WO2019153210A1 - 用于上行和下行的数据传输的方法和装置 - Google Patents

用于上行和下行的数据传输的方法和装置 Download PDF

Info

Publication number
WO2019153210A1
WO2019153210A1 PCT/CN2018/075875 CN2018075875W WO2019153210A1 WO 2019153210 A1 WO2019153210 A1 WO 2019153210A1 CN 2018075875 W CN2018075875 W CN 2018075875W WO 2019153210 A1 WO2019153210 A1 WO 2019153210A1
Authority
WO
WIPO (PCT)
Prior art keywords
qfi
network device
mapping rule
terminal device
value
Prior art date
Application number
PCT/CN2018/075875
Other languages
English (en)
French (fr)
Inventor
石聪
尤心
刘建华
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2018/075875 priority Critical patent/WO2019153210A1/zh
Priority to CN201880037042.9A priority patent/CN110710257B/zh
Publication of WO2019153210A1 publication Critical patent/WO2019153210A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]

Definitions

  • the present application relates to the field of communications, and more particularly to a method and apparatus for data transmission for uplink and downlink.
  • 5G Core 5G core network equipment
  • 5G Core 5G Core
  • DRBs Data Radio Bearers
  • QoS Quality of Service
  • One PDU session can have multiple QoS flows, and different QoS flows can be identified by different QoS flows.
  • QFI Quality of Service
  • data in the same QoS flow will have the same QoS processing, such as scheduling.
  • each packet is identified in the N3 interface.
  • This QFI is usually 7 bits.
  • the QFI of the N3 interface can be dynamically and explicitly allocated, for example, the QFI is carried in the header portion of the data packet, or can be implicitly allocated, for example, the QFI is equal to 5QI.
  • 5QI can be used to represent QoS flow attributes, such as priority, etc., and there is a one-to-one mapping relationship with 5G QoS features. Since the current maximum value of 5QI is 79, the corresponding required QFI is at least 7 bits.
  • one PDU session in the terminal device supports a maximum of 64 QoS flows at any time, and the QFI transmitted through the air interface on the RAN side is 6 bits. Therefore, the QFI transmitted on the N3 interface is 7 bits, and the QFI transmitted to the RAN side can only be 6 bits, and there is a problem of mismatch between the two.
  • the present application provides a method and apparatus for uplink and downlink data transmission, which can smoothly transmit data packets including QFI between a core network device, an access network device, and a terminal device.
  • a first aspect provides a method for downlink data transmission, where the method includes: determining, by a core network device, a second QFI corresponding to a first QFI according to a mapping rule; and sending, by the core network device, a data packet to an access network device The header of the data packet includes the second QFI.
  • the number of bits occupied by the first QFI is greater than the number of bits occupied by the second QFI.
  • the mapping rule is: when the first QFI is a value that exceeds a representation range of the second QFI, A mapping relationship between the value of the first QFI and the specific value of the second QFI.
  • the mapping rule is: when the first QFI is a value that does not exceed a representation range of the second QFI, A mapping relationship between a value of the first QFI and a specific value of the second QFI.
  • the method further includes: the core network device sending a non-access stratum (NAS) letter to the terminal device.
  • NAS non-access stratum
  • the NAS signaling is used to indicate the mapping rule, where the mapping rule is used by the terminal device to determine the first QFI corresponding to the second QFI.
  • the core network device determines, according to the mapping rule, the second QFI corresponding to the first QFI, where the number of bits occupied by the second QFI may be smaller than that occupied by the first QFI.
  • QFI enables the smooth transmission of QFI between the core network device, the access network device, and the terminal device, and solves the problem that the number of bits occupied by the QFI does not match when the QFI is transmitted through the N3 interface and the QFI is transmitted through the air interface.
  • a second aspect provides a method for downlink data transmission, the method comprising: an access network device receiving a first data packet sent by a core network device, where the first data packet includes a first QFI; The network device determines, according to the mapping rule, the second QFI corresponding to the first QFI; the access network device sends, to the terminal device, a second data packet corresponding to the first data packet, and the packet header of the second data packet The second QFI is included, so that the terminal device determines the corresponding first QFI according to the second QFI.
  • the number of bits occupied by the first QFI is greater than the number of bits occupied by the second QFI.
  • the mapping rule is: when the first QFI is a value that exceeds a representation range of the second QFI, A mapping relationship between the value of the first QFI and the specific value of the second QFI.
  • the mapping rule is: when the first QFI is a value that does not exceed a representation range of the second QFI, A mapping relationship between a value of the first QFI and a specific value of the second QFI.
  • the method further includes: the access network device sending a radio resource control (RRC) to the terminal device Signaling, the RRC signaling is used to indicate the mapping rule, where the mapping rule is used by the terminal device to determine the first QFI corresponding to the second QFI.
  • RRC radio resource control
  • the access network device receives the first data packet sent by the core network device, where the first data packet includes a first QFI, and the first QFI corresponding to the mapping is determined according to the mapping rule.
  • the second QFI, the second data packet including the second QFI is sent to the terminal device, so that when the first QFI occupied bit number in the first data packet received by the access network device is large, the mapping is occupied by using A second QFI with a smaller number of bits, thereby implementing transmission to the terminal device, and causing the terminal device to determine the first QFI corresponding to the second QFI according to the mapping rule.
  • a third aspect provides a method for downlink data transmission, where the method includes: receiving, by a terminal device, a data packet sent by an access network device, where a packet header includes a second QFI, and the second QFI is The access network device or the core network device is determined according to the first QFI; the terminal device determines the first QFI corresponding to the second QFI according to a mapping rule.
  • the number of bits occupied by the first QFI is greater than the number of bits occupied by the second QFI.
  • the mapping rule is: when the first QFI is a value that exceeds a representation range of the second QFI, A mapping relationship between the value of the first QFI and the specific value of the second QFI.
  • the mapping rule is: when the first QFI is a value that does not exceed a range of the second QFI representation range, A mapping relationship between a value of the first QFI and a specific value of the second QFI.
  • the mapping rule is preset.
  • the second QFI is determined by the access network device according to the first QFI, and the method further includes: The terminal device receives the RRC signaling sent by the access network device, where the RRC signaling is used to indicate the mapping rule.
  • the second QFI is determined by the core network device according to the first QFI
  • the method further includes: The terminal device receives the NAS signaling sent by the core network device, where the NAS signaling is used to indicate the mapping rule.
  • the terminal device receives a data packet including the second QFI, where the second QFI is determined by the access network device or the core network device according to the mapping rule and the first QFI, The terminal device determines the first QFI corresponding to the second QFI according to the mapping rule, so that the QFI is successfully transmitted between the core network device, the access network device, and the terminal device, and the QFI is used when the QFI is transmitted through the N3 interface and the QFI is transmitted through the air interface.
  • the number of bits does not match.
  • a fourth aspect provides a method for uplink data transmission, where the method includes: determining, by the terminal device, a second QFI corresponding to the first QFI according to the mapping rule; and sending, by the terminal device, a data packet to the access network device, where The header of the data packet includes the second QFI.
  • the number of bits occupied by the first QFI is greater than the number of bits occupied by the second QFI.
  • the mapping rule is: when the first QFI is a value that exceeds a representation range of the second QFI, A mapping relationship between the value of the first QFI and the specific value of the second QFI.
  • the mapping rule is: when the first QFI is a value that does not exceed a range of the second QFI representation range, A mapping relationship between a value of the first QFI and a specific value of the second QFI.
  • the mapping rule is preset.
  • the determining, by the terminal device, the second QFI corresponding to the first QFI, according to the mapping rule includes: the terminal device according to the mapping And determining, by the Service Data Adaptation Protocol (SDAP) layer, the second QFI corresponding to the first QFI.
  • SDAP Service Data Adaptation Protocol
  • the method further includes: receiving, by the terminal device, radio resource control RRC signaling sent by the access network device, RRC signaling is used to indicate the mapping rule.
  • the determining, by the terminal device, the second QFI corresponding to the first QFI, according to the mapping rule includes: the terminal device according to the mapping a rule, determining, by the application layer, the second QFI corresponding to the first QFI.
  • the method further includes: receiving, by the terminal device, NAS signaling sent by the core network device, where the NAS signaling is used. Instructing the mapping rule.
  • the terminal device determines, according to the mapping rule, the second QFI corresponding to the first QFI, and sends the data packet including the second QFI to the access network device, so that When the number of bits occupied by a QFI does not meet the transmission requirements between the terminal device and the access network device, the QFI is transmitted to the access network device by mapping to the second QFI, so that the access network device and the core network device are successfully received. And determine the correct QFI.
  • a fifth aspect provides a method for uplink data transmission, where the method includes: an access network device receives a second data packet sent by a terminal device, where a packet header of the second data packet includes a second QFI; Determining, by the network access device, a first QFI corresponding to the second QFI according to the mapping rule; the access network device sending, to the core network device, a first data packet corresponding to the second data packet, where the first data packet Includes the first QFI.
  • the number of bits occupied by the first QFI is greater than the number of bits occupied by the second QFI.
  • the mapping rule is: when the first QFI is a value that exceeds a representation range of the second QFI, A mapping relationship between the value of the first QFI and the specific value of the second QFI.
  • the mapping rule is: when the first QFI is a value that does not exceed a representation range of the second QFI, A mapping relationship between a value of the first QFI and a specific value of the second QFI.
  • the method further includes: the access network device sending RRC signaling to the terminal device, where the RRC signaling is used Instructing the mapping rule, the mapping rule is used by the terminal device to determine the second QFI corresponding to the first QFI included in a packet header of the second data packet.
  • the terminal device determines a second QFI corresponding to the first QFI according to the mapping rule, and sends a second data packet including the second QFI to the access network device
  • the network access device determines the corresponding first QFI according to the mapping rule according to the second QFI in the second data packet, and sends the first data packet including the first QFI to the core network device, so that the bit occupied by the first QFI
  • the terminal device maps it to the second QFI, and sends the QFI to the access network device, and then determines, by the access network device, according to the mapping rule.
  • the first QFI corresponding to the second QFI so that the access network device and the core network device successfully receive and determine the correct QFI.
  • a sixth aspect provides a method for uplink data transmission, where the method includes: a core network device receives a data packet sent by an access network device, a packet header of the data packet includes a second QFI, and the second QFI is Determining, by the terminal device, according to the first QFI; the core network device determining, according to a mapping rule, the first QFI corresponding to the second QFI.
  • the number of bits occupied by the first QFI is greater than the number of bits occupied by the second QFI.
  • the mapping rule is: when the first QFI is a value that exceeds a representation range of the second QFI, A mapping relationship between the value of the first QFI and the specific value of the second QFI.
  • the mapping rule is: when the first QFI is a value that does not exceed a representation range of the second QFI, A mapping relationship between a value of the first QFI and a specific value of the second QFI.
  • the method further includes: the core network device sends NAS signaling to the terminal device, where the NAS signaling is used And indicating the mapping rule, so that the terminal device determines the second QFI corresponding to the first QFI according to the mapping rule.
  • the terminal device determines a second QFI corresponding to the first QFI according to the mapping rule, and sends a data packet including the second QFI to the access network device, and the access network The device forwards the data packet to the core network device, so that the core network device determines the corresponding first QFI according to the mapping rule according to the second QFI in the data packet, so that the number of bits occupied by the first QFI does not satisfy the terminal device and access.
  • the terminal device maps it to the second QFI, and sends the QFI to the access network device, and then the access network device forwards the device to the core network device, and the core network device determines and performs according to the mapping rule.
  • the first QFI corresponding to the second QFI so that the access network device and the core network device successfully receive and determine the correct QFI.
  • a core network device for performing the method of any of the foregoing first aspect or any of the possible implementations of the first aspect.
  • the core network device comprises means for performing the method of any of the above-described first aspects or any of the possible implementations of the first aspect.
  • an access network device for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • the access network device comprises means for performing the method of any of the above-described second or second aspects of the second aspect.
  • a terminal device for performing the method in any of the above possible implementations of the third aspect or the third aspect.
  • the terminal device comprises means for performing the method in any of the possible implementations of the third aspect or the third aspect described above.
  • a terminal device for performing the method of any of the above-mentioned fourth aspect or any possible implementation of the fourth aspect.
  • the terminal device comprises means for performing the method in any of the possible implementations of the fourth or fifth aspect above.
  • an access network device for performing the method in any of the possible implementations of the fifth aspect or the fifth aspect.
  • the access network device comprises means for performing the method in any of the possible implementations of the fifth or fifth aspect above.
  • a core network device for performing the method in any of the possible implementation manners of the sixth aspect or the sixth aspect.
  • the core network device comprises means for performing the method in any of the possible implementations of the sixth or sixth aspect above.
  • a core network device comprising: a storage unit and a processor, the storage unit is configured to store an instruction, the processor is configured to execute an instruction stored by the memory, and when the processor executes the memory storage When executed, the execution causes the processor to perform the method of the first aspect or any of the possible implementations of the first aspect.
  • an access network device comprising: a storage unit and a processor, the storage unit is configured to store an instruction, the processor is configured to execute an instruction stored by the memory, and when the processor executes the memory storage The execution of the instructions causes the processor to perform the method of the second aspect or any of the possible implementations of the second aspect.
  • a terminal device comprising: a storage unit and a processor, the storage unit is configured to store an instruction, the processor is configured to execute an instruction stored by the memory, and when the processor executes the instruction stored in the memory The execution causes the processor to perform the method of any of the possible implementations of the third aspect or the third aspect.
  • a terminal device comprising: a storage unit and a processor, the storage unit is configured to store an instruction, the processor is configured to execute an instruction stored by the memory, and when the processor executes the instruction stored in the memory The execution causes the processor to perform the method of any of the possible implementations of the fourth aspect or the fourth aspect.
  • an access network device comprising: a storage unit and a processor, the storage unit is configured to store an instruction, the processor is configured to execute an instruction stored by the memory, and when the processor executes the memory storage The execution causes the processor to perform the method of any of the possible implementations of the fifth aspect or the sixth aspect.
  • a core network device comprising: a storage unit and a processor, the storage unit is configured to store an instruction, the processor is configured to execute an instruction stored by the memory, and when the processor executes the memory storage When executed, the execution causes the processor to perform the method of any of the possible implementations of the sixth or sixth aspect.
  • a nineteenth aspect a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a computer readable medium for storing a computer program comprising instructions for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • a twenty-first aspect a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of any of the third aspect or any of the possible implementations of the third aspect.
  • a twenty-second aspect a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of any of the fourth aspect or any of the possible implementations of the fourth aspect.
  • a twenty-third aspect a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of any of the fifth aspect or any of the possible implementations of the fifth aspect.
  • a twenty-fourth aspect a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of any of the sixth or sixth aspect of the sixth aspect.
  • a twenty-fifth aspect a computer program product comprising instructions for performing the above-described first aspect or any of the possible implementations of the first aspect when the computer runs the finger of the computer program product A method for downlink data transmission.
  • the computer program product can run on the core network device of the seventh aspect described above.
  • a twenty-sixth aspect a computer program product comprising instructions for performing any of the above-described second or second aspect of the computer program product when the computer runs the finger of the computer program product A method for downlink data transmission.
  • the computer program product can be run on the access network device of the above eighth aspect.
  • a computer program product comprising instructions for performing any of the above-described third or third aspect of the computer program product when the computer runs the finger of the computer program product A method for downlink data transmission.
  • the computer program product can be run on the terminal device of the ninth aspect above.
  • a twenty-eighth aspect a computer program product comprising instructions for performing the fourth aspect or any of the possible implementations of the fourth aspect described above when the computer runs the finger of the computer program product A method for uplink data transmission.
  • the computer program product can be run on the terminal device of the above tenth aspect.
  • a twenty-ninth aspect a computer program product comprising instructions for performing any of the above fifth or fifth possible implementations of the computer program product when the computer is operating the finger of the computer program product A method for uplink data transmission.
  • the computer program product can be run on the access network device of the eleventh aspect above.
  • a thirtieth aspect a computer program product comprising instructions for performing the above-described sixth aspect or any of the possible implementations of the sixth aspect when the computer runs the finger of the computer program product Method for uplink data transmission.
  • the computer program product can be run on the core network device of the twelfth aspect described above.
  • FIG. 1 is a schematic flowchart of a method for downlink data transmission according to an embodiment of the present application.
  • FIG. 2 is another schematic flowchart of a method for downlink data transmission according to an embodiment of the present application.
  • FIG. 3 is another schematic flowchart of a method for downlink data transmission according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a method for downlink data transmission in accordance with an embodiment of the present application.
  • FIG. 5 is another schematic diagram of a method for downlink data transmission according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for uplink data transmission according to an embodiment of the present application.
  • FIG. 7 is another schematic flowchart of a method for uplink data transmission according to an embodiment of the present application.
  • FIG. 8 is another schematic flowchart of a method for uplink data transmission according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a method for uplink data transmission in accordance with an embodiment of the present application.
  • FIG. 10 is another schematic diagram of a method for uplink data transmission according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a core network device according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of an access network device according to an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 14 is another schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 15 is another schematic block diagram of an access network device according to an embodiment of the present application.
  • FIG. 16 is another schematic block diagram of a core network device according to an embodiment of the present application.
  • FIG. 17 is another schematic block diagram of a core network device according to an embodiment of the present application.
  • FIG. 18 is another schematic block diagram of an access network device according to an embodiment of the present application.
  • FIG. 19 is another schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 20 is another schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 21 is another schematic block diagram of an access network device according to an embodiment of the present application.
  • FIG. 22 is another schematic block diagram of a core network device according to an embodiment of the present application.
  • GSMC global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD LTE frequency division duplex
  • TDD LTE Time Division Duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G future fifth generation
  • 5G fifth generation
  • NR new radio
  • the terminal device in the embodiment of the present application may refer to a user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or User device.
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the access network device may be a device for communicating with the terminal device, for example, may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or a base station (NodeB, NB) in a WCDMA system. It may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in the LTE system, or the access network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a RAN or NG in a future 5G network.
  • the RAN may also be an access network device or the like in a PLMN network that is evolved in the future.
  • the present application describes various embodiments in connection with core network devices.
  • the core network device may be a 5GC.
  • the core network device may be a User Plane Function (UPF) in the 5G system.
  • UPF User Plane Function
  • the embodiment of the present application is not limited thereto.
  • FIG. 1 shows a schematic flow diagram of a method 100 for downlink data transmission, which may be performed by a core network device, in accordance with an embodiment of the present application.
  • the method 100 includes: S110, the core network device determines, according to a mapping rule, a second QFI corresponding to the first QFI; S120, the core network device sends a data packet to the access network device, and the packet header of the data packet This second QFI is included.
  • the data packet of the embodiment of the present application may be an Internet Protocol (IP) packet
  • the packet header of the data packet may be a GTP packet header
  • the core network device sends a data packet to the terminal device by using the access network device.
  • the core network device determines a first QFI that identifies the target QoS flow, for example, the first QFI may be 7 bits, and only the 6-bit QFI transmission is supported between the access network device and the terminal device,
  • the core network device may determine the second QFI corresponding to the first QFI according to the mapping rule, and change the number of bits of the original QFI by using the mapping, that is, the number of bits occupied by the first QFI is greater than the number of bits occupied by the second QFI, for example,
  • the first QFI is 7 bits
  • the second QFI is 6 bits.
  • the first QFI represents the target QoS flow and may also be used to indicate the attribute of the target QoS flow, for example, the first QFI is equal to the value of 5QI. At present, the maximum value of the value of the 5QI is 79. Therefore, 7 bits are required to be represented, so the first QFI may be 7 bits, but the embodiment of the present application is not limited thereto.
  • the mapping rule may include: a mapping relationship between a value of the first QFI and a specific value of the second QFI when the first QFI is a value exceeding a range of the second QFI.
  • the number of bits occupied by the first QFI may be greater than the number of bits occupied by the second QFI, that is, the maximum value represented by the first QFI is greater than the maximum value of the second QFI, if the value of the first QFI exceeds the representation of the QFI.
  • the mapping rule may be a mapping relationship between the first QFI and a specific value of the second QFI, and the specific value of the second QFI is a value within the second QFI representation range.
  • the mapping rule may be: when the first QFI is greater than the value of the second QFI.
  • the first QFI may take ⁇ 65, 66, 69, 70, 75, 79 ⁇ , and these values all exceed the representation range of the second QFI, and the second QFI is taken.
  • the mapping rule may include: ⁇ 65-10 , 66-11, 69-12, 70-14, 75-14, 79-15 ⁇ , wherein "-" indicates the correspondence between the two values before and after, for example, if the first QFI is 65, that is, through 7bit
  • it is determined that the second QFI corresponding to the first QFI is 10, that is, the first QFI has a correspondence relationship between 65 indicated by 7 bits and 10 indicated by 6 bits of the second QFI.
  • the mapping rule may further include: mapping, between the value of the first QFI and the specific value of the second QFI, when the first QFI is a value that does not exceed a range of the second QFI. .
  • the number of bits occupied by the first QFI may be greater than the number of bits occupied by the second QFI, that is, the maximum value that the first QFI can represent is greater than the maximum value of the second QFI, and the value of the first QFI may not exceed the QFI.
  • the mapping rule may be a mapping relationship between the first QFI and a specific value of the second QFI.
  • the first QFI takes up 7 bits and the second QFI takes 6 bits as an example. If the first QFI is within the range of the second QFI, for example, the first QFI takes 8 or 7 bits. 8.
  • the second QFI is also 8, that is, the value 8 is represented by 6 bits, or the second QFI may be a specific value other than 8, for example.
  • the first QFI is 8
  • the second QFI is 13
  • the value of the first QFI is 7 bits
  • the value of the second QFI is 6 bits.
  • the embodiment of the present application is not limited to this. .
  • the core network device sends a data packet to the access network device, for example, sending the data packet to the access network device through the N3 interface, where the packet header includes the second QFI, so that the access network device receives
  • the data packet is sent to the terminal device, and the terminal device determines the corresponding first QFI according to the second QFI and the mapping rule in the data packet header.
  • the method 100 may further include: the core network device sends NAS signaling to the terminal device, where the NAS signaling is used to indicate a mapping rule, so that the terminal device determines, according to the mapping rule, the first QFI corresponding to the second QFI. .
  • the core network device determines, according to the mapping rule, the second QFI corresponding to the first QFI, where the number of bits occupied by the second QFI may be smaller than that occupied by the first QFI.
  • QFI enables the smooth transmission of QFI between the core network device, the access network device, and the terminal device, and solves the problem that the number of bits occupied by the QFI does not match when the QFI is transmitted through the N3 interface and the QFI is transmitted through the air interface.
  • a method for downlink data transmission is described in detail from the perspective of a core network device. The following describes the method according to the embodiment of the present application from the perspective of the access network device. The method of downlink data transmission.
  • the method 200 includes: S210, an access network device receives a first data packet sent by a core network device, where the first data packet includes a first QFI; S220, and the access network device determines according to a mapping rule. a second QFI corresponding to the first QFI; S230, the access network device sends a second data packet corresponding to the first data packet to the terminal device, where the packet header of the second data packet includes the second QFI, to facilitate the The terminal device determines the corresponding first QFI according to the second QFI.
  • the access network device receives the first data packet sent by the core network device, where the first data packet includes a first QFI.
  • the access network device can receive the first data sent by the core network device by using the N3 interface.
  • the first QFI in the first data packet may be a dynamic explicit indication.
  • the first QFI of the first data packet includes the first QFI, and the first QFI indicates a target QoS flow, the first QFI. It may occupy 7 bits, or may be less than 7 bits; or, the first QFI in the first data packet may be an implicit indication, for example, the first data packet includes a value of 5QI, and the value of the 5QI is equal to the first QFI.
  • the value of the current QQ is 7 bits, and the corresponding first QFI is 7 bits.
  • the access network device determines, according to the mapping rule, the second QFI corresponding to the first QFI, where the number of bits occupied by the original QFI can be changed by using the mapping, that is, the number of bits occupied by the first QFI may be greater than the second.
  • the number of bits in QFI Specifically, if the number of bits occupied by the first QFI received by the access network device is less than or equal to the size of the supported QFI between the access network device and the terminal device, the access network may not be mapped.
  • the access network device may The first data packet including the 6-bit first QFI is forwarded to the terminal device.
  • the access network device may map the first QFI to the second QFI according to the mapping rule. And in S230, the access network device sends a second data packet corresponding to the first data packet to the terminal device, where the packet header of the second data packet includes the second QFI, so that the terminal device determines the second according to the mapping rule.
  • the first QFI is 7 bits, and only the 6-bit QFI transmission is supported between the access network device and the terminal device. Therefore, the access network device can map the 7-bit first QFI to the 6-bit according to the mapping rule. Two QFIs, and transmitting a second data packet including the second QFI to the terminal device.
  • the mapping rule in the method 200 is similar to the mapping rule in the method 100.
  • the mapping rule in the method 200 may include: when the first QFI is a value exceeding a range of the second QFI, the first a mapping relationship between a value of the QFI and a specific value of the second QFI; the mapping rule further includes: when the first QFI is a value that does not exceed a range of the second QFI, the first QFI The mapping relationship between the value and the specific value of the second QFI is not described here.
  • the access network device determines the second QFI corresponding to the first QFI according to the mapping rule.
  • the method 200 may further include: the access network device sends RRC signaling to the terminal device, where the RRC signaling is used to indicate Mapping rules, so that the terminal device determines the first QFI corresponding to the second QFI according to the mapping rule.
  • the access network device receives the first data packet sent by the core network device, where the first data packet includes a first QFI, and the first QFI corresponding to the mapping is determined according to the mapping rule.
  • the second QFI, the second data packet including the second QFI is sent to the terminal device, so that when the first QFI occupied bit number in the first data packet received by the access network device is large, the mapping is occupied by using A second QFI with a smaller number of bits, thereby implementing transmission to the terminal device, and causing the terminal device to determine the first QFI corresponding to the second QFI according to the mapping rule.
  • the method for downlink data transmission according to the embodiment of the present application is described in detail from the perspectives of the core network device and the access network device, respectively, and will be described below from the perspective of the terminal device.
  • a method for downlink data transmission according to an embodiment of the present application is described in detail from the perspectives of the core network device and the access network device, respectively, and will be described below from the perspective of the terminal device.
  • FIG. 3 shows a schematic flow diagram of a method 300 for downlink data transmission, which may be performed by a terminal device device, in accordance with an embodiment of the present application.
  • the method 300 includes: S310, the terminal device receives a data packet sent by the access network device, where the packet header includes a second QFI, and the second QFI is the access network device or the core network device according to the The first QFI determines; S320, the terminal device determines the first QFI corresponding to the second QFI according to the mapping rule.
  • the terminal device receives the data packet sent by the access network device, where the packet header includes a second QFI, where the terminal device can receive the data packet sent by the access network device through the air interface.
  • the second QFI may be determined by the access network device according to the first QFI and the mapping rule, or may also be determined by the core network device according to the first QFI and the mapping rule.
  • the second QFI may be determined by the access network device according to the first QFI and the mapping rule, that is, the access network device receives the data packet sent by the core network device, where the data packet includes the first QFI, because the access network The QFI with a large number of occupied bits can be transmitted between the device and the core network device, and the access network device does not support the access device. Therefore, the access network device determines the corresponding second QFI according to the first QFI and the mapping rule. The number of bits of the second QFI is smaller than the number of bits of the first QFI, so that the data packet including the second QFI is sent to the terminal device.
  • the second QFI may also be determined by the core network device according to the first QFI and the mapping rule, because the access network device and the core network device can transmit a QFI with a large number of occupied bits, and the access network device And the terminal device does not support, so the core network device determines the corresponding second QFI according to the first QFI and the mapping rule, where the number of bits of the second QFI is smaller than the number of bits of the first QFI, and is sent to the access network device.
  • the data packet including the second QFI enables the access network device to directly forward the data packet including the second QFI to the terminal device.
  • the terminal device determines the first QFI corresponding to the second QFI according to the mapping rule. Specifically, if the second QFI in the data packet received by the S310 is determined by the access network device according to the mapping rule, the terminal device may further receive the RRC signaling sent by the access network device, where the RRC signaling is used to indicate the The mapping rule, or the mapping rule, may also be pre-configured, for example, preset by the SDAP layer protocol. If the second QFI in the data packet received by the S310 is determined by the core network device according to the mapping rule, the terminal device may further receive the NAS signaling sent by the core network device, where the NAS signaling is used to indicate the mapping rule, or The mapping rule can also be pre-configured.
  • the access network device or the core network device may determine and be first according to the mapping rule.
  • the second QFI corresponding to the QFI the number of bits occupied by the second QFI is smaller than the number of bits occupied by the first QFI.
  • the terminal device receives the second QFI, and determines a corresponding first QFI according to the mapping rule.
  • the mapping rule in the method 300 is the same as the mapping rule in the methods 100 and 200.
  • the core network device or the access network device maps the first QFI to the second QFI by using the mapping rule, and in the method 300, the terminal The device maps the second QFI to the first QFI according to the same mapping rule.
  • the mapping rule in the method 300 may include: mapping between a value of the first QFI and a specific value of the second QFI when the first QFI is a value exceeding a range of representation of the second QFI
  • the mapping rule may further include: a mapping relationship between the value of the first QFI and the specific value of the second QFI when the first QFI is a value that does not exceed the representation range of the second QFI, This will not be repeated here.
  • the terminal device receives a data packet including the second QFI, where the second QFI is determined by the access network device or the core network device according to the mapping rule and the first QFI, The terminal device determines the first QFI corresponding to the second QFI according to the mapping rule, so that the QFI is successfully transmitted between the core network device, the access network device, and the terminal device, and the QFI is used when the QFI is transmitted through the N3 interface and the QFI is transmitted through the air interface.
  • the number of bits does not match.
  • FIG. 4 shows a schematic diagram of a method 400 for downlink data transmission in accordance with an embodiment of the present application. As shown in FIG. 4, the method 400 includes the following steps.
  • the core network device determines a second QFI corresponding to the first QFI according to the mapping rule.
  • the core network device can change the size of the number of bits occupied by the QFI by using the mapping rule, that is, the number of bits occupied by the first QFI is greater than the number of bits occupied by the second QFI.
  • the first QFI occupies 7 bits
  • the second QFI occupies 6 bits.
  • the core network device sends a data packet to the access network device, and the packet header of the data packet includes the second QFI determined in S410.
  • the core network device can send the data packet through the N3 interface.
  • the access network device forwards the data packet including the second QFI to the terminal device.
  • the core network device maps the first QFI occupying a larger number of bits to a smaller second QFI, so that the transmission of the second QFI is supported between the access network device and the terminal device.
  • the terminal device receives the data packet, and determines a first QFI corresponding to the second QFI in the packet header of the data packet according to the mapping rule, so as to determine a corresponding QoS flow and/or an attribute of the QoS flow, for example,
  • the first QFI can represent a value of 5QI.
  • mapping rules in S410 and S440 in the method 400 are the same mapping rule.
  • the mapping rule may include: the first QFI is greater than the second QFI representation range. a mapping relationship between the value of the first QFI and the specific value of the second QFI; the mapping rule may further include: when the first QFI is a value that does not exceed the representation range of the second QFI The mapping relationship between the value of the first QFI and the specific value of the second QFI is not described herein.
  • mapping rule in the terminal device may be preset, or the terminal device may receive the NAS signaling sent by the core network device, and the NAS signaling includes the mapping rule.
  • FIG. 5 shows a schematic diagram of a method 500 for downlink data transmission in accordance with an embodiment of the present application. As shown in FIG. 5, the method 500 includes the following steps.
  • the core network device sends a first data packet to the access network device, where the first data packet includes a first QFI.
  • the first QFI in the first data packet may be a dynamic explicit indication, for example, the first QFI of the first data packet includes the first QFI, and the first QFI target QoS flow; or, the first The first QFI in a data packet may be an implicit indication.
  • the first data packet includes a value of 5QI such that the value of the 5QI is equal to the value of the first QFI.
  • the number of bits occupied by the first QFI is greater than the number of bits of the transmission QFI supported between the access network device and the terminal device.
  • the first QFI is 7 bits, and only 6-bit QFI transmission is supported between the access network device and the terminal device.
  • the access network device determines, according to the mapping rule, a second QFI corresponding to the first QFI.
  • the size of the number of bits occupied by the first QFI is greater than that of the second QFI, that is, the size of the number of bits occupied by the original QFI is changed by using a mapping rule, so as to support the QFI between the access network device and the terminal device. transmission.
  • the access network device sends, to the terminal device, a second data packet corresponding to the first data packet, where the second data packet includes a second QFI.
  • the access network device may send the second data packet to the terminal device through an air interface.
  • the terminal device determines, according to the mapping rule, a first QFI corresponding to the second QFI, so as to determine a corresponding QoS flow and/or an attribute of the QoS flow.
  • the first QFI may represent a value of 5QI. .
  • mapping rules in S520 and S540 in the method 500 are the same mapping rule.
  • the mapping rule may include: the first QFI is greater than the second QFI representation range. a mapping relationship between the value of the first QFI and the specific value of the second QFI; the mapping rule may further include: when the first QFI is a value that does not exceed the representation range of the second QFI The mapping relationship between the value of the first QFI and the specific value of the second QFI is not described herein.
  • mapping rule in the terminal device may be preset, or the terminal device may receive the RRC signaling sent by the access network device, and the RRC signaling includes the mapping rule.
  • the core network device or the access network device maps the first QFI to the second QFI according to the mapping rule, and sends the data packet including the second QFI to the terminal device. Therefore, the terminal device determines the first QFI corresponding to the second QFI according to the mapping rule, so that the QFI is successfully transmitted between the core network device, the access network device, and the terminal device, and the QFI is transmitted through the N3 interface and the QFI is transmitted through the air interface.
  • the problem that the number of bits occupied by QFI does not match.
  • FIG. 6 shows a schematic flow diagram of a method 600 for uplink data transmission, which may be performed by a terminal device, in accordance with an embodiment of the present application.
  • the method 600 includes: S610, the terminal device determines, according to a mapping rule, a second QFI corresponding to the first QFI; S620, the terminal device sends a data packet to the access network device, where the packet header includes the packet Second QFI.
  • the SDAP layer identifies the QFI for each SDAP PDU according to the allocation result, and is used to indicate the mapping relationship of QoS flow to DRB.
  • QFI can be identified by the RAN (SDAP layer) side and transmitted on the air interface. The purpose is to indicate Reflective QoS (RQoS). If NR-RAN or NAS does not use reflective mapping, then it can be used. The QFI is transmitted on the downstream air interface, otherwise the QFI needs to be transmitted.
  • the NG-RAN can configure the UE to transmit the QFI on the air interface.
  • the terminal device identifies the target QoS flow by using the first QFI, and if the number of bits occupied by the first QFI is larger, that is, the maximum number of bits that can be occupied by the QFI sent by the terminal device to the access network device.
  • the second QFI corresponding to the first QFI is determined by the mapping rule, and the number of bits occupied by the second QFI is smaller than the first QFI, so that the terminal device can meet the transmission requirement of the QFI between the terminal device and the access network device.
  • the terminal device can send a data packet to the access network device, and the packet header of the data packet includes the second QFI.
  • the first QFI occupies 7 bits
  • the terminal device and the access network device support a maximum of 6 bits of QFI transmission
  • the first QFI needs to be mapped to the second QFI
  • the second QFI occupied bit number is smaller than the first QFI.
  • the second QFI may occupy 6 bits or occupy less than 6 bits
  • the terminal device can send a data packet to the access network device, and the packet header of the data packet includes the second QFI.
  • the terminal device can directly transmit the first 7 bit to the access network device.
  • QFI without mapping, that is, the terminal device sends a data packet to the access network device, the data packet includes the first QFI, and correspondingly, the access network device and the core network device also support transmission of 7-bit QFI,
  • the access network device forwards the data packet including the first QFI to the core network device, but the embodiment of the present application is not limited thereto.
  • mapping rule used by the terminal device in the method 400 may be similar to the mapping rule in the method 100.
  • the mapping rule in the method 400 may also include: when the first QFI is beyond the representation range of the second QFI. a mapping relationship between the value of the first QFI and the specific value of the second QFI; the mapping rule may further include: when the first QFI is a value that does not exceed a range of the second QFI, The mapping relationship between the value of the first QFI and the specific value of the second QFI is not described here.
  • the terminal device may map the first QFI to the second QFI through the SDAP layer according to the mapping rule.
  • the terminal device sends the data packet including the second QFI to the access network device, for example, the terminal device may pass the air interface. Sending the data packet to the access network device, so that the access network device maps the second QFI to the first QFI according to the mapping rule, and the access network device may further send the data including the first QFI to the core network device.
  • mapping rules used by the access network device and the terminal device are the same.
  • the mapping rule of the terminal device may be preset, for example, the mapping rule may be specified by the SDAP layer protocol; or the terminal device may further receive RRC signaling sent by the access network device, where the RRC signaling is used. Indicates the mapping rule.
  • the terminal device may further map the first QFI to the second QFI through the upper layer of the SDAP layer according to the mapping rule, for example, mapping the first QFI to the second QFI through the application layer, and correspondingly, the terminal device is connected.
  • the network device sends a data packet including the second QFI, so that the access network device forwards the data packet including the second QFI to the core network device, and the core network device maps the second QFI to the first QFI according to the mapping rule.
  • mapping rules used by the core network device and the terminal device are the same.
  • the mapping rule of the terminal device may be preset; or the terminal device may further receive the NAS signaling sent by the core network device, where the NAS signaling is used to indicate the mapping rule.
  • the terminal device determines, according to the mapping rule, the second QFI corresponding to the first QFI, and sends the data packet including the second QFI to the access network device, so that When the number of bits occupied by a QFI does not meet the transmission requirements between the terminal device and the access network device, the QFI is transmitted to the access network device by mapping to the second QFI, so that the access network device and the core network device are successfully received. And determine the correct QFI.
  • a method for uplink data transmission according to an embodiment of the present application is described in detail from the perspective of a terminal device, and a method according to an embodiment of the present application will be described from the perspective of an access network device with reference to FIG. 7 .
  • the method of uplink data transmission is described in detail from the perspective of a terminal device, and a method according to an embodiment of the present application will be described from the perspective of an access network device with reference to FIG. 7 . The method of uplink data transmission.
  • FIG. 7 shows a schematic flow diagram of a method 700 for uplink data transmission, which may be performed by an access network device, in accordance with an embodiment of the present application.
  • the method 700 includes: S710, the access network device receives a second data packet sent by the terminal device, where a packet header of the second data packet includes a second QFI, and S720, the access network device according to a mapping rule. Determining a first QFI corresponding to the second QFI; S730, the access network device sends a first data packet corresponding to the second data packet to the core network device, where the first data packet includes a first QFI.
  • the terminal device determines that the identifier of the target QoS flow is the first QFI, and the first QFI does not meet the transmission requirement between the terminal device and the access network device, and the terminal device may determine, according to the mapping rule, the SDAP layer.
  • the second QFI corresponding to the first QFI, and sending a data packet including the second QFI to the access network device, where the data packet is a second data packet, and the packet header of the second data packet may include the second QFI.
  • the access network device receives the second data packet including the second QFI, and determines the first QFI corresponding to the second QFI according to the mapping rule, and sends the first data including the first QFI to the core network device.
  • the packet for example, sends the first data packet to the core network device through the N3 interface, where the number of bits occupied by the first QFI satisfies the transmission requirement between the access network device and the core network device.
  • the number of bits occupied by the first QFI may be greater than the number of bits occupied by the second QFI.
  • the access network device sends the first data packet including the first QFI to the core network device, where the first QFI in the first data packet may be a dynamic explicit indication, for example, the first data packet.
  • the first QFI is included in the header of the first QFI, and the first QFI may occupy 7 bits, or may be less than 7 bits.
  • the first QFI in the first data packet may be implicit.
  • the first data packet includes a value of 5QI, and the value of the 5QI is equal to the value of the first QFI. Since the value of the current 5QI needs to be represented by 7 bits, the corresponding first QFI is 7 bits.
  • mapping rule used by the access network device in the method 500 corresponds to the mapping rule used by the terminal device in the method 400, and may be similar to the mapping rule in the method 100.
  • the mapping rule in the method 500 may also include: a mapping relationship between a value of the first QFI and a specific value of the second QFI when the first QFI is a value exceeding a range of the second QFI; the mapping rule may further include: at the first The mapping relationship between the value of the first QFI and the specific value of the second QFI is not described here when the QFI is a value that does not exceed the value of the second QFI.
  • the method 600 further includes: the access network device sends RRC signaling to the terminal device, where the RRC signaling is used to indicate the mapping rule.
  • the access network device and the terminal device use the same mapping rule, and the terminal device determines the second QFI corresponding to the first QFI according to the mapping rule.
  • the access network device determines the second QFI corresponding according to the mapping rule. The first QFI.
  • the terminal device determines a second QFI corresponding to the first QFI according to the mapping rule, and sends a second data packet including the second QFI to the access network device
  • the network access device determines the corresponding first QFI according to the mapping rule according to the second QFI in the second data packet, and sends the first data packet including the first QFI to the core network device, so that the bit occupied by the first QFI
  • the terminal device maps it to the second QFI, and sends the QFI to the access network device, and then determines, by the access network device, according to the mapping rule.
  • the first QFI corresponding to the second QFI so that the access network device and the core network device successfully receive and determine the correct QFI.
  • the method for uplink data transmission according to the embodiment of the present application is described in detail from the perspectives of the terminal device and the access network device, respectively. The following description will be made from the perspective of the core network device with reference to FIG. 8 in conjunction with FIG. 6 and FIG. A method for uplink data transmission according to an embodiment of the present application.
  • FIG. 8 shows a schematic flow diagram of a method 800 for uplink data transmission, which may be performed by a core network device, in accordance with an embodiment of the present application.
  • the method 800 includes: S810, the core network device receives a data packet sent by the access network device, the packet header of the data packet includes a second QFI, and the second QFI is determined by the terminal device according to the first QFI.
  • S820 The core network device determines the first QFI corresponding to the second QFI according to the mapping rule.
  • the terminal device determines that the identifier of the target QoS flow is the first QFI, the first QFI does not meet the transmission requirement between the terminal device and the access network device, and the terminal device can pass the upper layer of the SDAP layer, for example, the application.
  • the layer determines a second QFI corresponding to the first QFI according to the mapping rule, and sends a data packet including the second QFI to the access network device, where the packet header of the data packet may include the second QFI.
  • the access network device receives the data packet including the second QFI, and forwards the data packet including the second QFI to the core network device, for example, sending the data packet to the core network device through the N3 interface, where the core network device Determining, according to the mapping rule, the first QFI corresponding to the second QFI, where the number of bits occupied by the first QFI satisfies the transmission requirement between the access network device and the core network device.
  • the number of bits occupied by the first QFI may be greater than the number of bits occupied by the second QFI.
  • mapping rule used by the core network device in the method 600 corresponds to the mapping rule used by the terminal device in the method 400, and may be similar to the mapping rule in the method 100.
  • the mapping rule in the method 600 may also include: The first QFI is a mapping relationship between the value of the first QFI and the specific value of the second QFI when the value of the range of the second QFI is exceeded; the mapping rule may further include: at the first QFI The mapping relationship between the value of the first QFI and the specific value of the second QFI is not described here.
  • the method 700 further includes: the core network device sends NAS signaling to the terminal device, where the NAS signaling is used to indicate the mapping rule. Specifically, the core network device and the terminal device use the same mapping rule, and the terminal device determines the second QFI corresponding to the first QFI according to the mapping rule. Conversely, the core network device determines, according to the mapping rule, the second QFI corresponding to the second QFI. A QFI.
  • the terminal device determines a second QFI corresponding to the first QFI according to the mapping rule, and sends a data packet including the second QFI to the access network device, and the access network The device forwards the data packet to the core network device, so that the core network device determines the corresponding first QFI according to the mapping rule according to the second QFI in the data packet, so that the number of bits occupied by the first QFI does not satisfy the terminal device and access.
  • the terminal device maps it to the second QFI, and sends the QFI to the access network device, and then the access network device forwards the device to the core network device, and the core network device determines and performs according to the mapping rule.
  • the first QFI corresponding to the second QFI so that the access network device and the core network device successfully receive and determine the correct QFI.
  • FIG. 9 shows a schematic diagram of a method 900 for uplink data transmission in accordance with an embodiment of the present application. As shown in FIG. 9, the method 900 includes the following steps.
  • the terminal device determines the second QFI corresponding to the first QFI according to the mapping rule.
  • the terminal device maps the first QFI occupying a larger number of bits to a smaller second QFI, so that the transmission of the second QFI is supported between the access network device and the terminal device.
  • the terminal device identifies the target QoS flow by using the first QFI, and if the number of bits occupied by the first QFI is larger, that is, the maximum number of bits that the terminal device can occupy by the QFI sent by the terminal device, the terminal does not satisfy the terminal.
  • the QFI transmission requirement between the device and the access network device the terminal network device can change the number of bits occupied by the QFI by using the mapping rule, that is, the number of bits occupied by the first QFI is greater than the number of bits occupied by the second QFI. For example, the first QFI occupies 7 bits, and the second QFI occupies 6 bits.
  • the terminal device may determine, according to the mapping rule, the second QFI corresponding to the first QFI by using the SDAP layer.
  • the terminal device sends a second data packet to the access network device, and the packet header of the second data packet includes the second QFI determined in S910.
  • the terminal device can send the data packet to the access network device through the air interface.
  • the access network device determines, according to the mapping rule, the first QFI corresponding to the second QFI.
  • the access network device sends a first data packet to the core network device, where the first data packet includes a first QFI, so as to determine a corresponding QoS flow and/or an attribute of the QoS flow, for example, the first QFI. It can represent the value of 5QI.
  • the access network device can send the data packet to the core network device through the N3 interface.
  • mapping rules in S910 and S930 in the method 900 are the same mapping rule.
  • the mapping rule may include: the first QFI is greater than the representation range of the second QFI. a mapping relationship between the value of the first QFI and the specific value of the second QFI; the mapping rule may further include: when the first QFI is a value that does not exceed the representation range of the second QFI The mapping relationship between the value of the first QFI and the specific value of the second QFI is not described herein.
  • mapping rule in the terminal device may be preset, or the terminal device may receive the RRC signaling sent by the access network device, and the RRC signaling includes the mapping rule.
  • FIG. 10 shows a schematic diagram of a method 1000 for uplink data transmission in accordance with an embodiment of the present application. As shown in FIG. 10, the method 1000 includes the following steps.
  • the terminal device determines the second QFI corresponding to the first QFI according to the mapping rule.
  • the terminal device maps the first QFI occupying a larger number of bits to a smaller second QFI, so that the transmission of the second QFI is supported between the access network device and the terminal device.
  • the terminal device identifies the target QoS flow by using the first QFI, and if the number of bits occupied by the first QFI is larger, that is, the maximum number of bits that the terminal device can occupy by the QFI sent by the terminal device, the terminal does not satisfy the terminal.
  • the QFI transmission requirement between the device and the access network device the terminal network device can change the number of bits occupied by the QFI by using the mapping rule, that is, the number of bits occupied by the first QFI is greater than the number of bits occupied by the second QFI. For example, the first QFI occupies 7 bits, and the second QFI occupies 6 bits.
  • the terminal device may determine, according to the mapping rule, the second QFI corresponding to the first QFI by using an application layer.
  • the terminal device transmits a data packet to the access network device, and the packet header of the data packet includes the second QFI determined in S1010.
  • the terminal device can send the data packet to the access network device through the air interface.
  • the access network device forwards the data packet including the second QFI to the core network device.
  • the access network device can send the data packet to the core network device through the N3 interface.
  • the core network device receives the data packet, and determines a first QFI corresponding to the second QFI in the packet header of the data packet according to the mapping rule, so as to determine a corresponding QoS flow and/or an attribute of the QoS flow, for example,
  • the first QFI may represent a value of 5QI.
  • mapping rules in S1010 and S1040 in the method 1000 are the same mapping rule.
  • the mapping rule may include: the first QFI is greater than the representation range of the second QFI. a mapping relationship between the value of the first QFI and the specific value of the second QFI; the mapping rule may further include: when the first QFI is a value that does not exceed the representation range of the second QFI The mapping relationship between the value of the first QFI and the specific value of the second QFI is not described herein.
  • mapping rule in the terminal device may be preset, or the terminal device may receive the NAS signaling sent by the core network device, and the NAS signaling includes the mapping rule.
  • the terminal device determines, according to the mapping rule, the second QFI corresponding to the first QFI, and sends the data packet including the second QFI to the access network device, so that When the number of bits occupied by a QFI does not meet the transmission requirements between the terminal device and the access network device, the mapping to the second QFI enables the QFI to be sent to the access network device, and then the access network device or the core network device according to the mapping.
  • the rule determines the first QFI corresponding to the second QFI, so that both the access network device and the core network device can successfully receive and determine the correct QFI.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the method for downlink and uplink data transmission according to the embodiment of the present application is described in detail above with reference to FIG. 1 to FIG. 10.
  • the core network device and access according to the embodiment of the present application will be described below with reference to FIG. 11 to FIG. Network equipment and terminal equipment.
  • the core network device 1100 includes: a determining unit 1110 and a sending unit 1120.
  • the determining unit 1110 is configured to: determine, according to the mapping rule, a second QFI corresponding to the first QFI;
  • the sending unit 1120 is configured to: send a data packet to the access network device, where the packet header includes the second QFI .
  • the number of bits occupied by the first QFI is greater than the number of bits occupied by the second QFI.
  • the mapping rule is: a mapping relationship between a value of the first QFI and a specific value of the second QFI when the first QFI is a value that exceeds a range of the second QFI.
  • the mapping rule is: a mapping relationship between a value of the first QFI and a specific value of the second QFI when the first QFI is a value that does not exceed a range of the second QFI.
  • the sending unit 1120 is further configured to: send the NAS signaling to the terminal device, where the NAS signaling is used to indicate the mapping rule, where the mapping rule is used by the terminal device to determine the first QFI corresponding to the second QFI. .
  • the core network device 1100 may correspond to the method 100 in the embodiment of the present application, and the foregoing and other operations and/or functions of the respective units in the core network device 1100 are respectively implemented to implement FIG. 1 to The corresponding process of the core network device of each method in FIG. 5 is not described here for brevity.
  • the core network device in the embodiment of the present application determines the second QFI corresponding to the first QFI according to the mapping rule, where the number of bits occupied by the second QFI may be smaller than the number of bits occupied by the first QFI, and the access network is The device sends the data packet including the second QFI, so that the access network device sends the data packet to the terminal device, and the terminal device determines the corresponding first QFI according to the second QFI and the mapping rule, so that the core network device, The QFI is successfully transmitted between the access network device and the terminal device, which solves the problem that the number of bits occupied by the QFI does not match when the QFI is transmitted through the N3 interface and the QFI is transmitted through the air interface.
  • an access network device 1200 includes: a receiving unit 1210, a determining unit 1220, and a sending unit 1230.
  • the receiving unit 1210 is configured to: receive a first data packet sent by the core network device, where the first data packet includes a first QFI
  • the determining unit 1220 is configured to: determine, according to the mapping rule, the first corresponding to the first QFI a second QFI
  • the sending unit 1230 is configured to: send, to the terminal device, a second data packet corresponding to the first data packet, where the header of the second data packet includes the second QFI, so that the terminal device is configured according to the second QFI Determine the corresponding first QFI.
  • the number of bits occupied by the first QFI is greater than the number of bits occupied by the second QFI.
  • the mapping rule is: a mapping relationship between a value of the first QFI and a specific value of the second QFI when the first QFI is a value that exceeds a range of the second QFI.
  • the mapping rule is: a mapping relationship between a value of the first QFI and a specific value of the second QFI when the first QFI is a value that does not exceed a range of the second QFI.
  • the sending unit 1230 is further configured to: send RRC signaling to the terminal device, where the RRC signaling is used to indicate the mapping rule, where the mapping rule is used by the terminal device to determine the first corresponding to the second QFI. QFI.
  • the access network device 1200 may correspond to the method 200 in the embodiment of the present application, and the foregoing operations and/or functions of the respective units in the access network device 1200 are respectively implemented in order to implement the 1 to the respective processes of the access network devices of the methods in FIG. 5, for brevity, no further details are provided herein.
  • the access network device in the embodiment of the present application receives the first data packet sent by the core network device, where the first data packet includes the first QFI, and determines the second QFI corresponding to the first QFI according to the mapping rule, and then Transmitting, by the terminal device, the second data packet that includes the second QFI, so that when the first QFI occupied bit number in the first data packet received by the access network device is large, by mapping to a second occupying a smaller number of bits
  • the QFI is implemented to transmit to the terminal device, and the terminal device determines the first QFI corresponding to the second QFI according to the mapping rule.
  • the terminal device 1300 includes: a receiving unit 1310 and a determining unit 1320.
  • the receiving unit 1310 is configured to receive a data packet sent by the access network device, where a packet header includes a second QFI, where the second QFI is determined by the access network device or the core network device according to the first QFI.
  • the determining unit 1320 is configured to: determine the first QFI corresponding to the second QFI according to the mapping rule.
  • the number of bits occupied by the first QFI is greater than the number of bits occupied by the second QFI.
  • the mapping rule is: a mapping relationship between a value of the first QFI and a specific value of the second QFI when the first QFI is a value that exceeds a range of the second QFI.
  • the mapping rule is: a mapping relationship between a value of the first QFI and a specific value of the second QFI when the first QFI is a value that does not exceed a range of the second QFI.
  • mapping rule is preset.
  • the second QFI is determined by the access network device according to the first QFI, and the receiving unit 1310 is further configured to: receive RRC signaling sent by the access network device, where the RRC signaling is used to indicate the Mapping rules.
  • the second QFI is determined by the core network device according to the first QFI, and the receiving unit 1310 is further configured to: receive NAS signaling sent by the core network device, where the NAS signaling is used to indicate the mapping rule. .
  • terminal device 1300 may correspond to the method 300 in the embodiment of the present application, and the foregoing and other operations and/or functions of the respective units in the terminal device 1300 are respectively implemented to implement FIG. 1 to FIG. 5 .
  • the corresponding processes of the terminal devices of the respective methods are not described herein for the sake of brevity.
  • the terminal device in the embodiment of the present application receives the data packet including the second QFI, where the second QFI is determined by the access network device or the core network device according to the mapping rule and the first QFI, and the terminal device determines according to the mapping rule.
  • the first QFI corresponding to the second QFI enables the QFI to be smoothly transmitted between the core network device, the access network device, and the terminal device, and solves the problem that the number of bits occupied by the QFI does not match when the QFI is transmitted through the N3 interface and the QFI is transmitted through the air interface.
  • the terminal device 1400 includes: a determining unit 1410 and a sending unit 1420, and optionally, a receiving unit 1430, specifically, the determining unit 1410 is configured to: according to a mapping rule, Determining a second QFI corresponding to the first quality of service flow identifier QFI; the sending unit 1420 is configured to: send a data packet to the access network device, where the header of the data packet includes the second QFI.
  • the number of bits occupied by the first QFI is greater than the number of bits occupied by the second QFI.
  • the mapping rule is: a mapping relationship between a value of the first QFI and a specific value of the second QFI when the first QFI is a value exceeding a range of the second QFI.
  • the mapping rule is: a mapping relationship between a value of the first QFI and a specific value of the second QFI when the first QFI is a value that does not exceed a range of the second QFI.
  • mapping rule is preset.
  • the determining unit 1410 is specifically configured to: determine, according to the mapping rule, the second QFI corresponding to the first QFI by using a service data adaptation protocol SDAP layer.
  • the receiving unit 1430 is further configured to: receive RRC signaling sent by the access network device, where the RRC signaling is used to indicate the mapping rule.
  • the determining unit 1410 is specifically configured to determine, according to the mapping rule, the second QFI corresponding to the first QFI by using an application layer.
  • the receiving unit 1430 is further configured to: receive NAS signaling sent by the core network device, where the NAS signaling is used to indicate the mapping rule.
  • terminal device 1400 may correspond to the method 600 in the embodiment of the present application, and the foregoing and other operations and/or functions of the respective units in the terminal device 1400 are respectively implemented to implement FIG. 6 to FIG.
  • the corresponding processes of the terminal devices of the respective methods are not described herein for the sake of brevity.
  • the terminal device in the embodiment of the present application determines the second QFI corresponding to the first QFI according to the mapping rule, and sends the data packet including the second QFI to the access network device, so that the number of bits occupied by the first QFI is not
  • the QFI is sent to the access network device by mapping to the second QFI, so that the access network device and the core network device successfully receive and determine the correct QFI.
  • the access network device 1500 includes: a receiving unit 1510, a determining unit 1520, and a sending unit 1530.
  • the receiving unit 1510 is configured to: receive the second data packet sent by the terminal device.
  • the header of the second data packet includes a second QFI
  • the determining unit 1520 is configured to: determine, according to the mapping rule, a first QFI corresponding to the second QFI
  • the sending unit 1530 is configured to: send the first to the core network device The first data packet corresponding to the second data packet, where the first data packet includes the first QFI.
  • the number of bits occupied by the first QFI is greater than the number of bits occupied by the second QFI.
  • the mapping rule is: a mapping relationship between a value of the first QFI and a specific value of the second QFI when the first QFI is a value exceeding a range of the second QFI.
  • the mapping rule is: a mapping relationship between a value of the first QFI and a specific value of the second QFI when the first QFI is a value that does not exceed a range of the second QFI.
  • the sending unit 1530 is further configured to: send, to the terminal device, radio resource control RRC signaling, where the RRC signaling is used to indicate the mapping rule, where the mapping rule is used by the terminal device to determine the second data packet.
  • the header includes the second QFI corresponding to the first QFI.
  • the access network device 1500 may correspond to performing the method 700 in the embodiment of the present application, and the foregoing operations and/or functions of the respective units in the access network device 1500 are respectively implemented for 6 to the corresponding process of the access network device of each method in FIG. 10, for brevity, no further details are provided herein.
  • the access network device of the embodiment of the present application receives the second data packet that is sent by the terminal device and includes the second QFI, where the second QFI is determined by the terminal device according to the mapping rule and the first QFI, and the access network device is configured according to the The second QFI in the second data packet determines the corresponding first QFI according to the mapping rule, and sends the first data packet including the first QFI to the core network device, so that the number of bits occupied by the first QFI does not satisfy the terminal.
  • the terminal device transmits the QFI to the access network device, and then the access network device determines the second QFI according to the mapping rule.
  • the first QFI such that the access network device and the core network device successfully receive and determine the correct QFI.
  • the core network device 1600 includes: a receiving unit 1610 and a determining unit 1620, and optionally, a sending unit 1630.
  • the receiving unit 1610 is configured to: receive a data packet sent by the access network device, where a packet header includes a second QFI, where the second QFI is determined by the terminal device according to the first QFI; the determining unit 1620 For determining, according to the mapping rule, the first QFI corresponding to the second QFI.
  • the number of bits occupied by the first QFI is greater than the number of bits occupied by the second QFI.
  • the mapping rule is: a mapping relationship between a value of the first QFI and a specific value of the second QFI when the first QFI is a value exceeding a range of the second QFI.
  • the mapping rule is: a mapping relationship between a value of the first QFI and a specific value of the second QFI when the first QFI is a value that does not exceed a range of the second QFI.
  • the sending unit 1630 is configured to: send the NAS signaling to the terminal device, where the NAS signaling is used to indicate the mapping rule, so that the terminal device determines, according to the mapping rule, the second corresponding to the first QFI. QFI.
  • the core network device 1600 may correspond to performing the method 800 in the embodiments of the present application, and the foregoing and other operations and/or functions of the respective units in the core network device 1600 are respectively implemented to implement FIG. 6 to The corresponding process of the core network device of each method in FIG. 10 is not described herein for brevity.
  • the core network device in the embodiment of the present application receives the data packet that is forwarded by the access network device and includes the second QFI, where the second QFI is sent by the terminal device to the access network device, and the terminal device determines the first according to the mapping rule.
  • the second QFI corresponding to the QFI so that when the number of bits occupied by the first QFI does not meet the transmission requirement between the terminal device and the access network device, the terminal device maps the second QFI to the second QFI, and sends the packet to the access network device.
  • the QFI is further forwarded by the access network device to the core network device, and the core network device determines the first QFI corresponding to the second QFI according to the mapping rule, so that the access network device and the core network device successfully receive and determine the correct QFI.
  • FIG. 17 shows a schematic block diagram of a core network device 1700 according to an embodiment of the present application.
  • the core network device 1700 includes a processor 1710 and a transceiver 1720, and the processor 1710 is connected to the transceiver 1720.
  • the core network device 1700 further includes a memory 1730, and the memory 1730 is connected to the processor 1710.
  • the processor 1710, the memory 1730, and the transceiver 1720 communicate with each other through an internal connection path, and the data signal is transmitted and/or controlled.
  • the memory 1730 can be used to store instructions, and the processor 1710 is configured to execute the storage of the memory 1730.
  • the processor 1710 is configured to: determine, according to the mapping rule, a second QFI corresponding to the first QFI; the transceiver 1720 is configured to: send a data packet to the access network device, where the transceiver 1720 is configured to: The header of the packet includes the second QFI.
  • the number of bits occupied by the first QFI is greater than the number of bits occupied by the second QFI.
  • the mapping rule is: between the value of the first QFI and the specific value of the second QFI, when the first QFI is a value exceeding a range of the second QFI. Mapping relations.
  • the mapping rule is: when the first QFI is a value that does not exceed the representation range of the second QFI, between the value of the first QFI and the specific value of the second QFI. Mapping relationship.
  • the transceiver 1720 is configured to: send, to the terminal device, NAS signaling, where the NAS signaling is used to indicate the mapping rule, where the mapping rule is used by the terminal device to determine the second QFI corresponding to the The first QFI.
  • the core network device 1700 may correspond to the core network device 1100 in the embodiment of the present application, and may correspond to the corresponding body in the method 100 according to the embodiment of the present application, and the core network device 1700
  • the above-mentioned and other operations and/or functions of the respective units in the respective units are respectively implemented in order to implement the corresponding processes of the core network devices in the respective methods in FIG. 1 to FIG. 5, and are not described herein again for brevity.
  • the core network device in the embodiment of the present application determines the second QFI corresponding to the first QFI according to the mapping rule, where the number of bits occupied by the second QFI may be smaller than the number of bits occupied by the first QFI, and the access network is The device sends the data packet including the second QFI, so that the access network device sends the data packet to the terminal device, and the terminal device determines the corresponding first QFI according to the second QFI and the mapping rule, so that the core network device, The QFI is successfully transmitted between the access network device and the terminal device, which solves the problem that the number of bits occupied by the QFI does not match when the QFI is transmitted through the N3 interface and the QFI is transmitted through the air interface.
  • FIG. 18 shows a schematic block diagram of an access network device 1800 according to an embodiment of the present application.
  • the access network device 1800 includes a processor 1810 and a transceiver 1820, a processor 1810 and a transceiver 1820.
  • the access network device 1800 further includes a memory 1830 that is coupled to the processor 1810.
  • the processor 1810, the memory 1830, and the transceiver 1820 communicate with each other through an internal connection path for transferring and/or controlling data signals.
  • the memory 1830 can be used to store instructions, and the processor 1810 is configured to execute the memory 1830 for storage.
  • the transceiver 1820 is configured to: receive a first data packet sent by the core network device, where the first data packet includes a first QFI; and the processor 1810 is configured to: according to a mapping rule Determining a second QFI corresponding to the first QFI; the transceiver 1820 is configured to: send, to the terminal device, a second data packet corresponding to the first data packet, where a header of the second data packet includes the second QFI, so that The terminal device determines the corresponding first QFI according to the second QFI.
  • the number of bits occupied by the first QFI is greater than the number of bits occupied by the second QFI.
  • the mapping rule is: between the value of the first QFI and the specific value of the second QFI, when the first QFI is a value exceeding a range of the second QFI. Mapping relations.
  • the mapping rule is: when the first QFI is a value that does not exceed the representation range of the second QFI, between the value of the first QFI and the specific value of the second QFI. Mapping relationship.
  • the transceiver 1820 is configured to: send RRC signaling to the terminal device, where the RRC signaling is used to indicate the mapping rule, where the mapping rule is used by the terminal device to determine the second QFI corresponding The first QFI.
  • the access network device 1800 may correspond to the access network device 1200 in the embodiment of the present application, and may correspond to the corresponding entity in the method 200 according to the embodiment of the present application, and access
  • the above-mentioned and other operations and/or functions of the respective units in the network device 1800 are respectively omitted in order to implement the corresponding processes of the access network devices in the respective methods in FIG. 1 to FIG.
  • the access network device in the embodiment of the present application receives the first data packet sent by the core network device, where the first data packet includes the first QFI, and determines the second QFI corresponding to the first QFI according to the mapping rule, and then Transmitting, by the terminal device, the second data packet that includes the second QFI, so that when the first QFI occupied bit number in the first data packet received by the access network device is large, by mapping to a second occupying a smaller number of bits
  • the QFI is implemented to transmit to the terminal device, and the terminal device determines the first QFI corresponding to the second QFI according to the mapping rule.
  • FIG. 19 shows a schematic block diagram of a terminal device 1900 according to an embodiment of the present application.
  • the terminal device 1900 includes a processor 1910 and a transceiver 1920.
  • the processor 1910 is connected to the transceiver 1920.
  • the terminal device 1900 also includes a memory 1930 that is coupled to the processor 1910.
  • the processor 1910, the memory 1930, and the transceiver 1920 communicate with each other through internal connection paths to transfer and/or control data signals.
  • the memory 1930 can be used to store instructions, and the processor 1910 is configured to execute the memory 1930 for storage.
  • An instruction to control the transceiver 1920 to send information or a signal the transceiver 1920 is configured to: receive a data packet sent by the access network device, the packet header of the data packet includes a second QFI, and the second QFI is the access network device or The core network device is determined according to the first QFI; the processor 1910 is configured to: determine, according to the mapping rule, the first QFI corresponding to the second QFI.
  • the number of bits occupied by the first QFI is greater than the number of bits occupied by the second QFI.
  • the mapping rule is: between the value of the first QFI and the specific value of the second QFI, when the first QFI is a value exceeding a range of the second QFI. Mapping relations.
  • the mapping rule is: when the first QFI is a value that does not exceed the representation range of the second QFI, between the value of the first QFI and the specific value of the second QFI. Mapping relationship.
  • the mapping rule is preset.
  • the second QFI is determined by the access network device according to the first QFI, where the transceiver 1920 is configured to: receive RRC signaling sent by the access network device, where the RRC signaling is performed. Used to indicate this mapping rule.
  • the second QFI is determined by the core network device according to the first QFI
  • the transceiver 1920 is configured to: receive NAS signaling sent by the core network device, where the NAS signaling is used. Indicates the mapping rule.
  • the terminal device 1900 may correspond to the terminal device 1300 in the embodiment of the present application, and may correspond to the corresponding body in the method 300 according to the embodiment of the present application, and each of the terminal devices 1900
  • the foregoing and other operations and/or functions of the unit are respectively implemented in order to implement the corresponding processes of the terminal devices in the respective methods in FIG. 1 to FIG. 5, and are not described herein again for brevity.
  • the terminal device in the embodiment of the present application receives the data packet including the second QFI, where the second QFI is determined by the access network device or the core network device according to the mapping rule and the first QFI, and the terminal device determines according to the mapping rule.
  • the first QFI corresponding to the second QFI enables the QFI to be smoothly transmitted between the core network device, the access network device, and the terminal device, and solves the problem that the number of bits occupied by the QFI does not match when the QFI is transmitted through the N3 interface and the QFI is transmitted through the air interface.
  • FIG. 20 shows a schematic block diagram of a terminal device 2000 according to an embodiment of the present application.
  • the terminal device 2000 includes: a processor 2010 and a transceiver 2020.
  • the processor 2010 is connected to the transceiver 2020, and is optional.
  • the terminal device 2000 further includes a memory 2030, and the memory 2030 is connected to the processor 2010.
  • the processor 2010, the memory 2030, and the transceiver 2020 communicate with each other through internal connection paths, and the data signals are transmitted and/or controlled.
  • the memory 2030 can be used to store instructions, and the processor 2010 is configured to execute the storage of the memory 2030.
  • An instruction to control the transceiver 2020 to send information or a signal the processor 2010 is configured to: determine, according to the mapping rule, a second QFI corresponding to the first quality of service flow identifier QFI; the transceiver 2020 is configured to: send to the access network device A packet whose header includes the second QFI.
  • the number of bits occupied by the first QFI is greater than the number of bits occupied by the second QFI.
  • the mapping rule is: between the value of the first QFI and the specific value of the second QFI, when the first QFI is a value exceeding a range of the second QFI. Mapping relations.
  • the mapping rule is: when the first QFI is a value that does not exceed the representation range of the second QFI, the value of the first QFI and the specific value of the second QFI Mapping relationship.
  • the mapping rule is preset.
  • the processor 2010 is configured to: determine, according to the mapping rule, the second QFI corresponding to the first QFI by using a service data adaptation protocol SDAP layer.
  • the transceiver 2020 is configured to: receive RRC signaling sent by the access network device, where the RRC signaling is used to indicate the mapping rule.
  • the processor 2010 is configured to determine, according to the mapping rule, the second QFI corresponding to the first QFI by using an application layer.
  • the transceiver 2020 is configured to: receive NAS signaling sent by the core network device, where the NAS signaling is used to indicate the mapping rule.
  • the terminal device 2000 may correspond to the terminal device 1400 in the embodiment of the present application, and may correspond to the corresponding body in the method 600 according to the embodiment of the present application, and each of the terminal devices 2000
  • the above and other operations and/or functions of the unit are respectively implemented in order to implement the corresponding processes of the terminal devices in the respective methods in FIG. 6 to FIG. 10, and are not described herein again for brevity.
  • the terminal device in the embodiment of the present application determines the second QFI corresponding to the first QFI according to the mapping rule, and sends the data packet including the second QFI to the access network device, so that the number of bits occupied by the first QFI is not
  • the QFI is sent to the access network device by mapping to the second QFI, so that the access network device and the core network device successfully receive and determine the correct QFI.
  • FIG. 21 shows a schematic block diagram of an access network device 2100 according to an embodiment of the present application.
  • the access network device 2100 includes: a processor 2110 and a transceiver 2120, and a processor 2110 and a transceiver 2120.
  • the access network device 2100 further includes a memory 2130, and the memory 2130 is connected to the processor 2110.
  • the processor 2110, the memory 2130, and the transceiver 2120 communicate with each other through an internal connection path, and the data signal is transmitted and/or controlled.
  • the memory 2130 can be used to store instructions, and the processor 2110 is configured to execute the storage of the memory 2130.
  • the transceiver 2120 is configured to: receive a second data packet sent by the terminal device, the packet header of the second data packet includes a second QFI, and the processor 2110 is configured to: according to the mapping And determining, by the rule, the first QFI corresponding to the second QFI; the transceiver 2120 is configured to: send, to the core network device, a first data packet corresponding to the second data packet, where the first data packet includes a first QFI.
  • the number of bits occupied by the first QFI is greater than the number of bits occupied by the second QFI.
  • the mapping rule is: between the value of the first QFI and the specific value of the second QFI, when the first QFI is a value exceeding a range of the second QFI. Mapping relations.
  • the mapping rule is: when the first QFI is a value that does not exceed the representation range of the second QFI, the value of the first QFI and the specific value of the second QFI Mapping relationship.
  • the transceiver 2120 is configured to: send, to the terminal device, radio resource control RRC signaling, where the RRC signaling is used to indicate the mapping rule, where the mapping rule is used by the terminal device to determine the first
  • the header of the second data packet includes the second QFI corresponding to the first QFI.
  • the access network device 2100 may correspond to the access network device 1500 in the embodiment of the present application, and may correspond to the corresponding entity in the method 700 according to the embodiment of the present application, and access
  • the foregoing and other operations and/or functions of the respective units in the network device 2100 are respectively implemented in order to implement the corresponding processes of the access network devices in the respective methods in FIG. 6 to FIG. 10, and are not described herein again for brevity.
  • the access network device of the embodiment of the present application receives the second data packet that is sent by the terminal device and includes the second QFI, where the second QFI is determined by the terminal device according to the mapping rule and the first QFI, and the access network device is configured according to the The second QFI in the second data packet determines the corresponding first QFI according to the mapping rule, and sends the first data packet including the first QFI to the core network device, so that the number of bits occupied by the first QFI does not satisfy the terminal.
  • the terminal device transmits the QFI to the access network device, and then the access network device determines the second QFI according to the mapping rule.
  • the first QFI such that the access network device and the core network device successfully receive and determine the correct QFI.
  • FIG. 22 shows a schematic block diagram of a core network device 2200 according to an embodiment of the present application.
  • the core network device 2200 includes a processor 2210 and a transceiver 2220, and the processor 2210 is connected to the transceiver 2220.
  • the core network device 2200 further includes a memory 2230, and the memory 2230 is connected to the processor 2210.
  • the processor 2210, the memory 2230, and the transceiver 2220 communicate with each other through an internal connection path, and the data signal is transmitted and/or controlled.
  • the memory 2230 can be used to store instructions, and the processor 2210 is configured to execute the storage of the memory 2230.
  • An instruction to control the transceiver 2220 to send information or a signal the transceiver 2220 is configured to: receive a data packet sent by the access network device, the packet header of the data packet includes a second QFI, and the second QFI is the terminal device according to the Determined by a QFI; the processor 2210 is configured to: determine the first QFI corresponding to the second QFI according to a mapping rule.
  • the number of bits occupied by the first QFI is greater than the number of bits occupied by the second QFI.
  • the mapping rule is: between the value of the first QFI and the specific value of the second QFI, when the first QFI is a value exceeding a range of the second QFI. Mapping relations.
  • the mapping rule is: when the first QFI is a value that does not exceed the representation range of the second QFI, the value of the first QFI and the specific value of the second QFI Mapping relationship.
  • the transceiver 2220 is configured to: send, to the terminal device, NAS signaling, where the NAS signaling is used to indicate the mapping rule, so that the terminal device determines the first QFI according to the mapping rule. Corresponding to the second QFI.
  • the core network device 2200 may correspond to the core network device 1600 in the embodiment of the present application, and may correspond to the corresponding body in the method 800 according to the embodiment of the present application, and the core network device 2200
  • the foregoing and other operations and/or functions of the respective units in the respective units are respectively implemented in order to implement the corresponding processes of the core network devices in the respective methods in FIG. 6 to FIG. 10, and are not described herein again for brevity.
  • the core network device in the embodiment of the present application receives the data packet that is forwarded by the access network device and includes the second QFI, where the second QFI is sent by the terminal device to the access network device, and the terminal device determines the first according to the mapping rule.
  • the second QFI corresponding to the QFI so that when the number of bits occupied by the first QFI does not meet the transmission requirement between the terminal device and the access network device, the terminal device maps the second QFI to the second QFI, and sends the packet to the access network device.
  • the QFI is further forwarded by the access network device to the core network device, and the core network device determines the first QFI corresponding to the second QFI according to the mapping rule, so that the access network device and the core network device successfully receive and determine the correct QFI.
  • the above method embodiments of the present application may be applied to a processor or implemented by a processor.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or the like.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Programming logic devices, discrete gates or transistor logic devices, discrete hardware components The methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM double data rate synchronous DRAM
  • DDR SDRAM double data rate synchronous DRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronously connected dynamic random access memory
  • DR RAM direct memory bus random access memory
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及用于上行和下行的数据传输的方法和装置。该方法包括:核心网设备根据映射规则,确定第一服务质量流标识QFI对应的第二QFI;所述核心网设备向接入网设备发送数据包,所述数据包的包头包括所述第二QFI。本申请实施例的用于上行和下行的数据传输的方法和装置能够在核心网设备、接入网设备以及终端设备之间顺利传输包括QFI的数据包。

Description

用于上行和下行的数据传输的方法和装置 技术领域
本申请涉及通信领域,尤其涉及用于上行和下行的数据传输的方法和装置。
背景技术
在第五代(5th generation,5G)系统中,对于任意一个终端设备(User Equipment,UE),5G核心网设备(5G Core,5GC)可以建立一个或者多个协议数据单元(Protocol Data Unit,PDU)会话(session),每一个PDU session在通过空口传输时,会有一个或者多个数据无线承载(Data Radio Bearer,DRB)相对应并用于承载其数据。在PDU session中,服务质量(Quality of Service,QoS)的最小颗粒度可以区分为不同的QoS流(flow),一个PDU session可以有多个QoS flow,不同QoS flow可以通过不同的QoS flow标识(QFI)进行标识。在一个PDU session中,同一个QoS flow中的数据会有相同的QoS处理,比如调度等等。
包括QFI的数据包在从5GC传输到接入网设备(Radio Access Network,RAN)的时候,会在N3接口中给每一个数据包进行标识,这个QFI通常为7bit。具体地,N3接口的QFI可以动态的显式分配,例如在数据包的包头部分携带该QFI,或者,也可以隐式的分配,例如令QFI等于5QI。5QI可以用于表示的QoS flow属性,例如优先级等,跟5G的QoS特征之间存在一对一的映射关系。由于目前5QI最大值为79,因此对应的需要QFI为至少7bit。
但是,终端设备中的一个PDU session在任意时刻最多支持64个服务质量流(QoS flow),在RAN侧通过空口传输的QFI为6bit。因此,在N3接口传输的QFI为7bit,传输至到RAN侧QFI只能为6bit,两者之间存在不匹配的问题。
发明内容
本申请提供了一种用于上行和下行的数据传输的方法和装置,能够在核心网设备、接入网设备以及终端设备之间顺利传输包括QFI的数据包。
第一方面,提供了一种用于下行数据传输的方法,该方法包括:核心网设备根据映射规则,确定第一QFI对应的第二QFI;所述核心网设备向接入网设备发送数据包,所述数据包的包头包括所述第二QFI。
结合第一方面,在第一方面的一种实现方式中,所述第一QFI占用的比特数大于所述第二QFI占用的比特数。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述映射规则为:在所述第一QFI为超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述映射规则为:在所述第一QFI为未超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述方法还包括:所述核心网设备向终端设备发送非接入层(Non-access stratum,NAS)信令,所述NAS信令用于指示所述映射规则,所述映射规则用于所述终端设备确定所述第二QFI对应的所述第一QFI。
因此,本申请实施例的用于下行数据传输的方法,核心网设备根据映射规则,确定第一QFI对应的第二QFI,其中,该第二QFI占用的比特数可以小于该第一QFI占用的比特数,向接入网设备发送包括该第二QFI的数据包,以便于接入网设备将该数据包发送至终端设备,终端设备根据其中的第二QFI以及映射规则,确定对应的第一QFI,使得核心网设备、接入网设备以及终端设备之间顺利传输QFI,解决了通过N3接口传输QFI和通过空口传输QFI时QFI占用的比特数不匹配的问题。
第二方面,提供了一种用于下行数据传输的方法,该方法包括:接入网设备接收核心网设备发送的第一数据包,所述第一数据包包括第一QFI;所述接入网设备根据映射规则,确定所述第一QFI对应的第二QFI;所述接入网设备向终端设备发送与所述第一数据包对应的第二数据包,所述第二数据包的包头包括所述第二QFI,以便于所述终端设备根据所述第二QFI确定对应的所述第一QFI。
结合第二方面,在第二方面的一种实现方式中,所述第一QFI占用的比特数大于所述第二QFI占用的比特数。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述映射规则为:在所述第一QFI为超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映 射关系。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述映射规则为:在所述第一QFI为未超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述方法还包括:所述接入网设备向所述终端设备发送无线资源控制(Radio Resource Control,RRC)信令,所述RRC信令用于指示所述映射规则,所述映射规则用于所述终端设备确定所述第二QFI对应的所述第一QFI。
因此,本申请实施例的用于下行数据传输的方法,接入网设备接收核心网设备发送的第一数据包,该第一数据包包括第一QFI,根据映射规则,确定该第一QFI对应的第二QFI,再向终端设备发送包括该第二QFI的第二数据包,使得在接入网设备接收到的第一数据包中的第一QFI占用比特数较大时,通过映射为占用较少比特数的第二QFI,从而实现传输至终端设备,并使得终端设备根据映射规则,确定第二QFI对应的第一QFI。
第三方面,提供了一种用于下行数据传输的方法,该方法包括:终端设备接收接入网设备发送的数据包,所述数据包的包头包括第二QFI,所述第二QFI为所述接入网设备或核心网设备根据所述第一QFI确定的;所述终端设备根据映射规则,确定与所述第二QFI对应的所述第一QFI。
结合第三方面,在第三方面的一种实现方式中,所述第一QFI占用的比特数大于所述第二QFI占用的比特数。
结合第三方面及其上述实现方式,在第三方面的另一种实现方式中,所述映射规则为:在所述第一QFI为超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
结合第三方面及其上述实现方式,在第三方面的另一种实现方式中,所述映射规则为:在所述第一QFI为未超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
结合第三方面及其上述实现方式,在第三方面的另一种实现方式中,所述映射规则为预先设置的。
结合第三方面及其上述实现方式,在第三方面的另一种实现方式中,所述第二QFI为所述接入网设备根据所述第一QFI确定的,所述方法还包括:所述终端设备接收所述接入网设备发送的RRC信令,所述RRC信令用于指示所述映射规则。
结合第三方面及其上述实现方式,在第三方面的另一种实现方式中,所述第二QFI为所述核心网设备根据所述第一QFI确定的,所述方法还包括:所述终端设备接收所述核心网设备发送的NAS信令,所述NAS信令用于指示所述映射规则。
因此,本申请实施例的用于下行数据传输的方法,终端设备接收包括第二QFI的数据包,该第二QFI为接入网设备或者核心网设备根据映射规则和第一QFI确定的,则终端设备根据映射规则,确定第二QFI对应的第一QFI,使得核心网设备、接入网设备以及终端设备之间顺利传输QFI,解决了通过N3接口传输QFI和通过空口传输QFI时QFI占用的比特数不匹配的问题。
第四方面,提供了一种用于上行数据传输的方法,该方法包括:终端设备根据映射规则,确定第一QFI对应的第二QFI;所述终端设备向接入网设备发送数据包,所述数据包的包头包括所述第二QFI。
结合第四方面,在第四方面的一种实现方式中,所述第一QFI占用的比特数大于所述第二QFI占用的比特数。
结合第四方面及其上述实现方式,在第四方面的另一种实现方式中,所述映射规则为:在所述第一QFI为超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
结合第四方面及其上述实现方式,在第四方面的另一种实现方式中,所述映射规则为:在所述第一QFI为未超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
结合第四方面及其上述实现方式,在第四方面的另一种实现方式中,所述映射规则为预先设置的。
结合第四方面及其上述实现方式,在第四方面的另一种实现方式中,所述终端设备根据映射规则,确定第一QFI对应的第二QFI,包括:所述终端设备根据所述映射规则,通过服务数据适配协议(Service Data Adaption Protocol,SDAP)层确定所述第一QFI对应的所述第二QFI。
结合第四方面及其上述实现方式,在第四方面的另一种实现方式中,所述方法还包括:所述终端设备接收所述接入网设备发送的无线资源控制RRC信令,所述RRC信令用于指示所述映射规则。
结合第四方面及其上述实现方式,在第四方面的另一种实现方式中,所述终端设备根据映射规则,确定第一QFI对应的第二QFI,包括:所述终端设备根据所述映射规则,通过应用层的确定所述第一 QFI对应的所述第二QFI。
结合第四方面及其上述实现方式,在第四方面的另一种实现方式中,所述方法还包括:所述终端设备接收所述核心网设备发送的NAS信令,所述NAS信令用于指示所述映射规则。
因此,本申请实施例的用于上行数据传输的方法,终端设备根据映射规则,确定第一QFI对应的第二QFI,并向接入网设备发送包括该第二QFI的数据包,使得在第一QFI占用的比特数不满足终端设备与接入网设备之间的传输要求时,通过映射为第二QFI,实现向接入网设备发送QFI,从而使得接入网设备和核心网设备成功接收并确定正确的QFI。
第五方面,提供了一种用于上行数据传输的方法,该方法包括:接入网设备接收终端设备发送的第二数据包,所述第二数据包的包头包括第二QFI;所述接入网设备根据映射规则,确定所述第二QFI对应的第一QFI;所述接入网设备向核心网设备发送与所述第二数据包对应的第一数据包,所述第一数据包包括第一QFI。
结合第五方面,在第五方面的一种实现方式中,所述第一QFI占用的比特数大于所述第二QFI占用的比特数。
结合第五方面及其上述实现方式,在第五方面的另一种实现方式中,所述映射规则为:在所述第一QFI为超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
结合第五方面及其上述实现方式,在第五方面的另一种实现方式中,所述映射规则为:在所述第一QFI为未超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
结合第五方面及其上述实现方式,在第五方面的另一种实现方式中,所述方法还包括:所述接入网设备向所述终端设备发送RRC信令,所述RRC信令用于指示所述映射规则,所述映射规则用于所述终端设备确定所述第二数据包的包头包括的与所述第一QFI对应的所述第二QFI。
因此,本申请实施例的用于上行数据传输的方法,终端设备根据映射规则,确定第一QFI对应的第二QFI,并向接入网设备发送包括该第二QFI的第二数据包,接入网设备根据该第二数据包中的第二QFI,按照映射规则确定对应的第一QFI,并向核心网设备发送包括该第一QFI的第一数据包,使得在第一QFI占用的比特数不满足终端设备与接入网设备之间的传输要求时,通过终端设备将其映射为第二QFI,实现向接入网设备发送QFI,再由该接入网设备根据映射规则确定与第二QFI对应的第一QFI,从而使得接入网设备和核心网设备成功接收并确定正确的QFI。
第六方面,提供了一种用于上行数据传输的方法,该方法包括:核心网设备接收接入网设备发送的数据包,所述数据包的包头包括第二QFI,所述第二QFI为所述终端设备根据所述第一QFI确定的;所述核心网设备根据映射规则,确定与所述第二QFI对应的所述第一QFI。
结合第六方面,在第六方面的一种实现方式中,所述第一QFI占用的比特数大于所述第二QFI占用的比特数。
结合第六方面及其上述实现方式,在第六方面的另一种实现方式中,所述映射规则为:在所述第一QFI为超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
结合第六方面及其上述实现方式,在第六方面的另一种实现方式中,所述映射规则为:在所述第一QFI为未超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
结合第六方面及其上述实现方式,在第六方面的另一种实现方式中,所述方法还包括:所述核心网设备向所述终端设备发送NAS信令,所述NAS信令用于指示所述映射规则,以便于所述终端设备根据所述映射规则确定所述第一QFI对应的所述第二QFI。
因此,本申请实施例的用于上行数据传输的方法,终端设备根据映射规则,确定第一QFI对应的第二QFI,并向接入网设备发送包括该第二QFI的数据包,接入网设备向核心网设备转发该数据包,使得核心网设备根据该数据包中的第二QFI,按照映射规则确定对应的第一QFI,使得在第一QFI占用的比特数不满足终端设备与接入网设备之间的传输要求时,通过终端设备将其映射为第二QFI,实现向接入网设备发送QFI,再由该接入网设备转发至核心网设备,核心网设备根据映射规则确定与第二QFI对应的第一QFI,从而使得接入网设备和核心网设备成功接收并确定正确的QFI。
第七方面,提供了一种核心网设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该核心网设备包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第八方面,提供了一种接入网设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的 方法。具体地,该接入网设备包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的单元。
第九方面,提供了一种终端设备,用于执行上述第三方面或第三方面的任意可能的实现方式中的方法。具体地,该终端设备包括用于执行上述第三方面或第三方面的任意可能的实现方式中的方法的单元。
第十方面,提供了一种终端设备,用于执行上述第四方面或第四方面的任意可能的实现方式中的方法。具体地,该终端设备包括用于执行上述第四方面或第五方面的任意可能的实现方式中的方法的单元。
第十一方面,提供了一种接入网设备,用于执行上述第五方面或第五方面的任意可能的实现方式中的方法。具体地,该接入网设备包括用于执行上述第五方面或第五方面的任意可能的实现方式中的方法的单元。
第十二方面,提供了一种核心网设备,用于执行上述第六方面或第六方面的任意可能的实现方式中的方法。具体地,该核心网设备包括用于执行上述第六方面或第六方面的任意可能的实现方式中的方法的单元。
第十三方面,提供了一种核心网设备,包括:存储单元和处理器,该存储单元用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第十四方面,提供了一种接入网设备,包括:存储单元和处理器,该存储单元用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第十五方面,提供了一种终端设备,包括:存储单元和处理器,该存储单元用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第三方面或第三方面的任意可能的实现方式中的方法。
第十六方面,提供了一种终端设备,包括:存储单元和处理器,该存储单元用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第四方面或第四方面的任意可能的实现方式中的方法。
第十七方面,提供了一种接入网设备,包括:存储单元和处理器,该存储单元用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第五方面或第六方面的任意可能的实现方式中的方法。
第十八方面,提供了一种核心网设备,包括:存储单元和处理器,该存储单元用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第六方面或第六方面的任意可能的实现方式中的方法。
第十九方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第二十方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
第二十一方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第三方面或第三方面的任意可能的实现方式中的方法的指令。
第二十二方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第四方面或第四方面的任意可能的实现方式中的方法的指令。
第二十三方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第五方面或第五方面的任意可能的实现方式中的方法的指令。
第二十四方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第六方面或第六方面的任意可能的实现方式中的方法的指令。
第二十五方面,提供了一种包括指令的计算机程序产品,当计算机运行所述计算机程序产品的所述指时,所述计算机执行上述第一方面或第一方面的任意可能的实现方式中的用于下行数据传输的方法。具体地,该计算机程序产品可以运行于上述第七方面的核心网设备上。
第二十六方面,提供了一种包括指令的计算机程序产品,当计算机运行所述计算机程序产品的所述指时,所述计算机执行上述第二方面或第二方面的任意可能的实现方式中的用于下行数据传输的方法。具体地,该计算机程序产品可以运行于上述第八方面的接入网设备上。
第二十七方面,提供了一种包括指令的计算机程序产品,当计算机运行所述计算机程序产品的所述指时,所述计算机执行上述第三方面或第三方面的任意可能的实现方式中的用于下行数据传输的方法。具体地,该计算机程序产品可以运行于上述第九方面的终端设备上。
第二十八方面,提供了一种包括指令的计算机程序产品,当计算机运行所述计算机程序产品的所述 指时,所述计算机执行上述第四方面或第四方面的任意可能的实现方式中的用于上行数据传输的方法。具体地,该计算机程序产品可以运行于上述第十方面的终端设备上。
第二十九方面,提供了一种包括指令的计算机程序产品,当计算机运行所述计算机程序产品的所述指时,所述计算机执行上述第五方面或第五方面的任意可能的实现方式中的用于上行数据传输的方法。具体地,该计算机程序产品可以运行于上述第十一方面的接入网设备上。
第三十方面,提供了一种包括指令的计算机程序产品,当计算机运行所述计算机程序产品的所述指时,所述计算机执行上述第六方面或第六方面的任意可能的实现方式中的用于上行数据传输的方法。具体地,该计算机程序产品可以运行于上述第十二方面的核心网设备上。
附图说明
图1是根据本申请实施例的用于下行数据传输的方法的示意性流程图。
图2是根据本申请实施例的用于下行数据传输的方法的另一示意性流程图。
图3是根据本申请实施例的用于下行数据传输的方法的另一示意性流程图。
图4是根据本申请实施例的用于下行数据传输的方法的示意图。
图5是根据本申请实施例的用于下行数据传输的方法的另一示意图。
图6是根据本申请实施例的用于上行数据传输的方法的示意性流程图。
图7是根据本申请实施例的用于上行数据传输的方法的另一示意性流程图。
图8是根据本申请实施例的用于上行数据传输的方法的另一示意性流程图。
图9是根据本申请实施例的用于上行数据传输的方法的示意图。
图10是根据本申请实施例的用于上行数据传输的方法的另一示意图。
图11是根据本申请实施例的核心网设备的示意性框图。
图12是根据本申请实施例的接入网设备的示意性框图。
图13是根据本申请实施例的终端设备的示意性框图。
图14是根据本申请实施例的终端设备的另一示意性框图。
图15是根据本申请实施例的接入网设备的另一示意性框图。
图16是根据本申请实施例的核心网设备的另一示意性框图。
图17是根据本申请实施例的核心网设备的另一示意性框图。
图18是根据本申请实施例的接入网设备的另一示意性框图。
图19是根据本申请实施例的终端设备的另一示意性框图。
图20是根据本申请实施例的终端设备的另一示意性框图。
图21是根据本申请实施例的接入网设备的另一示意性框图。
图22是根据本申请实施例的核心网设备的另一示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSMC)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请结合接入网设备描述了各个实施例。该接入网设备可以是用于与终端设备进行通信的设备,例如,可以是GSM系统或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB), 或者该接入网设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的RAN或NG-RAN,或者也可以为未来演进的PLMN网络中的接入网设备等。
本申请结合核心网设备描述了各个实施例。该核心网设备可以为5GC,例如,该核心网设备可以为5G系统中的用户平面功能(User Plane Function,UPF),本申请实施例并不限于此。
图1示出了根据本申请实施例的用于下行数据传输的方法100的示意性流程图,该方法100可以由核心网设备执行。如图1所示,该方法100包括:S110,核心网设备根据映射规则,确定第一QFI对应的第二QFI;S120,该核心网设备向接入网设备发送数据包,该数据包的包头包括该第二QFI。
应理解,本申请实施例的数据包可以为互联网协议(Internet Protocol,IP)包,该数据包的包头可以为GTP包头。
在本申请实施例中,核心网设备通过接入网设备向终端设备发送数据包。具体地,在S110中,该核心网设备确定标识目标QoS flow的第一QFI,例如,该第一QFI可以为7bit,而接入网设备和终端设备之间仅支持6bit的QFI的传输,因此,该核心网设备可以根据映射规则,确定该第一QFI对应的第二QFI,通过映射,改变原QFI的比特数,即该第一QFI占用的比特数大于第二QFI占用的比特数,例如,该第一QFI为7bit,该第二QFI为6bit。
应理解,该第一QFI表示目标QoS flow,同时也可以用于表示该目标QoS flow的属性,例如,该第一QFI等于5QI的值。目前,该5QI的值的最大值为79,因此,需要7bit来表示,因此该第一QFI可以为7bit,但本申请实施例并不限于此。
可选地,该映射规则可以包括:在该第一QFI为超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系。具体地,该第一QFI占用的比特数可以大于第二QFI占用的比特数,即该第一QFI表示的最大值大于第二QFI的最大值,若该第一QFI的值超出该QFI的表示范围,则该映射规则可以为该第一QFI与该第二QFI的特定的值之间的映射关系,该第二QFI的特定值即在该第二QFI表示范围以内的值。
例如,假设第一QFI占用7bit,即该第一QFI可以表示0至127共128个值;假设第二QFI占用6bit,则该第二QFI可以表示0至63共64个值,则该第一QFI表示的值大于63时,该第一QFI的值均超过该第二QFI的表示范围,此时,该映射规则可以为:对于第一QFI为超过第二QFI的表示范围的值时,第一QFI与第二QFI的特定的值之间的映射关系。例如,根据现有的5QI的值,该第一QFI可以取{65,66,69,70,75,79},这几个值均超过第二QFI的表示范围,取该第二QFI的几个特定值,例如,取目前5QI未占用的值,即取{10,11,12,13,14,15},建立二者之间的对应关系,即该映射规则可以包括:{65-10,66-11,69-12,70-14,75-14,79-15},其中,“-”表示前后两个数值之间的对应关系,例如,若第一QFI取65,即通过7bit表示该65,根据上述映射关系,确定与该第一QFI对应的第二QFI为10,即第一QFI为通过7bit表示的65与第二QFI通过6bit表示的10之间具有对应关系。
可选地,该映射规则还可以包括:在该第一QFI为未超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系。具体地,该第一QFI占用的比特数可以大于第二QFI占用的比特数,即该第一QFI能够表示的最大值大于第二QFI的最大值,该第一QFI的值可能未超出该QFI的表示范围,则该映射规则可以为该第一QFI与该第二QFI的特定的值之间的映射关系。
例如,仍然以上述第一QFI占用7bit以及第二QFI占用6bit为例进行说明,若第一QFI取值在第二QFI的表示范围之内,例如,该第一QFI取8,即通过7bit表示8,对应的,存在一个第二QFI的值与其对应,例如,第二QFI也为8,即通过6bit表示该数值8,或者该第二QFI也可以为除8以外的其它特定的数值,例如第一QFI为8时对应第二QFI为13,即第一QFI为7bit表示的数值8时与第二QFI的通过6bit表示的数值13之间具有对应关系,但本申请实施例并不限于此。
在S120中,核心网设备向接入网设备发送数据包,例如,通过N3接口向接入网设备发送该数据包,该数据包的包头包括该第二QFI,以便于该接入网设备接收该数据包,并向终端设备发送该数据包,则终端设备根据该数据包包头中的第二QFI以及映射规则,确定对应的第一QFI。
应理解,该方法100还可以包括:该核心网设备向终端设备发送NAS信令,该NAS信令用于指示映射规则,以便于终端设备根据该映射规则,确定第二QFI对应的第一QFI。
因此,本申请实施例的用于下行数据传输的方法,核心网设备根据映射规则,确定第一QFI对应的第二QFI,其中,该第二QFI占用的比特数可以小于该第一QFI占用的比特数,向接入网设备发送包括该第二QFI的数据包,以便于接入网设备将该数据包发送至终端设备,终端设备根据其中的第二QFI以及映射规则,确定对应的第一QFI,使得核心网设备、接入网设备以及终端设备之间顺利传输QFI,解决了通过N3接口传输QFI和通过空口传输QFI时QFI占用的比特数不匹配的问题。
上文中结合图1,从核心网设备的角度详细描述了根据本申请实施例的用于下行数据传输的方法,下面将结合图2,从接入网设备的角度描述根据本申请实施例的用于下行数据传输的方法。
图2示出了根据本申请实施例的用于下行数据传输的方法200的示意性流程图,该方法200可以由接入网设备执行。如图2所示,该方法200包括:S210,接入网设备接收核心网设备发送的第一数据包,该第一数据包包括第一QFI;S220,该接入网设备根据映射规则,确定该第一QFI对应的第二QFI;S230,该接入网设备向终端设备发送与该第一数据包对应的第二数据包,该第二数据包的包头包括该第二QFI,以便于该终端设备根据该第二QFI确定对应的该第一QFI。
在S210中,接入网设备接收核心网设备发送的第一数据包,该第一数据包包括第一QFI,例如,该接入网设备可以通过N3接口接收核心网设备发送的该第一数据。其中,该第一数据包中的第一QFI可以为动态的显性指示,例如,该第一数据包的包头中包括该第一QFI,通过该第一QFI指示目标QoS flow,该第一QFI可以占用7bit,或者也可以为小于7bit;或者,该第一数据包中的第一QFI可以为隐式指示,例如,该第一数据包包括5QI的值,令该5QI的值等于第一QFI的值,由于目前5QI的值需要7bit表示,则对应的该第一QFI为7bit。
在S220中,接入网设备根据映射规则,确定该第一QFI对应的第二QFI,其中,通过映射,可以改变原QFI占用的比特数,即该第一QFI占用的比特数可以大于第二QFI的比特数。具体地,若接入网设备接收到的该第一QFI占用的比特数小于或者等于接入网设备与终端设备之间支持的QFI占用的大小,则该接入网设可以不进行映射,而将包括该第一QFI的第一数据包转发至终端设备,例如,该第一QFI为6bit时,接入网设备与终端设备之间支持6bit的QFI的传输,则该接入网设备可以将包括该6bit的第一QFI的第一数据包转发至终端设备。
但是,若该第一QFI占用的比特数大于接入网设备与终端设备之间支持的QFI占用的大小,则该接入网设备可以根据映射规则,将该第一QFI映射为第二QFI,并在S230中,接入网设备向终端设备发送与第一数据包对应的第二数据包,该第二数据包的包头包括该第二QFI,以便于终端设备根据映射规则,确定该第二QFI对应的第一QFI。
例如,该第一QFI为7bit,而接入网设备与终端设备之间仅支持6bit的QFI的传输,因此,该接入网设备可以将该7bit的第一QFI根据映射规则映射为6bit的第二QFI,并向终端设备发送包括该第二QFI的第二数据包。
可选地,该方法200中的映射规则与方法100中的映射规则类似,该方法200中的映射规则可以包括:在该第一QFI为超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系;该映射规则还可以包括:在该第一QFI为未超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系,在此不再赘述。
应理解,接入网设备根据映射规则确定第一QFI对应的第二QFI,对应的,该方法200还可以包括:该接入网设备向终端设备发送RRC信令,该RRC信令用于指示映射规则,以便于终端设备根据该映射规则,确定第二QFI对应的第一QFI。
因此,本申请实施例的用于下行数据传输的方法,接入网设备接收核心网设备发送的第一数据包,该第一数据包包括第一QFI,根据映射规则,确定该第一QFI对应的第二QFI,再向终端设备发送包括该第二QFI的第二数据包,使得在接入网设备接收到的第一数据包中的第一QFI占用比特数较大时,通过映射为占用较少比特数的第二QFI,从而实现传输至终端设备,并使得终端设备根据映射规则,确定第二QFI对应的第一QFI。
上文中结合图1和图2,分别从核心网设备和接入网设备的角度详细描述了根据本申请实施例的用于下行数据传输的方法,下面将结合图3,从终端设备的角度描述根据本申请实施例的用于下行数据传输的方法。
图3示出了根据本申请实施例的用于下行数据传输的方法300的示意性流程图,该方法300可以由终端设备设备执行。如图3所示,该方法300包括:S310,终端设备接收接入网设备发送的数据包,该数据包的包头包括第二QFI,该第二QFI为该接入网设备或核心网设备根据该第一QFI确定的;S320,该终端设备根据映射规则,确定与该第二QFI对应的该第一QFI。
在S310中,终端设备接收接入网设备发送的数据包,该数据包的包头包括第二QFI,其中,该终端设备可以通过空口接收接入网设备发送的该数据包。可选地,该第二QFI可以为接入网设备根据第一QFI和映射规则确定的,或者也可以为核心网设备根据第一QFI和映射规则确定的。
可选地,该第二QFI可以为接入网设备根据第一QFI和映射规则确定的,即接入网设备接收核心网设备发送的数据包,该数据包包括第一QFI,由于接入网设备和核心网设备之间可以传输占用比特数较多的QFI,而接入网设备和终端设备之间不支持,所以接入网设备根据该第一QFI和映射规则,确定对应的第二QFI,该第二QFI的比特数小于第一QFI的比特数,从而实现向终端设备发送包括该第二QFI的数据包。
可选地,该第二QFI也可以为核心网设备根据第一QFI和映射规则确定的,由于接入网设备和核 心网设备之间可以传输占用比特数较多的QFI,而接入网设备和终端设备之间不支持,所以核心网设备根据该第一QFI和映射规则,确定对应的第二QFI,该第二QFI的比特数小于第一QFI的比特数,并向接入网设备发送包括该第二QFI的数据包,使得接入网设备能够直接再向终端设备转发该包括第二QFI的数据包。
在S320中,终端设备根据映射规则,确定该第二QFI对应的第一QFI。具体地,若在S310接收的数据包中的第二QFI为接入网设备根据映射规则确定的,该终端设备还可以接收接入网设备发送的RRC信令,该RRC信令用于指示该映射规则,或者,该映射规则也可以为预先配置的,例如由SDAP层协议预先设置的。若在S310接收的数据包中的第二QFI为核心网设备根据映射规则确定的,该终端设备还可以接收核心网设备发送的NAS信令,该NAS信令用于指示该映射规则,或者,该映射规则也可以为预先配置的。
应理解,由于终端设备与接入网设备之间传输的QFI占用比特数的限制,对于占用比特数较大的第一QFI,接入网设备或核心网设备可以根据映射规则,确定与第一QFI对应的第二QFI,该第二QFI占用的比特数小于第一QFI占用的比特数。则对应的,终端设备接收该第二QFI,根据映射规则,确定对应的第一QFI。
可选地,该方法300中的映射规则与方法100和200中的映射规则相同,核心网设备或者接入网设备通过该映射规则将第一QFI映射为第二QFI,而方法300中,终端设备根据该相同的映射规则,将第二QFI映射为第一QFI。具体地,该方法300中的映射规则可以包括:在该第一QFI为超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系;该映射规则还可以包括:在该第一QFI为未超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系,在此不再赘述。
因此,本申请实施例的用于下行数据传输的方法,终端设备接收包括第二QFI的数据包,该第二QFI为接入网设备或者核心网设备根据映射规则和第一QFI确定的,则终端设备根据映射规则,确定第二QFI对应的第一QFI,使得核心网设备、接入网设备以及终端设备之间顺利传输QFI,解决了通过N3接口传输QFI和通过空口传输QFI时QFI占用的比特数不匹配的问题。
下面将结合两个具体实施例,描述根据本申请实施例的用于下行数据传输的方法。
图4示出了根据本申请实施例的用于下行数据传输的方法400的示意图。如图4所示,该方法400包括以下步骤。
在S410中,核心网设备根据映射规则,确定第一QFI对应的第二QFI。
应理解,该核心网设备可以通过该映射规则,改变QFI占用的比特数的大小,即该第一QFI占用的比特数大于第二QFI占用的比特数。例如,该第一QFI占用7bit,该第二QFI占用6bit。
在S420中,核心网设备向接入网设备发送数据包,该数据包的包头包括在S410中确定的第二QFI。
应理解,该核心网设备可以通过N3接口发送该数据包。
在S430中,接入网设备将该包括第二QFI的数据包转发至终端设备。
应理解,核心网设备将占用较大比特数的第一QFI,映射为较小的第二QFI,以便于接入网设备与终端设备之间支持该第二QFI的传输。
在S440中,终端设备接收该数据包,根据映射规则,确定该数据包的包头中的第二QFI对应的第一QFI,以便于确定对应的QoS flow和/或该QoS flow的属性,例如,该第一QFI可以表示5QI的值。
应理解,该方法400中S410与S440中的映射规则为相同的映射规则,具体地,根据上述方法100至300,该映射规则可以包括:在该第一QFI为超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系;该映射规则还可以包括:在该第一QFI为未超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系,在此不再赘述。
应理解,终端设备中的映射规则可以为预先设置的,或者,终端设备可以接收该核心网设备发送的NAS信令,该NAS信令包括该映射规则。
图5示出了根据本申请实施例的用于下行数据传输的方法500的示意图。如图5所示,该方法500包括以下步骤。
S510,核心网设备向接入网设备发送第一数据包,该第一数据包包括第一QFI。
应理解,该第一数据包中的第一QFI可以为动态的显性指示,例如,该第一数据包的包头中包括该第一QFI,通过该第一QFI目标QoS flow;或者,该第一数据包中的第一QFI可以为隐式指示,例如,该第一数据包包括5QI的值,令该5QI的值等于第一QFI的值。
可选的,该第一QFI占用的比特数的大于接入网设备与终端设备之间支持的传输QFI的比特数大小。例如,该第一QFI为7bit,而接入网设备与终端设备之间仅支持6bit的QFI的传输。
S520,接入网设备根据映射规则,确定该第一QFI对应的第二QFI。
应理解,该第一QFI占用的比特数的大小大于第二QFI的,也就是通过映射规则,改变原QFI占用的比特数的大小,以便于支持接入网设备与终端设备之间的QFI的传输。
S530,接入网设备向终端设备发送与第一数据包对应的第二数据包,该第二数据包包括第二QFI。
应理解,该接入网设备可以通过空口向终端设备发送该第二数据包。
S540,终端设备根据映射规则,确定第二QFI对应的第一QFI,以便于确定对应的QoS flow和/或该QoS flow的属性,例如,该第一QFI可以表示5QI的值。。
应理解,该方法500中S520与S540中的映射规则为相同的映射规则,具体地,根据上述方法100至300,该映射规则可以包括:在该第一QFI为超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系;该映射规则还可以包括:在该第一QFI为未超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系,在此不再赘述。
应理解,终端设备中的映射规则可以为预先设置的,或者,终端设备可以接收该接入网设备发送的RRC信令,该RRC信令包括该映射规则。
因此,本申请实施例的用于下行数据传输的方法,由核心网设备或者接入网设备根据映射规则将第一QFI映射为第二QFI,并向终端设备发送包括该第二QFI的数据包,以便于终端设备根据映射规则确定第二QFI对应的第一QFI,从而使得核心网设备、接入网设备以及终端设备之间顺利传输QFI,解决了通过N3接口传输QFI和通过空口传输QFI时QFI占用的比特数不匹配的问题。
上文中结合图1至图5,详细描述了根据本申请实施例的用于下行数据传输的方法,下面将结合图6至图10,描述根据本申请实施例的用于上行数据传输的方法。
图6示出了根据本申请实施例的用于上行数据传输的方法600的示意性流程图,该方法600可以由终端设备执行。如图6所示,该方法600包括:S610,终端设备根据映射规则,确定第一QFI对应的第二QFI;S620,该终端设备向接入网设备发送数据包,该数据包的包头包括该第二QFI。
应理解,在RAN侧,SDAP层根据分配结果会给每个SDAP PDU标识QFI,用来表示QoS flow到DRB的映射关系。对于下行,QFI可以由RAN(SDAP层)侧标识并在空口传输,目的是为了表示反射QoS(Reflective QoS,RQoS),如果NR-RAN或者NAS都不使用反射映射(reflective mapping),那么可以不用在下行空口传输QFI,否则需要传输QFI。对于上行,NG-RAN可以配置UE在空口传输QFI。
具体地,在S610中,终端设备通过第一QFI标识目标QoS flow,若该第一QFI占用的比特数较大,即大于终端设备向接入网设备发送的QFI能够占用的比特数的最大值,不满足终端设备与接入网设备之间QFI的传输要求,终端设备可以通过映射规则,确定第一QFI对应的第二QFI,该第二QFI占用的比特数小于该第一QFI,以便于在S620中,终端设备能够向接入网设备发送数据包,该数据包的包头包括该第二QFI。
例如,若第一QFI占用7bit,假设终端设备与接入网设备最多支持6bit的QFI的传输,则需要将该第一QFI映射为第二QFI,该第二QFI占用比特数小于第一QFI,例如第二QFI可以占用6bit或占用小于6bit,并在S620中,终端设备能够向接入网设备发送数据包,该数据包的包头包括该第二QFI。
再例如,若第一QFI占用7bit,假设该终端设备与接入网设备最多支持7bit的QFI的传输,第一QFI满足该要求,则终端设备可以直接向接入网设备传输该7bit的第一QFI,而无需进行映射,即终端设备向接入网设备发送数据包,该数据包包括该第一QFI,对应的,接入网设备和核心网设备之间同样也支持传输7bit的QFI,则接入网设备再将包括该第一QFI的数据包转发至核心网设备,但本申请实施例并不限于此。
应理解,该方法400中的终端设备使用的映射规则可以与方法100中的映射规则类似,该方法400中的映射规则也可以包括:在该第一QFI为超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系;该映射规则还可以包括:在该第一QFI为未超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系,在此不再赘述。
具体地,终端设备可以根据该映射规则,通过SDAP层将第一QFI映射为第二QFI,对应的,终端设备向接入网设备发送包括第二QFI的数据包,例如,终端设备可以通过空口向接入网设备发送该数据包,以便于接入网设备根据映射规则,将该第二QFI映射为第一QFI,该接入网设备还可以向核心网设备发送包括该第一QFI的数据包,
其中,该接入网设备和终端设备使用的映射规则相同。具体地,终端设备的映射规则可以为预先设置的,例如,该映射规则可以为SDAP层协议规定的;或者,该终端设备还可以接受接入网设备发送的RRC信令,该RRC信令用于指示该映射规则。
可选地,终端设备还可以根据该映射规则,通过SDAP层的上层将第一QFI映射为第二QFI,例如,通过应用层将第一QFI映射为第二QFI,对应的,终端设备向接入网设备发送包括第二QFI的数据包, 以便于接入网设备向核心网设备转发该包括该第二QFI的数据包,核心网设备根据映射规则,将该第二QFI映射为第一QFI。
其中,该核心网网设备和终端设备使用的映射规则相同。具体地,终端设备的映射规则可以为预先设置的;或者,该终端设备还可以接受核心网设备发送的NAS信令,该NAS信令用于指示该映射规则。
因此,本申请实施例的用于上行数据传输的方法,终端设备根据映射规则,确定第一QFI对应的第二QFI,并向接入网设备发送包括该第二QFI的数据包,使得在第一QFI占用的比特数不满足终端设备与接入网设备之间的传输要求时,通过映射为第二QFI,实现向接入网设备发送QFI,从而使得接入网设备和核心网设备成功接收并确定正确的QFI。
上文中结合图6,从终端设备的角度详细描述了根据本申请实施例的用于上行数据传输的方法,下面将结合图7,从接入网设备的角度描述根据本申请实施例的用于上行数据传输的方法。
图7示出了根据本申请实施例的用于上行数据传输的方法700的示意性流程图,该方法700可以由接入网设备执行。如图7所示,该方法700包括:S710,接入网设备接收终端设备发送的第二数据包,该第二数据包的包头包括第二QFI;S720,该接入网设备根据映射规则,确定该第二QFI对应的第一QFI;S730,该接入网设备向核心网设备发送与该第二数据包对应的第一数据包,该第一数据包包括第一QFI。
在本申请实施例中,终端设备确定目标QoS flow的标识为第一QFI,该第一QFI不满足终端设备与接入网设备之间的传输要求,终端设备可以通过SDAP层,根据映射规则确定第一QFI对应的第二QFI,并向接入网设备发送包括该第二QFI的数据包,该数据包为第二数据包,该第二数据包的包头可以包括该第二QFI。对应的,接入网设备接收该包括第二QFI的第二数据包,并根据映射规则,确定该第二QFI对应的第一QFI,并向核心网设备发送包括该第一QFI的第一数据包,例如,通过N3接口向核心网设备发送该第一数据包,其中,第一QFI占用的比特数满足接入网设备和核心网设备之间的传输要求。可选地,第一QFI占用的比特数可以大于第二QFI占用的比特数。
可选地,接入网设备向核心网设备发送包括第一QFI的第一数据包,其中,该第一数据包中的第一QFI可以为动态的显性指示,例如,该第一数据包的包头中包括该第一QFI,通过该第一QFI指示目标QoS flow,该第一QFI可以占用7bit,或者也可以为小于7bit;或者,该第一数据包中的第一QFI可以为隐式指示,例如,该第一数据包包括5QI的值,令该5QI的值等于第一QFI的值,由于目前5QI的值需要7bit表示,则对应的该第一QFI为7bit。
应理解,该方法500中接入网设备使用的映射规则与方法400中的终端设备使用的映射规则对应,同样可以与方法100中的映射规则类似,该方法500中的映射规则也可以包括:在该第一QFI为超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系;该映射规则还可以包括:在该第一QFI为未超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系,在此不再赘述。
应理解,该方法600还包括:接入网设备向终端设备发送RRC信令,该RRC信令用于指示该映射规则。具体地,接入网设备与终端设备使用相同的映射规则,终端设备根据该映射规则,确定第一QFI对应的第二QFI,相反的,接入网设备根据该映射规则,确定第二QFI对应的第一QFI。
因此,本申请实施例的用于上行数据传输的方法,终端设备根据映射规则,确定第一QFI对应的第二QFI,并向接入网设备发送包括该第二QFI的第二数据包,接入网设备根据该第二数据包中的第二QFI,按照映射规则确定对应的第一QFI,并向核心网设备发送包括该第一QFI的第一数据包,使得在第一QFI占用的比特数不满足终端设备与接入网设备之间的传输要求时,通过终端设备将其映射为第二QFI,实现向接入网设备发送QFI,再由该接入网设备根据映射规则确定与第二QFI对应的第一QFI,从而使得接入网设备和核心网设备成功接收并确定正确的QFI。
上文中结合图6和图7,分别从终端设备和接入网设备的角度详细描述了根据本申请实施例的用于上行数据传输的方法,下面将结合图8,从核心网设备的角度描述根据本申请实施例的用于上行数据传输的方法。
图8示出了根据本申请实施例的用于上行数据传输的方法800的示意性流程图,该方法800可以由核心网设备执行。如图8所示,该方法800包括:S810,核心网设备接收接入网设备发送的数据包,该数据包的包头包括第二QFI,该第二QFI为该终端设备根据该第一QFI确定的;S820,该核心网设备根据映射规则,确定与该第二QFI对应的该第一QFI。
在本申请实施例中,终端设备确定目标QoS flow的标识为第一QFI,该第一QFI不满足终端设备与接入网设备之间的传输要求,终端设备可以通过SDAP层的上层,例如应用层,根据映射规则确定第一QFI对应的第二QFI,并向接入网设备发送包括该第二QFI的数据包,其中,该数据包的包头可以包括该第二QFI。对应的,接入网设备接收该包括第二QFI的数据包,并向核心网设备转发该包括第 二QFI的数据包,例如,通过N3接口向核心网设备发送该数据包,则核心网设备根据映射规则,确定该第二QFI对应的第一QFI,其中,第一QFI占用的比特数满足接入网设备和核心网设备之间的传输要求。可选地,第一QFI占用的比特数可以大于第二QFI占用的比特数。
应理解,该方法600中核心网设备使用的映射规则与方法400中的终端设备使用的映射规则对应,同样可以与方法100中的映射规则类似,该方法600中的映射规则也可以包括:在该第一QFI为超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系;该映射规则还可以包括:在该第一QFI为未超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系,在此不再赘述。
应理解,该方法700还包括:核心网设备向终端设备发送NAS信令,该NAS信令用于指示该映射规则。具体地,核心网设备与终端设备使用相同的映射规则,终端设备根据该映射规则,确定第一QFI对应的第二QFI,相反的,核心网设备根据该映射规则,确定第二QFI对应的第一QFI。
因此,本申请实施例的用于上行数据传输的方法,终端设备根据映射规则,确定第一QFI对应的第二QFI,并向接入网设备发送包括该第二QFI的数据包,接入网设备向核心网设备转发该数据包,使得核心网设备根据该数据包中的第二QFI,按照映射规则确定对应的第一QFI,使得在第一QFI占用的比特数不满足终端设备与接入网设备之间的传输要求时,通过终端设备将其映射为第二QFI,实现向接入网设备发送QFI,再由该接入网设备转发至核心网设备,核心网设备根据映射规则确定与第二QFI对应的第一QFI,从而使得接入网设备和核心网设备成功接收并确定正确的QFI。
下面将结合两个具体实施例,描述根据本申请实施例的用于下行数据传输的方法。
图9示出了根据本申请实施例的用于上行数据传输的方法900的示意图。如图9所示,该方法900包括以下步骤。
在S910中,终端设备根据映射规则,确定第一QFI对应的第二QFI。
应理解,终端设备将占用较大比特数的第一QFI,映射为较小的第二QFI,以便于接入网设备与终端设备之间支持该第二QFI的传输。
具体地,终端设备通过第一QFI标识目标QoS flow,若该第一QFI占用的比特数较大,即大于终端设备向接入网设备发送的QFI能够占用的比特数的最大值,不满足终端设备与接入网设备之间QFI的传输要求,该终端网设备可以通过该映射规则,改变QFI占用的比特数的大小,即该第一QFI占用的比特数大于第二QFI占用的比特数。例如,该第一QFI占用7bit,该第二QFI占用6bit。
可选地,终端设备可以根据映射规则,通过SDAP层确定该第一QFI对应的第二QFI。
在S920中,终端设备向接入网设备发送第二数据包,该第二数据包的包头包括在S910中确定的第二QFI。
应理解,该终端设备可以通过空口向接入网设备发送该数据包。
在S930中,接入网设备根据映射规则,确定该第二QFI对应的第一QFI。
在S940中,接入网设备向核心网设备发送第一数据包,该第一数据包包括第一QFI,以便于确定对应的QoS flow和/或该QoS flow的属性,例如,该第一QFI可以表示5QI的值。
应理解,该接入网设备可以通过N3接口向核心网设备发送该数据包。
应理解,该方法900中S910与S930中的映射规则为相同的映射规则,具体地,根据上述方法600至800,该映射规则可以包括:在该第一QFI为超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系;该映射规则还可以包括:在该第一QFI为未超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系,在此不再赘述。
应理解,终端设备中的映射规则可以为预先设置的,或者,终端设备可以接收该接入网设备发送的RRC信令,该RRC信令包括该映射规则。
图10示出了根据本申请实施例的用于上行数据传输的方法1000的示意图。如图10所示,该方法1000包括以下步骤。
在S1010中,终端设备根据映射规则,确定第一QFI对应的第二QFI。
应理解,终端设备将占用较大比特数的第一QFI,映射为较小的第二QFI,以便于接入网设备与终端设备之间支持该第二QFI的传输。
具体地,终端设备通过第一QFI标识目标QoS flow,若该第一QFI占用的比特数较大,即大于终端设备向接入网设备发送的QFI能够占用的比特数的最大值,不满足终端设备与接入网设备之间QFI的传输要求,该终端网设备可以通过该映射规则,改变QFI占用的比特数的大小,即该第一QFI占用的比特数大于第二QFI占用的比特数。例如,该第一QFI占用7bit,该第二QFI占用6bit。
可选地,终端设备可以根据映射规则,通过应用层确定该第一QFI对应的第二QFI。
在S1020中,终端设备向接入网设备发送数据包,该数据包的包头包括在S1010中确定的第二QFI。
应理解,该终端设备可以通过空口向接入网设备发送该数据包。
在S1030中,接入网设备将该包括第二QFI的数据包转发至核心网设备。
应理解,该接入网设备可以通过N3接口向核心网设备发送该数据包。
在S1040中,核心网设备接收该数据包,根据映射规则,确定该数据包的包头中的第二QFI对应的第一QFI,以便于确定对应的QoS flow和/或该QoS flow的属性,例如,该第一QFI可以表示5QI的值。
应理解,该方法1000中S1010与S1040中的映射规则为相同的映射规则,具体地,根据上述方法600至800,该映射规则可以包括:在该第一QFI为超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系;该映射规则还可以包括:在该第一QFI为未超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系,在此不再赘述。
应理解,终端设备中的映射规则可以为预先设置的,或者,终端设备可以接收该核心网设备发送的NAS信令,该NAS信令包括该映射规则。
因此,本申请实施例的用于上行数据传输的方法,终端设备根据映射规则,确定第一QFI对应的第二QFI,并向接入网设备发送包括该第二QFI的数据包,使得在第一QFI占用的比特数不满足终端设备与接入网设备之间的传输要求时,通过映射为第二QFI,实现向接入网设备发送QFI,再由接入网设备或者核心网设备根据映射规则,确定第二QFI对应的第一QFI,从而使得接入网设备和核心网设备均能够成功接收并确定正确的QFI。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上文中结合图1至图10,详细描述了根据本申请实施例的用于下行和上行数据传输的方法,下面将结合图11至图16,描述根据本申请实施例的核心网设备、接入网设备和终端设备。
如图11所示,根据本申请实施例的核心网设备1100包括:确定单元1110和发送单元1120。具体地,该确定单元1110用于:根据映射规则,确定第一QFI对应的第二QFI;该发送单元1120用于:向接入网设备发送数据包,该数据包的包头包括该第二QFI。
可选的,该第一QFI占用的比特数大于该第二QFI占用的比特数。
可选的,该映射规则为:在该第一QFI为超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系。
可选的,该映射规则为:在该第一QFI为未超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系。
可选的,该发送单元1120还用于:向终端设备发送NAS信令,该NAS信令用于指示该映射规则,该映射规则用于该终端设备确定该第二QFI对应的该第一QFI。
应理解,根据本申请实施例的核心网设备1100可对应于执行本申请实施例中的方法100,并且核心网设备1100中的各个单元的上述和其它操作和/或功能分别为了实现图1至图5中的各个方法的核心网设备相应流程,为了简洁,在此不再赘述。
因此,本申请实施例的核心网设备,根据映射规则,确定第一QFI对应的第二QFI,其中,该第二QFI占用的比特数可以小于该第一QFI占用的比特数,向接入网设备发送包括该第二QFI的数据包,以便于接入网设备将该数据包发送至终端设备,终端设备根据其中的第二QFI以及映射规则,确定对应的第一QFI,使得核心网设备、接入网设备以及终端设备之间顺利传输QFI,解决了通过N3接口传输QFI和通过空口传输QFI时QFI占用的比特数不匹配的问题。
如图12所示,根据本申请实施例的接入网设备1200包括:接收单元1210、确定单元1220和发送单元1230。具体地,该接收单元1210用于:接收核心网设备发送的第一数据包,该第一数据包包括第一QFI;该确定单元1220用于:根据映射规则,确定该第一QFI对应的第二QFI;该发送单元1230用于:向终端设备发送与该第一数据包对应的第二数据包,该第二数据包的包头包括该第二QFI,以便于该终端设备根据该第二QFI确定对应的该第一QFI。
可选的,该第一QFI占用的比特数大于该第二QFI占用的比特数。
可选的,该映射规则为:在该第一QFI为超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系。
可选的,该映射规则为:在该第一QFI为未超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系。
可选的,该发送单元1230还用于:向该终端设备发送RRC信令,该RRC信令用于指示该映射规则,该映射规则用于该终端设备确定该第二QFI对应的该第一QFI。
应理解,根据本申请实施例的接入网设备1200可对应于执行本申请实施例中的方法200,并且接入网设备1200中的各个单元的上述和其它操作和/或功能分别为了实现图1至图5中的各个方法的接入网设备相应流程,为了简洁,在此不再赘述。
因此,本申请实施例的接入网设备,接收核心网设备发送的第一数据包,该第一数据包包括第一QFI,根据映射规则,确定该第一QFI对应的第二QFI,再向终端设备发送包括该第二QFI的第二数据包,使得在接入网设备接收到的第一数据包中的第一QFI占用比特数较大时,通过映射为占用较少比特数的第二QFI,从而实现传输至终端设备,并使得终端设备根据映射规则,确定第二QFI对应的第一QFI。
如图13所示,根据本申请实施例的终端设备1300包括:接收单元1310和确定单元1320。具体地,该接收单元1310用于接收接入网设备发送的数据包,该数据包的包头包括第二QFI,该第二QFI为该接入网设备或核心网设备根据该第一QFI确定的;该确定单元1320用于:根据映射规则,确定与该第二QFI对应的该第一QFI。
可选的,该第一QFI占用的比特数大于该第二QFI占用的比特数。
可选的,该映射规则为:在该第一QFI为超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系。
可选的,该映射规则为:在该第一QFI为未超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系。
可选的,该映射规则为预先设置的。
可选的,该第二QFI为该接入网设备根据该第一QFI确定的,该接收单元1310还用于:接收该接入网设备发送的RRC信令,该RRC信令用于指示该映射规则。
可选的,该第二QFI为该核心网设备根据该第一QFI确定的,该接收单元1310还用于:接收该核心网设备发送的NAS信令,该NAS信令用于指示该映射规则。
应理解,根据本申请实施例的终端设备1300可对应于执行本申请实施例中的方法300,并且终端设备1300中的各个单元的上述和其它操作和/或功能分别为了实现图1至图5中的各个方法的终端设备相应流程,为了简洁,在此不再赘述。
因此,本申请实施例的终端设备,接收包括第二QFI的数据包,该第二QFI为接入网设备或者核心网设备根据映射规则和第一QFI确定的,则终端设备根据映射规则,确定第二QFI对应的第一QFI,使得核心网设备、接入网设备以及终端设备之间顺利传输QFI,解决了通过N3接口传输QFI和通过空口传输QFI时QFI占用的比特数不匹配的问题。
如图14所示,根据本申请实施例的终端设备1400包括:确定单元1410和发送单元1420,可选地,还可以包括接收单元1430,具体地,该确定单元1410用于:根据映射规则,确定第一服务质量流标识QFI对应的第二QFI;该发送单元1420用于:向接入网设备发送数据包,该数据包的包头包括该第二QFI。
可选地,该第一QFI占用的比特数大于该第二QFI占用的比特数。
可选地,该映射规则为:在该第一QFI为超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系。
可选地,该映射规则为:在该第一QFI为未超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系。
可选地,该映射规则为预先设置的。
可选地,该确定单元1410具体用于:根据该映射规则,通过服务数据适配协议SDAP层确定该第一QFI对应的该第二QFI。
可选地,该接收单元1430还用于:接收该接入网设备发送的RRC信令,该RRC信令用于指示该映射规则。
可选地,该确定单元1410具体用于:根据该映射规则,通过应用层的确定该第一QFI对应的该第二QFI。
可选地,该接收单元1430还用于:接收该核心网设备发送的NAS信令,该NAS信令用于指示该映射规则。
应理解,根据本申请实施例的终端设备1400可对应于执行本申请实施例中的方法600,并且终端设备1400中的各个单元的上述和其它操作和/或功能分别为了实现图6至图10中的各个方法的终端设备相应流程,为了简洁,在此不再赘述。
因此,本申请实施例的终端设备,根据映射规则,确定第一QFI对应的第二QFI,并向接入网设备发送包括该第二QFI的数据包,使得在第一QFI占用的比特数不满足终端设备与接入网设备之间的传输要求时,通过映射为第二QFI,实现向接入网设备发送QFI,从而使得接入网设备和核心网设备成功接收并确定正确的QFI。
如图15所示,根据本申请实施例的接入网设备1500包括:接收单元1510、确定单元1520和发送单元1530,具体地,该接收单元1510用于:接收终端设备发送的第二数据包,该第二数据包的包头包括第二QFI;该确定单元1520用于:根据映射规则,确定该第二QFI对应的第一QFI;该发送单元1530用于:向核心网设备发送与该第二数据包对应的第一数据包,该第一数据包包括第一QFI。
可选地,该第一QFI占用的比特数大于该第二QFI占用的比特数。
可选地,该映射规则为:在该第一QFI为超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系。
可选地,该映射规则为:在该第一QFI为未超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系。
可选地,该发送单元1530还用于:向该终端设备发送无线资源控制RRC信令,该RRC信令用于指示该映射规则,该映射规则用于该终端设备确定该第二数据包的包头包括的与该第一QFI对应的该第二QFI。
应理解,根据本申请实施例的接入网设备1500可对应于执行本申请实施例中的方法700,并且接入网设备1500中的各个单元的上述和其它操作和/或功能分别为了实现图6至图10中的各个方法的接入网设备相应流程,为了简洁,在此不再赘述。
因此,本申请实施例的接入网设备,接收终端设备发送的包括该第二QFI的第二数据包,该第二QFI为终端设备根据映射规则和第一QFI确定的,接入网设备根据该第二数据包中的第二QFI,按照映射规则确定对应的第一QFI,并向核心网设备发送包括该第一QFI的第一数据包,使得在第一QFI占用的比特数不满足终端设备与接入网设备之间的传输要求时,通过终端设备将其映射为第二QFI,实现向接入网设备发送QFI,再由该接入网设备根据映射规则确定与第二QFI对应的第一QFI,从而使得接入网设备和核心网设备成功接收并确定正确的QFI。
如图16所示,根据本申请实施例的核心网设备1600包括:接收单元1610和确定单元1620,可选地,还可以包括发送单元1630。具体地,该接收单元1610用于:接收接入网设备发送的数据包,该数据包的包头包括第二QFI,该第二QFI为该终端设备根据该第一QFI确定的;该确定单元1620用于:根据映射规则,确定与该第二QFI对应的该第一QFI。
可选地,该第一QFI占用的比特数大于该第二QFI占用的比特数。
可选地,该映射规则为:在该第一QFI为超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系。
可选地,该映射规则为:在该第一QFI为未超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系。
可选地,该发送单元1630用于:向该终端设备发送NAS信令,该NAS信令用于指示该映射规则,以便于该终端设备根据该映射规则确定该第一QFI对应的该第二QFI。
应理解,根据本申请实施例的核心网设备1600可对应于执行本申请实施例中的方法800,并且核心网设备1600中的各个单元的上述和其它操作和/或功能分别为了实现图6至图10中的各个方法的核心网设备相应流程,为了简洁,在此不再赘述。
因此,本申请实施例的核心网设备,接收接入网设备转发的包括第二QFI的数据包,该第二QFI为终端设备向接入网设备发送的,终端设备根据映射规则,确定第一QFI对应的第二QFI,使得在第一QFI占用的比特数不满足终端设备与接入网设备之间的传输要求时,通过终端设备将其映射为第二QFI,实现向接入网设备发送QFI,再由该接入网设备转发至核心网设备,核心网设备根据映射规则确定与第二QFI对应的第一QFI,从而使得接入网设备和核心网设备成功接收并确定正确的QFI。
图17示出了根据本申请实施例的核心网设备1700的示意性框图,如图17所示,该核心网设备1700包括:处理器1710和收发器1720,处理器1710和收发器1720相连,可选地,该核心网设备1700还包括存储器1730,存储器1730与处理器1710相连。其中,处理器1710、存储器1730和收发器1720之间通过内部连接通路互相通信,传递和/或控制数据信号,该存储器1730可以用于存储指令,该处理器1710用于执行该存储器1730存储的指令,以控制收发器1720发送信息或信号,该处理器1710用于:根据映射规则,确定第一QFI对应的第二QFI;该收发器1720用于:向接入网设备发送数据包,该数据包的包头包括该第二QFI。
可选的,作为一个实施例,该第一QFI占用的比特数大于该第二QFI占用的比特数。
可选的,作为一个实施例,该映射规则为:在该第一QFI为超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系。
可选的,作为一个实施例,该映射规则为:在该第一QFI为未超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系。
可选的,作为一个实施例,该收发器1720用于:向终端设备发送NAS信令,该NAS信令用于指示该映射规则,该映射规则用于该终端设备确定该第二QFI对应的该第一QFI。
应理解,根据本申请实施例的核心网设备1700可对应于本申请实施例中的核心网设备1100,并可以对应于执行根据本申请实施例的方法100中的相应主体,并且核心网设备1700中的各个单元的上述和其它操作和/或功能分别为了实现图1至图5中的各个方法中核心网设备的相应流程,为了简洁,在此不再赘述。
因此,本申请实施例的核心网设备,根据映射规则,确定第一QFI对应的第二QFI,其中,该第二QFI占用的比特数可以小于该第一QFI占用的比特数,向接入网设备发送包括该第二QFI的数据包,以便于接入网设备将该数据包发送至终端设备,终端设备根据其中的第二QFI以及映射规则,确定对应的第一QFI,使得核心网设备、接入网设备以及终端设备之间顺利传输QFI,解决了通过N3接口传输QFI和通过空口传输QFI时QFI占用的比特数不匹配的问题。
图18示出了根据本申请实施例的接入网设备1800的示意性框图,如图18所示,该接入网设备1800包括:处理器1810和收发器1820,处理器1810和收发器1820相连,可选地,该接入网设备1800还包括存储器1830,存储器1830与处理器1810相连。其中,处理器1810、存储器1830和收发器1820之间通过内部连接通路互相通信,传递和/或控制数据信号,该存储器1830可以用于存储指令,该处理器1810用于执行该存储器1830存储的指令,以控制收发器1820发送信息或信号,该收发器1820用于:接收核心网设备发送的第一数据包,该第一数据包包括第一QFI;该处理器1810用于:根据映射规则,确定该第一QFI对应的第二QFI;该收发器1820用于:向终端设备发送与该第一数据包对应的第二数据包,该第二数据包的包头包括该第二QFI,以便于该终端设备根据该第二QFI确定对应的该第一QFI。
可选的,作为一个实施例,该第一QFI占用的比特数大于该第二QFI占用的比特数。
可选的,作为一个实施例,该映射规则为:在该第一QFI为超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系。
可选的,作为一个实施例,该映射规则为:在该第一QFI为未超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系。
可选的,作为一个实施例,该收发器1820用于:向该终端设备发送RRC信令,该RRC信令用于指示该映射规则,该映射规则用于该终端设备确定该第二QFI对应的该第一QFI。
应理解,根据本申请实施例的接入网设备1800可对应于本申请实施例中的接入网设备1200,并可以对应于执行根据本申请实施例的方法200中的相应主体,并且接入网设备1800中的各个单元的上述和其它操作和/或功能分别为了实现图1至图5中的各个方法中接入网设备的相应流程,为了简洁,在此不再赘述。
因此,本申请实施例的接入网设备,接收核心网设备发送的第一数据包,该第一数据包包括第一QFI,根据映射规则,确定该第一QFI对应的第二QFI,再向终端设备发送包括该第二QFI的第二数据包,使得在接入网设备接收到的第一数据包中的第一QFI占用比特数较大时,通过映射为占用较少比特数的第二QFI,从而实现传输至终端设备,并使得终端设备根据映射规则,确定第二QFI对应的第一QFI。
图19示出了根据本申请实施例的终端设备1900的示意性框图,如图19所示,该终端设备1900包括:处理器1910和收发器1920,处理器1910和收发器1920相连,可选地,该终端设备1900还包括存储器1930,存储器1930与处理器1910相连。其中,处理器1910、存储器1930和收发器1920之间通过内部连接通路互相通信,传递和/或控制数据信号,该存储器1930可以用于存储指令,该处理器1910用于执行该存储器1930存储的指令,以控制收发器1920发送信息或信号,该收发器1920用于:接收接入网设备发送的数据包,该数据包的包头包括第二QFI,该第二QFI为该接入网设备或核心网设备根据该第一QFI确定的;该处理器1910用于:根据映射规则,确定与该第二QFI对应的该第一QFI。
可选的,作为一个实施例,该第一QFI占用的比特数大于该第二QFI占用的比特数。
可选的,作为一个实施例,该映射规则为:在该第一QFI为超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系。
可选的,作为一个实施例,该映射规则为:在该第一QFI为未超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系。
可选的,作为一个实施例,该映射规则为预先设置的。
可选的,作为一个实施例,该第二QFI为该接入网设备根据该第一QFI确定的,该收发器1920用于:接收该接入网设备发送的RRC信令,该RRC信令用于指示该映射规则。
可选的,作为一个实施例,该第二QFI为该核心网设备根据该第一QFI确定的,该收发器1920用于:接收该核心网设备发送的NAS信令,该NAS信令用于指示该映射规则。
应理解,根据本申请实施例的终端设备1900可对应于本申请实施例中的终端设备1300,并可以对应于执行根据本申请实施例的方法300中的相应主体,并且终端设备1900中的各个单元的上述和其它操作和/或功能分别为了实现图1至图5中的各个方法中终端设备的相应流程,为了简洁,在此不再赘述。
因此,本申请实施例的终端设备,接收包括第二QFI的数据包,该第二QFI为接入网设备或者核心网设备根据映射规则和第一QFI确定的,则终端设备根据映射规则,确定第二QFI对应的第一QFI,使得核心网设备、接入网设备以及终端设备之间顺利传输QFI,解决了通过N3接口传输QFI和通过空口传输QFI时QFI占用的比特数不匹配的问题。
图20示出了根据本申请实施例的终端设备2000的示意性框图,如图20所示,该终端设备2000包括:处理器2010和收发器2020,处理器2010和收发器2020相连,可选地,该终端设备2000还包括存储器2030,存储器2030与处理器2010相连。其中,处理器2010、存储器2030和收发器2020之间通过内部连接通路互相通信,传递和/或控制数据信号,该存储器2030可以用于存储指令,该处理器2010用于执行该存储器2030存储的指令,以控制收发器2020发送信息或信号,该处理器2010用于:根据映射规则,确定第一服务质量流标识QFI对应的第二QFI;该收发器2020用于:向接入网设备发送数据包,该数据包的包头包括该第二QFI。
可选地,作为一个实施例,该第一QFI占用的比特数大于该第二QFI占用的比特数。
可选地,作为一个实施例,该映射规则为:在该第一QFI为超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系。
可选地,作为一个实施例,该映射规则为:在该第一QFI为未超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系。
可选地,作为一个实施例,该映射规则为预先设置的。
可选地,作为一个实施例,该处理器2010用于:根据该映射规则,通过服务数据适配协议SDAP层确定该第一QFI对应的该第二QFI。
可选地,作为一个实施例,该收发器2020用于:接收该接入网设备发送的RRC信令,该RRC信令用于指示该映射规则。
可选地,作为一个实施例,该处理器2010用于:根据该映射规则,通过应用层的确定该第一QFI对应的该第二QFI。
可选地,作为一个实施例,该收发器2020用于:接收该核心网设备发送的NAS信令,该NAS信令用于指示该映射规则。
应理解,根据本申请实施例的终端设备2000可对应于本申请实施例中的终端设备1400,并可以对应于执行根据本申请实施例的方法600中的相应主体,并且终端设备2000中的各个单元的上述和其它操作和/或功能分别为了实现图6至图10中的各个方法中终端设备的相应流程,为了简洁,在此不再赘述。
因此,本申请实施例的终端设备,根据映射规则,确定第一QFI对应的第二QFI,并向接入网设备发送包括该第二QFI的数据包,使得在第一QFI占用的比特数不满足终端设备与接入网设备之间的传输要求时,通过映射为第二QFI,实现向接入网设备发送QFI,从而使得接入网设备和核心网设备成功接收并确定正确的QFI。
图21示出了根据本申请实施例的接入网设备2100的示意性框图,如图21所示,该接入网设备2100包括:处理器2110和收发器2120,处理器2110和收发器2120相连,可选地,该接入网设备2100还包括存储器2130,存储器2130与处理器2110相连。其中,处理器2110、存储器2130和收发器2120之间通过内部连接通路互相通信,传递和/或控制数据信号,该存储器2130可以用于存储指令,该处理器2110用于执行该存储器2130存储的指令,以控制收发器2120发送信息或信号,该收发器2120用于:接收终端设备发送的第二数据包,该第二数据包的包头包括第二QFI;该处理器2110用于:根据映射规则,确定该第二QFI对应的第一QFI;该收发器2120用于:向核心网设备发送与该第二数据包对应的第一数据包,该第一数据包包括第一QFI。
可选地,作为一个实施例,该第一QFI占用的比特数大于该第二QFI占用的比特数。
可选地,作为一个实施例,该映射规则为:在该第一QFI为超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系。
可选地,作为一个实施例,该映射规则为:在该第一QFI为未超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系。
可选地,作为一个实施例,该收发器2120用于:向该终端设备发送无线资源控制RRC信令,该RRC信令用于指示该映射规则,该映射规则用于该终端设备确定该第二数据包的包头包括的与该第一QFI对应的该第二QFI。
应理解,根据本申请实施例的接入网设备2100可对应于本申请实施例中的接入网设备1500,并可以对应于执行根据本申请实施例的方法700中的相应主体,并且接入网设备2100中的各个单元的上述和其它操作和/或功能分别为了实现图6至图10中的各个方法中接入网设备的相应流程,为了简洁,在此不再赘述。
因此,本申请实施例的接入网设备,接收终端设备发送的包括该第二QFI的第二数据包,该第二QFI为终端设备根据映射规则和第一QFI确定的,接入网设备根据该第二数据包中的第二QFI,按照映射规则确定对应的第一QFI,并向核心网设备发送包括该第一QFI的第一数据包,使得在第一QFI占用的比特数不满足终端设备与接入网设备之间的传输要求时,通过终端设备将其映射为第二QFI,实现向接入网设备发送QFI,再由该接入网设备根据映射规则确定与第二QFI对应的第一QFI,从而使得接入网设备和核心网设备成功接收并确定正确的QFI。
图22示出了根据本申请实施例的核心网设备2200的示意性框图,如图22所示,该核心网设备2200包括:处理器2210和收发器2220,处理器2210和收发器2220相连,可选地,该核心网设备2200还包括存储器2230,存储器2230与处理器2210相连。其中,处理器2210、存储器2230和收发器2220之间通过内部连接通路互相通信,传递和/或控制数据信号,该存储器2230可以用于存储指令,该处理器2210用于执行该存储器2230存储的指令,以控制收发器2220发送信息或信号,该收发器2220用于:接收接入网设备发送的数据包,该数据包的包头包括第二QFI,该第二QFI为该终端设备根据该第一QFI确定的;该处理器2210用于:根据映射规则,确定与该第二QFI对应的该第一QFI。
可选地,作为一个实施例,该第一QFI占用的比特数大于该第二QFI占用的比特数。
可选地,作为一个实施例,该映射规则为:在该第一QFI为超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系。
可选地,作为一个实施例,该映射规则为:在该第一QFI为未超过该第二QFI的表示范围的值时,该第一QFI的值与该第二QFI的特定的值之间的映射关系。
可选地,作为一个实施例,该收发器2220用于:向该终端设备发送NAS信令,该NAS信令用于指示该映射规则,以便于该终端设备根据该映射规则确定该第一QFI对应的该第二QFI。
应理解,根据本申请实施例的核心网设备2200可对应于本申请实施例中的核心网设备1600,并可以对应于执行根据本申请实施例的方法800中的相应主体,并且核心网设备2200中的各个单元的上述和其它操作和/或功能分别为了实现图6至图10中的各个方法中核心网设备的相应流程,为了简洁,在此不再赘述。
因此,本申请实施例的核心网设备,接收接入网设备转发的包括第二QFI的数据包,该第二QFI为终端设备向接入网设备发送的,终端设备根据映射规则,确定第一QFI对应的第二QFI,使得在第一QFI占用的比特数不满足终端设备与接入网设备之间的传输要求时,通过终端设备将其映射为第二QFI,实现向接入网设备发送QFI,再由该接入网设备转发至核心网设备,核心网设备根据映射规则确定与第二QFI对应的第一QFI,从而使得接入网设备和核心网设备成功接收并确定正确的QFI。
应注意,本申请上述方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable rom,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电 可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (72)

  1. 一种用于下行数据传输的方法,其特征在于,包括:
    核心网设备根据映射规则,确定第一服务质量流标识QFI对应的第二QFI;
    所述核心网设备向接入网设备发送数据包,所述数据包的包头包括所述第二QFI。
  2. 根据权利要求1所述的方法,其特征在于,所述第一QFI占用的比特数大于所述第二QFI占用的比特数。
  3. 根据权利要求2所述的方法,其特征在于,所述映射规则为:
    在所述第一QFI为超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
  4. 根据权利要求2所述的方法,其特征在于,所述映射规则为:
    在所述第一QFI为未超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
  5. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述核心网设备向终端设备发送非接入层NAS信令,所述NAS信令用于指示所述映射规则,所述映射规则用于所述终端设备确定所述第二QFI对应的所述第一QFI。
  6. 一种用于下行数据传输的方法,其特征在于,包括:
    接入网设备接收核心网设备发送的第一数据包,所述第一数据包包括第一服务质量流标识QFI;
    所述接入网设备根据映射规则,确定所述第一QFI对应的第二QFI;
    所述接入网设备向终端设备发送与所述第一数据包对应的第二数据包,所述第二数据包的包头包括所述第二QFI,以便于所述终端设备根据所述第二QFI确定对应的所述第一QFI。
  7. 根据权利要求6所述的方法,其特征在于,所述第一QFI占用的比特数大于所述第二QFI占用的比特数。
  8. 根据权利要求7所述的方法,其特征在于,所述映射规则为:
    在所述第一QFI为超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
  9. 根据权利要求7所述的方法,其特征在于,所述映射规则为:
    在所述第一QFI为未超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
  10. 根据权利要求6至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述接入网设备向所述终端设备发送无线资源控制RRC信令,所述RRC信令用于指示所述映射规则,所述映射规则用于所述终端设备确定所述第二QFI对应的所述第一QFI。
  11. 一种用于下行数据传输的方法,其特征在于,包括:
    终端设备接收接入网设备发送的数据包,所述数据包的包头包括第二服务质量流标识QFI,所述第二QFI为所述接入网设备或核心网设备根据所述第一QFI确定的;
    所述终端设备根据映射规则,确定与所述第二QFI对应的所述第一QFI。
  12. 根据权利要求11所述的方法,其特征在于,所述第一QFI占用的比特数大于所述第二QFI占用的比特数。
  13. 根据权利要求12所述的方法,其特征在于,所述映射规则为:
    在所述第一QFI为超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
  14. 根据权利要求12所述的方法,其特征在于,所述映射规则为:
    在所述第一QFI为未超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述映射规则为预先设置的。
  16. 根据权利要求11至14中任一项所述的方法,其特征在于,所述第二QFI为所述接入网设备根据所述第一QFI确定的,所述方法还包括:
    所述终端设备接收所述接入网设备发送的无线资源控制RRC信令,所述RRC信令用于指示所述映射规则。
  17. 根据权利要求11至14中任一项所述的方法,其特征在于,所述第二QFI为所述核心网设备根据所述第一QFI确定的,所述方法还包括:
    所述终端设备接收所述核心网设备发送的非接入层NAS信令,所述NAS信令用于指示所述映射规则。
  18. 一种用于上行数据传输的方法,其特征在于,包括:
    终端设备根据映射规则,确定第一服务质量流标识QFI对应的第二QFI;
    所述终端设备向接入网设备发送数据包,所述数据包的包头包括所述第二QFI。
  19. 根据权利要求18所述的方法,其特征在于,所述第一QFI占用的比特数大于所述第二QFI占用的比特数。
  20. 根据权利要求19所述的方法,其特征在于,所述映射规则为:
    在所述第一QFI为超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
  21. 根据权利要求19所述的方法,其特征在于,所述映射规则为:
    在所述第一QFI为未超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
  22. 根据权利要求18至21中任一项所述的方法,其特征在于,所述映射规则为预先设置的。
  23. 根据权利要求18至21中任一项所述的方法,其特征在于,所述终端设备根据映射规则,确定第一服务质量流标识QFI对应的第二QFI,包括:
    所述终端设备根据所述映射规则,通过服务数据适配协议SDAP层确定所述第一QFI对应的所述第二QFI。
  24. 根据权利要求23所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述接入网设备发送的无线资源控制RRC信令,所述RRC信令用于指示所述映射规则。
  25. 根据权利要求18至21中任一项所述的方法,其特征在于,所述终端设备根据映射规则,确定第一服务质量流标识QFI对应的第二QFI,包括:
    所述终端设备根据所述映射规则,通过应用层的确定所述第一QFI对应的所述第二QFI。
  26. 根据权利要求25所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述核心网设备发送的非接入层NAS信令,所述NAS信令用于指示所述映射规则。
  27. 一种用于上行数据传输的方法,其特征在于,包括:
    接入网设备接收终端设备发送的第二数据包,所述第二数据包的包头包括第二服务质量流标识QFI;
    所述接入网设备根据映射规则,确定所述第二QFI对应的第一QFI;
    所述接入网设备向核心网设备发送与所述第二数据包对应的第一数据包,所述第一数据包包括第一QFI。
  28. 根据权利要求27所述的方法,其特征在于,所述第一QFI占用的比特数大于所述第二QFI占用的比特数。
  29. 根据权利要求28所述的方法,其特征在于,所述映射规则为:
    在所述第一QFI为超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
  30. 根据权利要求28所述的方法,其特征在于,所述映射规则为:
    在所述第一QFI为未超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
  31. 根据权利要求27至30中任一项所述的方法,其特征在于,所述方法还包括:
    所述接入网设备向所述终端设备发送无线资源控制RRC信令,所述RRC信令用于指示所述映射规则,所述映射规则用于所述终端设备确定所述第二数据包的包头包括的与所述第一QFI对应的所述第二QFI。
  32. 一种用于上行数据传输的方法,其特征在于,包括:
    核心网设备接收接入网设备发送的数据包,所述数据包的包头包括第二服务质量流标识QFI,所述第二QFI为所述终端设备根据所述第一QFI确定的;
    所述核心网设备根据映射规则,确定与所述第二QFI对应的所述第一QFI。
  33. 根据权利要求32所述的方法,其特征在于,所述第一QFI占用的比特数大于所述第二QFI占用的比特数。
  34. 根据权利要求33所述的方法,其特征在于,所述映射规则为:
    在所述第一QFI为超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
  35. 根据权利要求33所述的方法,其特征在于,所述映射规则为:
    在所述第一QFI为未超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
  36. 根据权利要求32至35中任一项所述的方法,其特征在于,所述方法还包括:
    所述核心网设备向所述终端设备发送非接入层NAS信令,所述NAS信令用于指示所述映射规则,以便于所述终端设备根据所述映射规则确定所述第一QFI对应的所述第二QFI。
  37. 一种核心网设备,其特征在于,包括:
    确定单元,用于根据映射规则,确定第一服务质量流标识QFI对应的第二QFI;
    发送单元,用于向接入网设备发送数据包,所述数据包的包头包括所述第二QFI。
  38. 根据权利要求37所述的核心网设备,其特征在于,所述第一QFI占用的比特数大于所述第二QFI占用的比特数。
  39. 根据权利要求38所述的核心网设备,其特征在于,所述映射规则为:
    在所述第一QFI为超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
  40. 根据权利要求38所述的核心网设备,其特征在于,所述映射规则为:
    在所述第一QFI为未超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
  41. 根据权利要求37至40中任一项所述的核心网设备,其特征在于,所述发送单元还用于:
    向终端设备发送非接入层NAS信令,所述NAS信令用于指示所述映射规则,所述映射规则用于所述终端设备确定所述第二QFI对应的所述第一QFI。
  42. 一种接入网设备,其特征在于,包括:
    接收单元,用于接收核心网设备发送的第一数据包,所述第一数据包包括第一服务质量流标识QFI;
    确定单元,用于根据映射规则,确定所述第一QFI对应的第二QFI;
    发送单元,用于向终端设备发送与所述第一数据包对应的第二数据包,所述第二数据包的包头包括所述第二QFI,以便于所述终端设备根据所述第二QFI确定对应的所述第一QFI。
  43. 根据权利要求42所述的接入网设备,其特征在于,所述第一QFI占用的比特数大于所述第二QFI占用的比特数。
  44. 根据权利要求43所述的接入网设备,其特征在于,所述映射规则为:
    在所述第一QFI为超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
  45. 根据权利要求43所述的接入网设备,其特征在于,所述映射规则为:
    在所述第一QFI为未超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
  46. 根据权利要求42至45中任一项所述的接入网设备,其特征在于,所述发送单元还用于:
    向所述终端设备发送无线资源控制RRC信令,所述RRC信令用于指示所述映射规则,所述映射规则用于所述终端设备确定所述第二QFI对应的所述第一QFI。
  47. 一种终端设备,其特征在于,包括:
    接收单元,用于接收接入网设备发送的数据包,所述数据包的包头包括第二服务质量流标识QFI,所述第二QFI为所述接入网设备或核心网设备根据所述第一QFI确定的;
    确定单元,用于根据映射规则,确定与所述第二QFI对应的所述第一QFI。
  48. 根据权利要求47所述的终端设备,其特征在于,所述第一QFI占用的比特数大于所述第二QFI占用的比特数。
  49. 根据权利要求48所述的终端设备,其特征在于,所述映射规则为:
    在所述第一QFI为超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
  50. 根据权利要求48所述的终端设备,其特征在于,所述映射规则为:
    在所述第一QFI为未超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
  51. 根据权利要求47至50中任一项所述的终端设备,其特征在于,所述映射规则为预先设置的。
  52. 根据权利要求47至50中任一项所述的终端设备,其特征在于,所述第二QFI为所述接入网设备根据所述第一QFI确定的,所述接收单元还用于:
    接收所述接入网设备发送的无线资源控制RRC信令,所述RRC信令用于指示所述映射规则。
  53. 根据权利要求47至50中任一项所述的终端设备,其特征在于,所述第二QFI为所述核心网设备根据所述第一QFI确定的,所述接收单元还用于:
    接收所述核心网设备发送的非接入层NAS信令,所述NAS信令用于指示所述映射规则。
  54. 一种终端设备,其特征在于,包括:
    确定单元,用于根据映射规则,确定第一服务质量流标识QFI对应的第二QFI;
    发送单元,用于向接入网设备发送数据包,所述数据包的包头包括所述第二QFI。
  55. 根据权利要求54所述的终端设备,其特征在于,所述第一QFI占用的比特数大于所述第二QFI占用的比特数。
  56. 根据权利要求55所述的终端设备,其特征在于,所述映射规则为:
    在所述第一QFI为超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
  57. 根据权利要求55所述的终端设备,其特征在于,所述映射规则为:
    在所述第一QFI为未超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
  58. 根据权利要求54至57中任一项所述的终端设备,其特征在于,所述映射规则为预先设置的。
  59. 根据权利要求54至57中任一项所述的终端设备,其特征在于,所述确定单元具体用于:
    根据所述映射规则,通过服务数据适配协议SDAP层确定所述第一QFI对应的所述第二QFI。
  60. 根据权利要求59所述的终端设备,其特征在于,所述终端设备还包括:
    接收单元,用于接收所述接入网设备发送的无线资源控制RRC信令,所述RRC信令用于指示所述映射规则。
  61. 根据权利要求54至57中任一项所述的终端设备,其特征在于,所述确定单元具体用于:
    根据所述映射规则,通过应用层的确定所述第一QFI对应的所述第二QFI。
  62. 根据权利要求61所述的终端设备,其特征在于,所述终端设备还包括:
    接收单元:用于接收所述核心网设备发送的非接入层NAS信令,所述NAS信令用于指示所述映射规则。
  63. 一种接入网设备,其特征在于,包括:
    接收单元,用于接收终端设备发送的第二数据包,所述第二数据包的包头包括第二服务质量流标识QFI;
    确定单元,用于根据映射规则,确定所述第二QFI对应的第一QFI;
    发送单元,用于向核心网设备发送与所述第二数据包对应的第一数据包,所述第一数据包包括第一QFI。
  64. 根据权利要求63所述的接入网设备,其特征在于,所述第一QFI占用的比特数大于所述第二QFI占用的比特数。
  65. 根据权利要求64所述的接入网设备,其特征在于,所述映射规则为:
    在所述第一QFI为超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
  66. 根据权利要求64所述的接入网设备,其特征在于,所述映射规则为:
    在所述第一QFI为未超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
  67. 根据权利要求63至66中任一项所述的接入网设备,其特征在于,所述发送单元还用于:
    向所述终端设备发送无线资源控制RRC信令,所述RRC信令用于指示所述映射规则,所述映射规则用于所述终端设备确定所述第二数据包的包头包括的与所述第一QFI对应的所述第二QFI。
  68. 一种核心网设备,其特征在于,包括:
    接收单元,用于接收接入网设备发送的数据包,所述数据包的包头包括第二服务质量流标识QFI,所述第二QFI为所述终端设备根据所述第一QFI确定的;
    确定单元,用于根据映射规则,确定与所述第二QFI对应的所述第一QFI。
  69. 根据权利要求68所述的核心网设备,其特征在于,所述第一QFI占用的比特数大于所述第二QFI占用的比特数。
  70. 根据权利要求69所述的核心网设备,其特征在于,所述映射规则为:
    在所述第一QFI为超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
  71. 根据权利要求69所述的核心网设备,其特征在于,所述映射规则为:
    在所述第一QFI为未超过所述第二QFI的表示范围的值时,所述第一QFI的值与所述第二QFI的特定的值之间的映射关系。
  72. 根据权利要求68至71中任一项所述的核心网设备,其特征在于,所述核心网设备还包括:
    发送单元,用于向所述终端设备发送非接入层NAS信令,所述NAS信令用于指示所述映射规则,以便于所述终端设备根据所述映射规则确定所述第一QFI对应的所述第二QFI。
PCT/CN2018/075875 2018-02-08 2018-02-08 用于上行和下行的数据传输的方法和装置 WO2019153210A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/075875 WO2019153210A1 (zh) 2018-02-08 2018-02-08 用于上行和下行的数据传输的方法和装置
CN201880037042.9A CN110710257B (zh) 2018-02-08 2018-02-08 用于上行和下行的数据传输的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/075875 WO2019153210A1 (zh) 2018-02-08 2018-02-08 用于上行和下行的数据传输的方法和装置

Publications (1)

Publication Number Publication Date
WO2019153210A1 true WO2019153210A1 (zh) 2019-08-15

Family

ID=67548683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075875 WO2019153210A1 (zh) 2018-02-08 2018-02-08 用于上行和下行的数据传输的方法和装置

Country Status (2)

Country Link
CN (1) CN110710257B (zh)
WO (1) WO2019153210A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114079932B (zh) * 2020-08-11 2023-11-14 中国联合网络通信集团有限公司 5g网络质量保障系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070280258A1 (en) * 2006-06-05 2007-12-06 Balaji Rajagopalan Method and apparatus for performing link aggregation
CN105163403A (zh) * 2015-08-24 2015-12-16 宇龙计算机通信科技(深圳)有限公司 一种数据承载转接的方法及装置
CN107295575A (zh) * 2016-04-01 2017-10-24 中兴通讯股份有限公司 一种服务质量的控制方法和装置
CN108632892A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 无线通信方法、终端、接入网设备和网络系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107295564B (zh) * 2016-04-11 2023-12-05 中兴通讯股份有限公司 一种基于流的承载管理方法、数据传输方法及装置
WO2017196106A1 (ko) * 2016-05-13 2017-11-16 주식회사 케이티 이종 무선 액세스 망 간의 연동 방법 및 그 장치
CN107637123B (zh) * 2017-04-27 2020-12-04 北京小米移动软件有限公司 信息传递方法、装置及计算机可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070280258A1 (en) * 2006-06-05 2007-12-06 Balaji Rajagopalan Method and apparatus for performing link aggregation
CN105163403A (zh) * 2015-08-24 2015-12-16 宇龙计算机通信科技(深圳)有限公司 一种数据承载转接的方法及装置
CN107295575A (zh) * 2016-04-01 2017-10-24 中兴通讯股份有限公司 一种服务质量的控制方法和装置
CN108632892A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 无线通信方法、终端、接入网设备和网络系统

Also Published As

Publication number Publication date
CN110710257A (zh) 2020-01-17
CN110710257B (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
EP3783984B1 (en) Resource allocation method and communications device
US11477689B2 (en) Method and apparatus for establishing guaranteed bit rate (GBR) quality of service (QoS) flow in session
US11770865B2 (en) Relay communication method and relay communications apparatus and system
CN112136355B (zh) 测量用于多址数据连接的接入网络性能
WO2019214729A1 (zh) 数据处理的方法和设备
WO2017166138A1 (zh) 中继传输的方法和装置
AU2019421503B2 (en) Resource establishing method, and device
WO2017166141A1 (zh) 数据传输的方法、终端及基站
CN112423340B (zh) 一种用户面信息上报方法及装置
WO2019137194A1 (zh) 一种用户面数据安全保护方法及装置
US11089505B2 (en) Method and device for transmitting data based on quality of service
JP7192896B2 (ja) 通信システム
WO2020015727A1 (zh) 路径选择的方法、终端设备和网络设备
WO2018126477A1 (zh) 复用上行授权资源的方法和设备
WO2021052573A1 (en) Establishing a new qos flow for a data connection
AU2017426227B2 (en) Resource scheduling method, terminal device, and network device
EP3709546A1 (en) Data transmission method and apparatus
WO2019061982A1 (zh) 用于资源分配的方法、网络设备和通信设备
WO2020200103A1 (zh) 确定承载类型的方法和通信装置
WO2018145292A1 (zh) 通信方法、装置和系统
WO2019153210A1 (zh) 用于上行和下行的数据传输的方法和装置
WO2020010619A1 (zh) 数据传输方法、终端设备和网络设备
WO2019080034A1 (zh) 用于数据传输的方法、终端设备和网络设备
WO2019174054A1 (zh) 确定第一多天线发送模式的方法、终端设备和网络设备
WO2019109260A1 (zh) 接入无线接入网的方法、设备和非授权接入点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904763

Country of ref document: EP

Kind code of ref document: A1