WO2019153181A1 - 一种低串扰单芯双向光组件 - Google Patents

一种低串扰单芯双向光组件 Download PDF

Info

Publication number
WO2019153181A1
WO2019153181A1 PCT/CN2018/075804 CN2018075804W WO2019153181A1 WO 2019153181 A1 WO2019153181 A1 WO 2019153181A1 CN 2018075804 W CN2018075804 W CN 2018075804W WO 2019153181 A1 WO2019153181 A1 WO 2019153181A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
polarization
combiner
light
polarization beam
Prior art date
Application number
PCT/CN2018/075804
Other languages
English (en)
French (fr)
Inventor
陈波
许辉杰
温俊华
陈从干
Original Assignee
徐州旭海光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐州旭海光电科技有限公司 filed Critical 徐州旭海光电科技有限公司
Priority to KR1020207025839A priority Critical patent/KR102512538B1/ko
Priority to CN201880000081.1A priority patent/CN110462491B/zh
Priority to PCT/CN2018/075804 priority patent/WO2019153181A1/zh
Publication of WO2019153181A1 publication Critical patent/WO2019153181A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors

Definitions

  • the embodiment of the present invention belongs to the field of optical communication technologies, and in particular, to a low crosstalk single-core bidirectional optical component of the same wavelength or near wavelength.
  • the traditional optical transceiver module uses two optical fibers to transmit and receive optical signals respectively.
  • the difference in length between the two optical fibers causes the propagation delay of the two signals to be inconsistent, which causes great difficulty in clock synchronization.
  • the use of a single fiber bidirectional transmission eliminates the influence of fiber length difference and can meet the requirements of current clock synchronization. Further, if the same or similar (wavelength difference is less than 40 nm) wavelength is used in the bidirectional transmission of a single fiber, the dispersion can be effectively overcome. The resulting residual delay greatly improves the clock synchronization accuracy of the network to meet the needs of the next generation of clock synchronization such as 5G networks.
  • single-core bidirectional transmission of the same wavelength or near-wavelength overcomes the problem that the optical transceiver module needs to be paired in the conventional dual-wavelength single-core bidirectional transmission technology scheme, and the network configuration and connection can be more flexible.
  • Chinese patent 201410604190.8 proposes a technical solution that avoids additional optical power loss and has a small size by using a sub-wavelength polarizing reflector, and can realize single-core bidirectional transmission of the same wavelength or near-wavelength under the existing optical component size.
  • the optical signal transmitting unit and the optical signal receiving unit are packaged in one transceiver integrated optical component, and the outgoing optical signal emitted by the local optical signal transmitting unit partially reaches the local
  • the optical signal receiving unit forms a crosstalk, resulting in an increase in the signal error rate, which is a common problem in the existing single-core or near-wavelength single-core bidirectional optical component solutions.
  • the optical crosstalk signal is usually derived from the reflection or transmission of the optical interface.
  • the single-core bidirectional optical module 100 is composed of an input/output terminal 101, an optical signal transmitting unit 105, an optical signal receiving unit 106, and a polarization beam splitting combiner 102.
  • the first polarizing reflector 103 and the second polarizing reflector 104 are formed; the polarization beam splitting combiner 102 includes a functional surface 1022 in the diagonal direction, and the splitting and combining of the polarization states are realized on the functional surface.
  • the incident light signal (not shown) is input to the polarization beam splitting combiner 102 through the input and output terminal 101, and is decomposed into two mutually perpendicular polarization states, respectively propagating to the first polarization reflector 103 and the second polarization reflection.
  • the reflected light state of the device 104 is rotated by 90 degrees, and then combined by the polarization beam splitting combiner 102 to form a single light beam in the same direction and received by the optical signal receiving unit 106.
  • the outgoing light signal 108 emitted by the light signal emitting unit 105 has a single polarization state. After passing through the first polarizing reflector 103, the polarization state is rotated to form a polarization state signal 109 that can be transmitted through the polarization beam splitter combiner 102. Shown as P light, with "
  • the functional surface 1022 is reflected so as to be received by the optical signal receiving unit 106 to form a crosstalk optical signal; in addition, for the P polarization state of the outgoing optical signal 109, the functional surface 1022 cannot achieve an infinite extinction ratio, and some of the optical signal is reflected to The optical signal receiving unit 106 forms a crosstalk, and thus the snubber signal 110 formed by reflection on the functional surface 1022 has both P polarization and S polarization, and is called a first crosstalk optical signal.
  • Another source of the crosstalk signal is the residual reflection 111 generated by the outgoing optical signal passing through the functional surface 1022 and then at the incident end face 1021 of the polarization beam splitter combiner 102 with respect to the input and output end 101 side, and at the input and output end 101.
  • the residual reflection 112 generated by the interface 1011, the two portions of the reflected light signal will be regarded as a part of the incident light signal, transmitted through the polarization beam splitter combiner 102 and the first polarized reflector 103, and the polarization state is rotated by 90 degrees. Again, it is reflected by the functional surface 1022 of the polarization beam splitting combiner 102, and as the incident light signal reaches the optical signal receiving unit 106, a second crosstalk optical signal 113 is formed.
  • the above discussion is directed to the arrangement in which the outgoing optical signal passes through the functional surface 1022 of the polarization splitting combiner 102 to the input and output 101 in a transmissive manner, and the functional surface of the polarizing beam splitter 102 is reflected in a reflective manner for the outgoing optical signal.
  • the configuration of 1022 that is, the light emitting unit 105 is on the side of the second polarizing reflector, the formation mechanism of the crosstalk optical signal is similar.
  • the first nuisance signal 110 is transmitted by the outgoing optical signal through the functional surface 1022. form.
  • the formation mechanism of the second disturbance signal 113 is the same as that described above, and is formed by the incident end surface 1021 of the polarization beam splitting combiner 102 or the residual reflection on the incident end surface 1011 of the input/output terminal 101.
  • the wavelength filter cannot be used to block the crosstalk before the optical signal receiving unit, otherwise the input incident optical signal will be blocked; for near-wavelength applications, although it can be used in the optical signal receiving unit
  • the wavelength filter is applied before, but the optical transceiver modules at both ends of the fiber must be paired, which causes problems in engineering application and inventory management, and makes the network connection lose flexibility.
  • the existing single-core bidirectional optical component solution of the same wavelength or near-wavelength cannot effectively overcome the crosstalk problem of the optical signal generated by the local optical signal receiving unit by the outgoing optical signal emitted by the local optical signal transmitting unit.
  • the embodiment provides a low crosstalk single-core bidirectional optical component including an input and output terminal, a polarization beam splitting combiner, a first polarizing reflector, a second polarizing reflector, and at least one optical signal.
  • the input and output ends are used for inputting and outputting optical signals, and the input and output ends comprise a first incident end face toward a side of the polarization splitting combiner;
  • the diagonal direction of the polarization beam splitter combiner includes a functional surface for decomposing a beam of optical signals into two mutually perpendicular polarized light signals, and for synthesizing two mutually perpendicular polarized light signals into one a beam light signal, the polarization beam splitter combiner includes a second incident end face toward a side of the input and output end;
  • At least one of the first polarizing reflector and the second polarizing emitter is comprised of a 45 degree Faraday rotator and a sub-wavelength grating polarizing reflector for reflecting a polarization state Optical signal and transmitting an optical signal perpendicular to the polarization state of the optical signal reflected therefrom;
  • the light signal emitting unit is configured to emit an outgoing light signal, and the light signal emitting unit includes a focusing lens;
  • the optical signal receiving unit is configured to receive an incident light signal, and the optical signal receiving unit includes a focusing lens;
  • the input and output end receives an incident optical signal including at least one wavelength, and couples the incident optical signal to the polarization splitting combiner; the incident optical signal is decomposed into mutually by the polarization splitting combiner a first first polarization state light signal and a second polarization state light signal; the first polarization state light signal is transmitted through the polarization beam splitter combiner to the first polarization reflector, by the first polarization Reflecting the reflector back to the polarization beam splitter combiner and the polarization state becomes perpendicular to its initial polarization state; the second polarization state light signal is reflected by the polarization beam splitter to propagate to the second polarization reflector Reflected by the second polarizing reflector back to the polarization beam splitting combiner and the polarization state becomes perpendicular to its initial polarization state; the first polarization state light signal whose polarization state changes is combined by the polarization beam splitting The second polarization state light signal whose reflection is changed and the polarization
  • the optical signal transmitting unit emits an outgoing optical signal including at least one wavelength, the outgoing optical signal having a single polarization state; and the outgoing optical signal when the optical signal transmitting unit is located at one side of the first polarizing reflector Transmitting to the input and output terminals through the first polarizing reflector and the polarization beam splitting combiner; the outgoing light signal when the optical signal transmitting unit is located at one side of the second polarizing reflector Transmitted to the polarization beam splitter combiner via the second polarizing reflector, and reflected by the polarization beam splitter combiner to the input and output ends;
  • the aperture is for limiting an optical signal, the aperture being between the polarization beam splitter combiner and the optical signal receiving unit, and placed at a position where the first crosstalk optical signal spot is the smallest; the inside of the aperture
  • the light blocking area is greater than or equal to a spot size formed by the first crosstalk optical signal propagating to the pupil position for blocking the first crosstalk optical signal, so that the first crosstalk optical signal cannot be propagated to the Optical signal receiving unit.
  • an angle between a normal of the first incident end surface of the input and output end and the outgoing light signal is greater than 0 degrees and less than 82 degrees, and a second incident end surface of the polarization splitting combiner An angle between the normal line and the incident light signal is greater than 0 degrees and less than 82 degrees;
  • the outgoing light signal When the outgoing light signal is transmitted to the input and output ends by the polarization beam splitting combiner, a part of the outgoing light signal is reflected by the first or second incident end surface to form a second crosstalk light signal, the second The crosstalk light signal propagates away from the opposite direction of the outgoing light signal.
  • an angle between a normal of the first incident end surface of the input and output end and the outgoing light signal is greater than 8 degrees, and a normal to the second incident end surface of the polarization splitting combiner The angle between the outgoing light signals is greater than 8 degrees.
  • the first incident end face of the input and output end and the second incident end face of the polarization beam splitter combiner are directly adhesively bonded by an index matching glue.
  • an angle between the exiting optical signal and a normal to a functional surface of the polarization beam splitter combiner is between 34 degrees and 44 degrees or between 46 degrees and 56 degrees;
  • the inner light blocking region is offset from the center of the light transmitting region.
  • the aperture further includes an external light blocking region for blocking the disturbing light signal and the stray light signal from being incident on the optical signal receiving unit.
  • the sub-wavelength grating polarizing reflector comprises a sub-wavelength non-metal dielectric grating, a sub-wavelength metal grating or a combined grating of a sub-wavelength non-metal medium and a sub-wavelength metal;
  • the sub-wavelength grating polarizing reflector is formed by forming one of the three gratings by a microfabrication process on a light-passing surface of the 45-degree Faraday rotator;
  • At most one of the first polarizing reflector or the second polarizing emitter is composed of a quarter-wave plate and a mirror, and the mirror passes through a light-passing surface of the quarter-wave plate Forming any one of a highly reflective metal film or a highly reflective multilayer dielectric film;
  • the first polarizing reflector or the second polarizing emitter consists of a 45 degree Faraday rotator and a mirror that passes a light passing through the 45 degree Faraday rotator
  • the surface is plated with either a highly reflective metal film or a highly reflective multilayer dielectric film.
  • the polarization beam splitter combiner is a multilayer dielectric film type polarization beam splitter combiner or a sub-wavelength grating type polarization splitting beam combiner.
  • the light blocking area is a light reflecting type or a light absorbing type light blocking area.
  • Another aspect of the present embodiment provides a low crosstalk single-core bidirectional optical assembly including an input and output terminal, a polarization beam splitting combiner, a first polarizing reflector, a second polarizing reflector, and at least one light. a signal transmitting unit and an optical signal receiving unit;
  • the input and output end is configured to input an incident light signal and an output outgoing light signal, and the input and output end comprises a first incident end face toward a side of the polarization splitting combiner;
  • the diagonal direction of the polarization beam splitter combiner includes a functional surface for decomposing a beam of optical signals into two mutually perpendicular polarized light signals, and for synthesizing two mutually perpendicular polarized light signals into one a beam light signal, the polarization beam splitter combiner includes a second incident end face toward a side of the input and output end;
  • An angle between a normal line of the first incident end surface of the input and output end and the outgoing light signal is greater than 0 degrees and less than 82 degrees, and a normal of the second incident end surface of the polarization splitting combiner and the incident The angle between the light signals is greater than 0 degrees and less than 82 degrees;
  • At least one of the first polarizing reflector and the second polarizing emitter is comprised of a 45 degree Faraday rotator and a sub-wavelength grating polarizing reflector for reflecting a polarization state Optical signal and transmitting an optical signal perpendicular to the polarization state of the optical signal reflected therefrom;
  • the light signal emitting unit is configured to emit an outgoing light signal, and the light signal emitting unit includes a focusing lens;
  • the optical signal receiving unit is configured to receive an incident light signal, and the optical signal receiving unit includes a focusing lens;
  • the input and output terminals receive at least one wavelength incident light signal and couple the incident light signal to the polarization beam splitter combiner; the incident light signal is decomposed into mutually perpendicular by the polarization beam splitter combiner a first polarization state light signal and a second polarization state light signal; the first polarization state light signal is transmitted through the polarization beam splitter combiner to the first polarization reflector, and is reflected by the first polarization Reflecting back to the polarization beam splitter combiner and the polarization state becomes perpendicular to its initial polarization state; the second polarization state light signal is reflected by the polarization beam splitter combiner to the second polarization reflector Reflected by the second polarizing reflector back to the polarization beam splitting combiner and the polarization state becomes perpendicular to its initial polarization state; the first polarization state optical signal whose polarization state changes is passed through the polarization beam splitter combiner Transmitting, the polarization state change of
  • the optical signal transmitting unit emits an outgoing optical signal including at least one wavelength, the outgoing optical signal having a single polarization state; and the outgoing optical signal when the optical signal transmitting unit is located at one side of the first polarizing reflector Transmitting to the input and output terminals through the first polarizing reflector and the polarization beam splitting combiner; the outgoing light signal when the optical signal transmitting unit is located at one side of the second polarizing reflector Transmitted to the polarization beam splitter combiner via the second polarizing reflector, and reflected by the polarization beam splitter combiner to the input and output ends;
  • the emitted light signal When the emitted light signal is transmitted or reflected by the polarization beam splitting combiner to the input and output ends, a portion of the emitted light signal is adopted by the first incident end surface of the input/output terminal or the polarization beam splitter combiner The two incident end faces reflect to form a second crosstalk light signal, and the second crosstalk light signal propagates away from the opposite direction of the outgoing light signal.
  • an angle between a normal of the first incident end surface of the input and output end and the outgoing light signal is greater than 8 degrees, and a normal to the second incident end surface of the polarization splitting combiner The angle between the outgoing light signals is greater than 8 degrees.
  • the first incident end face of the input and output end and the second incident end face of the polarization beam splitter combiner are directly adhesively bonded by an index matching glue.
  • the angle between the exiting light signal and the normal to the functional face of the polarization beam splitter combiner is between 34 degrees and 44 degrees or between 46 degrees and 56 degrees.
  • the sub-wavelength grating polarizing reflector comprises a sub-wavelength non-metal dielectric grating, a sub-wavelength metal grating or a combined grating of a sub-wavelength non-metal medium and a sub-wavelength metal;
  • the sub-wavelength grating polarizing reflector is formed by forming one of the three gratings by a microfabrication process on a light-passing surface of the 45-degree Faraday rotator;
  • At most one of the first polarizing reflector or the second polarizing emitter is composed of a quarter-wave plate and a mirror, and the mirror passes through a light-passing surface of the quarter-wave plate Forming any one of a highly reflective metal film or a highly reflective multilayer dielectric film;
  • the first polarizing reflector or the second polarizing emitter consists of a 45 degree Faraday rotator and a mirror that passes a light passing through the 45 degree Faraday rotator
  • the surface is plated with either a highly reflective metal film or a highly reflective multilayer dielectric film.
  • the polarization beam splitter combiner is a multilayer dielectric film type polarization beam splitter combiner or a sub-wavelength grating type polarization splitting beam combiner.
  • An aspect of an embodiment of the present solution provides an optical signal receiving unit including an input and output terminal, a polarization beam splitting combiner, a first polarizing reflector, a second polarizing reflector, at least one optical signal transmitting unit, and an optical signal receiving unit.
  • the optical signal receiving unit effectively reduces crosstalk of the outgoing optical signal of the optical signal transmitting unit to the optical signal receiving unit, and realizes single-core bidirectional transmission of a high-signal-to-noise ratio optical signal of the same wavelength or near-wavelength.
  • Another aspect of the embodiments of the present invention provides an input and output terminal, a polarization beam splitter combiner, a first polarized reflector, a second polarized reflector, at least one optical signal emitting unit, and an optical signal.
  • the low crosstalk single-core bidirectional optical component of the receiving unit is such that the angle between the incident end face normal and the outgoing optical signal at the input and output ends is greater than 0 degrees and less than 82 degrees, and the incident end face normal of the polarization beam splitter combiner is The angle between the outgoing light signals is greater than 0 degrees and less than 82 degrees, so that the incident end face of the polarization beam splitter combiner or the incident end face of the input and output ends is reflected to the polarization beam splitter beam crosstalk optical signal deviating from the propagation path, which can be effective
  • the crosstalk of the outgoing optical signal of the optical signal transmitting unit to the optical signal receiving unit is reduced, and the single-core bidirectional transmission of the high-signal-to-noise
  • FIG. 1 is a schematic diagram of a source of interference of a single-core bidirectional optical component of the same wavelength or near-wavelength in the prior art
  • FIG. 2 is a schematic structural diagram of a low crosstalk single-core bidirectional optical component according to Embodiment 1 of the present solution
  • FIG. 3 and 4 are schematic structural views of a polarization beam splitting combiner provided in Embodiment 1 of the present solution;
  • FIG. 5 and 6 are schematic structural views of a polarizing reflector provided in Embodiment 1 of the present solution.
  • FIG. 7 is a schematic structural view of a diaphragm provided in Embodiment 1 of the present solution.
  • FIG. 8 is a schematic structural diagram of a low crosstalk single-core bidirectional optical component provided in Embodiment 2 of the present solution.
  • FIG. 9 is a schematic structural diagram of a low crosstalk single-core bidirectional optical component provided in Embodiment 3 of the present solution.
  • the embodiment provides a low crosstalk single-core bidirectional optical module 200 including an input and output terminal 201, a polarization beam splitting combiner 202, a first polarization reflector 203, and a second polarization.
  • the reflector 204, the at least one optical signal transmitting unit 205, an optical signal receiving unit 206, and a diaphragm 207 include an inner light blocking region 2071 and a light transmitting region 2072.
  • the input and output terminals 201 are used for inputting and outputting optical signals, and the input/output terminal 201 includes a first incident end surface 2011 toward the polarization beam splitting combiner 202 side.
  • the input and output end may specifically be an optical fiber, and is used for connecting with a polarization splitting combiner to realize optical signal transmission.
  • the diagonal direction of the polarization beam splitter combiner 202 includes a functional surface 2022 for splitting a beam of optical signals into two mutually perpendicular polarized light signals, and for separating the two beams perpendicular to each other.
  • the polarized light signal combines a beam of light signals.
  • the polarizing beam splitter combiner 202 includes a second incident end face 2021 toward one side of the input and output end 201.
  • the polarization beam splitter combiner is a multilayer dielectric film type polarization beam splitter combiner or a sub-wavelength grating type polarization splitting beam combiner.
  • a multilayer dielectric film type polarization beam splitting combiner is exemplarily shown, and an incident light signal and an outgoing light signal are exemplarily shown through a multilayer dielectric film type polarization beam splitting combiner.
  • the direction of propagation and the state of polarization are exemplarily shown.
  • a sub-wavelength grating type polarization beam splitting combiner is exemplarily shown, and exemplarily shows an incident light signal and an outgoing light signal passing through a sub-wavelength grating type polarization beam splitting combiner. Propagation direction and polarization state.
  • the incident light signal 301 includes two optical signals of mutually perpendicular polarization states, and the incident light signals of different polarization states are respectively transmitted and reflected by the polarization beam splitting combiner, and are decomposed into light propagating along the transmission path.
  • a signal 302 and an optical signal 303 propagating along the reflective path. After the optical signal 302 is emitted by the first polarizing reflector, it becomes an optical signal 304 whose polarization state is perpendicular to the optical signal 302.
  • optical signal 303 After the optical signal 303 is reflected by the second polarizing reflector, The optical signal 305 is changed to a polarization state perpendicular to the optical signal 303, and the optical signal 304 and the optical signal 305 are combined into an optical signal 306 in the same direction.
  • At least one of the first polarizing reflector 203 and the second polarizing emitter 204 is composed of a 45 degree Faraday rotator and a sub-wavelength grating polarizing reflector, and the sub-wavelength grating polarizing reflector is used to reflect a certain The optical signal of the polarization state and the optical signal perpendicular to the polarization state of the optical signal reflected by it.
  • the sub-wavelength grating polarizing reflector comprises a sub-wavelength non-metal dielectric grating, a sub-wavelength metal grating or a combined grating of a sub-wavelength non-metal medium and a sub-wavelength metal.
  • the sub-wavelength grating polarizing reflector is fabricated by forming one of the three gratings by a micromachining process on a light passing surface of the 45 degree Faraday rotator.
  • At most one of the first polarizing reflector or the second polarizing emitter is comprised of a quarter wave plate and a mirror, the mirror passing through the quarter wave
  • One of the light-passing surfaces of the sheet is formed by plating either a highly reflective metal film or a highly reflective multilayer dielectric film.
  • At most one of the first polarized reflector or the second polarized emitter consists of a 45 degree Faraday rotator and a mirror that passes through the 45 degree Faraday rotator
  • One of the light-passing surfaces is formed by plating either a highly reflective metal film or a highly reflective multilayer dielectric film.
  • a second polarizing reflector 204 composed of a quarter-wave plate 501 and a mirror 502 is shown by way of example, wherein the optical axis of the quarter-wave plate 501 and the incident light signal 503 are shown.
  • the polarization direction is at an angle of 45 degrees.
  • the quarter-wave plate 501 of FIG. 5 can be equivalently replaced by a 45-degree Faraday rotator, and the incident light signal is rotated by 90 degrees after passing through the 45-degree Faraday rotator twice.
  • an example shows a first polarizing reflector 203 consisting of a 45 degree Faraday rotator 601 and a sub-wavelength grating polarizing reflector 602, wherein the incident light signal 603 is passed through a 45 degree Faraday rotator.
  • the polarization direction is rotated by 45 degrees, reflected by the sub-wavelength grating polarizing reflector 602, and after passing through the 45-degree Faraday rotator 602 again, the polarization direction is rotated again by 45 degrees to become an optical signal 604 whose polarization state is rotated by 90 degrees.
  • the outgoing optical signal 605 different from the polarization state of the incident optical signal 603 passes through the sub-wavelength grating polarizing reflector 602, it is transmitted by the sub-wavelength grating polarizing reflector 602 to the 45-degree Faraday rotator 601 to emit light.
  • the polarization direction of the signal 605 is rotated by 45 degrees by the 45 Faraday rotator 601, it becomes an optical signal 606 having the same polarization direction as the incident optical signal 603, and the optical signal 606 can be back-propagated to the input and output according to the optical path reversible principle. End 201.
  • the optical signal transmitting unit 205 is configured to emit an outgoing optical signal, the emitted outgoing optical signal 208 has a single polarization state, and the optical signal transmitting unit 205 includes a focusing lens.
  • the optical signal transmitting unit 205 has a concentrating function for concentrating the output optical signal outputted by the focusing lens to the first incident end surface 2011 of the input/output terminal 201, so that the input/output terminal 201 will emit an optical signal. Propagation to external optical communication lines.
  • the optical signal receiving unit 206 is for receiving an optical signal, and the optical signal receiving unit 206 includes a focusing lens.
  • the optical signal receiving unit 206 has a concentrating function for concentrating the incident optical signal to its light receiving end face through the focusing lens to achieve a receiving function for the incident optical signal.
  • the polarization beam splitter combiner includes a functional surface 2022, and the splitting and combining of the polarization states is achieved by the reflection and transmission of the light beam at the functional surface 2022. Since the exiting optical signal 208 passes through the first polarizing reflector 203, the polarization extinction ratio of the formed outgoing optical signal 209 and the polarization extinction ratio of the functional surface 2022 are limited, and the outgoing optical signal 208 generates a certain amount of disturbed light on the functional surface. The signal propagates toward the optical signal receiving unit 206 to become the first crosstalk optical signal 210, and the first crosstalk optical signal 210 also has a convergence characteristic due to the action of the focusing lens of the optical signal transmitting unit 205.
  • the aperture 207 is used to limit the optical signal, and the position of the aperture 207 is between the polarization beam splitter combiner 202 and the optical signal receiving unit 206, and is placed at the position where the first crosstalk signal 210 has the smallest spot.
  • the internal light blocking area 2071 of the aperture 207 is greater than or equal to the spot size formed by the first crosstalk optical signal 210 propagating to the position of the aperture 207 for blocking the first crosstalk optical signal 210 such that the first crosstalk optical signal 210 cannot propagate.
  • the spot formed at the stop 207 is much smaller than the spot of the incident light signal, and therefore, the internal stop region 2071 of the stop 207 has little influence on the insertion loss of the incident optical signal. .
  • the angle between the outgoing optical signal and the normal to the functional surface 2021 of the polarization beam splitter combiner 202 is not 45 degrees, such as between 34 degrees and 44 degrees or between 46 degrees and 56 degrees.
  • the angle between the first crosstalk optical signal 210 before the optical signal receiving unit 206 and the incident optical signal is greater than 0 degrees, and causes the internal tracking region 2071 to deviate from the center of the incident optical signal, thereby reducing the amount of blocking of the incident optical signal.
  • the size, shape, and setting position of the aperture 207 and the light blocking area 2071 can be set according to actual needs.
  • the light transmitting area 2072 and the internal light blocking area 2071 of the aperture 207 are both circular and transparent.
  • the region 2072 has a diameter ranging from 600 micrometers to 900 micrometers, and the inner light blocking region 2071 has a diameter ranging from 30 micrometers to 100 micrometers.
  • the internal light blocking area 2071 may also be any shape such as a rectangle, an ellipse, or a triangle.
  • an outer light blocking region 2073 is disposed outside of the light transmissive region 2072 of the aperture 207.
  • an aperture 207 having a circular shape of the light-transmitting region 2072 and the light-blocking region 2071, a light-transmitting region 2072 of the aperture 207, and an external light-blocking region 2073 outside the light blocking region 2071 are exemplarily shown. It is used to block other nuisance and stray light signals from entering the optical signal receiving unit 206.
  • the light blocking region is a reflective or absorptive light blocking region.
  • the reflective light blocking region may be a metal mirror or a multilayer dielectric film mirror, and the absorbing light blocking region may be made of a light absorbing material.
  • the optical signal emitting unit comprises a light emitting diode or a laser
  • the optical signal receiving unit comprises a photodiode or a photosensitive component.
  • the light signal emitting unit is disposed on one side of the first polarizing reflector or the second polarizing reflector, and the first or second polarization of the side when the optical signal emitting unit is disposed on one side of the first or second polarizing reflector
  • the reflector must consist of a 45 degree Faraday rotator and a sub-wavelength grating polarizing reflector to transmit the outgoing light signal from the optical signal emitting unit while reflecting the incident light signal.
  • the optical signal emitting unit 205 is exemplarily shown disposed on the side of the first polarizing reflector 203.
  • the working principle of the low crosstalk single-core bidirectional optical component 200 provided in this embodiment for receiving an incident optical signal, transmitting an outgoing optical signal, and blocking a crosstalk signal are as follows:
  • the input and output terminal 201 receives the incident light signal including at least one wavelength, and couples the incident light signal to the polarization beam splitting combiner 202; the incident light signal is decomposed into the polarization beam splitter combiner 202 The first polarization state light signal and the second polarization state light signal are perpendicular to each other; the first polarization state light signal is transmitted through the polarization beam splitter combiner 202 to the first polarization reflector 203, and is reflected back by the first polarization reflector 203.
  • the polarization beam splitter combiner 202 and the polarization state becomes perpendicular to its initial polarization state; the second polarization state light signal is reflected and transmitted by the polarization beam splitter combiner 202 to the second polarization reflector 204, and is reflected by the second polarization reflector 204.
  • the polarization beam splitting combiner 202 is polarized and the polarization state becomes perpendicular to its initial polarization state; the first polarization state light signal whose polarization state is changed is reflected by the polarization beam splitter combiner 202, and the second polarization state light signal whose polarization state is changed is The polarization beam splitting combiner 202 transmits, forms two optical signals in the same direction, and propagates through the light transmitting region 2072 of the aperture 207 to the optical signal receiving unit 206 to be received;
  • the optical signal transmitting unit 205 For transmitting the outgoing optical signal, the optical signal transmitting unit 205 emits an outgoing optical signal including at least one wavelength, and the outgoing optical signal has a single polarization state; when the optical signal transmitting unit 205 is located at the side of the first polarizing reflector 203, the outgoing optical signal
  • the first polarizing reflector 203 and the polarization beam splitting combiner 202 are sequentially transmitted to the input/output terminal 201; when the optical signal emitting unit 205 is located at the side of the second polarizing reflector 204, the outgoing optical signal is transmitted through the second polarizing reflector 204.
  • To the polarization beam splitting combiner 202, and reflected by the polarization beam splitting combiner 202 to the input and output end 201 is output;
  • the partially emitted light signal is reflected or transmitted by the functional surface 2022 of the polarization beam splitter combiner 202 to form a first A string of disturbing signals 210 propagates toward the optical signal receiving unit 206 and is blocked by the internal light blocking region 2071 of the aperture 207.
  • the present embodiment provides an optical input beam splitter, a polarization splitter combiner, a first polarized reflector, a second polarized reflector, at least one optical signal transmitting unit, an optical signal receiving unit, and a light.
  • the low crosstalk single-core bidirectional optical component of the crucible is provided with an internal light blocking area for blocking the crosstalk optical signal reflected by the polarization splitting combiner or transmitted to the optical signal receiving unit, so that the crosstalk optical signal cannot reach the optical signal receiving unit
  • the optical signal receiving unit can effectively improve the quality of the signal received by the optical signal receiving unit, and achieve high-signal-to-noise transmission of the same wavelength or near-wavelength optical signal.
  • the embodiment is implemented based on the first embodiment.
  • the embodiment provides a low crosstalk single-core bidirectional optical component 300, which differs from the low crosstalk single-core bidirectional optical component 200 shown in FIG. 2 in that:
  • the angle between the normal of the incident end face 2011 of the output end 201 and the outgoing light signal is greater than 0 degrees and less than 82 degrees, and the angle between the normal of the incident end face 2021 of the polarization splitting combiner 202 and the outgoing optical signal More than 0 degrees and less than 82 degrees.
  • the angle between the normal of the incident end face 2011 of the input/output terminal 201 and the outgoing light signal is greater than 8 degrees and less than 82 degrees, and the normal line of the incident end face 2021 of the polarization splitting combiner 202 The angle between the light-emitting signals is greater than 8 degrees and less than 82 degrees.
  • the working principle of the low crosstalk single-core bidirectional optical component 200 provided in this embodiment for blocking crosstalk signals further includes:
  • the outgoing light signal When the outgoing light signal is transmitted to the input/output terminal 201 via the polarization beam splitting combiner 202, a part of the outgoing light signal is reflected by the incident end surface 2021 of the polarization beam splitting combiner 202 or the incident end surface 2011 of the input/output terminal 201 to form a second crosstalk.
  • the optical signal 2012 because the normal of the incident end face 2021 of the polarization splitting combiner 202 and the normal of the incident end face 2011 of the input/output terminal 201 are greater than 8 degrees and less than 90 degrees with respect to the outgoing optical signal, so that the second crosstalk is caused.
  • the optical signal 2012 propagates away from an angle greater than 16 degrees in the opposite direction of the outgoing optical signal so as not to cause interference to the incident optical signal;
  • the propagation path of the second crosstalk signal 2012 is shown by way of example.
  • the incident end face 2011 of the input and output end 201 and the incident end face 2021 of the polarization beam splitter combiner 202 are directly adhesively bonded by an index matching glue.
  • An aspect of an embodiment of the present solution provides an optical signal receiving unit including an input and output terminal, a polarization beam splitting combiner, a first polarizing reflector, a second polarizing reflector, at least one optical signal transmitting unit, and an optical signal receiving unit.
  • the aperture being provided with an internal light blocking region for blocking the crosstalk optical signal reflected by the polarization beam splitter combiner or transmitted to the optical signal receiving unit, so that the crosstalk optical signal cannot be reached
  • the optical signal receiving unit the angle between the normal of the incident end face of the input and output end and the outgoing light signal is greater than 0 degrees and less than 82 degrees, and the normal and incident optical signals of the incident end face of the polarization splitting combiner The angle between the two is greater than 0 degrees and less than 82 degrees, so that the crosstalk optical signal reflected by the input end or the incident end face of the polarization beam splitting combiner deviates from the propagation path, which can effectively improve the transmission and reception of the low crosstalk single-core bidirectional optical component.
  • the quality of the optical signal enables bidirectional transmission of high-signal-to-noise ratio optical signals of the same or near-wavelength.
  • the embodiment provides a low crosstalk single-core bidirectional optical module 400 including an input and output terminal 201, a polarization beam splitting combiner 202, a first polarization reflector 203, and a second polarization.
  • the reflector 204, the at least one optical signal transmitting unit 205 and the optical signal receiving unit 206, the angle between the normal of the incident end face 2011 of the input/output terminal 201 and the outgoing optical signal is greater than 0 degrees and less than 82 degrees
  • the polarization beam splitting The angle between the normal of the incident end face 2021 of the combiner 202 and the outgoing light signal is greater than 0 degrees and less than 82 degrees.
  • the structure of the low crosstalk single-core bidirectional optical component 400 provided in this embodiment is similar to that of the low crosstalk single-core bidirectional optical component 300 in the second embodiment, except that the light in the low crosstalk single-core bidirectional optical component 300 is not included. ⁇ 207.
  • the angle between the normal of the incident end face 2011 of the input/output terminal 201 and the outgoing light signal is greater than 8 degrees and less than 82 degrees, and the normal and outgoing light of the incident end face 2021 of the polarization splitting combiner 202 The angle between the signals is greater than 8 degrees and less than 82 degrees.
  • the working principle of the low crosstalk single-core bidirectional optical component 400 provided in this embodiment for receiving an incident optical signal, transmitting an outgoing optical signal, and blocking a crosstalk optical signal are as follows:
  • the input and output terminal 201 receives the incident light signal including at least one wavelength, and couples the incident light signal to the polarization beam splitting combiner 202; the incident light signal is decomposed into the polarization beam splitter combiner 202 The first polarization state light signal and the second polarization state light signal are perpendicular to each other; the first polarization state light signal is transmitted through the polarization beam splitter combiner 202 to the first polarization reflector 203, and is reflected back by the first polarization reflector 203.
  • the polarization beam splitter combiner 202 and the polarization state becomes perpendicular to its initial polarization state; the second polarization state light signal is reflected and transmitted by the polarization beam splitter combiner 202 to the second polarization reflector 204, and is reflected by the second polarization reflector 204.
  • the polarization beam splitting combiner 202 is polarized and the polarization state becomes perpendicular to its initial polarization state; the first polarization state light signal whose polarization state is changed is reflected by the polarization beam splitter combiner 202, and the second polarization state light signal whose polarization state is changed is The polarization beam splitting combiner 202 transmits, and forms two optical signals in the same direction, and is transmitted to the optical signal receiving unit 206 to be received;
  • the optical signal transmitting unit 205 For transmitting the outgoing optical signal, the optical signal transmitting unit 205 emits an outgoing optical signal including at least one wavelength, and the outgoing optical signal has a single polarization state; when the optical signal transmitting unit 205 is located at the side of the first polarizing reflector 203, the outgoing optical signal
  • the first polarizing reflector 203 and the polarization beam splitting combiner 202 are sequentially transmitted to the input/output terminal 201; when the optical signal emitting unit 205 is located at the side of the second polarizing reflector 204, the outgoing optical signal is transmitted through the second polarizing reflector 204.
  • To the polarization beam splitting combiner 202, and reflected by the polarization beam splitting combiner 202 to the input and output end 201 is output;
  • the crosstalk signal When the crosstalk signal is blocked, when the outgoing optical signal is transmitted to the input/output terminal 201 via the polarization beam splitting combiner 202, the partial outgoing optical signal is received by the first incident end surface 2021 or the input/output terminal 201 of the polarization beam splitting combiner 202.
  • the second incident end surface 2011 reflects, forming a second crosstalk light signal 2012, due to the normal of the first incident end face 2021 of the polarization splitting combiner 202 and the normal of the second incident end face 2011 of the input and output end 201 relative to the outgoing light.
  • the angle of the signal is greater than 8 degrees and less than 82 degrees, such that the second crosstalk signal 2012 propagates away from the opposite direction of the outgoing optical signal by an angle greater than 16 degrees, and cannot reach the optical signal receiving unit, thereby causing no interference to the incident optical signal;
  • the angle between the outgoing optical signal 209 and the normal of the functional surface 2022 of the polarization beam splitter combiner 202 is not 45 degrees, such as between 34 degrees and 44 degrees or between 46 degrees and 56 degrees.
  • the angle of the first crosstalk optical signal 210 and the incident optical signal 213 before the optical signal receiving unit 206 is greater than 0 degrees, so that the first crosstalk optical signal 210 is deviated from the direction of the incident optical signal, and the influence of the first crosstalk optical signal 210 is reduced.
  • the present embodiment provides a low crosstalk including an input and output terminal, a polarization beam splitting combiner, a first polarizing reflector, a second polarizing reflector, at least one optical signal transmitting unit, and an optical signal receiving unit.
  • the single-core bidirectional optical component is such that the angle between the normal of the incident end face of the input and output end and the outgoing light signal is greater than 0 degrees and less than 82 degrees, and the normal and outgoing optical signals of the incident end face of the polarization splitting combiner The angle between the angles greater than 0 degrees and less than 82 degrees, the incident end face of the polarization beam splitter combiner or the incident end face of the input and output ends is reflected to the polarization beam splitter beam crosstalk optical signal deviation propagation path, which can effectively improve low crosstalk
  • the quality of the optical signal transmitted and received by the single-core bidirectional optical component enables bidirectional transmission of high-signal-to-noise ratio optical signals of the same or near-wavelength.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)
  • Polarising Elements (AREA)

Abstract

一种低串扰单芯双向光组件(200),包括一个输入输出端(201)、一个偏振分束合束器(202)、一个第一偏振反射器(203)、一个第二偏振反射器(204)、至少一个光信号发射单元(205)、一个光信号接收单元(206)和一个光阑(207),光阑(207)包括一个透光区域(2072)和一个内部挡光区域(2071),内部挡光区域(2071)用于阻挡偏振分束合束器(202)反射或透射至光信号接收单元(206)的串扰光信号(210);此外,还通过提供与出射光信号(209)角度大于8度的输入输出端(201)和偏振分束合束器(202)的入射端面(2011,2021),使在端面(2011,2021)上反射的串扰光信号(2012)偏离主通信光路传播,降低串扰光信号(210,2012)到光信号接收单元(206)的能量,有效提高光信号接收单元(206)接收到的信号的质量,实现高信噪比同波长或近波长光信号的双向传输。

Description

一种低串扰单芯双向光组件 技术领域
本方案实施例属于光通信技术领域,尤其涉及一种低串扰同波长或近波长单芯双向光组件。
背景技术
数据的高速传输是现代信息社会的基石,随着信息量的海量增长,要求在一根光纤中传输的数据容量越来越大。除了提高数据调制速率、使用更多的波长外,在一根光纤中双向传输,使用低成本的单芯双向光收发模块使光纤中的数据传输容量翻倍,是一个行之有效并在通信领域已广泛采用的方法。
另外,现代通信网对时钟同步的要求也越来越高。传统的光收发模块采用两根光纤分别进行光信号的发射和接收,实际应用中两根光纤的长度差会造成两路信号的传播时延不一致,给时钟同步造成很大困难。使用单根光纤双向传输消除了光纤长度差的影响,可以满足现阶段时钟同步的要求,进一步地,若单根光纤双向传输中使用相同或相近(波长差小于40nm)的波长,可以有效克服色散产生的残余时延,使网络的时钟同步精度大幅度提高,以满足下一代如5G网络对时钟同步的需要。
此外,使用同波长或近波长的单芯双向传输,克服了传统双波长单芯双向传输技术方案中光收发模块需要配对的难题,可使网络配置和连接更加灵活。
基于以上优点,现有技术中提出了几种同波长或近波长单芯双向光组件技术方案,如使用功分器(中国专利申请号:201110282629.6)的方案,该方案使用的元件少、成本低,但存在额外6dB的光功率损耗,且损耗的光功率容易形成串扰;美国专利7039278B1使用了光环形器方案,避免了额外光功率损耗,但体积过大,不能装配到现有单芯双向光收发模块所允许的光组件机械尺寸中。中国专利201410604190.8通过使用亚波长偏振反射器,提出了既避免额外光功率损耗,又具有小尺寸的技术方案,可在现有光组件尺寸下实现同波长或近波长单芯双向传输。
然而,现有同波长或近波长单芯双向光组件技术方案中,光信号发射单元和光信号接收单元封装在一个收发一体光组件内,本地光信号发射单元发出的出射光信号有部分会达到本地光信号接收单元形成串扰,导致信号误码率上升,这是现有的同波长或近波长单芯双向光组件方案普遍存在的问题。光串扰信号通常来源于光学界面的反射或透射,如图1所示,单芯双向光组件100由输入输出端101、光信号发射单元105、光信号接收单元106、偏振分束合束器102、第一偏振反射器103、第二偏振反射器104组成;偏振分束合束器102对角线方向含有一个功能面1022,偏振态的分束和合束在此功能面实现。入射光信号(图中未画出)通过输入输出端101输入到偏振分束合束器102,被分解为两个互相垂直的偏振态,分别传播至第一偏振反射器103和第二偏振反射器104,被反射的同时偏振态旋转90度,再通过偏振分束合束器102合波,形成同方向的单一光束被光信号接收单元106接收。光信号发射单元105发出的出射光信号108具有单一偏振态,通过第一偏振反射器103后,偏振态发生旋转,形成可透射通过偏振分束合束器102的偏振态信号109,图中所示为P光,用“ |”表示其偏振态。然而由于各种原因,出射光信号109不可能具有无限的偏振消光比,总含有少量的S偏振态,用“·”表示,这部分S偏振态光信号将直接被偏振分束合束器102的功能面1022反射,从而被光信号接收单元106接收形成串扰光信号;另外,对出射光信号109的P偏振态,功能面1022也不能做到无限的消光比,也有部分光信号被反射至光信号接收单元106形成串扰,因此在功能面1022上反射形成的窜扰信号110既有P偏振也有S偏振,称为第一串扰光信号。
另外一种串扰信号的来源是,出射光信号通过功能面1022后随后在偏振分束合束器102相对输入输出端101一侧的入射端面1021产生的残余反射111,以及在输入输出端101的界面1011产生的残余反射112,这两部分反射光信号将被当作入射光信号的一部份,透射通过偏振分束合束器102以及第一偏振反射器103反射,偏振态旋转90度,再次通过偏振分束合束器102的功能面1022反射,随着入射光信号到达光信号接收单元106,形成第二串扰光信号113。
以上讨论针对了出射光信号以透射方式通过偏振分束合束器102的功能面1022而到达输入输出端101的配置方式,对于出射光信号以反射方式通过偏振分束合束器102的功能面1022的配置方式,即光发射单元105在第二偏振反射器一侧,串扰光信号的形成机理是类似的,在此种情况下,第一窜扰信号110是由出射光信号透射通过功能面1022形成。第二窜扰信号113的形成机理与前述相同,是偏振分束合束器102的入射端面1021或输入输出端101的入射端面1011上的残余反射形成的。
对于同波长应用,由于发射和接收波长相同,无法在光信号接收单元前应用波长滤波片阻挡串扰光,否则输入的入射光信号也会被阻挡;对于近波长应用,虽然可以在光信号接收单元前应用波长滤波片,但光纤两端的光收发模块必须配对使用,造成工程应用和库存管理的难题,并使网络连接丧失灵活性。
技术问题
现有同波长或近波长单芯双向光组件方案,无法有效克服本地光信号发射单元发出的出射光信号对本地光信号接收单元所产生的光信号串扰问题。
技术解决方案
本方案实施例一方面提供一种低串扰单芯双向光组件,其包括一个输入输出端、一个偏振分束合束器、一个第一偏振反射器、一个第二偏振反射器、至少一个光信号发射单元、一个光信号接收单元和一个光阑,所述光阑包括一个透光区域和一个内部挡光区域;
所述输入输出端用于输入和输出光信号,所述输入输出端朝向所述偏振分束合束器的一侧包含一个第一入射端面;
所述偏振分束合束器的对角线方向包含一个功能面,用于将一束光信号分解成两束相互垂直的偏振光信号,还用于将两束相互垂直的偏振光信号合成一束光信号,所述偏振分束合束器朝向所述输入输出端的一侧包含一个第二入射端面;
所述第一偏振反射器和所述第二偏振发射器中至少有一个通过一个45度法拉第旋转器和一个亚波长光栅偏振反射器组成,所述亚波长光栅偏振反射器用于反射某一偏振态的光信号并透射与其反射的光信号的偏振态相互垂直的光信号;
所述光信号发射单元用于发射出射光信号,所述光信号发射单元包括聚焦透镜;
所述光信号接收单元用于接收入射光信号,所述光信号接收单元包括聚焦透镜;
所述输入输出端接收包含至少一个波长的入射光信号,并将所述入射光信号耦合到所述偏振分束合束器;所述入射光信号被所述偏振分束合束器分解成互相垂直的第一偏振态光信号和第二偏振态光信号;所述第一偏振态光信号经所述偏振分束合束器透射传播至所述第一偏振反射器,被所述第一偏振反射器反射回所述偏振分束合束器且偏振态变为与其初始偏振态垂直;所述第二偏振态光信号经所述偏振分束合束器反射传播至所述第二偏振反射器,被所述第二偏振反射器反射回所述偏振分束合束器且偏振态变为与其初始偏振态垂直;偏振态改变的所述第一偏振态光信号经所述偏振分束合束器反射、偏振态改变的所述第二偏振态光信号经所述偏振分束合束器透射,形成同方向的两束光信号,并经所述光阑的透光区域传播至所述光信号接收单元被接收;
所述光信号发射单元发射包含至少一个波长的出射光信号,所述出射光信号具有单一偏振态;所述光信号发射单元位于所述第一偏振反射器的一侧时,所述出射光信号依次经所述第一偏振反射器和所述偏振分束合束器透射至所述输入输出端;所述光信号发射单元位于所述第二偏振反射器的一侧时,所述出射光信号经所述第二偏振反射器透射至所述偏振分束合束器,并经所述偏振分束合束器反射至所述输入输出端被输出;
所述出射光信号经所述偏振分束合束器透射或反射至所述输入输出端时,部分出射光信号被所述偏振分束合束器的功能面反射或透射,形成第一串扰光信号,朝向所述光信号接收单元传播;
所述光阑用于限制光信号,所述光阑处于所述偏振分束合束器与光信号接收单元之间,并放置在第一串扰光信号光斑最小的位置;所述光阑的内部挡光区域大于或等于所述第一串扰光信号传播至所述光阑位置处所形成的光斑大小,用于阻挡所述第一串扰光信号,使所述第一串扰光信号不能传播至所述光信号接收单元。
在一个实施例中,所述输入输出端的第一入射端面的法线与所述出射光信号之间的角度大于0度且小于82度,所述偏振分束合束器的第二入射端面的法线与所述入射光信号之间的角度大于0度且小于82度;
所述出射光信号经所述偏振分束合束器透射至所述输入输出端时,部分出射光信号被所述第一或第二入射端面反射,形成第二串扰光信号,所述第二串扰光信号偏离所述出射光信号的反方向传播。
在一个实施例中,所述输入输出端的第一入射端面的法线与所述出射光信号之间的角度大于8度,所述偏振分束合束器的第二入射端面的法线与所述出射光信号之间的角度大于8度。
在一个实施例中,所述输入输出端的第一入射端面与所述偏振分束合束器的第二入射端面通过折射率匹配胶直接粘合连接。
在一个实施例中,所述出射光信号与所述偏振分束合束器的功能面的法线之间的角度在34度到44度之间或46度到56度之间;所述光阑的内部挡光区域偏离所述透光区域的中心。
在一个实施例中,所述光阑还包含一个外部挡光区域,用于阻挡窜扰光信号和杂散光信号入射到所述光信号接收单元。
在一个实施例中,所述亚波长光栅偏振反射器包括亚波长非金属介质光栅、亚波长金属光栅或亚波长非金属介质和亚波长金属的组合光栅共三种光栅中的任一种;
或者,所述亚波长光栅偏振反射器通过在所述45度法拉第旋转器的一个通光面通过微细加工工艺形成所述三种光栅中的一种制成;
所述第一偏振反射器或所述第二偏振发射器中的至多一个通过一个1/4波片和一个反射镜组成,所述反射镜通过在所述1/4波片的一个通光面镀高反射金属膜或高反射多层介质薄膜中的任一种形成;
或者,所述第一偏振反射器或所述第二偏振发射器中的至多一个通过一个45度法拉第旋转器和一个反射镜组成,所述反射镜通过在所45度法拉第旋转器的一个通光面镀高反射金属膜或高反射多层介质薄膜中的任一种形成。
在一个实施例中,所述偏振分束合束器为多层介质薄膜型偏振分束合束器或亚波长光栅型偏振分束合束器。
在一个实施例中,所述挡光区域为光反射型或光吸收型挡光区域。
本方案实施例另一方面提供一种低串扰单芯双向光组件,其包括一个输入输出端、一个偏振分束合束器、一个第一偏振反射器、一个第二偏振反射器、至少一个光信号发射单元和一个光信号接收单元;
所述输入输出端用于输入入射光信号和输出出射光信号,所述输入输出端朝向所述偏振分束合束器的一侧包含一个第一入射端面;
所述偏振分束合束器的对角线方向包含一个功能面,用于将一束光信号分解成两束相互垂直的偏振光信号,还用于将两束相互垂直的偏振光信号合成一束光信号,所述偏振分束合束器朝向所述输入输出端的一侧包含一个第二入射端面;
所述输入输出端的第一入射端面的法线与所述出射光信号之间的角度大于0度且小于82度,所述偏振分束合束器的第二入射端面的法线与所述入射光信号之间的角度大于0度且小于82度;
所述第一偏振反射器和所述第二偏振发射器中至少有一个通过一个45度法拉第旋转器和一个亚波长光栅偏振反射器组成,所述亚波长光栅偏振反射器用于反射某一偏振态的光信号并透射与其反射的光信号的偏振态相互垂直的光信号;
所述光信号发射单元用于发射出射光信号,所述光信号发射单元包括聚焦透镜;
所述光信号接收单元用于接收入射光信号,所述光信号接收单元包括聚焦透镜;
所述输入输出端接收包含至少一个波长入射光信号,并将所述入射光信号耦合到所述偏振分束合束器;所述入射光信号被所述偏振分束合束器分解成互相垂直的第一偏振态光信号和第二偏振态光信号;所述第一偏振态光信号经所述偏振分束合束器透射传播至所述第一偏振反射器,被所述第一偏振反射器反射回所述偏振分束合束器且偏振态变为与其初始偏振态垂直;所述第二偏振态光信号经所述偏振分束合束器反射传播至所述第二偏振反射器,被所述第二偏振反射器反射回所述偏振分束合束器且偏振态变为与其初始偏振态垂直;偏振态改变的所述第一偏振态光信号经所述偏振分束合束器反射、偏振态改变的所述第二偏振态光信号经所述偏振分束合束器透射,形成同方向的两束光信号传播至所述光信号接收单元被接收;
所述光信号发射单元发射包含至少一个波长的出射光信号,所述出射光信号具有单一偏振态;所述光信号发射单元位于所述第一偏振反射器的一侧时,所述出射光信号依次经所述第一偏振反射器和所述偏振分束合束器透射至所述输入输出端;所述光信号发射单元位于所述第二偏振反射器的一侧时,所述出射光信号经所述第二偏振反射器透射至所述偏振分束合束器,并经所述偏振分束合束器反射至所述输入输出端被输出;
所述出射光信号经所述偏振分束合束器透射或反射至所述输入输出端时,部分出射光信号被所述输入输出端的第一入射端面或所述偏振分束合束器的第二入射端面反射,形成第二串扰光信号,所述第二串扰光信号偏离所述出射光信号的反方向传播。
在一个实施例中,所述输入输出端的第一入射端面的法线与所述出射光信号之间的角度大于8度,所述偏振分束合束器的第二入射端面的法线与所述出射光信号之间的角度大于8度。
在一个实施例中,所述输入输出端的第一入射端面与所述偏振分束合束器的第二入射端面通过折射率匹配胶直接粘合连接。
在一个实施例中,所述出射光信号与所述偏振分束合束器的功能面的法线之间的角度在34度到44度之间或46度到56度之间。
在一个实施例中,所述亚波长光栅偏振反射器包括亚波长非金属介质光栅、亚波长金属光栅或亚波长非金属介质和亚波长金属的组合光栅共三种光栅中的任一种;
或者,所述亚波长光栅偏振反射器通过在所述45度法拉第旋转器的一个通光面通过微细加工工艺形成所述三种光栅中的一种制成;
所述第一偏振反射器或所述第二偏振发射器中的至多一个通过一个1/4波片和一个反射镜组成,所述反射镜通过在所述1/4波片的一个通光面镀高反射金属膜或高反射多层介质薄膜中的任一种形成;
或者,所述第一偏振反射器或所述第二偏振发射器中的至多一个通过一个45度法拉第旋转器和一个反射镜组成,所述反射镜通过在所45度法拉第旋转器的一个通光面镀高反射金属膜或高反射多层介质薄膜中的任一种形成。
在一个实施例中,所述偏振分束合束器为多层介质薄膜型偏振分束合束器或亚波长光栅型偏振分束合束器。
有益效果
本方案实施例的一个方面通过提供一种包括一个输入输出端、一个偏振分束合束器、一个第一偏振反射器、一个第二偏振反射器、至少一个光信号发射单元、一个光信号接收单元和一个光阑的低串扰单芯双向光组件,光阑包含有用于阻挡偏振分束合束器反射或透射至光信号接收单元的串扰光信号的内部挡光区域,使串扰光信号不能到达所述光信号接收单元,有效降低光信号发射单元的出射光信号对光信号接收单元的串扰,实现高信噪比同波长或近波长光信号的单芯双向传输。
本方案实施例的另一个方面通过提供一种包括一个输入输出端、一个偏振分束合束器、一个第一偏振反射器、一个第二偏振反射器、至少一个光信号发射单元和一个光信号接收单元的低串扰单芯双向光组件,使输入输出端的入射端面法线与出射光信号之间的夹角大于0度且小于82度,并使偏振分束合束器的入射端面法线与出射光信号之间的夹角大于0度且小于82度,使偏振分束合束器的入射端面或输入输出端的入射端面反射至偏振分束合束器的串扰光信号偏离传播路径,可以有效降低光信号发射单元的出射光信号对光信号接收单元的串扰,实现高信噪比同波长或近波长光信号的单芯双向传输。
附图说明
为了更清楚地说明本方案实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本方案的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中的同波长或近波长单芯双向光组件窜扰来源示意图;
图2是本方案的实施例一提供的低串扰单芯双向光组件的结构示意图;
图3和4是本方案的实施例一提供的偏振分束合束器的结构示意图;
图5和6是本方案的实施例一提供的偏振反射器的结构示意图;
图7是本方案的实施例一提供的光阑的结构示意图;
图8是本方案的实施例二提供的低串扰单芯双向光组件的结构示意图;
图9是本方案的实施例三提供的低串扰单芯双向光组件的结构示意图。
本发明的实施方式
为了使本技术领域的人员更好地理解本方案,下面将结合本方案实施例中的附图,对本方案实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本方案一部分的实施例,而不是全部的实施例。基于本方案中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本方案保护的范围。
本方案的说明书和权利要求书及上述附图中的术语“包括”以及它们任何变形,意图在于覆盖不排他的包含。此外,术语“第一”和“第二”等是用于区别不同对象,而非用于描述特定顺序。
实施例一
如图2所示,本实施例提供一种低串扰单芯双向光组件200,其包括一个输入输出端201、一个偏振分束合束器202、一个第一偏振反射器203、一个第二偏振反射器204、至少一个光信号发射单元205、一个光信号接收单元206和一个光阑207,光阑207包括一个内部挡光区域2071和一个透光区域2072。
为了便于示意,本方案所有实施例附图中均采用“|”和“·”分别表示第一偏振态光信号和第二偏振态光信号的偏振方向,第一偏振态光信号和第二偏振态光信号的偏振方向相互垂直。
在本实施例中,输入输出端201用于输入和输出光信号,输入输出端201朝向偏振分束合束器202一侧包含一个第一入射端面2011。
在具体应用中,输入输出端具体可以为光纤,用于与偏振分束合束器连接,以实现光信号的传输。
在本实施例中,偏振分束合束器202的对角线方向包含一个功能面2022用于将一束光信号分解成两束相互垂直的偏振光信号,还用于将两束相互垂直的偏振光信号合成一束光信号。偏振分束合束器202朝向输入输出端201的一侧包含一个第二入射端面2021。
在一个实施例中,所述偏振分束合束器为多层介质薄膜型偏振分束合束器或亚波长光栅型偏振分束合束器。
如图3所示,示例性的示出了多层介质薄膜型偏振分束合束器,还示例性的示出了入射光信号和出射光信号经过多层介质薄膜型偏振分束合束器时的传播方向和偏振态。
如图4所示,示例性的示出了亚波长光栅型偏振分束合束器,还示例性的示出了入射光信号和出射光信号经过亚波长光栅型偏振分束合束器时的传播方向和偏振态。
图3和图4中,入射光信号301包括两个相互垂直的偏振态的光信号,不同偏振态的入射光信号分别被偏振分束合束器透射和反射,分解为沿透射路径传播的光信号302和沿反射路径传播的光信号303,光信号302被第一偏振反射器发射之后,变为偏振态与光信号302垂直的光信号304,光信号303被第二偏振反射器反射之后,变为偏振态与光信号303垂直的光信号305,光信号304和光信号305合并为同一方向的光信号306。
在本实施例中,第一偏振反射器203和第二偏振发射器204中至少有一个通过一个45度法拉第旋转器和一个亚波长光栅偏振反射器组成,亚波长光栅偏振反射器用于反射某一偏振态的光信号并透射与其反射的光信号的偏振态相互垂直的光信号。
在一个实施例中,所述亚波长光栅偏振反射器包括亚波长非金属介质光栅、亚波长金属光栅或亚波长非金属介质和亚波长金属的组合光栅共三种光栅中的任一种。
在一个实施例中,所述亚波长光栅偏振反射器通过在所述45度法拉第旋转器的一个通光面通过微细加工工艺形成所述三种光栅中的一种制成。
在一个实施例中,所述第一偏振反射器或所述第二偏振发射器中的至多一个通过一个1/4波片和一个反射镜组成,所述反射镜通过在所述1/4波片的一个通光面镀高反射金属膜或高反射多层介质薄膜中的任一种形成。
在一个实施例中,所述第一偏振反射器或所述第二偏振发射器中的至多一个通过一个45度法拉第旋转器和一个反射镜组成,所述反射镜通过在所45度法拉第旋转器的一个通光面镀高反射金属膜或高反射多层介质薄膜中的任一种形成。
如图5所示,示例性的示出了由一个1/4波片501和一个反射镜502组成的第二偏振反射器204,其中,1/4波片501的光轴与入射光信号503的偏振方向成45度角,入射光信号503在经过1/4波片501并经反射镜502反射再次经过1/4波片之后,其偏振态旋转90度变为光信号504。
在具体应用中,图5中的1/4波片501可以等效替换为一个45度法拉第旋转器,入射光信号在两次经过45度法拉第旋转器之后,其偏振态也会旋转90度。
如图6所示,示例的示出了由一个45度法拉第旋转器601和一个亚波长光栅偏振反射器602组成的第一偏振反射器203,其中,入射光信号603在经过45度法拉第旋转器601之后,偏振方向旋转45度,被亚波长光栅偏振反射器602反射,再次经过45度法拉第旋转器602之后,偏振方向再次旋转45度,变为偏振态旋转90度的光信号604。
如图6所示,与入射光信号603偏振态不同的出射光信号605经过亚波长光栅偏振反射器602时,被所述亚波长光栅偏振反射器602透射至45度法拉第旋转器601,出射光信号605的偏振方向经45法拉第旋转器601旋转45度之后,变为与入射光信号603传播方向相反、偏振态相同的光信号606,根据光路可逆原理,光信号606可以反向传播至输入输出端201。
在本实施例中,光信号发射单元205用于发射出射光信号,发射的出射光信号208具有单一的偏振态,光信号发射单元205包括聚焦透镜。
在具体应用中,光信号发射单元205具有聚光功能,用于通过聚焦透镜将其输出的出射光信号会聚到输入输出端201的第一入射端面2011,以使输入输出端201将出射光信号传播至外部光通信线路。
在本实施例中,光信号接收单元206用于接收光信号,光信号接收单元206包括聚焦透镜。
在具体应用中,光信号接收单元206具有聚光功能,用于通过聚焦透镜将入射光信号会聚到其光接收端面,以实现对入射光信号的接收功能。
如图2所示,所述偏振分束合束器包含一个功能面2022,偏振态的分束和合束通过光束在功能面2022反射和透射实现。由于出射光信号208经第一偏振反射器203后,所形成的出射光信号209的偏振消光比和功能面2022的偏振消光比是有限的,出射光信号208在该功能面产生一定的窜扰光信号朝向光信号接收单元206传播,成为第一串扰光信号210,并由于光信号发射单元205的聚焦透镜的作用,第一串扰光信号210也具有会聚特性。
在本实施例中,光阑207用于限制光信号,光阑207的位置处于偏振分束合束器202与光信号接收单元206之间,并放置在第一串扰光信号210光斑最小的位置,光阑207的内部挡光区域2071大于或等于第一串扰光信号210传播至光阑207位置处所形成的光斑大小,用于阻挡第一串扰光信号210,使第一串扰光信号210不能传播至光信号接收单元206。由于第一串扰光信号210具有汇聚特性,在光阑207处形成的光斑相对于入射光信号的光斑小很多,因此,光阑207的内部档光区域2071对入射光信号的插入损耗影响很小。
在一个实施例中,使出射光信号与偏振分束合束器202的功能面2021法线的夹角不为45度,如取34度到44度之间或46度到56度之间,使得光信号接收单元206前的第一串扰光信号210与入射光信号的夹角大于0度,并使得内部档光区域2071偏离入射光信号的中心,从而减少对入射光信号的阻挡量。
在具体应用中,光阑207和挡光区域2071的大小、形状以及设置位置可以根据实际需要进行设置,例如,光阑207的透光区域2072和内部挡光区域2071均为圆形,透光区域2072的直径范围为600微米到900微米,内部挡光区域2071的直径范围为30微米到100微米。内部挡光区域2071还可以是矩形、椭圆形、三角形等任意形状。
在一个实施例中,在光阑207的透光区域2072之外设置一个外部挡光区域2073。如图7所示,示例地示出了透光区域2072和挡光区域2071均为圆形的光阑207,光阑207的透光区域2072和挡光区域2071之外的外部挡光区域2073用于阻挡其它窜扰和杂散光信号进入光信号接收单元206。
在一个实施例中,所述挡光区域为反射型或吸收型挡光区域。
在具体应用中,反射型挡光区域可以为金属反射镜或多层介质膜反射镜,吸收型挡光区域可以通过光吸收材料制成。
在具体应用中,光信号发射单元包括发光二极管或激光器,光信号接收单元包括光电二极管或感光元器件。光信号发射单元设置于第一偏振反射器或第二偏振反射器的一侧,当光信号发射单元设置于第一或第二偏振反射器的一侧时,此侧的第一或第二偏振反射器必需是由一个45度法拉第旋转器和一个亚波长光栅偏振反射器组成,以便在反射入射光信号的同时,使光信号发射单元发出的出射光信号透射通过。
如图2所示,示例性的示出光信号发射单元205设置于第一偏振反射器203一侧。
本实施例所提供的低串扰单芯双向光组件200用于接收入射光信号、发射出射光信号和阻挡串扰信号时的工作原理分别为:
用于接收入射光信号时,输入输出端201接收包含至少一个波长的入射光信号,并将入射光信号耦合到偏振分束合束器202;入射光信号被偏振分束合束器202分解成互相垂直的第一偏振态光信号和第二偏振态光信号;第一偏振态光信号经偏振分束合束器202透射传播至第一偏振反射器203,被第一偏振反射器203反射回偏振分束合束器202且偏振态变为与其初始偏振态垂直;第二偏振态光信号经偏振分束合束器202反射传播至第二偏振反射器204,被第二偏振反射器204反射回偏振分束合束器202且偏振态变为与其初始偏振态垂直;偏振态改变的第一偏振态光信号经偏振分束合束器202反射、偏振态改变的第二偏振态光信号经偏振分束合束器202透射,形成同方向的两束光信号,并经光阑207的透光区域2072传播至光信号接收单元206被接收;
用于发射出射光信号时,光信号发射单元205发射包含至少一个波长的出射光信号,出射光信号具有单一偏振态;光信号发射单元205位于第一偏振反射器203一侧时,出射光信号依次经第一偏振反射器203和偏振分束合束器202透射至输入输出端201;光信号发射单元205位于第二偏振反射器204一侧时,出射光信号经第二偏振反射器204透射至偏振分束合束器202,并经偏振分束合束器202反射至输入输出端201被输出;
用于阻挡串扰信号时,出射光信号经偏振分束合束器202透射或反射至输入输出端201时,部分出射光信号被偏振分束合束器202的功能面2022反射或透射,形成第一串扰光信号210朝向光信号接收单元206传播,并被光阑207的内部挡光区域2071阻挡。
本实施例通过提供一种包括一个输入输出端、一个偏振分束合束器、一个第一偏振反射器、一个第二偏振反射器、至少一个光信号发射单元、一个光信号接收单元和一个光阑的低串扰单芯双向光组件,光阑设置有用于阻挡偏振分束合束器反射或透射至光信号接收单元的串扰光信号的内部挡光区域,使串扰光信号不能到达光信号接收单元,可以有效提高光信号接收单元接收到的信号的质量,实现高信噪比同波长或近波长光信号的双向传输。
实施例二
本实施例基于实施例一实现,如图8所示,本实施例提供一种低串扰单芯双向光组件300,其与图2所示的低串扰单芯双向光组件200的区别在于:输入输出端201的入射端面2011的法线与出射光信号之间的夹角大于0度且小于82度,偏振分束合束器202的入射端面2021的法线与出射光信号之间的夹角大于0度且小于82度。
在具体应用中,使输入输出端201的入射端面2011的法线与出射光信号之间的夹角大于8度且小于82度,偏振分束合束器202的入射端面2021的法线与出射光信号之间的夹角大于8度且小于82度。
在实施例一的基础上,本实施例所提供的低串扰单芯双向光组件200用于阻挡串扰信号时的工作原理还包括:
出射光信号经偏振分束合束器202透射至输入输出端201时,部分出射光信号被偏振分束合束器202的入射端面2021或输入输出端201的入射端面2011反射,形成第二串扰光信号2012,由于偏振分束合束器202的入射端面2021的法线和输入输出端201的入射端面2011的法线相对于出射光信号的角度大于8度且小于90度,使得第二串扰光信号2012偏离出射光信号的反方向大于16度的角度传播,从而不会对入射光信号造成干扰;
如图8所示,示例的示出了第二串扰光信号2012的传播路径。
在一个实施例中,输入输出端201的入射端面2011和偏振分束合束器202的入射端面2021通过折射率匹配胶直接粘合连接。
本方案实施例的一个方面通过提供一种包括一个输入输出端、一个偏振分束合束器、一个第一偏振反射器、一个第二偏振反射器、至少一个光信号发射单元、一个光信号接收单元和一个光阑的低串扰单芯双向光组件,光阑设置有用于阻挡偏振分束合束器反射或透射至光信号接收单元的串扰光信号的内部挡光区域,使串扰光信号不能到达光信号接收单元;通过使输入输出端的入射端面的法线与出射光信号之间的夹角大于0度且小于82度,并使偏振分束合束器的入射端面的法线与入射光信号之间的夹角大于0度且小于82度,使输入输出端或偏振分束合束器的入射端面反射的串扰光信号偏离传播路径,可以有效提高低串扰单芯双向光组件发射和接收的光信号的质量,实现高信噪比同波长或近波长光信号的双向传输。
实施例三
如图9所示,本实施例提供一种低串扰单芯双向光组件400,其包括一个输入输出端201、一个偏振分束合束器202、一个第一偏振反射器203、一个第二偏振反射器204、至少一个光信号发射单元205和一个光信号接收单元206,输入输出端201的入射端面2011的法线与出射光信号之间的夹角大于0度且小于82度,偏振分束合束器202的入射端面2021的法线与出射光信号之间的夹角大于0度且小于82度。
本实施例所提供的低串扰单芯双向光组件400的结构与实施例二中的低串扰单芯双向光组件300的结构类似,区别在于:不包括低串扰单芯双向光组件300中的光阑207。
在具体应用中,使输入输出端201的入射端面2011的法线与出射光信号之间的角度大于8度且小于82度,偏振分束合束器202的入射端面2021的法线与出射光信号之间的角度大于8度且小于82度。
本实施例所提供的低串扰单芯双向光组件400用于接收入射光信号、发射出射光信号和阻挡串扰光信号时的工作原理分别为:
用于接收入射光信号时,输入输出端201接收包含至少一个波长的入射光信号,并将入射光信号耦合到偏振分束合束器202;入射光信号被偏振分束合束器202分解成互相垂直的第一偏振态光信号和第二偏振态光信号;第一偏振态光信号经偏振分束合束器202透射传播至第一偏振反射器203,被第一偏振反射器203反射回偏振分束合束器202且偏振态变为与其初始偏振态垂直;第二偏振态光信号经偏振分束合束器202反射传播至第二偏振反射器204,被第二偏振反射器204反射回偏振分束合束器202且偏振态变为与其初始偏振态垂直;偏振态改变的第一偏振态光信号经偏振分束合束器202反射、偏振态改变的第二偏振态光信号经偏振分束合束器202透射,形成同方向的两束光信号,传播至光信号接收单元206被接收;
用于发射出射光信号时,光信号发射单元205发射包含至少一个波长的出射光信号,出射光信号具有单一偏振态;光信号发射单元205位于第一偏振反射器203一侧时,出射光信号依次经第一偏振反射器203和偏振分束合束器202透射至输入输出端201;光信号发射单元205位于第二偏振反射器204一侧时,出射光信号经第二偏振反射器204透射至偏振分束合束器202,并经偏振分束合束器202反射至输入输出端201被输出;
用于阻挡串扰信号时,出射光信号经偏振分束合束器202透射至输入输出端201时,部分出射光信号被偏振分束合束器202的第一入射端面2021或输入输出端201的第二入射端面2011反射,形成第二串扰光信号2012,由于偏振分束合束器202的第一入射端面2021的法线和输入输出端201的第二入射端面2011的法线相对于出射光信号的角度大于8度且小于82度,使得第二串扰光信号2012以大于16度的角度偏离出射光信号的反方向传播,不能到达光信号接收单元,从而不会对入射光信号造成干扰;
在一个实施例中,通过使出射光信号209与偏振分束合束器202的功能面2022法线的夹角不为45度,如取34度到44度之间或46度到56度之间,使得光信号接收单元206前第一串扰光信号210与入射光信号213的角度大于0度,从而使第一串扰光信号210偏离入射光信号的方向,降低第一串扰光信号210的影响。
本实施例通过提供一种包括一个输入输出端、一个偏振分束合束器、一个第一偏振反射器、一个第二偏振反射器、至少一个光信号发射单元和一个光信号接收单元的低串扰单芯双向光组件,使输入输出端的入射端面的法线与出射光信号之间的夹角大于0度且小于82度,并使偏振分束合束器的入射端面的法线与出射光信号之间的夹角大于0度且小于82度,使偏振分束合束器的入射端面或输入输出端的入射端面反射至偏振分束合束器的串扰光信号偏离传播路径,可以有效提高低串扰单芯双向光组件发射和接收的光信号的质量,实现高信噪比同波长或近波长光信号的双向传输。
以上所述仅为本方案的较佳实施例而已,并不用以限制本方案,凡在本方案的精神和原则之内所作的任何修改、等同替换和改进等,应包含在本方案的保护范围之内。

Claims (15)

  1. 一种低串扰单芯双向光组件,其特征在于,包括一个输入输出端、一个偏振分束合束器、一个第一偏振反射器、一个第二偏振反射器、至少一个光信号发射单元、一个光信号接收单元和一个光阑,所述光阑包括一个透光区域和一个内部挡光区域;
    所述输入输出端用于输入和输出光信号,所述输入输出端朝向所述偏振分束合束器的一侧包含一个第一入射端面;
    所述偏振分束合束器的对角线方向包含一个功能面,用于将一束光信号分解成两束相互垂直的偏振光信号,还用于将两束相互垂直的偏振光信号合成一束光信号,所述偏振分束合束器朝向所述输入输出端的一侧包含一个第二入射端面;
    所述第一偏振反射器和所述第二偏振发射器中至少有一个通过一个45度法拉第旋转器和一个亚波长光栅偏振反射器组成,所述亚波长光栅偏振反射器用于反射某一偏振态的光信号并透射与其反射的光信号的偏振态相互垂直的光信号;
    所述光信号发射单元用于发射出射光信号,所述光信号发射单元包括聚焦透镜;
    所述光信号接收单元用于接收入射光信号,所述光信号接收单元包括聚焦透镜;
    所述输入输出端接收包含至少一个波长的入射光信号,并将所述入射光信号耦合到所述偏振分束合束器;所述入射光信号被所述偏振分束合束器分解成互相垂直的第一偏振态光信号和第二偏振态光信号;所述第一偏振态光信号经所述偏振分束合束器透射传播至所述第一偏振反射器,被所述第一偏振反射器反射回所述偏振分束合束器且偏振态变为与其初始偏振态垂直;所述第二偏振态光信号经所述偏振分束合束器反射传播至所述第二偏振反射器,被所述第二偏振反射器反射回所述偏振分束合束器且偏振态变为与其初始偏振态垂直;偏振态改变的所述第一偏振态光信号经所述偏振分束合束器反射、偏振态改变的所述第二偏振态光信号经所述偏振分束合束器透射,形成同方向的两束光信号,并经所述光阑的透光区域传播至所述光信号接收单元被接收;
    所述光信号发射单元发射包含至少一个波长的出射光信号,所述出射光信号具有单一偏振态;所述光信号发射单元位于所述第一偏振反射器的一侧时,所述出射光信号依次经所述第一偏振反射器和所述偏振分束合束器透射至所述输入输出端;所述光信号发射单元位于所述第二偏振反射器的一侧时,所述出射光信号经所述第二偏振反射器透射至所述偏振分束合束器,并经所述偏振分束合束器反射至所述输入输出端被输出;
    所述出射光信号经所述偏振分束合束器透射或反射至所述输入输出端时,部分出射光信号被所述偏振分束合束器的功能面反射或透射,形成第一串扰光信号,朝向所述光信号接收单元传播;
    所述光阑用于限制光信号,所述光阑处于所述偏振分束合束器与光信号接收单元之间,并放置在第一串扰光信号光斑最小的位置;所述光阑的内部挡光区域大于或等于所述第一串扰光信号传播至所述光阑位置处所形成的光斑大小,用于阻挡所述第一串扰光信号,使所述第一串扰光信号不能传播至所述光信号接收单元。
  2. 根据权利要求1所述的低串扰单芯双向光组件,其特征在于,所述输入输出端的第一入射端面的法线与所述出射光信号之间的角度大于0度且小于82度,所述偏振分束合束器的第二入射端面的法线与所述入射光信号之间的角度大于0度且小于82度;
    所述出射光信号经所述偏振分束合束器透射至所述输入输出端时,部分出射光信号被所述第一或第二入射端面反射,形成第二串扰光信号,所述第二串扰光信号偏离所述出射光信号的反方向传播。
  3. 根据权利要求2所述的低串扰单芯双向光组件,其特征在于,所述输入输出端的第一入射端面的法线与所述出射光信号之间的角度大于8度,所述偏振分束合束器的第二入射端面的法线与所述出射光信号之间的角度大于8度。
  4. 根据权利要求2所述的低串扰单芯双向光组件,其特征在于,所述输入输出端的第一入射端面与所述偏振分束合束器的第二入射端面通过折射率匹配胶直接粘合连接。
  5. 根据权利要求1所述的低串扰单芯双向光组件,其特征在于,所述出射光信号与所述偏振分束合束器的功能面的法线之间的角度在34度到44度之间或46度到56度之间;所述光阑的内部挡光区域偏离所述透光区域的中心。
  6. 根据权利要求1所述的低串扰单芯双向光组件,其特征在于,所述光阑还包含一个外部挡光区域,用于阻挡窜扰光信号和杂散光信号入射到所述光信号接收单元。
  7. 根据权利要求1所述的低串扰单芯双向光组件,其特征在于,所述亚波长光栅偏振反射器包括亚波长非金属介质光栅、亚波长金属光栅或亚波长非金属介质和亚波长金属的组合光栅共三种光栅中的任一种;
    或者,所述亚波长光栅偏振反射器通过在所述45度法拉第旋转器的一个通光面通过微细加工工艺形成所述三种光栅中的一种制成;
    所述第一偏振反射器或所述第二偏振发射器中的至多一个通过一个1/4波片和一个反射镜组成,所述反射镜通过在所述1/4波片的一个通光面镀高反射金属膜或高反射多层介质薄膜中的任一种形成;
    或者,所述第一偏振反射器或所述第二偏振发射器中的至多一个通过一个45度法拉第旋转器和一个反射镜组成,所述反射镜通过在所45度法拉第旋转器的一个通光面镀高反射金属膜或高反射多层介质薄膜中的任一种形成。
  8. 根据权利要求1所述的低串扰单芯双向光组件,其特征在于,所述偏振分束合束器为多层介质薄膜型偏振分束合束器或亚波长光栅型偏振分束合束器。
  9. 根据权利要求1所述的低串扰单芯双向光组件,其特征在于,所述挡光区域为光反射型或光吸收型挡光区域。
  10. 一种低串扰单芯双向光组件,其特征在于,包括一个输入输出端、一个偏振分束合束器、一个第一偏振反射器、一个第二偏振反射器、至少一个光信号发射单元和一个光信号接收单元;
    所述输入输出端用于输入入射光信号和输出出射光信号,所述输入输出端朝向所述偏振分束合束器的一侧包含一个第一入射端面;
    所述偏振分束合束器的对角线方向包含一个功能面,用于将一束光信号分解成两束相互垂直的偏振光信号,还用于将两束相互垂直的偏振光信号合成一束光信号,所述偏振分束合束器朝向所述输入输出端的一侧包含一个第二入射端面;
    所述输入输出端的第一入射端面的法线与所述出射光信号之间的角度大于0度且小于82度,所述偏振分束合束器的第二入射端面的法线与所述入射光信号之间的角度大于0度且小于82度;
    所述第一偏振反射器和所述第二偏振发射器中至少有一个通过一个45度法拉第旋转器和一个亚波长光栅偏振反射器组成,所述亚波长光栅偏振反射器用于反射某一偏振态的光信号并透射与其反射的光信号的偏振态相互垂直的光信号;
    所述光信号发射单元用于发射出射光信号,所述光信号发射单元包括聚焦透镜;
    所述光信号接收单元用于接收入射光信号,所述光信号接收单元包括聚焦透镜;
    所述输入输出端接收包含至少一个波长入射光信号,并将所述入射光信号耦合到所述偏振分束合束器;所述入射光信号被所述偏振分束合束器分解成互相垂直的第一偏振态光信号和第二偏振态光信号;所述第一偏振态光信号经所述偏振分束合束器透射传播至所述第一偏振反射器,被所述第一偏振反射器反射回所述偏振分束合束器且偏振态变为与其初始偏振态垂直;所述第二偏振态光信号经所述偏振分束合束器反射传播至所述第二偏振反射器,被所述第二偏振反射器反射回所述偏振分束合束器且偏振态变为与其初始偏振态垂直;偏振态改变的所述第一偏振态光信号经所述偏振分束合束器反射、偏振态改变的所述第二偏振态光信号经所述偏振分束合束器透射,形成同方向的两束光信号传播至所述光信号接收单元被接收;
    所述光信号发射单元发射包含至少一个波长的出射光信号,所述出射光信号具有单一偏振态;所述光信号发射单元位于所述第一偏振反射器的一侧时,所述出射光信号依次经所述第一偏振反射器和所述偏振分束合束器透射至所述输入输出端;所述光信号发射单元位于所述第二偏振反射器的一侧时,所述出射光信号经所述第二偏振反射器透射至所述偏振分束合束器,并经所述偏振分束合束器反射至所述输入输出端被输出;
    所述出射光信号经所述偏振分束合束器透射或反射至所述输入输出端时,部分出射光信号被所述输入输出端的第一入射端面或所述偏振分束合束器的第二入射端面反射,形成第二串扰光信号,所述第二串扰光信号偏离所述出射光信号的反方向传播。
  11. 根据权利要求10所述的低串扰单芯双向光组件,其特征在于,所述输入输出端的第一入射端面的法线与所述出射光信号之间的角度大于8度,所述偏振分束合束器的第二入射端面的法线与所述出射光信号之间的角度大于8度。
  12. 根据权利要求10所述的低串扰单芯双向光组件,其特征在于,所述输入输出端的第一入射端面与所述偏振分束合束器的第二入射端面通过折射率匹配胶直接粘合连接。
  13. 根据权利要求10所述的低串扰单芯双向光组件,其特征在于,所述出射光信号与所述偏振分束合束器的功能面的法线之间的角度在34度到44度之间或46度到56度之间。
  14. 根据权利要求10所述的低串扰单芯双向光组件,其特征在于,所述亚波长光栅偏振反射器包括亚波长非金属介质光栅、亚波长金属光栅或亚波长非金属介质和亚波长金属的组合光栅共三种光栅中的任一种;
    或者,所述亚波长光栅偏振反射器通过在所述45度法拉第旋转器的一个通光面通过微细加工工艺形成所述三种光栅中的一种制成;
    所述第一偏振反射器或所述第二偏振发射器中的至多一个通过一个1/4波片和一个反射镜组成,所述反射镜通过在所述1/4波片的一个通光面镀高反射金属膜或高反射多层介质薄膜中的任一种形成;
    或者,所述第一偏振反射器或所述第二偏振发射器中的至多一个通过一个45度法拉第旋转器和一个反射镜组成,所述反射镜通过在所45度法拉第旋转器的一个通光面镀高反射金属膜或高反射多层介质薄膜中的任一种形成。
  15. 根据权利要求10所述的低串扰单芯双向光组件,其特征在于,所述偏振分束合束器为多层介质薄膜型偏振分束合束器或亚波长光栅型偏振分束合束器。
PCT/CN2018/075804 2018-02-08 2018-02-08 一种低串扰单芯双向光组件 WO2019153181A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207025839A KR102512538B1 (ko) 2018-02-08 2018-02-08 저누화 단일 코어 양방향 광학 어셈블리
CN201880000081.1A CN110462491B (zh) 2018-02-08 2018-02-08 一种低串扰单芯双向光组件
PCT/CN2018/075804 WO2019153181A1 (zh) 2018-02-08 2018-02-08 一种低串扰单芯双向光组件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/075804 WO2019153181A1 (zh) 2018-02-08 2018-02-08 一种低串扰单芯双向光组件

Publications (1)

Publication Number Publication Date
WO2019153181A1 true WO2019153181A1 (zh) 2019-08-15

Family

ID=67548740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075804 WO2019153181A1 (zh) 2018-02-08 2018-02-08 一种低串扰单芯双向光组件

Country Status (3)

Country Link
KR (1) KR102512538B1 (zh)
CN (1) CN110462491B (zh)
WO (1) WO2019153181A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114488425A (zh) * 2020-11-11 2022-05-13 青岛海信宽带多媒体技术有限公司 一种光模块
CN115128820B (zh) * 2022-08-30 2022-11-08 中国科学院长春光学精密机械与物理研究所 啁啾反射式体布拉格光栅反馈的光谱合束装置及方法
CN115469323A (zh) * 2022-09-05 2022-12-13 Oppo广东移动通信有限公司 深度信息获取模组和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040001660A1 (en) * 2002-06-28 2004-01-01 Keisuke Asami Crosstalk improvement module and its using method
US7039278B1 (en) * 2002-07-10 2006-05-02 Finisar Corporation Single-fiber bi-directional transceiver
CN202444490U (zh) * 2012-03-02 2012-09-19 华为技术有限公司 光收发模块、光通信设备和光通信系统
CN104133273A (zh) * 2014-06-27 2014-11-05 厦门市贝莱光电技术有限公司 一种单纤双向光收发组件
CN104656286A (zh) * 2014-10-27 2015-05-27 徐州旭海光电科技有限公司 微型同波长单芯双向光收发模块
CN105891956A (zh) * 2014-11-07 2016-08-24 徐州旭海光电科技有限公司 反射型光环形器阵列
CN106198568A (zh) * 2015-05-24 2016-12-07 上海微电子装备有限公司 一种具有透明基底的薄膜的测量装置及测量方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100215792B1 (ko) * 1996-09-18 1999-08-16 구자홍 편광 빔 분리기 및 이를 이용한 이종 광 디스크용 광 픽업 장치
JPH10301056A (ja) * 1997-04-30 1998-11-13 Canon Inc 投・受光装置
JP2000227635A (ja) * 1998-11-30 2000-08-15 Nikon Corp 投射型表示装置
EP1299711B1 (en) * 2000-07-10 2006-05-24 University Health Network Method and apparatus for high resolution coherent optical imaging
JP2005010309A (ja) * 2003-06-17 2005-01-13 Sony Corp 光送受信装置および光ファイバ
WO2005024498A1 (ja) * 2003-09-03 2005-03-17 Asahi Glass Company, Limited 空間光変調素子及び空間光変調方法
EP1942500B1 (en) * 2007-01-08 2010-06-30 Samsung Electronics Co., Ltd. Optical pickup including unit to remove crosstalk in multi-layered disk, and optical recording and/or reproducing apparatus including the optical pickup
KR101286262B1 (ko) * 2010-12-14 2013-08-23 주식회사 오이솔루션 단일 파장을 이용한 광 송수신기
CN102928198B (zh) * 2012-10-09 2015-02-25 哈尔滨工程大学 一种光学器件偏振串扰测量的全光纤测试装置
WO2015081501A1 (zh) * 2013-12-03 2015-06-11 华为技术有限公司 一种光收发器及处理光信号的方法
KR20150145124A (ko) * 2014-06-18 2015-12-29 한국전자통신연구원 양방향 광송수신 모듈 및 이의 정렬방법
CN105911715A (zh) * 2016-06-23 2016-08-31 浙江大学 一种高消光比的偏振分光装置
CN206892434U (zh) * 2017-04-06 2018-01-16 杭州厚光科技有限公司 同轴光共聚焦镜头消杂光装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040001660A1 (en) * 2002-06-28 2004-01-01 Keisuke Asami Crosstalk improvement module and its using method
US7039278B1 (en) * 2002-07-10 2006-05-02 Finisar Corporation Single-fiber bi-directional transceiver
CN202444490U (zh) * 2012-03-02 2012-09-19 华为技术有限公司 光收发模块、光通信设备和光通信系统
CN104133273A (zh) * 2014-06-27 2014-11-05 厦门市贝莱光电技术有限公司 一种单纤双向光收发组件
CN104656286A (zh) * 2014-10-27 2015-05-27 徐州旭海光电科技有限公司 微型同波长单芯双向光收发模块
CN105891956A (zh) * 2014-11-07 2016-08-24 徐州旭海光电科技有限公司 反射型光环形器阵列
CN106198568A (zh) * 2015-05-24 2016-12-07 上海微电子装备有限公司 一种具有透明基底的薄膜的测量装置及测量方法

Also Published As

Publication number Publication date
KR20200118171A (ko) 2020-10-14
KR102512538B1 (ko) 2023-03-21
CN110462491B (zh) 2022-05-17
CN110462491A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
US9939592B2 (en) Micro single-fiber bidirectional optical transceiver module of the same wavelength
CN110058362B (zh) 一种基于五边形棱镜和干涉滤光片的单纤双向收发器件
US6122420A (en) Optical loopback apparatus
JP6237691B2 (ja) 光モジュール及び光ファイバアセンブリ
WO2019153181A1 (zh) 一种低串扰单芯双向光组件
JP2001124962A (ja) ファイバ光学用伝送レンズ
TWM575117U (zh) Optical integrated device and circulator
CN210982809U (zh) 一种紧凑型光路混合器件
WO2021056836A1 (zh) 一种光耦合组件及光发射组件
CN204331200U (zh) 微型同波长单芯双向光收发模块
US4867517A (en) Fail-safe acousto-optic T-couplers for optical communication networks
CN210982807U (zh) 一种光路混合器件
KR100557407B1 (ko) 양방향 광송수신 모듈
JP2005134803A (ja) 光アイソレータ付きフェルール及びそれを備えた光送受信モジュール
US5339373A (en) Optical branching and coupling device
US9739956B2 (en) Variable optical attenuator
CN110908150A (zh) 一种自由空间环行器
CN219758544U (zh) 一种单法拉第隔离器bosa光组件
WO2020259239A1 (zh) 一种带有标准光接口的小型化三端口光环形器件
CN210605095U (zh) 一种光模块
CN111999813B (zh) 优化偏振相关损耗的方法
WO2021057291A1 (zh) 一种光模块
JP2007025423A (ja) 波長偏光分離フィルタ及び光通信モジュール
CN116466431A (zh) 一种集成光器件
JP2001194560A (ja) 双方向光通信器および双方向光通信装置装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207025839

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18905270

Country of ref document: EP

Kind code of ref document: A1