WO2019153260A1 - 拉曼检测辅助设备、拉曼检测终端及方法 - Google Patents
拉曼检测辅助设备、拉曼检测终端及方法 Download PDFInfo
- Publication number
- WO2019153260A1 WO2019153260A1 PCT/CN2018/076032 CN2018076032W WO2019153260A1 WO 2019153260 A1 WO2019153260 A1 WO 2019153260A1 CN 2018076032 W CN2018076032 W CN 2018076032W WO 2019153260 A1 WO2019153260 A1 WO 2019153260A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- raman
- chip
- evaporation
- detecting
- water molecule
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N21/658—Raman scattering enhancement Raman, e.g. surface plasmons
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N2021/0106—General arrangement of respective parts
- G01N2021/0112—Apparatus in one mechanical, optical or electronic block
Definitions
- the present disclosure belongs to the field of spectrum detection technologies, and in particular, to a Raman detection auxiliary device, a Raman detection terminal, and a method.
- Raman enhancement chips are available on the market for signal amplification of low-concentration and extremely low-level substances for detection.
- the nano-coating of the Raman enhancement chip requires the substance to be tested to be completely attached to the coating to amplify the Raman signal. If it is a solution, because of the presence of a large amount of water molecules, the trace substance to be tested cannot be attached to the coating, or only a very small amount is attached to the surface of the nano-coating layer, which will make the signal cannot be effectively collected, so the water must be evaporated. Only after testing can be performed.
- the use of Raman enhancement chips is relatively cumbersome.
- the present disclosure provides a Raman detection auxiliary device, a Raman detection terminal, and a method for at least partially solving the above problems.
- the Raman detection aid, the Raman detection terminal and the method improve the efficiency of Raman detection compared to the existing Raman detection terminal.
- a Raman detection aid device including:
- An evaporation promoting device for performing a water evaporation operation on the Raman enhancement chip located in the chip placement device.
- the Raman detection auxiliary device further includes:
- a water molecule detecting device for detecting a water molecule content on a Raman enhancement chip of the chip placement mechanism
- an evaporation control device configured to receive water molecule content information from the water molecule detecting device, and control the evaporation promoting device to heat the Raman enhancement chip according to the water molecule information.
- the evaporation control device is configured to control a duration and/or a heating intensity at which the evaporation enhancement device heats the Raman enhancement chip according to the water molecule information.
- the evaporation control device is further configured to control the water molecule detecting device to re-detect the Raman enhancement chip located on the chip placement mechanism after the evaporation promoting device heats the Raman enhancement chip a water molecule content; if the water molecule content exceeds a threshold, re-controlling the evaporation promoting device to heat the Raman enhancement chip, otherwise, stopping heating the Raman enhancement chip.
- the water molecule detecting device comprises a water molecule detecting sensor.
- a water molecule detecting device is used to determine the water molecule content on the Raman enhancement chip of the chip placement mechanism by Raman spectroscopy.
- the evaporation promoting device comprises an electric heating device or an illumination heating lamp.
- the Raman detection aid further includes a heating switch for turning the evaporation promoting device on or off in response to a manual operation by a user.
- the Raman detection aid includes a timer for controlling the duration of the moisture evaporation operation of the evaporation promotion device.
- a Raman detecting terminal comprising: an apparatus body; and the Raman detecting assisting device described above.
- a Raman detecting terminal including:
- a laser source for emitting laser light
- a Raman probe for collecting a Raman signal amplified by a Raman enhancement chip of the laser source for spectral analysis
- An evaporation promoting device for performing a water evaporation operation on the Raman chip located in the chip placement device An evaporation promoting device for performing a water evaporation operation on the Raman chip located in the chip placement device.
- the Raman detection terminal further includes:
- a water molecule detecting device for detecting a water molecule content on a Raman enhancement chip of the chip placement mechanism
- an evaporation control device configured to receive water molecule content information from the water molecule detecting device, and control the evaporation promoting device to heat the Raman enhancement chip according to the water molecule information.
- a method for performing Raman detection using the above Raman detection terminal includes:
- Raman detection is performed on the Raman enhancement chip located in the chip placement device.
- the method further comprises:
- the evaporation promoting device controls, by the water molecule content information, the evaporation promoting device performs a water evaporation operation on the Raman enhancement chip.
- the Raman detection auxiliary device, the Raman detection terminal and the method in some embodiments of the present disclosure can be equipped with an evaporation promotion device to heat the Raman enhancement chip to remove moisture, facilitate user operation, and improve Raman detection. effectiveness.
- FIG. 1 shows a schematic diagram of a Raman detection aid according to an embodiment of the present disclosure
- FIG. 2 shows a schematic diagram of a Raman detection terminal in accordance with one embodiment of the present disclosure
- FIG. 3 illustrates a schematic diagram of a Raman detection terminal in accordance with another embodiment of the present disclosure
- FIG. 4 shows a schematic diagram of a Raman detection terminal in accordance with yet another embodiment of the present disclosure
- FIG. 5 is a flow chart of a Raman detection method in accordance with one embodiment of the present disclosure.
- the scattering molecule is originally in the ground state.
- the molecule absorbs a photon and then transitions to the virtual level, and immediately returns to the ground state to emit photons, which is Rayleigh scattering.
- the emitted new photon energy is obviously smaller than the incident photon energy, which is the Raman Stokes line (Stokes).
- the Raman Stokes line Stokes
- anti-Stokes are generated, and the Stokes line and the anti-Stokes line are commonly referred to as Raman lines.
- Raman spectrum is a scattering spectrum.
- Raman spectroscopy is based on the Raman scattering effect discovered by Indian scientist CV Raman.
- the scattering spectrum is different from the incident light frequency to obtain molecular vibration and rotation information, and is applied to molecular structure research.
- An analytical method is a scattering spectrum.
- SERS Surface Enhanced Raman Scattering
- FIG. 1 is a schematic diagram of a Raman detection auxiliary device according to an embodiment of the present disclosure.
- the Raman detecting auxiliary device 10 of the present embodiment includes a chip placement mechanism 11 for placing an inserted Raman enhancement chip, and an evaporation promoting device 12 for performing a moisture evaporation operation on the Raman enhancement chip located in the chip placement device 11.
- the evaporation promoting device 12 may be, for example, a heating device such as an electric heating device and/or an irradiation heating lamp; or another moisture evaporation promoting device such as a fan; or a combination of both, such as an electric heating fan.
- the Raman detection auxiliary device provided by the embodiment of the present disclosure is equipped with an evaporation promotion device, which can heat the Raman enhancement chip to remove moisture, facilitate user operation, and improve the efficiency of Raman detection.
- FIG. 2 shows a schematic diagram of a Raman detection terminal in accordance with one embodiment of the present disclosure.
- the present embodiment provides a Raman detection terminal 100 including a device body 110 and a Raman detection assistance device 120, such as a handheld Raman enhancement detection device.
- the Raman detection aid 120 may include a chip placement mechanism 121 and an evaporation promoting device 122.
- the evaporation promoting device 122 is, for example, an electric heating device.
- the chip placement mechanism 121 can be used to place a Raman enhancement chip inserted through a chip socket (not shown), and the Raman enhancement chip placed on the chip placement mechanism 121 is heated by the electric heating device 122.
- the electric heating device 122 is located adjacent to the chip placement mechanism 121, such as under, on or around the chip placement mechanism 121 to heat the Raman enhancement chip.
- the Raman detection aid 120 further includes a heating switch 123 for turning the evaporation promoting device 122 on or off. The user can manually select to turn the electric heating device 122 on or off.
- the Raman detection aid 120 further includes a water molecule detecting device 124 for detecting the water molecule content on the Raman enhancement chip of the chip placement mechanism 121; the water molecule detecting device 124 is, for example, a water molecule detecting sensor. .
- the evaporation control device 125 is configured to receive water molecule content information from the water molecule detecting device 124, and control the evaporation promoting device 122 to heat the Raman enhancement chip based on the water molecule information.
- the Raman detection aid 120 further includes a timer (not shown) for controlling the duration of the moisture evaporation operation of the evaporation promotion device 121, and the evaporation control device 125 is configured to control the evaporation promotion device based on the water molecule information. 122 Duration and/or heating intensity of heating the Raman enhancement chip.
- the evaporation control device 125 is further configured to control the water molecule detecting device 124 to re-detect the water molecule content on the Raman enhancement chip of the chip placement mechanism 121 after the evaporation promoting device 122 heats the Raman enhancement chip. If the water molecule content exceeds the threshold, the evaporation promoting device 122 is re-controlled to heat the Raman enhancement chip; otherwise, the heating of the Raman enhancement chip is stopped.
- the Raman substance detecting terminal detects whether there is water molecules on the Raman enhancement chip through the water molecule detecting device, and if present, the evaporation control device according to the sensor value, or the laser emission duration and the intensity value of the water molecule signal, Alternatively, the current moisture content can be determined, and the evaporation promoting device can be controlled to perform a water evaporation operation, for example, the duration of operation of the electric heating device and/or the irradiation heating lamp can be set. After the time has elapsed, the cycle is detected until the water molecule content is below the set threshold, the Raman detection is initiated, and the Raman spectrum is collected. The results of the comparison are presented to the user after the collection is completed. When using this device for Raman enhanced detection, the efficiency is greatly improved, and no additional Raman enhancement chip detection pre-processing device and equipment is needed, and even a non-professional ordinary user can fool a simple operation.
- FIG. 3 shows a schematic diagram of a Raman detection terminal in accordance with another embodiment of the present disclosure.
- the present embodiment provides a Raman detection terminal 200 including a device body 210 and a Raman detection assistance device 220.
- the Raman detection assisting device 220 may include a chip placement mechanism 221 and an illumination heating lamp 222, and the chip placement mechanism 221 may be used to insert a Raman enhancement chip, which is placed on the chip placement mechanism 221 by irradiating the heat lamp 222.
- the Raman enhancement chip is heated.
- the Raman detection aid 220 further includes a heating switch 223 for turning the illumination heater 222 on or off.
- the apparatus body 210 has a laser 211 that emits laser light for Raman detection and a Raman probe 212 for sensing the intensity of the Raman signal emitted by the substance to be detected.
- the Raman enhancement chip containing the substance to be detected is placed in the chip placement mechanism 221
- the laser 211 emits laser light to the substance to be detected placed on the Raman enhancement chip in the chip placement mechanism 211.
- the substance to be detected emits a Raman signal.
- the Raman probe 212 senses the Raman signal emitted by the substance to be detected, converts it into an electrical signal and sends it to the processor 214 for analysis.
- the processor 214 performs spectral analysis based on the Raman signal to determine the composition of the substance to be detected, and sends it to the display 215 for display.
- the Raman substance detecting terminal 200 includes a capability of detecting water molecules or a water molecule detecting device. If it is desired to detect water molecules on the Raman enhancement chip, the laser 211 first emits a short-time laser to the Raman enhancement chip, and the Raman spectrum is collected by the Raman probe 212, and the spectrum analysis is performed by using the processor 214 or the water molecule detecting device. If no water molecule signal is detected at the fixed wavenumber position, it is considered that there is no water molecule present, the substance detection on the Raman enhancement chip can be continued; if the water molecule signal is detected, the evaporation promotion device 222 can be controlled, for example, irradiation heating The lamp heats the Raman enhancement chip to remove moisture.
- the Raman substance detecting terminal itself determines whether or not there is a peak of water molecules by Raman spectroscopy.
- the detecting terminal can determine the current moisture content according to the sensor value, or the laser emission duration and the intensity value of the water molecule signal, or other means. Based on this value, the duration of operation of the electric heating device and/or the illuminating heating lamp can be set. After the time has elapsed, the cycle is detected until the water molecule content is below the set threshold, the Raman detection is initiated, and the Raman spectrum is collected. The results of the comparison are presented to the user after the collection is completed. When using this device for Raman enhanced detection, the efficiency is greatly improved, and no additional Raman enhancement chip detection pre-processing device and equipment is needed, and even a non-professional ordinary user can fool a simple operation.
- the present embodiment provides a Raman detection device 300, which may include a Raman enhancement probe 310 (ie, a device body) and a Raman detection assistance device 320.
- This embodiment uses the Raman detection device as a pull device.
- the Manchester Enhanced Probe is an example for illustration.
- the Raman detection support device 320 reference may be made to the Raman detection support devices 120 and 220 in the above embodiments, which will not be described in detail herein.
- the Raman probe is used to couple the external optical path of the laser and the spectrometer to improve the optical coupling efficiency and improve the portability of the Raman spectrometer. It can be turned into a Raman enhanced probe by adding a Raman chip jack at the front end of the Raman probe. .
- the fiber laser signal emitted by the fiber laser is converted into a parallel laser by a collimating mirror; the parallel laser is irradiated to the dichroic film, so that the incident laser is reflected at a 45 degree angle to the collimating lens group, and is focused to the strip/
- the Raman enhancement chip on the chain the Raman signal generated by the sample to be tested is accompanied by the laser reflected light, passes through the collimating mirror group (transmissive above 790 nm), the laser filters out 99.9%, and then passes through the dichroic color patch;
- the Raman signal in the optical signal after the color chip is unobstructed through the filter set (transmittable above 790 nm), and the laser signal is filtered out; the Raman signal light is focused through the focusing mirror to the spectrometer slit for the next step. Spectroscopic measurement.
- the Raman detection auxiliary device in any of the above embodiments may be implemented as a separate accessory, may be integrated on the Raman detection terminal, or adopt other configurations, which are not limited herein.
- FIG. 5 is a flow chart of a Raman detection method according to an embodiment of the present disclosure.
- the Raman detection method can be applied to the Raman detection device.
- the specific Raman detection device can refer to the content described in any of the foregoing embodiments in FIG. 2-4, and details are not described herein again.
- the Raman detection method may include the following steps.
- the water molecule content on the Raman enhancement chip is detected.
- the moisture content on the Raman enhancement chip located on the chip placement mechanism is detected, for example, by a water molecule detection sensor or other means.
- the evaporation promoting device is controlled to perform a water evaporation operation on the Raman enhancement chip according to the measured water molecule content information, and the evaporation enhancement device performs a water evaporation operation on the Raman enhancement chip located in the chip placement device.
- Raman spectroscopy is performed on the Raman enhancement chip located in the chip placement device.
- the user drops or smears the test substance onto the Raman enhancement chip, and then inserts it into the enhancement chip socket on the Raman substance detection terminal body or the accessory;
- the user is set to the manual drying mode, that is, manually selecting to turn on the electric heating device and/or illuminating the heating lamp, and autonomously controlling the duration, it is executed according to the user's instruction until the user manually stops the heating or stops heating when the timing is reached. After the user clicks to start detection, go to step 7; if the user is set to the automatic determination mode, then do not need to manually control, directly click to start detection, go to step 3;
- the terminal determines whether there is water in the substance on the Raman enhancement chip by any means. Specifically, it can be performed by a sensor having a water molecule sensing function, if no water molecules are detected, then go to step 7; if a signal of water molecules is detected, go to step 4. Or if the Raman substance detection terminal can detect water, a short-time laser is first emitted and the Raman spectrum is collected. If no signal of water molecules is detected at the fixed wavenumber position, it can be considered that there is no water molecule present, go to step 7; if a signal of water molecules is detected, go to step 4.
- the specific water molecule detection method is not limited here;
- step 7 If the water molecule signal strength does not exceed the set threshold (the threshold should be set to a minimum value), go to step 7; if the intensity exceeds the set threshold, the user is prompted to have a certain amount of water in the current test substance. Molecule, heating and drying process is in progress, go to step 5;
- the detection terminal can determine the approximate amount of current moisture based on the sensor value, or the laser emission duration and the intensity value of the water molecule signal, or other means (depending on the method of water molecule detection in step 3). Based on this value, it can be determined that the time required to evaporate the current moisture requires the electric heating device and/or the illumination heating lamp to operate (power is known, and the speed of evaporation is also known);
- step 5 activate the electric heating device and/or illuminate the heating lamp to promote evaporation of water and set a timer. After the timer expires, stop heating and go to step 3;
- a laser is emitted and Raman spectroscopy is collected for spectral analysis.
- This solution is aimed at the cumbersome process of the Raman enhancement chip.
- the efficiency of the user can be greatly improved when using the device for Raman enhancement detection, and no additional need is needed.
- the Raman enhanced chip detection pre-processing device and device can be fooled by simple operations even for non-professional users.
- this program will increase the cost of the product and its limited, and will be very helpful for the product to be pushed to the civilian market.
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
一种拉曼检测辅助设备(120)、拉曼检测终端(100)及方法,属于光谱检测技术领域。该拉曼检测辅助设备(120)包括芯片放置机构(121),用于放置插入的拉曼增强芯片;蒸发促进装置(122),用于对位于芯片放置装置的拉曼增强芯片进行水分蒸发操作。该拉曼检测辅助设备(120),自身配备有蒸发促进装置(122)对拉曼增强芯片进行加热以去除水分,方便用户操作,提高了拉曼检测的效率。
Description
本公开属于光谱检测技术领域,具体涉及一种拉曼检测辅助设备、拉曼检测终端及方法。
目前,市面上已经有了拉曼增强芯片,用于对浓度低、极低的物质进行信号放大以进行检测。拉曼增强芯片的纳米涂层,需要被测物质完全贴附在涂层上才能够对拉曼信号进行放大。而如果是溶液,因为大量水分子的存在,待测微量物质无法与涂层贴合,或者只有极少量贴附在纳米涂层表面,这将使得信号无法被有效收集,因此必须将水分蒸发干才可进行检测。拉曼增强芯片的使用相对来说过程比较繁琐。举例来说,如果想检测奶粉中是否含有三聚氰胺,需要冲一点奶粉,滴一滴到拉曼增强芯片上,再将这一滴烘烤干,然后将拉曼增强芯片插入拉曼物质检测终端,激光发射,收集拉曼光谱。对于实验室专业人员来说,可能还可以接受这样的操作,但对于未来的民用市场,普通用户会抗拒这么复杂的操作流程,对产品的推广极为不利。
因此,如果有一种方案能够高效的完成上面整套流程,将能够方便用户操作,提高操作效率。
发明内容
本公开为至少部分解决现有的上述问题,提供一种拉曼检测辅助设备、拉曼检测终端及方法。该拉曼检测辅助设备、拉曼检测终端及方法相比现有的拉曼检测终端提高了拉曼检测的效率。
根据本公开的一个方面,提供一种拉曼检测辅助设备,包括:
芯片放置机构,用于放置插入的拉曼增强芯片;
蒸发促进装置,用于对位于所述芯片放置装置的拉曼增强芯片进行水分蒸发操作。
根据一个实施例,拉曼检测辅助设备还包括:
水分子检测装置,用于检测位于所述芯片放置机构的拉曼增强芯片上的水分子含量;
蒸发控制装置,用于接收来自所述水分子检测装置的水分子含量信息,根据所述水分子信息控制所述蒸发促进装置对所述拉曼增强芯片进行加热。
根据一个实施例,蒸发控制装置用于根据所述水分子信息控制所述蒸发促进装置对所述拉曼增强芯片进行加热的时长和/或加热强度。
根据一个实施例,蒸发控制装置还用于在所述蒸发促进装置对所述拉曼增强芯片加热结束后,控制所述水分子检测装置重新检测位于所述芯片放置机构的拉曼增强芯片上的水分子含量;如果所述水分子含量超过阈值,则重新控制所述蒸发促进装置对所述拉曼增强芯片进行加热,否则,停止对所述拉曼增强芯片进行加热。
根据一个实施例,水分子检测装置包括水分子检测传感器。
根据一个实施例,水分子检测装置用于通过拉曼光谱分析确定位于所述芯片放置机构的拉曼增强芯片上的水分子含量。
根据一个实施例,蒸发促进装置包括电加热装置或照射加热灯。
根据一个实施例,拉曼检测辅助设备还包括:加热开关,用于响应于用户的手工操作,开启或关闭所述蒸发促进装置。
根据一个实施例,拉曼检测辅助设备包括:定时器,用于控制所述蒸发促进装置的水分蒸发操作的时长。
根据本公开的另一方面,提供一种拉曼检测终端,包括:设备主体;和上述的拉曼检测辅助设备。
根据本公开的又一方面,提供一种拉曼检测终端,包括:
激光源,用于发射激光;
拉曼探头,用于收集所述激光源发射的激光经过拉曼增强芯片放大后的拉曼信号用于光谱分析;
芯片放置机构,用于放置插入的所述拉曼芯片;
蒸发促进装置,用于对位于所述芯片放置装置的拉曼芯片进行水分蒸发操作。
根据一个实施例,拉曼检测终端还包括:
水分子检测装置,用于检测位于所述芯片放置机构的拉曼增强芯片上的水分子含量;
蒸发控制装置,用于接收来自所述水分子检测装置的水分子含量信息,根据所述水分子信息控制所述蒸发促进装置对所述拉曼增强芯片进行加热。
根据本公开的再一方面,提供一种利用上述拉曼检测终端进行拉曼检测的方法,包括:
利用所述蒸发促进装置对位于所述芯片放置装置的拉曼增强芯片进行水分蒸发操作;
对位于所述芯片放置装置的拉曼增强芯片进行拉曼检测。
根据一个实施例,该方法还包括:
检测位于拉曼增强芯片上的水分子含量;
根据所述水分子含量信息控制所述蒸发促进装置对所述拉曼增强芯片进行水分蒸发操作。
本公开某些实施例中的拉曼检测辅助设备、拉曼检测终端及方法,通过自身配备有蒸发促进装置能够对拉曼增强芯片进行加热以去除水分,方便用户操作,提高了拉曼检测的效率。
本公开的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本公开的实践而习得。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能 限制本公开。
图1示出根据本公开的一个实施例的拉曼检测辅助设备的示意图;
图2示出根据本公开的一个实施例的拉曼检测终端的示意图;
图3示出根据本公开的另一个实施例的拉曼检测终端的示意图;
图4示出根据本公开的又一个实施例的拉曼检测终端的示意图;
图5为根据本公开的一个实施例的拉曼检测方法的流程图。
首先对本公开中涉及到的术语和原理进行释义说明。
散射分子原来处于基态,当外来光子入射到分子时,分子吸收一个光子后跃迁到虚能级,并立即回到基态而发射光子,这是瑞利散射。如果分子跃迁到虚能级不回到原来所处基态,而落到另一较高能级发射光子,这个发射的新光子能量显然小于入射光子能量,这是拉曼斯托克斯线(Stokes),反之产生反斯托克斯线(Anti-Stokes),斯托克斯线和反斯托克斯线通称为拉曼谱线。
拉曼光谱(Raman spectra),是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。
表面增强拉曼散射(Surface Enhanced Raman Scattering,SERS)技术克服了传统拉曼光谱与生俱来的信号微弱的缺点,可以使得拉曼强度增大几个数量级。其增强因子可以高达1014-1015倍,足以探测到单个分子的拉曼信号。SERS可以用于痕量材料分析、流式细胞术以及其它一些应用。但拉曼增强芯片由纳米材料附着硅片或石英片上构成,因此不适合直接测量,需要设计一种专用的拉曼增强检测设备。
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开作进一步详细描述。
图1为本公开实施例的拉曼检测辅助设备的示意图。本实施例的拉曼检测辅助设备10包括:芯片放置机构11,用于放置插入的拉曼增强芯片;蒸发促进装置12,用于对位于芯片放置装置11的拉曼增强芯片进行水分蒸发操作。蒸发促进装置12例如可以是加热装置,如电加热装置和/或照射加热灯;或者是其他水分蒸发促进装置,如风扇;或者两者的结合,如电热风扇。
本公开实施方式提供的拉曼检测辅助设备,自身配备有蒸发促进装置,能够对拉曼增强芯片进行加热以去除水分,方便用户操作,提高了拉曼检测的效率。
图2示出根据本公开的一个实施例的拉曼检测终端的示意图。本实施例提供一种拉曼检测终端100,该拉曼检测终端100包括设备主体110和拉曼检测辅助设备120,该拉曼 检测终端例如为手持式拉曼增强检测设备。
在本实施例中,拉曼检测辅助设备120可以包括芯片放置机构121和蒸发促进装置122,在该实施例中,蒸发促进装置122例如是电加热装置。芯片放置机构121可以用于放置通过芯片插口(未示出)插入的拉曼增强芯片,通过电加热装置122对放置在芯片放置机构121的拉曼增强芯片进行加热。电加热装置122位于芯片放置机构121的附近,例如位于芯片放置机构121的下方、侧面或周围,以便对拉曼增强芯片进行加热。
在一个实施例中,拉曼检测辅助设备120还包括加热开关123,用于开启或关闭蒸发促进装置122。用户可以手动选择开启或关闭电加热装置122。
在一个实施例中,拉曼检测辅助设备120还包括水分子检测装置124,用于检测位于芯片放置机构121的拉曼增强芯片上的水分子含量;水分子检测装置124例如是水分子检测传感器。蒸发控制装置125,用于接收来自水分子检测装置124的水分子含量信息,根据水分子信息控制蒸发促进装置122对拉曼增强芯片进行加热。在一个实施例中,拉曼检测辅助设备120还包括定时器(未示出),用于控制蒸发促进装置121的水分蒸发操作的时长,蒸发控制装置125用于根据水分子信息控制蒸发促进装置122对拉曼增强芯片进行加热的时长和/或加热强度。
在一个实施例中,蒸发控制装置125还用于在蒸发促进装置122对拉曼增强芯片加热结束后,控制水分子检测装置124重新检测位于芯片放置机构121的拉曼增强芯片上的水分子含量;如果水分子含量超过阈值,则重新控制蒸发促进装置122对拉曼增强芯片进行加热,否则,停止对拉曼增强芯片进行加热。
上述实施例中,拉曼物质检测终端通过水分子检测装置检测拉曼增强芯片上是否有水分子存在,如果存在,则蒸发控制装置根据传感器数值,或激光发射时长和水分子信号的强度值,或其他方式,即可判定当前的水分含量,控制蒸发促进装置进行水分蒸发操作,例如,可设定电加热装置和/或照射加热灯工作的时长。时长到达后循环检测,直到水分子含量低于设定阈值,启动拉曼检测,并收集拉曼光谱。收集结束之后将比对结果呈现给用户。在使用本设备进行拉曼增强检测时,效率得以大幅提升,且不再需要额外的拉曼增强芯片检测预处理装置和设备,即使是非专业的普通用户也可以傻瓜化的简单操作。
图3示出根据本公开的另一个实施例的拉曼检测终端的示意图。本实施例提供一种拉曼检测终端200,该拉曼检测终端200包括设备主体210和拉曼检测辅助设备220。
在本实施例中,拉曼检测辅助设备220可以包括芯片放置机构221和照射加热灯222,芯片放置机构221可以用于插入拉曼增强芯片,通过照射加热灯222对放置在芯片放置机构221的拉曼增强芯片进行加热。在一个实施例中,拉曼检测辅助设备220还包括加热开关223,用于开启或关闭照射加热灯222。
在一个实施例中,如图3所示,设备主体210具有发出用于拉曼检测的激光的激光器211和用于感测待检测物质发出的拉曼信号强度的拉曼探头212。将包含待检测物质的拉曼增强芯片放置到芯片放置机构221后,激光器211向置于芯片放置机构211中的拉曼增 强芯片上的待检测物质发出激光。在激光的作用下,待检测物质发出拉曼信号。拉曼探头212感测待检测物质发出的拉曼信号,转换成电信号发送给处理器214进行分析。处理器214根据拉曼信号进行光谱分析,确定待检测物质的成分,发送到显示器215进行显示。
在一个实施例中,拉曼物质检测终端200包括水分子检测的能力或者水分子检测装置。如果需要检测拉曼增强芯片上的水分子,激光器211先发出一个短时激光到拉曼增强芯片,并由拉曼探头212收集拉曼光谱,利用处理器214或水分子检测装置进行光谱分析,如果在固定波数位置没有检测到水分子信号,则认为没有水分子的存在,则可以继续拉曼增强芯片上的物质检测;如果检测到水分子信号,则可以控制蒸发促进装置222,例如照射加热灯,对拉曼增强芯片进行加热以去除水分。
上述实施例中,拉曼物质检测终端自身通过拉曼光谱判定是否有水分子的波峰存在。检测终端根据传感器数值,或激光发射时长和水分子信号的强度值,或其他方式,即可判定当前的水分含量。根据此值,即可设定电加热装置和/或照射加热灯工作的时长。时长到达后循环检测,直到水分子含量低于设定阈值,启动拉曼检测,并收集拉曼光谱。收集结束之后将比对结果呈现给用户。在使用本设备进行拉曼增强检测时,效率得以大幅提升,且不再需要额外的拉曼增强芯片检测预处理装置和设备,即使是非专业的普通用户也可以傻瓜化的简单操作。
图4为本公开实施例的拉曼检测设备的示意图。本实施例提供一种拉曼检测设备300,该拉曼检测设备300可以包括拉曼增强探头310(即设备主体)和拉曼检测辅助装置320,本实施例以所述拉曼检测设备为拉曼增强探头为例进行示例说明。其中,该拉曼检测辅助装置320的具体结构可参照上述实施例中的拉曼检测辅助装置120和220,在此不对其进行详细描述。
拉曼探头是用来耦合激光器和光谱仪的外光路部分,可以提高光学耦合效率,提高拉曼光谱仪使用的便携性,可以通过在拉曼探头前端增加拉曼芯片的插孔变为拉曼增强探头。
在本实施中,光纤激光器发出的光纤激光信号,经过准直镜变为平行激光;平行激光照射到二向色片,使入射激光以45度角反射到准直镜组,聚焦到条带/链条上的拉曼增强芯片;待测样品产生的拉曼信号伴随着激光反射光,经过准直镜组(790nm以上可透射),激光滤除99.9%,然后通过二向色片;通过二向色片后的光信号中的拉曼信号无阻碍通过滤光片组(790nm以上可透射),而激光信号被滤除;拉曼信号光经过聚焦镜组聚焦到光谱仪狭缝,用于下一步分光测量。
需要说明的是,上述任意实施例中的拉曼检测辅助装置即所述附件可以为单独附件实现,也可以集成在拉曼检测终端上,或者采用其他的结构方式,在此不做限定。
图5为本公开一个实施例的拉曼检测方法的流程图。该拉曼检测方法可以应用于拉曼检测设备,具体的拉曼检测设备可以参照上述图2-4任意实施例所述的内容,在此不再赘述。
如图5所示,该拉曼检测方法可以包括以下步骤。
在S510中,检测位于拉曼增强芯片上的水分子含量。例如通过水分子检测传感器或其他方式检测位于芯片放置机构上的拉曼增强芯片上的水分含量。
在S520中,根据测量的水分子含量信息控制蒸发促进装置对拉曼增强芯片进行水分蒸发操作,利用蒸发促进装置对位于芯片放置装置的拉曼增强芯片进行水分蒸发操作。
在S530中,对位于芯片放置装置的拉曼增强芯片进行拉曼光谱检测。
下面提供本公开的拉曼检测终端及方法的一个使用应用例。
1.用户将待测物质滴到或涂抹到拉曼增强芯片上,之后插入到拉曼物质检测终端本体或附件上的增强芯片插口中;
2.如果用户设置为手动烘干模式,也就是手动选择开启电加热装置和/或照射加热灯,并自主控制时长,则按照用户指令执行,直到用户手动停止加热或者定时到时停止加热。之后用户点击开始检测,转到步骤7;如果用户设置为自动判定模式,则不需要手动进行控制,直接点击开始检测即可,转到步骤3;
3.终端通过任意方式判定拉曼增强芯片上的物质中是否有水的存在。具体来说,可通过具备水分子感应功能的传感器进行,如果没有检测到水分子,则转到步骤7;如果检测到了水分子的信号,则转到步骤4。或者如果该拉曼物质检测终端可以检测水,则先发出一个短时激光,并收集拉曼光谱。如果在固定波数位置没有检测到水分子的信号,则可认为没有水分子的存在,转到步骤7;如果检测到了水分子的信号,则转到步骤4。具体采用何种水分子检测方法,此处不做限定;
4.如果水分子信号强度未超过设定阈值(该阈值应设定为极小的值),则转到步骤7;如果强度超过设定阈值,则提示用户当前待测物质中存在一定量水分子,正在进行加热烘干处理,转到步骤5;
5.检测终端根据传感器数值,或激光发射时长和水分子信号的强度值,或其他方式(取决于步骤3中水分子检测的方法)即可判定当前水分的大约存在量。根据此值,即可判定出蒸发掉当前水分需要电加热装置和/或照射加热灯工作的时长(功率是已知的,蒸发的速度也是已知的);
6.根据步骤5计算的时长,启动电加热装置和/或照射加热灯,促进水分蒸发,并设置定时器。定时器到时后,停止加热,并转到步骤3;
7.发射激光,并收集拉曼光谱进行光谱分析。
8.当积分信噪比达标后,收集结束,停止激光发射;
9.将光谱信息在数据库中比对,并将结果信息呈现给用户。
本方案针对拉曼增强芯片使用流程繁琐的问题,通过内置蒸发促进装置和水分子的自动检测判定机制,使得用户在使用本设备进行拉曼增强检测时,效率得以大幅提升,且不再需要额外的拉曼增强芯片检测预处理装置和设备,即使是非专业的普通用户也可以傻瓜化的简单操作。同时,本方案对产品成本的提升及其有限,对产品推向民用市场将会非常 有帮助。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。
Claims (14)
- 一种拉曼检测辅助设备,包括:芯片放置机构,用于放置插入的拉曼增强芯片;蒸发促进装置,用于对位于所述芯片放置装置的拉曼增强芯片进行水分蒸发操作。
- 根据权利要求1所述的拉曼检测辅助设备,其中,还包括:水分子检测装置,用于检测位于所述芯片放置机构的拉曼增强芯片上的水分子含量;蒸发控制装置,用于接收来自所述水分子检测装置的水分子含量信息,根据所述水分子信息控制所述蒸发促进装置对所述拉曼增强芯片进行加热。
- 根据权利要求2所述的拉曼检测辅助设备,其中,所述蒸发控制装置用于根据所述水分子信息控制所述蒸发促进装置对所述拉曼增强芯片进行加热的时长和/或加热强度。
- 根据权利要求3所述的拉曼检测辅助设备,其中,所述蒸发控制装置还用于在所述蒸发促进装置对所述拉曼增强芯片加热结束后,控制所述水分子检测装置重新检测位于所述芯片放置机构的拉曼增强芯片上的水分子含量;如果所述水分子含量超过阈值,则重新控制所述蒸发促进装置对所述拉曼增强芯片进行加热,否则,停止对所述拉曼增强芯片进行加热。
- 根据权利要求2至4中任意一项所述的拉曼检测辅助设备,其中,所述水分子检测装置包括水分子检测传感器。
- 根据权利要求2至4中任意一项所述的拉曼检测辅助设备,其中,所述水分子检测装置用于通过拉曼光谱分析确定位于所述芯片放置机构的拉曼增强芯片上的水分子含量。
- 根据权利要求1所述的拉曼检测辅助设备,其中,所述蒸发促进装置包括电加热装置或照射加热灯。
- 根据权利要求7所述的拉曼检测辅助设备,其中,还包括:加热开关,用于响应于用户的手工操作,开启或关闭所述蒸发促进装置。
- 根据权利要求1、3、4、7或8所述的拉曼检测辅助装置,其中,还包括:定时器,用于控制所述蒸发促进装置的水分蒸发操作的时长。
- 一种拉曼检测终端,包括:设备主体;上述权利要求1至9中任意一项所述的拉曼检测辅助设备。
- 一种拉曼检测终端,包括:激光源,用于发射激光;拉曼探头,用于收集所述激光源发射的激光经过拉曼增强芯片放大后的拉曼信号用于光谱分析;芯片放置机构,用于放置插入的所述拉曼芯片;蒸发促进装置,用于对位于所述芯片放置装置的拉曼芯片进行水分蒸发操作。
- 根据权利要求11所述的拉曼检测终端,其中,还包括:水分子检测装置,用于检测位于所述芯片放置机构的拉曼增强芯片上的水分子含量;蒸发控制装置,用于接收来自所述水分子检测装置的水分子含量信息,根据所述水分子信息控制所述蒸发促进装置对所述拉曼增强芯片进行加热。
- 一种利用如权利要求10-12中所述拉曼检测终端进行拉曼检测的方法,包括:利用所述蒸发促进装置对位于所述芯片放置装置的拉曼增强芯片进行水分蒸发操作;对位于所述芯片放置装置的拉曼增强芯片进行拉曼检测。
- 根据权利要求13所述的方法,还包括:检测位于拉曼增强芯片上的水分子含量;根据所述水分子含量信息控制所述蒸发促进装置对所述拉曼增强芯片进行水分蒸发操作。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880000102.XA CN108323183B (zh) | 2018-02-09 | 2018-02-09 | 拉曼检测辅助设备、拉曼检测终端及方法 |
PCT/CN2018/076032 WO2019153260A1 (zh) | 2018-02-09 | 2018-02-09 | 拉曼检测辅助设备、拉曼检测终端及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/076032 WO2019153260A1 (zh) | 2018-02-09 | 2018-02-09 | 拉曼检测辅助设备、拉曼检测终端及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019153260A1 true WO2019153260A1 (zh) | 2019-08-15 |
Family
ID=62895853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/076032 WO2019153260A1 (zh) | 2018-02-09 | 2018-02-09 | 拉曼检测辅助设备、拉曼检测终端及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108323183B (zh) |
WO (1) | WO2019153260A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110687099A (zh) * | 2019-11-24 | 2020-01-14 | 冯聪 | 一种增强基因芯片拉曼效应的真空装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108323183B (zh) * | 2018-02-09 | 2020-12-18 | 深圳达闼科技控股有限公司 | 拉曼检测辅助设备、拉曼检测终端及方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101464253A (zh) * | 2007-12-19 | 2009-06-24 | 中国科学院大连化学物理研究所 | 一种原位拉曼样品池 |
CN103364387A (zh) * | 2012-04-01 | 2013-10-23 | 深圳市宇驰检测技术有限公司 | 一种孔雀石绿的激光拉曼检测方法 |
CN204807459U (zh) * | 2015-04-23 | 2015-11-25 | 北京信智天成科技有限公司 | 薄片固定装置及快速检测拉曼光谱仪 |
CN106153599A (zh) * | 2015-04-22 | 2016-11-23 | 吴世法 | 一种有、无受体二氧化钛纳米金属膜拉曼芯片及制作方法 |
US20170097343A1 (en) * | 2015-10-01 | 2017-04-06 | The Florida International University Board Of Trustees | On-chip assay for environmental surveillance |
CN106596501A (zh) * | 2016-11-23 | 2017-04-26 | 深圳先进技术研究院 | 一种磁性可移动拉曼增强芯片、其制备方法及用途 |
CN106669872A (zh) * | 2016-12-29 | 2017-05-17 | 中国人民解放军国防科学技术大学 | 微流控表面增强拉曼测试芯片及其制备方法和应用 |
CN108323183A (zh) * | 2018-02-09 | 2018-07-24 | 深圳达闼科技控股有限公司 | 拉曼检测辅助设备、拉曼检测终端及方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3652155B2 (ja) * | 1999-02-01 | 2005-05-25 | 京セラ株式会社 | セラミックス基板の探傷液塗布装置 |
DE102004049241A1 (de) * | 2004-10-09 | 2006-04-20 | Sanofi-Aventis Deutschland Gmbh | Trockner und Verfahren zum Steuern eines Trockners |
CN201004050Y (zh) * | 2006-11-21 | 2008-01-09 | 北京工业大学 | 用于微流控生物芯片pcr荧光检测的避光散热结构 |
CN101201346B (zh) * | 2007-12-06 | 2011-06-29 | 中国科学院长春应用化学研究所 | 一种生物芯片标记和检测方法 |
CN103364388B (zh) * | 2012-04-01 | 2015-08-19 | 深圳市宇驰检测技术有限公司 | 一种苏丹红i的激光拉曼检测方法 |
CN103116019B (zh) * | 2013-01-16 | 2015-03-18 | 宁波大学 | 一种免疫基底的制备方法及抗原或抗体的免疫检测方法 |
CN203630034U (zh) * | 2013-12-12 | 2014-06-04 | 山东科技大学 | 比色皿支架 |
CN105652002B (zh) * | 2016-01-07 | 2018-05-04 | 西北大学 | 一种基于唾液蛋白检测糖链标志物的凝集素芯片及其方法 |
CN105717090B (zh) * | 2016-05-08 | 2018-07-31 | 重庆科技学院 | 一种集成化全内反射微流控芯片检测一体机 |
CN206891124U (zh) * | 2017-05-26 | 2018-01-16 | 郭尧 | 一种玻片干燥装置 |
-
2018
- 2018-02-09 CN CN201880000102.XA patent/CN108323183B/zh active Active
- 2018-02-09 WO PCT/CN2018/076032 patent/WO2019153260A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101464253A (zh) * | 2007-12-19 | 2009-06-24 | 中国科学院大连化学物理研究所 | 一种原位拉曼样品池 |
CN103364387A (zh) * | 2012-04-01 | 2013-10-23 | 深圳市宇驰检测技术有限公司 | 一种孔雀石绿的激光拉曼检测方法 |
CN106153599A (zh) * | 2015-04-22 | 2016-11-23 | 吴世法 | 一种有、无受体二氧化钛纳米金属膜拉曼芯片及制作方法 |
CN204807459U (zh) * | 2015-04-23 | 2015-11-25 | 北京信智天成科技有限公司 | 薄片固定装置及快速检测拉曼光谱仪 |
US20170097343A1 (en) * | 2015-10-01 | 2017-04-06 | The Florida International University Board Of Trustees | On-chip assay for environmental surveillance |
CN106596501A (zh) * | 2016-11-23 | 2017-04-26 | 深圳先进技术研究院 | 一种磁性可移动拉曼增强芯片、其制备方法及用途 |
CN106669872A (zh) * | 2016-12-29 | 2017-05-17 | 中国人民解放军国防科学技术大学 | 微流控表面增强拉曼测试芯片及其制备方法和应用 |
CN108323183A (zh) * | 2018-02-09 | 2018-07-24 | 深圳达闼科技控股有限公司 | 拉曼检测辅助设备、拉曼检测终端及方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110687099A (zh) * | 2019-11-24 | 2020-01-14 | 冯聪 | 一种增强基因芯片拉曼效应的真空装置 |
CN110687099B (zh) * | 2019-11-24 | 2021-12-21 | 深圳市展能生物科技有限公司 | 一种增强基因芯片拉曼效应的真空装置 |
Also Published As
Publication number | Publication date |
---|---|
CN108323183B (zh) | 2020-12-18 |
CN108323183A (zh) | 2018-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8207508B2 (en) | Device and method for quantifying a surface's cleanliness | |
WO2019153260A1 (zh) | 拉曼检测辅助设备、拉曼检测终端及方法 | |
AU2015236470B2 (en) | Bioassay system and method for detecting analytes in body fluids | |
JP5859527B2 (ja) | 測光において使用可能なダイナミックレンジの拡大 | |
US8735851B2 (en) | Device and method for quantifying a surface's cleanliness | |
JP2006167451A (ja) | 法医学証拠の広範囲紫外線検出方法及びシステム | |
US20150211998A1 (en) | Multiple spectral measurement acquisition apparatus and the methods of using same | |
CN103424387A (zh) | 一种农药残留物荧光光谱检测装置 | |
EP3903097A1 (en) | Proximity triggered textile substrate classification apparatus and procedure | |
US5801828A (en) | Apparatus and method for fluorescence spectroscopy of remote sample | |
US10175171B2 (en) | Compact multi-UV-LED probe system and methods of use thereof | |
CN104749150A (zh) | 基于三维荧光光谱的食用油品质快速鉴别方法及鉴别装置 | |
JP2015178993A (ja) | 検出装置 | |
CN209784193U (zh) | 一种能够在强荧光背景下测量物质的拉曼光谱的设备 | |
KR20160089967A (ko) | 클로로필 측정 센서프로브 | |
TW201512648A (zh) | 智慧型自動化化學物質定性及定量之檢測裝置及檢測方法 | |
CN212199262U (zh) | 一种基于激光光谱技术的病菌检测仪器 | |
US20180106712A1 (en) | Particle size determination using raman spectroscopy | |
JP2006343335A (ja) | 光の集中を利用した検体検出 | |
JP2003098085A (ja) | 土壌中の重金属系有害物質分析方法およびその装置 | |
CN203613195U (zh) | 一种聚合酶链反应检测仪 | |
TWI847724B (zh) | 用於校準微弱螢光光譜測量值的方法和裝置與其電腦可讀媒介的編碼方法 | |
CN109406492B (zh) | 一种能够在强荧光背景下测量物质的拉曼光谱的设备 | |
Schalike et al. | A review of spectroscopic methods applied to bloodstain pattern analysis | |
JP2003172697A (ja) | 分析装置及び方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18904730 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/12/2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18904730 Country of ref document: EP Kind code of ref document: A1 |