WO2019153124A1 - 数据传输控制方法及相关产品 - Google Patents

数据传输控制方法及相关产品 Download PDF

Info

Publication number
WO2019153124A1
WO2019153124A1 PCT/CN2018/075451 CN2018075451W WO2019153124A1 WO 2019153124 A1 WO2019153124 A1 WO 2019153124A1 CN 2018075451 W CN2018075451 W CN 2018075451W WO 2019153124 A1 WO2019153124 A1 WO 2019153124A1
Authority
WO
WIPO (PCT)
Prior art keywords
sdap
qfi
bit length
header
bits
Prior art date
Application number
PCT/CN2018/075451
Other languages
English (en)
French (fr)
Inventor
尤心
石聪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to RU2020120984A priority Critical patent/RU2761553C1/ru
Priority to PCT/CN2018/075451 priority patent/WO2019153124A1/zh
Priority to AU2018407841A priority patent/AU2018407841A1/en
Priority to US16/649,027 priority patent/US11172398B2/en
Priority to JP2020534404A priority patent/JP7100135B6/ja
Priority to CN201880003540.1A priority patent/CN109716817A/zh
Priority to EP18905080.0A priority patent/EP3709686B1/en
Priority to KR1020207017702A priority patent/KR20200116908A/ko
Priority to CA3086722A priority patent/CA3086722C/en
Publication of WO2019153124A1 publication Critical patent/WO2019153124A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0263Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a data transmission control method and related products.
  • SDAP Service Data Adaptation Protocol
  • NR new wireless
  • the SDAP layer protocol data unit PDU needs to carry at least one bit of QoS indication mapping (reflective QoS) for downlink. Indicator, RQI).
  • the SDAP layer PDU may not need to carry the RQI.
  • the embodiment of the present application provides a data transmission control method and related products, and provides a method for transmitting a SDAP PDU that does not carry RQI, which is beneficial to improving real-time data processing of the SDAP layer on the terminal side.
  • the embodiment of the present application provides a data transmission control method, which is applied to a terminal, where the terminal includes a service data adaptation protocol SDAP layer entity, and the method includes:
  • the SDAP layer entity receives a SDAP service data unit SDU from an application layer
  • the SDAP layer entity sends the SDAP PDU to a lower layer entity.
  • an embodiment of the present application provides a terminal, where the terminal has a function of implementing a behavior of a terminal in the foregoing method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the terminal includes a processor configured to support the terminal in performing the corresponding functions of the above methods.
  • the terminal may further include a transceiver for supporting communication between the terminal and the network device.
  • the terminal may further include a memory for coupling with the processor, which stores program instructions and data necessary for the terminal.
  • an embodiment of the present application provides a terminal, including a processor, a memory, a communication interface, and one or more programs, where the one or more programs are stored in the memory, and configured by the The processor executes, the program comprising instructions for performing the steps in any of the methods of the second aspect of the embodiments of the present application.
  • an embodiment of the present application provides a computer readable storage medium, wherein the computer readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute as implemented in the present application.
  • an embodiment of the present application provides a computer program product, where the computer program product includes a non-transitory computer readable storage medium storing a computer program, the computer program being operative to cause a computer to execute Apply some or all of the steps described in any of the methods of the first aspect of the embodiments.
  • the computer program product can be a software installation package.
  • the SDAP entity of the terminal receives the SDAP service data unit SDU from the application layer; secondly, the SDAP entity processes the SDAP SDU to obtain the SDAP protocol data unit PDU; finally, the SDAP entity sends the SDAP PDU to the lower layer entity.
  • the SDAP layer entity of the terminal can process the received SDAP SDU into a SDAP PDU in real time, and send the SDAP PDU to the bottom layer, so that the underlying entity continues to process the data packet, which is beneficial to improving the real-time data processing of the SDAP layer on the terminal side.
  • FIG. 1 is a network architecture diagram of a possible communication system provided by an embodiment of the present application.
  • FIG. 2A is a schematic flowchart of a data transmission control method according to an embodiment of the present application.
  • 2B is a diagram showing an example of a structure of a SDAP header according to an embodiment of the present application.
  • 2C is a diagram showing an example of a structure of another SDAP header provided by an embodiment of the present application.
  • 2D is a diagram showing an example of a structure of another SDAP header provided by an embodiment of the present application.
  • 2E is a diagram showing an example of a structure of another SDAP header provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a data transmission control method according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a data transmission control method according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 1 illustrates a wireless communication system to which the present application relates.
  • the wireless communication system 100 can operate in a high frequency band, is not limited to a Long Term Evolution (LTE) system, and can be a 5th generation (5G) system and a new air interface (NR) in the future.
  • System machine to machine (Machine to Machine, M2M) system.
  • the wireless communication system 100 can include one or more network devices 101, one or more terminals 103, and a core network device 105.
  • the network device 101 can be a base station, and the base station can be used for communicating with one or more terminals, and can also be used for communicating with one or more base stations having partial terminal functions (such as a macro base station and a micro base station).
  • the base station may be a Base Transceiver Station (BTS) in a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) system, or may be an evolved base station in an LTE system (Evolutional Node B). , eNB), and base stations in 5G systems, new air interface (NR) systems.
  • the base station may also be an Access Point (AP), a TransNode (Trans TRP), a Central Unit (CU), or other network entity, and may include some or all of the functions of the above network entities.
  • the core network device 105 includes an Access and Mobility Management Function (AMF) entity, a User Plane Function (UPF) entity, and a Session Management Function (SMF). .
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • SMF Session Management Function
  • Terminals 103 may be distributed throughout wireless communication system 100, either stationary or mobile.
  • the terminal 103 may be a mobile device (such as a smart phone), a mobile station, a mobile unit, an M2M terminal, a wireless unit, a remote unit, a user agent, and a mobile client. and many more.
  • the wireless communication system 100 shown in FIG. 1 is only for the purpose of more clearly explaining the technical solutions of the present application, and does not constitute a limitation of the present application.
  • Those skilled in the art may know that with the evolution of the network architecture and new services, The appearance of the scenario, the technical solution provided by the present application is equally applicable to similar technical problems.
  • the newly introduced SDAP layer of the user plane protocol stack corresponds to one SDAP entity for each PDU session session.
  • the main purpose is to The data in the QoS flow from the upper layer is mapped into the DRB, and the QoS flow ID (QFI) is identified in the uplink and downlink data packets.
  • QFI indicates the QoS flow ID, which is mainly the ID of the QoS flow.
  • RQI refers to the reflective QoS indicator, indicating that the transmission of the uplink packet of the terminal needs to be mapped according to the mapping relationship of the downlink packet to the mapping of the packet IP to the QoS flow (non-access layer NAS layer) and the QoS flow to the DRB (access layer AS layer). ) mapping.
  • the access layer AS and the non-access stratum NAS quality of service mapping reflective QoS are independently supported, that is to say, for the downlink, the SDAP layer protocol data unit PDU needs to carry at least one bit of RQI.
  • the SDAP PDU may not need to carry the RQI.
  • FIG. 2A is a data transmission control method according to an embodiment of the present application, which is applied to a terminal in the foregoing example communication system, where the terminal includes a service data adaptation protocol SDAP layer entity, and the method includes:
  • the SDAP layer entity of the terminal receives a SDAP service data unit SDU from an application layer;
  • the application layer refers to an application layer of the terminal, and the data source of the SDAP SDU may be various types of data acquired by the terminal application layer, such as user input data detected by the terminal, collected environmental data, etc. Be the only limit.
  • the SDAP layer entity of the terminal processes the SDAP SDU to obtain a SDAP protocol data unit PDU;
  • the SDAP layer entity of the terminal sends the SDAP PDU to a lower layer entity.
  • the SDAP entity of the terminal receives the SDAP service data unit SDU from the application layer; secondly, the SDAP entity processes the SDAP SDU to obtain the SDAP protocol data unit PDU; finally, the SDAP entity sends the SDAP PDU to the lower layer entity.
  • the SDAP layer entity of the terminal can process the received SDAP SDU into a SDAP PDU in real time, and send the SDAP PDU to the bottom layer, so that the underlying entity continues to process the data packet, which is beneficial to improving the real-time data processing of the SDAP layer on the terminal side.
  • the SDAP layer entity processes the SDAP SDU to obtain a SDAP protocol data unit PDU, including:
  • the SDAP layer entity processes the SDAP SDU according to a preset format to obtain a SDAP PDU, where the preset format is configured by an RRC layer entity.
  • the preset format may be a SDAP header header+SDAP payload, that is, the reference format of the SDAP PDU generated by the SDAP SDU may be a header header, and the specific format of the SDAP header may also be pre-agreed. Do not make a single limit.
  • the RRC layer entity pre-configures the preset format for processing the SDAP SDU, so that the SDAP layer entity can process the SDAP SDU into the SDAP PDU in real time when receiving the SDAP SDU from the application layer, thereby avoiding data processing. Delay, improve data processing efficiency and consistency.
  • the SDAP PDU includes a SDAP header header and a SDAP payload, the SDAP header has a bit length of 8 bits, and the SDAP header includes a reserved R information and a quality of service flow identifier QFI;
  • the R information occupies the most significant bit of the SDAP header, and the bit length of the QFI is 7 bits; or
  • the R information occupies the most significant bit and the next most significant bit of the SDAP header, and the bit length of the QFI is 6 bits.
  • the SDAP payload may include QoS flow data of the terminal (ie, an Internet Protocol IP data packet).
  • the SDAP header has a bit length of 8 bits
  • the SDAP header includes 1-bit R information and a 7-bit QFI
  • the R information occupies the most significant bit of the SDAP header.
  • the SDAP header has a bit length of 8 bits
  • the SDAP header includes 2-bit R information and a 6-bit QFI
  • the R information occupies the most significant bit of the SDAP header. And the most significant bit.
  • the QFI can accurately indicate the correspondence between the current QoS flow and the data radio bearer
  • the QFI of not less than 6 bits when the QFI of not less than 6 bits is used, at least 64 types can be indicated, and the SDAP header in the SDAP PDU is improved. Indicate efficiency, save bit consumption, and increase utilization.
  • the SDAP PDU includes a SDAP header header and a SDAP payload
  • the SDAP header has a bit length of 8 bits
  • the SDAP header includes a bit length indicator and a quality of service flow identifier QFI
  • the bit length indicator is used to indicate the bit length of the QFI.
  • the bit length indicated by the bit length indicator is 6 bits or 7 bits.
  • the SDAP payload may include QoS flow data of the terminal.
  • the SDAP header has a bit length of 8 bits, and the SDAP header includes a 1-bit bit length indicator and a 7-bit quality of service flow identifier QFI, and the 1-bit bit length indicator is specific.
  • the value can be 0 (or 1), where the bit length indicator occupies the most significant bit of the SDAP header.
  • the SDAP header has a bit length of 8 bits, and the SDAP header includes a 1-bit bit length indicator, 1-bit R information, and a 6-bit quality of service flow identifier QFI, the 1 bit.
  • the specific value of the bit length indicator may be 1 (or 0), where the bit length indicator occupies the most significant bit of the SDAP header, and the R information occupies the next most significant bit of the SDAP header.
  • the bit length indicator can accurately indicate the bit length of the QFI in the current SDAP heder, thereby eliminating the need for the terminal local scanning detection, saving processing time, improving the bit length indication efficiency of the QFI, and improving the SDAP layer entity data processing. Real time.
  • a core network device also referred to as a 5GC of the NR system establishes one or more protocol data unit session PDU sessions, and each PDU session has one or more DRBs corresponding to the air interface.
  • DRBs are used to carry data of the PDU session; in the PDU session, the minimum granularity of QoS can be divided into different QoS flows, one PDU session can have multiple QoS flows, and different QoS flows are marked by different QFIs. .
  • the QFI goes from the 5GC to the access network device (also known as the RAN), it will identify each packet in the N3 interface.
  • This QFI is 7 bits.
  • QFI is unique in a PDU session.
  • the QFI of the N3 interface can be dynamically allocated or implicitly equal to 5QI. There is a one-to-one mapping between 5QI and 5G QoS features. Since the maximum value of 5QI is 79, the QFI allocated to the terminal on the core network side has a bit length of at least 7 bits.
  • the SDAP layer entity indicates the QFI for each SDAP PDU (if configured, the QFI is the QFI in the SDAP PDU processed by the terminal side described herein), and the QFI is used to indicate the QoS flow to the DRB. Mapping relationship.
  • the QFI can only be represented by 6 bits, and for the uplink, the terminal does not need to carry the RQI, so the QFI bit length in the SDAP PDU processed by the terminal side can be 6 bits or 7 Bits, the two cases are explained below.
  • the QFI has a bit length of 6 bits
  • the QFI corresponding to a reference QFI configured by the core network device for the terminal has a bit length of 7 bits
  • the reference QFI has a bit length of 7 bits
  • the reference The feature of the 5G QoS indicated by the QFI has a one-to-one correspondence with the 5G quality of service scale value 5QI
  • the SDAP header has 1-bit reserved R information.
  • the 5QI refers to a 5G QoS Identifier, similar to the scaling value QCI in LTE.
  • 5GC establishes one or more PDU sessions, and each PDU session has one or more DRB relative applications in the air interface.
  • the minimum granularity of QoS can be divided into different QoS flows.
  • One PDU session can have multiple QoS flows, and each QoS flow has its corresponding service type, that is, QoS level 5QI.
  • the reference QFI can be accurately mapped to the 5QI, and the QoS level indication is incomplete due to the inability of the 6-bit QFI to indicate all the 5QIs. It is more stable and accurate to indicate the 5QI corresponding to the current QFI.
  • the QFI has a bit length of 7 bits and the QFI is equal to a 5G quality of service scale value of 5QI.
  • FIG. 3 is another data transmission control method according to an embodiment of the present application, which is applied to a terminal in the foregoing example communication system, where the terminal includes service data adaptation.
  • Protocol SDAP layer entity the method includes:
  • the SDAP layer entity of the terminal receives a SDAP service data unit SDU from an application layer;
  • the SDAP layer entity of the terminal processes the SDAP SDU according to a preset format to obtain a SDAP PDU, where the preset format is configured by an RRC layer entity.
  • the SDAP layer entity of the terminal sends the SDAP PDU to a lower layer entity.
  • the SDAP entity of the terminal receives the SDAP service data unit SDU from the application layer; secondly, the SDAP entity processes the SDAP SDU to obtain the SDAP protocol data unit PDU; finally, the SDAP entity sends the SDAP PDU to the lower layer entity.
  • the SDAP layer entity of the terminal can process the received SDAP SDU into a SDAP PDU in real time, and send the SDAP PDU to the bottom layer, so that the underlying entity continues to process the data packet, which is beneficial to improving the real-time data processing of the SDAP layer on the terminal side.
  • the SDAP layer entity can process the SDAP SDU into the SDAP PDU in real time when receiving the SDAP SDU from the application layer, thereby avoiding data processing delay and improving. Data processing efficiency and consistency.
  • FIG. 4 is a data transmission control method according to an embodiment of the present application, which is applied to a terminal in the foregoing example communication system, where the terminal includes service data adaptation.
  • Protocol SDAP layer entity the method includes:
  • the terminal controls the SDAP layer entity to receive a SDP service data unit SDU from an application layer.
  • the terminal controls the SDAP layer entity to process the SDAP SDU according to a preset format to obtain a SDAP PDU, where the preset format is configured by an RRC layer entity, where the SDAP PDU includes a SDAP header header and a SDAP payload payload.
  • the SDAP header has a bit length of 8 bits, and the SDAP header includes a bit length indicator and a quality of service flow identifier QFI, and the bit length indicator is used to indicate a bit length of the QFI.
  • the terminal controls the SDAP layer entity to send the SDAP PDU to a lower layer entity.
  • the SDAP entity of the terminal receives the SDAP service data unit SDU from the application layer; secondly, the SDAP entity processes the SDAP SDU to obtain the SDAP protocol data unit PDU; finally, the SDAP entity sends the SDAP PDU to the lower layer entity.
  • the SDAP layer entity of the terminal can process the received SDAP SDU into a SDAP PDU in real time, and send the SDAP PDU to the bottom layer, so that the underlying entity continues to process the data packet, which is beneficial to improving the real-time data processing of the SDAP layer on the terminal side.
  • the SDAP layer entity can process the SDAP SDU into the SDAP PDU in real time when receiving the SDAP SDU from the application layer, thereby avoiding data processing delay and improving. Data processing efficiency and consistency.
  • bit length indicator can accurately indicate the bit length of the QFI in the current SDAP heder, the terminal local scanning detection is not needed, the processing time is saved, the bit length indication efficiency of the QFI is improved, and the real-time performance of the SDAP layer entity data processing is improved.
  • FIG. 5 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • the terminal includes a processor, a memory, a communication interface, and one or more programs.
  • the one or more programs are stored in the memory and configured to be executed by the processor, the program comprising instructions for performing the following steps;
  • the SDAP entity of the terminal receives the SDAP service data unit SDU from the application layer; secondly, the SDAP entity processes the SDAP SDU to obtain the SDAP protocol data unit PDU; finally, the SDAP entity sends the SDAP PDU to the lower layer entity.
  • the SDAP layer entity of the terminal can process the received SDAP SDU into a SDAP PDU in real time, and send the SDAP PDU to the bottom layer, so that the underlying entity continues to process the data packet, which is beneficial to improving the real-time data processing of the SDAP layer on the terminal side.
  • the instructions in the program are specifically configured to: control the SDAP layer entity according to a preset format. Processing the SDAP SDU to obtain a SDAP PDU, where the preset format is configured by an RRC layer entity.
  • the SDAP PDU includes a SDAP header header and a SDAP payload, the SDAP header has a bit length of 8 bits, and the SDAP header includes a reserved R information and a quality of service flow identifier QFI;
  • the R information occupies the most significant bit of the SDAP header, and the bit length of the QFI is 7 bits; or
  • the R information occupies the most significant bit and the next most significant bit of the SDAP header, and the bit length of the QFI is 6 bits.
  • the SDAP PDU includes a SDAP header header and a SDAP payload
  • the SDAP header has a bit length of 8 bits
  • the SDAP header includes a bit length indicator and a quality of service flow identifier QFI
  • the bit length indicator is used to indicate the bit length of the QFI.
  • the bit length indicated by the bit length indicator is 6 bits or 7 bits.
  • the QFI has a bit length of 6 bits
  • the QFI corresponding to a reference QFI configured by the core network device for the terminal has a bit length of 7 bits
  • the reference QFI has a bit length of 7 bits
  • the reference The feature of the 5G QoS indicated by the QFI has a one-to-one correspondence with the 5G quality of service scale value 5QI
  • the SDAP header has 1-bit reserved R information.
  • the QFI has a bit length of 7 bits and the QFI is equal to a 5G quality of service scale value of 5QI.
  • the terminal and the network device include corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for each particular application to implement the described functionality, but such implementation should not be considered to be beyond the scope of the application.
  • the embodiments of the present application may perform the division of functional units on the terminal and the network device according to the foregoing method.
  • each functional unit may be divided according to each function, or two or more functions may be integrated into one processing unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software program module. It should be noted that the division of the unit in the embodiment of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • FIG. 6 shows a block diagram of one possible functional unit configuration of the terminal involved in the above embodiment.
  • the terminal 600 includes a processing unit 602 and a communication unit 603.
  • the processing unit 602 is configured to perform control management on the actions of the terminal.
  • the processing unit 602 is configured to support the terminal to perform steps 201-203 in FIG. 2A, steps 301-303 in FIG. 3, steps 401-403 in FIG. / or other processes for the techniques described herein.
  • the communication unit 603 is for supporting communication between the terminal and other devices, such as communication with the network device shown in FIG.
  • the terminal may further include a storage unit 601 for storing program codes and data of the terminal.
  • the processing unit 602 can be a processor or a controller, and can be, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (Application-Specific). Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 603 may be a transceiver, a transceiver circuit, or the like, and the storage unit 601 may be a memory.
  • the processing unit 602 is configured to control the SDAP layer entity to receive the SDAP service data unit SDU from the application layer by using the communication unit 603, and to control the SDAP layer entity to process the SDAP SDU to obtain the SDAP protocol data. a unit PDU; and for controlling the SDAP layer entity to send the SDAP PDU to a lower layer entity through the communication unit 603.
  • the SDAP entity of the terminal receives the SDAP service data unit SDU from the application layer; secondly, the SDAP entity processes the SDAP SDU to obtain the SDAP protocol data unit PDU; finally, the SDAP entity sends the SDAP PDU to the lower layer entity.
  • the SDAP layer entity of the terminal can process the received SDAP SDU into a SDAP PDU in real time, and send the SDAP PDU to the bottom layer, so that the underlying entity continues to process the data packet, which is beneficial to improving the real-time data processing of the SDAP layer on the terminal side.
  • the processing unit 602 is specifically configured to: control the SDAP layer entity to process the SDAP SDU according to a preset format, when the control SDAP entity processes the SDAP SDU to obtain a SDAP protocol data unit PDU.
  • a SDAP PDU is obtained, and the preset format is configured by an RRC layer entity.
  • the SDAP PDU includes a SDAP header header and a SDAP payload, the SDAP header has a bit length of 8 bits, and the SDAP header includes a reserved R information and a quality of service flow identifier QFI;
  • the R information occupies the most significant bit of the SDAP header, and the bit length of the QFI is 7 bits; or
  • the R information occupies the most significant bit and the next most significant bit of the SDAP header, and the bit length of the QFI is 6 bits.
  • the SDAP PDU includes a SDAP header header and a SDAP payload
  • the SDAP header has a bit length of 8 bits
  • the SDAP header includes a bit length indicator and a quality of service flow identifier QFI
  • the bit length indicator is used to indicate the bit length of the QFI.
  • the QFI indicated by the bit length indicator has a bit length of 6 bits or 7 bits.
  • the QFI has a bit length of 6 bits
  • the QFI corresponding to a reference QFI configured by the core network device for the terminal has a bit length of 7 bits
  • the reference QFI has a bit length of 7 bits
  • the reference The feature of the 5G QoS indicated by the QFI has a one-to-one correspondence with the 5G quality of service scale value 5QI
  • the SDAP header has 1-bit reserved R information.
  • the QFI has a bit length of 7 bits and the QFI is equal to a 5G quality of service scale value of 5QI.
  • the terminal involved in the embodiment of the present application may be the terminal shown in FIG. 6.
  • the embodiment of the present application further provides a computer readable storage medium, wherein the computer readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute a terminal as in the above method embodiment Some or all of the steps described.
  • the embodiment of the present application further provides a computer readable storage medium, wherein the computer readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute a network in the method embodiment as described above Some or all of the steps described by the device.
  • the embodiment of the present application further provides a computer program product, wherein the computer program product comprises a non-transitory computer readable storage medium storing a computer program, the computer program being operative to cause a computer to perform the method embodiment as described above Some or all of the steps described in the terminal.
  • the computer program product can be a software installation package.
  • the embodiment of the present application further provides a computer program product, wherein the computer program product comprises a non-transitory computer readable storage medium storing a computer program, the computer program being operative to cause a computer to perform a network as in the above method Some or all of the steps described by the device.
  • the computer program product can be a software installation package.
  • the steps of the method or algorithm described in the embodiments of the present application may be implemented in a hardware manner, or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable Programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in an access network device, a target network device, or a core network device. Of course, the processor and the storage medium may also exist as discrete components in the access network device, the target network device, or the core network device.
  • the functions described in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, Digital Subscriber Line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (DVD)), or a semiconductor medium (for example, a solid state disk (SSD)). )Wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital video disc (DVD)
  • DVD digital video disc
  • SSD solid state disk

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了数据传输控制方法及相关产品,包括:终端的SDAP层实体接收来自应用层的SDAP服务数据单元SDU;SDAP层实体处理SDAP SDU得到SDAP协议数据单元PDU;SDAP层实体向低层实体发送SDAP PDU。本申请实施例未携带RQI的SDAP PDU的传输方法,有利于提高终端侧SDAP层数据处理实时性。

Description

数据传输控制方法及相关产品 技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输控制方法及相关产品。
背景技术
随着无线和有线技术的不断发展,目前新无线(new radio,NR)无线通信系统中在用户面协议栈中引入服务数据适配协议(Service Data Adaptation Protocol,SDAP)层以完成服务质量QoS流与数据无线承载(Data Radio Bearer,DRB)之间的映射,以及在上下行数据包中标识QoS流标识(QoS flow ID,QFI)。
目前的结论是对于接入层AS and非接入层NAS服务质量映射reflective QoS是独立支持的,也就是说对于下行而言SDAP层协议数据单元PDU需要携带至少一个比特的QoS指示映射(reflective QoS indicator,RQI)。但是对于上行而言SDAP层PDU可以不需要携带RQI,目前,还没有针对SDAP PDU的上行传输控制方案。
发明内容
本申请的实施例提供一种数据传输控制方法及相关产品,提供了一种未携带RQI的SDAP PDU的传输方法,有利于提高终端侧SDAP层数据处理实时性。
第一方面,本申请实施例提供一种数据传输控制方法,应用于终端,所述终端包括服务数据适配协议SDAP层实体,所述方法包括:
所述SDAP层实体接收来自应用层的SDAP服务数据单元SDU;
所述SDAP层实体处理所述SDAP SDU得到SDAP协议数据单元PDU;
所述SDAP层实体向低层实体发送所述SDAP PDU。
第二方面,本申请实施例提供一种终端,该终端具有实现上述方法设计中 终端的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,终端包括处理器,所述处理器被配置为支持终端执行上述方法中相应的功能。进一步的,终端还可以包括收发器,所述收发器用于支持终端与网络设备之间的通信。进一步的,终端还可以包括存储器,所述存储器用于与处理器耦合,其保存终端必要的程序指令和数据。
第三方面,本申请实施例提供一种终端,包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行本申请实施例第二方面任一方法中的步骤的指令。
第四方面,本申请实施例提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如本申请实施例第一方面任一方法中所描述的部分或全部步骤。
第五方面,本申请实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如本申请实施例第一方面任一方法中所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
可以看出,本申请实施例,终端的SDAP实体接收来自应用层的SDAP服务数据单元SDU;其次,SDAP实体处理SDAP SDU得到SDAP协议数据单元PDU;最后,SDAP实体向低层实体发送SDAP PDU。可见,终端的SDAP层实体可以将接收到的SDAP SDU实时处理为SDAP PDU,并向底层发送该SDAP PDU,以便底层实体继续处理该数据包,有利于提高终端侧SDAP层数据处理实时性。
附图说明
下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1是本申请实施例提供的一种可能的通信系统的网络架构图;
图2A是本申请实施例提供的一种数据传输控制方法的流程示意图;
图2B是本申请实施例提供的一种SDAP header的结构示例图;
图2C是本申请实施例提供的另一种SDAP header的结构示例图;
图2D是本申请实施例提供的另一种SDAP header的结构示例图;
图2E是本申请实施例提供的另一种SDAP header的结构示例图;
图3是本申请实施例提供的一种数据传输控制方法的流程示意图;
图4是本申请实施例提供的一种数据传输控制方法的流程示意图;
图5是本申请实施例提供的一种终端的结构示意图;
图6是本申请实施例提供的一种终端的结构示意图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行描述。
示例的,图1示出了本申请涉及的无线通信系统。该无线通信系统100可以工作在高频频段上,不限于长期演进(Long Term Evolution,LTE)系统,还可以是未来演进的第五代移动通信(the 5th Generation,5G)系统、新空口(NR)系统,机器与机器通信(Machine to Machine,M2M)系统等。该无线通信系统100可包括:一个或多个网络设备101,一个或多个终端103,以及核心网设备105。其中:网络设备101可以为基站,基站可以用于与一个或多个终端进行通信,也可以用于与一个或多个具有部分终端功能的基站进行通信(比如宏基站与微基站)。基站可以是时分同步码分多址(Time Division Synchronous Code Division Multiple Access,TD-SCDMA)系统中的基站收发台(Base Transceiver Station,BTS),也可以是LTE系统中的演进型基站(Evolutional Node B,eNB),以及5G系统、新空口(NR)系统中的基站。另外,基站也可以为接入点(Access Point,AP)、传输节点(Trans TRP)、中心单元(Central Unit,CU)或其他网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。核心网设备105包括接入和移动管理功能(Access and Mobility Management Function,AMF)实体,用户面功能(User Plane Function,UPF)实体和会话管理功能(Session Management Function,SMF)等核心网 侧的设备。终端103可以分布在整个无线通信系统100中,可以是静止的,也可以是移动的。在本申请的一些实施例中,终端103可以是移动设备(如智能手机)、移动台(mobile station)、移动单元(mobile unit)、M2M终端、无线单元,远程单元、用户代理、移动客户端等等。
需要说明的,图1示出的无线通信系统100仅仅是为了更加清楚的说明本申请的技术方案,并不构成对本申请的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
下面对本申请涉及的相关技术进行介绍。
目前,在第五代移动通信技术(5th-Generation,5G)以及新空口(New Radio,NR)系统中,用户面协议栈新引入的SDAP层每个PDU会话Session对应一个SDAP实体,主要目的是将上层来的QoS flow中的数据映射到DRB中,以及在上下行数据包中标识QoS流标识(QoS flow ID,QFI)。QFI表示QoS flow ID,主要是标示QoS flow的ID。RQI指的是reflective QoS indicator,表示终端上行包的传输需要按照下行包的映射关系来进行数据包IP到QoS flow(非接入层NAS layer)的映射以及QoS flow到DRB(接入层AS layer)的映射。
目前的结论是对于接入层AS and非接入层NAS服务质量映射reflective QoS是独立支持的,也就是说对于下行而言SDAP层协议数据单元PDU需要携带至少一个比特的RQI。但是对于上行而言SDAP PDU可以不需要携带RQI,目前,还没有针对SDAP PDU的上行传输控制方案。
针对上述问题,本申请实施例提出以下实施例,下面结合附图进行详细描述。
请参阅图2A,图2A是本申请实施例提供的一种数据传输控制方法,应用于上述示例通信系统中的终端,所述终端包括服务数据适配协议SDAP层实体,该方法包括:
在201部分,所述终端的所述SDAP层实体接收来自应用层的SDAP服务数据单元SDU;
其中,所述应用层是指终端的应用层,所述SDAP SDU的数据源可以是终 端应用层获取到的各类数据,如终端检测到的用户录入数据、采集的环境数据等,此处不做唯一限定。
在202部分,所述终端的所述SDAP层实体处理所述SDAP SDU得到SDAP协议数据单元PDU;
在203部分,所述终端的所述SDAP层实体向低层实体发送所述SDAP PDU。
可以看出,本申请实施例中,终端的SDAP实体接收来自应用层的SDAP服务数据单元SDU;其次,SDAP实体处理SDAP SDU得到SDAP协议数据单元PDU;最后,SDAP实体向低层实体发送SDAP PDU。可见,终端的SDAP层实体可以将接收到的SDAP SDU实时处理为SDAP PDU,并向底层发送该SDAP PDU,以便底层实体继续处理该数据包,有利于提高终端侧SDAP层数据处理实时性。
在一个可能的示例中,所述SDAP层实体处理所述SDAP SDU得到SDAP协议数据单元PDU,包括:
所述SDAP层实体按照预设格式处理所述SDAP SDU得到SDAP PDU,所述预设格式由RRC层实体配置。
其中,所述预设格式可以是SDAP包头header+SDAP净荷payload,也就是说,SDAP SDU生成SDAP PDU的参考格式可以是加包头header,该SDAP header的具体格式也可以预先进行约定,此处不做唯一限定。
可见,本示例中,由于RRC层实体预先配置好用于处理SDAP SDU的预设格式,从而SDAP层实体在接收到来自应用层的SDAP SDU时,能够实时处理SDAP SDU为SDAP PDU,避免数据处理延时,提高数据处理效率和一致性。
在一个可能的示例中,所述SDAP PDU包括SDAP包头header和SDAP净荷payload,所述SDAP header的位长为8比特,所述SDAP header包括预留R信息和服务质量流标识QFI;
所述R信息占据所述SDAP header的最高有效位,所述QFI的位长为7比特;或者,
所述R信息占据所述SDAP header的最高有效位和次最高有效位,所述QFI的位长为6比特。
其中,所述SDAP payload可以包括终端的QoS流数据(即互联网协议IP数据包)。
举例来说,如图2B所示,所述SDAP header的位长为8比特,所述SDAP header包括1比特R信息和7比特QFI,且所述R信息占据所述SDAP header的最高有效位。
又举例来说,如图2C所示,所述SDAP header的位长为8比特,所述SDAP header包括2比特R信息和6比特QFI,且所述R信息占据所述SDAP header的最高有效位和次最高有效位。
可见,本示例中,由于QFI能够准确指示当前的QoS流与数据无线承载之间的对应关系,故而用不少于6比特的QFI时,能够至少指示64种,提高了SDAP PDU中SDAP header的指示效率,节约比特消耗,提高利用率。
在一个可能的示例中,所述SDAP PDU包括SDAP包头header和SDAP净荷payload,所述SDAP header的位长为8比特,所述SDAP header包括位长指示符和服务质量流标识QFI,所述位长指示符用于指示所述QFI的位长。
在一个可能的示例中,所述位长指示符所指示的所述QFI的位长为6比特或者7比特。
其中,所述SDAP payload可以包括终端的QoS流数据。
举例来说,如图2D所示,所述SDAP header的位长为8比特,所述SDAP header包括1比特位长指示符和7比特服务质量流标识QFI,该1比特位长指示符的具体值可以是0(或1),其中,位长指示符占据该SDAP header的最高有效位。
又举例来说,如图2E所示,所述SDAP header的位长为8比特,所述SDAP header包括1比特位长指示符、1比特R信息和6比特服务质量流标识QFI,该1比特位长指示符的具体值可以是1(或0),其中,该位长指示符占据该SDAP header的最高有效位,该R信息占据SDAP header的次最高有效位。
可见,本示例中,由于位长指示符能够准确指示当前SDAP heder中的QFI的位长,从而无需终端本端扫描检测,节约处理时长,提高QFI的位长指示效率,提高SDAP层实体数据处理的实时性。
具体实现中,对于每一个终端,NR系统的核心网设备(又称为5GC)建 立一个或者多个协议数据单元会话PDU session,每一个PDU session在空口会有一个或多个DRB相对应,该一个或多个DRB用于承载PDU session的数据;在PDU session中,QoS的最小颗粒度可以区分为不同的QoS flow,一个PDU session可以有多个QoS flow,不同QoS flow由不同的QFI来标示。
此外,在一个PDU session中,同一个QoS flow中的数据会由相同的QoS处理,比如调度等等。QFI在从5GC到接入网设备(又称为RAN)的时候会在N3接口中给每一个数据包标识,这个QFI为7bit。QFI在一个PDU session是唯一的。N3接口的QFI可以动态的分配也可以隐式的等于5QI。5QI跟5G QoS特征之间有一对一的映射;由于5QI最大值为79,所以核心网侧分配给终端的QFI的位长至少为7bit。
而在接入网侧,SDAP层实体会为每个SDAP PDU标示QFI(如果配置了的话,该QFI即本文介绍的终端侧处理的SDAP PDU中的QFI),该QFI用来标示QoS flow到DRB的映射关系。对于下行,为了在SDAP header携带RQI,所以QFI只能用6bit来表示,而对于上行而言终端可以不需要携带RQI,所以终端侧处理的SDAP PDU中的QFI的位长可以是6比特或7比特,下面对这两种情况进行说明。
在一个可能的示例中,所述QFI的位长为6比特,所述QFI与核心网设备为所述终端配置的基准QFI相对应,所述基准QFI的位长为7比特,且所述基准QFI所指示的5G QoS的特征与5G服务质量标度值5QI之间具有一对一的对应关系,且所述SDAP header有1比特预留R信息。
其中,所述5QI是指5G QoS Identifier,类似于LTE中的标度值QCI,对于每一个终端,5GC建立一个或者多个PDU session,每一个PDU session在空口会有一个或者多个DRB相对应用于承载其数据;在PDU session中,QoS的最小颗粒度可以区分为不同的QoS flow,一个PDU session可以有多个QoS flow,每个QoS flow都有其对应的业务类型也就是QoS等级5QI。
可见,本示例中,针对终端侧处理的SDAP PDU中的QFI的位长为6比特的情况,可以通过基准QFI准确映射到5QI,避免因6比特QFI无法指示所有5QI而造成QoS等级指示不全,有利于更加稳定准确的指示当前的QFI所对应的5QI。
在一个可能的示例中,所述QFI的位长为7比特,所述QFI等于5G服务质量标度值5QI。
可见,本示例中,针对终端侧处理的SDAP PDU中的QFI的位长为7比特的情况,由于7比特的QFI能够直接指示全部QoS等级,故而无需关联基准QFI间接映射,有利于提高指示QoS等级的便捷性。
与图2A所示实施例一致的,请参阅图3,图3是本申请实施例提供的另一种数据传输控制方法,应用于上述示例通信系统中的终端,所述终端包括服务数据适配协议SDAP层实体,,该方法包括:
在301部分,所述终端的所述SDAP层实体接收来自应用层的SDAP服务数据单元SDU;
在302部分,所述终端的所述SDAP层实体按照预设格式处理所述SDAP SDU得到SDAP PDU,所述预设格式由RRC层实体配置。
在303部分,所述终端的所述SDAP层实体向低层实体发送所述SDAP PDU。
可以看出,本申请实施例中,终端的SDAP实体接收来自应用层的SDAP服务数据单元SDU;其次,SDAP实体处理SDAP SDU得到SDAP协议数据单元PDU;最后,SDAP实体向低层实体发送SDAP PDU。可见,终端的SDAP层实体可以将接收到的SDAP SDU实时处理为SDAP PDU,并向底层发送该SDAP PDU,以便底层实体继续处理该数据包,有利于提高终端侧SDAP层数据处理实时性。
此外,由于RRC层实体预先配置好用于处理SDAP SDU的预设格式,从而SDAP层实体在接收到来自应用层的SDAP SDU时,能够实时处理SDAP SDU为SDAP PDU,避免数据处理延时,提高数据处理效率和一致性。
与图2A和图3实施例一致的,请参阅图4,图4是本申请实施例提供的一种数据传输控制方法,应用于上述示例通信系统中的终端,所述终端包括服务数据适配协议SDAP层实体,,该方法包括:
在401部分,所述终端控制所述SDAP层实体接收来自应用层的SDAP服务 数据单元SDU
在402部分,所述终端控制所述SDAP层实体按照预设格式处理所述SDAP SDU得到SDAP PDU,所述预设格式由RRC层实体配置,所述SDAP PDU包括SDAP包头header和SDAP净荷payload,所述SDAP header的位长为8比特,所述SDAP header包括位长指示符和服务质量流标识QFI,所述位长指示符用于指示所述QFI的位长。
在403部分,所述终端控制所述SDAP层实体向低层实体发送所述SDAP PDU。
可以看出,本申请实施例中,终端的SDAP实体接收来自应用层的SDAP服务数据单元SDU;其次,SDAP实体处理SDAP SDU得到SDAP协议数据单元PDU;最后,SDAP实体向低层实体发送SDAP PDU。可见,终端的SDAP层实体可以将接收到的SDAP SDU实时处理为SDAP PDU,并向底层发送该SDAP PDU,以便底层实体继续处理该数据包,有利于提高终端侧SDAP层数据处理实时性。
此外,由于RRC层实体预先配置好用于处理SDAP SDU的预设格式,从而SDAP层实体在接收到来自应用层的SDAP SDU时,能够实时处理SDAP SDU为SDAP PDU,避免数据处理延时,提高数据处理效率和一致性。
此外,由于位长指示符能够准确指示当前SDAP heder中的QFI的位长,从而无需终端本端扫描检测,节约处理时长,提高QFI的位长指示效率,提高SDAP层实体数据处理的实时性。
与上述实施例一致的,请参阅图5,图5是本申请实施例提供的一种终端的结构示意图,如图所示,该终端包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行以下步骤的指令;
控制所述SDAP层实体接收来自应用层的SDAP服务数据单元SDU;
控制所述SDAP层实体处理所述SDAP SDU得到SDAP协议数据单元PDU;
控制所述SDAP层实体向低层实体发送所述SDAP PDU。
可以看出,本申请实施例中,终端的SDAP实体接收来自应用层的SDAP服务数据单元SDU;其次,SDAP实体处理SDAP SDU得到SDAP协议数据单元PDU;最后,SDAP实体向低层实体发送SDAP PDU。可见,终端的SDAP层实体可以将接收到的SDAP SDU实时处理为SDAP PDU,并向底层发送该SDAP PDU,以便底层实体继续处理该数据包,有利于提高终端侧SDAP层数据处理实时性。
在一个可能的示例中,在控制所述SDAP层实体处理所述SDAP SDU得到SDAP协议数据单元PDU方面,所述程序中的指令具体用于执行以下操作:控制所述SDAP层实体按照预设格式处理所述SDAP SDU得到SDAP PDU,所述预设格式由RRC层实体配置。
在一个可能的示例中,所述SDAP PDU包括SDAP包头header和SDAP净荷payload,所述SDAP header的位长为8比特,所述SDAP header包括预留R信息和服务质量流标识QFI;
所述R信息占据所述SDAP header的最高有效位,所述QFI的位长为7比特;或者,
所述R信息占据所述SDAP header的最高有效位和次最高有效位,所述QFI的位长为6比特。
在一个可能的示例中,所述SDAP PDU包括SDAP包头header和SDAP净荷payload,所述SDAP header的位长为8比特,所述SDAP header包括位长指示符和服务质量流标识QFI,所述位长指示符用于指示所述QFI的位长。
在一个可能的示例中,所述位长指示符所指示的所述QFI的位长为6比特或者7比特。
在一个可能的示例中,所述QFI的位长为6比特,所述QFI与核心网设备为所述终端配置的基准QFI相对应,所述基准QFI的位长为7比特,且所述基准QFI所指示的5G QoS的特征与5G服务质量标度值5QI之间具有一对一的对应关系,且所述SDAP header有1比特预留R信息。
在一个可能的示例中,所述QFI的位长为7比特,所述QFI等于5G服务质量标度值5QI。
上述主要从各个网元之间交互的角度对本申请实施例的方案进行了介绍。可以理解的是,终端和网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端和网络设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图6示出了上述实施例中所涉及的终端的一种可能的功能单元组成框图。终端600包括:处理单元602和通信单元603。处理单元602用于对终端的动作进行控制管理,例如,处理单元602用于支持终端执行图2A中的步骤201-203,图3中的步骤301-303、图4中的步骤401-403和/或用于本文所描述的技术的其它过程。通信单元603用于支持终端与其他设备的通信,例如与图5中示出的网络设备之间的通信。终端还可以包括存储单元601,用于存储终端的程序代码和数据。
其中,处理单元602可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器 也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元603可以是收发器、收发电路等,存储单元601可以是存储器。
其中,所述处理单元602用于控制所述SDAP层实体通过所述通信单元603接收来自应用层的SDAP服务数据单元SDU;以及用于控制所述SDAP层实体处理所述SDAP SDU得到SDAP协议数据单元PDU;以及用于控制所述SDAP层实体通过所述通信单元603向低层实体发送所述SDAP PDU。
可以看出,本发明实施例中,终端的SDAP实体接收来自应用层的SDAP服务数据单元SDU;其次,SDAP实体处理SDAP SDU得到SDAP协议数据单元PDU;最后,SDAP实体向低层实体发送SDAP PDU。可见,终端的SDAP层实体可以将接收到的SDAP SDU实时处理为SDAP PDU,并向底层发送该SDAP PDU,以便底层实体继续处理该数据包,有利于提高终端侧SDAP层数据处理实时性。
在一个可能的示例中,在所述控制SDAP实体处理所述SDAP SDU得到SDAP协议数据单元PDU方面,所述处理单元602具体用于:控制所述SDAP层实体按照预设格式处理所述SDAP SDU得到SDAP PDU,所述预设格式由RRC层实体配置。
在一个可能的示例中,所述SDAP PDU包括SDAP包头header和SDAP净荷payload,所述SDAP header的位长为8比特,所述SDAP header包括预留R信息和服务质量流标识QFI;
所述R信息占据所述SDAP header的最高有效位,所述QFI的位长为7比特;或者,
所述R信息占据所述SDAP header的最高有效位和次最高有效位,所述QFI的位长为6比特。
在一个可能的示例中,所述SDAP PDU包括SDAP包头header和SDAP净荷payload,所述SDAP header的位长为8比特,所述SDAP header包括位长指示符和服务质量流标识QFI,所述位长指示符用于指示所述QFI的位长。
在一个可能的示例中,所述位长指示符所指示的所述QFI的位长为6比特或 者7比特。
在一个可能的示例中,所述QFI的位长为6比特,所述QFI与核心网设备为所述终端配置的基准QFI相对应,所述基准QFI的位长为7比特,且所述基准QFI所指示的5G QoS的特征与5G服务质量标度值5QI之间具有一对一的对应关系,且所述SDAP header有1比特预留R信息。
在一个可能的示例中,所述QFI的位长为7比特,所述QFI等于5G服务质量标度值5QI。
当处理单元602为处理器,通信单元603为通信接口,存储单元601为存储器时,本申请实施例所涉及的终端可以为图6所示的终端。
本申请实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如上述方法实施例中终端所描述的部分或全部步骤。
本申请实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如上述方法实施例中网络设备所描述的部分或全部步骤。
本申请实施例还提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如上述方法实施例中终端所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
本申请实施例还提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如上述方法中网络设备所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
本申请实施例所描述的方法或者算法的步骤可以以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器 (Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于接入网设备、目标网络设备或核心网设备中。当然,处理器和存储介质也可以作为分立组件存在于接入网设备、目标网络设备或核心网设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
以上所述的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (16)

  1. 一种数据传输控制方法,其特征在于,应用于终端,所述终端包括服务数据适配协议SDAP层实体,所述方法包括:
    所述SDAP层实体接收来自应用层的SDAP服务数据单元SDU;
    所述SDAP层实体处理所述SDAP SDU得到SDAP协议数据单元PDU;
    所述SDAP层实体向低层实体发送所述SDAP PDU。
  2. 根据权利要求1所述的方法,其特征在于,所述SDAP层实体处理所述SDAP SDU得到SDAP协议数据单元PDU,包括:
    所述SDAP层实体按照预设格式处理所述SDAP SDU得到SDAP PDU,所述预设格式由RRC层实体配置。
  3. 根据权利要求1或2所述的方法,其特征在于,所述SDAP PDU包括SDAP包头header和SDAP净荷payload,所述SDAP header的位长为8比特,所述SDAP header包括预留R信息和服务质量流标识QFI;
    所述R信息占据所述SDAP header的最高有效位,所述QFI的位长为7比特;或者,
    所述R信息占据所述SDAP header的最高有效位和次最高有效位,所述QFI的位长为6比特。
  4. 根据权利要求1或2所述的方法,其特征在于,所述SDAP PDU包括SDAP包头header和SDAP净荷payload,所述SDAP header的位长为8比特,所述SDAP header包括位长指示符和服务质量流标识QFI,所述位长指示符用于指示所述QFI的位长。
  5. 根据权利要求4所述的方法,其特征在于,所述位长指示符所指示的所述QFI的位长为6比特或者7比特。
  6. 根据权利要求5所述的方法,其特征在于,所述QFI的位长为6比特,所述QFI与核心网设备为所述终端配置的基准QFI相对应,所述基准QFI的位长为7比特,且所述基准QFI所指示的5G QoS的特征与5G服务质量标度值5QI之间具有一对一的对应关系,且所述SDAP header有1比特预留R信息。
  7. 根据权利要求5所述的方法,其特征在于,所述QFI的位长为7比特,所 述QFI等于5G服务质量标度值5QI。
  8. 一种终端,其特征在于,应用于终端,所述终端包括服务数据适配协议SDAP层实体,所述终端包括处理单元和通信单元,
    所述处理单元,用于控制所述SDAP层实体通过所述通信单元接收来自应用层的SDAP服务数据单元SDU;以及用于控制所述SDAP层实体处理所述SDAP SDU得到SDAP协议数据单元PDU;以及用于控制所述SDAP层实体通过所述通信单元向低层实体发送所述SDAP PDU。
  9. 根据权利要求8所述的终端,其特征在于,在所述控制SDAP实体处理所述SDAP SDU得到SDAP协议数据单元PDU方面,所述处理单元具体用于:控制所述SDAP层实体按照预设格式处理所述SDAP SDU得到SDAP PDU,所述预设格式由RRC层实体配置。
  10. 根据权利要求8或9所述的终端,其特征在于,所述SDAP PDU包括SDAP包头header和SDAP净荷payload,所述SDAP header的位长为8比特,所述SDAP header包括预留R信息和服务质量流标识QFI;
    所述R信息占据所述SDAP header的最高有效位,所述QFI的位长为7比特;或者,
    所述R信息占据所述SDAP header的最高有效位和次最高有效位,所述QFI的位长为6比特。
  11. 根据权利要求8或9所述的终端,其特征在于,所述SDAP PDU包括SDAP包头header和SDAP净荷payload,所述SDAP header的位长为8比特,所述SDAP header包括位长指示符和服务质量流标识QFI,所述位长指示符用于指示所述QFI的位长。
  12. 根据权利要求11所述的终端,其特征在于,所述位长指示符所指示的所述QFI的位长为6比特或者7比特。
  13. 根据权利要求12所述的终端,其特征在于,所述QFI的位长为6比特,所述QFI与核心网设备为所述终端配置的基准QFI相对应,所述基准QFI的位长为7比特,且所述基准QFI所指示的5G QoS的特征与5G服务质量标度值5QI之 间具有一对一的对应关系,且所述SDAP header有1比特预留R信息。
  14. 根据权利要求12所述的终端,其特征在于,所述QFI的位长为7比特,所述QFI等于5G服务质量标度值5QI。
  15. 一种终端,其特征在于,包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求1-7任一项所述的方法中的步骤的指令。
  16. 一种计算机可读存储介质,其特征在于,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-7任一项所述的方法。
PCT/CN2018/075451 2018-02-06 2018-02-06 数据传输控制方法及相关产品 WO2019153124A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
RU2020120984A RU2761553C1 (ru) 2018-02-06 2018-02-06 Способ управления передачей данных и связанный продукт
PCT/CN2018/075451 WO2019153124A1 (zh) 2018-02-06 2018-02-06 数据传输控制方法及相关产品
AU2018407841A AU2018407841A1 (en) 2018-02-06 2018-02-06 Data transmission control method and related product
US16/649,027 US11172398B2 (en) 2018-02-06 2018-02-06 Data transmission control method and related product
JP2020534404A JP7100135B6 (ja) 2018-02-06 2018-02-06 データ伝送制御方法および関連製品
CN201880003540.1A CN109716817A (zh) 2018-02-06 2018-02-06 数据传输控制方法及相关产品
EP18905080.0A EP3709686B1 (en) 2018-02-06 2018-02-06 Data transmission control method and related product
KR1020207017702A KR20200116908A (ko) 2018-02-06 2018-02-06 데이터 전송 제어 방법 및 관련 제품
CA3086722A CA3086722C (en) 2018-02-06 2018-02-06 Data transmission control method and related product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/075451 WO2019153124A1 (zh) 2018-02-06 2018-02-06 数据传输控制方法及相关产品

Publications (1)

Publication Number Publication Date
WO2019153124A1 true WO2019153124A1 (zh) 2019-08-15

Family

ID=66261425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075451 WO2019153124A1 (zh) 2018-02-06 2018-02-06 数据传输控制方法及相关产品

Country Status (9)

Country Link
US (1) US11172398B2 (zh)
EP (1) EP3709686B1 (zh)
JP (1) JP7100135B6 (zh)
KR (1) KR20200116908A (zh)
CN (1) CN109716817A (zh)
AU (1) AU2018407841A1 (zh)
CA (1) CA3086722C (zh)
RU (1) RU2761553C1 (zh)
WO (1) WO2019153124A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021514135A (ja) * 2018-02-15 2021-06-03 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Ranと5gcとの間のqfi調和を提供する方法、ならびに、関連する無線端末、基地局、およびコアネットワークノード
CN110636544B (zh) * 2018-06-22 2022-09-23 华为技术有限公司 一种数据传输方法及装置
US11792686B2 (en) * 2019-06-19 2023-10-17 Qualcomm Incorporated High bandwidth low latency cellular traffic awareness
CN112243270A (zh) * 2019-07-19 2021-01-19 中国移动通信有限公司研究院 一种数据包的传输方法、装置和计算机可读存储介质
US11743777B2 (en) * 2020-09-02 2023-08-29 Samsung Electronics Co., Ltd. Flexible quality of service framework for diverse networks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101179595A (zh) * 2007-12-10 2008-05-14 中国科学院计算技术研究所 一种无线通信数据收发设备和系统及数据处理方法
CN101217466A (zh) * 2007-12-28 2008-07-09 中国科学院计算技术研究所 无线网络媒体接入控制系统数据处理方法及处理装置
CN107439037A (zh) * 2017-04-25 2017-12-05 北京小米移动软件有限公司 缓存状态的上报方法及装置
WO2018009021A1 (ko) * 2016-07-08 2018-01-11 삼성전자 주식회사 무선 통신 시스템에 있어서 핸드오버를 수행하는 방법 및 장치

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101000699B1 (ko) 2004-04-19 2010-12-10 엘지전자 주식회사 무선링크 제어계층에서의 데이터 처리방법
GB0616682D0 (en) * 2006-08-22 2006-10-04 Nec Corp Mobile telecommunications
ES2626270T3 (es) * 2006-12-28 2017-07-24 Ntt Docomo, Inc. Transmisor, receptor, estación móvil y estación base inalámbrica
US8358669B2 (en) * 2007-05-01 2013-01-22 Qualcomm Incorporated Ciphering sequence number for an adjacent layer protocol in data packet communications
US8396083B2 (en) * 2008-03-31 2013-03-12 Qualcomm Incorporated Determinative segmentation resegmentation and padding in radio link control (RLC) service data units (SDU)
CN101646208B (zh) 2008-08-07 2011-10-05 华为技术有限公司 消息处理方法、装置及通信系统
US9554417B2 (en) * 2008-12-24 2017-01-24 Qualcomm Incorporated Optimized header for efficient processing of data packets
CN102111393B (zh) 2009-12-24 2014-06-04 华为技术有限公司 数据报文传输方法和通信装置
CN106341368A (zh) 2015-07-06 2017-01-18 中兴通讯股份有限公司 一种实现数据处理的方法及装置
WO2017192164A1 (en) * 2016-05-03 2017-11-09 Intel Corporation HIGHER LAYER DESIGN FOR USER PLANE PACKET PROCESSING IN FIFTH GENERATION (5G) NEW RADIO (NR) THINGS SIDELINK (tSL) COMMUNICATION
KR102065429B1 (ko) * 2017-02-01 2020-01-13 엘지전자 주식회사 무선 통신 시스템에서 반영식 서비스 품질(QoS)를 수행하기 위한 방법 및 이를 위한 장치
US10601535B2 (en) * 2017-03-24 2020-03-24 Lg Electronics Inc. Method for performing SCG re-establishment in dual connectivity in wireless communication system and a device therefor
JP6776450B2 (ja) * 2017-04-21 2020-10-28 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて空中ueに対する測定を行う方法及びそのための装置
TWI680688B (zh) * 2017-07-20 2019-12-21 華碩電腦股份有限公司 無線通訊系統中服務服務質量流的方法和設備
US10912041B2 (en) * 2017-08-11 2021-02-02 Lg Electronics Inc. Method for triggering a power headroom reporting in wireless communication system and a device therefor
US10863494B2 (en) * 2018-01-22 2020-12-08 Apple Inc. Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101179595A (zh) * 2007-12-10 2008-05-14 中国科学院计算技术研究所 一种无线通信数据收发设备和系统及数据处理方法
CN101217466A (zh) * 2007-12-28 2008-07-09 中国科学院计算技术研究所 无线网络媒体接入控制系统数据处理方法及处理装置
WO2018009021A1 (ko) * 2016-07-08 2018-01-11 삼성전자 주식회사 무선 통신 시스템에 있어서 핸드오버를 수행하는 방법 및 장치
CN107439037A (zh) * 2017-04-25 2017-12-05 北京小米移动软件有限公司 缓存状态的上报方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3709686A4 *

Also Published As

Publication number Publication date
AU2018407841A1 (en) 2020-07-02
RU2761553C1 (ru) 2021-12-09
JP7100135B6 (ja) 2022-09-30
EP3709686A1 (en) 2020-09-16
US11172398B2 (en) 2021-11-09
JP7100135B2 (ja) 2022-07-12
CA3086722A1 (en) 2019-08-15
JP2021516462A (ja) 2021-07-01
US20200296618A1 (en) 2020-09-17
EP3709686A4 (en) 2020-12-16
CA3086722C (en) 2023-01-03
CN109716817A (zh) 2019-05-03
EP3709686B1 (en) 2021-12-22
KR20200116908A (ko) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2019153124A1 (zh) 数据传输控制方法及相关产品
TWI785185B (zh) 傳輸配置方法及相關產品
KR101386052B1 (ko) 무선 자원 스케줄링 방법, 접속 네트워크 및 터미널
WO2018171640A1 (zh) 一种数据传输方法、终端设备及基站系统
US20110113146A1 (en) Dynamic quality of service (qos) setup over wired and wireless networks
WO2021032131A1 (zh) 一种用户面信息上报方法及装置
JP2019515517A (ja) 無線リソース制御接続を確立するための方法及び装置
WO2018201761A1 (zh) 一种系统信息传输方法及相关设备
JP2023025025A (ja) データ伝送方法及び装置
WO2018053692A1 (zh) 数据传输方法、装置及系统
WO2019095381A1 (zh) 业务配置方法及相关产品
WO2019029581A1 (zh) 一种业务质量流的控制方法及相关设备
JP2019519945A (ja) 中継伝送方法及び装置
CN110719611B (zh) 一种报文发送方法和装置
CN114449577A (zh) 服务质量QoS参数配置方法及相关装置
WO2018202022A1 (zh) 用于传输缓存状态报告的方法和装置
CN111418177B (zh) 可靠性传输方法及相关产品
CN111418229B (zh) 数据复制传输功能的配置方法、网络设备及终端设备
WO2019191941A1 (zh) 上行控制信息的传输方法及相关产品
US20080253285A1 (en) Apparatus, method, and computer program product providing improved silence suppression detection
WO2018049626A1 (zh) 一种业务处理方法、相关设备及系统
CN112291848B (zh) 一种终端能力配置的方法及通信装置
TWI785184B (zh) 鏈路重新配置處理方法及相關產品
WO2019136729A1 (zh) 参数配置方法及相关产品
WO2020220366A1 (zh) 信息确定方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905080

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018905080

Country of ref document: EP

Effective date: 20200609

Ref document number: 2020534404

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3086722

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2018407841

Country of ref document: AU

Date of ref document: 20180206

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE