WO2019153848A1 - 一种基于离心分离血浆法的全能型血浆净化系统 - Google Patents

一种基于离心分离血浆法的全能型血浆净化系统 Download PDF

Info

Publication number
WO2019153848A1
WO2019153848A1 PCT/CN2018/117822 CN2018117822W WO2019153848A1 WO 2019153848 A1 WO2019153848 A1 WO 2019153848A1 CN 2018117822 W CN2018117822 W CN 2018117822W WO 2019153848 A1 WO2019153848 A1 WO 2019153848A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
line
bag
liquid
pump
Prior art date
Application number
PCT/CN2018/117822
Other languages
English (en)
French (fr)
Inventor
田沂
Original Assignee
中南大学湘雅二医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810129418.0A external-priority patent/CN108310503A/zh
Priority claimed from CN201820226033.1U external-priority patent/CN208552669U/zh
Application filed by 中南大学湘雅二医院 filed Critical 中南大学湘雅二医院
Publication of WO2019153848A1 publication Critical patent/WO2019153848A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3623Means for actively controlling temperature of blood

Definitions

  • the present invention relates to a medical instrument for blood purification, and more particularly to a versatile plasma purification system (VPPS) based on a centrifugal separation plasma method.
  • VPPS versatile plasma purification system
  • Acute liver failure or chronic acute liver failure is severe and progresses rapidly, and is prone to multiple organ failure. If the disease cannot progress in the short term, it will be life-threatening and requires urgent liver transplantation. There are a large number of toxins in patients with acute or chronic acute liver failure, accompanied by coagulopathy, and the bleeding tendency of patients with advanced liver failure is more serious. Artificial liver is a blood purification method for treating liver failure. At present, there are four basic artificial liver methods at home and abroad: plasma exchange, plasma adsorption, hemodialysis and hemofiltration. Artificial liver treatment for patients with severe liver failure should not only avoid the risk of bleeding, but also comprehensively eliminate all kinds of toxins accumulated in the body, including protein-bound toxins and water-soluble toxins. Hepatic failure toxins are different in different blood purification methods, and combined treatment can remove more toxins and enhance the purification effect.
  • Albumin dialysis adsorption is represented by the molecular adsorption recycling system (MARS), which works by using 20% albumin solution (500-600ml) as a binding and transport protein toxin medium in the albumin dialysis cycle.
  • MARS molecular adsorption recycling system
  • the protein-bound toxins and other types of toxin molecules are transferred to the albumin solution through the MARS dialysis membrane, purified by the protein solution, sequentially purified by dialysis, resin and activated carbon adsorption, and the purified albumin solution can be further purified. Repeated recycling; albumin can not be reused and discarded after adsorption is saturated.
  • MARS uses the albumin transport toxin to achieve the indirect adsorption of toxins by the adsorbent, and is affected by the dialysis membrane toxin exchange efficiency. Its removal of toxins is not as efficient as plasma adsorption. Because there is no supplemental plasma, it can not improve the coagulation function and low protein blood of patients with liver failure. The disease is not suitable for patients with advanced liver failure. And each time MARS treatment consumes a large amount of albumin, it is not easy to be widely used in China. However, its dialysis and purification by resin, activated carbon adsorption and simultaneous purification is worth learning.
  • plasma exchange plasma adsorption and dialysis and/or filtration can be combined, it can completely remove protein-bound toxins and water-soluble toxins, supplement albumin and blood coagulation factors, and fully utilize waste plasma to purify and then self-return. This can greatly reduce the amount of clinical plasma, and can fully meet the needs of patients with liver failure, and effectively treat more patients.
  • Plasma exchange requires a part of the patient's blood to be taken out of the body, and the plasma containing a large amount of toxin is separated and discarded by centrifugation or membrane separation of plasma, and fresh plasma is supplemented.
  • the membrane-separated plasma method requires a relatively large blood collection flow rate of 100-120 ml/min, and the heparin is used at a large dose.
  • the hemofiltration rate of hemofiltration is as high as 200-350 ml/min. All three treatments require deep venous catheterization or arterial puncture.
  • the Chinese patent document with the document number CN203280813U discloses a plasma exchange adsorption filtration purification system equipped with a reservoir bag, which combines plasma exchange, plasma adsorption and plasma dialysis, first performing plasma exchange for 1 hour, and then passing through a special
  • the designed slurry bag carries out 5-hour plasma high-speed circulation adsorption and plasma dialysis, but its composition is complex, and it can only be operated on the basis of membrane-type plasma separation. It requires deep vein catheterization, which has high therapeutic risk and is not suitable for coagulation. Patients with advanced liver failure.
  • the Chinese patent document No. CN205073379U discloses a method of using a specially designed plasma shunt and displacement line, a replacement and adsorption plasma confluence line, and a slow operation can be completed by using only one ordinary blood purifier having four pumps.
  • Type plasma exchange, plasma adsorption and filtration purification system and its application method can only be operated on the basis of membrane-type plasma separation, and is not suitable for patients with advanced liver failure with poor coagulation function.
  • the plasma velocity during plasma adsorption and filtration is 25 to 30 ml/min, and the ability to scavenge water-soluble toxins is insufficient.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art, and provide a plasma purification system using centrifugal separation plasma exchange combined with plasma diafiltration and adsorption, which can fully exert centrifugal plasma in an artificial liver treatment.
  • the present invention adopts the following technical solutions:
  • a pluripotent plasma purification system based on a centrifugal separation plasma method comprising a plasma exchange device and a plasma diafiltration secondary adsorption device, the plasma replacement device comprising a centrifugal plasma separator, the plasma purification system further comprising a method for collecting and separating Plasma or a plasma transfer device that circulates purified plasma, the plasma transfer device comprising a plasma transfer bag and a waste bag, a plasma transfer between the plasma output of the plasma exchange device and the plasma transfer bag a pipeline, a plasma discharge line is disposed between the plasma transfer bag and the waste bag, and a plasma circulation line is disposed between the output end of the plasma diafiltration and adsorption device and the plasma discharge line.
  • the height of the connection port of the plasma transfer bag to the plasma transfer line is lower than the height of the connection port of the plasma transfer bag and the plasma discharge line.
  • the input end of the centrifugal plasma separator is connected with a blood collection tube for collecting blood of a patient, and the output end of the centrifugal plasma separator is connected with a blood cell output line and a plasma output line, and the plasma output line is connected with
  • the plasma transfer line is connected, the output of the plasma output line being connected to an input of the plasma diafiltration secondary adsorption device, the plasma exchange device further comprising a plasma return line for returning plasma and a return vessel for returning the treated blood to the patient, the blood cell output line and the output of the plasma return line are connected to an input end of the return vessel, the plasma return An input of the tubing is connected to the output of the plasma diafiltration secondary adsorption device, and a fresh plasma line for replenishing fresh plasma is connected to the input of the plasma return line.
  • the plasma diafiltration filtration adsorption device comprises a filtrate input line, a plasma diafiltration filtration adsorption line for diafiltration and adsorption of plasma, and a plasma circulation for recycling the purified plasma to be recycled or returned.
  • a conduit the input end of the plasma diafiltration through adsorption line is connected to an output end of the plasma output line, and the output of the plasma diafiltration through adsorption line and the filtrate input line are The input end of the plasma circulation return line is connected, and the output end of the plasma circulation return line is connected to the plasma return line and the input end of the plasma circulation line, respectively.
  • the blood plasma filtration adsorption adsorption line is sequentially provided with a blood filter, a first plasma adsorber and a second plasma adsorber, and a lower side hole of the blood filter is connected with a dialysate input line, and an upper side of the blood filter The well is connected to a dialysate drain line.
  • a first connecting port capable of communicating or disconnecting is disposed on the plasma circulation line, and a second connecting port capable of connecting or disconnecting is disposed between the plasma output line and the plasma diafiltration filter adsorption line.
  • a third connection port capable of communicating or disconnecting is provided between the plasma circulation return line and the plasma return line, and both sides of the first connection port, the second connection port, and the third connection port All have pipe clamps.
  • a blood collection pump is disposed on the blood collection tube, the speed of the blood collection pump is 50-60 ml/min, and a plasma separation pump is disposed on the plasma output line, and the speed of the plasma separation pump is 25-30 ml/min.
  • the plasma return line is provided with a plasma input pump, the plasma input pump has a speed of 25-30 ml/min, and the plasma diafiltration filter adsorption line is provided with a plasma circulation drive pump, and the plasma circulation drives the pump speed.
  • the dialysate input line is provided with a dialysate pump, the dialysate pump has a speed of 50-60 ml/min, and the dialysate discharge line is provided with a waste liquid pump, and the waste is 150-180 ml/min.
  • the speed of the liquid pump is 100-120 ml/min, and the filtrate input line is provided with a filtrate pump, and the speed of the filtrate pump is 50-60 ml/min.
  • a first liquid jug and a first liquid level detecting sensor for detecting the liquid level of the first liquid jug are disposed on the blood collecting tube, and the second liquid liquid jug is provided on the plasma diafiltration filter adsorption line and is used for a second liquid level detecting sensor for detecting a liquid level of the second liquid jug, wherein the returning blood vessel is provided with a third liquid jug and a third liquid level detecting sensor for detecting the liquid level of the third liquid jug
  • the filtrate input line is provided with a fourth liquid jug and a fourth liquid level detecting sensor for detecting the liquid level of the fourth liquid jug, wherein the plasma return line is provided with a fifth liquid pot and And a fifth liquid level detecting sensor for detecting the liquid level of the fifth liquid jug.
  • a pressure detecting connecting pipe is disposed on the first liquid pot, the second liquid pot and the third liquid pot.
  • a heparin pump is connected to both the first liquid pot and the second liquid pot.
  • a first heating assembly is disposed on the plasma return line, and a second heating assembly is disposed at one end of the plasma circulation return line connected to the plasma return line.
  • the input end of the fresh plasma pipeline is provided with a fresh plasma bag
  • the input end of the dialysate input line is provided with a dialysate bag
  • the output end of the dialysate discharge line is provided with a waste liquid bag
  • the filter The input end of the liquid input line is provided with a filtrate bag
  • the dialysate bag, the waste liquid bag and the filtrate bag are provided with a hanging scale for monitoring the weight.
  • the plasma exchange device is coupled to a computer control system that independently controls the plasma exchange device, the plasma diafiltration filter device being coupled to a computer control system that independently controls the plasma diafiltration filter device.
  • the pluripotent plasma purification system based on the centrifugal separation plasma method of the invention comprises a plasma exchange device, a plasma diafiltration filter device and a plasma transfer device, and the plasma exchange device uses a centrifugal plasma separator, and the invention successfully uses the centrifugal plasma
  • the separation technology and the membrane blood purification technology combine to combine the advantages of the above two technologies and overcome the deficiencies of the above two technologies.
  • the separation of plasma by centrifugation requires little blood collection flow and does not require
  • the use of deep venous catheter can meet the treatment needs and improve the safety of treatment, so that artificial liver treatment can be extended to patients with advanced liver failure with poor coagulation function; the partially purified plasma is circulated by the plasma transfer device, and solved.
  • the contradiction between the low-speed separation plasma of the centrifugal plasma separator and the high plasma flow rate required by the plasma diafiltration and adsorption device enables the separated waste plasma to be subjected to high-speed dialysis, filtration and adsorption purification, and fully utilize various purifications.
  • the plasma transfer bag can function to temporarily store the discarded plasma, transfer the partially purified plasma, and buffer the pressure.
  • the invention can realize the combined treatment of centrifugal plasma exchange, plasma diafiltration and plasma adsorption. In the absence of plasma or when plasma exchange is not required, the system can be used for plasma diafiltration and adsorption treatment of separated plasma, and the centrifuge is expanded.
  • the artificial liver treatment mode of the plasma separation method realizes the comprehensive elimination of protein-bound toxins and water-soluble toxins, and on the basis of its existing safety, expands the comprehensive plasma purification function.
  • Fig. 1 is a schematic structural view of a versatile plasma purification system of the present embodiment.
  • Fig. 2 is a schematic view showing plasma exchange of the versatile plasma purification system of the present embodiment.
  • Figure 3 is a schematic illustration of plasma diafiltration filtration of the versatile plasma purification system of the present embodiment.
  • the all-round plasma purification system based on the centrifugal separation plasma method of the present embodiment includes a plasma exchange device 1 and a plasma diafiltration secondary adsorption device 2, and the plasma replacement device 1 includes a centrifugal plasma separator 11, plasma purification.
  • the system further includes a plasma transfer device 3 for collecting the separated plasma or circulating the purified plasma, the plasma transfer device 3 including the plasma transfer bag 31 and the waste bag 32, the plasma output of the plasma exchange device 1 and plasma transfer A plasma transfer line 33 is disposed between the bag 31, and a plasma discharge line 34 is disposed between the plasma transfer bag 31 and the waste bag 32.
  • the output end of the plasma diafiltration secondary adsorption device 2 is disposed between the plasma discharge line 34 and the plasma discharge line 34.
  • the plasma purification system comprises three parts: a centrifugal plasma exchange device, a plasma diafiltration secondary adsorption device 2, and a plasma transfer device 3 for connecting the first two devices.
  • the centrifugal plasma exchange has a small blood flow and is safe to treat. High in sex, suitable for patients with advanced liver failure, plasma diafiltration and filtration can maximize protein-binding toxins and water-soluble toxins, but requires higher plasma flow rate.
  • Plasma transfer device 3 circulates partially purified plasma to The plasma dialysis filtration adsorption device 2 meets the demand of its high plasma flow rate, and the plasma purification is more thorough in multiple cycles. Therefore, the centrifugal plasma exchange and the plasma diafiltration and adsorption are successfully combined, and the respective therapeutic advantages are fully utilized. Better results.
  • the height of the connection port of the plasma transfer bag 31 and the plasma transfer line 33 is lower than the height of the connection port of the plasma transfer bag 31 and the plasma discharge line 34, so that when only plasma exchange is performed, the first separation is performed.
  • the plasma with higher concentration of toxins is continuously discharged to the waste bag 32 under the push of the subsequent bagged plasma, and the plasma containing the lower concentration of toxin in the final bag is left in the plasma transfer bag 31 after the plasma exchange is completed. It is relatively easy to purify; in addition, when performing the replacement and diafiltration filtration adsorption combination treatment, part of the plasma is circulated, and the connection port of the plasma transfer line 33 is lower to avoid the air in the plasma transfer bag 31 entering the plasma diafiltration filtration during the circulation.
  • the device 2 can also cause the residual plasma remaining in the plasma transfer bag 31 to enter the plasma diafiltration filter device 2 for purification, and the plasma that has re-entered the plasma transfer bag 31 after purification also enters the plasma diafiltration filter device 2 Perform a cycle of purification.
  • the plasma transfer bag 31 can transfer plasma, and since its volume can be changed according to the pressure change in the plasma circulation line 35, it also functions as a pressure relief bag to prevent the pressure in the plasma circulation line 35 from being excessively large, and the plasma transfer bag 31 is observed.
  • the liquid level can also be used to understand the dynamic balance of liquid flow into and out of the bag.
  • the input end of the centrifugal plasma separator 11 is connected with a blood collection tube 12 for collecting blood of a patient, and the output end of the centrifugal plasma separator 11 is connected with a blood cell output line 13 and a plasma output line 14, plasma.
  • the output line 14 is connected to the plasma transfer line 33, and the output of the plasma output line 14 is connected to the input of the plasma diafiltration secondary adsorption device 2, which also includes a plasma return line for returning plasma.
  • the output of the blood cell output line 13 and the plasma return line 15 are connected to the input end of the return vessel 16 and the plasma return line
  • the input of 15 is connected to the output of the plasma diafiltration secondary adsorption device 2, and the input of the plasma return line 15 is connected to a fresh plasma line 17 for replenishing fresh plasma.
  • the blood collection tube 12 collects blood and sends it to the centrifugal plasma separator 11.
  • the separated blood cells are sent to the blood vessel 16 through the blood cell output line 13 and finally transported back to the human body.
  • the separated plasma flows out from the plasma output line 14 and can pass.
  • the plasma transfer line 33 enters the waste bag 32, and may also be sent to the plasma diafiltration secondary adsorption device 2 for purification treatment.
  • the purified plasma enters the return blood vessel 16 through the plasma return line 15 and is finally transported back to the human body. When plasma exchange is performed, fresh plasma can be replenished through fresh plasma line 17.
  • the plasma diafiltration secondary adsorption device 2 includes a filtrate input line 21, a plasma diafiltration filtration adsorption line 22 for diafiltration and adsorption of plasma, and a circulation or return of the purified plasma.
  • the plasma circulatory return line 23 is connected, the input end of the plasma diafiltration secondary adsorption line 22 is connected to the output end of the plasma output line 14, and the plasma dialysis filters the output of the adsorption line 22 and the filtrate input line 21.
  • the ends are connected to the input of the plasma circulation return line 23, and the output of the plasma circulation return line 23 is connected to the input of the plasma return line 15 and the plasma circulation line 35, respectively.
  • the plasma diafiltration filtration adsorption line 22 receives the plasma from the plasma output line 14 for purification treatment such as dialysis, filtration and adsorption, and the treated plasma flows out from the plasma circulation return line 23, and a part enters the plasma return line 15 Another portion enters the plasma return line 15 for circulation to meet the high flow requirements of the diafiltration filtration process.
  • the blood diafiltration filtration adsorption line 22 is sequentially provided with a blood filter 226, a first plasma adsorber 227 and a second plasma adsorber 228, and the lower side hole of the blood filter 226 is connected with a dialysate input line 224.
  • the dialysate discharge line 225 is connected to the upper side hole of the blood filter 226.
  • the first plasma adsorber 227 is a bilirubin adsorber
  • the second plasma adsorber 228 is a resin activated carbon adsorber.
  • the blood filter 226, the bilirubin adsorber and the resin activated carbon adsorber can perform effective diafiltration and adsorption on the plasma to remove toxins from the plasma, and the dialysate input line 224 provides dialysate for the dialysis process, and the dialysate discharge line 225 is able to recover used dialysate.
  • the plasma circulation line 35 is provided with a first connection port 351 that can be connected or disconnected, and the plasma output line 14 and the plasma diafiltration filter adsorption line 22 are provided with a connection or disconnection.
  • Two connection ports 142, a third connection port 231 capable of communicating or disconnecting between the plasma circulation return line 23 and the plasma return line 15, a first connection port 351, a second connection port 142 and a third connection A pipe clamp 4 is provided on both sides of the port 231.
  • the three connection ports can connect the three parts of the plasma exchange device 1, the plasma diafiltration filter device 2 and the plasma transfer device 3 into a complete all-round plasma purification system, and can also be used separately. For example, it is divided into two relatively independent systems: centrifugal plasma exchange and membrane blood purification (including membrane plasma exchange, plasma adsorption, hemodiafiltration, etc.), and different models of artificial liver treatment for different patients. , flexibility and versatility.
  • the blood collection tube 12 is provided with a blood collection pump 121.
  • the speed of the blood collection pump 121 is 50-60 ml/min, and the plasma separation line 141 is provided on the plasma output line 14.
  • the plasma separation pump 141 has a speed of 25 ⁇ .
  • a plasma input pump 151 is disposed on the plasma return line 15.
  • the plasma input pump 151 has a velocity of 25-30 ml/min.
  • the plasma diafiltration adsorption line 22 is provided with a plasma circulation driving pump 221, and the plasma circulation is performed.
  • the speed of the driving pump 221 is 150-180 ml/min
  • the dialysate input line 224 is provided with a dialysate pump 2241
  • the dialysate pump 2241 has a speed of 50-60 ml/min
  • the dialysate discharge line 225 is provided with waste liquid.
  • the pump 2251, the speed of the waste liquid pump 2251 is 100 to 120 ml/min
  • the filtrate input line 21 is provided with a filtrate pump 211
  • the speed of the filtrate pump 211 is 50 to 60 ml/min.
  • the speed of the blood collection pump 121 is set to 60 ml/min
  • the speed of the plasma separation pump 141 is 30 ml/min
  • the speed of the plasma input pump 151 is 25 ml/min
  • the speed of the plasma circulation drive pump 221 is 180 ml/min.
  • the speed of the pump 2241 was 50 ml/min
  • the speed of the waste liquid pump 2251 was 115 ml/min
  • the speed of the filtrate pump 211 was 60 ml/min, at which time ultrafiltration at a speed of 5 ml/min (300 ml/h) was achieved.
  • the blood collection tube 12 is provided with a first liquid pot 122 and a first liquid level detecting sensor 123 for detecting the liquid level of the first liquid pot 122, and the plasma diafiltration filter adsorption line 22 is provided with a first liquid level detecting sensor 123.
  • the third liquid level detecting sensor 162 is provided with a fourth liquid jug 212 and a fourth liquid level detecting sensor 213 for detecting the liquid level of the fourth liquid pot 212, and the plasma returning line 15 is provided on the filtering liquid input line 21.
  • the liquid jug can temporarily store the liquid, and the liquid level detecting sensor can detect the liquid level in the liquid jug. Ensure the normal operation of the system.
  • the first liquid kettle 122, the second liquid kettle 222 and the third liquid kettle 161 are respectively provided with a pressure detecting connecting pipe 5, and the pressure detecting connecting pipe 5 is convenient for detecting the pressure condition in the pipeline, which is beneficial to the normal system. run.
  • the heparin pump 6 is connected to both the first liquid kettle 122 and the second liquid kettle 222.
  • a first heating assembly 154 is disposed on the plasma return line 15, and a second heating assembly 232 is disposed at one end of the plasma circulation return line 23 connected to the plasma return line 15.
  • the heating element can heat the liquid in the pipeline to a normal physiological temperature, ensuring a stable balance of the patient's body temperature during the treatment.
  • the input end of the fresh plasma line 17 is provided with a fresh plasma bag 171
  • the input end of the dialysate input line 224 is provided with a dialysate bag 2242
  • the output end of the dialysate discharge line 225 is provided with a waste bag.
  • 2252, the input end of the filtrate input line 21 is provided with a filtrate bag 214
  • the dialysate bag 2242, the waste liquid bag 2252 and the filtrate bag 214 are provided with a hanging scale for monitoring the weight, a filtrate bag 214, and a dialysate bag.
  • the weight of the 2242, the waste liquid bag 2252 and the filtrate bag 214 are monitored so as to be replaced in time when the remaining amount in the bag is insufficient, so as not to affect the treatment.
  • the plasma exchange device 1 is connected to a computer control system that independently controls the plasma exchange device 1, and the plasma diafiltration filter device 2 is connected to a computer control system that independently controls the plasma diafiltration filter device 2.
  • the computer control system can be controlled independently of each other in one computer, or can be independently controlled on two computers.
  • two computer control systems can also work in conjunction with each other, and a patient is subjected to centrifugal plasma exchange and plasma diafiltration treatment by the connection of the catheter of the present invention.
  • the computer control system is separately provided to facilitate the separate use of the plasma exchange device 1 and the plasma diafiltration filter device 2, that is, separate into two independent treatment systems, and separate two separate patients for centrifugal separation of plasma exchange and membrane plasma.
  • Purification treatment, dual-use, two independent computer control systems can independently monitor the work according to the actual situation, without affecting each other, improving the flexibility and versatility of the system.
  • the first connection port 351, the second connection port 142, and the third connection port 231 are disconnected before treatment, and the plasma exchange device 1 and the plasma dialysis filter are respectively used under the control of a computer program using heparin physiological saline.
  • the adsorption device 2 performs line pre-charging.
  • centrifugal plasmapheresis is performed by the centrifugal plasma separator 11, and the fresh plasma line 17 is connected.
  • the fresh plasma is driven by the plasma input pump 151 through the plasma return line 15 and with the blood cells in the blood cell output line 13.
  • the vascular circuit 16 is returned to the patient, and the separated plasma flows out of the plasma output line 14, enters the plasma transfer bag 31 through the plasma transfer line 33, and then enters the waste bag 32 through the plasma discharge line 34.
  • the tube clamp 4 and the plasma discharge line 34 of the fresh plasma line 17 are closed to the tube clamp 4 at the waste bag 32, and the first connection port 351 and the second connection port 142 are closed.
  • the plasma separated by the centrifugal plasma separator 11 is discharged from the plasma output line 14 into the plasma diafiltration secondary adsorption line 22, while the plasma transfer bag 31 is The retained plasma also enters the plasma diafiltration secondary adsorption line 22 through the plasma transfer line 33.
  • These plasmas are delivered to the blood filter 226, the bilirubin adsorber, and the resin activated carbon under the action of the high speed plasma circulating drive pump 221.
  • Plasma diafiltration and adsorption are performed in the device, and a part of the purified plasma is returned to the patient through the plasma input pump 151 and the blood plasma is returned to the patient, and another part of the plasma enters the plasma transfer bag 31 through the plasma circulation line 35 and is separated from the centrifugal plasma.
  • the plasma confluence of the low-speed separation of the device 11 is sent to the plasma dialysis filtration adsorption line 22 by the plasma circulation driving pump 221 for circulation purification, so that the plasma is passed through
  • the shifting device 3 realizes the circulation purification of plasma, can meet the requirements of plasma separation and plasma diafiltration, plasma adsorption to plasma flow rate difference, and solves the low-speed separation plasma and plasma diafiltration filter adsorption device of the centrifugal plasma separator 11
  • the contradiction between the required high plasma flow rate enables the circulated high-speed diafiltration, adsorption and purification of the separated waste plasma, and fully exerts the therapeutic advantages of various purification means.
  • the centrifugal separation plasma exchange system and the membrane blood can be obtained by disconnecting the first connection port 351, the second connection port 142, and the third connection port 231.
  • Purification system Two independent systems, in which the centrifugal separation plasma exchange system uses three pumps, and the membrane type blood purification system uses four pumps, which are independent of each other and are controlled by their respective computer control systems, which can be two at the same time. Patients undergo centrifugal separation of plasma exchange and membrane blood purification (including membrane plasma exchange, plasma adsorption, hemodiafiltration, and other treatments), which are flexible and versatile.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Cardiology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • External Artificial Organs (AREA)

Abstract

一种基于离心分离血浆法的全能型血浆净化系统,包括血浆置换装置(1)和血浆透析滤过吸附装置(2),血浆置换装置(1)包括离心式血浆分离器(11),血浆净化系统还包括血浆转移装置(3),血浆转移装置(3)包括血浆转移袋(31)和废浆袋(32),血浆置换装置(1)的血浆输出端与血浆转移袋(31)之间设有血浆转移管路(33),血浆转移袋(31)和废浆袋(32)之间设有血浆排出管路(34),血浆透析滤过吸附装置(2)的输出端与血浆排出管路(34)之间设有血浆循环管路(35)。血浆净化系统能充分发挥离心式血浆置换、血浆透析滤过、血浆双重吸附治疗的优势,并满足离心式血浆置换、血浆透析滤过及血浆吸附对不同血浆流速需求,具有功能更全面、适用范围更广等优点。

Description

一种基于离心分离血浆法的全能型血浆净化系统 技术领域
本发明涉及用于血液净化的医疗仪器,尤其涉及一种基于离心分离血浆法的全能型血浆净化系统(versatile plasma purification system,VPPS)。
背景技术
急性肝衰竭或慢加急性肝衰竭病情重且进展迅速,容易并发多器官功能衰竭,短期内若不能阻止病情进展,将危及生命,需要紧急肝移植。急性或慢加急性肝衰竭患者体内存在大量毒素,伴有凝血功能障碍,晚期肝衰竭患者出血倾向更为严重。人工肝是一种用于治疗肝功能衰竭的血液净化方法。目前国内外基本的人工肝方法有4种:血浆置换、血浆吸附、血液透析和血液滤过。对严重肝衰竭患者进行人工肝治疗,既要顾忌其出血的风险,又要全面清除体内蓄积的各类毒素,包括蛋白结合毒素和水溶性毒素。不同的血液净化方式清除的肝衰竭毒素各不相同,联合治疗能清除更多的毒素,增强净化效果。
白蛋白透析吸附以分子吸附再循环系统(MARS)为代表,其工作原理是在白蛋白透析循环中利用20%白蛋白液(500~600ml)作为结合、转运蛋白毒素介质,使患者血液中的与蛋白结合的毒素以及其他类型的毒素分子,通过MARS透析膜转移到白蛋白液中,经蛋白液净化再生循环,顺次通过透析、树脂及活性炭吸附进行净化,净化后的白蛋白液又能够重复循环使用;吸附器吸附达到饱和后白蛋白不能再使用而丢弃。MARS由于采用白蛋白转运毒素而实现吸附器的间接吸附毒素,且受透析膜毒素交换效率影响,其清除毒素效率不如血浆吸附,由于没有补充血浆,不能改善肝衰竭患者的凝血功能和低蛋白血症,不适于晚期肝衰竭患者。且每次MARS治疗消耗丢弃大量白蛋白,不易在国内广泛使用。但其通过树脂、活性炭吸附及同步进行透析净化的方案值得借鉴。如能将血浆置换、血浆吸附与透析和/或滤过相结合,既可以全面清除蛋白结合毒素与水溶性毒素、补充白蛋白和凝血因子,又能充分利用废弃血浆净化后再自体回输,这样可以大大减少临床血浆的用量,且能充分满足肝衰竭患者的病情需要,有效救治更多的病患。
血浆置换需要将患者的部分血液从体内引出,通过离心式或膜式分离血浆的方法,分离出含大量毒素的血浆予丢弃,同时补充新鲜血浆。膜式分离血浆法对采血流量要求比较大,达100~120ml/min,术中肝素使用剂量较大,对于凝血功能很差的中晚期肝衰竭患者,具有导致出血和血肿的风险;血液透析、血液滤过的采血流量高达200~350ml/min,这三种治疗均需要进行深静脉置管或动脉穿刺。肝衰竭患者深静脉置管或动脉穿刺引发的术中术后并发症多,风险大,一旦发生出血或血肿,严重影响后续治疗,预后极差。离心式分离血浆置换采血流量仅需30~60ml/min,无需深静脉置管,外周浅表静脉穿刺即可满足治疗的血流速度 需要,且肝素使用剂量相对较小,导致出血的风险小;能清除蛋白结合毒素并补充凝血因子和白蛋白等生物活性物质,适合于凝血功能差的患者治疗。但单纯的血浆置换不能全面清除各类毒素,尤其对水溶性毒素清除能力有限,对严重肝衰竭患者还有诱发肝昏迷的风险,且临床使用受血浆供应不足的限制,故对严重肝衰竭患者需与血浆透析滤过及血浆吸附联合治疗,方能最大限度地清除蛋白结合毒素和水溶性毒素。为了提高血浆滤过和吸附的效率,需将离心式血浆置换仪分离的血浆从25~30ml/min进行提速,使其以150~180ml/min的流速高速通过血滤器和两个血浆吸附器(分别吸附不同类别的毒素),然后再以25~30ml/min的速度回输患者体内。
文献号为CN203280813U的中国专利文献公开了一种配备储浆袋的血浆置换吸附滤过净化系统,该系统将血浆置换、血浆吸附与血浆透析结合起来,先进行1小时血浆置换,再接着通过特别设计的储浆袋进行5小时血浆高速循环吸附与血浆透析,但其构成复杂,且只能在膜型血浆分离基础上运行,需要深静脉置管,治疗风险大,不适于凝血功能很差的晚期肝衰竭患者。
文献号为CN205073379U的中国专利文献公开了一种通过使用特别设计的血浆分流及置换管路、置换及吸附血浆汇合管路,仅使用一台拥有4个泵的普通血液净化仪就能同步完成缓慢型血浆置换、血浆吸附与滤过的净化系统及其应用方法。但也只能在膜型血浆分离基础上运行,不适于凝血功能很差的晚期肝衰竭患者。且血浆吸附和滤过时的血浆速度为25~30ml/min,对水溶性毒素的清除能力不足。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种采用离心分离血浆置换,同时结合血浆透析滤过吸附的血浆净化系统,该系统在一次人工肝治疗中能充分发挥离心式血浆置换、血浆透析滤过、血浆双重吸附治疗的优势,并满足离心式血浆置换、血浆透析滤过及血浆吸附对血浆流速的不同需求,功能更全面、适用范围更广。
为解决上述技术问题,本发明采用以下技术方案:
一种基于离心分离血浆法的全能型血浆净化系统,包括血浆置换装置和血浆透析滤过吸附装置,所述血浆置换装置包括离心式血浆分离器,所述血浆净化系统还包括用于收集分离后的血浆或将净化后的血浆进行循环的血浆转移装置,所述血浆转移装置包括血浆转移袋和废浆袋,所述血浆置换装置的血浆输出端与所述血浆转移袋之间设有血浆转移管路,所述血浆转移袋和所述废浆袋之间设有血浆排出管路,所述血浆透析滤过吸附装置的输出端与所述血浆排出管路之间设有血浆循环管路。
作为上述技术方案的进一步改进:
所述血浆转移袋与所述血浆转移管路的连接口的高度要低于血浆转移袋与所述血浆排出管路的连接口的高度。
所述离心式血浆分离器的输入端连接有用于采集患者血液的采血管路,所述离心式血浆分离器的输出端连接有血细胞输出管路和血浆输出管路,所述血浆输出管路与所述血浆转移管路相连,所述血浆输出管路的输出端与所述血浆透析滤过吸附装置的输入端相连,所述血浆置换装置还包括用于回输血浆的血浆回输管路和用于将处理后的血液输回患者体内的回血管路,所述血细胞输出管路和所述血浆回输管路的输出端均与所述回血管路的输入端相连,所述血浆回输管路的输入端与所述血浆透析滤过吸附装置的输出端相连,所述血浆回输管路的输入端连接有用于补充新鲜血浆的新鲜血浆管路。
所述血浆透析滤过吸附装置包括滤过液输入管路、用于对血浆进行透析滤过吸附的血浆透析滤过吸附管路和用于将净化后的血浆循环或回输的血浆循环回输管路,所述血浆透析滤过吸附管路的输入端与所述血浆输出管路的输出端相连,所述血浆透析滤过吸附管路和所述滤过液输入管路的输出端均与所述血浆循环回输管路的输入端相连,所述血浆循环回输管路的输出端分别与所述血浆回输管路和所述血浆循环管路的输入端相连。
所述血浆透析滤过吸附管路上依次设有血滤器、第一血浆吸附器和第二血浆吸附器,所述血滤器的下部侧孔连接有透析液输入管路,所述血滤器的上部侧孔连接有透析液排出管路。
所述血浆循环管路上设有能够连通或者断开的第一连接端口,所述血浆输出管路与所述血浆透析滤过吸附管路之间设有能够连通或者断开的第二连接端口,所述血浆循环回输管路与所述血浆回输管路之间设有能够连通或者断开的第三连接端口,所述第一连接端口、第二连接端口和第三连接端口的两侧均设有管夹。
所述采血管路上设有采血泵,所述采血泵的速度为50~60ml/min,所述血浆输出管路上设有血浆分离泵,所述血浆分离泵的速度为25~30ml/min,所述血浆回输管路上设有血浆输入泵,所述血浆输入泵的速度为25~30ml/min,所述血浆透析滤过吸附管路上设有血浆循环驱动泵,所述血浆循环驱动泵的速度为150~180ml/min,所述透析液输入管路上设有透析液泵,所述透析液泵的速度为50~60ml/min,所述透析液排出管路上设有废液泵,所述废液泵的速度为100~120ml/min,所述滤过液输入管路上设有滤液泵,所述滤液泵的速度为50~60ml/min。
所述采血管路上设有第一液壶和用于检测所述第一液壶液面高度的第一液面检测传感器,所述血浆透析滤过吸附管路上设有第二液壶和用于检测所述第二液壶液面高度的第二液面检测传感器,所述回血管路上设有第三液壶和用于检测所述第三液壶液面高度的第三液面检测传感器,所述滤过液输入管路上设有第四液壶和用于检测所述第四液壶液面高度的第四 液面检测传感器,所述血浆回输管路上设有第五液壶和用于检测所述第五液壶液面高度的第五液面检测传感器。
所述第一液壶、第二液壶和第三液壶上均设有压力检测连接管。
所述第一液壶和第二液壶上均连接有肝素泵。
所述血浆回输管路上设有第一加热组件,所述血浆循环回输管路与所述血浆回输管路连接的一端设有第二加热组件。
所述新鲜血浆管路的输入端设有新鲜血浆袋,所述透析液输入管路的输入端设有透析液袋,所述透析液排出管路的输出端设有废液袋,所述滤过液输入管路的输入端设有滤液袋,所述透析液袋、废液袋和滤液袋上均设有用于监测重量的挂秤。
所述血浆置换装置连接有独立控制所述血浆置换装置的计算机控制系统,所述血浆透析滤过吸附装置连接有独立控制所述血浆透析滤过吸附装置的计算机控制系统。
与现有技术相比,本发明的优点在于:
本发明的基于离心分离血浆法的全能型血浆净化系统,包括血浆置换装置、血浆透析滤过吸附装置和血浆转移装置,血浆置换装置采用的是离心式血浆分离器,本发明成功将离心式血浆分离技术和膜式血液净化技术(透析滤过吸附)结合起来,综合了上述两种技术的优点,克服了上述两种技术的不足,通过离心法分离血浆,对采血流量的要求小,不需要采用深静脉置管就能满足治疗需求,提高了治疗的安全性,使得人工肝治疗可以拓展到凝血功能很差的中晚期肝衰竭患者;通过血浆转移装置将部分净化后血浆进行循环,解决了离心式血浆分离器的低速分离血浆与血浆透析滤过吸附装置所需高血浆流速之间的矛盾,使分离出的废弃血浆得以进行高速透析、滤过和吸附的循环净化,充分发挥各种净化手段的治疗优势。血浆转移袋可以起到暂存废弃血浆、将部分净化后的血浆循环转移和缓冲压力的作用。本发明可以实现离心式血浆置换与血浆透析滤过、血浆吸附的联合治疗,在缺乏血浆或不需要进行血浆置换时,可利用本系统对分离血浆进行血浆透析滤过与吸附治疗,拓展了离心式血浆分离法的人工肝治疗模式,实现对蛋白结合毒素与水溶性毒素的全面清除,在其既有安全性的基础上,拓展出更全面的血浆净化功能。
附图说明
图1是本实施例的全能型血浆净化系统的结构示意图。
图2是本实施例的全能型血浆净化系统进行血浆置换的示意图。
图3是本实施例的全能型血浆净化系统进行血浆透析滤过吸附的示意图。
图例说明:
1、血浆置换装置;11、离心式血浆分离器;12、采血管路;121、采血泵;122、第一液 壶;123、第一液面检测传感器;13、血细胞输出管路;14、血浆输出管路;141、血浆分离泵;142、第二连接端口;15、血浆回输管路;151、血浆输入泵;152、第五液壶;153、第五液面检测传感器;154、第一加热组件;16、回血管路;161、第三液壶;162、第三液面检测传感器;17、新鲜血浆管路;171、新鲜血浆袋;2、血浆透析滤过吸附装置;21、滤过液输入管路;211、滤液泵;212、第四液壶;213、第四液面检测传感器;214、滤液袋;22、血浆透析滤过吸附管路;221、血浆循环驱动泵;222、第二液壶;223、第二液面检测传感器;224、透析液输入管路;2241、透析液泵;2242、透析液袋;225、透析液排出管路;2251、废液泵;2252、废液袋;226、血滤器;227、第一血浆吸附器;228、第二血浆吸附器;23、血浆循环回输管路;231、第三连接端口;232、第二加热组件;3、血浆转移装置;31、血浆转移袋;32、废浆袋;33、血浆转移管路;34、血浆排出管路;35、血浆循环管路;351、第一连接端口;4、管夹;5、压力检测连接管;6、肝素泵。
具体实施方式
以下将结合说明书附图和具体实施例对本发明做进一步详细说明。
如图1所示,本实施例的基于离心分离血浆法的全能型血浆净化系统,包括血浆置换装置1和血浆透析滤过吸附装置2,血浆置换装置1包括离心式血浆分离器11,血浆净化系统还包括用于收集分离后的血浆或将净化后的血浆进行循环的血浆转移装置3,血浆转移装置3包括血浆转移袋31和废浆袋32,血浆置换装置1的血浆输出端与血浆转移袋31之间设有血浆转移管路33,血浆转移袋31和废浆袋32之间设有血浆排出管路34,血浆透析滤过吸附装置2的输出端与血浆排出管路34之间设有血浆循环管路35,在废浆袋32的入口处设有管夹4。该血浆净化系统包括三个部分:离心式的血浆置换装置1、血浆透析滤过吸附装置2和起到连接前面两个装置作用的血浆转移装置3,离心式的血浆置换采血流量小,治疗安全性高,适用于中晚期肝衰竭患者,血浆透析滤过吸附能够最大限度地清除蛋白结合毒素和水溶性毒素,但需要较高的血浆流速,血浆转移装置3通过将部分净化后的血浆循环至血浆透析滤过吸附装置2以满足其高血浆流量的需求,同时多次循环血浆净化得更为彻底,因此成功将离心血浆置换和血浆透析滤过吸附结合起来,充分发挥各自的治疗优势,治疗效果更好。
本实施例中,血浆转移袋31与血浆转移管路33的连接口的高度要低于血浆转移袋31与血浆排出管路34的连接口的高度,这样设置在只进行血浆置换时,先分离出来的毒素浓度较高的血浆在后续入袋血浆的推动下不断排至废浆袋32,在血浆置换完成后留在血浆转移袋31中的为最后进入袋中的含毒素浓度较低的血浆,相对容易净化;此外在进行置换与透析滤过吸附联合治疗时,会将部分血浆循环,血浆转移管路33的连接口较低可以避免循环时血浆转移袋31内空气进入血浆透析滤过吸附装置2,同时还可以使血浆转移袋31中残留的废弃血 浆先进入血浆透析滤过吸附装置2进行净化,而净化后重新进入血浆转移袋31的血浆也随之进入血浆透析滤过吸附装置2进行循环净化。血浆转移袋31除了可以转移血浆,由于其体积可根据血浆循环管路35中压力变化而变化,故还起着泄压袋的作用避免血浆循环管路35中压力过大,观察血浆转移袋31的液面高度还可用于了解进出袋中液体流量的动态平衡。
本实施例中,离心式血浆分离器11的输入端连接有用于采集患者血液的采血管路12,离心式血浆分离器11的输出端连接有血细胞输出管路13和血浆输出管路14,血浆输出管路14与血浆转移管路33相连,血浆输出管路14的输出端与血浆透析滤过吸附装置2的输入端相连,血浆置换装置1还包括用于回输血浆的血浆回输管路15和用于将处理后的血液输回患者体内的回血管路16,血细胞输出管路13和血浆回输管路15的输出端均与回血管路16的输入端相连,血浆回输管路15的输入端与血浆透析滤过吸附装置2的输出端相连,血浆回输管路15的输入端连接有用于补充新鲜血浆的新鲜血浆管路17。采血管路12采血后送至离心式血浆分离器11,分离后的血细胞通过血细胞输出管路13送至回血管路16最终输送回人体,分离后的血浆从血浆输出管路14流出,可通过血浆转移管路33进入废浆袋32,也可选择送入血浆透析滤过吸附装置2进行净化处理,净化后的血浆通过血浆回输管路15进入回血管路16最终输送回人体,在只进行血浆置换时,可以通过新鲜血浆管路17补充新鲜血浆。
本实施例中,血浆透析滤过吸附装置2包括滤过液输入管路21、用于对血浆进行透析滤过吸附的血浆透析滤过吸附管路22和用于将净化后的血浆循环或回输的血浆循环回输管路23,血浆透析滤过吸附管路22的输入端与血浆输出管路14的输出端相连,血浆透析滤过吸附管路22和滤过液输入管路21的输出端均与血浆循环回输管路23的输入端相连,血浆循环回输管路23的输出端分别与血浆回输管路15和血浆循环管路35的输入端相连。血浆透析滤过吸附管路22接受来自血浆输出管路14的血浆进行透析、滤过和吸附等净化处理,处理后的血浆从血浆循环回输管路23流出,一部分进入血浆回输管路15,另一部分进入血浆回输管路15进行循环,以满足透析滤过吸附过程高流量的需求。
本实施例中,血浆透析滤过吸附管路22上依次设有血滤器226、第一血浆吸附器227和第二血浆吸附器228,血滤器226的下部侧孔连接有透析液输入管路224,血滤器226的上部侧孔连接有透析液排出管路225。具体的,第一血浆吸附器227为胆红素吸附器,第二血浆吸附器228为树脂活性炭吸附器。血滤器226、胆红素吸附器和树脂活性炭吸附器能够对血浆进行有效的透析滤过吸附作用,清除血浆中的毒素,透析液输入管路224为透析过程提供透析液,透析液排出管路225能够回收使用过的透析液。
本实施例中,血浆循环管路35上设有能够连通或者断开的第一连接端口351,血浆输出管路14与血浆透析滤过吸附管路22之间设有能够连通或者断开的第二连接端口142,血浆 循环回输管路23与血浆回输管路15之间设有能够连通或者断开的第三连接端口231,第一连接端口351、第二连接端口142和第三连接端口231的两侧均设有管夹4。三个连接端口可以将血浆置换装置1、血浆透析滤过吸附装置2和血浆转移装置3这三个部分连通成一个完整的全能型血浆净化体系进行运作,同时也可以将他们断开单独使用,如分成离心式血浆置换和膜式血液净化(包括膜式血浆置换、血浆吸附、血液透析滤过等多种治疗方式)两个相对独立的体系,同时为不同的患者进行不同模式的人工肝治疗,具有灵活性和多功能性。
本实施例中,采血管路12上设有采血泵121,采血泵121的速度为50~60ml/min,血浆输出管路14上设有血浆分离泵141,血浆分离泵141的速度为25~30ml/min,血浆回输管路15上设有血浆输入泵151,血浆输入泵151的速度为25~30ml/min,血浆透析滤过吸附管路22上设有血浆循环驱动泵221,血浆循环驱动泵221的速度为150~180ml/min,透析液输入管路224上设有透析液泵2241,透析液泵2241的速度为50~60ml/min,透析液排出管路225上设有废液泵2251,废液泵2251的速度为100~120ml/min,滤过液输入管路21上设有滤液泵211,滤液泵211的速度为50~60ml/min。通过联动调节血浆分离泵141、血浆输入泵151、滤液泵211和废液泵2251的速度可以进行液体平衡调控,进而实现超滤。具体的,设置采血泵121的速度为60ml/min,血浆分离泵141的速度为30ml/min,血浆输入泵151的速度为25ml/min,血浆循环驱动泵221的速度为180ml/min,透析液泵2241的速度为50ml/min,废液泵2251的速度为115ml/min,滤液泵211的速度为60ml/min,此时可以实现速度为5ml/min(300ml/h)的超滤。
本实施例中,采血管路12上设有第一液壶122和用于检测第一液壶122液面高度的第一液面检测传感器123,血浆透析滤过吸附管路22上设有第二液壶222和用于检测第二液壶222液面高度的第二液面检测传感器223,回血管路16上设有第三液壶161和用于检测第三液壶161液面高度的第三液面检测传感器162,滤过液输入管路21上设有第四液壶212和用于检测第四液壶212液面高度的第四液面检测传感器213,血浆回输管路15上设有第五液壶152和用于检测第五液壶152液面高度的第五液面检测传感器153,液壶可以暂存液体,液面检测传感器可以检测液壶中的液位高低,保证系统的正常运转。
本实施例中,第一液壶122、第二液壶222和第三液壶161上均设有压力检测连接管5,压力检测连接管5便于检测管路内的压力情况,有利于系统正常运行。
本实施例中,第一液壶122和第二液壶222上均连接有肝素泵6。
本实施例中,血浆回输管路15上设有第一加热组件154,血浆循环回输管路23与血浆回输管路15连接的一端设有第二加热组件232。加热组件能将管道中的液体加热至正常生理温度,保证治疗过程中病人体温的平衡稳定。
本实施例中,新鲜血浆管路17的输入端设有新鲜血浆袋171,透析液输入管路224的输入端设有透析液袋2242,透析液排出管路225的输出端设有废液袋2252,滤过液输入管路21的输入端设有滤液袋214,透析液袋2242、废液袋2252和滤液袋214上均设有用于监测重量的挂秤,对滤液袋214,透析液袋2242、废液袋2252和滤液袋214的重量进行监控,以便当袋中余量不足时及时更换,以免影响治疗。
本实施例中,血浆置换装置1连接有独立控制血浆置换装置1的计算机控制系统,血浆透析滤过吸附装置2连接有独立控制血浆透析滤过吸附装置2的计算机控制系统。具体的,计算机控制系统可以在一台计算机内同时相互独立进行控制,也可以在2台计算机分别独立进行控制。在进行全能型血浆净化治疗时,两个计算机控制系统也能相互联系协同工作,通过本发明管路的连接联合对一例患者进行离心血浆置换及血浆透析滤过吸附治疗。单独设置计算机控制系统方便将血浆置换装置1和血浆透析滤过吸附装置2各自单独使用,即分开变成2个独立的治疗系统,分别对2例不同患者进行离心式分离血浆置换与膜式血浆净化治疗,一机双用,两套独立的计算机控制系统根据实际情况可独立监控工作,互不影响,提高了系统使用的灵活性与多能性。
本实施例的基于离心分离血浆法的全能型血浆净化系统的使用方法如下:
(1)离心式分离血浆置换及血浆透析滤过吸附的全能型血浆净化治疗:
如图2所示,治疗前将第一连接端口351、第二连接端口142和第三连接端口231断开连接,在电脑程序控制下使用肝素生理盐水分别对血浆置换装置1和血浆透析滤过吸附装置2进行管路预充。
首先通过离心式血浆分离器11进行离心式血浆置换,并连通新鲜血浆管路17,新鲜血浆在血浆输入泵151的驱动下通过血浆回输管路15,并与血细胞输出管路13中的血细胞汇合后经回血管路16回输至患者体内,分离出的血浆从血浆输出管路14流出,经过血浆转移管路33进入血浆转移袋31,然后通过血浆排出管路34进入废浆袋32。
如图3所示,血浆置换完成后,关闭新鲜血浆管路17的管夹4和血浆排出管路34靠近废浆袋32处的管夹4,将第一连接端口351、第二连接端口142和第三连接端口231连通,开始进行血浆透析滤过吸附治疗:离心式血浆分离器11低速分离的血浆从血浆输出管路14流出进入血浆透析滤过吸附管路22,同时血浆转移袋31中留存的血浆通过血浆转移管路33也进入血浆透析滤过吸附管路22,这些血浆在高速运转的血浆循环驱动泵221的作用下被输送到血滤器226、胆红素吸附器和树脂活性炭吸附器中进行血浆透析滤过和吸附,净化后的一部分血浆通过血浆输入泵151与血细胞汇合后回输患者体内,另一部分血浆通过血浆循环管路35进入血浆转移袋31,并与离心式血浆分离器11低速分离的血浆汇合,被血浆循环驱 动泵221输送到血浆透析滤过吸附管路22中进行循环净化,这样通过血浆转移装置3实现对血浆的循环净化,能满足血浆分离与血浆透析滤过、血浆吸附对血浆流速的差异化要求,解决了离心式血浆分离器11的低速分离血浆与血浆透析滤过吸附装置2所需高血浆流速之间的矛盾,得以对分离的废弃血浆进行循环高速的透析滤过、吸附净化,充分发挥各种净化手段的治疗优势。
(2)离心式分离血浆置换与膜式血液净化分别治疗:
由于血浆置换装置1和血浆透析滤过吸附装置2是相互独立的,断开第一连接端口351、第二连接端口142和第三连接端口231后可以得到离心式分离血浆置换系统和膜式血液净化系统两个独立的系统,其中离心式分离血浆置换系统使用三个泵,膜式血液净化系统使用四个泵,相互独立互不干扰,分别由各自的计算机控制系统控制,可同时为两个患者分别进行离心式分离血浆置换和膜式血液净化(包括膜式血浆置换、血浆吸附、血液透析滤过等多种治疗方式),其运用具有灵活性与多功能性。
虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围的情况下,都可利用上述揭示的技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应落在本发明技术方案保护的范围内。

Claims (10)

  1. 一种基于离心分离血浆法的全能型血浆净化系统,包括血浆置换装置(1)和血浆透析滤过吸附装置(2),其特征在于:所述血浆置换装置(1)包括离心式血浆分离器(11),所述血浆净化系统还包括用于收集分离后的血浆或将净化后的血浆进行循环的血浆转移装置(3),所述血浆转移装置(3)包括血浆转移袋(31)和废浆袋(32),所述血浆置换装置(1)的血浆输出端与所述血浆转移袋(31)之间设有血浆转移管路(33),所述血浆转移袋(31)和所述废浆袋(32)之间设有血浆排出管路(34),所述血浆透析滤过吸附装置(2)的输出端与所述血浆排出管路(34)之间设有血浆循环管路(35)。
  2. 根据权利要求1所述的基于离心分离血浆法的全能型血浆净化系统,其特征在于:所述血浆转移袋(31)与所述血浆转移管路(33)的连接口的高度要低于血浆转移袋(31)与所述血浆排出管路(34)的连接口的高度。
  3. 根据权利要求1所述的基于离心分离血浆法的全能型血浆净化系统,其特征在于:所述离心式血浆分离器(11)的输入端连接有用于采集患者血液的采血管路(12),所述离心式血浆分离器(11)的输出端连接有血细胞输出管路(13)和血浆输出管路(14),所述血浆输出管路(14)与所述血浆转移管路(33)相连,所述血浆输出管路(14)的输出端与所述血浆透析滤过吸附装置(2)的输入端相连,所述血浆置换装置(1)还包括用于回输血浆的血浆回输管路(15)和用于将处理后的血液输回患者体内的回血管路(16),所述血细胞输出管路(13)和所述血浆回输管路(15)的输出端均与所述回血管路(16)的输入端相连,所述血浆回输管路(15)的输入端与所述血浆透析滤过吸附装置(2)的输出端相连,所述血浆回输管路(15)的输入端连接有用于补充新鲜血浆的新鲜血浆管路(17)。
  4. 根据权利要求3所述的基于离心分离血浆法的全能型血浆净化系统,其特征在于:所述血浆透析滤过吸附装置(2)包括滤过液输入管路(21)、用于对血浆进行透析滤过吸附的血浆透析滤过吸附管路(22)和用于将净化后的血浆循环或回输的血浆循环回输管路(23),所述血浆透析滤过吸附管路(22)的输入端与所述血浆输出管路(14)的输出端相连,所述血浆透析滤过吸附管路(22)和所述滤过液输入管路(21)的输出端均与所述血浆循环回输管路(23)的输入端相连,所述血浆循环回输管路(23)的输出端分别与所述血浆回输管路(15)和所述血浆循环管路(35)的输入端相连。
  5. 根据权利要求4所述的基于离心分离血浆法的全能型血浆净化系统,其特征在于:所述血浆透析滤过吸附管路(22)上依次设有血滤器(226)、第一血浆吸附器(227)和第二血浆吸附器(228),所述血滤器(226)的下部侧孔连接有透析液输入管路(224),所述血滤器(226)的上部侧孔连接有透析液排出管路(225)。
  6. 根据权利要求4或5所述的基于离心分离血浆法的全能型血浆净化系统,其特征在于: 所述血浆循环管路(35)上设有能够连通或者断开的第一连接端口(351),所述血浆输出管路(14)与所述血浆透析滤过吸附管路(22)之间设有能够连通或者断开的第二连接端口(142),所述血浆循环回输管路(23)与所述血浆回输管路(15)之间设有能够连通或者断开的第三连接端口(231),所述第一连接端口(351)、第二连接端口(142)和第三连接端口(231)的两侧均设有管夹(4)。
  7. 根据权利要求5所述的基于离心分离血浆法的全能型血浆净化系统,其特征在于:所述采血管路(12)上设有采血泵(121),所述采血泵(121)的速度为50~60ml/min,所述血浆输出管路(14)上设有血浆分离泵(141),所述血浆分离泵(141)的速度为25~30ml/min,所述血浆回输管路(15)上设有血浆输入泵(151),所述血浆输入泵(151)的速度为25~30ml/min,所述血浆透析滤过吸附管路(22)上设有血浆循环驱动泵(221),所述血浆循环驱动泵(221)的速度为150~180ml/min,所述透析液输入管路(224)上设有透析液泵(2241),所述透析液泵(2241)的速度为50~60ml/min,所述透析液排出管路(225)上设有废液泵(2251),所述废液泵(2251)的速度为100~120ml/min,所述滤过液输入管路(21)上设有滤液泵(211),所述滤液泵(211)的速度为50~60ml/min。
  8. 根据权利要求4或5所述的基于离心分离血浆法的全能型血浆净化系统,其特征在于:所述采血管路(12)上设有第一液壶(122)和用于检测所述第一液壶(122)液面高度的第一液面检测传感器(123),所述血浆透析滤过吸附管路(22)上设有第二液壶(222)和用于检测所述第二液壶(222)液面高度的第二液面检测传感器(223),所述回血管路(16)上设有第三液壶(161)和用于检测所述第三液壶(161)液面高度的第三液面检测传感器(162),所述滤过液输入管路(21)上设有第四液壶(212)和用于检测所述第四液壶(212)液面高度的第四液面检测传感器(213),所述血浆回输管路(15)上设有第五液壶(152)和用于检测所述第五液壶(152)液面高度的第五液面检测传感器(153),所述第一液壶(122)、第二液壶(222)和第三液壶(161)上均设有压力检测连接管(5),所述第一液壶(122)和第二液壶(222)上均连接有肝素泵(6)。
  9. 根据权利要求5所述的基于离心分离血浆法的全能型血浆净化系统,其特征在于:所述血浆回输管路(15)上设有第一加热组件(154),所述血浆循环回输管路(23)与所述血浆回输管路(15)连接的一端设有第二加热组件(232),所述新鲜血浆管路(17)的输入端设有新鲜血浆袋(171),所述透析液输入管路(224)的输入端设有透析液袋(2242),所述透析液排出管路(225)的输出端设有废液袋(2252),所述滤过液输入管路(21)的输入端设有滤液袋(214),所述透析液袋(2242)、废液袋(2252)和滤液袋(214)上均设有用于监测重量的挂秤。
  10. 根据权利要求1至5任一项所述的基于离心分离血浆法的全能型血浆净化系统,其特征在于:所述血浆置换装置(1)连接有独立控制所述血浆置换装置(1)的计算机控制系统,所述血浆透析滤过吸附装置(2)连接有独立控制所述血浆透析滤过吸附装置(2)的计算机控制系统。
PCT/CN2018/117822 2018-02-08 2018-11-28 一种基于离心分离血浆法的全能型血浆净化系统 WO2019153848A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810129418.0A CN108310503A (zh) 2018-02-08 2018-02-08 一种基于离心分离血浆法的全能型血浆净化系统
CN201820226033.1U CN208552669U (zh) 2018-02-08 2018-02-08 一种基于离心分离血浆法的全能型血浆净化系统
CN201820226033.1 2018-02-08
CN201810129418.0 2018-02-08

Publications (1)

Publication Number Publication Date
WO2019153848A1 true WO2019153848A1 (zh) 2019-08-15

Family

ID=67547835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117822 WO2019153848A1 (zh) 2018-02-08 2018-11-28 一种基于离心分离血浆法的全能型血浆净化系统

Country Status (1)

Country Link
WO (1) WO2019153848A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113877016A (zh) * 2021-10-12 2022-01-04 中南大学湘雅二医院 一种淋巴细胞分离、经干细胞免疫调控及净化回输系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103263706A (zh) * 2013-05-09 2013-08-28 浙江大学 血浆置换吸附滤过治疗专用血浆储存袋
CN103263705A (zh) * 2013-05-09 2013-08-28 浙江大学 一种配备方形储浆池的血浆置换吸附滤过净化系统
CN103263704A (zh) * 2013-05-09 2013-08-28 浙江大学 配备储浆袋的血浆置换吸附滤过净化系统及其应用方法
US20160296688A1 (en) * 2012-04-10 2016-10-13 Fenwal, Inc. Systems and methods for achieving target post-procedure fraction of cells remaining, hematocrit, and blood volume during a therapeutic red blood cell exchange procedure with optional isovolemic hemodilution
CN205885877U (zh) * 2016-06-23 2017-01-18 河北医科大学第三医院 一种血浆置换、吸附联合净化系统
CN108310503A (zh) * 2018-02-08 2018-07-24 中南大学湘雅二医院 一种基于离心分离血浆法的全能型血浆净化系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160296688A1 (en) * 2012-04-10 2016-10-13 Fenwal, Inc. Systems and methods for achieving target post-procedure fraction of cells remaining, hematocrit, and blood volume during a therapeutic red blood cell exchange procedure with optional isovolemic hemodilution
CN103263706A (zh) * 2013-05-09 2013-08-28 浙江大学 血浆置换吸附滤过治疗专用血浆储存袋
CN103263705A (zh) * 2013-05-09 2013-08-28 浙江大学 一种配备方形储浆池的血浆置换吸附滤过净化系统
CN103263704A (zh) * 2013-05-09 2013-08-28 浙江大学 配备储浆袋的血浆置换吸附滤过净化系统及其应用方法
CN205885877U (zh) * 2016-06-23 2017-01-18 河北医科大学第三医院 一种血浆置换、吸附联合净化系统
CN108310503A (zh) * 2018-02-08 2018-07-24 中南大学湘雅二医院 一种基于离心分离血浆法的全能型血浆净化系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113877016A (zh) * 2021-10-12 2022-01-04 中南大学湘雅二医院 一种淋巴细胞分离、经干细胞免疫调控及净化回输系统

Similar Documents

Publication Publication Date Title
CA2598486C (en) System and method for regeneration of a fluid
CN107583120B (zh) 一种血浆置换透析吸附系统
CN104800902B (zh) 用于救治多器官功能衰竭的体外循环生命支持设备
US9814822B2 (en) Plasma generation with dialysis systems
CN105209088B (zh) 用于从血浆移除蛋白结合性毒素的设备
JP2003510103A (ja) 限外濾過浄化および再注入システムを含む血液濾過システム
CN108310503A (zh) 一种基于离心分离血浆法的全能型血浆净化系统
WO2005097231A1 (fr) Appareil de filtration extracorporel destine a eliminer les lipides du plasma
CN101062433A (zh) 人工肝肾支持系统
WO2012036169A1 (ja) 血液浄化装置及びその制御方法
CN205073379U (zh) 一种血浆置换吸附滤过净化系统
WO2019153848A1 (zh) 一种基于离心分离血浆法的全能型血浆净化系统
CN207055688U (zh) 一种能进行血浆分子吸附的血滤机
CN203619966U (zh) 血液透析滤过联合腹水超滤回输的血液腹水净化装置
CN209900240U (zh) 佩戴式滤过型人工肾装置
CN203677608U (zh) 采用crrt机进行血液净化联合腹水超滤回输的装置
CN106377812B (zh) 一种血浆循环加速净化系统
CN113975512A (zh) 一种用于减轻患者容量负荷的血浆治疗装置
CN208552666U (zh) 一种血浆置换透析吸附系统
CN208552669U (zh) 一种基于离心分离血浆法的全能型血浆净化系统
JP3257613B2 (ja) 血液透析装置の透析液管理装置
CN203244631U (zh) 一种血浆置换吸附滤过治疗专用血浆储存袋
CN206492050U (zh) 一种血浆循环加速净化系统
CN206473608U (zh) 一种多功能再生血液净化系统
CN113577423B (zh) 血液净化设备的预冲方法、血液净化设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905781

Country of ref document: EP

Kind code of ref document: A1