.
  • DCI1 is used to schedule TB1
  • DCI2's CORESET ID is CORESET 2
  • DCI2 is used to schedule TB2.
  • the order of transmission attributes is CORESET 1--CORESET 2, that is, CORESET 1 is ranked first and CORESET 2 is ranked after.
  • the two feedback fields in the transmission feedback information are respectively a first feedback field and a second feedback field, the first feedback field is sequentially arranged before the second feedback field, and the order of the first feedback field and the second feedback field is CORESET 1 Corresponding to the order of CORESET 2, so the first feedback field indicates feedback to TB1, and the second feedback field indicates feedback to TB2.
  • the order of the DMRS group is used, the order of the N feedback fields in the transmission feedback information is the DMRS group in which the Demodulation Reference Signal (DMRS) port included in each of the N pieces of transmission control information is located. order of.
  • DMRS Demodulation Reference Signal
  • Each DCI will contain a DMRS port, which has been previously assigned to the DMRS group.
  • one TB corresponds to one DMRS group, and each DMRS group has a number or identifier.
  • Each DMRS group has different numbers, such as DMRS group1 and DMRS group2, so the transmission feedback can be arranged in the number order of the DMRS group.
  • ACK/NACK for each of the scheduled transport blocks in the field.
  • the principle of other transmission attributes is basically the same as the CORESET ID and DMRS group, and will not be enumerated too much here. Determining the feedback order of the feedback fields by the order in each of the attributes of the DMRS group, CORESETID, QCL, or Format can achieve ordered feedback to the multi-transport block without additionally adding other fields or information to indicate.
  • the order of the N feedback fields in the transmission feedback information may be an order of the transmission parameter group fields that are valid in the N pieces of transmission control information.
  • Each transmission control information has F transmission parameter group fields, which are respectively a first transmission parameter group field to an Fth transmission parameter group field, which can be understood as being sequentially arranged, for example, the first transmission parameter group field is transmitted.
  • the bits occupied by the control information are from 9-12, and the bits occupied by the second transmission parameter group field are from 13-15, and other transmission parameter group fields may be sequentially arranged backward.
  • the order in which the valid transmission parameter group fields are arranged is the order in which the positions of each valid transmission parameter group field are in the respective transmission control information.
  • DCI1 includes sequentially arranged first transmission parameter group field and second transmission parameter group field, wherein valid
  • the transmission parameter group field is a first transmission parameter group field
  • the DCI2 includes a first transmission parameter group field and a second transmission parameter group field, wherein the valid transmission parameter group field is a second transmission parameter group field.
  • the two feedback fields in the transmission feedback information are respectively a first feedback field and a second feedback field.
  • the first feedback field is sequentially arranged before the second feedback field, and the first feedback field corresponds to the effective transmission parameter group field as the first transmission.
  • the transport block scheduled by the DCI of the parameter group field, and the second feedback field corresponds to the transport block scheduled by the DCI of the second transmission parameter group field, so the first feedback field indicates that the DCI1 is scheduled.
  • the feedback of TB2 indicates the feedback of TB1 scheduled by DCI2.
  • a fifth aspect of the present application provides a transmission control method, including: transmitting at least one piece of transmission control information, where the at least one piece of transmission control information includes N pieces of transmission control information received by a terminal device, and of course, at least one piece may be associated with N pieces. If the value is equal to N, it means that the N pieces of transmission control information received by the terminal device are from one network device. If the number is N, the N pieces of transmission control information received by the terminal device are from two or more.
  • each of the transmission control information is used to schedule one transport block, and the transmission attributes of the N pieces of transmission control information are respectively one of a first transmission attribute to an Nth transmission attribute of the same type of transmission attribute, And the transmission attribute of any of the transmission control information is different from the transmission attribute of the other transmission control information, the N being an integer greater than 1; receiving transmission feedback information of the transport block scheduled for each of the N pieces of transmission control information,
  • the transmission feedback information includes N feedback fields, which are a first feedback field to an Nth feedback field, and an Mth feedback field is used for Said N pieces of transmission control information is transmitted as a transmission property of the transmission properties of Q control transport block scheduled feedback information, M being an integer, Q is an integer and ⁇ M ⁇ N, and 1 ⁇ Q ⁇ N.
  • the third feedback field may be used to feed back the transport block scheduled by the transmission control information whose transmission attribute is the second transmission attribute in the eight pieces of transmission control information, and the third feedback field may be the first of the eight feedback fields arranged in order. 7 feedback fields.
  • the transmission control information may be a DCI
  • the transmission attributes may be different in the same type of transmission attributes, different identifiers, or different ranges.
  • the transmission attribute may include a control resource set CORESET, a quasi-colocation (QCL), a format Format, or a Demodulation Reference Signal (DMRS) group.
  • Each CORESET will have its own identifier, which is the CORESET ID.
  • the different transmission attributes may mean that the CORESET ID is different.
  • the transmission attributes of CORESET ID1 and CORESET ID2 are different.
  • CORESET, QCL, Format, and DMRS groups are four different types of transport attributes. It can be seen from the fifth aspect that the indication manner of the network device configuration can enable the terminal device to accurately distinguish the transport blocks scheduled by the at least two transmission control information, even if the HARQs of the two transport blocks are the same, the transport attributes can be transmitted according to the same type. The difference in the transmission properties of each transmission control information is accurately distinguished and effective feedback is made.
  • At least one of the N pieces of transmission control information includes a transmission resource indication, where the transmission resource indicates at least a transmission resource for indicating transmission of feedback information, where The transmission feedback information is used to feed back a transport block scheduled by the N pieces of transmission control information.
  • the transmission feedback information includes an ACK response to the correctly demodulated transport block and a NACK response to the transport block that is not correctly demodulated, and the transmission resource indication may indicate the uplink resource used by the transmission feedback information during transmission.
  • the receiving the feedback information for the N pieces of transmission control information may include: indicating, by the target transmission resource indication
  • the transmission feedback information is received on the transmission resource, and an order of the N feedback fields in the transmission feedback information is an order of transmission attributes of the N pieces of transmission control information.
  • the transmission attribute may include a control resource set CORESET, a quasi-colocation (QCL), a format Format, or a Demodulation Reference Signal (DMRS) group.
  • QCL quasi-colocation
  • DMRS Demodulation Reference Signal
  • the order of the CORESET ID can be numbered starting from 1, CORESET 1, CORESET 2, CORESET 3, and the number is incremented by 1 so that if there are two DCIs, DCI1 and DCI2 respectively, the CORESET ID of DCI1 is CORESET 1.
  • DCI1 is used to schedule TB1
  • DCI2's CORESET ID is CORESET 2
  • DCI2 is used to schedule TB2.
  • the order of transmission attributes is CORESET 1--CORESET 2, that is, CORESET 1 is ranked first and CORESET 2 is ranked after.
  • the two feedback fields in the transmission feedback information are respectively a first feedback field and a second feedback field, the first feedback field is sequentially arranged before the second feedback field, and the order of the first feedback field and the second feedback field is CORESET 1 Corresponding to the order of CORESET 2, so the first feedback field indicates feedback to TB1, and the second feedback field indicates feedback to TB2.
  • the order of the DMRS group is used, the order of the N feedback fields in the transmission feedback information is the DMRS group in which the Demodulation Reference Signal (DMRS) port included in each of the N pieces of transmission control information is located. order of.
  • DMRS Demodulation Reference Signal
  • Each DCI will contain a DMRS port, which has been previously assigned to the DMRS group.
  • one TB corresponds to one DMRS group, and each DMRS group has a number or identifier.
  • Each DMRS group has different numbers, such as DMRS group1 and DMRS group2, so the transmission feedback can be arranged in the number order of the DMRS group.
  • ACK/NACK for each of the scheduled transport blocks in the field.
  • the principle of other transmission attributes is basically the same as the CORESET ID and DMRS group, and will not be enumerated here. Determining the feedback order of the feedback fields by the order in each of the attributes of the DMRS group, CORESETID, QCL, or Format can achieve ordered feedback to the multi-transport block without additionally adding other fields or information to indicate.
  • a sixth aspect of the present application provides a transmission control method, including: generating at least one piece of transmission control information; and transmitting the at least one piece of transmission control information, where the at least one piece of transmission control information includes N pieces of transmission control information received by a terminal device, The N pieces of transmission control information are used by the terminal device to determine a transmission scheme, where the transmission scheme is associated with a combination result of valid transmission parameter group fields of the N pieces of transmission control information, where each piece of transmission control information is used for Scheduling a transport block, and each of the transmission control information includes G transmission parameter group fields, which are a first transmission parameter group field to a Gth transmission parameter group field, and each of the G transmission parameter group fields of each transmission control information is only A transmission parameter set field is valid, the N is an integer greater than 1, and the G is an integer greater than or equal to 1.
  • the transmission control information may be a DCI, and the transmission scheme is associated with a combination result of valid transmission parameter group fields of the N pieces of transmission control information, and may be the same or different from the transmission parameter group fields in each DCI. If N is greater than 2, it may be that the transmission parameter group fields valid in each DCI are the same or different. It is also possible to have the same, some differences, and the transmission scheme of the transport block can be determined by this combination.
  • a sixth aspect of the present application provides a terminal device, including: a receiving unit, a processing unit, and a sending unit, where the receiving unit is configured to perform the foregoing first aspect, second aspect, or third aspect, and any possible
  • the implementation includes a step of receiving a operation; the processing unit is configured to perform the steps of the first aspect, the second aspect, or the third aspect, and any possible implementation thereof, the processing operation; the sending unit is configured to: Performing the first aspect, the second aspect, or the third aspect above, and any of its possible implementations, involves the step of transmitting.
  • a seventh aspect of the present application provides a network device, where the network device includes: a receiving unit and a sending unit, where the receiving unit is configured to perform the foregoing fourth aspect, the fifth aspect, or the sixth aspect, and any possible implementation manner thereof The step of receiving the operation; the transmitting unit is configured to perform the steps of the fourth aspect, the fifth aspect or the sixth aspect described above, and any of the possible implementations related to the transmitting operation.
  • the terminal device may further include a processing unit, configured to perform a step of determining each of the transmission control information before the transmitting unit transmits the respective transmission control information.
  • An eighth aspect of the present application provides a terminal device, including: a transceiver and at least one processor, the transceiver and the at least one processor are interconnected by a line, and the transceiver is configured to perform the first aspect, the second aspect, or the third aspect And in any of the possible implementation manners, the operation of transmitting and receiving information on the terminal device side; the operation of transmitting and receiving information at the location may be the first aspect, the second aspect or the third aspect, and any possible implementation thereof
  • the operation of transmitting, transmitting, and transmitting the feedback information in the manner, the processor is configured to perform the operation of the information processing on the terminal device side in the first aspect, the second aspect, or the third aspect, and any possible implementation manner thereof For example, the operation of generating transmission feedback information.
  • the terminal device may further include a memory in which an instruction is stored, the memory being interconnected by the line and the transceiver and the at least one processor.
  • a ninth aspect of the present application provides a network device, including: a transceiver and at least one processor, the transceiver and the at least one processor are interconnected by a line, and the transceiver is configured to perform the fourth aspect, the fifth aspect, or the sixth aspect And in any of the possible implementation manners, the operation of transmitting and receiving information on the network device side; the operation of transmitting and receiving information at the location may be the fourth aspect, the fifth aspect or the sixth aspect, and any possible implementation thereof
  • the operation of the transmission control information transmission and the transmission of the feedback information, the processor is configured to perform the operation of the network device side information processing in the fourth aspect, the fifth aspect or the sixth aspect, and any possible implementation manner thereof For example, it may be an operation of determining transmission control information before transmitting transmission control information.
  • the network device may further include a memory in which instructions are stored, the memory being interconnected by the line and the transceiver and the at least one processor.
  • a tenth aspect of the present application provides a chip system, including: applied to a terminal device, where the chip system includes at least one processor and a communication interface, and the chip system further includes a memory, the memory, the communication interface, and the Illustrating at least one processor interconnected by a line, the at least one memory storing instructions; the instructions being executed by the processor to perform the first aspect, the second aspect, or the third aspect, and any possible implementation thereof The operation of the terminal device in the manner.
  • the eleventh aspect of the present application provides a chip system, including: applied to a network device, the chip system includes at least one processor and a communication interface, and the chip system further includes a memory, the memory, the communication interface, and The at least one processor is interconnected by a line, the at least one memory storing instructions; the instructions being executed by the processor to perform the fourth, fifth or sixth aspect, and any of its possible The operation of the network device in the implementation manner.
  • a twelfth aspect of the present application provides a computer readable storage medium, which is applied to a terminal device, wherein the computer readable storage medium stores instructions, when executed on a computer, causing the computer to execute the first aspect and the second Aspect or the third aspect, and the method described in any of its possible implementations.
  • a thirteenth aspect of the present application provides a computer readable storage medium, which is applied to a network device, wherein the computer readable storage medium stores instructions that, when run on a computer, cause the computer to execute the fourth aspect and the fifth aspect Aspect or sixth aspect, and the method described in any of its possible implementations.
  • a fourteenth aspect of the present application provides a computer program product comprising instructions for use in a terminal device, when the program is run on a computing device, performing the first aspect, the second aspect or the third aspect, and any The operation of the terminal device in a possible implementation.
  • a fifteenth aspect of the present application provides a computer program product comprising instructions for use in a network device, when the program is run on a computing device, performing the fourth aspect, the fifth aspect or the sixth aspect, and any Possible implementations of network device operations.
  • a still further aspect of the present application provides a communication system, including: a terminal device and a network device; wherein the terminal device is configured to perform the steps of the first aspect, the second aspect, or the third aspect, and any possible implementation manner thereof A terminal device; the network device being a network device performing the steps of the fourth aspect, the fifth aspect or the sixth aspect, and any possible implementation manner.
  • the network device may send N pieces of transmission control information to the terminal device, and the terminal device may accurately distinguish the N pieces of transmission control information according to valid transmission parameter group fields or transmission attributes of the N pieces of transmission control information.
  • the scheduled transport block is valid feedback.
  • FIG. 1A is a schematic diagram of an embodiment of a communication system in an embodiment of the present application.
  • 1B is a schematic diagram of an embodiment of a communication system in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of another embodiment of a communication system in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an embodiment of a transmission control method in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another embodiment of a transmission control method in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another embodiment of a transmission control method in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an embodiment of a terminal device in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an embodiment of a network device in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another embodiment of a terminal device according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an embodiment of a chip system in an embodiment of the present application.
  • the embodiment of the present application provides a transmission control method, which can accurately distinguish each of the at least two transmission control information scheduling transmission blocks, and make effective feedback.
  • the embodiments of the present application also provide corresponding terminal devices and network devices, systems, and computer readable storage media. The details are described below separately.
  • upstream and downstream appearing in this application are used in some scenarios to describe the direction of data/information transmission.
  • upstream direction is the direction in which the data/information is transmitted from the terminal device to the network side
  • the downlink direction is the direction in which the data/information is transmitted from the network side device to the terminal device
  • upstream and downstream are only used to describe the direction, and specific devices for starting and ending the data/information are not limited.
  • the naming or numbering of the steps appearing in this application does not mean that the steps in the method flow must be performed in the time/logical order indicated by the naming or numbering.
  • the process steps that have been named or numbered can be implemented according to the The technical purpose changes the execution order as long as the same or similar technical effects can be achieved.
  • the division of modules appearing in this application is a logical division. In actual applications, there may be another division manner. For example, multiple modules may be combined or integrated into another system, or some features may be ignored. Alternatively, or not, in addition, the coupling or direct coupling or communication connection between the displays or the discussions may be through some interfaces, and the indirect coupling or communication connection between the modules may be electrical or the like. There are no restrictions on the application.
  • modules or sub-modules described as separate components may or may not be physically separated, may not be physical modules, or may be distributed to multiple circuit modules, and some or all of them may be selected according to actual needs. Modules are used to achieve the objectives of the present application.
  • FIG. 1A is a schematic diagram of an embodiment of a communication system according to an embodiment of the present application.
  • the communication system includes a network device and a terminal device.
  • the network device is a device deployed in a radio access network to provide a wireless communication function for a terminal device.
  • the network device may include various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points, and the like.
  • the name of a device having a base station function may be different, for example, in an LTE system, an evolved Node B (evolved NodeB, eNB or eNodeB), in the third In a 3rd generation (3G) system, it is called a Node B, and it becomes a wireless network access device or the like in a 3rd generation (5G) system.
  • 3G 3rd generation
  • the foregoing apparatus for providing a wireless communication function to a terminal is collectively referred to as a network device or a base station or a BS.
  • the terminal devices involved in the embodiments of the present application may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem.
  • the terminal may be a mobile station (MS), a subscriber unit, a cellular phone, a smart phone, a wireless data card, or a personal digital assistant (PDA).
  • MS mobile station
  • PDA personal digital assistant
  • MTC Machine Type Communication
  • FIG. 1A shows a scenario in which a network device schedules transmission control information to multiple terminal devices.
  • multiple network devices may also schedule transmission control information to a terminal device, as shown in FIG. 1B.
  • the terminal device 10 includes a processor 101 and a memory 102. And a transceiver 103, the transceiver 103 includes a transmitter 1031, a receiver 1032, and an antenna 1033.
  • the network device 20 includes a processor 201, a memory 202, and a transceiver 203.
  • the transceiver 203 includes a transmitter 2031, a receiver 2032, and an antenna 2033.
  • the receiver 1032 can be configured to receive transmission control information through the antenna 1033, and the transmitter 1031 can be configured to transmit transmission feedback information to the network device 20 through the antenna 1033.
  • the transmitter 2031 can be configured to transmit transmission control information to the terminal device 10 through the antenna 2033, and the receiver 2032 can be configured to receive the transmission feedback information sent by the terminal device 10 through the antenna 2033.
  • the above describes the structure of the communication system, the terminal device, and the network device.
  • the following describes the transmission control process between the terminal device and the network device.
  • an embodiment of a transmission control method provided by an embodiment of the present application includes:
  • the terminal device receives N pieces of transmission control information sent by the network device.
  • Each transmission control information is used to schedule one transport block, and each transmission control information includes F transmission parameter group fields, which are a first transmission parameter group field to an Fth transmission parameter group field, and each transmission control information Only one transmission parameter group field in the F transmission parameter group fields is valid, and the effective transmission parameter group field of each transmission control information in the N pieces of transmission control information is different from the effective transmission parameter group field of other transmission control information, N An integer greater than 1, F is an integer greater than or equal to the N.
  • the N pieces of transmission control information received by the terminal device may be from the same network device, or may be from two or more network devices.
  • the transmission parameter group field may be a transport block configuration information field in the DCI, and the DCI may include two or more transport block configuration information fields, and each transport block configuration information field includes the following parameters: modulation and coding scheme (modulation and coding scheme, MCS), new data indicator (NDI) and redundancy version (RV).
  • MCS modulation and coding scheme
  • NDI new data indicator
  • RV redundancy version
  • the terminal device After receiving the N pieces of transmission control information, the terminal device generates transmission feedback information for the N pieces of transmission control information.
  • the transmission feedback information includes N feedback fields, which are a first feedback field to an Nth feedback field, respectively, where the Mth feedback field is used to transmit the effective transmission parameter group field of the N pieces of transmission control information to the Qth transmission parameter group field.
  • the transport block scheduled by the control information is fed back, M is an integer, and 1 ⁇ M ⁇ N, Q is an integer, and 1 ⁇ Q ⁇ F.
  • the third feedback field may be used to feed back the transport block scheduled by the transmission control information of the second transmission parameter group field in the eight transmission control information, and the third feedback field may be sequentially arranged.
  • the third feedback field may be used to feed back the transport block scheduled by the transmission control information of the second transmission parameter group field in the eight transmission control information, and the third feedback field may be sequentially arranged.
  • the order of the N feedback fields in the transmission feedback information may be an order of the transmission parameter group fields that are valid in the N pieces of transmission control information.
  • Each transmission control information has F transmission parameter group fields, which are respectively a first transmission parameter group field to an Fth transmission parameter group field, which can be understood as being sequentially arranged, for example, the first transmission parameter group field is transmitted.
  • the bits occupied by the control information are from 9-12, and the bits occupied by the second transmission parameter group field are from 13-15, and other transmission parameter group fields may be sequentially arranged backward.
  • the order in which the valid transmission parameter group fields are arranged is the order in which the positions of each valid transmission parameter group field are in the respective transmission control information.
  • DCI1 includes sequentially arranged first transmission parameter group field and second transmission parameter group field, wherein valid
  • the transmission parameter group field is a first transmission parameter group field
  • the DCI2 includes a first transmission parameter group field and a second transmission parameter group field, wherein the valid transmission parameter group field is a second transmission parameter group field.
  • the two feedback fields in the transmission feedback information are respectively a first feedback field and a second feedback field.
  • the first feedback field is sequentially arranged before the second feedback field, and the first feedback field corresponds to the effective transmission parameter group field as the first transmission.
  • the transport block scheduled by the DCI of the parameter group field, and the second feedback field corresponds to the transport block scheduled by the DCI of the second transmission parameter group field, so the first feedback field indicates that the DCI1 is scheduled.
  • the feedback of TB2 indicates the feedback of TB1 scheduled by DCI2.
  • the order of the N feedback fields in the transmission feedback information, the order of the F transmission parameter group fields, and other sorting orders may be set according to specific needs, and various mappings may exist between these sorting orders. Relationships, embodiments of the present invention do not limit the specific implementation details.
  • Table 1 shows the relationship table of 2bits ACK/NACK feedback.
  • Table 2 shows the relationship table of 3bits ACK/NACK feedback.
  • Transport block 1 ACK Transport block 2 ACK 10 Transport block 1 ACK; transport block 2 NACK or DTX 01 Transport block 1 NACK or DTX; transport block 2 ACK 00 Transport block 1 NACK or DTX; transport block 2 NACK or DTX
  • the scheduling transport block 1 corresponds to the first transmission parameter group field
  • the transport block 2 corresponds to the second transmission parameter group field.
  • the DTX indicates that the terminal device does not detect the control information.
  • Transport block 1 ACK Transport block 2 ACK 110 Transport block 1 ACK; transport block 2 NACK 101 Transport block 1 NACK; transport block 2 ACK 100 Transport block 1 NACK; transport block 2 NACK 011 Transport block 1 ACK; transport block 2 DTX 010 Transport block 1 DTX; transport block 2 ACK 001 Transport block 1 NACK; transport block 2 DTX 000 Transport block 1 DTX; transport block 2 NACK
  • the scheduling transport block 1 corresponds to the first transmission parameter group field
  • the transport block 2 corresponds to the second transmission parameter group field.
  • DTX indicates that the terminal device does not detect the control information.
  • the terminal device sends the transmission feedback information to the network device.
  • the transport blocks scheduled by the at least two pieces of transmission control information can be accurately distinguished. Even if the HARQ IDs of the two transport blocks are the same, an accurate distinction can be made according to valid different transmission parameter group fields, and Make effective feedback.
  • the N pieces of transmission control information in the foregoing embodiment of FIG. 3 may be from P network devices, 1 ⁇ P ⁇ N.
  • the transmission block transmitted by the network device in the same time period can be accurately distinguished. If P is greater than 1, the P network devices exist.
  • the interaction is performed to determine a valid transmission parameter group field in each of the N transmission control information, or one of the P network devices is pre-configured as a control terminal, and the control terminal allocates an effective transmission parameter group field of other network devices.
  • the same time period in the embodiment of the present application may be the same transmission time interval (TTI), or the same time slot (slot), or other time length units.
  • another embodiment of the transmission control method provided by the embodiment of the present application includes:
  • the terminal device receives N pieces of transmission control information sent by the network device, where each piece of transmission control information is used to schedule one transport block, and the transmission attributes of the N pieces of transmission control information are respectively the first transmission attribute of the same type of transmission attribute to One of the Nth transmission attributes, and the transmission attribute of any of the transmission control information is different from the transmission attribute of the other transmission control information, and N is an integer greater than one.
  • the N pieces of transmission control information received by the terminal device may be from the same network device, or may be from two or more network devices.
  • the transmission control information may be DCI.
  • DCI Downlink Control Information
  • the transmission attribute of DCI may be the first transmission attribute
  • the transmission attribute of DCI2 is the second transmission.
  • the attribute, the first transmission attribute and the second transmission attribute are different, and the transmission attribute at the location refers to the same type of transmission attribute, and the transmission attribute may be different in attribute value, different in number, different in identity, or different in range.
  • the transmission attribute may include a control resource set CORESET, a quasi-colocation (QCL), a format Format, or a Demodulation Reference Signal (DMRS) group.
  • CORESET, QCL, Format, and DMRS groups are four different types of transport attributes.
  • Each CORESET will have its own identifier, which is the CORESET ID. Therefore, DCI1 and DCI2 have different CORESET IDs.
  • the CORESET ID can be used to distinguish between DCI1 and DCI2, and feedback is given to the two transport blocks scheduled by DCI1 and DCI2.
  • the terminal device After receiving the N pieces of transmission control information, the terminal device generates transmission feedback information for the N pieces of transmission control information, where the transmission feedback information includes N feedback fields, which are respectively a first feedback field to an Nth feedback field, and the Mth feedback field is used.
  • the feedback is performed on the transport block scheduled by the transmission control information whose transmission attribute is the Qth transmission attribute in the N pieces of transmission control information, where M is an integer, and 1 ⁇ M ⁇ N, Q is an integer, and 1 ⁇ Q ⁇ N.
  • the terminal device sends transmission feedback information to the network device.
  • the transport blocks scheduled by the at least two pieces of transmission control information can be accurately distinguished. Even if the HARQ IDs of the two transport blocks are the same, the transmission attributes of the transmission control information in the same type of transmission attributes may be used. Make an accurate distinction and make effective feedback.
  • the N pieces of transmission control information are from P network devices, and 1 ⁇ P ⁇ N.
  • the transmission blocks transmitted by the network device in the same time period can be accurately distinguished. If P is greater than 1, the P network devices are There is an interaction to determine the respective transmission attributes of the N transmission control information, or one of the P network devices is pre-configured as a control terminal, and the transmission attributes of the other network devices are allocated by the control terminal.
  • the same time period in the embodiment of the present application may be the same TTI, may be the same slot, or other time length units.
  • the transmitting device for the N pieces of transmission control information can refer to the related description in the previous embodiment.
  • another embodiment of the transmission control method provided by the embodiment of the present application includes:
  • the network device generates at least one piece of transmission control information.
  • the network device sends the at least one piece of transmission control information to the terminal device.
  • the at least one piece of transmission control information includes N pieces of transmission control information received by the terminal device, where each piece of transmission control information is used to schedule one transmission block, and each piece of transmission control information includes G transmission parameter group fields, respectively For the first transmission parameter group field to the Gth transmission parameter group field, only one transmission parameter group field in each of the G transmission parameter group fields of the transmission control information is valid, N is an integer greater than 1, and G is greater than or equal to 1. Integer.
  • Each transmission parameter set field includes, for example, but not limited to, transmission parameter A, transmission parameter B, and transmission parameter C, three types of transmission parameters.
  • the terminal device After receiving the N pieces of transmission control information, the terminal device determines a transmission plan.
  • the transmission scheme is associated with a combined result of valid transmission parameter group fields of the N pieces of transmission control information.
  • the combined result is, for example, but not limited to, a combined result of combining the effective transmission parameter group fields of the transmission control information based on a preset arrangement order of the N pieces of transmission control information.
  • the combination result of the same transmission parameter group field is the same, or the combination result of the valid transmission parameter group field is different, or the effective transmission parameter group field is not the same combination result, that is, some are the same, some are different.
  • the combined result is, for example, but not limited to, a combined result of combining the effective transmission parameter group fields of the transmission control information based on a preset arrangement order of the N pieces of transmission control information.
  • the transmission control information may be DCI, and the combination result of the transmission parameter group field may be that the transmission parameter group fields valid in each DCI are the same or different, or the same, and some are different.
  • the transmission scheme of the transport block can be determined, thereby facilitating the reception of the transport block.
  • determining a transmission scheme, where the transmission scheme is associated with a combination result of valid transmission parameter group fields of the N pieces of transmission control information may include:
  • the transmission scheme of the two transmission blocks scheduled by the two transmission control information is a transmission diversity transmission scheme
  • the transmission scheme of the two transmission blocks scheduled by the two transmission control information is a spatial multiplexing transmission scheme.
  • the transmission scheme of the two transmission blocks scheduled by the two transmission control information is a spatial multiplexing transmission scheme
  • the transmission scheme of the two transmission blocks scheduled by the two transmission control information is a transmission diversity transmission scheme.
  • the transmit diversity scheme can utilize multiple channels to carry multiple signal replicas of the same information, the receiver receives multiple signals, and combines the multiple signals according to certain rules. Transmit diversity mainly reduces the bit error rate and improves transmission reliability.
  • the space division multiplexing scheme can make full use of the multipath components in spatial propagation, and transmit multiple different signals at the same time-frequency resource, thereby increasing the capacity.
  • the space division multiplexing scheme mainly improves data rate and spectrum efficiency.
  • both the first transmission parameter group field or the second transmission parameter group field are used in both DCI1 and DCI2, it can be determined that the transmission mode of the transport block is the transmit diversity mode, if the first transmission parameter group field is adopted in DCI1.
  • the second transmission parameter group field is adopted in DCI2; or the second transmission parameter group field is adopted in DCI1, and the first transmission parameter group field is adopted in DCI2, then the transmission mode of the transport block can be determined to be the spatial multiplexing mode.
  • the N pieces of transmission control information may be from P network devices, 1 ⁇ P ⁇ N.
  • the transmission plan may be determined. If P is greater than 1, the P devices have interactions, so as to cooperate with the transmission mode. It is also possible to pre-configure one of the P network devices as a control terminal, and the control terminal determines a transmission mode of the N pieces of transmission control information.
  • the transmitting device for the N pieces of transmission control information can refer to the related description in the foregoing embodiment.
  • At least one of the N pieces of transmission control information includes:
  • the transmission resource indicates that the transmission resource indicates at least a transmission resource for indicating the transmission of the feedback information, and the transmission feedback information is used for feeding back the transport block scheduled by the N pieces of transmission control information.
  • the transmission feedback information may include, for example, but not limited to, an ACK response to a correctly demodulated transport block, and a NACK response to an incorrectly demodulated transport block, etc., the transmission resource indication may indicate that the transmission feedback information is used during transmission. Upstream resources.
  • the transmission feedback information described herein should be understood as having the function of transmitting feedback information such as ACK or NACK. On the basis of this, the above-mentioned transmission feedback information may also have other functions.
  • the embodiment of the transmission control method provided by the embodiment of the present application may further include: determining, according to the selection policy, a target transmission resource indication for transmitting feedback information, where, when the N pieces of transmission control information are used When only one of the transmission resource indications is included, the selection policy is an indication policy for selecting the one transmission resource indication as the target transmission resource indication; when at least two of the N pieces of transmission control information include the transmission resource indication, and the at least two transmission resources When the indication is the same, the selection policy is to select the same transmission resource indication as the indication policy of the target transmission resource indication; when at least two of the N pieces of transmission control information include the transmission resource indication, the selection policy is to select the specified transmission resource indication as the target.
  • An indication policy for transmitting resource indications It can be seen from this embodiment that if only one DCI in the N DCI carries a transmission resource indication, the transmission resource is used to indicate the indicated transmission resource for feedback. If at least two DCIs of the N DCIs carry transmission resource indications and the transmission resource indications are the same, the transmission resource indication of one of the DCIs is arbitrarily selected, and feedback is performed according to the transmission resource indicated by the transmission resource indication. If more than one DCI of the N DCIs carries the transmission resource indication, and the at least two transmission resource indications of the transmission resource indications are different, the network equipment may perform the selection according to a pre-specified manner, for example, designating the control resources in the N DCIs.
  • the DCI with the smallest control resource set (CORESET) identifier (ID) carries the transmission resource indication as the target transmission resource to be used, or specifies the transmission resource indication carried by the DCI with the smallest CORESET ID in the DCI carrying the indication of the transmission resource as the to-be-used Target transmission resource.
  • the selection can be made in a specified manner. For example: select a seat target transmission resource indication that is decoded first.
  • CORESET is the time-frequency resource that carries DCI.
  • Each CORESET will have an ID.
  • the network side can configure multiple CORESETs, so there will be multiple CORESET IDs.
  • the CORESET ID will not be repeated in the same time period.
  • the target transmission resource may be selected by using a quasi-colocation (QCL) value range, a Demodulation Reference Signal (DMRS) group identifier, or the like.
  • QCL quasi-colocation
  • DMRS Demodulation Reference Signal
  • sending the transmission feedback information to the network device may include:
  • the transmission resource indicates that the transmission feedback information is transmitted on the indicated transmission resource, and the order of the N feedback fields in the transmission feedback information is the order of the transmission attributes of the N pieces of transmission control information.
  • the transmission attribute may include a control resource set CORESET, a quasi-colocation (QCL), a format Format, or a Demodulation Reference Signal (DMRS) group.
  • Each type of transport attribute will have a sequential number or a sequential identifier.
  • the order of the CORESET ID can be numbered starting from 1, CORESET 1, CORESET 2, CORESET 3, and the number is incremented by 1 so that if there are two DCIs, DCI1 and DCI2 respectively, the CORESET ID of DCI1 is CORESET 1.
  • DCI1 is used to schedule TB1
  • DCI2's CORESET ID is CORESET 2
  • DCI2 is used to schedule TB2.
  • the order of transmission attributes is CORESET 1--CORESET 2, that is, CORESET 1 is ranked first and CORESET 2 is ranked after.
  • the two feedback fields in the transmission feedback information are respectively a first feedback field and a second feedback field, the first feedback field is sequentially arranged before the second feedback field, and the order of the first feedback field and the second feedback field is CORESET 1 Corresponding to the order of CORESET 2, so the first feedback field indicates feedback to TB1, and the second feedback field indicates feedback to TB2.
  • the order of the DMRS group is used, the order of the N feedback fields in the transmission feedback information is the DMRS group in which the Demodulation Reference Signal (DMRS) port included in each of the N pieces of transmission control information is located. order of.
  • DMRS Demodulation Reference Signal
  • Each DCI will contain a DMRS port, which has been previously assigned to the DMRS group.
  • one TB corresponds to one DMRS group, and each DMRS group has a number or identifier.
  • Each DMRS group has different numbers, such as DMRS group1 and DMRS group2, so the transmission feedback can be arranged in the number order of the DMRS group.
  • the ACK/NACK of each of the scheduled transport blocks in the field for example, two transport blocks scheduled by two DCIs are TB1 and TB2, respectively, and the DMRS group corresponding to TB1 is numbered 2, and the DMRS group corresponding to TB2 is If the number is 1, the two feedback fields in the transmission feedback information are used to feed back TB2 and TB1 from front to back.
  • the four transport blocks scheduled by the four DCIs are TB1, TB2, TB3, and TB4, the DMRS group corresponding to TB1 is numbered 3, and the DMRS group corresponding to TB2 is numbered 4, TB3.
  • the number of the corresponding DMRS group is 1, and the number of the DMRS group corresponding to TB4 is 2.
  • the four feedback fields in the transmission feedback information are used from front to back respectively. Feedback TB3, TB4, TB1 and TB2. If there are two DCIs, two transport blocks are scheduled, then one transport block can be fed back with the first bit in 2bits, and the second bit feeds back another transport block.
  • the order of the two transport blocks represented by these two bits It can also be determined according to the order of the DMRS group from small to large. Of course, it is not limited to the arrangement order from small to large, and may be arranged in order of large to small. The order of the arrangement may be pre-negotiated according to the network device and the terminal device or the predetermined execution in the standard.
  • the other CORESET ID, QCL or Format is basically the same as the above-mentioned DMRS group.
  • the CORESET ID can be a specific number value
  • the QCL can be a range or a specific value
  • the Format can be FormatA, FormatB, and the like.
  • eight states can be represented by three bits. For example, use 000 to indicate that TB1 is received and correctly demodulated, TB2 receives and correctly demodulates; 001 indicates that TB1 is received and correctly demodulated, TB2 receives no correct demodulation, and 010 indicates that TB1 is received without correct demodulation TB2 receives and correctly demodulates, 011 indicates that TB1 is not correctly demodulated, TB2 receives no correct demodulation; 100 indicates that TB1 is received and correctly demodulated, TB2 is not received; 101 indicates that TB1 is received Not correctly demodulated, TB2 is not received; 110 indicates that TB1 is not received, TB2 is received and correctly demodulated; 111 indicates that TB1 is not received, and TB2 is not correctly demodulated. Determining the feedback order of the feedback fields by the order in each of the attributes of the DMRS group, CORESETID, QCL,
  • Table 3 is a correspondence table of 2bits ACK/NACK feedback.
  • Table 4 is a correspondence table of 3 bits ACK/NACK feedback.
  • Table 3 Correspondence table of 2bits ACK/NACK feedback
  • Transport block 1 ACK Transport block 2 ACK 10 Transport block 1 ACK; transport block 2NACK or DTX 01 Transport block 1 NACK or DTX; transport block 2 ACK 00 Transport block 1 NACK or DTX; transport block 2 NACK or DTX
  • the scheduling transport block 1 corresponds to the DMRS group1, and the transport block 2 corresponds to the DMRS group2.
  • DTX indicates that the terminal device does not detect the control information.
  • Table 4 Correspondence table of 3bits ACK/NACK feedback
  • Transport block 1 ACK Transport block 2 ACK 110 Transport block 1 ACK; transport block 2 NACK 101 Transport block 1 NACK; transport block 2 ACK 100 Transport block 1 NACK; transport block 2 NACK 011 Transport block 1 ACK; transport block 2 DTX 010 Transport block 1 DTX; transport block 2 ACK 001 Transport block 1 NACK; transport block 2 DTX 000 Transport block 1 DTX; transport block 2 NACK
  • the scheduling transport block 1 corresponds to the DMRS group1, and the transport block 2 corresponds to the DMRS group2.
  • DTX indicates that the terminal device does not detect the control information.
  • the transmission feedback information may be transmitted on the transmission resource indicated by the target transmission resource indication, and the sequence of the X feedback fields in the transmission feedback information is N.
  • the order in which the transmission parameter sets are valid in the transmission control information, and X is an integer less than or equal to N.
  • the valid transmission parameter group fields of the Y transmission control information in the N pieces of transmission control information are the same, the feedbacks of the transmission blocks scheduled by the Y transmission control information are the same, and only one feedback field needs to be used for feedback.
  • N 8
  • X 6.
  • an embodiment of the terminal device 60 provided by the embodiment of the present application includes:
  • the receiving unit 601 is configured to receive N pieces of transmission control information, where each piece of transmission control information is used to schedule one transmission block, and each piece of transmission control information includes F transmission parameter group fields, respectively, a first transmission parameter group field Up to the Fth transmission parameter group field, only one transmission parameter group field in each of the F transmission parameter group fields of the transmission control information is valid, and the effective transmission parameter group field of each transmission control information in the N pieces of transmission control information is different from a valid transmission parameter group field of other transmission control information, the N being an integer greater than 1, and the F being an integer greater than or equal to N;
  • the processing unit 602 is configured to generate transmission feedback information for each of the N pieces of transmission control information received by the receiving unit 601, where the transmission feedback information includes N feedback fields, which are respectively the first feedback field to The Nth feedback field, wherein the Mth feedback field is used to feed back, for the transport block scheduled by the transmission control information of the Nth transmission parameter group field, the transmission control information of the Qth transmission parameter group field, where the M is An integer, and 1 ⁇ M ⁇ N, the Q is an integer, and 1 ⁇ Q ⁇ F.
  • another embodiment of the terminal device 60 provided by the embodiment of the present application includes:
  • the receiving unit 601 is configured to receive N pieces of transmission control information, where each piece of transmission control information is used to schedule one transport block, and the transmission attributes of the N pieces of transmission control information are respectively the first transmission attribute of the same type of transmission attribute to One of the Nth transmission attributes, and the transmission attribute of any of the transmission control information is different from the transmission attribute of the other transmission control information, the N being an integer greater than one;
  • the processing unit 602 is configured to generate transmission feedback information for each of the N pieces of transmission control information received by the receiving unit 601, where the transmission feedback information includes N feedback fields, which are respectively the first feedback field to The Nth feedback field, the Mth feedback field is used to feed back a transport block scheduled by the transmission control information whose transmission attribute is the Qth transmission attribute in the N pieces of transmission control information, where the M is an integer and 1 ⁇ M ⁇ N, the Q is an integer, and 1 ⁇ Q ⁇ N.
  • another embodiment of the terminal device 60 provided by the embodiment of the present application includes:
  • the receiving unit 601 is configured to receive N pieces of transmission control information, where each piece of transmission control information is used to schedule one transmission block, and each piece of transmission control information includes G transmission parameter group fields, respectively, a first transmission parameter group field Up to the Gth transmission parameter group field, only one transmission parameter group field in each of the G transmission parameter group fields of the transmission control information is valid, the N is an integer greater than 1, and the G is an integer greater than or equal to 1;
  • the processing unit 602 is configured to determine a transmission scheme, where the transmission scheme is associated with a combined result of valid transmission parameter group fields of the N pieces of transmission control information received by the receiving unit 601.
  • the transmission scheme of the two transmission blocks scheduled by the two transmission control information is a transmission diversity transmission scheme or a spatial multiplexing transmission scheme
  • the transmission scheme of the two transmission blocks scheduled by the two transmission control information is a spatial multiplexing transmission scheme or a transmission diversity transmission scheme.
  • At least one of the N pieces of transmission control information includes a transmission resource indication, where the transmission resource indicates at least a transmission resource for indicating transmission of the feedback information.
  • the processing unit 602 is further configured to determine, according to the selection policy, a target transmission resource indication for transmitting feedback information, where
  • the selection policy is an indication policy for selecting the transmission resource indication as the target transmission resource indication, when only one of the N pieces of transmission control information includes the transmission resource indication;
  • the selection policy is to select the same transmission resource indication as the target transmission resource indication. Indicating strategy
  • At least two of the N pieces of transmission control information include the transmission resource indication, and the selection policy is to indicate the specified transmission resource indication as an indication policy of the target transmission resource indication.
  • the terminal device further includes:
  • the sending unit 603 is configured to transmit the transmission feedback information on the transmission resource indicated by the target transmission resource indication, where an order of the N feedback fields in the transmission feedback information is the transmission of the N pieces of transmission control information The order of the attributes.
  • an embodiment of a network device 70 provided by an embodiment of the present application includes:
  • the sending unit 701 is configured to send at least one piece of transmission control information, where the at least one piece of transmission control information includes N pieces of transmission control information received by the terminal device, where each piece of transmission control information is used to schedule one transmission block, and each piece
  • the transmission control information includes F transmission parameter group fields, which are respectively a first transmission parameter group field to an Fth transmission parameter group field, and only one transmission parameter group field of each of the F transmission parameter group fields of the transmission control information is valid, and
  • the effective transmission parameter group field of each piece of transmission control information in the N pieces of transmission control information is different from the effective transmission parameter group field of other transmission control information, the N being an integer greater than 1, and the F being greater than or equal to N Integer
  • the receiving unit 702 is configured to receive transmission feedback information for the N pieces of transmission control information, where the transmission feedback information includes N feedback fields, which are a first feedback field to an Nth feedback field, where the Mth feedback field is used. Transmitting, in the N pieces of transmission control information, a transport block scheduled by the transmission control information of the Qth transmission parameter group field, wherein the M is an integer, and 1 ⁇ M ⁇ N, the Q Is an integer and 1 ⁇ Q ⁇ F.
  • another embodiment of the network device 70 provided by the embodiment of the present application includes:
  • the sending unit 701 is configured to send at least one piece of transmission control information, where the at least one piece of transmission control information includes N pieces of transmission control information received by the terminal device, where each piece of transmission control information is used to schedule one transmission block, and the The transmission attributes of the N pieces of transmission control information are respectively one of the first transmission attribute to the Nth transmission attribute of the same type of transmission attribute, and the transmission attribute of any of the transmission control information is different from the transmission attribute of the other transmission control information, N is an integer greater than one;
  • the receiving unit 702 is configured to receive transmission feedback information of the transport block scheduled for each of the N pieces of transmission control information, where the transmission feedback information includes N feedback fields, which are a first feedback field to an Nth feedback field, respectively.
  • the M feedback field is used to feed back a transport block scheduled by the transmission control information whose transmission attribute is the Qth transmission attribute in the N pieces of transmission control information, where M is an integer, and 1 ⁇ M ⁇ N, and 1 ⁇ Q ⁇ N.
  • another embodiment of the network device 70 provided by the embodiment of the present application includes:
  • the processing unit 703 is configured to generate at least one piece of transmission control information
  • the sending unit 701 is configured to send at least one piece of transmission control information determined by the processing unit 703, where the at least one piece of transmission control information includes N pieces of transmission control information received by the terminal device, where the N pieces of transmission control information are used by the Determining, by the terminal device, a transmission scheme, wherein the transmission scheme is associated with a combination result of valid transmission parameter group fields of the N pieces of transmission control information, wherein each transmission control information is used to schedule one transport block, and each transmission control
  • the information includes G transmission parameter group fields, which are respectively a first transmission parameter group field to a Gth transmission parameter group field, and only one transmission parameter group field in each of the G transmission parameter group fields of each transmission control information is valid, the N An integer greater than 1, the G being an integer greater than or equal to one.
  • the processing unit 602 in the above terminal device 60 may be the processor 101 shown in FIG. 2 in the terminal device, and the receiving unit 601 and the transmitting unit 603 may be the transceiver 103 in FIG.
  • the transmitting unit 701 and the receiving unit 702 in the network device 70 may be the transceiver 203 in FIG.
  • Processing unit 703 can be processor 201 shown in FIG. 2 in the network device.
  • the functions of the terminal device 60 can be understood by referring to the steps performed by the terminal device in the foregoing embodiment or the optional embodiment of the present invention.
  • the functions of the network device 70 can be referred to the foregoing embodiments of FIG. 3 to FIG. The steps performed by the network device in the embodiment are understood.
  • the terminal device In order to facilitate the understanding of the functions of the components in the terminal device and the network device shown in FIG. 2 in the data transmission process of the present application, the following describes the terminal device as an example.
  • FIG. 8 is a schematic structural diagram of a terminal device 80 according to an embodiment of the present application.
  • the terminal device 80 includes at least one processor 810, a memory 850, and a transceiver 830.
  • the transceiver can include a receiver and a transmitter, and the memory 850 can include read only memory and/or random access memory and provide operational instructions and data to the processor 810.
  • a portion of memory 850 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • memory 850 stores the following elements, executable modules or data structures, or a subset thereof, or their extended set:
  • the corresponding operation is performed by calling an operation instruction stored in the memory 850, which can be stored in the operating system.
  • the processor 810 controls the operation of the terminal device 80, which may also be referred to as a CPU (Central Processing Unit).
  • Memory 850 can include read only memory and random access memory and provides instructions and data to processor 810.
  • a portion of memory 850 may also include non-volatile random access memory (NVRAM).
  • the specific components of the terminal device 80 are coupled together by a bus system 820 in a specific application.
  • the bus system 820 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 820 in the figure.
  • Processor 810 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 810 or an instruction in a form of software.
  • the processor 810 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or discrete hardware. Component.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 850, and the memory 850 may be a physically separate unit, or may be integrated with the processor 810.
  • the processor 810 reads the information in the memory 850 and completes the steps of the foregoing method in combination with the hardware.
  • the memory can be a non-transitory memory.
  • the transceiver 830 is configured to perform the step of transmitting the message of the terminal device in the embodiment shown in Figures 3-5 or other alternative embodiments.
  • the processor 810 is configured to perform the steps of data processing of the terminal device in the embodiment shown in FIG. 3 to FIG. 5 or other alternative embodiments.
  • the structure of the network device can also be understood by referring to FIG. 8.
  • the functions of the corresponding transceiver and the processor in the network device can perform the corresponding receiving and processing of the network device in the embodiment shown in FIG. 3 to FIG. 5 or other optional embodiments. A step of.
  • FIG. 9 is a schematic structural diagram of another embodiment of a chip system 90 according to an embodiment of the present application.
  • the chip system 90 includes at least one processor 910, a memory 950, and a communication interface 930, which may include read only memory and random access memory, and provides operational instructions and data to the processor 910.
  • a portion of the memory 950 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • memory 950 stores the following elements, executable modules or data structures, or a subset thereof, or their extended set:
  • the corresponding operation is performed by calling an operation instruction stored in the memory 950, which can be stored in the operating system.
  • chip system used in the chip system and the network device are similar in structure, but different devices use different chip systems to achieve their respective functions.
  • the processor 910 controls the operation of the chip system, and the processor 910 may also be referred to as a CPU (Central Processing Unit).
  • Memory 950 can include read only memory and random access memory and provides instructions and data to processor 910. A portion of the memory 950 may also include non-volatile random access memory (NVRAM).
  • the components of the chip system 110 are coupled together by a bus system 920 in a specific application.
  • the bus system 920 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 920 in the figure.
  • Processor 910 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 910 or an instruction in a form of software.
  • the processor 910 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or discrete hardware. Component.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 950, and the memory 950 may be a physically separate unit, or may be integrated with the processor 910.
  • the processor 910 reads the information in the memory 950 and completes the steps of the foregoing method in combination with the hardware.
  • the memory can be a non-transitory memory.
  • the communication interface 930 is configured to perform the steps of receiving and transmitting data in the terminal device or the network device in the embodiment or other alternative embodiments shown in FIG.
  • the processor 910 is operative to perform the steps of data processing in signals in a terminal device or network device in the embodiment or other alternative embodiment illustrated in Figures 3-5.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • the program may be stored in a computer readable storage medium, and the storage medium may include: ROM, RAM, disk or CD.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种传输控制方法,包括:接收N条传输控制信息,其中,每条传输控制信息用于调度一个传输块,且每条传输控制信息均包含F个传输参数组字段,每条传输控制信息的F个传输参数组字段中仅一个传输参数组字段有效,且N条传输控制信息中每条传输控制信息的有效的传输参数组字段不同于其他传输控制信息的有效的传输参数组字段,N为大于1的整数;针对N条传输控制信息各自所调度的传输块生成传输反馈信息,传输反馈信息包含N个反馈字段,N个反馈字段用于对N个传输控制信息所调度的传输块进行反馈。本申请可以对至少两条传输控制信息各自调度的传输块进行准确区分,可以根据有效的不同传输参数组字段做出准确区分,并做出有效反馈。

Description

一种传输控制方法、终端设备及网络设备
本申请要求于2018年2月9日提交中国专利局、申请号为201810134557.2、发明名称为“一种传输控制方法、终端设备及网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体涉及一种传输块处理的方法、网络设备及终端。
背景技术
传输块(transport block,TB)通常可以是,例如但不限于,包含媒体访问控制(medium access control,MAC)协议数据单元(portocol data unit,PDU)的一个数据块,这个数据块会在一个时间段上传输,一个时间段例如可以为一个传输时间间隔(Transmission Time Interval,TTI)。对于每个终端一个时间段最多可以发送两个传输块,对于网络设备,每个时间段向同一个终端也是最多可以发送两个传输块。
通常,TB都是通过下行控制信息(Downlink control information,DCI)调度的,对于在一个时间段中要发送给同一个终端的两个TB可以采用一个DCI进行调度,也可以采用不同DCI进行调度。无论是一个DCI调度两个TB,还是两个DCI调度这两个TB,对于同一个时间段中调度的两个TB通常采用相同混合自动重传请求(hybrid automatic repeat request,HARQ)标识(identity,ID)进行标识。对于同一个DCI中调度的两个TB采用相同的HARQ ID进行标识,终端可以通过这两个TB所占字段的不同进行区分。而对于采用不同的DCI调度的两个或多个TB,若采用相同的HARQ ID进行标识,终端可能就会无法区分这两个或多个传输块,从而无法对这两个或多个传输块进行反馈。
发明内容
为了对至少两条传输控制信息调度的传输块进行有效反馈,本申请实施例提供一种传输块控制方法,可以对至少两条传输控制信息各自调度传输块进行准确区分,并做出有效反馈。本申请实施例还提供了相应的终端设备及网络设备。
本申请实施例第一方面提供一种传输控制方法,包括:接收N条传输控制信息,其中,每条传输控制信息用于调度一个传输块,且每条传输控制信息均包含F个传输参数组字段,分别为第一传输参数组字段至第F传输参数组字段,每条传输控制信息的F个传输参数组字段中仅一个传输参数组字段有效,且N条传输控制信息中每条传输控制信息的有效的传输参数组字段不同于其他传输控制信息的有效的传输参数组字段,N为大于1的整数,F为大于或等于N的整数;针对N条传输控制信息生成各自所调度的传输块传输反馈信息,传输反馈信息包含N个反馈字段,分别为第一反馈字段至第N反馈字段,其中,第M反馈字段用于对N条传输控制信息中有效传输参数组字段为第Q传输参数组字段的传输控制信息所调度的传输块进行反馈,M为整数,且1≤M≤N,Q为整数,且1≤Q≤F。需要说明的是传输反馈信息中的N个反馈字段中的第M反馈字段并不用于表明该反馈字段在N个反馈字段中的排列顺序,例如,N=8,M=3,Q=2,则第3反馈字段可以用于对8条传输控制信息中有效传输参数组字段为第2传输参数组字段的传输控制信息所调度的传输块进行反馈,第3反馈字段可能是顺序排列的8个反馈字段中的第7个反馈字段。另外,该第一方面实施例中,传输控制信息 可以为DCI,传输参数组字段可以为DCI中的传输块配置信息字段,配置信息字段可以包括如下参数:调制编码方式(modulation and coding scheme,MCS)、新数据指示(new data indicator,NDI)和冗余版本(redundancy version,RV)。由该第一方面可见,可以对至少两条传输控制信息各自调度的传输块进行准确区分,即使这两个传输块的HARQ相同,也可以根据有效的不同传输参数组字段做出准确区分,并做出有效反馈。
结合第一方面,在第一种可能的实现方式中,N条传输控制信息来自P个网络设备,1≤P≤N。由该第一方面第一种可能的实现方式可见,无论N条传输控制信息来自同一个网络设备还是来自不同网络设备,都可以准确区分同一时间段网络设备所传输的传输块,若P大于1时,这P个网络设备之间存在交互,以便确定N个传输控制信息中各自有效的传输参数组字段,或者预先配置P个网络设备中的一个为控制端,由该控制端对其他网络设备的有效传输参数组字段进行分配。本申请实施例中的同一时间段可以是同一传输时间间隔(transmission time interval,TTI),也可以是同一时隙(slot),或者是其他时间长度单位。
结合上述第一方面或第一方面第一种可能的实现方式,在第二种可能的实现方式中,N条传输控制信息中至少一条传输控制信息包含传输资源指示,传输资源指示至少用于指示传输反馈信息的传输资源。传输反馈信息包括对正确解调的传输块的ACK应答,以及对未正确解调的传输块的NACK应答,传输资源指示可以指示该传输反馈信息在传输时所使用的上行资源。
结合第一方面第二种可能的实现方式,在第三种可能的实现方式中,该方法还包括:根据选择策略确定用于传输反馈信息的目标传输资源指示,其中,当N条传输控制信息中只有一个包含传输资源指示时,选择策略为选择该一个传输资源指示作为目标传输资源指示的指示策略;当N条传输控制信息中有至少两个包含传输资源指示,且这至少两个传输资源指示相同时,选择策略为选择该相同的传输资源指示作为目标传输资源指示的指示策略;当N条传输控制信息中有至少两个包含传输资源指示,选择策略为选择指定的传输资源指示作为目标传输资源指示的指示策略。由该第一方面第三种可能的实现方式可见,若N个DCI中只有一个DCI中携带传输资源指示,则使用该传输资源指示所指示的传输资源进行反馈。若N个DCI中都携带相同的传输资源指示,则任意选择其中一个DCI的传输资源指示,并依据该传输资源指示所指示的传输资源进行反馈。若N个DCI中有不止一个DCI携带了传输资源指示,而且每个传输资源指示不都相同,则可以根据网络设备预先指定的进行选择,例如:指定N个DCI中控制资源集合(control resource set,CORESET)标识(ID)最小的DCI中携带传输资源指示作为要采用的目标传输资源,或者指定携带传输资源指示的DCI中CORESET ID最小的DCI所携带传输资源指示作为要采用的目标传输资源。CORESET为承载DCI的时频资源,每个CORESET会有一个ID,网络侧可以配置多个CORESET,所以会有多个CORESET ID。在同一个时间段中CORESET ID不会重复。当然该处指示以CORESET ID最小的为例进行说明,实际上,也可以是CORESET ID最大的,或者其他方式确定的指定选项,而且也不限定只通过CORESET ID这一种标识方式,例如:还可以使用准共址(quasi-collocation,QCL)的取值范围、解调参考信号(Demodulation Reference Signal,DMRS)组(group)的标 识等来选择目标传输资源。
结合第一方面第二种或第三种可能的实现方式,在第四种可能的实现方式中,该方法还包括:在目标传输资源指示所指示的传输资源上传输该传输反馈信息,传输反馈信息中的N个反馈字段的排列顺序为N条传输控制信息的传输属性的顺序。该传输属性可以包括控制资源集合CORESET,准共址(quasi-collocation,QCL)、格式Format或者解调参考信号(Demodulation Reference Signal,DMRS)组(group)。每种类型的传输属性都会有属性值序号、顺序编号、取值范围或者顺序标识。例如:CORESET ID的顺序可以从1开始编号,CORESET 1、CORESET 2、CORESET 3,一直加1往下编号,这样,若有两个DCI,分别为DCI1和DCI2,DCI1的CORESET ID是CORESET 1,DCI1用于调度TB1,DCI2的CORESET ID是CORESET2,DCI2用于调度TB2,则该示例中传输属性的顺序为CORESET 1--CORESET 2,即CORESET 1排在前,CORESET 2排在后。传输反馈信息中的两个反馈字段分别为第一反馈字段和第二反馈字段,第一反馈字段在顺序上排在第二反馈字段之前,第一反馈字段与第二反馈字段的顺序与CORESET 1和CORESET 2的顺序对应,因此第一反馈字段所指示的是对TB1的反馈,第二反馈字段所指示的是对TB2的反馈。如使用DMRS group的顺序时,传输反馈信息中的N个反馈字段的排列顺序为N条传输控制信息各自所包含的解调参考信号(Demodulation Reference Signal,DMRS)端口(port)所处的DMRS组的顺序。其中,每个DCI都会包含DMRS port,该DMRS port已经预先被分到了DMRS group中。因此,一个TB会对应一个DMRS group,每个DMRS group会有一个编号或者是标识,每个DMRS group的编号不同,如DMRS group1和DMRS group2等,所以可以用DMRS group的编号顺序来排列传输反馈字段中对所调度的各传输块的ACK/NACK。其他传输属性的原理与CORESET ID和DMRS group基本相同,在此不再做过多列举。通过该DMRS组、CORESET ID、QCL或Format等每种属性中的顺序来确定反馈字段的反馈顺序可以在不用额外增加其他字段或信息来指示的情况下,实现对多传输块的有序反馈。
当然,可选地,传输反馈信息中的N个反馈字段的排列顺序可以为N条传输控制信息中有效的传输参数组字段的排列顺序。每个传输控制信息中有F个传输参数组字段,分别为第一传输参数组字段至第F传输参数组字段,可以将其理解为是顺序排列的,例如:第一传输参数组字段在传输控制信息中所占的比特位是从9-12,第二传输参数组字段所占的比特位是从13-15,其他传输参数组字段可以依次往后排列。有效的传输参数组字段的排列顺序即为每个有效的传输参数组字段在各自所在的传输控制信息中的位置的排列顺序。如:有两条传输控制信息,分别为DCI1和DCI2,DCI1用于调度TB2,DCI2用于调度TB1,DCI1中包括顺序排列的第一传输参数组字段和第二传输参数组字段,其中有效的传输参数组字段为第一传输参数组字段,DCI2中包括顺序排列第一传输参数组字段和第二传输参数组字段,其中有效的传输参数组字段为第二传输参数组字段。传输反馈信息中的两个反馈字段分别为第一反馈字段和第二反馈字段,第一反馈字段在顺序上排在第二反馈字段之前,第一反馈字段对应有效传输参数组字段为第一传输参数组字段的DCI所调度的传输块,第二反馈字段对应有效传输参数组字段为第二传输参数组字段的DCI所调度的传输块,因此第一反馈字段所指示的是对DCI1所调度的TB2的反馈,第二反馈字段所指示的是对DCI2所调度的TB1的反 馈。
本申请实施例第二方面提供一种传输控制方法,包括:接收N条传输控制信息,其中,每条传输控制信息用于调度一个传输块,且N条传输控制信息的传输属性分别为同类型传输属性中第一传输属性至第N传输属性之中的一个,且任一传输控制信息的传输属性不同于其他传输控制信息的传输属性,N为大于1的整数;针对N条传输控制信息各自所调度的传输块生成传输反馈信息,传输反馈信息包含N个反馈字段,分别为第一反馈字段至第N反馈字段,第M反馈字段用于对N条传输控制信息中传输属性为第Q传输属性的传输控制信息所调度的传输块进行反馈,M为整数,且1≤M≤N,Q为整数,且1≤Q≤N。需要说明的是传输反馈信息中的N个反馈字段中的第M反馈字段并不用于表明该反馈字段在N个反馈字段中的排列顺序,例如,N=8,M=3,Q=2,则第3反馈字段可以用于对8条传输控制信息中传输属性为第2传输属性的传输控制信息所调度的传输块进行反馈,第3反馈字段可能是顺序排列的8个反馈字段中的第7个反馈字段。另外,该第二方面实施例中,传输控制信息可以为DCI,传输属性不同可以是编号不同、标识不同或者取值范围不同。例如:传输属性可以包括控制资源集合CORESET,准共址(quasi-collocation,QCL)、格式Format或者解调参考信号(Demodulation Reference Signal,DMRS)组(group)。每个CORESET都会有自己的标识,也就是CORESET ID。传输属性不同可以是指CORESET ID不同,例如:CORESET ID1和CORESET ID2的传输属性是不同的。CORESET、QCL、Format和DMRS group是4种不同类型的传输属性。由该第二方面可见,可以对至少两条传输控制信息各自调度的传输块进行准确区分,即使这两个传输块的HARQ相同,也可以根据同类型传输属性中各传输控制信息的传输属性的不同做出准确区分,并做出有效反馈。
结合第二方面,在第一种可能的实现方式中,N条传输控制信息来自P个网络设备,1≤P≤N。由该第二方面第一种可能的实现方式可见,无论N条传输控制信息来自同一个网络设备还是来自不同网络设备,都可以准确区分同一时间段网络设备所传输的传输块,若P大于1时,这P个网络设备之间存在交互,以便确定N个传输控制信息中各自的传输属性,或者预先配置P个网络设备中的一个为控制端,由该控制端对其他网络设备的传输属性进行分配。本申请实施例中的同一时间段可以是同一TTI,也可以是同一时隙(slot),或者是其他时间长度单位。
结合上述第二方面或第二方面第一种可能的实现方式,在第二种可能的实现方式中,N条传输控制信息中至少一条传输控制信息包含传输资源指示,传输资源指示至少用于指示传输反馈信息的传输资源,传输反馈信息用于对N条传输控制信息所调度的传输块进行反馈。传输反馈信息包括对正确解调的传输块的ACK应答,以及对未正确解调的传输块的NACK应答,传输资源指示可以指示该传输反馈信息在传输时所使用的上行资源。
结合第二方面第二种可能的实现方式,在第三种可能的实现方式中,该方法还包括:根据选择策略确定用于传输反馈信息的目标传输资源指示,其中,当N条传输控制信息中只有一个包含传输资源指示时,选择策略为选择该一个传输资源指示作为目标传输资源指示的指示策略;当N条传输控制信息中有至少两个包含传输资源指示,且这至少两个传输资源指示相同时,选择策略为选择该相同的传输资源指示作为目标传输资源指示的指示策略; 当N条传输控制信息中有至少两个包含传输资源指示,选择策略为选择指定的传输资源指示作为目标传输资源指示的指示策略。由该第二方面第三种可能的实现方式可见,若N个DCI中只有一个DCI中携带传输资源指示,则使用该传输资源指示所指示的传输资源进行反馈。若N个DCI中都携带相同的传输资源指示,则任意选择其中一个DCI的传输资源指示,并依据该传输资源指示所指示的传输资源进行反馈。若N个DCI中有不止一个DCI携带了传输资源指示,而且每个传输资源指示不都相同,则可以根据网络设备预先指定的进行选择,例如:指定N个DCI中控制资源集合(control resource set,CORESET)标识(ID)最小的DCI中携带传输资源指示作为要采用的目标传输资源,或者指定携带传输资源指示的DCI中CORESET ID最小的DCI所携带传输资源指示作为要采用的目标传输资源。CORESET为承载DCI的时频资源,每个CORESET会有一个ID,网络侧可以配置多个CORESET,所以会有多个CORESET ID。在同一个时间段中CORESET ID不会重复。当然该处指示以CORESET ID最小的为例进行说明,实际上,也可以是CORESET ID最大的,或者其他方式确定的指定选项,而且也不限定只通过CORESET ID这一种标识方式,例如:还可以使用准共址(quasi-collocation,QCL)的取值范围、解调参考信号(Demodulation Reference Signal,DMRS)组(group)的标识等来选择目标传输资源。
结合第二方面第二种或第三种可能的实现方式,在第四种可能的实现方式中,该方法还包括:在目标传输资源指示所指示的传输资源上传输该传输反馈信息,传输反馈信息中的N个反馈字段的排列顺序为N条传输控制信息的传输属性的顺序。该传输属性可以包括控制资源集合CORESET,准共址(quasi-collocation,QCL)、格式Format或者解调参考信号(Demodulation Reference Signal,DMRS)组(group)。每种类型的传输属性都会有顺序编号、取值范围或者顺序标识。例如:CORESET ID的顺序可以从1开始编号,CORESET 1、CORESET 2、CORESET 3,一直加1往下编号,这样,若有两个DCI,分别为DCI1和DCI2,DCI1的CORESET ID是CORESET 1,DCI1用于调度TB1,DCI2的CORESET ID是CORESET 2,DCI2用于调度TB2,则该示例中传输属性的顺序为CORESET 1--CORESET 2,即CORESET 1排在前,CORESET 2排在后。传输反馈信息中的两个反馈字段分别为第一反馈字段和第二反馈字段,第一反馈字段在顺序上排在第二反馈字段之前,第一反馈字段与第二反馈字段的顺序与CORESET 1和CORESET 2的顺序对应,因此第一反馈字段所指示的是对TB1的反馈,第二反馈字段所指示的是对TB2的反馈。如使用DMRS group的顺序时,传输反馈信息中的N个反馈字段的排列顺序为N条传输控制信息各自所包含的解调参考信号(Demodulation Reference Signal,DMRS)端口(port)所处的DMRS组的顺序。其中,每个DCI都会包含DMRS port,该DMRS port已经预先被分到了DMRS group中。因此,一个TB会对应一个DMRS group,每个DMRS group会有一个编号或者是标识,每个DMRS group的编号不同,如DMRS group1和DMRS group2等,所以可以用DMRS group的编号顺序来排列传输反馈字段中对所调度的各传输块的ACK/NACK。其他传输属性的原理与CORESET ID和DMRS group基本相同,在此不再做过多列举,通过该DMRS组、CORESETID、QCL或Format等每种属性中的顺序来确定反馈字段的反馈顺序可以在不用额外增加其他字段或信息来指示的情况下,实现对多传输块的有序反馈。
本申请实施例第三方面提供一种传输控制方法,包括:接收N条传输控制信息,其中, 每条传输控制信息用于调度一个传输块,且每条传输控制信息均包含G个传输参数组字段,分别为第一传输参数组字段至第G传输参数组字段,每条传输控制信息的G个传输参数组字段中仅一个传输参数组字段有效,N为大于1的整数,G为大于或等于1的整数;也就是若有2个或多个传输控制信息,每个传输控制信息中可以只有1个传输参数组字段,当然也可以有多个传输参数组字段确定传输方案(Transmission Scheme),其中,传输方案与该N条传输控制信息的有效的传输参数组字段的组合结果相关联。该第三方面实施例中,传输控制信息可以为DCI,传输方案与N条传输控制信息的有效的传输参数组字段的组合结果相关联,可以是各DCI中有效的传输参数组字段相同或者不相同。若N大于2,则可以是每个DCI中有效的传输参数组字段都相同或者都不同。也可以是有的相同,有的不同,通过这种组合方式可以确定传输块的传输方案,从而有利于对传输块的接收。
结合第三方面,在第一种可能的实现方式中,N=2时,G=2,确定传输方案,其中,传输方案与N条传输控制信息的有效的传输参数组字段的组合结果相关联,可以包括:若两条传输控制信息中有效的传输参数组字段相同,则两条传输控制信息所调度的两个传输块的传输方案为发送分集传输方案或者空间复用传输方案;若两条传输控制信息中有效的传输参数组字段不相同,则两条传输控制信息所调度的两个传输块的传输方案为空间复用传输方案或者空间复用传输方案。发送分集方案可以利用多个信道承载相同信息的多个信号副本,接收机接收多路信号,并按照一定的规则将多路信号合并起来。发送分集主要降低误码率,提高传输可靠性。空分复用方案可以充分利用空间传播中的多径分量,在相同时频资源发送多路不同信号,从而提高容量。空分复用方案主要提高数据速率和频谱效率。由该第一种可能的实现方式可知,若DCI1和DCI2中都采用第一传输参数组字段或者都采用第二传输参数组字段,则可以确定传输块的传输模式为发送分集模式,若DCI1中采用第一传输参数组字段,DCI2中采用第二传输参数组字段;或者DCI1中采用第二传输参数组字段,DCI2中采用第一传输参数组字段,则可以确定传输块的传输模式为空间复用模式。若N=3,G=2,则有DCI1、DCI2和DCI3,DCI1和DCI2中的有效的传输参数组字段都是第一传输参数组字段,DCI3中的有效的传输参数组字段都是第二传输参数组字段,则DCI1和DCI2所调度的两个传输块的传输方案为发送分集传输方案,DCI1与DCI3之间是空间复用传输方案,DCI2与DCI3之间是空间复用传输方案。
结合第三方面或第三方面第一种可能的实现方式,在第二种可能的实现方式中,N条传输控制信息来自P个网络设备,1≤P≤N。由该第三方面第二种可能的实现方式可见,无论N条传输控制信息来自同一个网络设备还是来自不同网络设备,都可以确定传输方案,若P大于1时,这P个网络设备之间存在交互,以便协同传输模式,也可以是预先配置P个网络设备中的一个为控制端,由该控制端确定N条传输控制信息的传输模式。
结合上述第三方面、第三方面第一种或第二种可能的实现方式,在第三种可能的实现方式中,N条传输控制信息中至少一条传输控制信息包含传输资源指示,传输资源指示至少用于指示传输反馈信息的传输资源。传输反馈信息包括对正确解调的传输块的ACK应答,以及对未正确解调的传输块的NACK应答,传输资源指示可以指示该传输反馈信息在传输时所使用的上行资源。
结合第三方面第三种可能的实现方式,在第四种可能的实现方式中,该方法还包括:根据选择策略确定用于传输反馈信息的目标传输资源指示,其中,当N条传输控制信息中只有一个包含传输资源指示时,选择策略为选择该一个传输资源指示作为目标传输资源指示的指示策略;当N条传输控制信息中有至少两个包含传输资源指示,且这至少两个传输资源指示相同时,选择策略为选择该相同的传输资源指示作为目标传输资源指示的指示策略;当N条传输控制信息中有至少两个包含传输资源指示,选择策略为选择指定的传输资源指示作为目标传输资源指示的指示策略。由该第三方面第四种可能的实现方式可见,若N个DCI中只有一个DCI中携带传输资源指示,则使用该传输资源指示所指示的传输资源进行反馈。若N个DCI中都携带相同的传输资源指示,则任意选择其中一个DCI的传输资源指示,并依据该传输资源指示所指示的传输资源进行反馈。若N个DCI中有不止一个DCI携带了传输资源指示,而且每个传输资源指示不都相同,则可以根据网络设备预先指定的进行选择,例如:指定N个DCI中控制资源集合(control resource set,CORESET)标识(ID)最小的DCI中携带传输资源指示作为要采用的目标传输资源,或者指定携带传输资源指示的DCI中CORESET ID最小的DCI所携带传输资源指示作为要采用的目标传输资源。CORESET为承载DCI的时频资源,每个CORESET会有一个ID,网络侧可以配置多个CORESET,所以会有多个CORESET ID。在同一个时间段中CORESET ID不会重复。当然该处指示以CORESET ID最小的为例进行说明,实际上,也可以是CORESET ID最大的,或者其他方式确定的指定选项,而且也不限定只通过CORESET ID这一种标识方式,例如:还可以使用准共址(quasi-collocation,QCL)的取值范围、解调参考信号(Demodulation Reference Signal,DMRS)组(group)的标识等来选择目标传输资源。
结合第三方面第三种或第四种可能的实现方式,在第五种可能的实现方式中,该方法还包括:在目标传输资源指示所指示的传输资源上传输该传输反馈信息,传输反馈信息中的X个反馈字段的排列顺序为N条传输控制信息中有效的传输参数组的排列顺序,X为小于或等于N的整数。当所述N个传输控制信息中Y个传输控制信息的有效的传输参数组字段相同时,则这Y个传输控制信息所调度的传输块的反馈都相同,只需要用1个反馈字段进行反馈,当N=8,Y=3,若剩余的5个有效的传输参数组字段都不相同,而且与这三个的传输参数组字段也不相同,则只需要6个反馈字段就可以完成反馈,则X=6。当然,即使多个传输控制信息的有效的传输参数组字段相同,也可以还是使用N个反馈字段进行反馈,例如:N=8,Y=3,还是可以使用8个反馈字段进行反馈,其中针对3个相同的有效的传输参数组字段还是各自使用1个反馈字段,只是其中反馈的内容相同。
本申请实施例第四方面提供一种传输控制方法,包括:发送至少一条传输控制信息,该至少一条传输控制信息包含于终端设备接收到的N条传输控制信息,当然,至少一条可以与N条相等,也可以小于N条,等于N条时表示终端设备接收到的N条传输控制信息来自于一个网络设备,小于N条时表示终端设备接收到的N条传输控制信息来自于两个或多个网络设备,其中,每条传输控制信息用于调度一个传输块,且每条传输控制信息均包含F个传输参数组字段,分别为第一传输参数组字段至第F传输参数组字段,每条传输控制信息的F个传输参数组字段中仅一个传输参数组字段有效,且N条传输控制信息中每条传输控制信息的有 效的传输参数组字段不同于其他传输控制信息的有效的传输参数组字段,所述N为大于1的整数,F为大于或等于N的整数;接收针对所述N条传输控制信息各自所调度的传输块的传输反馈信息,所述传输反馈信息包含N个反馈字段,分别为第一反馈字段至第N反馈字段,其中,第M反馈字段用于对所述N条传输控制信息中有效传输参数组字段为第Q传输参数组字段的传输控制信息所调度的传输块进行反馈,所述M为整数,且1≤M≤N,Q为整数,且1≤Q≤F。需要说明的是传输反馈信息中的N个反馈字段中的第M反馈字段并不用于表明该反馈字段在N个反馈字段中的排列顺序,例如,N=8,M=3,Q=2,则第3反馈字段可以用于对8条传输控制信息中有效传输参数组字段为第,2传输参数组字段的传输控制信息所调度的传输块进行反馈,第3反馈字段可能是顺序排列的8个反馈字段中的第7个反馈字段。另外,该第四方面实施例中,传输控制信息可以为DCI,例如:N=2,则有两个传输控制信息,用DCI表示,则有DCI1和DCI2,则DCI1和DCI2中均包含2个传输参数组字段,可以称为第一传输参数组字段和第二传输参数组字段,也可以称为传输参数组字段1和传输参数组字段2。DCI1和DCI2中都分别仅有一个传输参数组字段有效,且DCI1中和DCI2中有效的传输参数组字段不同。也就是若DCI1中的第一传输参数组字段有效,则DCI2中第二传输参数组字段有效,若DCI1中的第二传输参数组字段有效,则DCI2中第一传输参数组字段有效。传输参数组字段可以是DCI中的传输块配置信息字段,DCI中可以包括两个或多个传输块配置信息字段,每个传输块配置信息字段包括如下参数:调制编码方式(modulation and coding scheme,MCS)、新数据指示(new data indicator,NDI)和冗余版本(redundancy version,RV)。这样,就可以通过DCI中包含MCS、NDI和RV的字段来使能该DCI所调度的传输块。由该第二方面可见,网络设备在DCI中配置的指示方式可以使得终端设备对至少两条传输控制信息各自调度的传输块进行准确区分,即使这两个传输块的HARQ相同,也可以根据有效的不同传输参数组字段做出准确区分,并做出有效反馈。
结合第四方面,在第一种可能的实现方式中,所述N条传输控制信息中至少一条传输控制信息包含传输资源指示,所述传输资源指示至少用于指示传输反馈信息的传输资源,所述传输反馈信息用于对所述N条传输控制信息所调度的传输块进行反馈。传输反馈信息包括对正确解调的传输块的ACK应答,以及对未正确解调的传输块的NACK应答,传输资源指示可以指示该传输反馈信息在传输时所使用的上行资源。
结合第四方面第一种可能的实现方式,在第二种可能的实现方式中,所述接收针对所述N条传输控制信息的反馈信息,可以包括:从所述目标传输资源指示所指示的传输资源上接收所述传输反馈信息,所述传输反馈信息中的N个反馈字段的排列顺序为所述N条传输控制信息的传输属性的顺序。该传输属性可以包括控制资源集合CORESET,准共址(quasi-collocation,QCL)、格式Format或者解调参考信号(Demodulation Reference Signal,DMRS)组(group)。每种类型的传输属性都会有顺序编号或者顺序标识。例如:CORESET ID的顺序可以从1开始编号,CORESET 1、CORESET 2、CORESET 3,一直加1往下编号,这样,若有两个DCI,分别为DCI1和DCI2,DCI1的CORESET ID是CORESET 1,DCI1用于调度TB1,DCI2的CORESET ID是CORESET 2,DCI2用于调度TB2,则该示例中传输属性的顺序为CORESET 1--CORESET 2,即CORESET 1排在前,CORESET 2排在后。传输反馈信息中的两 个反馈字段分别为第一反馈字段和第二反馈字段,第一反馈字段在顺序上排在第二反馈字段之前,第一反馈字段与第二反馈字段的顺序与CORESET 1和CORESET 2的顺序对应,因此第一反馈字段所指示的是对TB1的反馈,第二反馈字段所指示的是对TB2的反馈。如使用DMRS group的顺序时,传输反馈信息中的N个反馈字段的排列顺序为N条传输控制信息各自所包含的解调参考信号(Demodulation Reference Signal,DMRS)端口(port)所处的DMRS组的顺序。其中,每个DCI都会包含DMRS port,该DMRS port已经预先被分到了DMRS group中。因此,一个TB会对应一个DMRS group,每个DMRS group会有一个编号或者是标识,每个DMRS group的编号不同,如DMRS group1和DMRS group2等,所以可以用DMRS group的编号顺序来排列传输反馈字段中对所调度的各传输块的ACK/NACK。其他传输属性的原理与CORESET ID和DMRS group基本相同,在此不再做过多列举。通过该DMRS组、CORESETID、QCL或Format等每种属性中的顺序来确定反馈字段的反馈顺序可以在不用额外增加其他字段或信息来指示的情况下,实现对多传输块的有序反馈。
当然,可选地,传输反馈信息中的N个反馈字段的排列顺序可以为N条传输控制信息中有效的传输参数组字段的排列顺序。每个传输控制信息中有F个传输参数组字段,分别为第一传输参数组字段至第F传输参数组字段,可以将其理解为是顺序排列的,例如:第一传输参数组字段在传输控制信息中所占的比特位是从9-12,第二传输参数组字段所占的比特位是从13-15,其他传输参数组字段可以依次往后排列。有效的传输参数组字段的排列顺序即为每个有效的传输参数组字段在各自所在的传输控制信息中的位置的排列顺序。如:有两条传输控制信息,分别为DCI1和DCI2,DCI1用于调度TB2,DCI2用于调度TB1,DCI1中包括顺序排列的第一传输参数组字段和第二传输参数组字段,其中有效的传输参数组字段为第一传输参数组字段,DCI2中包括顺序排列第一传输参数组字段和第二传输参数组字段,其中有效的传输参数组字段为第二传输参数组字段。传输反馈信息中的两个反馈字段分别为第一反馈字段和第二反馈字段,第一反馈字段在顺序上排在第二反馈字段之前,第一反馈字段对应有效传输参数组字段为第一传输参数组字段的DCI所调度的传输块,第二反馈字段对应有效传输参数组字段为第二传输参数组字段的DCI所调度的传输块,因此第一反馈字段所指示的是对DCI1所调度的TB2的反馈,第二反馈字段所指示的是对DCI2所调度的TB1的反馈。
本申请实施例第五方面提供一种传输控制方法,包括:发送至少一条传输控制信息,该至少一条传输控制信息包含于终端设备接收到的N条传输控制信息,当然,至少一条可以与N条相等,也可以小于N条,等于N条时表示终端设备接收到的N条传输控制信息来自于一个网络设备,小于N条时表示终端设备接收到的N条传输控制信息来自于两个或多个网络设备,其中,每条传输控制信息用于调度一个传输块,且所述N条传输控制信息的传输属性分别为同类型传输属性中第一传输属性至第N传输属性之中的一个,且任一传输控制信息的传输属性不同于其他传输控制信息的传输属性,所述N为大于1的整数;接收针对所述N条传输控制信息各自所调度的传输块的传输反馈信息,所述传输反馈信息包含N个反馈字段,分别为第一反馈字段至第N反馈字段,第M反馈字段用于对所述N条传输控制信息中传输属性为第Q传输属性的传输控制信息所调度的传输块进行反馈,M为整数,Q为整数,且1≤M≤N, 且1≤Q≤N。需要说明的是传输反馈信息中的N个反馈字段中的第M反馈字段并不用于表明该反馈字段在N个反馈字段中的排列顺序,例如,N=8,M=3,Q=2,则第3反馈字段可以用于对8条传输控制信息中传输属性为第2传输属性的传输控制信息所调度的传输块进行反馈,第3反馈字段可能是顺序排列的8个反馈字段中的第7个反馈字段。另外,该第五方面实施例中,传输控制信息可以为DCI,传输属性不同可以是同一类型传输属性中编号不同、标识不同或者范围不同。例如:传输属性可以包括控制资源集合CORESET,准共址(quasi-collocation,QCL)、格式Format或者解调参考信号(Demodulation Reference Signal,DMRS)组(group)。每个CORESET都会有自己的标识,也就是CORESET ID,传输属性不同可以是指CORESET ID不同,例如:CORESET ID1和CORESET ID2的传输属性是不同的。CORESET、QCL、Format和DMRS group是4种不同类型的传输属性。由该第五方面可见,网络设备配置的指示方式可以使得终端设备对至少两条传输控制信息各自调度的传输块进行准确区分,即使这两个传输块的HARQ相同,也可以根据同类型传输属性中各传输控制信息的传输属性的不同做出准确区分,并做出有效反馈。
结合第五方面,在第一种可能的实现方式中,所述N条传输控制信息中至少一条传输控制信息包含传输资源指示,所述传输资源指示至少用于指示传输反馈信息的传输资源,所述传输反馈信息用于对所述N条传输控制信息所调度的传输块进行反馈。传输反馈信息包括对正确解调的传输块的ACK应答,以及对未正确解调的传输块的NACK应答,传输资源指示可以指示该传输反馈信息在传输时所使用的上行资源。
结合第五方面第一种可能的实现方式,在第二种可能的实现方式中,所述接收针对所述N条传输控制信息的反馈信息,可以包括:从所述目标传输资源指示所指示的传输资源上接收所述传输反馈信息,所述传输反馈信息中的N个反馈字段的排列顺序为所述N条传输控制信息的传输属性的顺序。该传输属性可以包括控制资源集合CORESET,准共址(quasi-collocation,QCL)、格式Format或者解调参考信号(Demodulation Reference Signal,DMRS)组(group)。每种类型的传输属性都会有顺序编号或者顺序标识。例如:CORESET ID的顺序可以从1开始编号,CORESET 1、CORESET 2、CORESET 3,一直加1往下编号,这样,若有两个DCI,分别为DCI1和DCI2,DCI1的CORESET ID是CORESET 1,DCI1用于调度TB1,DCI2的CORESET ID是CORESET 2,DCI2用于调度TB2,则该示例中传输属性的顺序为CORESET 1--CORESET 2,即CORESET 1排在前,CORESET 2排在后。传输反馈信息中的两个反馈字段分别为第一反馈字段和第二反馈字段,第一反馈字段在顺序上排在第二反馈字段之前,第一反馈字段与第二反馈字段的顺序与CORESET 1和CORESET 2的顺序对应,因此第一反馈字段所指示的是对TB1的反馈,第二反馈字段所指示的是对TB2的反馈。如使用DMRS group的顺序时,传输反馈信息中的N个反馈字段的排列顺序为N条传输控制信息各自所包含的解调参考信号(Demodulation Reference Signal,DMRS)端口(port)所处的DMRS组的顺序。其中,每个DCI都会包含DMRS port,该DMRS port已经预先被分到了DMRS group中。因此,一个TB会对应一个DMRS group,每个DMRS group会有一个编号或者是标识,每个DMRS group的编号不同,如DMRS group1和DMRS group2等,所以可以用DMRS group的编号顺序来排列传输反馈字段中对所调度的各传输块的ACK/NACK。其他传输属性的原理与CORESET ID 和DMRS group基本相同,在此不再做过多列举。通过该DMRS组、CORESETID、QCL或Format等每种属性中的顺序来确定反馈字段的反馈顺序可以在不用额外增加其他字段或信息来指示的情况下,实现对多传输块的有序反馈。
本申请第六方面提供一种传输控制方法,包括:生成至少一条传输控制信息;发送所述至少一条传输控制信息,所述至少一条传输控制信息包含于终端设备接收到的N条传输控制信息,所述N条传输控制信息用于所述终端设备确定传输方案,述传输方案与所述N条传输控制信息的有效的传输参数组字段的组合结果相关联,其中,每条传输控制信息用于调度一个传输块,且每条传输控制信息均包含G个传输参数组字段,分别为第一传输参数组字段至第G传输参数组字段,每条传输控制信息的G个传输参数组字段中仅一个传输参数组字段有效,所述N为大于1的整数,所述G为大于或等于1的整数。传输控制信息可以为DCI,传输方案与N条传输控制信息的有效的传输参数组字段的组合结果相关联,可以是各DCI中有效的传输参数组字段相同或者不相同。若N大于2,则可以是每个DCI中有效的传输参数组字段都相同或者都不同。也可以是有的相同,有的不同,通过这种组合方式可以确定传输块的传输方案。
本申请第六方面提供一种终端设备,该终端设备包括:接收单元、处理单元和发送单元,该接收单元用于执行上述第一方面、第二方面或第三方面,以及其任一可能的实现方式中涉及到接收操作的步骤;该处理单元用于执行上述第一方面、第二方面或第三方面,以及其任一可能的实现方式中涉及到处理操作的步骤;该发送单元用于执行上述第一方面、第二方面或第三方面,以及其任一可能的实现方式中涉及到发送操作的步骤。
本申请第七方面提供一种网络设备,该网络设备包括:接收单元和发送单元,该接收单元用于执行上述第四方面、第五方面或第六方面,以及其任一可能的实现方式中涉及到接收操作的步骤;该发送单元用于执行上述第四方面、第五方面或第六方面,以及其任一可能的实现方式中涉及到发送操作的步骤。该终端设备中还可以包括处理单元,该处理单元用于执行发送单元发送各个传输控制信息之前确定各个传输控制信息的步骤。
本申请第八方面提供一种终端设备,该终端设备包括:收发器和至少一个处理器,收发器和至少一个处理器通过线路互联,收发器用于执行第一方面、第二方面或第三方面,以及其任一可能的实现方式中,在所述终端设备侧进行信息收发的操作;该处信息收发的操作可以是第一方面、第二方面或第三方面,以及其任一可能的实现方式中传输控制信息接收、传输反馈信息发送的操作,处理器用于执行第一方面、第二方面或第三方面,以及其任一可能的实现方式中,在所述终端设备侧信息处理的操作,如:生成传输反馈信息的操作。可选地,该终端设备还可以包括存储器、该存储器中存储有指令,该存储器通过线路与收发器和至少一个处理器互联。
本申请第九方面提供一种网络设备,该网络设备包括:收发器和至少一个处理器,收发器和至少一个处理器通过线路互联,收发器用于执行第四方面、第五方面或第六方面,以及其任一可能的实现方式中,在所述网络设备侧进行信息收发的操作;该处信息收发的操作可以是第四方面、第五方面或第六方面,以及其任一可能的实现方式中传输控制信息发送、传输反馈信息接收的操作,处理器用于执行第四方面、第五方面或第六方面,以及 其任一可能的实现方式中,在所述网络设备侧信息处理的操作,如:可以是在发送传输控制信息之前,确定传输控制信息的操作。可选地,该网络设备还可以包括存储器、该存储器中存储有指令,该存储器通过线路与收发器和至少一个处理器互联。
本申请第十方面提供一种芯片系统,包括:应用于终端设备中,所述芯片系统包括至少一个处理器和通信接口,该芯片系统中还可以包括存储器,所述存储器、所通信接口和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述指令被所述处理器执行,以执行第一方面、第二方面或第三方面,以及其任一可能的实现方式中所述终端设备的操作。
本申请第十一方面提供一种芯片系统,包括:应用于网络设备中,所述芯片系统包括至少一个处理器和通信接口,该芯片系统中还可以包括存储器,所述存储器、所通信接口和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述指令被所述处理器执行,以执行第四方面、第五方面或第六方面,以及其任一可能的实现方式中所述网络设备的操作。
本申请第十二方面提供一种计算机可读存储介质,应用于终端设备中,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面、第二方面或第三方面,以及其任一可能的实现方式中所述的方法。
本申请第十三方面提供一种计算机可读存储介质,应用于网络设备中,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第四方面、第五方面或第六方面,以及其任一可能的实现方式中所述的方法。
本申请第十四方面提供一种包含指令的计算机程序产品,应用于终端设备中,当该程序在计算设备上运行时,执行上述第一方面、第二方面或第三方面,以及其任一可能的实现方式中终端设备的操作。
本申请第十五方面提供一种包含指令的计算机程序产品,应用于网络设备中,当该程序在计算设备上运行时,执行上述第四方面、第五方面或第六方面,以及其任一可能的实现方式中网络设备的操作。
本申请又一方面提供一种通信系统,包括:终端设备和网络设备;其中,该终端设备为执行上述第一方面、第二方面或第三方面,以及其任一可能的实现方式中步骤的终端设备;该网络设备为执行上述第四方面、第五方面或第六方面,以及任一可能的实现方式中步骤的网络设备。
本申请实施例提供的传输控制方法,网络设备可以向终端设备发送N条传输控制信息,终端设备可以根据N条传输控制信息的有效的传输参数组字段或传输属性准确区分N条传输控制信息各自所调度的传输块,并进行有效反馈。
附图说明
图1A是本申请实施例中通信系统的一实施例示意图;
图1B是本申请实施例中通信系统的一实施例示意图;
图2是本申请实施例中通信系统的另一实施例示意图;
图3是本申请实施例中传输控制方法的一实施例示意图;
图4是本申请实施例中传输控制方法的另一实施例示意图;
图5是本申请实施例中传输控制方法的另一实施例示意图;
图6是本申请实施例中终端设备的一实施例示意图;
图7是本申请实施例中网络设备的一实施例示意图;
图8是本申请实施例中终端设备的另一实施例示意图;
图9是本申请实施例中芯片系统的一实施例示意图。
具体实施方式
下面结合附图,对本申请的实施例进行描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。本领域普通技术人员可知,随着技术的发展以及新场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例提供一种传输控制方法,可以对至少两条传输控制信息各自调度传输块进行准确区分,并做出有效反馈。本申请实施例还提供了相应的终端设备及网络设备,系统及计算机可读存储介质。以下分别进行详细说明。
本申请中出现的术语“上行”和“下行”,在某些场景用于描述数据/信息传输的方向,比如,“上行”方向为该数据/信息从终端设备向网络侧传输的方向,“下行”方向为该数据/信息从网络侧设备向终端设备传输的方向,“上行”和“下行”仅用于描述方向,该数据/信息传输起止的具体设备都不作限定。
本申请中出现的术语“和/或”,可以是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。在本申请中出现的对步骤进行的命名或者编号,并不意味着必须按照命名或者编号所指示的时间/逻辑先后顺序执行方法流程中的步骤,已经命名或者编号的流程步骤可以根据要实现的技术目的变更执行次序,只要能达到相同或者相类似的技术效果即可。本申请中所出现的模块的划分,是一种逻辑上的划分,实际应用中实现时可以有另外的划分方式,例如多个模块可以结合成或集成在另一个系统中,或一些特征可以忽略,或不执行,另外,所显示的或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,模块之间的间接耦合或通信连接可以是电性或其他类似的形式,本申请中均不作限定。并且,作为分离部件说明的模块或子模块可以是也可以不是物理上的分离,可以是也可以不是物理模块,或者可以分布到多个电路模块中,可以根据实际的需要选择其中的 部分或全部模块来实现本申请方案的目的。
图1A为本申请实施例中通信系统的一实施例示意图。
如图1A所示,该通信系统包括网络设备和终端设备。
本申请实施例中,所述网络设备是一种部署在无线接入网中为终端设备提供无线通信功能的装置。所述网络设备可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在LTE系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB),在第三代(3rd Generation,3G)系统中,称为节点B(Node B),在第五代(3rd Generation,5G)系统中成为无线网络接入设备等。为方便描述,本申请所有实施例中,上述为终端提供无线通信功能的装置统称为网络设备或基站或BS。
本申请实施例中所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。所述终端可以是移动站(Mobile Station,MS)、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(Personal Digital Assistant,简称:PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(Machine Type Communication,MTC)终端等。
图1A所示的是一个网络设备向多个终端设备调度传输控制信息的场景,实际上,还可以是多个网络设备向一个终端设备调度传输控制信息,如图1B所示。
图1A和图1B所示的通信系统中每个网络设备和每个终端设备之间的通信还可以用另一种形式来表示,如图2所示,终端设备10包括处理器101、存储器102和收发器103,收发器103包括发射机1031、接收机1032和天线1033。网络设备20包括处理器201、存储器202和收发器203,收发器203包括发射机2031、接收机2032和天线2033。接收机1032可以用于通过天线1033接收传输控制信息,发射机1031可以用于通过天线1033向网络设备20发送传输反馈信息。发射机2031可以用于通过天线2033向终端设备10发送传输控制信息,接收机2032可以用于通过天线2033接收终端设备10发送的传输反馈信息。
以上介绍了通信系统、终端设备以及网络设备的结构,下面介绍终端设备和网络设备之间的传输控制过程。
如图3所示,本申请实施例提供的传输控制方法的一实施例包括:
301、终端设备接收网络设备发送的N条传输控制信息。
其中,每条传输控制信息用于调度一个传输块,且每条传输控制信息均包含F个传输参数组字段,分别为第一传输参数组字段至第F传输参数组字段,每条传输控制信息的F个传输参数组字段中仅一个传输参数组字段有效,且N条传输控制信息中每条传输控制信息的有效的传输参数组字段不同于其他传输控制信息的有效的传输参数组字段,N为大于1的整数,F为大于或等于所述N的整数。
终端设备接收的N条传输控制信息可以来自于同一个网络设备,也可以来自于两个或多个网络设备。
F可以大于N,F也可以等于N,例如:N=5,F=5,也就是网络设备向终端设备发送5条 传输控制信息,每条传输控制信息中都包含5个传输参数组字段;例如:N=2,F=2,也就是网络设备向终端设备发送2条传输控制信息,每条传输控制信息中都包含2个传输参数组字段。传输控制信息可以为DCI,例如:N=2,F=2,则有两个传输控制信息,用DCI表示,分别为DCI1和DCI2,则DCI1和DCI2中均包含2个传输参数组字段,可以称为第一传输参数组字段和第二传输参数组字段,也可以称为传输参数组字段1和传输参数组字段2。DCI1和DCI2中都分别仅有一个传输参数组字段有效,且DCI1中和DCI2中有效的传输参数组字段不同。也就是若DCI1中的第一传输参数组字段有效,则DCI2中第二传输参数组字段有效,若DCI1中的第二传输参数组字段有效,则DCI2中第一传输参数组字段有效。传输参数组字段可以是DCI中的传输块配置信息字段,DCI中可以包括两个或多个传输块配置信息字段,每个传输块配置信息字段包括如下参数:调制编码方式(modulation and coding scheme,MCS)、新数据指示(new data indicator,NDI)和冗余版本(redundancy version,RV)。这样,就可以通过DCI中包含MCS、NDI和RV的字段来使能该DCI所调度的传输块。
302、终端设备接收该N条传输控制信息后,针对N条传输控制信息生成传输反馈信息。
传输反馈信息包含N个反馈字段,分别为第一反馈字段至第N反馈字段,其中,第M反馈字段用于对N条传输控制信息中有效传输参数组字段为第Q传输参数组字段的传输控制信息所调度的传输块进行反馈,M为整数,且1≤M≤N,Q为整数,且1≤Q≤F。
需要说明的是传输反馈信息中的N个反馈字段中的第M反馈字段可以并不用于表明该反馈字段在N个反馈字段中的排列顺序,例如,N=8,M=3,Q=2,则第3反馈字段可以用于对8条传输控制信息中有效传输参数组字段为第2传输参数组字段的传输控制信息所调度的传输块进行反馈,第3反馈字段可能是顺序排列的8个反馈字段中的第7个反馈字段。
当然,可选地,传输反馈信息中的N个反馈字段的排列顺序可以为N条传输控制信息中有效的传输参数组字段的排列顺序。每个传输控制信息中有F个传输参数组字段,分别为第一传输参数组字段至第F传输参数组字段,可以将其理解为是顺序排列的,例如:第一传输参数组字段在传输控制信息中所占的比特位是从9-12,第二传输参数组字段所占的比特位是从13-15,其他传输参数组字段可以依次往后排列。有效的传输参数组字段的排列顺序即为每个有效的传输参数组字段在各自所在的传输控制信息中的位置的排列顺序。如:有两条传输控制信息,分别为DCI1和DCI2,DCI1用于调度TB2,DCI2用于调度TB1,DCI1中包括顺序排列的第一传输参数组字段和第二传输参数组字段,其中有效的传输参数组字段为第一传输参数组字段,DCI2中包括顺序排列第一传输参数组字段和第二传输参数组字段,其中有效的传输参数组字段为第二传输参数组字段。传输反馈信息中的两个反馈字段分别为第一反馈字段和第二反馈字段,第一反馈字段在顺序上排在第二反馈字段之前,第一反馈字段对应有效传输参数组字段为第一传输参数组字段的DCI所调度的传输块,第二反馈字段对应有效传输参数组字段为第二传输参数组字段的DCI所调度的传输块,因此第一反馈字段所指示的是对DCI1所调度的TB2的反馈,第二反馈字段所指示的是对DCI2所调度的TB1的反馈。
在具体实现过程中,传输反馈信息中N个反馈字段的排列顺序,F个传输参数组字段的排列顺序,以及其他排列顺序,可以按照具体需要进行设置,这些排列顺序之间可以存在 各种映射关系,本发明实施例对具体实现细节不做限定。
以2个控制信息调度2个传输块为例,说明上述利用有效的传输参数组字段的排列顺序确定反馈字段与传输块对应关系。表1为2bits ACK/NACK反馈的关系表。表2为3bits ACK/NACK反馈的关系表。
表1:反馈字段与传输块对应关系
ACK/NACK 含义
11 传输块1 ACK;传输块2 ACK
10 传输块1 ACK;传输块2 NACK或DTX
01 传输块1 NACK或DTX;传输块2 ACK
00 传输块1 NACK或DTX;传输块2 NACK或DTX
其中调度传输块1对应第一传输参数组字段,传输块2对应第二传输参数组字段.DTX示终端设备没有检测到该控制信息。
表2:反馈字段与传输块对应关系
ACK/NACK 含义
111 传输块1 ACK;传输块2 ACK
110 传输块1 ACK;传输块2 NACK
101 传输块1 NACK;传输块2 ACK
100 传输块1 NACK;传输块2 NACK
011 传输块1 ACK;传输块2 DTX
010 传输块1 DTX;传输块2 ACK
001 传输块1 NACK;传输块2 DTX
000 传输块1 DTX;传输块2 NACK
其中调度传输块1对应第一传输参数组字段,传输块2对应第二传输参数组字段.DTX表示终端设备没有检测到该控制信息。
303、终端设备向网络设备发送该传输反馈信息。
由该实施例可见,可以对至少两条传输控制信息各自调度的传输块进行准确区分,即使这两个传输块的HARQ ID相同,也可以根据有效的不同传输参数组字段做出准确区分,并做出有效反馈。
可选地,实际上,上述图3对应实施例中的N条传输控制信息可以来自P个网络设备,1≤P≤N。本申请实施例无论N条传输控制信息来自同一个网络设备还是来自不同网络设备,都可以准确区分同一时间段网络设备所传输的传输块,若P大于1时,这P个网络设备之间存在交互,以便确定N个传输控制信息中各自有效的传输参数组字段,或者预先配置P个网络设备中的一个为控制端,由该控制端对其他网络设备的有效传输参数组字段进行分配。本申请实施例中的同一时间段可以是同一传输时间间隔(transmission time interval,TTI),也可以是同一时隙(slot),或者是其他时间长度单位。例如,当N=5且P=1时,说明1个网络设备发送了全部5条传输控制信息。又例如,当N=5且P=5时,说明5个网络设备发送了5条传输控制信息,其中每个网络设备发送一条传输控制信息。再例如,当N=5且P=2时, 有可能一个网络设备发送了2条传输控制信息,另一个网络设备发送了3条传输控制信息。还可能是一个网络设备发送了1条传输控制信息,另一个网络设备发送了4条传输控制信息。
如图4所示,本申请实施例提供的传输控制方法的另一实施例包括:
401、终端设备接收网络设备发送的N条传输控制信息,其中,每条传输控制信息用于调度一个传输块,且N条传输控制信息的传输属性分别为同类型传输属性中第一传输属性至第N传输属性之中的一个,且任一传输控制信息的传输属性不同于其他传输控制信息的传输属性,N为大于1的整数。
终端设备接收的N条传输控制信息可以来自于同一个网络设备,也可以来自于两个或多个网络设备。
传输控制信息可以为DCI,例如:N=2,则有两个传输控制信息,用DCI表示,则有DCI1和DCI2,DCI的传输属性可以为第一传输属性,DCI2的传输属性为第二传输属性,第一传输属性和第二传输属性不同,该处的传输属性指的是同一类型的传输属性,传输属性不同可以是属性值不同、编号不同、标识不同或者范围不同。例如:传输属性可以包括控制资源集合CORESET,准共址(quasi-collocation,QCL)、格式Format或者解调参考信号(Demodulation Reference Signal,DMRS)组(group)。CORESET、QCL、Format和DMRS group是4种不同类型的传输属性。每个CORESET都会有自己的标识,也就是CORESET ID,所以DCI1和DCI2的CORESET ID不同,可以用CORESET ID来区分DCI1和DCI2,并对DCI1和DCI2所调度的两个传输块进行反馈。
402、终端设备接收该N条传输控制信息后,针对N条传输控制信息生成传输反馈信息,传输反馈信息包含N个反馈字段,分别为第一反馈字段至第N反馈字段,第M反馈字段用于对N条传输控制信息中传输属性为第Q传输属性的传输控制信息所调度的传输块进行反馈,M为整数,且1≤M≤N,Q为整数,且1≤Q≤N。
需要说明的是传输反馈信息中的N个反馈字段中的第M反馈字段可以用于也可以不用于表明该反馈字段在N个反馈字段中的排列顺序,例如,N=8,M=3,Q=2,则第3反馈字段可以用于对8条传输控制信息中传输属性为第2传输属性的传输控制信息所调度的传输块进行反馈,第3反馈字段可能是顺序排列的8个反馈字段中的第7个反馈字段。
有关各种排列顺序的设计方法可以参考前一实施例中各种排列顺序的设计方法。
403、终端设备向网络设备发送传输反馈信息。
由该实施例可见,可以对至少两条传输控制信息各自调度的传输块进行准确区分,即使这两个传输块的HARQ ID相同,也可以根据同类型传输属性中各传输控制信息的传输属性的不同做出准确区分,并做出有效反馈。
可选地,在上述图4对应的实施例中,N条传输控制信息来自P个网络设备,1≤P≤N。该实施例中,无论N条传输控制信息来自同一个网络设备还是来自不同网络设备,都可以准确区分同一时间段网络设备所传输的传输块,若P大于1时,这P个网络设备之间存在交互,以便确定N个传输控制信息中各自的传输属性,或者预先配置P个网络设备中的一个为控制端,由该控制端对其他网络设备的传输属性进行分配。本申请实施例中的同一时间段可以是同一TTI,也可以是同一时隙(slot),或者是其他时间长度单位。有关N条传输控制信息 的发送设备可以参考前一实施例中的相关描述。
如图5所示,本申请实施例提供的传输控制方法的另一实施例包括:
501、网络设备生成至少一条传输控制信息。
502、网络设备向终端设备发送所述至少一条传输控制信息。
所述至少一条传输控制信息包含于终端设备接收到的N条传输控制信息,其中,每条传输控制信息用于调度一个传输块,且每条传输控制信息均包含G个传输参数组字段,分别为第一传输参数组字段至第G传输参数组字段,每条传输控制信息的G个传输参数组字段中仅一个传输参数组字段有效,N为大于1的整数,G为大于或等于1的整数。
每个传输参数组字段均包含,例如但不限于,传输参数A、传输参数B和传输参数C,这三种类型的传输参数。
503、终端设备接收到N条传输控制信息后,确定传输方案。
其中,传输方案与N条传输控制信息的有效的传输参数组字段的组合结果相关联。该组合结果为,例如但不限于,基于所述N条传输控制信息的预设排列次序对这些传输控制信息的有效的传输参数组字段进行组合的组合结果。例如:有效的传输参数组字段相同的组合结果,或者有效的传输参数组字段都不相同的组合结果,或者有效的传输参数组字段不都相同的组合结果,也就是有的相同,有的不同的组合结果。
传输控制信息可以为DCI,传输参数组字段的组合结果可以是每个DCI中有效的传输参数组字段都相同或者都不相同,或者有的相同,有的不同。
通过这种组合方式可以确定传输块的传输方案,从而有利于对传输块的接收。
可选地,N=2时,G=2,确定传输方案,其中,传输方案与N条传输控制信息的有效的传输参数组字段的组合结果相关联,可以包括:
若两条传输控制信息中有效的传输参数组字段相同,则两条传输控制信息所调度的两个传输块的传输方案为发送分集传输方案;
若两条传输控制信息中有效的传输参数组字段不相同,则两条传输控制信息所调度的两个传输块的传输方案为空间复用传输方案。
当然,上述只是一种组合方式与传输方案的关系,还可以是:
若两条传输控制信息中有效的传输参数组字段相同,则两条传输控制信息所调度的两个传输块的传输方案为空间复用传输方案;
若两条传输控制信息中有效的传输参数组字段不相同,则两条传输控制信息所调度的两个传输块的传输方案为发送分集传输方案。
发送分集方案可以利用多个信道承载相同信息的多个信号副本,接收机接收多路信号,并按照一定的规则将多路信号合并起来。发送分集主要降低误码率,提高传输可靠性。空分复用方案可以充分利用空间传播中的多径分量,在相同时频资源发送多路不同信号,从而提高容量。空分复用方案主要提高数据速率和频谱效率。
由此可见,若DCI1和DCI2中都采用第一传输参数组字段或者都采用第二传输参数组字段,则可以确定传输块的传输模式为发送分集模式,若DCI1中采用第一传输参数组字段,DCI2中采用第二传输参数组字段;或者DCI1中采用第二传输参数组字段,DCI2中采用第一 传输参数组字段,则可以确定传输块的传输模式为空间复用模式。
可选地,N条传输控制信息可以来自P个网络设备,1≤P≤N。本申请实施例中,无论N条传输控制信息来自同一个网络设备还是来自不同网络设备,都可以确定传输方案,若P大于1时,这P个网络设备之间存在交互,以便协同传输模式,也可以是预先配置P个网络设备中的一个为控制端,由该控制端确定N条传输控制信息的传输模式。有关N条传输控制信息的发送设备可以参考前述实施例中的相关描述。
在上述图3、图4或图5以及任一可选实施例的基础上,可选地,本申请实施例提供的传输控制方法实施例中,N条传输控制信息中至少一条传输控制信息包含传输资源指示,传输资源指示至少用于指示传输反馈信息的传输资源,传输反馈信息用于对N条传输控制信息所调度的传输块进行反馈。传输反馈信息可以包括,例如但不限于,对正确解调的传输块的ACK应答,以及对未正确解调的传输块的NACK应答等,传输资源指示可以指示该传输反馈信息在传输时所使用的上行资源。应注意,本文描述的传输反馈信息应理解为具备传输ACK或者NACK等反馈信息的功能,在此基础上,上述传输反馈信息还可以具备其他的功能。
可选地,在上述实施例的基础上,本申请实施例提供的传输控制方法实施例还可以包括:根据选择策略确定用于传输反馈信息的目标传输资源指示,其中,当N条传输控制信息中只有一个包含传输资源指示时,选择策略为选择该一个传输资源指示作为目标传输资源指示的指示策略;当N条传输控制信息中有至少两个包含传输资源指示,且这至少两个传输资源指示相同时,选择策略为选择该相同的传输资源指示作为目标传输资源指示的指示策略;当N条传输控制信息中有至少两个包含传输资源指示,选择策略为选择指定的传输资源指示作为目标传输资源指示的指示策略。由该实施例可见,若N个DCI中只有一个DCI中携带传输资源指示,则使用该传输资源指示所指示的传输资源进行反馈。若N个DCI中至少两个DCI携带传输资源指示且这些传输资源指示相同,则任意选择其中一个DCI的传输资源指示,并依据该传输资源指示所指示的传输资源进行反馈。若N个DCI中有不止一个DCI携带了传输资源指示,而且这些传输资源指示中至少两个传输资源指示不相同,则可以根据网络设备预先指定的进行选择,例如:指定N个DCI中控制资源集合(control resource set,CORESET)标识(ID)最小的DCI中携带传输资源指示作为要采用的目标传输资源,或者指定携带传输资源指示的DCI中CORESET ID最小的DCI所携带传输资源指示作为要采用的目标传输资源。另外,即使有两个传输资源指示相同,也可以按照指定的方式进行选择。例如:选择先解码到的一个座位目标传输资源指示。CORESET为承载DCI的时频资源,每个CORESET会有一个ID,网络侧可以配置多个CORESET,所以会有多个CORESET ID。在同一个时间段中CORESET ID不会重复。当然该处指示以CORESET ID最小的为例进行说明,实际上,也可以是CORESET ID最大的,或者其他方式确定的指定选项,而且也不限定只通过CORESET ID这一种标识方式,例如:还可以使用准共址(quasi-collocation,QCL)的取值范围、解调参考信号(Demodulation Reference Signal,DMRS)组(group)的标识等来选择目标传输资源。
可选地,在上述图3或图4对应的实施例或可选实施例的基础上,本申请实施例提供的传输控制方法的实施例中,向网络设备发送传输反馈信息可以包括:在目标传输资源指示所指示的传输资源上传输该传输反馈信息,传输反馈信息中的N个反馈字段的排列顺序为N 条传输控制信息的传输属性的顺序。该传输属性可以包括控制资源集合CORESET,准共址(quasi-collocation,QCL)、格式Format或者解调参考信号(Demodulation Reference Signal,DMRS)组(group)。每种类型的传输属性都会有顺序编号或者顺序标识。例如:CORESET ID的顺序可以从1开始编号,CORESET 1、CORESET 2、CORESET 3,一直加1往下编号,这样,若有两个DCI,分别为DCI1和DCI2,DCI1的CORESET ID是CORESET 1,DCI1用于调度TB1,DCI2的CORESET ID是CORESET 2,DCI2用于调度TB2,则该示例中传输属性的顺序为CORESET 1--CORESET 2,即CORESET 1排在前,CORESET 2排在后。传输反馈信息中的两个反馈字段分别为第一反馈字段和第二反馈字段,第一反馈字段在顺序上排在第二反馈字段之前,第一反馈字段与第二反馈字段的顺序与CORESET 1和CORESET 2的顺序对应,因此第一反馈字段所指示的是对TB1的反馈,第二反馈字段所指示的是对TB2的反馈。如使用DMRS group的顺序时,传输反馈信息中的N个反馈字段的排列顺序为N条传输控制信息各自所包含的解调参考信号(Demodulation Reference Signal,DMRS)端口(port)所处的DMRS组的顺序。其中,每个DCI都会包含DMRS port,该DMRS port已经预先被分到了DMRS group中。因此,一个TB会对应一个DMRS group,每个DMRS group会有一个编号或者是标识,每个DMRS group的编号不同,如DMRS group1和DMRS group2等,所以可以用DMRS group的编号顺序来排列传输反馈字段中对所调度的各传输块的ACK/NACK,例如:2个DCI所调度的2个传输块分别为TB1和TB2,TB1所对应的DMRS group的编号为2,TB2所对应的DMRS group的编号为1,则传输反馈信息中的2个反馈字段从前到后分别用于反馈TB2和TB1。以4个DCI为例,4个DCI所调度的4个传输块分别为TB1、TB2、TB3和TB4,TB1所对应的DMRS group的编号为3,TB2所对应的DMRS group的编号为4,TB3所对应的DMRS group的编号为1,TB4所对应的DMRS group的编号为2,按照DMRS group的编号由小到大的顺序排列,则传输反馈信息中的4个反馈字段从前到后分别用于反馈TB3、TB4、TB1和TB2。若有两个DCI,调度两个传输块,则可以用2bits中的第一个比特反馈一个传输块,第二个比特反馈另一个传输块,这两个比特所表征的两个传输块的顺序还是可以依据DMRS group的编号由小到大的顺序来确定,当然,不限于由小到大的排列顺序,也可以是由大到小的排列顺序。该排列顺序按照网络设备和终端设备预先协商好或者标准中预先规定好的执行即可。其他CORESET ID、QCL或者Format与上述DMRS group实现排序的原理基本相同,CORESET ID可以是具体的编号值,QCL可以是一个范围或者具体值,Format可以是FormatA、FormatB等。另外,也不限于用1个比特位表示一个传输块的反馈,例如:若两个DCI调度两个传输块(TB1和TB2)时可以用3个比特位表示8种状态。如:用000表示TB1接收到且正确解调,TB2接收到且正确解调;用001表示TB1接收到且正确解调,TB2接收到没正确解调,用010表示TB1接收到没正确解调,TB2接收到且正确解调,用011表示TB1接收到没正确解调,TB2接收到没正确解调;用100表示TB1接收到且正确解调,TB2没接收到;用101表示TB1接收到没正确解调,TB2没接收到;用110表示TB1没接收到,TB2接收到且正确解调;用111表示TB1没接收到,TB2接收到没正确解调。通过该DMRS组、CORESETID、QCL或Format等每种属性中的顺序来确定反馈字段的反馈顺序可以在不用额外增加其他字段或信息来指示的情况下,实现对多传输块的有序反馈。
以2个控制信息调度2个传输块为例,说明上述利用DMRS group确定反馈字段与传输块 对应关系。表3是2bits ACK/NACK反馈的对应关系表。表4是3bits ACK/NACK反馈的对应关系表。
表3:2bits ACK/NACK反馈的对应关系表
ACK/NACK 含义
11 传输块1 ACK;传输块2 ACK
10 传输块1 ACK;传输块2NACK或DTX
01 传输块1 NACK或DTX;传输块2 ACK
00 传输块1 NACK或DTX;传输块2 NACK或DTX
其中调度传输块1对应DMRS group1,传输块2对应DMRS group2.DTX表示终端设备没有检测到该控制信息。
表4:3bits ACK/NACK反馈的对应关系表
ACK/NACK 含义
111 传输块1 ACK;传输块2 ACK
110 传输块1 ACK;传输块2 NACK
101 传输块1 NACK;传输块2 ACK
100 传输块1 NACK;传输块2 NACK
011 传输块1 ACK;传输块2 DTX
010 传输块1 DTX;传输块2 ACK
001 传输块1 NACK;传输块2 DTX
000 传输块1 DTX;传输块2 NACK
其中调度传输块1对应DMRS group1,传输块2对应DMRS group2.DTX表示终端设备没有检测到该控制信息。
在图5对应的实施例或可选实施例的基础上,还可以是在目标传输资源指示所指示的传输资源上传输该传输反馈信息,传输反馈信息中的X个反馈字段的排列顺序为N条传输控制信息中有效的传输参数组的排列顺序,X为小于或等于N的整数。当所述N个传输控制信息中Y个传输控制信息的有效的传输参数组字段相同时,则这Y个传输控制信息所调度的传输块的反馈都相同,只需要用1个反馈字段进行反馈,当N=8,Y=3,若剩余的5个有效的传输参数组字段都不相同,而且与这三个的传输参数组字段也不相同,则只需要6个反馈字段就可以完成反馈,则X=6。当然,即使多个传输控制信息的有效的传输参数组字段相同,也可以还是使用N个反馈字段进行反馈,例如:N=8,Y=3,还是可以使用8个反馈字段进行反馈,其中针对3个相同的有效的传输参数组字段还是各自使用1个反馈字段,只是其中反馈的内容相同。
以上各个不同实施例可以相互独立,也可以相互组合。另外,同一特性在一个实施例中的描述,可以适用于另一实施例,也可以不适用于另一实施例。
以上多个传输控制方法实施例中描述了传输控制的多个方案,下面结合附图描述本申请实施例中的终端设备、网络设备和芯片系统。
如图6所示,本申请实施例提供的终端设备60的一实施例包括:
接收单元601,用于接收N条传输控制信息,其中,每条传输控制信息用于调度一个传输块,且每条传输控制信息均包含F个传输参数组字段,分别为第一传输参数组字段至第F传输参数组字段,每条传输控制信息的F个传输参数组字段中仅一个传输参数组字段有效,且N条传输控制信息中每条传输控制信息的有效的传输参数组字段不同于其他传输控制信息的有效的传输参数组字段,所述N为大于1的整数,所述F为大于或等于N的整数;
处理单元602,用于针对所述接收单元601接收的所述N条传输控制信息各自所调度的传输块生成传输反馈信息,所述传输反馈信息包含N个反馈字段,分别为第一反馈字段至第N反馈字段,其中,第M反馈字段用于对所述N条传输控制信息中有效传输参数组字段为第Q传输参数组字段的传输控制信息所调度的传输块进行反馈,所述M为整数,且1≤M≤N,所述Q为整数,且1≤Q≤F。
还是如图6所示,本申请实施例提供的终端设备60的另一实施例包括:
接收单元601,用于接收N条传输控制信息,其中,每条传输控制信息用于调度一个传输块,且所述N条传输控制信息的传输属性分别为同类型传输属性中第一传输属性至第N传输属性之中的一个,且任一传输控制信息的传输属性不同于其他传输控制信息的传输属性,所述N为大于1的整数;
处理单元602,用于针对所述接收单元601接收的所述N条传输控制信息各自所调度的传输块生成传输反馈信息,所述传输反馈信息包含N个反馈字段,分别为第一反馈字段至第N反馈字段,第M反馈字段用于对所述N条传输控制信息中传输属性为第Q传输属性的传输控制信息所调度的传输块进行反馈,所述M为整数,且1≤M≤N,所述Q为整数,且1≤Q≤N。
还是如图6所示,本申请实施例提供的终端设备60的另一实施例包括:
接收单元601,用于接收N条传输控制信息,其中,每条传输控制信息用于调度一个传输块,且每条传输控制信息均包含G个传输参数组字段,分别为第一传输参数组字段至第G传输参数组字段,每条传输控制信息的G个传输参数组字段中仅一个传输参数组字段有效,所述N为大于1的整数,所述G为大于或等于1的整数;
处理单元602,用于确定传输方案,其中,所述传输方案与所述接收单元601接收的所述N条传输控制信息的有效的传输参数组字段的组合结果相关联。
可选地,所述处理单元602具体用于:所述N=2,所述G=2时,
若两条传输控制信息中有效的传输参数组字段相同,则所述两条传输控制信息所调度的两个传输块的传输方案为发送分集传输方案或者空间复用传输方案;
若两条传输控制信息中有效的传输参数组字段不相同,则所述两条传输控制信息所调度的两个传输块的传输方案为空间复用传输方案或者发送分集传输方案。
可选地,所述N条传输控制信息中至少一条传输控制信息包含传输资源指示,所述传输资源指示至少用于指示传输反馈信息的传输资源。
可选地,所述处理单元602,还用于根据选择策略确定用于传输反馈信息的目标传输资源指示,
其中,当所述N条传输控制信息中只有一个包含所述传输资源指示时,所述选择策略为选择所述传输资源指示作为所述目标传输资源指示的指示策略;
当所述N条传输控制信息中有至少两个包含所述传输资源指示,且至少两个传输资源指示相同时,所述选择策略为选择该相同的传输资源指示作为所述目标传输资源指示的指示策略;
当所述N条传输控制信息中有至少两个包含所述传输资源指示,所述选择策略为选择指定的所述传输资源指示作为所述目标传输资源指示的指示策略。
可选地,所述终端设备还包括:
发送单元603,用于在所述目标传输资源指示所指示的传输资源上传输所述传输反馈信息,所述传输反馈信息中的N个反馈字段的排列顺序为所述N条传输控制信息的传输属性的顺序。
如图7所示,本申请实施例提供的网络设备70的一实施例包括:
发送单元701,用于发送至少一条传输控制信息,所述至少一条传输控制信息包含于终端设备接收到的N条传输控制信息,其中,每条传输控制信息用于调度一个传输块,且每条传输控制信息均包含F个传输参数组字段,分别为第一传输参数组字段至第F传输参数组字段,每条传输控制信息的F个传输参数组字段中仅一个传输参数组字段有效,且N条传输控制信息中每条传输控制信息的有效的传输参数组字段不同于其他传输控制信息的有效的传输参数组字段,所述N为大于1的整数,所述F为大于或等于N的整数;
接收单元702,用于接收针对所述N条传输控制信息的传输反馈信息,所述传输反馈信息包含N个反馈字段,分别为第一反馈字段至第N反馈字段,其中,第M反馈字段用于对所述N条传输控制信息中有效传输参数组字段为第Q传输参数组字段的传输控制信息所调度的传输块进行反馈,所述M为整数,且1≤M≤N,所述Q为整数,且1≤Q≤F。
还是如图7所示,本申请实施例提供的网络设备70的另一实施例包括:
发送单元701,用于发送至少一条传输控制信息,所述至少一条传输控制信息包含于终端设备接收到的N条传输控制信息,其中,每条传输控制信息用于调度一个传输块,且所述N条传输控制信息的传输属性分别为同类型传输属性中第一传输属性至第N传输属性之中的一个,且任一传输控制信息的传输属性不同于其他传输控制信息的传输属性,所述N为大于1的整数;
接收单元702,用于接收针对所述N条传输控制信息各自所调度的传输块的传输反馈信息,所述传输反馈信息包含N个反馈字段,分别为第一反馈字段至第N反馈字段,第M反馈字段用于对所述N条传输控制信息中传输属性为第Q传输属性的传输控制信息所调度的传输块进行反馈,所述M为整数,且1≤M≤N,且1≤Q≤N。
还是如图7所示,本申请实施例提供的网络设备70的另一实施例包括:
处理单元703,用于生成至少一条传输控制信息;
发送单元701,用于发送所述处理单元703确定的至少一条传输控制信息,所述至少一条传输控制信息包含于终端设备接收到的N条传输控制信息,所述N条传输控制信息用于所述终端设备确定传输方案,述传输方案与所述N条传输控制信息的有效的传输参数组字段的组合结果相关联,其中,每条传输控制信息用于调度一个传输块,且每条传输控制信息均包含G个传输参数组字段,分别为第一传输参数组字段至第G传输参数组字段,每条传输控 制信息的G个传输参数组字段中仅一个传输参数组字段有效,所述N为大于1的整数,所述G为大于或等于1的整数。
上述终端设备60中的处理单元602可以是终端设备中的图2所示出的处理器101,接收单元601和发送单元603可以是图2中的收发器103。网络设备70中的发送单元701和接收单元702可以是图2中的收发器203。处理单元703可以是网络设备中的图2所示出的处理器201。上述终端设备60的功能可以参阅上述图3至图5的实施例或可选实施例中终端设备所执行的步骤进行理解,网络设备70的功能可以参阅上述图3至图5的实施例或可选实施例中网络设备所执行的步骤进行理解。
为了方便理解图2所示出的终端设备和网络设备中的各个部件在本申请的数据传输过程中所起的作用,下面结合图8,以终端设备为例进行介绍。
图8是本申请实施例提供的终端设备80的结构示意图。所述终端设备80包括至少一个处理器810、存储器850和收发器830。该收发器可包括接收机和发射机,该存储器850可以包括只读存储器和/或随机存取存储器,并向处理器810提供操作指令和数据。存储器850的一部分还可以包括非易失性随机存取存储器(NVRAM)。
在一些实施方式中,存储器850存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:
在本申请实施例中,通过调用存储器850存储的操作指令(该操作指令可存储在操作系统中),执行相应的操作。处理器810控制终端设备80的操作,处理器810还可以称为CPU(Central Processing Unit,中央处理单元)。存储器850可以包括只读存储器和随机存取存储器,并向处理器810提供指令和数据。存储器850的一部分还可以包括非易失性随机存取存储器(NVRAM)。具体的应用中终端设备80的各个组件通过总线系统820耦合在一起,其中总线系统820除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统820。
上述本申请实施例揭示的方法可以应用于处理器810中,或者由处理器810实现。处理器810可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器810中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器810可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器850,该存储器850可以是物理上独立的单元,也可以是与处理器810集成在一起的,处理器810读取存储器850中的信息,结合其硬件完成上述方法的步骤,且该存储器可以是非瞬时性(non-transitory)存储器。
可选地,收发器830用于执行图3-图5所示的实施例或其他可选实施例中的终端设备的 消息发送的步骤。
处理器810用于执行图3-图5所示的实施例或其他可选实施例中的终端设备的数据处理的步骤。
网络设备的结构也可以参阅图8进行理解,网络设备中相应收发器和处理器的功能都可以执行图3-图5所示的实施例或其他可选实施例中网络设备相应的接收和处理的步骤。
图9是本申请实施例提供的芯片系统90的另一种实施方式的结构示意图。芯片系统90包括至少一个处理器910、存储器950和通信接口930,存储器950可以包括只读存储器和随机存取存储器,并向处理器910提供操作指令和数据。存储器950的一部分还可以包括非易失性随机存取存储器(NVRAM)。
在一些实施方式中,存储器950存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:
在本申请实施例中,通过调用存储器950存储的操作指令(该操作指令可存储在操作系统中),执行相应的操作。
一种可能的实现方式为:芯片系统和网络设备所用的芯片系统的结构类似,但不同的装置使用不同的芯片系统以实现各自的功能。
处理器910控制芯片系统的操作,处理器910还可以称为CPU(Central Processing Unit,中央处理单元)。存储器950可以包括只读存储器和随机存取存储器,并向处理器910提供指令和数据。存储器950的一部分还可以包括非易失性随机存取存储器(NVRAM)。具体的应用中芯片系统110的各个组件通过总线系统920耦合在一起,其中总线系统920除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统920。
上述本申请实施例揭示的方法可以应用于处理器910中,或者由处理器910实现。处理器910可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器910中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器910可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器950,该存储器950可以是物理上独立的单元,也可以是与处理器910集成在一起的,处理器910读取存储器950中的信息,结合其硬件完成上述方法的步骤,且该存储器可以是非瞬时性(non-transitory)存储器。
可选地,通信接口930用于执行图3-图5所示的实施例或其他可选实施例中的终端设备或网络设备中数据的接收和发送的步骤。
处理器910用于执行图3-图5所示的实施例或其他可选实施例中的终端设备或网络设 备中信号中数据处理的步骤。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:ROM、RAM、磁盘或光盘等。
以上对本申请实施例所提供的传输控制方法、设备、计算机可读存储介质以及芯片系统进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (30)

  1. 一种传输控制方法,其特征在于,包括:
    接收N条传输控制信息,其中,每条传输控制信息用于调度一个传输块,且每条传输控制信息均包含F个传输参数组字段,分别为第一传输参数组字段至第F传输参数组字段,每条传输控制信息的F个传输参数组字段中仅一个传输参数组字段有效,且N条传输控制信息中每条传输控制信息的有效的传输参数组字段不同于其他传输控制信息的有效的传输参数组字段,所述N为大于1的整数,所述F为大于或等于所述N的整数;
    针对所述N条传输控制信息各自所调度的传输块生成传输反馈信息,所述传输反馈信息包含N个反馈字段,分别为第一反馈字段至第N反馈字段,其中,第M反馈字段用于对所述N条传输控制信息中有效传输参数组字段为第Q传输参数组字段的传输控制信息所调度的传输块进行反馈,所述M为整数,且1≤M≤N,所述Q为整数,且1≤Q≤F。
  2. 一种传输控制方法,其特征在于,包括:
    接收N条传输控制信息,其中,每条传输控制信息用于调度一个传输块,且所述N条传输控制信息的传输属性分别为同类型传输属性中第一传输属性至第N传输属性之中的一个,且任一传输控制信息的传输属性不同于其他传输控制信息的传输属性,所述N为大于1的整数;
    针对所述N条传输控制信息各自所调度的传输块生成传输反馈信息,所述传输反馈信息包含N个反馈字段,分别为第一反馈字段至第N反馈字段,第M反馈字段用于对所述N条传输控制信息中传输属性为第Q传输属性的传输控制信息所调度的传输块进行反馈,所述M为整数,且1≤M≤N,所述Q为整数,且1≤Q≤N。
  3. 一种传输控制方法,其特征在于,包括:
    接收N条传输控制信息,其中,每条传输控制信息用于调度一个传输块,且每条传输控制信息均包含G个传输参数组字段,分别为第一传输参数组字段至第G传输参数组字段,每条传输控制信息的G个传输参数组字段中仅一个传输参数组字段有效,所述N为大于1的整数,所述G为大于或等于1的整数;
    确定传输方案,其中,所述传输方案与所述N条传输控制信息的有效的传输参数组字段的组合结果相关联。
  4. 根据权利要求3所述的方法,其特征在于,所述N=2,所述G=2时,所述确定传输方案,其中,所述传输方案与所述N条传输控制信息的有效的传输参数组字段的组合结果相关联,包括:
    若两条传输控制信息中有效的传输参数组字段相同,则所述两条传输控制信息所调度的两个传输块的传输方案为发送分集传输方案或者空间复用传输方案;
    若两条传输控制信息中有效的传输参数组字段不相同,则所述两条传输控制信息所调度的两个传输块的传输方案为空间复用传输方案或者发送分集传输方案。
  5. 如权利要求1-4任一所述的方法,其特征在于,所述N条传输控制信息来自P个网络设备,P为整数,且1≤P≤N。
  6. 如权利要求1或2所述的方法,其特征在于,所述N条传输控制信息中至少一条传输 控制信息包含传输资源指示,所述传输资源指示至少用于指示所述传输反馈信息的传输资源。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    根据选择策略确定用于传输反馈信息的目标传输资源指示,
    其中,当所述N条传输控制信息中只有一个包含所述传输资源指示时,所述选择策略为选择所述传输资源指示作为所述目标传输资源指示的指示策略;
    当所述N条传输控制信息中有至少两个包含所述传输资源指示,且至少两个传输资源指示相同时,所述选择策略为选择该相同的传输资源指示作为所述目标传输资源指示的指示策略;
    当所述N条传输控制信息中有至少两个包含所述传输资源指示,所述选择策略为选择指定的所述传输资源指示作为所述目标传输资源指示的指示策略。
  8. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    在所述目标传输资源指示所指示的传输资源上传输所述传输反馈信息,所述传输反馈信息中的N个反馈字段的排列顺序为所述N条传输控制信息的传输属性的顺序。
  9. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述传输反馈信息中的N个反馈字段的排列顺序为所述N条传输控制信息中有效的传输参数组字段的排列顺序。
  10. 一种传输控制方法,其特征在于,包括:
    发送至少一条传输控制信息,所述至少一条传输控制信息包含于终端设备接收到的N条传输控制信息,其中,每条传输控制信息用于调度一个传输块,且每条传输控制信息均包含F个传输参数组字段,分别为第一传输参数组字段至第F传输参数组字段,每条传输控制信息的F个传输参数组字段中仅一个传输参数组字段有效,且N条传输控制信息中每条传输控制信息的有效的传输参数组字段不同于其他传输控制信息的有效的传输参数组字段,所述N为大于1的整数,所述F为大于或等于所述N的整数;
    接收针对所述N条传输控制信息各自所调度的传输块的传输反馈信息,所述传输反馈信息包含N个反馈字段,分别为第一反馈字段至第N反馈字段,其中,第M反馈字段用于对所述N条传输控制信息中有效传输参数组字段为第Q传输参数组字段的传输控制信息所调度的传输块进行反馈,所述M为整数,且1≤M≤N,所述Q为整数,且1≤Q≤F。
  11. 一种传输控制方法,其特征在于,包括:
    发送至少一条传输控制信息,所述至少一条传输控制信息包含于终端设备接收到的N条传输控制信息,其中,每条传输控制信息用于调度一个传输块,且所述N条传输控制信息的传输属性分别为同类型传输属性中第一传输属性至第N传输属性之中的一个,且任一传输控制信息的传输属性不同于其他传输控制信息的传输属性,所述N为大于1的整数;
    接收针对所述N条传输控制信息各自所调度的传输块的传输反馈信息,所述传输反馈信息包含N个反馈字段,分别为第一反馈字段至第N反馈字段,第M反馈字段用于对所述N条传输控制信息中传输属性为第Q传输属性的传输控制信息所调度的传输块进行反馈,所述M为整数,所述Q为整数,且1≤M≤N,且1≤Q≤N。
  12. 一种传输控制方法,其特征在于,包括:
    生成至少一条传输控制信息;
    发送所述至少一条传输控制信息,所述至少一条传输控制信息包含于终端设备接收到的N条传输控制信息,所述N条传输控制信息用于所述终端设备确定传输方案,所述传输方案与所述N条传输控制信息的有效的传输参数组字段的组合结果相关联,其中,每条传输控制信息用于调度一个传输块,且每条传输控制信息均包含G个传输参数组字段,分别为第一传输参数组字段至第G传输参数组字段,每条传输控制信息的G个传输参数组字段中仅一个传输参数组字段有效,所述N为大于1的整数,所述G为大于或等于1的整数。
  13. 根据权利要求10或11所述的方法,其特征在于,所述N条传输控制信息中至少一条传输控制信息包含传输资源指示,所述传输资源指示至少用于指示传输反馈信息的传输资源。
  14. 根据权利要求13所述的方法,其特征在于,所述接收针对所述N条传输控制信息的反馈信息,包括:
    从所述目标传输资源指示所指示的传输资源上接收所述传输反馈信息,所述传输反馈信息中的N个反馈字段的排列顺序为所述N条传输控制信息的传输属性的顺序。
  15. 根据权利要求10所述的方法,其特征在于,所述传输反馈信息中的N个反馈字段的排列顺序为所述N条传输控制信息中有效的传输参数组字段的排列顺序。
  16. 一种终端设备,其特征在于,包括:
    接收单元,用于接收N条传输控制信息,其中,每条传输控制信息用于调度一个传输块,且每条传输控制信息均包含F个传输参数组字段,分别为第一传输参数组字段至第F传输参数组字段,每条传输控制信息的F个传输参数组字段中仅一个传输参数组字段有效,且N条传输控制信息中每条传输控制信息的有效的传输参数组字段不同于其他传输控制信息的有效的传输参数组字段,所述N为大于1的整数,所述F为大于或等于N的整数;
    处理单元,用于针对所述接收单元接收的所述N条传输控制信息各自所调度的传输块生成传输反馈信息,所述传输反馈信息包含N个反馈字段,分别为第一反馈字段至第N反馈字段,其中,第M反馈字段用于对所述N条传输控制信息中有效传输参数组字段为第Q传输参数组字段的传输控制信息所调度的传输块进行反馈,所述M为整数,且1≤M≤N,所述Q为整数,且1≤Q≤F。
  17. 一种终端设备,其特征在于,包括:
    接收单元,用于接收N条传输控制信息,其中,每条传输控制信息用于调度一个传输块,且所述N条传输控制信息的传输属性分别为同类型传输属性中第一传输属性至第N传输属性之中的一个,且任一传输控制信息的传输属性不同于其他传输控制信息的传输属性,所述N为大于1的整数;
    处理单元,用于针对所述接收单元接收的所述N条传输控制信息各自所调度的传输块生成传输反馈信息,所述传输反馈信息包含N个反馈字段,分别为第一反馈字段至第N反馈字段,第M反馈字段用于对所述N条传输控制信息中传输属性为第Q传输属性的传输控制信息所调度的传输块进行反馈,所述M为整数,且1≤M≤N,所述Q为整数,且1≤Q≤N。
  18. 一种终端设备,其特征在于,包括:
    接收单元,用于接收N条传输控制信息,其中,每条传输控制信息用于调度一个传输块,且每条传输控制信息均包含G个传输参数组字段,分别为第一传输参数组字段至第G传输参数组字段,每条传输控制信息的G个传输参数组字段中仅一个传输参数组字段有效,所述N为大于1的整数,所述G为大于或等于1的整数;
    处理单元,用于确定传输方案,其中,所述传输方案与所述接收单元接收的所述N条传输控制信息的有效的传输参数组字段的组合结果相关联。
  19. 根据权利要求18所述的终端设备,其特征在于,
    所述处理单元具体用于:所述N=2,所述G=2时,
    若两条传输控制信息中有效的传输参数组字段相同,则所述两条传输控制信息所调度的两个传输块的传输方案为发送分集传输方案或者空间复用传输方案;
    若两条传输控制信息中有效的传输参数组字段不相同,则所述两条传输控制信息所调度的两个传输块的传输方案为空间复用传输方案或者发送分集传输方案。
  20. 根据权利要求16或17所述的终端设备,其特征在于,所述N条传输控制信息中至少一条传输控制信息包含传输资源指示,所述传输资源指示至少用于指示传输反馈信息的传输资源。
  21. 根据权利要求20所述的终端设备,其特征在于,
    所述处理单元,还用于根据选择策略确定用于传输反馈信息的目标传输资源指示,
    其中,当所述N条传输控制信息中只有一个包含所述传输资源指示时,所述选择策略为选择所述传输资源指示作为所述目标传输资源指示的指示策略;
    当所述N条传输控制信息中有至少两个包含所述传输资源指示,且至少两个传输资源指示相同时,所述选择策略为选择该相同的传输资源指示作为所述目标传输资源指示的指示策略;
    当所述N条传输控制信息中有至少两个包含所述传输资源指示,所述选择策略为选择指定的所述传输资源指示作为所述目标传输资源指示的指示策略。
  22. 根据权利要求20或21所述的终端设备,其特征在于,所述终端设备还包括:
    发送单元,用于在所述目标传输资源指示所指示的传输资源上传输所述传输反馈信息,所述传输反馈信息中的N个反馈字段的排列顺序为所述N条传输控制信息的传输属性的顺序。
  23. 一种网络设备,其特征在于,包括:
    发送单元,用于发送至少一条传输控制信息,所述至少一条传输控制信息包含于终端设备接收到的N条传输控制信息,其中,每条传输控制信息用于调度一个传输块,且每条传输控制信息均包含F个传输参数组字段,分别为第一传输参数组字段至第F传输参数组字段,每条传输控制信息的F个传输参数组字段中仅一个传输参数组字段有效,且N条传输控制信息中每条传输控制信息的有效的传输参数组字段不同于其他传输控制信息的有效的传输参数组字段,所述N为大于1的整数,所述F为大于或等于N的整数;
    接收单元,用于接收针对所述N条传输控制信息各自所调度的传输块的传输反馈信息, 所述传输反馈信息包含N个反馈字段,分别为第一反馈字段至第N反馈字段,其中,第M反馈字段用于对所述N条传输控制信息中有效传输参数组字段为第Q传输参数组字段的传输控制信息所调度的传输块进行反馈,所述M为整数,且1≤M≤N,所述Q为整数,且1≤Q≤F。
  24. 一种网络设备,其特征在于,包括:
    发送单元,用于发送至少一条传输控制信息,所述至少一条传输控制信息包含于终端设备接收到的N条传输控制信息,其中,每条传输控制信息用于调度一个传输块,且所述N条传输控制信息的传输属性分别为同类型传输属性中第一传输属性至第N传输属性之中的一个,且任一传输控制信息的传输属性不同于其他传输控制信息的传输属性,所述N为大于1的整数;
    接收单元,用于接收针对所述N条传输控制信息各自所调度的传输块的传输反馈信息,所述传输反馈信息包含N个反馈字段,分别为第一反馈字段至第N反馈字段,第M反馈字段用于对所述N条传输控制信息中传输属性为第Q传输属性的传输控制信息所调度的传输块进行反馈,所述M为整数,且1≤M≤N,且1≤Q≤N。
  25. 一种网络设备,其特征在于,包括:
    处理单元,用于生成至少一条传输控制信息;
    发送单元,用于发送所述处理单元确定的至少一条传输控制信息,所述至少一条传输控制信息包含于终端设备接收到的N条传输控制信息,所述N条传输控制信息用于所述终端设备确定传输方案,述传输方案与所述N条传输控制信息的有效的传输参数组字段的组合结果相关联,其中,每条传输控制信息用于调度一个传输块,且每条传输控制信息均包含G个传输参数组字段,分别为第一传输参数组字段至第G传输参数组字段,每条传输控制信息的G个传输参数组字段中仅一个传输参数组字段有效,所述N为大于1的整数,所述G为大于或等于1的整数。
  26. 一种终端设备,其特征在于,包括:收发器和至少一个处理器,收发器和至少一个处理器通过线路互联,所述收发器用于执行上述权利要求1-11中任意一项所述方法中的信息收发的步骤,所述处理器用于执行上述权利要求1-11中任意一项所述方法中的信处理的步骤。
  27. 一种网络设备,其特征在于,包括:收发器和至少一个处理器,收发器和至少一个处理器通过线路互联,所述收发器用于执行上述权利要求12-15中任意一项所述方法中的信息收发的步骤,所述处理器用于执行上述权利要求12-15中任意一项所述方法中的信处理的步骤。
  28. 一种计算机可读存储介质,其特征在于,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述1-11中任意一项所述方法,或者执行上述权利要求12-15中任意一项所述的方法。
  29. 一种包含指令的计算机程序产品,其特征在于,当该程序在计算设备上运行时,使得计算机执行上述1-11中任意一所述方法,或者执行上述权利要求12-15中任意一项所述处理器用于执行上述权利要求12-15中任意一项所述的方法。
  30. 一种芯片系统,其特征在于,包括至少一个处理器和通信接口,该芯片系统中还 可以包括存储器,所述存储器、所通信接口和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述处理器用于执行上述权利要求1-11中任意一项所述的方法中信息处理的步骤,或者用于执行上述权利要求12-15中任意一项所述的方法中信息处理的步骤。
PCT/CN2019/071120 2018-02-09 2019-01-10 一种传输控制方法、终端设备及网络设备 WO2019154003A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19750288.3A EP3742643A4 (en) 2018-02-09 2019-01-10 TRANSPORT CONTROL PROCEDURE, TERMINAL DEVICE AND NETWORK DEVICE
US16/986,167 US11818714B2 (en) 2018-02-09 2020-08-05 Transmission control method, terminal device, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810134557.2A CN110138524B (zh) 2018-02-09 2018-02-09 一种传输控制方法、终端设备及网络设备
CN201810134557.2 2018-02-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/986,167 Continuation US11818714B2 (en) 2018-02-09 2020-08-05 Transmission control method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2019154003A1 true WO2019154003A1 (zh) 2019-08-15

Family

ID=67548178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071120 WO2019154003A1 (zh) 2018-02-09 2019-01-10 一种传输控制方法、终端设备及网络设备

Country Status (4)

Country Link
US (1) US11818714B2 (zh)
EP (1) EP3742643A4 (zh)
CN (2) CN110138524B (zh)
WO (1) WO2019154003A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210385028A1 (en) * 2018-04-04 2021-12-09 Zte Corporation Transmission method and apparatus, uplink receiving method and apparatus, and feedback strategy determination method and apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111106913B (zh) * 2018-11-02 2021-04-27 维沃移动通信有限公司 无线通信的方法和设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036305A (zh) * 2009-09-30 2011-04-27 华为技术有限公司 控制信息的发送和接收方法、装置和通信系统
CN104065453A (zh) * 2009-09-30 2014-09-24 华为技术有限公司 控制信息的发送和接收方法、装置和通信系统
CN107359970A (zh) * 2017-06-16 2017-11-17 宇龙计算机通信科技(深圳)有限公司 混合自动重传请求反馈方法及相关装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009152637A1 (zh) * 2008-06-16 2009-12-23 上海贝尔阿尔卡特股份有限公司 用于dl半静态调度harq进程分配的方法及相应的系统
CN102422583B (zh) * 2009-03-11 2015-02-18 三星电子株式会社 用于由用户设备发送与harq过程关联的确认位的方法和装置
EP2244515A1 (en) * 2009-04-23 2010-10-27 Panasonic Corporation Logical channel prioritization procedure for generating multiple uplink transport blocks
EP2244514A1 (en) * 2009-04-23 2010-10-27 Panasonic Corporation Logical channel prioritization procedure for generating multiple uplink transport blocks
US20110103247A1 (en) * 2009-11-02 2011-05-05 Qualcomm Incorporated Channel status reporting
EP2555460B1 (en) * 2010-03-29 2015-12-09 LG Electronics Inc. Method and apparatus for efficiently transmitting control information to support uplink multiple antenna transmission
CN101882980B (zh) * 2010-05-06 2015-07-22 中兴通讯股份有限公司 上行解调参考信号的指示方法及系统
CN102611538B (zh) * 2011-12-21 2014-10-08 华为技术有限公司 上行数据反馈方法及基站
GB2507528A (en) * 2012-11-02 2014-05-07 Sony Corp Telecommunications apparatus and methods
JP6224358B2 (ja) * 2013-06-14 2017-11-01 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
EP3057260B1 (en) * 2013-11-08 2021-05-05 Huawei Technologies Co., Ltd. Method and device for transmitting scheduling signaling
US10219292B2 (en) * 2014-10-24 2019-02-26 Qualcomm Incorporated Flexible multiplexing and feedback for variable transmission time intervals
CN112187432A (zh) * 2015-05-14 2021-01-05 北京三星通信技术研究有限公司 传输上行控制信息的方法和设备
US20180199314A1 (en) * 2015-07-15 2018-07-12 Ntt Docomo, Inc. User terminal, radio base station, and radio communication method
CN106992837B (zh) * 2016-01-20 2020-06-16 华为技术有限公司 多天线数据传输的方法、网络设备、终端设备及系统
US10069613B2 (en) * 2016-04-01 2018-09-04 Motorola Mobility Llc Method and apparatus for scheduling uplink transmissions with reduced latency
CN107370591B (zh) * 2016-05-13 2022-03-01 中兴通讯股份有限公司 信令传输方法、装置及系统
JP7157512B2 (ja) * 2016-06-20 2022-10-20 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
US10531452B2 (en) * 2016-07-11 2020-01-07 Qualcomm Incorporated Hybrid automatic repeat request feedback and multiple transmission time interval scheduling
US11290911B2 (en) * 2017-02-24 2022-03-29 Lg Electronics Inc. Method for processing data block and method for HARQ ACK/NACK feedback
US20180279289A1 (en) * 2017-03-23 2018-09-27 Huawei Technologies Co., Ltd. System and Method for Signaling for Resource Allocation for One or More Numerologies
US11102674B2 (en) * 2017-07-14 2021-08-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Transmission method, apparatus and system for feedback acknowledge information
CN109845157B (zh) * 2017-08-08 2021-09-07 华为技术有限公司 通信方法与设备
WO2019050443A1 (en) * 2017-09-08 2019-03-14 Telefonaktiebolaget Lm Ericsson (Publ) RECEIVE ACCUSED SIGNALING IN A RADIO ACCESS NETWORK
CN110831220B (zh) * 2018-08-10 2023-06-02 中兴通讯股份有限公司 一种传输块tb调度方法及装置
EP3716515A1 (en) * 2019-03-28 2020-09-30 TCL Communication Limited Scheduling multiple transfer blocks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036305A (zh) * 2009-09-30 2011-04-27 华为技术有限公司 控制信息的发送和接收方法、装置和通信系统
CN104065453A (zh) * 2009-09-30 2014-09-24 华为技术有限公司 控制信息的发送和接收方法、装置和通信系统
CN107359970A (zh) * 2017-06-16 2017-11-17 宇龙计算机通信科技(深圳)有限公司 混合自动重传请求反馈方法及相关装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210385028A1 (en) * 2018-04-04 2021-12-09 Zte Corporation Transmission method and apparatus, uplink receiving method and apparatus, and feedback strategy determination method and apparatus
US11671212B2 (en) * 2018-04-04 2023-06-06 Zte Corporation Transmission method and apparatus, uplink receiving method and apparatus, and feedback strategy determination method and apparatus

Also Published As

Publication number Publication date
EP3742643A1 (en) 2020-11-25
US20200367272A1 (en) 2020-11-19
US11818714B2 (en) 2023-11-14
CN110138524A (zh) 2019-08-16
EP3742643A4 (en) 2021-03-17
CN112134668B (zh) 2021-08-13
CN112134668A (zh) 2020-12-25
CN110138524B (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
CN110035550B (zh) 上行控制信息传输方法和通信装置
CN110784925B (zh) 通信方法及装置
WO2018196550A1 (zh) 传输反馈信息的方法和装置
CN111756506A (zh) 传输上行信息的方法和通信装置
CN112398592B (zh) 反馈信息传输方法及通信装置
WO2019028771A1 (zh) 传输数据的方法和终端设备
JP7241913B2 (ja) データの受信および送信方法ならびに端末装置
CN111699645B (zh) 通信方法及装置
WO2020169063A1 (zh) 一种数据传输方法及通信装置
WO2018171352A1 (zh) 一种数据传输方法及终端
WO2019154003A1 (zh) 一种传输控制方法、终端设备及网络设备
CN112399621B (zh) 上行控制信息传输方法及通信装置
CN113271179A (zh) 混合自动重传请求确认码本的反馈方法及装置
CN114391230A (zh) 上行控制信息复用传输的方法和装置
US20220303073A1 (en) Technologies for Reliable Physical Data Channel Reception in Wireless Communications
WO2021164603A1 (zh) 辅链路控制信息的资源指示方法与装置、终端设备
KR20200139718A (ko) 업링크 제어 정보 전송 방법 및 장치
WO2021147214A1 (zh) 通信方法和通信装置
CN112399574B (zh) 一种无线通信的方法和装置以及通信设备
CN111586859B (zh) 资源配置的方法和装置
WO2020029857A1 (zh) 数据调度及传输方法、网络设备、终端和计算机存储介质
CN114390698A (zh) 一种数据传输的方法、装置、介质以及程序产品
WO2023130993A1 (zh) 通信方法及终端设备
WO2024032732A1 (zh) Harq-ack码本反馈方法和通信装置
WO2022027643A1 (zh) 上行信息复用传输的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019750288

Country of ref document: EP

Effective date: 20200818