WO2019153303A1 - 集成电路以及用于测量距离的系统 - Google Patents

集成电路以及用于测量距离的系统 Download PDF

Info

Publication number
WO2019153303A1
WO2019153303A1 PCT/CN2018/076307 CN2018076307W WO2019153303A1 WO 2019153303 A1 WO2019153303 A1 WO 2019153303A1 CN 2018076307 W CN2018076307 W CN 2018076307W WO 2019153303 A1 WO2019153303 A1 WO 2019153303A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
analog
switched capacitor
input channel
circuit
Prior art date
Application number
PCT/CN2018/076307
Other languages
English (en)
French (fr)
Inventor
刘祥
洪小平
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2018/076307 priority Critical patent/WO2019153303A1/zh
Priority to CN201880009721.5A priority patent/CN110366690A/zh
Publication of WO2019153303A1 publication Critical patent/WO2019153303A1/zh
Priority to US16/990,534 priority patent/US20200371216A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak

Definitions

  • the present application relates to the field of signal ranging, and more particularly to an integrated circuit and a system for measuring distance.
  • the signal ranging technology can conveniently calculate the distance of the measured object based on the flight time of the ranging signal in the air or the phase change occurring during the flight. Therefore, the signal ranging technology is widely applied to the needs of the environment.
  • Class systems such as drone systems, unmanned vehicle systems, etc.
  • the ranging system After the ranging signal hits the measured object, it will reflect and form an echo signal. In order to ensure the accuracy of the measurement, the ranging system will sample and analog-to-digital convert the echo signal with a higher frequency. Taking common laser ranging as an example, the frequency requirements for sampling and analog-to-digital conversion of echo signals of laser signals are generally maintained at the Ghz level.
  • the ranging system uses an analog-to-digital conversion circuit for analog-to-digital conversion. If both the analog-to-digital conversion circuit is required to maintain a high analog-to-digital conversion frequency, and the analog-to-digital conversion circuit is required to maintain a high analog-to-digital conversion accuracy, this will increase the modulus. The power consumption and cost of the conversion circuit.
  • the present application provides an integrated circuit and a system for measuring distance, which is advantageous for reducing the system's requirement for the conversion rate of the analog to digital conversion circuit.
  • an integrated circuit comprising: a transmitter configured to transmit a ranging signal; a signal input channel; a signal sampling circuit based on a switched capacitor array, the signal input channel configured to the signal sampling circuit Transmitting an analog electrical signal corresponding to the echo signal of the ranging signal, the signal sampling circuit configured to sample the analog electrical signal and store the sampling signal of the analog electrical signal; the analog to digital conversion circuit is The sampled signal stored by the signal sampling circuit is analog-to-digital converted to generate a digital electrical signal indicative of the echo signal reception time.
  • a second aspect a system for measuring a distance, the system comprising: the integrated circuit of the first aspect; a receiver configured to receive an echo signal corresponding to the ranging signal; a controller, And configured to, after the transmitter transmits the ranging signal, send a control signal to the signal sampling circuit to control the signal sampling circuit to start operating to acquire the sampling signal.
  • the signal sampling circuit based on the switched capacitor array can store the sampling signal by using the switched capacitor array. Therefore, the analog to digital conversion circuit does not need to perform analog-to-digital conversion on the sampling signal in real time, thereby reducing the system's requirement for the conversion rate of the analog-to-digital conversion circuit, thereby facilitating reduction. The cost and power consumption of the analog to digital conversion circuit.
  • FIG. 1 is a schematic structural diagram of an integrated circuit provided by an embodiment of the present application.
  • FIG. 2 is a diagram showing an example of a circuit structure of a signal sampling circuit based on a switched capacitor array according to an embodiment of the present application.
  • FIG. 3 is a diagram showing an example of voltage waveforms of analog electrical signals provided by embodiments of the present application.
  • FIG. 4 is a diagram showing an example of a circuit structure of a signal sampling circuit based on a switched capacitor array according to another embodiment of the present application.
  • FIG. 5 is a diagram showing an example of a circuit structure of an analog-to-digital conversion circuit according to an embodiment of the present application.
  • Fig. 6 is a view showing an example of a voltage waveform of a sampling signal corresponding to the analog electric signal shown in Fig. 3.
  • FIG. 7 is a diagram showing an example of a cascade manner of a plurality of sub-switched capacitor arrays provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a system for measuring distance provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a system for measuring distance provided by another embodiment of the present application.
  • FIG. 10 is a diagram showing an example of an echo signal provided by an embodiment of the present application.
  • the type of the ranging signal is not specifically limited in the present application, and may be, for example, an infrared signal or a laser signal.
  • the transmitter transmits a ranging signal to the outside.
  • the ranging signal is reflected after encountering the object under test (for example, it may be an obstacle) to form an echo signal.
  • the receiver which may be a photoelectric converter, such as a photodiode, a photomultiplier tube, etc.
  • an analog electrical signal corresponding to the echo signal can be formed (the analog electrical signal can be used to represent the echo) signal).
  • the signal received by the receiver may be directly used as an analog electrical signal corresponding to the echo signal without performing power amplification.
  • the analog electrical signal can be sampled by the signal sampling circuit to obtain a sampling signal of the analog electrical signal, and the analog signal is converted by the analog-to-digital conversion circuit to obtain a digital electrical signal.
  • the digital electrical signal can be used to indicate the reception time of the echo signal. Alternatively, the digital electrical signal can be used to calculate the reception time of the echo signal.
  • the distance of the measured object can be calculated based on the difference between the transmission time of the ranging signal and the reception time of the echo signal.
  • the traditional ranging system uses a higher frequency to sample and analog-to-digital the echo signal.
  • the frequency requirements for sampling and analog-to-digital conversion of echo signals of laser signals are generally maintained at the Ghz level.
  • the ranging system uses an analog-to-digital conversion circuit for analog-to-digital conversion. If both the analog-to-digital conversion circuit is required to maintain a high analog-to-digital conversion frequency, and the analog-to-digital conversion circuit is required to maintain a high analog-to-digital conversion accuracy, this will increase the modulus. The power consumption and cost of the conversion circuit.
  • an embodiment of the present application provides an integrated circuit 10 .
  • the integrated circuit 10 can include a transmitter 11, signal input channels 12a, 12b, a signal sampling circuit 13 based on a switched capacitor array, and an analog to digital conversion circuit 14.
  • the transmitter 11 can be configured to transmit a ranging signal.
  • the ranging signal can be, for example, an infrared signal or a laser signal.
  • the transmitter 11 may be, for example, an infrared diode; for example, the ranging signal is a laser signal, and the transmitter 11 may be, for example, a laser diode.
  • the signal input channels 12a, 12b can be connected to an external receiver (not shown in Figure 1).
  • the receiver can be used to receive an echo signal of the ranging signal.
  • the receiver may be, for example, a photoelectric conversion device such as a photodiode, a photomultiplier tube, or an avalanche photodiode (APD) or the like.
  • the signal input channels 12a, 12b can be used to pass signals received by the receiver to the signal sampling circuit 13; alternatively, the signal input channels 12a, 12b can be used to transmit the signals received by the receiver to the appropriate processing (eg, power amplification) to Signal sampling circuit 13.
  • FIG. 1 illustrates an example in which the signal input channel is a dual signal input channel (including the first signal input channel 12a and the second signal input channel 12b).
  • the analog electrical signal corresponding to the echo signal mentioned herein may be the differential signal of the signal on the two signal input channels 12a, 12b.
  • Signal transmission based on differential signals can better identify signals with lower power, and the signal-to-noise ratio of differential signals is higher, and external noise is less likely to affect differential signals.
  • the embodiment of the present application is not limited to the implementation of the dual signal input channel shown in FIG. 1.
  • the implementation of the single signal input channel may also be adopted.
  • the analog electrical signal corresponding to the echo signal referred to herein may be defined by the potential difference between the voltage of the signal in the single signal input channel and ground.
  • power amplifier 15 may be provided on signal input channels 12a, 12b.
  • the analog electrical signal corresponding to the echo signal referred to herein may be a signal amplified by the power amplifier 15. Power amplification of the echo signal received by the receiver can improve the accuracy of the system.
  • the signal input channels 12a, 12b may not be provided with a power amplifier, but the output signal of the receiver is directly transmitted to the signal sampling circuit 13, which simplifies the implementation of the circuit.
  • the signal sampling circuit 13 is a signal sampling circuit based on a switched capacitor array.
  • the signal sampling circuit 13 can be configured to sample the analog electrical signals input by the signal input channels 12a, 12b and store (or maintain) the sampled signals of the analog electrical signals.
  • the signal sampling circuit 13 can sample the analog electrical signal with a higher sampling frequency (such as a sampling frequency of the GHz level).
  • the implementation of the signal sampling circuit 13 will be exemplified in detail below with reference to specific embodiments, and will not be described in detail herein.
  • the analog to digital conversion circuit 14 can be configured to analog to digitally convert the sampled signal stored by the signal sampling circuit 13 to generate a corresponding digital electrical signal.
  • the signal sampling circuit 13 is a signal sampling circuit based on a switched capacitor array. This type of signal sampling circuit has a signal storage function for storing the sampling signal in a switched capacitor array.
  • the analog-to-digital conversion frequency of the analog-to-digital conversion circuit 14 can be lower (even far below) the sampling frequency of the signal sampling circuit 13, for example, the analog-to-digital conversion frequency of the analog-to-digital conversion circuit 14 can be configured to be between several MHz and several tens of MHz. .
  • the signal sampling circuit based on the switched capacitor array can store the sampling signal by using the switched capacitor array. Therefore, the analog to digital conversion circuit does not need to perform analog-to-digital conversion on the sampling signal in real time, thereby reducing the system's requirement for the conversion rate of the analog-to-digital conversion circuit, thereby facilitating reduction.
  • the cost and power consumption of the analog to digital conversion circuit integrates the transmitter, the signal sampling circuit, and the analog-to-digital conversion circuit into the same chip, which is beneficial to reducing the volume and cost of the system.
  • integrated circuit 10 can also include a control terminal 18.
  • the external controller can control the devices inside the integrated circuit 10 by inputting control signals through the control terminal 18.
  • the transmitter 11 can be coupled to the control terminal 18 such that the external controller can control the transmission time of the ranging signal via the control terminal 18.
  • the analog to digital conversion circuit 14 can be coupled to the control terminal 18 such that an external controller can control the analog to digital conversion frequency of the analog to digital conversion circuit 14 via the control terminal 19.
  • the signal sampling circuit 13 can be connected to the control terminal 18 so that the external controller can control the on and off of the switched capacitor unit in the signal sampling circuit 13, or the delay of the delay chain in the signal sampling circuit 13. Time and so on.
  • the power amplifier 15 can be coupled to the control terminal 18 such that the external controller can control whether the power amplifier 15 is operational or control the power amplification of the power amplifier 15 via the control terminal 18.
  • the external controller described above may be integrated inside the integrated circuit 10 to increase the integration of the system and reduce the size of the system.
  • the signal sampling circuit 13 may include a delay chain 21 and a switched capacitor array 22.
  • the delay chain 21 can include n delay units 211 (n is a positive integer greater than one).
  • the n delay units 211 can sequentially transmit control signals (ie, signals on the WRITE line in FIG. 2, which may also be referred to as WRITE signals).
  • the specific value of n can be determined comprehensively by the range of the ranging system in which the integrated circuit 10 is located (i.e., the maximum distance measured by the ranging system) and the delay time of the delay unit 211.
  • the value of n can be equal to (2L) / (cT gap ).
  • L represents the range of the ranging system in which the integrated circuit 10 is located.
  • c represents the speed of light.
  • T gap represents the delay time of the delay unit. Taking the range of the ranging system as 120 m and the delay time of the delay unit 211 as 0.2 ns, the delay chain 21 requires at least 4000 delay units 211.
  • the delay unit 211 in the delay chain 21 may be a delay unit with a fixed delay time or a delay unit with an adjustable delay time.
  • the delay unit 211 may include two inverters 212a, 212b and a metal oxide semiconductor (MOS) tube 213 between the two inverters 212a, 212b.
  • the MOS transistor 213 may be an NMOS transistor or a PMOS transistor.
  • the impedance of the MOS transistor 213 and the parasitic capacitance of the delay unit 211 together constitute an RC delay circuit, and therefore, the delay can be adjusted by adjusting the voltage of the gate of the MOS transistor 213 (corresponding to the voltage on the SPEED line in FIG. 2).
  • the parameters of the RC delay circuit inside the unit 211 thereby achieving the purpose of adjusting the delay time.
  • the introduction of the delay unit with adjustable delay time makes it possible to adjust the sampling frequency of the signal sampling circuit 13 according to actual needs, which can improve the flexibility of the system.
  • the switched capacitor array 22 can include n switched capacitor units 221 that are in one-to-one correspondence with the n delay units 211.
  • Each of the n switched capacitor units 221 can be connected to the signal input channels 12a, 12b.
  • the switched capacitor unit 221 can be configured to sample and store signals on the signal input channels 12a, 12b when a control signal (a signal on the WRITE line) is passed to the delay unit 211 corresponding to the switched capacitor unit 221.
  • a first switched capacitor array the switched capacitor unit 221 may include a second capacitor 22 C 1, and the MOS transistor located in capacitance across C 1.
  • the gates of the two MOS transistors can be connected to the WRITE line for receiving control signals transmitted on the WRITE line.
  • Source and drain of the MOS transistor positioned above the capacitor C 1 are connected to the input end of the signal path 12a and the capacitor C 1; the source and the drain of the MOS transistor located below the capacitor C 1 and capacitor C, respectively, the other end of the 1 It is connected to the signal input channel 12b.
  • the voltages of the output terminals (ie, WRITE_1 to WRITE_n in the figure) of the delay unit 211 on the delay chain 21 are all low, and the switching capacitor unit 221 corresponding to each delay unit 211
  • the MOS tubes in the middle are all in the off state.
  • a control signal (for example, a high level) is first input to the WRITE line so that the control signal can be transmitted along the delay chain 21.
  • T the delay time of each delay unit
  • T i the time that the signal is transmitted to the i-th delay unit
  • T 1 the control signal is transmitted to the first output terminal of the delay elements, such that the voltage at the WRITE_1 from low level to high level, the MOS turn-on of the first switched capacitor cell, the capacitor C 1 samples and stores the input channel 12a , the voltage at 12b at time T 1 .
  • the control signal on the delay chain 21 is transmitted to the output of the second delay unit 211, so that the voltage at WRITE_2 is converted from a low level to a high level, and the second switched capacitor unit is The MOS transistor is turned on, and the capacitor C 2 samples and stores the voltage value of the signal on the signal input channels 12a, 12b at time T 2 .
  • a switched capacitor array 22 can sample and store a pair of signals on the signal input path 12b 12a, when the arrival time T n, input channel signal
  • the signals of 12a, 12b during the period T 1 -T n are sampled and stored in capacitors C 1 -C n .
  • Figure 3 is an example of a voltage waveform of an analog electrical signal during the period T 1 -T n . After the above sampling process, the voltage value corresponding to T i is stored in the capacitance C i in the i-th switched capacitor unit.
  • the integrated circuit 10 includes the dual signal input channels 12a, 12b, and the analog electrical signals corresponding to the echo signals are differential signals of the signals transmitted on the dual signal input channels 12a, 12b, but the present application is implemented.
  • the integrated circuit 10 can include only a single signal input channel 12, and the analog electrical signal corresponding to the echo signal can be defined by the potential difference between the single signal input channel 12 and ground.
  • the implementation of the analog to digital conversion circuit 14 can be various. A possible implementation of the analog to digital conversion circuit 14 will be described below with reference to FIG.
  • the analog to digital conversion circuit 14 may include an analog-to-digital converter (ADC) 141, a buffer 142, a first MOS transistor 143, and a second MOS transistor 144.
  • ADC analog-to-digital converter
  • the external controller may first send a READ signal to the analog-to-digital conversion circuit 14 (the READ signal may be a high level, for example), and the first MOS transistor 143 and the second MOS transistor 144 are turned on, so that the capacitor C is on
  • the stored signal (voltage signal) can be output to the ADC 141 through the buffer 142.
  • the ADC 141 can sequentially read the signals stored on each of the switched capacitor units in the switched capacitor array and perform analog to digital conversion of the signals.
  • the ADC 141 can perform signal reading and analog-to-digital conversion with a lower analog-to-digital conversion frequency (for example, several khz to several hundred Mhz).
  • the manner in which the terminal VREF of the second MOS transistor 144 in FIG. 5 is connected is related to the signal input channel and the type of the ADC 141.
  • the ADC 141 can be an ADC 141 having a single-ended input, in which case the terminal VREF can be connected to ground; if the signal input channel is a dual signal input channel (for inputting a differential signal)
  • the ADC 141 may be an ADC 141 having a differential input, and the differential inputs of the ADC 141 may be connected to one end of the first MOS transistor 143 (shown in FIG. 5) and the terminal VREF of the second MOS transistor 144, respectively.
  • the voltage waveform of the sampling signal is dispersed into a form as shown in (a) of FIG. i in (a) of FIG. 6 may represent the i-th switched capacitor unit in the switched capacitor array, and V i represents the voltage value of the signal stored in the i-th switched capacitor unit.
  • (i, V i) in FIG. 3 (T i, V i) having a one to one relationship.
  • (a) in Fig. 6 describes the voltage waveform of the sampling signal by the number of the sampling point as the horizontal axis. In fact, the sampling process of the analog electrical signal is usually short. From the time dimension, the waveform is usually A small pulse signal as shown in (b) of FIG.
  • the signal sampling circuit 13 provided by the embodiment of the present application is a signal sampling circuit based on a switched capacitor array.
  • the embodiment of the present application does not specifically limit the composition of the switched capacitor array in the signal sampling circuit 13 and may only include
  • a switched capacitor array can also include multiple sub-switched capacitor arrays cascaded (eg, connected end to end).
  • the signal sampling circuit 13 may include three sub-switched capacitor arrays 71a, 71b, 71c cascaded together, and each sub-switched capacitor array includes n switched capacitor units (C 1 , C 2 in FIG. 7 , C n-1 , C n , etc. correspond to one switched capacitor unit).
  • the sub-switch capacitor array 71a can be controlled to operate, and the remaining sub-switch capacitor arrays 71b, 71c do not work; when more switching capacitor units are required to meet the system requirements, The sub-switch capacitor arrays 71a, 71b are controlled to operate at the same time, and even the sub-switch capacitor arrays 71a, 71b, 71c can be controlled to operate simultaneously.
  • the embodiment of the present application provides a cascading scheme of a multi-sub-switched capacitor array, which can adjust the number of switched capacitor units in the switched capacitor array according to actual needs, so that the sampling mode of the signal sampling capacitor is more flexible.
  • the cascading manner of the plurality of sub-switched capacitor arrays can be adjusted in various ways, for example, by manual adjustment, or by setting switches at the cascade of adjacent sub-switched capacitor arrays, and controlling the on and off of the switches by an external controller, thereby The number of sub-switched capacitor units cascaded together is adjusted online.
  • System 80 can be, for example, a light detection and ranging (LiDAR) system.
  • System 80 can include integrated circuit 10, receiver 81, and controller 82 as described in any of the above embodiments.
  • the receiver 81 may be configured to receive an echo signal corresponding to the ranging signal.
  • the receiver 81 may be a photoelectric conversion device such as a photodiode, a photomultiplier tube, or an APD or the like.
  • Controller 82 can be configured to transmit a control signal to a signal sampling circuit in integrated circuit 10 after the transmitter in integrated circuit 10 transmits the ranging signal, the control signal sampling circuit beginning to operate to acquire the sampled signal.
  • the controller 82 may be a central controller or a distributed controller, which is not limited by the embodiment of the present application.
  • controller 82 can also be configured to control the transmitter to transmit a ranging signal.
  • controller 82 can also be configured to control the analog to digital conversion circuitry in the integrated circuit 10 to analog to digitally convert the sampled signals.
  • the system 80 may further include: an optical system 91a, 91b corresponding to the transmitter, configured to adjust a transmission angle of the ranging signal; and an optical system 91a, 91b corresponding to the receiver 81, configured To adjust the receiving angle of the echo signal corresponding to the ranging signal, the controller 82 is further configured to control the optical systems 91a, 91b corresponding to the transmitter 11 and the optical systems 91a, 91b corresponding to the receiver 81, so that the ranging signal can be It is used to measure the measured object at different angles.
  • FIG. 9 illustrates an example in which the optical system corresponding to the optical device and the optical system corresponding to the receiver are the same optical system.
  • the embodiment of the present application is not limited thereto, and the two may be different optical systems.
  • FIG. 9 exemplifies the optical system 91a, 91b as a rotating double prism, but the embodiment of the present application is not limited thereto.
  • the optical systems 91a, 91b can also be replaced with micro-electro-mechanical system (MEMS) galvanometers, or other types of optical elements that can adjust the optical path of the ranging signal.
  • MEMS micro-electro-mechanical system
  • the following takes the system 80 as a LiDAR system as an example, and illustrates the ranging method of the system 80.
  • the system 80 transmits a laser pulse signal to the object 100 to be measured by the transmitter Tx, and receives an echo signal of the laser pulse signal through the receiver Rx to generate a corresponding analog electrical signal.
  • the analog electrical signal can be sampled at a higher frequency by the signal sampling circuit, and the sampling signal is stored into the switched capacitor array of the signal sampling circuit.
  • the analog signal converted in the switched capacitor array can be analog-digital converted using a low-speed and high-precision analog-to-digital conversion circuit to obtain a voltage waveform of the analog electrical signal corresponding to the echo signal, and the echo signal is calculated according to the voltage waveform.
  • the time is returned to calculate the distance of the object 100 to be measured.
  • system 80 can be utilized to measure the object 100 under test using the following steps.
  • Step 1 The controller 82 controls the transmitter to emit a laser pulse signal (corresponding to the ranging signal above), and while transmitting the laser pulse signal, the controller 82 can control the delay chain to start transmitting the control signal, thereby causing the signal to be sampled.
  • the switched capacitor unit in the circuit begins to operate to store the sampled signal.
  • the length n of the delay chain or the number n of switched capacitor units in the switched capacitor array can be determined by the range of system 80 (i.e., the maximum distance that can be measured by system 80) and each delay unit on the delay chain.
  • the delay time is comprehensively determined.
  • the value of n can be equal to (2L) / (cT gap ).
  • L represents the range of system 80.
  • c represents the speed of light.
  • T gap represents the delay time of the delay unit. Taking the range of the ranging system as 120m and the delay time of the delay unit as 0.2ns, the delay chain requires at least 4000 delay units.
  • Step 2 After the laser pulse signal is reflected by the measured object, the echo signal is received by the receiver 81 to form an analog electrical signal corresponding to the echo signal.
  • the analog electrical signal is sampled and stored by a switched capacitor array in the signal sampling circuit.
  • the switched capacitor array samples and stores the analog electrical signal at a sampling frequency of 5 Ghz
  • 0 on the time axis can indicate the emission timing of the laser pulse signal
  • T r can represent the return time of the echo signal
  • the distance of the measured object can be calculated according to T r .
  • the sampling point takes about 40us.
  • Step 4 The controller 82 may determine a waveform of the analog electrical signal corresponding to the echo signal received by the receiver according to 4000 sampling points, and calculate a time difference T r of the laser pulse signal received from the receiver to be received by the receiver 81, and according to T r is used to calculate the distance of the object 100 to be measured.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (such as a digital video disc (DVD)), or a semiconductor medium (such as a solid state disk (SSD)).
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium such as a digital video disc (DVD)
  • a semiconductor medium such as a solid state disk (SSD)
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种集成电路和用于测量距离的系统。该集成电路(10)包括:发射器(11),被配置为发射测距信号;信号输入通道(12)和基于开关电容阵列的信号采样电路(13),信号输入通道(12)被配置为向信号采样电路(13)传递测距信号的回波信号对应的模拟电信号,信号采样电路(13)被配置为对模拟电信号进行采样,并存储模拟电信号的采样信号;模数转换电路(14),被配置为对信号采样电路(13)存储的采样信号进行模数转换,以生成用于指示回波信号接收时间的数字电信号。基于开关电容阵列的信号采样电路(13)可以利用开关电容阵列存储采样信号,因此模数转换电路(14)无需实时地对采样信号进行模数转换,降低了系统对模数转换电路(14)转换速率的要求。

Description

集成电路以及用于测量距离的系统
版权申明
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或者该专利披露。
技术领域
本申请涉及信号测距领域,更为具体地,涉及一种集成电路以及用于测量距离的系统。
背景技术
随着技术的发展,人们对外界环境的感知不再满足于传统的平面感知方式,而是希望能够获得外界环境的三维立体信息。
信号测距技术可以基于测距信号在空中的飞行时间或飞行过程中发生的相位变化,方便地计算出被测物体的距离,因此,信号测距技术被广泛应用于对环境感知有需求的各类系统中,如无人机系统、无人车系统等。
测距信号碰到被测物体之后,会发生反射,形成回波信号。为了保证测量的准确性,测距系统会使用较高的频率对回波信号进行采样和模数转换。以常见的激光测距为例,激光信号的回波信号的采样和模数转换的频率要求一般维持在Ghz级别。测距系统采用模数转换电路进行模数转换,如果既要求模数转换电路维持较高的模数转换频率,又要求模数转换电路保持较高的模数转换精度,这样会增大模数转换电路的功耗和成本。
发明内容
本申请提供一种集成电路及用于测量距离的系统,有利于降低系统对模数转换电路转换速率的要求。
第一方面,提供一种集成电路,包括:发射器,被配置为发射测距信号;信号输入通道;基于开关电容阵列的信号采样电路,所述信号输入通道被配置为向所述信号采样电路传递所述测距信号的回波信号对应的模拟电信号,所述信号采样电路被配置为对所述模拟电信号进行采样,并存储所述模拟电 信号的采样信号;模数转换电路,被配置为对所述信号采样电路存储的所述采样信号进行模数转换,以生成用于指示所述回波信号接收时间的数字电信号。
第二方面,提供一种用于测量距离的系统,所述系统包括:如第一方面所述的集成电路;接收器,被配置为接收所述测距信号对应的回波信号;控制器,被配置为在所述发射器发射所述测距信号之后,向所述信号采样电路发送控制信号,控制所述信号采样电路开始工作,以获取所述采样信号。
基于开关电容阵列的信号采样电路可以利用开关电容阵列存储采样信号,因此模数转换电路无需实时地对采样信号进行模数转换,降低了系统对模数转换电路转换速率的要求,进而有利于降低模数转换电路的成本和功耗。
附图说明
图1是本申请实施例提供的集成电路的示意性结构图。
图2是本申请一个实施例提供的基于开关电容阵列的信号采样电路的电路结构示例图。
图3是本申请实施例提供的模拟电信号的电压波形示例图。
图4是本申请另一实施例提供的基于开关电容阵列的信号采样电路的电路结构示例图。
图5是本申请实施例提供的模数转换电路的电路结构示例图。
图6是图3所示的模拟电信号对应的采样信号的电压波形示例图。
图7是本申请实施例提供的多个子开关电容阵列的级联方式的示例图。
图8是本申请一个实施例提供的用于测量距离的系统的示意性结构图。
图9是本申请另一实施例提供的用于测量距离的系统的示意性结构图。
图10是本申请实施例提供的回波信号的示例图。
具体实施方式
本申请对测距信号的种类不做具体限定,例如可以是红外信号,也可以是激光信号。
为了便于理解,下文先对测距信号的测距方式进行简单介绍。
首先,发射器对外发射测距信号。测距信号遇到被测物体(例如可以是 障碍物)之后发生反射,形成回波信号。回波信号被接收器(可以是光电转换器,如光电二极管,光电倍增管等)接收之后,经过功率放大,可以形成回波信号对应的模拟电信号(该模拟电信号可用于表示该回波信号)。可选地,在某些实现方式中,也可以不进行功率放大,直接将接收器接收到的信号作为回波信号对应的模拟电信号。
接着,可以利用信号采样电路对模拟电信号进行采样,得到模拟电信号的采样信号,并利用模数转换电路对采样信号进行模数转换,得到数字电信号。该数字电信号可用于表示回波信号的接收时间。或者,该数字电信号可用于计算回波信号的接收时间。
在计算出回波信号的接收时间(或称回波信号的返回时间)之后,可以基于测距信号的发射时间和回波信号的接收时间之差,计算被测物体的距离。
为了保证测量的准确性,传统测距系统会使用较高的频率对回波信号进行采样和模数转换。以常见的激光测距为例,激光信号的回波信号的采样和模数转换的频率要求一般维持在Ghz级别。测距系统采用模数转换电路进行模数转换,如果既要求模数转换电路维持较高的模数转换频率,又要求模数转换电路保持较高的模数转换精度,这样会增大模数转换电路的功耗和成本。
下面将结合附图,对本申请中的技术方案进行描述。
如图1所示,本申请实施例提供一种集成电路10。集成电路10可以包括发射器11,信号输入通道12a,12b,基于开关电容阵列的信号采样电路13以及模数转换电路14。
发射器11可以被配置为发射测距信号。该测距信号例如可以是红外信号,也可以是激光信号。以测距信号为红外信号为例,该发射器11例如可以是红外二极管;以测距信号为激光信号为例,该发射器11例如可以是激光二极管。
信号输入通道12a,12b可以与外部的接收器(图1中未示出)相连。接收器可用于接收测距信号的回波信号。接收器例如可以是光电转换器件,比如光电二极管,光电倍增管,或雪崩二极管(avalanche photodiode,APD)等。信号输入通道12a,12b可用于将接收器接收到的信号传递至信号采样电路13;或者,信号输入通道12a,12b可用于将接收器接收到的信号经过适当 处理(如功率放大)之后传递至信号采样电路13。
图1是以信号输入通道为双信号输入通道(包括第一信号输入通道12a和第二信号输入通道12b)为例进行举例说明的。在双信号输入通道的实现方式中,本文提及的回波信号对应的模拟电信号可以为两路信号输入通道12a,12b上的信号的差分信号。基于差分信号的信号传输方式可以更好地识别功率较小的信号,而且差分信号的信噪比较高,外界噪声不易对差分信号造成影响。
但是,本申请实施例不限于图1所示的双信号输入通道的实现方式,实际上,也可以采用单信号输入通道的实现方式。在单信号输入通道的实现方式中,本文提及的回波信号对应的模拟电信号可以由该单信号输入通道中的信号的电压与地之间的电势差定义。
可选地,在一些实施例中,信号输入通道12a,12b上可以设置功率放大器15。在该实施例中,本文提及的回波信号对应的模拟电信号可以为经过功率放大器15放大后的信号。对接收器接收到的回波信号进行功率放大可以提高系统的测距精度。
可选地,在另一些实施例中,信号输入通道12a,12b上也可以不设置功率放大器,而是直接将接收器的输出信号传递至信号采样电路13,这样可以简化电路的实现。
信号采样电路13为基于开关电容阵列的信号采样电路。信号采样电路13可以被配置为对信号输入通道12a,12b输入的模拟电信号进行采样,并存储(或保持)模拟电信号的采样信号。信号采样电路13可以采用较高的采样频率(如GHz级别的采样频率)对模拟电信号进行采样。下文会结合具体的实施例对信号采样电路13的实现方式进行详细地举例说明,此处暂不详述。
模数转换电路14可以被配置为对信号采样电路13存储的采样信号进行模数转换,以生成对应的数字电信号。信号采样电路13是基于开关电容阵列的信号采样电路,这种类型的信号采样电路具有信号存储功能,可以将采样信号存储在开关电容阵列中。
既然采样信号会被存储在信号采样电路13的开关电容阵列中,也就无需要求模数转换电路14采用与采样频率一致的模数转换频率实时地对采样信号进行模数转换。模数转换电路14的模数转换频率可以低于(甚至远低 于)信号采样电路13的采样频率,例如可以将模数转换电路14的模数转换频率配置为几MHz至几十MHz之间。
基于开关电容阵列的信号采样电路可以利用开关电容阵列存储采样信号,因此模数转换电路无需实时地对采样信号进行模数转换,降低了系统对模数转换电路转换速率的要求,进而有利于降低模数转换电路的成本和功耗。此外,本申请实施例将发射器、信号采样电路以及模数转换电路集成同一芯片中,有利于降低系统的体积和成本。
如图1所示,集成电路10还可以包括控制端18。外部的控制器可以通过控制端18输入控制信号,从而对集成电路10内部的器件进行控制。例如,发射器11可以与控制端18相连,使得外部的控制器通过控制端18可以控制测距信号的发射时间。又如,模数转换电路14可以与控制端18相连,使得外部的控制器可以通过控制端19控制模数转换电路14的模数转换频率。又如,信号采样电路13可以与控制端18相连,使得外部的控制器可以控制信号采样电路13中的开关电容单元的导通与关断,或者控制信号采样电路13中的延时链的延时时间等。又如,功率放大器15可以与控制端18相连,使得外部控制器可以通过控制端18控制功率放大器15是否开始工作或控制功率放大器15的功率放大倍数。
可选地,在一些实施例中,可以将上述外部的控制器集成在集成电路10内部,从而提高系统的集成度,降低系统的体积。
下面结合图2,对信号采样电路13的实现方式进行举例说明。
信号采样电路13可以包括延时链21和开关电容阵列22。延时链21可以包括n个延时单元211(n为大于1的正整数)。n个延时单元211可以依次传递控制信号(即图2中的WRITE线上的信号,该信号也可称为WRITE信号)。n的具体取值可以由集成电路10所处的测距系统的量程(即该测距系统测量的最大距离)以及延时单元211的延时时间综合确定。作为一个示例,n的取值可以等于(2L)/(cT gap)。L表示集成电路10所处的测距系统的量程。c表示光速。T gap表示延时单元的延时时间。以测距系统的量程为120m,延时单元211的延时时间为0.2ns为例,则延时链21至少需要4000个延时单元211。
可选地,在一些实施例中,延时链21中的延时单元211可以是延时时间固定的延时单元,也可以是延时时间可调的延时单元。如图2所示,延时 单元211可以包括两个反相器212a,212b以及位于两个反相器212a,212b之间的金属氧化物半导体(metal oxide semiconductor,MOS)管213。MOS管213可以是NMOS管,也可以是PMOS管。MOS管213的阻抗与延时单元211的寄生电容共同构成了RC延时电路,因此,可以通过调整MOS管213的栅极的电压(对应于图2中的SPEED线上的电压)调整延时单元211内部的RC延时电路的参数,进而达到调整延时时间的目的。
延时单元211的延时时间越小,信号采样电路13的采样频率越高。引入延时时间可调的延时单元使得根据实际需要调整信号采样电路13的采样频率成为可能,这样可以提高系统的灵活性。
继续参见图2,开关电容阵列22可以包含与n个延时单元211一一对应的n个开关电容单元221。n个开关电容单元221均可与信号输入通道12a,12b相连。开关电容单元221可以被配置为当控制信号(WRITE线上的信号)传递至该开关电容单元221对应的延时单元211时,对信号输入通道12a,12b上的信号进行采样和存储。
图2给出了开关电容单元221的一种可能的实现方式。如图2所示,开关电容阵列22中的第1个开关电容单元221可以包括电容C 1以及位于电容C 1两端的MOS管。该两个MOS管的栅极均可与WRITE线相连,用于接收WRITE线上传递的控制信号。位于电容C 1上方的MOS管的源极和漏极分别与信号输入通道12a和电容C 1的一端相连;位于电容C 1下方的MOS管的源极和漏极分别与电容C 1的另一端和信号输入通道12b相连。
在信号采样电路13工作之前,延时链21上的各延时单元211的输出端(即图中的WRITE_1至WRITE_n)的电压均为低电平,各延时单元211对应的开关电容单元221中的MOS管均处于断开状态。
准备采样时,首先向WRITE线输入控制信号(例如可以是一个高电平),以便该控制信号可以沿着延时链21传递。假设每个延时单元的延时时间为T,信号传递至第i个延时单元的时间为T i(i为取值从1至n的正整数),则在时间T 1,控制信号被传递至第1个延时单元的输出端,使得WRITE_1处的电压从低电平转换为高电平,第1个开关电容单元中的MOS管导通,电容C 1采样并存储信号输入通道12a,12b上的信号在时间T 1的电压值。接着,在时间T 2,延时链21上的控制信号传递至第2个延时单元211的输出端,使得WRITE_2处的电压从低电平转换为高电平,第2个开关电容单元 中的MOS管导通,电容C 2采样并存储信号输入通道12a,12b上的信号在时间T 2的电压值。随着控制信号在延时链21上的继续传递,每间隔时间T,开关电容阵列22可以对信号输入通道12a,12b上的信号进行一次采样和存储,当到达时间T n时,信号输入通道12a,12b在T 1-T n这段时间的信号就被采样并存储在电容C 1-C n中了。
图3为模拟电信号在T 1-T n这段时间内的电压波形的一个示例。经过上述采样过程,T i对应的电压值就被存储在第i个开关电容单元内的电容C i中。
上文是以集成电路10包含双信号输入通道12a,12b,回波信号对应的模拟电信号为双信号输入通道12a,12b上传递的信号的差分信号为例进行举例说明的,但本申请实施例不限于此。如图4所示,集成电路10可以仅包含单信号输入通道12,回波信号对应的模拟电信号可以由单信号输入通道12与地之间的电势差限定。
模数转换电路14的实现方式可以有多种,下面结合图5,对模数转换电路14的一种可能的实现方式进行举例说明。
如图5所示,模数转换电路14可以包括模数转换器(analog-to-digital converter,ADC)141,缓存142,第一MOS管143和第二MOS管144。
具体工作时,首先可以利用外部控制器向模数转换电路14发送READ信号(READ信号例如可以是一个高电平),将第一MOS管143和第二MOS管144导通,使得电容C上存储的信号(电压信号)可以通过缓存142输出至ADC 141。按照这种方式,ADC 141可以依次读取开关电容阵列中的每个开关电容单元上存储的信号,并完成信号的模数转换。由于信号存储在了信号采样电路13中,无需对其进行实时处理,因此ADC 141可以以较低的模数转换频率(例如可以是几khz到几百Mhz)进行信号读取及模数转换。
图5中的第二MOS管144的端子VREF的连接方式与信号输入通道以及ADC 141的类型有关。如果信号输入通道是单信号输入通道,相应地,ADC 141可以是具有单端输入的ADC 141,此时,端子VREF可以与地相连;如果信号输入通道是双信号输入通道(用于输入差分信号),相应地,ADC141可以是具有差分输入的ADC 141,ADC 141的差分输入端可以分别与第一MOS管143的一端(如图5所示)以及第二MOS管144的端子VREF相连。
仍以采样信号的波形为如图3所示的电压波形为例,经过信号采样电路13,采样信号的电压波形被离散成如图6中的(a)所示的形式。图6的(a)中的i可以表示开关电容阵列中的第i个开关电容单元,V i表示该第i个开关电容单元存储的信号的电压值。(i,V i)与图3中的(T i,V i)具有一一对应关系。图6中的(a)是以采样点的编号为横轴对采样信号的电压波形进行描述的,实际上,模拟电信号的采样过程通常较短,从时间的维度来看,其波形通常为如图6中的(b)所示的一个小的脉冲信号。
上文指出,本申请实施例提供的信号采样电路13为基于开关电容阵列的信号采样电路,但本申请实施例对信号采样电路13中的开关电容阵列的组成方式不做具体限定,可以仅包含一个开关电容阵列,也可以包含级联(如首尾依次连接)在一起的多个子开关电容阵列。
如图7所示,信号采样电路13可以包含级联在一起的3个子开关电容阵列71a,71b,71c,每个子开关电容阵列包含n个开关电容单元(图7中的C 1、C 2、C n-1、C n等对应一个开关电容单元)。当仅需要n个开关电容单元即可满足系统要求时,可以控制子开关电容阵列71a工作,其余子开关电容阵列71b,71c不工作;当需要更多开关电容单元才可以满足系统要求时,可以控制子开关电容阵列71a,71b同时工作,甚至可以控制子开关电容阵列71a,71b,71c同时工作。
本申请实施例提供多子开关电容阵列的级联方案,可以根据实际需要对开关电容阵列中的开关电容单元的数量进行调整,使得信号采样电容的采样方式更加灵活。可以采用多种方式调整多个子开关电容阵列的级联方式,例如,可以人工调整,也可以在相邻子开关电容阵列的级联处设置开关,并通过外部控制器控制开关的通断,从而在线调整级联在一起的子开关电容单元的数量。
如图8所示,本申请实施例还提供一种用于测量距离的系统80。系统80例如可以是激光探测与测量(light detection and ranging,LiDAR)系统。系统80可以包括上文任一实施例描述的集成电路10,接收器81以及控制器82。
接收器81可以被配置为接收测距信号对应的回波信号。接收器81可以是光电转换器件,比如光电二极管,光电倍增管,或APD等。
控制器82可以被配置为在集成电路10中的发射器发射测距信号之后, 向集成电路10中的信号采样电路发送控制信号,控制信号采样电路开始工作,以获取采样信号。控制器82可以是中央控制器,也可以是分布式控制器,本申请实施例对此并不限定。
可选地,控制器82还可以被配置为控制发射器发射测距信号。
可选地,控制器82还可以被配置为控制集成电路10中的模数转换电路对采样信号进行模数转换。
可选地,如图9所示,系统80还可包括:发射器对应的光学系统91a,91b,被配置为调整测距信号的发射角度;接收器81对应的光学系统91a,91b,被配置为调整测距信号对应的回波信号的接收角度;控制器82还被配置对发射器11对应的光学系统91a,91b以及接收器81对应的光学系统91a,91b进行控制,使得测距信号能够用于测量不同角度的被测物体。
图9是以发射器对应的光学系统和接收器对应的光学系统为同一光学系统为例进行举例说明的,本申请实施例对此并不限定,二者也可以是不同的光学系统。
此外,图9是以光学系统91a,91b为旋转双棱镜为例进行举例说明的,但本申请实施例不限于此。光学系统91a,91b还可以替换为微电子机械系统(micro-electro-mechanical system,MEMS)振镜,或其他类型的可以对测距信号的光路进行调整的光学元件。
下面以系统80为LiDAR系统为例进行,对系统80的测距方式进行举例说明。
如图9所示,系统80会通过发射器Tx向被测物体100发射激光脉冲信号,并通过接收器Rx接收激光脉冲信号的回波信号生成对应的模拟电信号。在获取到回波信号对应的模拟电信号之后,可以利用信号采样电路以较高频率对模拟电信号进行采样,并将采样信号存储至信号采样电路的开关电容阵列中。然后,可以使用低速且高精度的模数转换电路对开关电容阵列中存储的采样信号进行模数转换,得到回波信号对应的模拟电信号的电压波形,并根据电压波形计算出回波信号的返回时间,从而计算出被测物体100的距离。
更为具体地,可以利用系统80,采用如下步骤对被测物体100进行测量。
步骤一、控制器82控制发射器发射激光脉冲信号(对应于上文中的测距信号),并且在发射激光脉冲信号的同时,控制器82可以控制延时链开始传递控制信号,进而使得信号采样电路中的开关电容单元开始工作,以存储 采样信号。
延时链的长度n或开关电容阵列中的开关电容单元的数量n的取值可以由系统80的量程(即该系统80所能测量的最大距离)以及延时链上的每个延时单元的延时时间综合确定。作为一个示例,n的取值可以等于(2L)/(cT gap)。L表示系统80的量程。c表示光速。T gap表示延时单元的延时时间。以测距系统的量程为120m,延时单元的延时时间为0.2ns为例,则延时链至少需要4000个延时单元。
步骤二、当激光脉冲信号遇到被测物体反射之后,由接收器81接收回波信号,形成回波信号对应的模拟电信号。该模拟电信号被信号采样电路中的开关电容阵列采样并存储下来。
假设开关电容阵列以5Ghz的采样频率对模拟电信号进行采样和存储,则每隔T gap=1s/5Ghz=0.2ns进行一次信号采样,共可以得到4000个采样点。如图10所示,时间轴上0可以表示激光脉冲信号的发射时刻,T r可以表示回波信号的返回时间,后续可以根据T r来计算得到被测物体的距离。
步骤三、控制器82可以控制模数转换电路以100Mhz的速率读取开关电容阵列中存储的采样信号,读取一个采样点进行模拟数字转换的时间约为1s/100Mhz=10ns,则读取4000个采样点需要的时间约为40us。
步骤四、控制器82可以根据4000个采样点确定接收器接收到的回波信号对应的模拟电信号的波形,计算出激光脉冲信号从发射到被接收器81接收到的时间差T r,并根据T r来计算被测物体100的距离。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其他任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可 用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种集成电路,其特征在于,包括:
    发射器,被配置为发射测距信号;
    信号输入通道和基于开关电容阵列的信号采样电路,所述信号输入通道被配置为向所述信号采样电路传递所述测距信号的回波信号对应的模拟电信号,所述信号采样电路被配置为对所述模拟电信号进行采样,并存储所述模拟电信号的采样信号;
    模数转换电路,被配置为对所述信号采样电路存储的所述采样信号进行模数转换,以生成用于指示所述回波信号接收时间的数字电信号。
  2. 如权利要求1所述的集成电路,其特征在于,所述信号输入通道包括第一信号输入通道和第二信号输入通道,所述模拟电信号为所述第一信号输入通道和所述第二信号输入通道输入的两路信号的差分信号。
  3. 如权利要求1或2所述的集成电路,其特征在于,所述信号采样电路包括:
    延时链,所述延时链包括n个延时单元,n个所述延时单元依次传递控制信号,其中n为大于1的正整数;
    开关电容阵列,包含与n个所述延时单元一一对应的n个开关电容单元,n个所述开关电容单元均与所述信号输入通道相连,每个所述开关电容单元被配置为当所述控制信号传递至每个所述开关电容单元对应的延时单元时,对所述信号输入通道上的信号进行采样和存储。
  4. 如权利要求3所述的集成电路,其特征在于,所述延时单元包括两个反相器以及位于所述两个反相器之间的金属氧化物半导体MOS管,所述延时单元被配置为通过所述MOS管的栅极接收电压信号。
  5. 如权利要求3或4所述的集成电路,其特征在于,所述MOS管为PMOS管或NMOS管。
  6. 如权利要求1-5中任一项所述的集成电路,其特征在于,所述信号采样电路中的开关电容阵列包括级联在一起的多个子开关电容阵列。
  7. 如权利要求1-6中任一项所述的集成电路,其特征在于,所述信号输入通道上设置有功率放大器,所述模拟电信号为经过所述功率放大器放大后的信号。
  8. 一种用于测量距离的系统,其特征在于,所述系统包括:
    如权利要求1-7中任一项所述的集成电路;
    接收器,被配置为接收所述测距信号对应的回波信号;
    控制器,被配置为在所述发射器发射所述测距信号之后,向所述信号采样电路发送控制信号,控制所述信号采样电路开始工作,以获取所述采样信号。
  9. 如权利要求8所述的系统,其特征在于,所述控制器还被配置为控制所述发射器发射所述测距信号。
  10. 如权利要求8或9所述的系统,其特征在于,所述控制器还被配置为控制所述模数转换电路对所述采样信号进行模数转换。
  11. 如权利要求8-10中任一项所述的系统,其特征在于,所述系统还包括:
    所述发射器对应的光学系统,被配置为调整所述测距信号的发射角度;
    所述接收器对应的光学系统,被配置为调整所述测距信号对应的回波信号的接收角度;
    所述控制器还被配置对所述发射器对应的光学系统以及所述接收器对应的光学系统进行控制,使得所述测距信号能够用于测量不同角度的被测物体。
  12. 如权利要求11所述的系统,其特征在于,所述发射器对应的光学系统和/或所述接收器对应的光学系统为旋转双棱镜或微电子机械系统MEMS振镜。
  13. 如权利要求11或12所述的系统,其特征在于,所述发射器对应的光学系统和所述接收器对应的光学系统为同一光学系统。
  14. 如权利要求8-13中任一项所述的系统,其特征在于,所述系统为激光探测与测量系统。
PCT/CN2018/076307 2018-02-11 2018-02-11 集成电路以及用于测量距离的系统 WO2019153303A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/076307 WO2019153303A1 (zh) 2018-02-11 2018-02-11 集成电路以及用于测量距离的系统
CN201880009721.5A CN110366690A (zh) 2018-02-11 2018-02-11 集成电路以及用于测量距离的系统
US16/990,534 US20200371216A1 (en) 2018-02-11 2020-08-11 Integrated circuit and system for measuring distance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/076307 WO2019153303A1 (zh) 2018-02-11 2018-02-11 集成电路以及用于测量距离的系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/990,534 Continuation US20200371216A1 (en) 2018-02-11 2020-08-11 Integrated circuit and system for measuring distance

Publications (1)

Publication Number Publication Date
WO2019153303A1 true WO2019153303A1 (zh) 2019-08-15

Family

ID=67549253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076307 WO2019153303A1 (zh) 2018-02-11 2018-02-11 集成电路以及用于测量距离的系统

Country Status (3)

Country Link
US (1) US20200371216A1 (zh)
CN (1) CN110366690A (zh)
WO (1) WO2019153303A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3657203A1 (de) * 2018-11-22 2020-05-27 Hexagon Technology Center GmbH Elektrooptischer entfernungsmesser und entfernungsmessverfahren

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101008675A (zh) * 2006-12-15 2007-08-01 哈尔滨工业大学 超声波测量距离的方法及装置
CN101813515A (zh) * 2010-04-30 2010-08-25 重庆理工大学 一种精密测量超声波传输时间的方法及装置
CN103941295A (zh) * 2014-03-27 2014-07-23 北京航天发射技术研究所 路面承载能力探测装置
CN105403892A (zh) * 2015-12-23 2016-03-16 中国科学院长春光学精密机械与物理研究所 一种基于开关电容阵列采样的半导体激光测距机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW253083B (zh) * 1993-10-05 1995-08-01 Advanced Micro Devices Inc
JP4854604B2 (ja) * 2007-06-20 2012-01-18 ルネサスエレクトロニクス株式会社 半導体集積回路、それを搭載したカードおよびその動作方法
JP2009100237A (ja) * 2007-10-17 2009-05-07 Panasonic Corp サンプリング受信装置
JP2011009989A (ja) * 2009-06-25 2011-01-13 Sanyo Electric Co Ltd サンプルホールド回路
CN201639647U (zh) * 2009-11-09 2010-11-17 比亚迪股份有限公司 一种模数转换电路及图像处理系统
CN103166644B (zh) * 2013-04-11 2016-01-13 东南大学 一种低功耗逐次逼近型模数转换器及其转换方法
CN104880705B (zh) * 2014-02-27 2018-04-27 北京大学 一种基于数控振荡器的调频连续波雷达
CN104796148B (zh) * 2015-05-19 2017-11-17 中国电子科技集团公司第二十四研究所 一种高速低功耗逐次逼近型模数转换器
CN104967465B (zh) * 2015-07-03 2017-10-24 桂林电子科技大学 Cmos全数字频率可调脉冲无线电超宽带发射机
CN106571827B (zh) * 2015-10-09 2021-03-02 国民技术股份有限公司 差分sar adc和其开关电容结构、a/d转换方法、版图实现方法
CN106849922A (zh) * 2017-03-17 2017-06-13 电子科技大学 一种可调延时电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101008675A (zh) * 2006-12-15 2007-08-01 哈尔滨工业大学 超声波测量距离的方法及装置
CN101813515A (zh) * 2010-04-30 2010-08-25 重庆理工大学 一种精密测量超声波传输时间的方法及装置
CN103941295A (zh) * 2014-03-27 2014-07-23 北京航天发射技术研究所 路面承载能力探测装置
CN105403892A (zh) * 2015-12-23 2016-03-16 中国科学院长春光学精密机械与物理研究所 一种基于开关电容阵列采样的半导体激光测距机

Also Published As

Publication number Publication date
CN110366690A (zh) 2019-10-22
US20200371216A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
WO2019000373A1 (zh) 用于测量时间的电路、方法及相关芯片、系统和设备
WO2017181453A1 (zh) 一种基于波形时域匹配的激光测距系统及方法
US9086275B2 (en) System and method for LIDAR signal conditioning
CN107632298B (zh) 一种应用于脉冲式激光雷达系统的高灵敏度接收电路
US20190043599A1 (en) Sample-and-hold circuit for a lidar system
US11782164B2 (en) System and method for high dynamic range waveform digitization
CN107505608B (zh) 激光雷达阵列接收器前端读出集成电路
CN105607072A (zh) 一种非扫描激光成像系统
CN111164457B (zh) 激光测距模块、装置、方法和移动平台
US20230084331A1 (en) Photoelectric sensing acquisition module photoelectric sensing ranging method and ranging device
US20150091618A1 (en) Sample and hold circuit and source driver including the same
CN107255808A (zh) 一种激光雷达出射的窄脉冲峰值能量监测装置
WO2019153303A1 (zh) 集成电路以及用于测量距离的系统
CN104375163A (zh) 一种多道脉冲幅度分析器
Zheng et al. A linear-array receiver AFE circuit embedded 8-to-1 multiplexer for direct ToF imaging LiDAR applications
CN105403892A (zh) 一种基于开关电容阵列采样的半导体激光测距机
JP2021128165A (ja) 撮像デバイスの画素システム、画素、および方法
CN111638525A (zh) 一种激光测距装置及激光测距方法
CN111048540A (zh) 一种门控式像素单元以及3d图像传感器
CN212872898U (zh) 一种激光测距装置及接触网检测设备
Lee et al. Advanced compact 3D lidar using a high speed fiber coupled pulsed laser diode and a high accuracy timing discrimination readout circuit
WO2023231956A1 (zh) 一种图像传感器的像素和图像传感器
Browne et al. An advanced sonar ring design with 48 channels of continuous echo processing using matched filters
CN218673893U (zh) 一种光传输数字水听器模块
WO2024125531A1 (en) Signal processing circuit for lidar, chip and lidar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904775

Country of ref document: EP

Kind code of ref document: A1