WO2019153567A1 - 单舱管廊及拼舱式多舱平底地下综合管廊 - Google Patents
单舱管廊及拼舱式多舱平底地下综合管廊 Download PDFInfo
- Publication number
- WO2019153567A1 WO2019153567A1 PCT/CN2018/087285 CN2018087285W WO2019153567A1 WO 2019153567 A1 WO2019153567 A1 WO 2019153567A1 CN 2018087285 W CN2018087285 W CN 2018087285W WO 2019153567 A1 WO2019153567 A1 WO 2019153567A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pipe gallery
- plate
- cabin
- plates
- concrete
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D29/00—Independent underground or underwater structures; Retaining walls
- E02D29/10—Tunnels or galleries specially adapted to house conduits, e.g. oil pipe-lines, sewer pipes ; Making conduits in situ, e.g. of concrete ; Casings, i.e. manhole shafts, access or inspection chambers or coverings of boreholes or narrow wells
Definitions
- the invention relates to a pipe gallery, in particular to a single cabin pipe gallery, and to a tailored multi-cabin flat-bottom underground integrated pipe gallery.
- the underground integrated pipe gallery mainly consists of a branch pipe gallery and a trunk pipe gallery.
- the branch pipe gallery is generally a single-cabin structure
- the trunk pipe gallery is basically a multi-cabin structure.
- the existing steel structure single-cabin pipe gallery has a circular, horseshoe shape and a rectangular shape (Fig. 1). Since the pipe gallery is a plastic structure, the thickness of the plate body can be reduced by the joint force of the pipe and the soil when buried. Therefore, the pipe slab body having a rectangular cross-sectional shape is arranged to have an outward arching shape or an arc shape, that is, the four sides of the pipe porch are outwardly arched or arc-shaped (Fig. 2).
- multi-cabin pipe porches there is a type of space, that is, two or more single-cabin structures are juxtaposed together; there is also a subdivision, that is, inside a relatively wide pipe gallery, with walls
- the body is divided into a plurality of compartments, which are generally cast in concrete.
- the first object of the present invention is to provide a single-cabin pipe gallery that can be applied to different worksite situations.
- the second object of the present invention is to provide a method for reducing the total width of the pipe gallery, reducing the cost of foundation excavation, and facilitating A multi-cabin flat-bottom underground integrated pipe gallery for foundation construction.
- the single-cabin pipe gallery of the present invention is assembled by a top plate, a bottom plate and side plates on both sides to form a box-shaped structure, one side plate of the pipe gallery is a straight plate, and at least one of the remaining three plates is arched outward. .
- the outwardly arched panel is a top panel and its adjacent side panels, and may also be a bottom panel and its adjacent side panels.
- one of the remaining three panels is arched outwardly, and the other two panels are straight. Further, the outwardly arched panels are top, bottom or side panels.
- One side panel (straight plate) in the pipe gallery may be a reinforced concrete structure or a combined structure of corrugated steel plates and reinforced concrete structures.
- a tie rod is arranged between the two arch angles, for example, a tie rod is arranged between the two arches of the top plate, or a tie rod is arranged between the two arches of the bottom plate, or between the two arches of the top plate and the bottom plate.
- the top plate, the side plate and the bottom plate are corrugated steel plates whose corrugation direction is perpendicular to the axial direction of the single-cabin pipe gallery.
- the bottom plate of the pipe gallery When the bottom plate of the pipe gallery is a straight plate, the bottom plate may be a flat corrugated steel plate, or a flat concrete plate, or a combined structure of corrugated steel plate and concrete.
- shear pins or steel bars are placed at the bottom of the bottom plate or shear pins and steel bars are placed at the same time, and concrete is poured on the shear pins and/or steel bars.
- the tailored multi-cabin flat-bottomed underground integrated pipe gallery of the present invention is formed by two or more single-cabin pipe porches arranged side by side in a horizontal direction, and the single-cabin pipe gallery is assembled by a top plate, a bottom plate and side plates on both sides.
- a box-shaped structure the adjacent side panels of the single-cabin pipe gallery are straight plates, the top plate of the multi-cabin integrated pipe gallery is an outwardly arched plate, the bottom plate is a straight plate, and the outer side of the outermost single-cabin pipe gallery
- the board is an outwardly arched board.
- adjacent side panels of adjacent single-cabin pipe porches are placed close to each other; or gaps are left between adjacent side panels of single-cabin pipe porches, and the gap is filled with flexible medium, or concrete, or filled with flexible medium and concrete at the same time,
- the adjacent side plates and the concrete in the middle form a combined structure, which may be referred to as a vertical wall at this time.
- At least one of the shear pin, the steel bar and the bolt is disposed outside the adjacent side plate of the single-cabin pipe gallery. Further, the adjacent side plates of the single-cabin pipe gallery are filled with flexible medium or concrete or filled at the same time. Flexible media and concrete.
- the flexible medium is a flexible medium such as soil, gravel, coarse sand, sand, gravel or fine stone.
- the above concrete is a permeable concrete, and preferably, a porous water pipe is provided in the permeable concrete.
- the bottom of the bottom plate of the multi-cabin pipe gallery of the present invention is also the bottom plate surface which is in contact with the foundation, and is provided with shearing nails and/or steel bars, and concrete is poured on the shearing nails and/or steel bars to form a combined bottom plate.
- the bottom plate of the multi-cabin pipe gallery of the present invention is a flat corrugated steel plate, or a flat concrete slab, or a combined structure of corrugated steel sheets and concrete.
- the multi-cabin underground integrated pipe gallery of the present invention can share a bottom plate in the horizontal direction.
- the single-cabin pipe gallery of the present invention is suitable for different working conditions, especially when there are space restrictions or other restrictions on the periphery of the pipe gallery including the roof, the bottom or the side;
- the adjacent side panels of each compartment are two vertical plates carrying the top load at the same time. Although the vertical plates cannot be shared by the pipe and soil, the two plates are simultaneously reduced or not increased compared with the arched plates. The load requirement can be satisfied without increasing the thickness of the plate.
- the flexible medium such as sand or fine stone can be filled between the two adjacent side plates, so that the horizontal distance between adjacent chambers is shortened and the foundation excavation width is reduced. Save investment and save on the use of underground space;
- the bottom plate of the pipe gallery is a straight plate, and the degree of fit with the foundation is enhanced, which is more conducive to the overall force of the pipe gallery, the basic structure is simple, easy to construct and low in cost;
- the present invention easily provides a communication door between the compartments.
- Figure 1 is a single-chamber pipe gallery having a rectangular cross section in the prior art
- 3 and 4 are schematic structural views of a conventional multi-cabin pipe gallery
- Figure 5 (a), 5 (b), 5 (c), 5 (d) are schematic structural views of the first single-cabin pipe gallery
- 6(a), 6(b), 6(c), and 6(d) are schematic structural views of a second single-cabin pipe gallery
- Figure 7 is a schematic structural view of a three-cabin pipe gallery of the present invention.
- Figure 8 is a schematic structural view of a two-cabin pipe gallery of the present invention.
- Figure 9 is a schematic structural view of a combined bottom plate of the present invention.
- Figure 10 is a schematic view showing a simulation experiment of the pipe gallery of the present invention.
- the single-cabin pipe gallery 1 of the present invention is assembled from a top plate 102, a bottom plate 101 and two side side plates 103 into a box-shaped pipe gallery structure.
- the single-cabin pipe gallery 1 has a side plate 103 which is a straight plate or a vertical plate.
- the straight plate here may be a reinforced concrete structure or a combined structure of corrugated steel sheets and reinforced concrete, and at least one of the remaining three plates is arched outward.
- the two adjacent plates of the remaining three plates are arched outward, and the other plate is a straight plate.
- a pipe corridor structure of "adjacent arch" can be formed.
- the outwardly arched plate is the top plate 102 and its adjacent side plate 103, and the bottom plate 101 and the other side plate 103 are straight plates, as shown in Figures 5(a) and 5(b).
- the gallery is suitable for the situation where the bottom space and the side space of the bottom plate are limited.
- the outer arched top plate and the other side plate can still use the joint force of the pipe and soil to increase the strength of the plate body, reduce the thickness of the plate body, and save the cost. .
- the outward arching may also be the bottom plate and its adjacent side panels, as shown in Figures 5(c) and 5(d), which are suitable for confining or embedding the top space of the pipe gallery.
- the outwardly arched bottom plate 101 and the other side plate 103 can still use the joint force of the pipe and soil to increase the strength of the plate body, reduce the thickness of the plate body, and save the cost. .
- one of the remaining three plates of the pipe gallery may be arched outward, and the other two plates are straight plates, which can constitute a "three straight and one arch" Pipe gallery structure.
- the outwardly arched panels are the top panel 102, the bottom panel 101 or the side panels 103, as shown in Figures 6(a), 6(b), 6(c), 6(d).
- corrugated steel sheets may be used, and their corrugation directions are perpendicular to the axial direction of the pipe gallery.
- the top plate 102 and the bottom plate 101 and the side side plates 103 in the single-cabin pipe gallery are connected by a flange 108; when the top plate and the bottom plate are outwardly arched, the two arching angles of the top plate 102 and the two arching angles of the bottom plate 101
- the tie rods 109 are respectively arranged, and the outward thrust of the pipe side is greatly reduced, and the high-pressure compactness of the soil on both sides of the pipe gallery is required to be reduced, which is suitable for the soft soil zone.
- the bottom plate 101 of the pipe gallery of the present invention is a straight plate, and the bottom plate 101 can be either a straight corrugated steel plate or a flat concrete plate, or a combined structure formed of corrugated steel plate and concrete, and the bottom plate 101 and the pipe gallery foundation at this time.
- the fitting degree is high, the basic structure of the pipe gallery is simple, the construction is convenient, and the cost is lowered.
- the shearing nails 104, or the reinforcing bars 105 may be disposed at the bottom of the bottom plate, that is, the bottom surface of the bottom plate, or the reinforcing nails 104 and the reinforcing bars 105 may be disposed at the same time, and the concrete 106 may be poured on the shearing nails 104 and/or the reinforcing bars 105.
- the bottom of the bottom plate is provided with a shear pin 104 and a reinforcing bar 105 at the same time.
- the bottom plate When the pipe is buried, the bottom plate is subjected to an upward force, and at this time, the bottom plate or the corrugated steel plate is subjected to tension, and the concrete on the bottom surface of the bottom plate is subjected to pressure. Just take advantage of the strength and stress characteristics of both.
- the bottom plate When the bottom plate is actually constructed, the bottom of the bottom plate is facing upwards, and the shearing nails 104 and/or the reinforcing bars 105 are arranged, and then the concrete 106 is poured and leveled. After the concrete 106 is solidified, the bottom plate 101 is turned over and installed downward on the pipe gallery base. And then installed with the pipe deck side panel 103.
- the multi-cabin underground integrated pipe gallery of the present invention can also share a bottom plate.
- the outer side plates 103 of the top plate 102 and the outermost single-cabin pipe gallery are in direct contact with the surrounding soil, and the plates can be formed into an outward arch shape. Effectively utilize the joint force of the pipe and soil to reduce the thickness of the plate itself, thereby reducing the cost, and of course, the plates can be made into straight plates according to actual needs.
- the multi-cabin underground integrated pipe gallery of the present invention is formed by two or more single-cabin pipe porches 1 arranged side by side in the horizontal direction, and the single-cabin pipe porch located at the outermost side of the pipe porch is an "adjacent arch adjacent" type.
- the single-cabin pipe gallery in the middle is of the "three straight and one arch" type.
- FIG. 7 is a three-cabin pipe gallery
- FIG. 8 is a two-cabin pipe gallery.
- the side plates 103 of the adjacent single-cabin pipe gallery are straight plates, and the top plate 102 is The outwardly arched panel, the bottom panel 101 is a straight panel, and the outer side panel 103 of the outermost single cabin trunk is an outwardly arched panel.
- the adjacent side wall panels of the single-cabin integrated pipe gallery 1 are changed from the traditional arch shape to the vertical wall plate to facilitate the space utilization in the pipe gallery, thereby improving the space utilization rate;
- the side wall panels are Vertical, it is more conducive to the vertical pole of the pipe rack on the inner side of the side wall; in addition, the vertical wall plate reduces the processing process, without bending, saving processing costs, and finally, the vertical plate is easier to set adjacent A connecting door between the cabins.
- the adjacent side panels 103 of the adjacent single cabin pipe gallery 1 are vertical plates, they are arranged close to each other, and the adjacent side plates 103 need not be filled with the flexible medium 107 or the concrete.
- the adjacent side panels of the cabin are two vertical plates carrying the top load at the same time. Although the vertical plates cannot be shared by the pipe and soil, the two plates are simultaneously stressed and reduce or increase the thickness of the plate compared with the arched plates. In the case of the load, the load requirements can be met, the spacing between adjacent single-cabin pipes is shortened, the overall span of the pipe gallery is shortened, the width of the pipe gallery foundation is reduced, the cost is reduced, and the land occupation is saved.
- the invention may also leave a gap between the adjacent side panels 103 of the single cabin pipe gallery 1 and fill the gap with the flexible medium 107, or fill the concrete, or at the same time fill the flexible medium 107 and concrete, where the flexible medium may be soil , gravel, coarse sand, sand, fine stone or gravel.
- the adjacent side panels and the concrete form a vertical wall of the combined structure, and the tensile performance of the vertical wall is increased, and the thickness of the side panels such as the corrugated panels can be correspondingly reduced, thereby reducing the cost.
- porous permeable concrete to pre-bury the porous water pipe in the permeable concrete.
- the model adopts a three-cabin structure with a corrugation parameter of 75*25mm, a plate thickness of 1mm, and a clearance clearance of 0.366m*0.533 (left single-cabin pipe length*height)+0.466*0.533 (middle single cabin)
- the three single-cabin pipe gallery forms a multi-cabin pipe gallery
- the two sides are supported by the side plate support 110, which is connected with the pipe floor
- the upper part of the pipe gallery and the sides have a soil body 111
- the steel material of the pipe gallery is Q345, and the concrete is C15.
- the thickness of the permeable concrete in the cabin is 25mm, and the top is 500mm thick, and the length of the pipe gallery is 1m.
- the compressive stress applied to the surface of the covering soil is gradually increased.
- the compressive stress value applied to the surface of the covering soil is measured, and the remaining length data and stress data are recorded and measured;
- the dimension unit in the table is MPa, and the stress gauges 1-9 are the stresses laid on the corrugated board.
- Stress meter 10 Stress meter 11 Overburden compressive stress step 1 0 0 0 Step 2 4.2MPa 4.5MPa 3kPa Step 3 12.5MPa 13.8MPa 33kPa Step 4 19.5MPa 20.8MPa 66kPa
- Working condition 1 is 3 m filling condition
- working condition 2 is 13 m filling condition
- working condition 3 is 23 m filling condition.
- the maximum deflection of the frame exceeds the limit (span L/400, the deflection failure value of the beam in the reference steel design specification) is 1.45 mm
- the load on the top of the cover is 33 kPa
- the maximum stress of the frame does not exceed the limit Q345
- the cabin The maximum stress of the concrete does not exceed C15.
- the stress value of the gallery reaches the limit allowable value Q345
- the load at the top of the soil is 66 kPa.
- This test is a 1:6 scaled model test. According to the test results, it can be seen that when the size of the pipe section is enlarged by 6 times, the top 3 m high cover soil, considering the primary load of the road, the deflection and material stress are both Can meet the requirements of the specification; when the top cover soil reaches 23 meters high, the stress value of the gallery material reaches the limit.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Paleontology (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Lining And Supports For Tunnels (AREA)
Abstract
一种单舱管廊(1),由顶板(102)、底板(101)和两侧侧板(103)拼装形成箱型结构,单舱管廊(1)的一块侧板(103)为直板,其余三块板中至少有一块板向外起拱。多舱管廊由两个或者两个以上单舱管廊(1)沿水平方向并排排列而成,单舱管廊(1)相邻侧板(103)为直板,顶板(102)为向外起拱的板,底板(101)为直板,最外侧单舱管廊(1)的外侧侧板(103)为向外起拱的板。
Description
本发明涉及一种管廊,特别是一种单舱管廊,还涉及一种拼舱式多舱平底地下综合管廊。
地下综合管廊,主要有支线管廊和干线管廊两种,其中,支线管廊一般为单舱结构,干线管廊基本上都是多舱结构。现有钢结构单舱管廊的横截面有圆形、马蹄形和矩形(图1)等,由于该类管廊是塑性结构,埋地时可以借助管土共同受力作用来减少板体厚度,所以要将截面形状为矩形的管廊板体设置成向外起拱形状或弧形状,即管廊的四个边向外拱或弧形状的结构(图2)。对于多舱式管廊,有拼舱式的,即两个或两个以上单舱结构的管廊并列在一起;还有一种分舱式的,即在一个比较宽的管廊内部,用墙体分成多个舱室,这种管廊一般是用混凝土现浇而成。
上述管廊如果做成多舱式,一般情况下,只能做成拼舱式,此时由于相邻管廊侧板是拱形、圆形或马蹄形,相邻侧板连接后由于其侧板向外起拱或为弧形,不仅增加了舱室之间的间距,而且会大幅度占用多舱结构的总跨度,并且,为利用管土受力原理还需要在相邻侧板之间还需要留有空隙,用来填充砂砾、粗砂、碎石等,这样就进一步增加了各舱室之间的间距和管廊的总宽度,增加了基础开挖成本,如图3-4所示。更为复杂的是,这些管廊的底部都是仰拱状的,基础很难施工;再加上底板多为波纹状,很难与基础紧密贴合。与此同时研究发现,受制于工地的实际情况或其它的限制或要求,截面形状为方拱形的管廊也不适用于所有情况。
发明内容
发明目的:本发明的第一目的旨在提供一种能适用于不同工地情况的单舱管廊;本发明的第二目的旨在提供一种减少管廊总宽度、降低基础开挖成本、便于基础施工的拼舱式多舱平底地下综合管廊。
技术方案:本发明的单舱管廊,由顶板、底板和两侧侧板拼装形成箱型结构,所述管廊的一块侧板为直板,其余三块板中至少有一块板向外起拱。
其中,其余三块板中相邻的两块板向外起拱,另一块板为直板。进一步地,向外起拱的板为顶板和其相邻的侧板,也可以为底板和其相邻的侧板。
还有一种情况是,其余三块板中有一块板向外起拱,另外两块板为直板。进一步地,向外起拱的板为顶板、底板或侧板。
管廊中一个侧板(直板)可以为钢筋混凝土结构,也可以为波纹钢板与钢筋混凝土结构形成的组合结构。
当管廊顶板、底板向外起拱时,它们的两拱角之间设置拉杆,例如顶板两拱脚间设置拉杆,或者底板两拱脚间设置拉杆,或者顶板和底板的两拱脚间同时设置拉杆。
顶板、侧板和底板为波纹钢板,其波纹纹路方向与单舱管廊的轴线方向垂直。
当管廊的底板为直板时,底板可以为平直的波纹钢板,或平直的混凝土板,或波纹钢板与混凝土形成的组合结构。同时,底板底部设置剪力钉或钢筋或同时设置剪力钉和钢筋,并在剪力钉和/或钢筋上浇筑混凝土。
本发明的拼舱式多舱平底地下综合管廊,由两个或者两个以上单舱管廊沿水平方向并排排列而成,所述单舱管廊由顶板、底板和两侧侧板拼装形成箱型结构,所述单舱管廊相邻侧板为直板,所述拼舱式多舱综合管廊的顶板为向外起拱的板,底板为直板,最外侧单舱管廊的外侧侧板为向外起拱的板。
其中,相邻单舱管廊相邻侧板紧靠设置;或者单舱管廊相邻侧板之间留有间隙,并在间隙内填充柔性介质,或混凝土,或同时填充柔性介质和混凝土,使相邻两侧板及中间的混凝土形成组合结构,此时可称之为竖墙。
上述情形中,单舱管廊相邻侧板外部设置剪力钉、钢筋和螺栓中的至少一种,进一步地,这种单舱管廊相邻侧板之间填充柔性介质或混凝土或同时填充柔性介质和混凝土。
上述柔性介质为柔性介质为土壤、砂砾、粗砂、沙土、碎石或细石。上述混凝土为透水混凝土,优选的,在透水混凝土中设置多孔水管。
本发明多舱管廊的底板底部也就是与基础接触的底板面,设置剪力钉和/或钢筋,并在剪力钉和/或钢筋上浇筑混凝土,形成组合式底板。
本发明多舱管廊的底板为平直的波纹钢板,或平直的混凝土板,或波纹钢板与混凝土形成的组合结构。
本发明多舱式地下综合管廊可以在水平方向共用一块底板。
有益效果:与现有技术相比,本发明具有如下优点:
(1)本发明的单舱管廊适用于不同的工况条件,尤其是对管廊周边包括顶板、底部或侧部有空间限制或其它限制的情况;
(2)多舱管廊的总跨度减少,基础开挖宽度减少,节约成本,节约占地;
(3)各舱室相邻侧板是两块竖板同时承载顶部荷载,虽然竖板不能利用管土共同受力,但两块板同时受力与拱形板相比,在减少或不增加或少增加板厚的情况下就可以满足载荷要求,此时两相邻侧板之间可以不用填充砂土或者细石等柔性介质使得相邻舱室之间的水平距离缩短,基础开挖宽度减少,节省投资,节省地下空间的利用;
(4)管廊底板为直板,与基础的贴合度增强,更有利于管廊整体受力,基础构造简单、易施工、造价低;
(5)除底板外,其它与周围土体接触的板体都可以是拱形的,可有效利用管土共同受力原理,减少该板体的厚度,降低造价;
(6)管廊内部支架更容易设置,廊体内部空间利用率提高;
(7)管廊顶板及底板各自的拱角之间设置拉杆时,管廊向侧向的外推力大大减小的同时,也对管廊两侧土体的高压实度要求降低,在土质松软地带使用管土共同受力结构的难题将得以解决;
(8)本发明容易在各舱室之间设置联通门。
图1为现有技术中截面为矩形的单舱管廊;
图2为现有技术中截面为方拱形的单舱管廊;
图3和图4分别为现有多舱管廊的结构示意图;
图5(a)、5(b)、5(c)、5(d)分别为第一种单舱管廊的结构示意图;
图6(a)、6(b)、6(c)、6(d)分别为第二种单舱管廊的结构示意图;
图7为本发明三舱管廊的结构示意图;
图8为本发明两舱管廊的结构示意图;
图9为本发明组合式底板的结构示意图;
图10为本发明管廊模拟实验示意图。
本发明的单舱管廊1由顶板102、底板101和两侧侧板103拼装而成横截面为箱型的管廊结构,其中,单舱管廊1有一块侧板103为直板或竖板,这里的直板可以为钢筋混凝土结构,也可以为波纹钢板与钢筋混凝土形成的组合结构,其余三块板中至少有一块板向外起拱。
其余三块板中相邻的两块板向外起拱,另一块板为直板,此时可以形成“邻拱邻直”的管廊结构。其中,向外起拱的板为顶板102和其相邻的侧板103,此时底板101和另一侧板103为直板,如图5(a)、5(b)所示,这种管廊适用于底板底部空间和侧部空间受限的情形,同时,向外起拱的顶板和另一侧板仍可利用管土共同受力作用,提高板体强度,降低板体厚度,节约造价。除了上述情况,向外起拱的也可以为底板和其相邻的侧板,如图5(c)、5(d)所示,这种管廊适用于管廊顶部空间受限或埋地很浅,同时侧部空间受限的情形,同样的,向外起拱的底板101和另一侧板103仍可利用管土共同受力作用,提高板体强度,降低板体厚度,节约造价。
当管廊三个方向受空间限制或有其它特殊要求时,可以将管廊其余三块板的有一块板向外起拱,另外两块板为直板,这样可以构成“三直一拱”的管廊结构。进一步地,向外起拱的板为顶板102、底板101或侧板103,如图6(a)、6(b)、6(c)、6(d)所示。
本发明中,无论是顶板102、底板101还是侧板103,都可以选用波纹钢板,它们的波纹纹路方向与管廊的轴线方向垂直。上述单舱管廊中的顶板102和底板101与两侧侧板103之间通过法兰108连接;当顶板和底板向外起拱时,顶板102的两拱角和底板101的两拱角之间分别设置拉杆109,此时管廊侧向外推力大大减小,管廊两侧土体的高压密实度要求降低,适用于土质松软地带。
本发明管廊的底板101为直板,该底板101既可以是平直的波纹钢板,也可以是平直的混凝土板,或者是波纹钢板与混凝土形成的组合结构,此时底板101与管廊基础贴合度高,管廊基础构造简单、施工方便,降低造价。
可以在底板底部也就是与基础接触的底板面,设置剪力钉104,或钢筋105,或同时设置剪力钉104和钢筋105,并在剪力钉104和/或钢筋105上浇筑混凝土106,这样构成了组合式底板。如图9所示,底板底部同时设置了剪力钉104和 钢筋105。当底板底部为钢筋混凝土或剪力钉混凝土等时,增加了底板的强度,当管廊埋置完成后,底板受向上的力,此时底板或波纹钢板受到拉力,而底板底面的混凝土受到压力,正好利用两者的受力优势和受力特点。底板实际施工时,先将底板底部朝上,设置剪力钉104和/或钢筋105,然后浇筑混凝土106并找平,待混凝土106凝结坚固后将底板101翻过来,朝下安装在管廊基础上,再与管廊侧板103安装。本发明的多舱式地下综合管廊还可以共用一块底板。
本发明多舱管廊中,除了底板101,顶板102和最外侧单舱管廊的外侧侧板103都是与周围土体直接接触的,可以将这些板块做成向外起拱的形状,可有效利用管土共同受力,减少板体自身的厚度,由此降低造价,当然也可以根据实际需要将这些板做成直板。
本发明的多舱式地下综合管廊,由两个或者两个以上单舱管廊1沿水平方向并排排列而成,位于管廊最外侧的单舱管廊是“邻拱邻直”型,位于中间的单舱管廊是“三直一拱”型,例如,图7是三舱管廊,图8是两舱管廊,相邻单舱管廊的侧板103为直板,顶板102为向外起拱的板,底板101为直板,最外侧单舱管廊的外侧侧板103为向外起拱的板。
本发明中,单舱综合管廊1相邻的侧部墙板由传统的拱形变成竖直墙板更利于管廊内的空间利用,提高了空间利用率;其次,侧部墙板是竖直的,更利于侧壁内侧上设置管廊竖向支架的立杆;再者,竖直墙板减少了加工工序,不用弯曲加工,节省加工费用,最后,竖向板更容易设置相邻舱室之间的联通门。
由于相邻单舱管廊1相邻侧板103为竖板,它们紧靠设置,相邻侧板103之间不用填充柔性介质107或者混凝土,此时不需要利用管土共同受力原理,各舱室相邻侧板是两块竖板同时承载顶部荷载,虽然竖板不能利用管土共同受力,但两块板同时受力与拱形板相比,在减少或不增加或少增加板厚的情况下就可以满足载荷要求,相邻单舱管廊间距缩短,管廊整体的总跨度缩短,减少管廊基础开挖宽度,降低成本,节约占地。
本发明也可以在单舱管廊1相邻侧板103之间留有间隙,并在间隙内填充柔性介质107,或者填充混凝土,或者同时填充柔性介质107和混凝土,这里的柔性介质可以为土壤、砂砾、粗砂、沙土、细石或碎石等。当相邻舱室之间的间隙内填充混凝土时,相邻侧板与混凝土形成组合结构的竖墙,该竖墙受力性能增加, 可以相应减少该处侧板例如波纹板的厚度,减少造价。同时,单舱管廊1相邻侧板103外部设置剪力钉、钢筋和螺栓中的至少一种,以增强侧板强度,并且可以在相邻侧板103之间填充混凝土,这里的混凝土最好选用多孔的透水混凝土,可以在该透水混凝土中预埋多孔水管,当发生火灾时,水从水管流出,流过透水混凝土对管廊壁进行降温。
实施例模拟实验报告
1、模型试验参数
如图10所示,模型采用三舱结构,波纹参数为75*25mm,板厚为1mm,断面净空尺寸为0.366m*0.533(左单舱管廊长度*高度)+0.466*0.533(中间单舱管廊长度*高度)+0.583*0.533m(右单舱管廊长度*高度),三个单舱管廊拼舱形成多舱管廊,两侧用侧板支撑110支撑,其与管廊底板成45度角,管廊上部和两侧有土体111,管廊钢材材质Q345,混凝土为C15。舱间透水混凝土厚度为25mm,顶部设置500mm厚的覆土,管廊长度为1m。
2、试验步骤
2.1、施加覆土上部荷载前,测量记录各长度数据L1-L6并将11个应力计112调零;
2.2、利用压力机在覆土顶面施加压应力,施加3kPa压应力模拟管廊顶部公路一级荷载,测量记录各长度数据和应力数据;
2.3、将施加在覆土表面的压应力逐渐增大,记录顶底板最大挠度变形达到规范允许值时,施加在覆土表面的压应力数值,同时测量记录其余长度数据和应力数据;
2.4、继续施加覆土表面的压应力,直到廊体材料达到屈服应力值,测量记录各长度数据和应力数值。
表1 各长度数据L1-L6记录表
注:表1中尺寸单位为mm。
表2 应力计1-9应力记录表
注:表中尺寸单位为MPa,应力计1-9为布设在波纹板上的应力
表3 应力计10-11应力记录表
应力计10 | 应力计11 | 覆土上部压应力 | |
步骤1 | 0 | 0 | 0 |
步骤2 | 4.2MPa | 4.5MPa | 3kPa |
步骤3 | 12.5MPa | 13.8MPa | 33kPa |
步骤4 | 19.5MPa | 20.8MPa | 66kPa |
表4 试验结果整理表
工况 | 顶板荷载(压力机+0.5米覆土) | 廊体最大挠度 | 廊体最大应力 | 舱间砼最大应力 |
1 | 3kPa+10kPa | 1.05mm | 75.6MPa | 4.5MPa |
2 | 33kPa+10kPa | 1.55mm | 115.4MPa | 13.8MPa |
3 | 66kPa+10kPa | 4.3mm | 348.6MPa | 20.8MPa |
注:工况1是3米填土工况,工况2是13米填土工况,工况3是23米填土工况。
3、试验总结
由试验结果分析可知,当覆土顶部荷载为3kPa(模拟实际3米覆土高度的工况)时,廊体的最大挠度、廊体的最大应力、舱间砼的最大应力均满足规范要求,挠度安全系数为1.4,钢制廊体安全系数为4.5,舱间混凝土安全系数为3.3。当廊体的最大挠度变形超过极限(跨度L/400,引用钢结构设计规范中梁的挠度失效值)1.45mm时,覆土顶部的荷载为33kPa,廊体的最大应力未超出极限Q345,且舱间混凝土最大应力未超出C15。当廊体的应力值达到极限允许值Q345时,覆土顶部的荷载为66kPa。
本次试验为1:6缩放的模型试验,根据试验结果推导可知,当上述管廊断面尺寸放大6倍后,顶部3米高的覆土,考虑公路一级荷载的情况下,挠度和材料应力均能满足规范要求;当顶部覆土达到23米高时,廊体材料应力值达到极限。
Claims (19)
- 一种单舱管廊,由顶板(102)、底板(101)和两侧侧板(103)拼装形成箱型结构,其特征在于:所述管廊的一块侧板(103)为直板,其余三块板中至少有一块板向外起拱。
- 根据权利要求1所述的单舱管廊,其特征在于:所述其余三块板中相邻的两块板向外起拱,另一块板为直板。
- 根据权利要求2所述的单舱管廊,其特征在于:所述向外起拱的板为顶板(102)和其相邻的侧板(103);或者为底板(101)和其相邻的侧板(103)。
- 根据权利要求1所述的单舱管廊,其特征在于:所述其余三块板中有一块板向外起拱,另外两块板为直板。
- 根据权利要求4所述的单舱管廊,其特征在于:所述向外起拱的板为顶板(102)、底板(101)或侧板(103)。
- 根据权利要求1所述的单舱管廊,其特征在于:所述直板为钢筋混凝土结构,或波纹钢板与钢筋混凝土形成的组合结构。
- 根据权利要求1所述的单舱管廊,其特征在于:所述顶板(102)、侧板(103)和底板(101)为波纹钢板,其波纹纹路方向与单舱管廊(1)的轴线方向垂直。
- 根据权利要求1所述的单舱管廊,其特征在于:所述其余三块板中的底板(101)为直板。
- 根据权利要求8所述的单舱管廊,其特征在于:所述底板(101)为平直的波纹钢板,或平直的混凝土板,或波纹钢板与混凝土形成的组合结构。
- 根据权利要求8或9所述的单舱管廊,其特征在于:所述底板(101)底部设置剪力钉(104)和/或钢筋(105),并在剪力钉(104)和/或钢筋(105)上浇筑混凝土(106)。
- 一种基于权利要求1所述单舱管廊的拼舱式多舱平底地下综合管廊,由两个或者两个以上单舱管廊(1)沿水平方向并排排列而成,其特征在于:相邻单舱管廊(1)相邻侧板(103)为直板,所述拼舱式多舱综合管廊的顶板(102)为向外起拱的板,底板(101)为直板,最外侧单舱管廊的外侧侧板(103)为向外起拱的板。
- 根据权利要求11所述的综合管廊,其特征在于:所述单舱管廊(1)相 邻侧板(103)紧靠设置。
- 根据权利要求11所述的综合管廊,其特征在于:所述单舱管廊(1)相邻侧板(103)之间留有间隙,并在间隙内填充柔性介质(107)和/或混凝土。
- 根据权利要求11所述的综合管廊,其特征在于:所述单舱管廊(1)相邻侧板(103)外部设置剪力钉、钢筋和螺栓中的至少一种。
- 根据权利要求14所述的综合管廊,其特征在于:所述单舱管廊(1)相邻侧板(103)之间填充柔性介质(107)和/或混凝土。
- 根据权利要求13或15所述的综合管廊,其特征在于:所述柔性介质为土壤、砂砾、粗砂、沙土、碎石或细石。
- 根据权利要求13或15所述的综合管廊,其特征在于:所述混凝土为透水混凝土。
- 根据权利要求17所述的综合管廊,其特征在于:在所述透水混凝土中设置多孔水管。
- 根据权利要求11所述的综合管廊,其特征在于:所述多舱式地下综合管廊共用一块底板。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810136521 | 2018-02-09 | ||
CN201810136521.8 | 2018-02-09 | ||
CN201810241929.1 | 2018-03-22 | ||
CN201810241929.1A CN108277826A (zh) | 2018-02-09 | 2018-03-22 | 单舱管廊及拼舱式多舱平底地下综合管廊 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019153567A1 true WO2019153567A1 (zh) | 2019-08-15 |
Family
ID=62810148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/087285 WO2019153567A1 (zh) | 2018-02-09 | 2018-05-17 | 单舱管廊及拼舱式多舱平底地下综合管廊 |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN208533563U (zh) |
WO (1) | WO2019153567A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108265752A (zh) * | 2018-01-12 | 2018-07-10 | 南京联众建设工程技术有限公司 | 拼舱式多舱地下综合管廊 |
CN109555156A (zh) * | 2018-12-25 | 2019-04-02 | 中铁十七局集团有限公司 | 一种用于装配式钢管廊舱室底板间及夹墙的连接结构 |
CN112359866A (zh) * | 2020-08-07 | 2021-02-12 | 南京联众工程技术有限公司 | 一种埋置式多孔分舱结构管道 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11152761A (ja) * | 1997-11-19 | 1999-06-08 | Kajima Corp | 地下構造物およびその構築工法 |
CN205242440U (zh) * | 2015-12-21 | 2016-05-18 | 南京联众建设工程技术有限公司 | 钢质城市地下综合管廊 |
CN107313452A (zh) * | 2017-08-09 | 2017-11-03 | 中冶京诚工程技术有限公司 | 预制综合管廊 |
CN206844147U (zh) * | 2017-05-19 | 2018-01-05 | 西安交通大学 | 全预制模块化装配式综合管廊 |
CN108265752A (zh) * | 2018-01-12 | 2018-07-10 | 南京联众建设工程技术有限公司 | 拼舱式多舱地下综合管廊 |
CN207685864U (zh) * | 2017-12-22 | 2018-08-03 | 南京联众建设工程技术有限公司 | 组合式地下综合管廊 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105756089A (zh) * | 2016-03-17 | 2016-07-13 | 上海同预建筑科技有限公司 | 一种横向叠合连接式单舱预制多舱拼装综合管廊 |
-
2018
- 2018-03-22 CN CN201820395485.2U patent/CN208533563U/zh not_active Expired - Fee Related
- 2018-03-22 CN CN201810241929.1A patent/CN108277826A/zh active Pending
- 2018-05-17 WO PCT/CN2018/087285 patent/WO2019153567A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11152761A (ja) * | 1997-11-19 | 1999-06-08 | Kajima Corp | 地下構造物およびその構築工法 |
CN205242440U (zh) * | 2015-12-21 | 2016-05-18 | 南京联众建设工程技术有限公司 | 钢质城市地下综合管廊 |
CN206844147U (zh) * | 2017-05-19 | 2018-01-05 | 西安交通大学 | 全预制模块化装配式综合管廊 |
CN107313452A (zh) * | 2017-08-09 | 2017-11-03 | 中冶京诚工程技术有限公司 | 预制综合管廊 |
CN207685864U (zh) * | 2017-12-22 | 2018-08-03 | 南京联众建设工程技术有限公司 | 组合式地下综合管廊 |
CN108265752A (zh) * | 2018-01-12 | 2018-07-10 | 南京联众建设工程技术有限公司 | 拼舱式多舱地下综合管廊 |
Also Published As
Publication number | Publication date |
---|---|
CN208533563U (zh) | 2019-02-22 |
CN108277826A (zh) | 2018-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019153567A1 (zh) | 单舱管廊及拼舱式多舱平底地下综合管廊 | |
CN101324093A (zh) | 一种组合式减荷构件现浇空心楼盖及其施工方法 | |
CN105821750B (zh) | 一种预制预应力双t板及其使用方法 | |
CN105133793A (zh) | 空间约束的多腔管中管钢筋混凝土巨柱及施工方法 | |
CN106245821A (zh) | 一种轻钢结构轻混凝土预制装配墙体及其施工方法 | |
CN107447901A (zh) | 抗震预制楼板及楼板抗震拼接结构 | |
CN202787271U (zh) | 一种基坑支护用叠加式内支撑结构 | |
CN206368331U (zh) | 一种桥梁裂缝加固装置 | |
WO2018223502A1 (zh) | 装配式拱桥 | |
CN102704483B (zh) | 降温管网兼做建筑底板多层钢筋支撑架的方法 | |
CN108589969B (zh) | 一种带竖向ecc耗能带的组合装配式剪力墙及其制作方法 | |
KR20100071413A (ko) | 프리캐스트 코핑부를 포함하는 교각 및 이의 시공 방법 | |
WO2019136868A1 (zh) | 拼舱式多舱地下综合管廊 | |
CN103898876B (zh) | 一种无对销螺栓的钢筋混凝土u型渡槽浇筑模板的制造方法 | |
CN206337678U (zh) | 门形钢片连接的装配式钢框架填充墙体系 | |
CN104878871B (zh) | 全干式连接预制混凝土板、楼盖及其抗震性能提升方法 | |
CN110953005B (zh) | 一种大深埋高应力煤仓支护结构及其施工方法 | |
WO2019136867A1 (zh) | 单舱管廊及拼舱式多舱地下综合管廊 | |
CN102852150B (zh) | 一种基坑支护用叠加内支撑结构 | |
CN110374012A (zh) | 一种t梁原位支架法预制工法 | |
CN108193695A (zh) | 一种地铁车站基坑围护结构支撑及施工方法 | |
CN214530768U (zh) | 一种现浇综合管廊模板支撑结构 | |
CN105970963B (zh) | 一种预制混凝土槽形板桩桩头加固装置 | |
CN201024713Y (zh) | 新型建筑物隔震结构 | |
CN109653243A (zh) | 拼舱式多舱地下综合管廊 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18905402 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18905402 Country of ref document: EP Kind code of ref document: A1 |