WO2019151367A1 - Emitter and drip irrigation tube - Google Patents
Emitter and drip irrigation tube Download PDFInfo
- Publication number
- WO2019151367A1 WO2019151367A1 PCT/JP2019/003281 JP2019003281W WO2019151367A1 WO 2019151367 A1 WO2019151367 A1 WO 2019151367A1 JP 2019003281 W JP2019003281 W JP 2019003281W WO 2019151367 A1 WO2019151367 A1 WO 2019151367A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- emitter
- flow path
- decompression
- tube
- central axis
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G25/00—Watering gardens, fields, sports grounds or the like
- A01G25/02—Watering arrangements located above the soil which make use of perforated pipe-lines or pipe-lines with dispensing fittings, e.g. for drip irrigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/22—Improving land use; Improving water use or availability; Controlling erosion
Definitions
- the present invention relates to an emitter and a drip irrigation tube having the emitter.
- drip irrigation has been known as one of the plant cultivation methods.
- the drip irrigation method is a method in which a drip irrigation tube is arranged on soil in which plants are planted, and irrigation liquid such as water or liquid fertilizer is dropped from the drip irrigation tube to the soil.
- irrigation liquid such as water or liquid fertilizer
- a drip irrigation tube usually has a tube formed with a plurality of through holes through which irrigation liquid is discharged, and a plurality of emitters (also referred to as “drippers”) for discharging the irrigation liquid from each through hole.
- emitters there are known an emitter that is used while being joined to the inner wall surface of the tube (see, for example, Patent Document 1), and an emitter that is used by piercing the tube from the outside.
- FIG. 1 is a perspective view showing the configuration of an emitter 1 described in Patent Document 1 that is used by being joined to the inner surface of a tube.
- the emitter 1 includes a water intake port 3 for taking in irrigation liquid, a discharge port 4 for discharging the irrigation liquid, and a flow path 2 connecting them.
- the channel 2 has a plurality of convex portions 5 that alternately project from both sides of the side surface of the channel 2 in the flow direction of the irrigation liquid.
- the emitter 1 described in Patent Document 1 is used in a state where the surface on which the flow path 2 is formed is joined to the inner surface of the tube.
- the drip irrigation tube using the emitter 1 described in Patent Document 1 can supply the irrigation liquid at a desired flow rate and is clogged with foreign particles such as sand particles and precipitates accumulated in the flow path 2. It is said that this can be suppressed. As a reason why clogging can be suppressed, eddy currents are generated between adjacent convex portions 5.
- the vortex flow is generated in a plane (two-dimensional) substantially parallel to a plane including the flow direction and the width direction of the flow channel, and therefore the flow channel 2 is two-dimensionally generated. It could only be stirred. As a result, when foreign matter flows into the flow path 2, the foreign matter is likely to be deposited between adjacent convex portions 5, and clogging due to the accumulation of foreign matter may not be sufficiently suppressed.
- the present invention has been made in view of such circumstances, and provides an emitter and a drip irrigation tube that are less likely to be clogged by foreign matter even if foreign matter flows into the flow path. Objective.
- the emitter according to the present invention is configured to discharge the irrigation liquid in the tube when the emitter is joined to a position corresponding to a discharge port communicating between the inside and the outside of the tube on the inner wall surface of the tube through which the irrigation liquid flows.
- An emitter for quantitatively discharging the irrigation liquid from an outlet, the intake section for taking in the irrigation liquid, and a discharge for discharging the irrigation liquid, which is disposed facing the discharge port And a flow path that connects the water intake section and the discharge section and circulates the irrigation liquid.
- the flow path includes a columnar reduced pressure flow path, and the reduced pressure flow path has a central axis thereof.
- a plurality of convex portions disposed on one side and the other side of the irrigation liquid, and the convex portion disposed on the one side and the convex portion disposed on the other side are the liquid for irrigation Are alternately arranged in the flow direction.
- the drip irrigation tube according to the present invention includes a tube having a discharge port for discharging the irrigation liquid and an emitter according to the present invention joined to a position corresponding to the discharge port on the inner wall surface of the tube. And having.
- the emitter and drip irrigation tube according to the present invention can provide an emitter and a drip irrigation tube that are less likely to be clogged by foreign matter even if foreign matter flows into the flow path.
- FIG. 1 is a diagram showing a configuration of a conventional emitter.
- FIG. 2 is a cross-sectional view of the drip irrigation tube according to the present embodiment.
- 3A and 3B are diagrams showing the configuration of the emitter according to the present embodiment.
- 4A and 4B are diagrams showing the configuration of the emitter according to the present embodiment.
- 5A to 5C are diagrams showing the configuration of the emitter according to the present embodiment.
- FIG. 6 is a perspective view showing a configuration of a comparative emitter.
- 7A and 7B are conceptual diagrams showing the flow of irrigation liquid in the comparative emitter.
- FIG. 8 is a perspective view showing the configuration of the emitter according to the present embodiment.
- 9A and 9B are conceptual diagrams showing the flow of irrigation liquid in the emitter according to the present embodiment.
- FIG. 2 is a cross-sectional view in the direction along the axis of the drip irrigation tube 100 according to the present embodiment.
- the drip irrigation tube 100 includes a tube 110 and an emitter 120.
- the tube 110 is a tube for flowing irrigation liquid.
- the material of the tube 110 is not particularly limited.
- the material of the tube 110 is polyethylene.
- a plurality of discharge ports 112 for discharging irrigation liquid at predetermined intervals (for example, 200 to 500 mm) in the axial direction of the tube 110 are formed on the tube wall of the tube 110.
- the diameter of the opening of the discharge port 112 is not particularly limited as long as the irrigation liquid can be discharged. In the present embodiment, the diameter of the opening of the discharge port 112 is 1.5 mm.
- Emitters 120 are respectively joined to positions corresponding to the discharge ports 112 on the inner wall surface of the tube 110.
- the cross-sectional shape and cross-sectional area perpendicular to the axial direction of the tube 110 are not particularly limited as long as the emitter 120 can be disposed inside the tube 110.
- the emitter 120 is joined to the inner wall surface of the tube 110 so as to cover the discharge port 112.
- the shape of the emitter 120 is not particularly limited as long as it can adhere to the inner wall surface of the tube 110 and cover the discharge port 112.
- the shape of the back surface 142 (the back surface 142 of the second emitter body 140 described later) joined to the inner wall surface of the tube 110 in the cross section of the emitter 120 perpendicular to the axial direction of the tube 110 is A substantially arcuate shape that is convex toward the inner wall surface of the tube 110 along the wall surface.
- the shape of the emitter 120 in plan view is a substantially rectangular shape with four corners rounded.
- the size of the emitter 120 is not particularly limited. In the present embodiment, the length of the emitter 120 in the long side direction is 25 mm, the length in the short side direction is 8 mm, and the height is 2.5 mm.
- the emitter 120 may be formed of a material having flexibility, or may be formed of a material having no flexibility.
- the material of the emitter 120 include resin and rubber.
- the resin include polyethylene and silicone.
- the flexibility of the emitter 120 can be adjusted by the elastic modulus of the resin material.
- the molded product of the emitter 120 can be manufactured by injection molding, for example. The configuration of the emitter 120 will be described in detail separately.
- the drip irrigation tube 100 is manufactured by joining the back surface 142 of the emitter 120 to the inner wall surface of the tube 110.
- the method for joining the tube 110 and the emitter 120 is not particularly limited. Examples of a method for joining the tube 110 and the emitter 120 include welding of a resin material that constitutes the tube 110 or the emitter 120, adhesion using an adhesive, and the like. Normally, the discharge port 112 is formed after the tube 110 and the emitter 120 are joined, but may be formed before joining.
- FIG. 3A is a plan view of the emitter 120 (a plan view of the first emitter body 130), and FIG. 3B is a bottom view of the emitter 120 (a first emitter body 130 with a second emitter body 140 described later) removed.
- FIG. 4A is a plan view of the emitter 120 (a plan view of the second emitter body 140) in a state where a first emitter body 130 described later is removed, and FIG. 4B is a bottom view of the emitter 120 (second emitter body 140).
- FIG. 5A is a cross-sectional view taken along the line 5A-5A shown in FIG. 3A
- FIG. 5B is a cross-sectional view taken along the line 5B-5B shown in FIG. 3A
- 5C is a cross-sectional view taken along the line 5C shown in FIGS. It is sectional drawing of a -5C line.
- the surface on the central axis side of the tube 110 is referred to as a front surface 131 or 141, and the surface on the inner wall surface side of the tube 110 is referred to as a back surface 132 or 142.
- the emitter 120 has a first emitter body 130 and a second emitter body 140.
- the first emitter body 130 includes a water intake 150, a first connection groove 160 that becomes the connection flow path 220, a first pressure reduction groove 170 that becomes the pressure reduction flow path 230, and a discharge recess 180 that becomes the discharge part 240 (FIG. 3A). And B).
- the water intake unit 150 is disposed on the surface 131 side of the first emitter body 130.
- the first connection groove 160, the first decompression groove 170, and the discharge recess 180 are disposed on the back surface 132 side of the first emitter body 130.
- the first decompression groove 170 has a plurality of protrusions 231 at the bottom, and is arranged so as to connect the first connection groove 160 and the discharge recess 180.
- the second emitter body 140 has a second connection groove 190 that becomes the connection flow path 220, a second pressure reduction groove 200 that becomes the pressure reduction flow path 230, and a discharge hole 210 that becomes the discharge portion 240 (see FIG. 4A).
- the second connection groove 190 and the second decompression groove 200 are disposed on the surface 141 side of the second emitter body 140 at positions corresponding to the first connection groove 160 and the first decompression groove 170 of the first emitter body 130, respectively. Yes.
- the second decompression groove 200 has a plurality of convex portions 231 at the bottom.
- the discharge hole 210 is disposed so as to penetrate the front surface 141 side and the back surface 142 side of the second emitter body 140 at a position of the second emitter body 140 corresponding to the discharge recess 180 of the first emitter body 130. ing.
- the first connection groove 160 and the second connection groove 190 are integrated into a connection flow path 220, and the first pressure reduction groove 170 and the second pressure reduction groove 200 are combined.
- the discharge recess 180 and the discharge hole 210 are integrated into the discharge unit 240 (see FIG. 5B).
- the flow path which comprises the water intake part 150, the connection flow path 220, the pressure reduction flow path 230, and the discharge part 240, and connects the water intake part 150 and the discharge part 240 is formed.
- the flow path circulates the irrigation liquid from the water intake unit 150 to the discharge unit 240.
- the water intake unit 150 is disposed on the surface 131 of the first emitter body 130.
- the water intake unit 150 includes two water intake through holes 151 and a plurality of ridges 152.
- the two water intake through-holes 151 are respectively arranged on the outer edge portions on both sides of the surface 131 of the first emitter body 130 along the long axis direction of the first emitter body 130 (see FIG. 3A).
- the shape and number of the water intake through holes 151 are not particularly limited as long as the irrigation liquid can be taken into the first emitter body 130. Since each of the water intake through holes 151 is partially covered by a plurality of ridges 152, the water intake through holes 151 appear to be divided into a large number of through holes when viewed from the surface 131 side ( (See FIG. 3A).
- the plurality of ridges 152 are arranged on the surface 131 of the first emitter body 130 so as to straddle the water intake through hole 151.
- the plurality of ridges 152 are arranged so that the major axis direction of the ridges 152 is along the minor axis direction of the first emitter body 130.
- the plurality of ridges 152 prevent floating substances in the irrigation liquid introduced into the first emitter body 130 from entering the water intake through hole 151.
- the arrangement and number of the ridges 152 are not particularly limited as long as the irrigation liquid can be taken in from the water intake through-hole 151 and the intrusion of suspended matter in the irrigation liquid can be prevented.
- the interval between adjacent ridges 152 is not particularly limited as long as the above-described function can be exhibited.
- the irrigation liquid that has flowed through the tube 110 is taken into the first emitter body 130 while the suspended matter is prevented from entering the water intake through hole 151 by the plurality of protrusions 152.
- connection flow path 220 connects the water intake through hole 151 (water intake section 150) and the pressure reduction flow path 230 (see FIG. 3B).
- the connection flow path 220 is linearly formed along the minor axis direction of the first emitter body 130 on the back surface 132 side of the first emitter body 130 (or the front surface 141 side of the second emitter body 140). Is formed.
- a decompression channel 230 is connected near the center of the connection channel 220.
- the connection channel 220 is formed by the first connection groove 160 and the second connection groove 190 by joining the first emitter body 130 and the second emitter body 140 together.
- the irrigation liquid taken in from the water intake 150 flows through the connection flow path 220 to the decompression flow path 230.
- the decompression flow path 230 connects the connection flow path 220 and the discharge part 240 (refer FIG. 3B and 4A).
- the decompression channel 230 reduces the pressure of the irrigation liquid introduced from the water intake unit 150 and guides it to the discharge unit 240.
- the decompression flow path 230 is disposed along the long axis direction at the central portion of the back surface 132 of the first emitter body 130 (or the surface 141 of the second emitter body 140).
- the upstream end of the decompression flow path 230 is connected to the connection flow path 220, and the downstream end is connected to the discharge unit 240.
- the shape of the decompression channel 230 is a columnar shape (see FIGS. 5B and 5C).
- the columnar shape includes not only a circular sectional shape perpendicular to the central axis L (in a portion where the convex portion 231 is not disposed) but also an elliptical shape.
- the decompression flow path 230 has the some convex part 231 arrange
- the convex portions 231 disposed on one side with the central axis L interposed therebetween and the convex portions 231 disposed on the other side are alternately disposed in the flow direction of the irrigation liquid (see FIG. 5B).
- One side and the other side across the central axis L include the central axis L and are parallel to the back surface 132 of the first emitter body 130 (or the surface 141 of the second emitter body 140). It may be one side and the other side (horizontal direction) across the central axis L, and includes the central axis L and the back surface 132 of the first emitter body 130 (or the surface 141 of the second emitter body 140). In a cross section perpendicular to the central axis L, one side (for example, the inner wall surface side of the tube 110) and the other side (for example, the central axis side of the tube 110) (vertical direction) may be interposed.
- the plurality of convex portions 231 includes the central axis L and is perpendicular to the back surface 132 of the first emitter body 130 (or the surface 141 of the second emitter body 140) from the viewpoint of facilitating manufacturing.
- they are arranged on one side (for example, the inner wall surface side of the tube 110) and the other side (for example, the center axis side of the tube 110) (vertical direction) with the central axis L interposed therebetween.
- the shape of the convex portion 231 is not particularly limited as long as it can be decompressed while ensuring the flow of the irrigation liquid in the decompression flow path 230.
- the shape of the convex portion 231 is surrounded by an arc portion along the inner peripheral surface of the decompression flow channel 230 and a chord portion connecting the two ends of the arc portion in a cross section perpendicular to the central axis L of the decompression flow channel 230. It is preferably a curved arc. Examples of arcuate shapes include semicircles.
- the shape of the decompression flow path 230 is circular in the cross section perpendicular to the central axis L of the decompression flow path 230, the shape of the convex portion 231 is preferably semicircular (see FIG. 5C). ).
- the thickness of the convex portion 231 is not particularly limited, and may change as it goes toward the central axis L of the decompression flow path 230, or may be constant, but decreases as it goes toward the central axis L of the decompression flow path 230. It is preferable to become. If the thickness of the convex portion 231 decreases toward the central axis L of the decompression flow path 230, the tip end portion of the convex portion 231 on one side and the convex portion 231 on the other side across the central axis L of the decompression flow path 230. Therefore, the irrigation liquid can be easily flowed in the vicinity of the central axis L of the decompression flow path 230.
- the thickness of the convex portion 231 refers to the thickness of the convex portion 231 in a direction parallel to the central axis L of the decompression channel 230 (see FIG. 5B). Further, the tip portion of the convex portion 231 refers to a portion of the convex portion 231 that is not in contact with the inner peripheral surface of the decompression flow path 230.
- the height of the convex portion 231 is not particularly limited, but is preferably a height that does not exceed the central axis L. This is to facilitate the flow of the irrigation liquid in the vicinity of the central axis L of the decompression flow path 230.
- the height of the convex portion 231 includes the central axis of the decompression flow path 230 and is in a cross section perpendicular to the back surface 132 side of the first emitter body 130 (or the front surface 141 side of the second emitter body 140). Is the maximum height from the inner peripheral surface (see FIG. 5B).
- the convex portion 231 preferably further includes a notch 232 disposed so as to surround the central axis L of the decompression flow path 230 (see FIG. 5C). Thereby, the irrigation liquid can be easily flowed in the vicinity of the central axis L of the decompression flow path 230.
- the shape of the notch 232 is not particularly limited, but may be semicircular or polygonal (such as a triangle or a quadrangle) in a cross section perpendicular to the central axis L of the decompression flow path 230.
- the shape of the notch 232 in the cross section perpendicular to the central axis L of the decompression flow path 230 is a semicircular shape.
- the size of the notch 232 is not particularly limited as long as it does not interfere with the stirring and decompression function of the irrigation liquid by the convex portion 231, but the shortest distance from the central axis L to the edge of the notch 232 is It is preferably 10% or more and 25% or less of the distance from the central axis L to the inner peripheral surface of the decompression flow path 230 (the radius of the decompression flow path 230 in a cross section perpendicular to the central axis L of the decompression flow path 230).
- the decompression flow path 230 is formed by joining the first emitter main body 130 and the second emitter main body 140 so that the first decompression groove 170 having a plurality of protrusions 231 on the bottom and a plurality of protrusions on the bottom. And a second decompression groove 200 having 231 (see FIGS. 5B and 5C).
- the irrigation liquid taken in from the water intake unit 150 is decompressed by the decompression channel 230 and guided to the discharge unit 240.
- the discharge unit 240 is disposed so as to penetrate the second emitter body 140 from the back surface 132 of the first emitter body 130 (see FIGS. 3B, 4A and B, and 5B).
- the discharge unit 240 sends the irrigation liquid from the decompression flow path 230 to the discharge port 112 of the tube 110.
- the structure of the discharge part 240 will not be specifically limited if the above-mentioned function can be exhibited.
- the discharge portion 240 is a recess formed by the discharge recess 180 of the first emitter body 130 and the discharge hole 210 of the second emitter body 140.
- the planar view shape of the recess is not particularly limited, and is, for example, a substantially rectangular shape.
- irrigation liquid is fed into the tube 110.
- irrigation liquids include water, liquid fertilizers, pesticides and mixtures thereof.
- the pressure of the irrigation liquid fed to the drip irrigation tube 100 is preferably 0.1 MPa or less so that the drip irrigation method can be easily introduced and the tube 110 and the emitter 120 are prevented from being damaged.
- the irrigation liquid in the tube 110 is taken from the water intake 150 into the emitter 120 (or the first emitter body 130). Specifically, the irrigation liquid in the tube 110 flows into the water intake through hole 151 from the gap between the adjacent ridges 152. At this time, the water intake section 150 has a plurality of ridges 152 that partially cover the water intake through-holes 151, so that floating substances in the irrigation liquid can be removed.
- the irrigation liquid taken in from the water intake unit 150 reaches the connection channel 220.
- the irrigation liquid that has reached the connection channel 220 flows into the decompression channel 230.
- the irrigation liquid that has flowed into the decompression flow path 230 flows into the discharge unit 240 while being decompressed. Although details will be described later, in the decompression flow path 230, a vortex flowing while swirling three-dimensionally is generated.
- the irrigation liquid that has flowed into the discharge unit 240 is discharged out of the tube 110 from the discharge port 112 of the tube 110.
- the decompression channel 230 has a cylindrical shape, the plurality of convex portions 231 include the central axis L, and the back surface 132 (or the first surface of the first emitter body 130). In the cross section perpendicular to the surface 141) of the two-emitter body 140, they are arranged on one side and the other side (vertical direction) across the central axis L. A simulation was performed on the action of the pressure reducing channel 230 configured as described above on the flow of the irrigation liquid.
- the decompression channels 24, 26, and 27 have a quadrangular prism shape
- the convex portion 18 has a triangular prism shape
- the plurality of convex portions 18 include the central axis L, and the back surface of the emitter 10. 11, an emitter 10 (hereinafter referred to as “comparison”) configured in the same manner as the emitter 120 according to the present embodiment except that it is disposed on one side and the other side (horizontal direction) across the central axis L in a cross-section parallel to 11. (Also called “emitter”).
- FIG. 6 is a perspective view showing a configuration of a comparative emitter.
- the display in order to make the flow path of the emitter for comparison easier to see, the display is shown upside down and the film 30 is covered on the back surface 11 of the emitter 10.
- the comparative emitter 10 includes a water intake through hole 12, a first connection groove 13, a first pressure reduction groove 14, a second connection groove 15, a second pressure reduction groove 16, and a third pressure reduction groove 17. , Through holes 19, 20 and 21, and a discharge part 22.
- the first decompression groove 14, the second decompression groove 16, and the third decompression groove 17 are closed by the film 30, and the first decompression channel 24, the second decompression channel 26, and the third decompression channel 17 A path 27 is formed.
- the first decompression channel 24, the second decompression channel 26, and the third decompression channel 27 are all in the shape of a quadrangular prism, and a plurality of convex portions 18 protrude from two opposing side surfaces (horizontal direction).
- the shape of the convex portion 18 is a triangular prism shape.
- 7A and 7B are conceptual diagrams showing the flow of the irrigation liquid in the comparative emitter, analyzed from the simulation results of the comparative emitter.
- 7A is a diagram showing the flow of irrigation liquid when viewed from the direction of arrow 7A in FIG. 6, and
- FIG. 7B is a cross-sectional view taken along line 7B-7B in FIG. It is a figure which shows the flow of the liquid for irrigation.
- the third decompression channel 27 (hereinafter, also simply referred to as “decompression channel”), a part of the irrigation liquid zigzags around the central axis L of the decompression channel. It can be seen that the other part swirls in the space between the adjacent protrusions 18 in the flow direction (see particularly FIG. 7A). It can also be seen that only one flow (spiral stirring flow) swirling in the space between the adjacent convex portions 18 is generated for each space (see FIG. 7A).
- the flow of the irrigation liquid flowing near the center line of the decompression flow path and the flow of the irrigation liquid swirling in the space between the adjacent convex portions 18 are both horizontal (flow direction and reduced pressure) in the decompression flow path.
- the irrigation liquid has only one flow swirling in the space between the adjacent convex portions 18 (spiral stirring flow) for each space, and the pressure is reduced. It can be seen that the stirring effect is not sufficient because the inside of the flow path is only stirred two-dimensionally.
- FIG. 8 is a perspective view showing the configuration of the emitter according to the present embodiment.
- 9A and 9B are conceptual diagrams showing the flow of the irrigation liquid in the emitter according to the present embodiment, analyzed from the simulation result of the emitter according to the present embodiment.
- 9A is a diagram showing the flow of the irrigation liquid when viewed from the direction of the arrow 9A in FIG. 8, and
- FIG. 9B is an irrigation flow in the decompression channel 230 in the cross-sectional view taken along the line 9B-9B in FIG. It is a figure which shows the flow of a liquid.
- part of the irrigation liquid that has flowed into the decompression channel 230 flows in a zigzag manner near the central axis L of the decompression channel. (Not shown) It can be seen that most of the irrigation liquid swirls in the space between the adjacent convex portions 231 in the flow direction. Moreover, it turns out that the flow (vortex-shaped stirring flow) swirling in the space between adjacent convex parts 231 has generate
- the irrigation liquid flows along the wall of the cylindrical decompression flow path 230 from both sides in the width direction of the decompression flow path 230 (or the bottom of the decompression flow path 230 (or It flows toward the top.
- the irrigation liquid traveling from both sides in the width direction of the decompression channel 230 to the bottom (or top) collides at the bottom (or top) of the wall of the columnar decompression channel 230 and is separated from the wall and is centered. Go to axis L.
- the irrigation liquid exceeding the central axis L is bounced back by the convex portion 231, then again faces the walls on both sides in the width direction of the columnar decompression flow path 230, and again on both sides in the width direction of the decompression flow path 230. It flows along the wall and goes to the bottom (or top) of the decompression flow path 230. This repetition is considered to produce two spiral stirring flows. Furthermore, the flow of the irrigation liquid (swirled stirring flow) swirling in the space between the adjacent convex portions 231 is substantially parallel to a plane including the vertical direction (the flow direction and the depth direction of the decompression flow path 230).
- the irrigation liquid has two or more flows swirling in the space between the adjacent convex portions 231 (spiral stirring flow) for each space, and Since the inside of the decompression flow path 230 can be stirred three-dimensionally, it turns out that the stirring effect is high enough. As a result, even if a foreign substance flows between adjacent convex portions 231, it can flow out together with the flow near the central axis L of the decompression flow path. Thereby, it is considered that foreign matter that has entered the decompression flow path 230 can be easily flowed out, and clogging can be made difficult to occur.
- the decompression channel 230 has a columnar shape and includes the plurality of convex portions 231 disposed on one side and the other side with the central axis L interposed therebetween. Have. Thereby, the inside of the decompression channel 230 can be easily stirred three-dimensionally. Thereby, in the emitter 120 according to the present embodiment, even if foreign matter flows into the reduced pressure channel 230, it can be easily flowed out of the reduced pressure channel 230 due to a high stirring effect, and clogging due to foreign matter occurs. Can be difficult.
- the plurality of convex portions 231 has a cross section that includes the vertical direction, that is, the center axis L, and is perpendicular to the back surface 132 of the first emitter body 130 (or the surface 141 of the second emitter body 140).
- the present invention is not limited to this example.
- the plurality of convex portions 231 are arranged in a horizontal direction, that is, in a cross section including the central axis L and parallel to the back surface 132 of the first emitter body 130 (or the front surface 141 of the second emitter body 140) from the central axis L. May be arranged on one side and the other side.
- the convex portion 231 has the notch 232 arranged so as to surround the central axis L of the decompression flow path 230 is shown, but the present invention is not limited thereto, and the notch 232 is provided. You don't have to.
- the decompression flow path 230 is disposed so as to extend linearly in the flow direction of the irrigation liquid is illustrated, but the present invention is not limited thereto, and may be disposed in a meandering manner. And it may be arranged in a U shape.
- the present invention it is possible to provide an emitter and a drip irrigation tube that are less likely to be clogged with foreign matter even if foreign matter flows into the flow path. Therefore, the spread of the emitter to technical fields that require long-term dripping, such as drip irrigation and durability tests, and further development of the technical field are expected.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Soil Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Environmental Sciences (AREA)
- Nozzles (AREA)
Abstract
This emitter includes: a water intake part for taking in a liquid used for irrigation; a discharge part that is disposed so as to face a discharge port of a tube, and that is for discharging the liquid used for irrigation; and a flow path which connects the water intake part and the discharge part, and through which the liquid used for irrigation flows. The flow path includes a columnar pressure-reducing flow path, and the pressure-reducing flow path contains a plurality of projections disposed on one side and on another side so as to sandwich the central axis thereof. The projections disposed on the one side and the projections disposed on the other side are arranged alternately in the direction in which the liquid used for irrigation flows.
Description
本発明は、エミッタおよび当該エミッタを有する点滴灌漑用チューブに関する。
The present invention relates to an emitter and a drip irrigation tube having the emitter.
以前から、植物の栽培方法の一つとして点滴灌漑法が知られている。点滴灌漑法とは、植物が植えられている土壌に点滴灌漑用チューブを配置し、点滴灌漑用チューブから土壌へ、水や液体肥料などの灌漑用液体を滴下する方法である。近年、点滴灌漑法は、灌漑用液体の消費量を最小限にすることが可能であるため、特に注目されている。
For some time, drip irrigation has been known as one of the plant cultivation methods. The drip irrigation method is a method in which a drip irrigation tube is arranged on soil in which plants are planted, and irrigation liquid such as water or liquid fertilizer is dropped from the drip irrigation tube to the soil. In recent years, drip irrigation has attracted particular attention because it can minimize the consumption of irrigation liquid.
点滴灌漑用チューブは、通常、灌漑用液体が吐出される複数の貫通孔が形成されたチューブと、各貫通孔から灌漑用液体を吐出するための複数のエミッタ(「ドリッパ」ともいう)を有する。また、エミッタの種類としては、チューブの内壁面に接合して使用されるエミッタ(例えば、特許文献1参照)と、チューブに外側から突き刺して使用されるエミッタとが知られている。
A drip irrigation tube usually has a tube formed with a plurality of through holes through which irrigation liquid is discharged, and a plurality of emitters (also referred to as “drippers”) for discharging the irrigation liquid from each through hole. . As types of emitters, there are known an emitter that is used while being joined to the inner wall surface of the tube (see, for example, Patent Document 1), and an emitter that is used by piercing the tube from the outside.
図1は、特許文献1に記載されている、チューブの内面に接合して使用されるエミッタ1の構成を示す斜視図である。図1に示されるように、エミッタ1は、灌漑用液体を取り入れるための取水口3と、灌漑用液体を排出するための吐出口4と、これらを繋ぐ流路2とを含む。流路2は、灌漑用液体の流れ方向に、流路2の側面の両側から交互に突出している複数の凸部5を有する。
FIG. 1 is a perspective view showing the configuration of an emitter 1 described in Patent Document 1 that is used by being joined to the inner surface of a tube. As shown in FIG. 1, the emitter 1 includes a water intake port 3 for taking in irrigation liquid, a discharge port 4 for discharging the irrigation liquid, and a flow path 2 connecting them. The channel 2 has a plurality of convex portions 5 that alternately project from both sides of the side surface of the channel 2 in the flow direction of the irrigation liquid.
特許文献1に記載のエミッタ1は、流路2が形成されている面がチューブの内面に接合された状態で使用される。特許文献1に記載のエミッタ1を使用した点滴灌漑用チューブは、所望の流量で灌漑用液体を供給することができるとともに、流路2内に砂粒や沈殿物などの異物が堆積して、詰まるのを抑制することができるとされている。詰まりを抑制できる理由として、隣接する凸部5間で渦流が発生することが挙げられている。
The emitter 1 described in Patent Document 1 is used in a state where the surface on which the flow path 2 is formed is joined to the inner surface of the tube. The drip irrigation tube using the emitter 1 described in Patent Document 1 can supply the irrigation liquid at a desired flow rate and is clogged with foreign particles such as sand particles and precipitates accumulated in the flow path 2. It is said that this can be suppressed. As a reason why clogging can be suppressed, eddy currents are generated between adjacent convex portions 5.
しかしながら、特許文献1に記載のエミッタでは、渦流は、流れ方向と流路の幅方向とを含む平面に略平行な面内(2次元)で発生するため、流路2内を2次元的にしか攪拌することができなかった。それにより、流路2内に異物が流れ込むと、異物が隣接する凸部5同士の間などに堆積しやすく、異物の堆積による目詰まりを十分には抑制することができないことがあった。
However, in the emitter described in Patent Document 1, the vortex flow is generated in a plane (two-dimensional) substantially parallel to a plane including the flow direction and the width direction of the flow channel, and therefore the flow channel 2 is two-dimensionally generated. It could only be stirred. As a result, when foreign matter flows into the flow path 2, the foreign matter is likely to be deposited between adjacent convex portions 5, and clogging due to the accumulation of foreign matter may not be sufficiently suppressed.
本発明は、このような事情に鑑みてなされたものであり、流路内に異物が流入しても、異物による目詰まりを生じにくくすることができるエミッタおよび点滴灌漑用チューブを提供することを目的とする。
The present invention has been made in view of such circumstances, and provides an emitter and a drip irrigation tube that are less likely to be clogged by foreign matter even if foreign matter flows into the flow path. Objective.
本発明に係るエミッタは、灌漑用液体を流通させるチューブの内壁面において、前記チューブの内外を連通する吐出口に対応する位置に接合されたときに、前記チューブ内の前記灌漑用液体を前記吐出口から定量的に前記チューブ外に吐出するためのエミッタであって、前記灌漑用液体を取り入れるための取水部と、前記吐出口に面して配置され、前記灌漑用液体を吐出するための吐出部と、前記取水部および前記吐出部を繋ぎ、前記灌漑用液体を流通させる流路と、を含み、前記流路は、円柱状の減圧流路を含み、前記減圧流路は、その中心軸を挟んで一方の側と他方の側とに配置された複数の凸部を有し、前記一方の側に配置された凸部と前記他方の側に配置された凸部は、前記灌漑用液体の流れ方向に交互に配置されている。
The emitter according to the present invention is configured to discharge the irrigation liquid in the tube when the emitter is joined to a position corresponding to a discharge port communicating between the inside and the outside of the tube on the inner wall surface of the tube through which the irrigation liquid flows. An emitter for quantitatively discharging the irrigation liquid from an outlet, the intake section for taking in the irrigation liquid, and a discharge for discharging the irrigation liquid, which is disposed facing the discharge port And a flow path that connects the water intake section and the discharge section and circulates the irrigation liquid. The flow path includes a columnar reduced pressure flow path, and the reduced pressure flow path has a central axis thereof. A plurality of convex portions disposed on one side and the other side of the irrigation liquid, and the convex portion disposed on the one side and the convex portion disposed on the other side are the liquid for irrigation Are alternately arranged in the flow direction.
また、本発明に係る点滴灌漑用チューブは、灌漑用液体を吐出するための吐出口を有するチューブと、前記チューブの内壁面の前記吐出口に対応する位置に接合された、本発明に係るエミッタと、を有する。
The drip irrigation tube according to the present invention includes a tube having a discharge port for discharging the irrigation liquid and an emitter according to the present invention joined to a position corresponding to the discharge port on the inner wall surface of the tube. And having.
本発明に係るエミッタおよび点滴灌漑用チューブでは、流路内に異物が流入しても、異物による目詰まりを生じにくくすることができるエミッタおよび点滴灌漑用チューブを提供することができる。
The emitter and drip irrigation tube according to the present invention can provide an emitter and a drip irrigation tube that are less likely to be clogged by foreign matter even if foreign matter flows into the flow path.
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(点滴灌漑用チューブおよびエミッタの構成)
図2は、本実施の形態に係る点滴灌漑用チューブ100の軸に沿う方向における断面図である。 (Composition of drip irrigation tube and emitter)
FIG. 2 is a cross-sectional view in the direction along the axis of thedrip irrigation tube 100 according to the present embodiment.
図2は、本実施の形態に係る点滴灌漑用チューブ100の軸に沿う方向における断面図である。 (Composition of drip irrigation tube and emitter)
FIG. 2 is a cross-sectional view in the direction along the axis of the
図2に示されるように、点滴灌漑用チューブ100は、チューブ110およびエミッタ120を有する。
As shown in FIG. 2, the drip irrigation tube 100 includes a tube 110 and an emitter 120.
チューブ110は、灌漑用液体を流すための管である。チューブ110の材料は、特に限定されない。本実施の形態では、チューブ110の材料は、ポリエチレンである。チューブ110の管壁には、チューブ110の軸方向において所定の間隔(例えば、200~500mm)で灌漑用液体を吐出するための複数の吐出口112が形成されている。吐出口112の開口部の直径は、灌漑用液体を吐出することができれば特に限定されない。本実施の形態では、吐出口112の開口部の直径は、1.5mmである。チューブ110の内壁面の吐出口112に対応する位置には、エミッタ120がそれぞれ接合される。チューブ110の軸方向に垂直な断面形状および断面積は、チューブ110の内部にエミッタ120を配置することができれば特に限定されない。
The tube 110 is a tube for flowing irrigation liquid. The material of the tube 110 is not particularly limited. In the present embodiment, the material of the tube 110 is polyethylene. A plurality of discharge ports 112 for discharging irrigation liquid at predetermined intervals (for example, 200 to 500 mm) in the axial direction of the tube 110 are formed on the tube wall of the tube 110. The diameter of the opening of the discharge port 112 is not particularly limited as long as the irrigation liquid can be discharged. In the present embodiment, the diameter of the opening of the discharge port 112 is 1.5 mm. Emitters 120 are respectively joined to positions corresponding to the discharge ports 112 on the inner wall surface of the tube 110. The cross-sectional shape and cross-sectional area perpendicular to the axial direction of the tube 110 are not particularly limited as long as the emitter 120 can be disposed inside the tube 110.
エミッタ120は、吐出口112を覆うようにチューブ110の内壁面に接合されている。エミッタ120の形状は、チューブ110の内壁面に密着して、吐出口112を覆うことができれば特に限定されない。本実施の形態では、チューブ110の軸方向に垂直なエミッタ120の断面における、チューブ110の内壁面に接合する裏面142(後述する第2エミッタ本体140の裏面142)の形状は、チューブ110の内壁面に沿うように、チューブ110の内壁面に向かって凸の略円弧形状である。エミッタ120の平面視形状は、四隅がR面取りされた略矩形である。エミッタ120の大きさは、特に限定されない。本実施の形態では、エミッタ120の長辺方向の長さは25mmであり、短辺方向の長さは8mmであり、高さは2.5mmである。
The emitter 120 is joined to the inner wall surface of the tube 110 so as to cover the discharge port 112. The shape of the emitter 120 is not particularly limited as long as it can adhere to the inner wall surface of the tube 110 and cover the discharge port 112. In the present embodiment, the shape of the back surface 142 (the back surface 142 of the second emitter body 140 described later) joined to the inner wall surface of the tube 110 in the cross section of the emitter 120 perpendicular to the axial direction of the tube 110 is A substantially arcuate shape that is convex toward the inner wall surface of the tube 110 along the wall surface. The shape of the emitter 120 in plan view is a substantially rectangular shape with four corners rounded. The size of the emitter 120 is not particularly limited. In the present embodiment, the length of the emitter 120 in the long side direction is 25 mm, the length in the short side direction is 8 mm, and the height is 2.5 mm.
エミッタ120は、可とう性を有する材料で成形されていてもよいし、可とう性を有しない材料で成形されていてもよい。エミッタ120の材料の例には、樹脂およびゴムが含まれる。樹脂の例には、ポリエチレンおよびシリコーンが含まれる。エミッタ120の可とう性は、樹脂材料の弾性率などによって調整することができる。エミッタ120の成形品は、例えば、射出成形によって製造できる。エミッタ120の構成については、別途詳細に説明する。
The emitter 120 may be formed of a material having flexibility, or may be formed of a material having no flexibility. Examples of the material of the emitter 120 include resin and rubber. Examples of the resin include polyethylene and silicone. The flexibility of the emitter 120 can be adjusted by the elastic modulus of the resin material. The molded product of the emitter 120 can be manufactured by injection molding, for example. The configuration of the emitter 120 will be described in detail separately.
点滴灌漑用チューブ100は、エミッタ120の裏面142をチューブ110の内壁面に接合することによって作製される。チューブ110とエミッタ120との接合方法は、特に限定されない。チューブ110とエミッタ120との接合方法の例には、チューブ110またはエミッタ120を構成する樹脂材料の溶着や、接着剤による接着などが含まれる。なお、通常、吐出口112は、チューブ110とエミッタ120とを接合した後に形成されるが、接合前に形成されてもよい。
The drip irrigation tube 100 is manufactured by joining the back surface 142 of the emitter 120 to the inner wall surface of the tube 110. The method for joining the tube 110 and the emitter 120 is not particularly limited. Examples of a method for joining the tube 110 and the emitter 120 include welding of a resin material that constitutes the tube 110 or the emitter 120, adhesion using an adhesive, and the like. Normally, the discharge port 112 is formed after the tube 110 and the emitter 120 are joined, but may be formed before joining.
図3Aは、エミッタ120の平面図(第1エミッタ本体130の平面図)であり、図3Bは、後述する第2エミッタ本体140を外した状態でのエミッタ120の底面図(第1エミッタ本体130の底面図)である。図4Aは、後述する第1エミッタ本体130を外した状態でのエミッタ120の平面図(第2エミッタ本体140の平面図)であり、図4Bは、エミッタ120の底面図(第2エミッタ本体140の底面図)である。図5Aは、図3Aに示される5A-5A線の断面図であり、図5Bは、図3Aに示される5B-5B線の断面図であり、図5Cは、図3Bおよび4Aに示される5C-5C線の断面図である。なお、第1エミッタ本体130または第2エミッタ本体140において、チューブ110の中心軸側の面を表面131または141といい、チューブ110の内壁面側の面を裏面132または142という。
3A is a plan view of the emitter 120 (a plan view of the first emitter body 130), and FIG. 3B is a bottom view of the emitter 120 (a first emitter body 130 with a second emitter body 140 described later) removed. FIG. 4A is a plan view of the emitter 120 (a plan view of the second emitter body 140) in a state where a first emitter body 130 described later is removed, and FIG. 4B is a bottom view of the emitter 120 (second emitter body 140). FIG. 5A is a cross-sectional view taken along the line 5A-5A shown in FIG. 3A, FIG. 5B is a cross-sectional view taken along the line 5B-5B shown in FIG. 3A, and FIG. 5C is a cross-sectional view taken along the line 5C shown in FIGS. It is sectional drawing of a -5C line. In the first emitter body 130 or the second emitter body 140, the surface on the central axis side of the tube 110 is referred to as a front surface 131 or 141, and the surface on the inner wall surface side of the tube 110 is referred to as a back surface 132 or 142.
図5Bに示されるように、エミッタ120は、第1エミッタ本体130および第2エミッタ本体140を有する。
As shown in FIG. 5B, the emitter 120 has a first emitter body 130 and a second emitter body 140.
第1エミッタ本体130は、取水部150、接続流路220となる第1接続溝160、減圧流路230となる第1減圧溝170、および吐出部240となる吐出用凹部180を有する(図3AおよびB参照)。取水部150は、第1エミッタ本体130の表面131側に配置されている。第1接続溝160、第1減圧溝170、および吐出用凹部180は、第1エミッタ本体130の裏面132側に配置されている。第1減圧溝170は、底部に複数の凸部231を有しており、第1接続溝160と吐出用凹部180とを繋ぐように配置されている。
The first emitter body 130 includes a water intake 150, a first connection groove 160 that becomes the connection flow path 220, a first pressure reduction groove 170 that becomes the pressure reduction flow path 230, and a discharge recess 180 that becomes the discharge part 240 (FIG. 3A). And B). The water intake unit 150 is disposed on the surface 131 side of the first emitter body 130. The first connection groove 160, the first decompression groove 170, and the discharge recess 180 are disposed on the back surface 132 side of the first emitter body 130. The first decompression groove 170 has a plurality of protrusions 231 at the bottom, and is arranged so as to connect the first connection groove 160 and the discharge recess 180.
第2エミッタ本体140は、接続流路220となる第2接続溝190、減圧流路230となる第2減圧溝200、および吐出部240となる吐出用孔210を有する(図4A参照)。第2接続溝190および第2減圧溝200は、第2エミッタ本体140の表面141側に、第1エミッタ本体130の第1接続溝160および第1減圧溝170に対応する位置にそれぞれ配置されている。第2減圧溝200は、底部に複数の凸部231を有している。吐出用孔210は、第2エミッタ本体140の、第1エミッタ本体130の吐出用凹部180に対応する位置において、第2エミッタ本体140の表面141側と裏面142側とを貫通するように配置されている。
The second emitter body 140 has a second connection groove 190 that becomes the connection flow path 220, a second pressure reduction groove 200 that becomes the pressure reduction flow path 230, and a discharge hole 210 that becomes the discharge portion 240 (see FIG. 4A). The second connection groove 190 and the second decompression groove 200 are disposed on the surface 141 side of the second emitter body 140 at positions corresponding to the first connection groove 160 and the first decompression groove 170 of the first emitter body 130, respectively. Yes. The second decompression groove 200 has a plurality of convex portions 231 at the bottom. The discharge hole 210 is disposed so as to penetrate the front surface 141 side and the back surface 142 side of the second emitter body 140 at a position of the second emitter body 140 corresponding to the discharge recess 180 of the first emitter body 130. ing.
第1エミッタ本体130と第2エミッタ本体140が接合されることにより、第1接続溝160および第2接続溝190は一体化して接続流路220となり、第1減圧溝170および第2減圧溝200は一体化して減圧流路230となり、吐出用凹部180および吐出用孔210は一体化して吐出部240となる(図5B参照)。これにより、取水部150、接続流路220、減圧流路230および吐出部240から構成され、取水部150と吐出部240とを繋ぐ流路が形成される。流路は、取水部150から吐出部240まで灌漑用液体を流通させる。
By joining the first emitter body 130 and the second emitter body 140, the first connection groove 160 and the second connection groove 190 are integrated into a connection flow path 220, and the first pressure reduction groove 170 and the second pressure reduction groove 200 are combined. Are integrated into the decompression channel 230, and the discharge recess 180 and the discharge hole 210 are integrated into the discharge unit 240 (see FIG. 5B). Thereby, the flow path which comprises the water intake part 150, the connection flow path 220, the pressure reduction flow path 230, and the discharge part 240, and connects the water intake part 150 and the discharge part 240 is formed. The flow path circulates the irrigation liquid from the water intake unit 150 to the discharge unit 240.
取水部150は、第1エミッタ本体130の表面131に配置されている。本実施の形態では、取水部150は、2つの取水用貫通孔151と、複数の凸条152とを有する。
The water intake unit 150 is disposed on the surface 131 of the first emitter body 130. In the present embodiment, the water intake unit 150 includes two water intake through holes 151 and a plurality of ridges 152.
2つの取水用貫通孔151は、それぞれ第1エミッタ本体130の表面131に、第1エミッタ本体130の長軸方向に沿って、両側の外縁部に配置されている(図3A参照)。
The two water intake through-holes 151 are respectively arranged on the outer edge portions on both sides of the surface 131 of the first emitter body 130 along the long axis direction of the first emitter body 130 (see FIG. 3A).
取水用貫通孔151の形状および数は、灌漑用液体を第1エミッタ本体130内に取り込むことができれば、特に限定されない。取水用貫通孔151は、それぞれ複数の凸条152により部分的に覆われているため、表面131側から見た場合、取水用貫通孔151は、多数の貫通孔に分かれているように見える(図3A参照)。
The shape and number of the water intake through holes 151 are not particularly limited as long as the irrigation liquid can be taken into the first emitter body 130. Since each of the water intake through holes 151 is partially covered by a plurality of ridges 152, the water intake through holes 151 appear to be divided into a large number of through holes when viewed from the surface 131 side ( (See FIG. 3A).
複数の凸条152は、第1エミッタ本体130の表面131において、取水用貫通孔151を跨ぐように配置されている。本実施の形態では、複数の凸条152は、凸条152の長軸方向が、第1エミッタ本体130の短軸方向に沿うように配列されている。複数の凸条152は、第1エミッタ本体130に取り入れられる灌漑用液体中の浮遊物が取水用貫通孔151内に侵入することを防止する。
The plurality of ridges 152 are arranged on the surface 131 of the first emitter body 130 so as to straddle the water intake through hole 151. In the present embodiment, the plurality of ridges 152 are arranged so that the major axis direction of the ridges 152 is along the minor axis direction of the first emitter body 130. The plurality of ridges 152 prevent floating substances in the irrigation liquid introduced into the first emitter body 130 from entering the water intake through hole 151.
凸条152の配置および数は、取水用貫通孔151から灌漑用液体を取り入れつつ、灌漑用液体中の浮遊物の侵入を防止することができれば特に限定されない。隣接する凸条152間の間隔は、前述の機能を発揮することができれば特に限定されない。
The arrangement and number of the ridges 152 are not particularly limited as long as the irrigation liquid can be taken in from the water intake through-hole 151 and the intrusion of suspended matter in the irrigation liquid can be prevented. The interval between adjacent ridges 152 is not particularly limited as long as the above-described function can be exhibited.
チューブ110内を流れてきた灌漑用液体は、複数の凸条152によって浮遊物が取水用貫通孔151内に侵入することが防止されつつ、第1エミッタ本体130内に取り込まれる。
The irrigation liquid that has flowed through the tube 110 is taken into the first emitter body 130 while the suspended matter is prevented from entering the water intake through hole 151 by the plurality of protrusions 152.
接続流路220は、取水用貫通孔151(取水部150)と減圧流路230とを接続する(図3B参照)。本実施の形態では、接続流路220は、第1エミッタ本体130の裏面132側(または第2エミッタ本体140の表面141側)において、第1エミッタ本体130の短軸方向に沿って直線状に形成されている。接続流路220の中央部付近には、減圧流路230が接続されている。接続流路220は、第1エミッタ本体130と第2エミッタ本体140とが接合されることで、第1接続溝160と第2接続溝190とにより形成される。取水部150から取り込まれた灌漑用液体は、接続流路220を通って、減圧流路230に流れる。
The connection flow path 220 connects the water intake through hole 151 (water intake section 150) and the pressure reduction flow path 230 (see FIG. 3B). In the present embodiment, the connection flow path 220 is linearly formed along the minor axis direction of the first emitter body 130 on the back surface 132 side of the first emitter body 130 (or the front surface 141 side of the second emitter body 140). Is formed. A decompression channel 230 is connected near the center of the connection channel 220. The connection channel 220 is formed by the first connection groove 160 and the second connection groove 190 by joining the first emitter body 130 and the second emitter body 140 together. The irrigation liquid taken in from the water intake 150 flows through the connection flow path 220 to the decompression flow path 230.
減圧流路230は、接続流路220と吐出部240とを接続する(図3Bおよび4A参照)。減圧流路230は、取水部150から取り入れられた灌漑用液体の圧力を減圧させて、吐出部240に導く。本実施の形態では、減圧流路230は、第1エミッタ本体130の裏面132(または第2エミッタ本体140の表面141)の中央部分に、長軸方向に沿って配置されている。減圧流路230の上流端は接続流路220に接続されており、下流端は吐出部240に接続されている。
The decompression flow path 230 connects the connection flow path 220 and the discharge part 240 (refer FIG. 3B and 4A). The decompression channel 230 reduces the pressure of the irrigation liquid introduced from the water intake unit 150 and guides it to the discharge unit 240. In the present embodiment, the decompression flow path 230 is disposed along the long axis direction at the central portion of the back surface 132 of the first emitter body 130 (or the surface 141 of the second emitter body 140). The upstream end of the decompression flow path 230 is connected to the connection flow path 220, and the downstream end is connected to the discharge unit 240.
減圧流路230の形状は、円柱状である(図5BおよびC参照)。円柱状とは、(凸部231が配置されていない部分において)中心軸Lに垂直な断面形状が円形であるものだけでなく、楕円形であるものも含む。そして、減圧流路230は、中心軸Lを挟んで一方の側と他方の側とに配置された複数の凸部231を有する。中心軸Lを挟んで一方の側に配置された凸部231と他方の側に配置された凸部231は、灌漑用液体の流れ方向に交互に配置されている(図5B参照)。
The shape of the decompression channel 230 is a columnar shape (see FIGS. 5B and 5C). The columnar shape includes not only a circular sectional shape perpendicular to the central axis L (in a portion where the convex portion 231 is not disposed) but also an elliptical shape. And the decompression flow path 230 has the some convex part 231 arrange | positioned on one side and the other side on both sides of the central axis L. The convex portions 231 disposed on one side with the central axis L interposed therebetween and the convex portions 231 disposed on the other side are alternately disposed in the flow direction of the irrigation liquid (see FIG. 5B).
「中心軸Lを挟んで一方の側と他方の側」とは、中心軸Lを含み、かつ第1エミッタ本体130の裏面132(または第2エミッタ本体140の表面141)に平行な断面において、中心軸Lを挟んで一方の側と他方の側(水平方向)であってもよいし、中心軸Lを含み、かつ第1エミッタ本体130の裏面132(または第2エミッタ本体140の表面141)と垂直な断面において、中心軸Lを挟んで一方の側(例えばチューブ110の内壁面側)と他方の側(例えばチューブ110の中心軸側)(上下方向)であってもよい。本実施の形態では、複数の凸部231は、製造を容易にする観点などから、中心軸Lを含み、かつ第1エミッタ本体130の裏面132(または第2エミッタ本体140の表面141)と垂直な断面において、中心軸Lを挟んで一方の側(例えばチューブ110の内壁面側)と他方の側(例えばチューブ110の中心軸側)(上下方向)に配置されている。
“One side and the other side across the central axis L” include the central axis L and are parallel to the back surface 132 of the first emitter body 130 (or the surface 141 of the second emitter body 140). It may be one side and the other side (horizontal direction) across the central axis L, and includes the central axis L and the back surface 132 of the first emitter body 130 (or the surface 141 of the second emitter body 140). In a cross section perpendicular to the central axis L, one side (for example, the inner wall surface side of the tube 110) and the other side (for example, the central axis side of the tube 110) (vertical direction) may be interposed. In the present embodiment, the plurality of convex portions 231 includes the central axis L and is perpendicular to the back surface 132 of the first emitter body 130 (or the surface 141 of the second emitter body 140) from the viewpoint of facilitating manufacturing. In a simple cross section, they are arranged on one side (for example, the inner wall surface side of the tube 110) and the other side (for example, the center axis side of the tube 110) (vertical direction) with the central axis L interposed therebetween.
凸部231の形状は、減圧流路230内における灌漑用液体の流れを確保しつつ、減圧させうるような形状であればよく、特に制限されない。凸部231の形状は、減圧流路230の中心軸Lに垂直な断面において、減圧流路230の内周面に沿った円弧部と、円弧部の2つの端部を繋ぐ弦部とで囲まれた弓形であることが好ましい。弓形の例には、半円形が含まれる。本実施の形態では、減圧流路230の中心軸Lに垂直な断面において、減圧流路230の形状が円形であることから、凸部231の形状は半円形であることが好ましい(図5C参照)。
The shape of the convex portion 231 is not particularly limited as long as it can be decompressed while ensuring the flow of the irrigation liquid in the decompression flow path 230. The shape of the convex portion 231 is surrounded by an arc portion along the inner peripheral surface of the decompression flow channel 230 and a chord portion connecting the two ends of the arc portion in a cross section perpendicular to the central axis L of the decompression flow channel 230. It is preferably a curved arc. Examples of arcuate shapes include semicircles. In the present embodiment, since the shape of the decompression flow path 230 is circular in the cross section perpendicular to the central axis L of the decompression flow path 230, the shape of the convex portion 231 is preferably semicircular (see FIG. 5C). ).
凸部231の厚みは、特に制限されず、減圧流路230の中心軸Lに向かうにつれて変化してもよいし、一定であってもよいが、減圧流路230の中心軸Lに向かうにつれて小さくなることが好ましい。凸部231の厚みが、減圧流路230の中心軸Lに向かうにつれて小さいと、減圧流路230の中心軸Lを挟んで一方の側の凸部231の先端部と他方の側の凸部231の先端部との間の隙間が適度に広くなるため、減圧流路230の中心軸L付近において、灌漑用液体を流れやすくすることができる。凸部231の厚みとは、凸部231の、減圧流路230の中心軸Lと平行な方向の厚みをいう(図5B参照)。また、凸部231の先端部とは、凸部231の、減圧流路230の内周面と接していない部分をいう。
The thickness of the convex portion 231 is not particularly limited, and may change as it goes toward the central axis L of the decompression flow path 230, or may be constant, but decreases as it goes toward the central axis L of the decompression flow path 230. It is preferable to become. If the thickness of the convex portion 231 decreases toward the central axis L of the decompression flow path 230, the tip end portion of the convex portion 231 on one side and the convex portion 231 on the other side across the central axis L of the decompression flow path 230. Therefore, the irrigation liquid can be easily flowed in the vicinity of the central axis L of the decompression flow path 230. The thickness of the convex portion 231 refers to the thickness of the convex portion 231 in a direction parallel to the central axis L of the decompression channel 230 (see FIG. 5B). Further, the tip portion of the convex portion 231 refers to a portion of the convex portion 231 that is not in contact with the inner peripheral surface of the decompression flow path 230.
凸部231の高さは、特に制限されないが、中心軸Lを超えないような高さであることが好ましい。減圧流路230の中心軸L付近において、灌漑用液体を流れやすくするためである。凸部231の高さとは、減圧流路230の中心軸を含み、かつ第1エミッタ本体130の裏面132側(または第2エミッタ本体140の表面141側)と垂直な断面において、減圧流路230の内周面からの最大高さをいう(図5B参照)。
The height of the convex portion 231 is not particularly limited, but is preferably a height that does not exceed the central axis L. This is to facilitate the flow of the irrigation liquid in the vicinity of the central axis L of the decompression flow path 230. The height of the convex portion 231 includes the central axis of the decompression flow path 230 and is in a cross section perpendicular to the back surface 132 side of the first emitter body 130 (or the front surface 141 side of the second emitter body 140). Is the maximum height from the inner peripheral surface (see FIG. 5B).
凸部231は、減圧流路230の中心軸Lを取り囲むように配置された切り欠き232をさらに有することが好ましい(図5C参照)。それにより、減圧流路230の中心軸L付近において、灌漑用液体を流れやすくすることができる。
The convex portion 231 preferably further includes a notch 232 disposed so as to surround the central axis L of the decompression flow path 230 (see FIG. 5C). Thereby, the irrigation liquid can be easily flowed in the vicinity of the central axis L of the decompression flow path 230.
切り欠き232の形状は、特に制限されないが、減圧流路230の中心軸Lに垂直な断面において、半円形であってもよいし、多角形(三角形や四角形など)であってもよい。本実施の形態では、減圧流路230の中心軸Lに垂直な断面における切り欠き232の形状は、半円形である。
The shape of the notch 232 is not particularly limited, but may be semicircular or polygonal (such as a triangle or a quadrangle) in a cross section perpendicular to the central axis L of the decompression flow path 230. In the present embodiment, the shape of the notch 232 in the cross section perpendicular to the central axis L of the decompression flow path 230 is a semicircular shape.
切り欠き232の大きさは、凸部231による灌漑用液体の攪拌および減圧機能を妨げない範囲であればよく、特に制限されないが、中心軸Lから切り欠き232の縁部までの最短距離が、中心軸Lから減圧流路230の内周面までの距離(減圧流路230の中心軸Lに垂直な断面における、減圧流路230の半径)の10%以上25%以下であることが好ましい。
The size of the notch 232 is not particularly limited as long as it does not interfere with the stirring and decompression function of the irrigation liquid by the convex portion 231, but the shortest distance from the central axis L to the edge of the notch 232 is It is preferably 10% or more and 25% or less of the distance from the central axis L to the inner peripheral surface of the decompression flow path 230 (the radius of the decompression flow path 230 in a cross section perpendicular to the central axis L of the decompression flow path 230).
減圧流路230は、前述の通り、第1エミッタ本体130と第2エミッタ本体140が接合されることで、底部に複数の凸部231を有する第1減圧溝170と、底部に複数の凸部231を有する第2減圧溝200とにより形成される(図5BおよびC参照)。
As described above, the decompression flow path 230 is formed by joining the first emitter main body 130 and the second emitter main body 140 so that the first decompression groove 170 having a plurality of protrusions 231 on the bottom and a plurality of protrusions on the bottom. And a second decompression groove 200 having 231 (see FIGS. 5B and 5C).
取水部150から取り込まれた灌漑用液体は、減圧流路230により減圧されて吐出部240に導かれる。
The irrigation liquid taken in from the water intake unit 150 is decompressed by the decompression channel 230 and guided to the discharge unit 240.
吐出部240は、第1エミッタ本体130の裏面132から第2エミッタ本体140を貫通するように配置されている(図3B、4AおよびB、ならびに5B参照)。吐出部240は、減圧流路230からの灌漑用液体をチューブ110の吐出口112に送る。吐出部240の構成は、前述の機能を発揮することができれば、特に限定されない。本実施の形態では、吐出部240は、第1エミッタ本体130の吐出用凹部180と第2エミッタ本体140の吐出用孔210とによって形成される凹部である。凹部の平面視形状は、特に限定されず、例えば略矩形である。
The discharge unit 240 is disposed so as to penetrate the second emitter body 140 from the back surface 132 of the first emitter body 130 (see FIGS. 3B, 4A and B, and 5B). The discharge unit 240 sends the irrigation liquid from the decompression flow path 230 to the discharge port 112 of the tube 110. The structure of the discharge part 240 will not be specifically limited if the above-mentioned function can be exhibited. In the present embodiment, the discharge portion 240 is a recess formed by the discharge recess 180 of the first emitter body 130 and the discharge hole 210 of the second emitter body 140. The planar view shape of the recess is not particularly limited, and is, for example, a substantially rectangular shape.
(点滴灌漑用チューブおよびエミッタの動作)
次に、点滴灌漑用チューブ100の動作について説明する。まず、チューブ110内に灌漑用液体が送液される。灌漑用液体の例には、水、液体肥料、農薬およびこれらの混合液が含まれる。点滴灌漑用チューブ100へ送液される灌漑用液体の圧力は、簡易に点滴灌漑法を導入できるように、またチューブ110およびエミッタ120の破損を防止するため、0.1MPa以下であることが好ましい。チューブ110内の灌漑用液体は、取水部150からエミッタ120(または第1エミッタ本体130)内に取り込まれる。具体的には、チューブ110内の灌漑用液体は、隣接する凸条152間の隙間から取水用貫通孔151に流れ込む。このとき、取水部150は、取水用貫通孔151を部分的に覆う複数の凸条152を有しているため、灌漑用液体中の浮遊物を除去することができる。 (Operation of drip irrigation tube and emitter)
Next, the operation of thedrip irrigation tube 100 will be described. First, irrigation liquid is fed into the tube 110. Examples of irrigation liquids include water, liquid fertilizers, pesticides and mixtures thereof. The pressure of the irrigation liquid fed to the drip irrigation tube 100 is preferably 0.1 MPa or less so that the drip irrigation method can be easily introduced and the tube 110 and the emitter 120 are prevented from being damaged. . The irrigation liquid in the tube 110 is taken from the water intake 150 into the emitter 120 (or the first emitter body 130). Specifically, the irrigation liquid in the tube 110 flows into the water intake through hole 151 from the gap between the adjacent ridges 152. At this time, the water intake section 150 has a plurality of ridges 152 that partially cover the water intake through-holes 151, so that floating substances in the irrigation liquid can be removed.
次に、点滴灌漑用チューブ100の動作について説明する。まず、チューブ110内に灌漑用液体が送液される。灌漑用液体の例には、水、液体肥料、農薬およびこれらの混合液が含まれる。点滴灌漑用チューブ100へ送液される灌漑用液体の圧力は、簡易に点滴灌漑法を導入できるように、またチューブ110およびエミッタ120の破損を防止するため、0.1MPa以下であることが好ましい。チューブ110内の灌漑用液体は、取水部150からエミッタ120(または第1エミッタ本体130)内に取り込まれる。具体的には、チューブ110内の灌漑用液体は、隣接する凸条152間の隙間から取水用貫通孔151に流れ込む。このとき、取水部150は、取水用貫通孔151を部分的に覆う複数の凸条152を有しているため、灌漑用液体中の浮遊物を除去することができる。 (Operation of drip irrigation tube and emitter)
Next, the operation of the
取水部150から取り込まれた灌漑用液体は、接続流路220に到達する。接続流路220に到達した灌漑用液体は、減圧流路230に流れ込む。
The irrigation liquid taken in from the water intake unit 150 reaches the connection channel 220. The irrigation liquid that has reached the connection channel 220 flows into the decompression channel 230.
減圧流路230に流れ込んだ灌漑用液体は、減圧されつつ、吐出部240に流れ込む。詳細については、後述するが、減圧流路230内では、3次元的に旋回しながら流れる渦流が生じている。吐出部240に流れ込んだ灌漑用液体は、チューブ110の吐出口112からチューブ110外に吐出される。
The irrigation liquid that has flowed into the decompression flow path 230 flows into the discharge unit 240 while being decompressed. Although details will be described later, in the decompression flow path 230, a vortex flowing while swirling three-dimensionally is generated. The irrigation liquid that has flowed into the discharge unit 240 is discharged out of the tube 110 from the discharge port 112 of the tube 110.
(シミュレーション)
前述した通り、本実施の形態に係るエミッタ120では、減圧流路230は円柱状であり、かつ複数の凸部231が、中心軸Lを含み、かつ第1エミッタ本体130の裏面132(または第2エミッタ本体140の表面141)に垂直な断面において、中心軸Lを挟んで一方の側と他方の側(上下方向)に配置されている。このように構成された減圧流路230が、灌漑用液体の流れに与える作用についてシミュレーションを行った。また、比較のため、減圧流路24、26および27の形状を四角柱状とし、凸部18の形状を三角柱状とし、かつ複数の凸部18を、中心軸Lを含み、かつエミッタ10の裏面11に平行な断面において、中心軸Lを挟んで一方の側と他方の側(水平方向)に配置した以外は本実施の形態に係るエミッタ120と同様に構成されたエミッタ10(以下、「比較用のエミッタ」ともいう)についてもシミュレーションを行った。 (simulation)
As described above, in theemitter 120 according to the present embodiment, the decompression channel 230 has a cylindrical shape, the plurality of convex portions 231 include the central axis L, and the back surface 132 (or the first surface of the first emitter body 130). In the cross section perpendicular to the surface 141) of the two-emitter body 140, they are arranged on one side and the other side (vertical direction) across the central axis L. A simulation was performed on the action of the pressure reducing channel 230 configured as described above on the flow of the irrigation liquid. For comparison, the decompression channels 24, 26, and 27 have a quadrangular prism shape, the convex portion 18 has a triangular prism shape, the plurality of convex portions 18 include the central axis L, and the back surface of the emitter 10. 11, an emitter 10 (hereinafter referred to as “comparison”) configured in the same manner as the emitter 120 according to the present embodiment except that it is disposed on one side and the other side (horizontal direction) across the central axis L in a cross-section parallel to 11. (Also called “emitter”).
前述した通り、本実施の形態に係るエミッタ120では、減圧流路230は円柱状であり、かつ複数の凸部231が、中心軸Lを含み、かつ第1エミッタ本体130の裏面132(または第2エミッタ本体140の表面141)に垂直な断面において、中心軸Lを挟んで一方の側と他方の側(上下方向)に配置されている。このように構成された減圧流路230が、灌漑用液体の流れに与える作用についてシミュレーションを行った。また、比較のため、減圧流路24、26および27の形状を四角柱状とし、凸部18の形状を三角柱状とし、かつ複数の凸部18を、中心軸Lを含み、かつエミッタ10の裏面11に平行な断面において、中心軸Lを挟んで一方の側と他方の側(水平方向)に配置した以外は本実施の形態に係るエミッタ120と同様に構成されたエミッタ10(以下、「比較用のエミッタ」ともいう)についてもシミュレーションを行った。 (simulation)
As described above, in the
図6は、比較用のエミッタの構成を示す斜視図である。なお、図6では、比較用のエミッタの流路を見やすくするために、上下方向を逆にして表示するとともに、エミッタ10の裏面11に、フィルム30が被せられた状態を示している。図6に示されるように、比較用のエミッタ10は、取水用貫通孔12、第1接続溝13、第1減圧溝14、第2接続溝15、第2減圧溝16、第3減圧溝17、貫通孔19、20および21、ならびに吐出部22を有する。そして、第1減圧溝14、第2減圧溝16および第3減圧溝17は、開口部がフィルム30で塞がれて、第1減圧流路24、第2減圧流路26および第3減圧流路27を形成している。第1減圧流路24、第2減圧流路26および第3減圧流路27の形状は、いずれも四角柱状であり、向かい合う2つの側面(水平方向)から複数の凸部18が突出している。凸部18の形状は、三角柱形状である。
FIG. 6 is a perspective view showing a configuration of a comparative emitter. In FIG. 6, in order to make the flow path of the emitter for comparison easier to see, the display is shown upside down and the film 30 is covered on the back surface 11 of the emitter 10. As shown in FIG. 6, the comparative emitter 10 includes a water intake through hole 12, a first connection groove 13, a first pressure reduction groove 14, a second connection groove 15, a second pressure reduction groove 16, and a third pressure reduction groove 17. , Through holes 19, 20 and 21, and a discharge part 22. The first decompression groove 14, the second decompression groove 16, and the third decompression groove 17 are closed by the film 30, and the first decompression channel 24, the second decompression channel 26, and the third decompression channel 17 A path 27 is formed. The first decompression channel 24, the second decompression channel 26, and the third decompression channel 27 are all in the shape of a quadrangular prism, and a plurality of convex portions 18 protrude from two opposing side surfaces (horizontal direction). The shape of the convex portion 18 is a triangular prism shape.
図7AおよびBは、比較用のエミッタについてのシミュレーション結果から解析した、比較用のエミッタにおける灌漑用液体の流れを示す概念図である。図7Aは、図6において矢印7A方向からみたときの、灌漑用液体の流れを示す図であり、図7Bは、図6において7B-7B線の断面図のうち、第3減圧流路27における灌漑用液体の流れを示す図である。
7A and 7B are conceptual diagrams showing the flow of the irrigation liquid in the comparative emitter, analyzed from the simulation results of the comparative emitter. 7A is a diagram showing the flow of irrigation liquid when viewed from the direction of arrow 7A in FIG. 6, and FIG. 7B is a cross-sectional view taken along line 7B-7B in FIG. It is a figure which shows the flow of the liquid for irrigation.
図7AおよびBに示されるように、第3減圧流路27(以下、これを単に「減圧流路」ともいう)では、灌漑用液体の一部は、減圧流路の中心軸L付近をジグザグ状に流れ、他の一部は、流れ方向において隣接する凸部18間の空間で旋回することがわかる(特に図7A参照)。隣接する凸部18間の空間で旋回する流れ(渦巻状の攪拌流)は、1つの空間ごとに1つだけ発生していることもわかる(図7A参照)。
また、減圧流路の中心線付近を流れる灌漑用液体の流れ、および隣接する凸部18間の空間を旋回する灌漑用液体の流れは、いずれも減圧流路内において水平方向(流れ方向と減圧流路の幅方向とを含む平面に略平行な面内)を流れること(図7B参照)、すなわち、比較用のエミッタ10では、灌漑用液体は、減圧流路内を2次元的に流れることがわかる。
このように、比較用のエミッタ10では、灌漑用液体は、隣接する凸部18間の空間で旋回する流れ(渦巻状の攪拌流)は、1つの空間ごとに1つだけであり、かつ減圧流路内を2次元的にしか攪拌されないため、攪拌効果が十分ではないことがわかる。その結果、隣接する凸部18同士の間に異物が流れ込んだ際に、減圧流路の中心軸L付近の流れとともに流し出せないことがある。それにより、減圧流路内に入り込んだ異物による目詰まりを生じやすいと考えられる。 As shown in FIGS. 7A and 7B, in the third decompression channel 27 (hereinafter, also simply referred to as “decompression channel”), a part of the irrigation liquid zigzags around the central axis L of the decompression channel. It can be seen that the other part swirls in the space between theadjacent protrusions 18 in the flow direction (see particularly FIG. 7A). It can also be seen that only one flow (spiral stirring flow) swirling in the space between the adjacent convex portions 18 is generated for each space (see FIG. 7A).
Further, the flow of the irrigation liquid flowing near the center line of the decompression flow path and the flow of the irrigation liquid swirling in the space between the adjacentconvex portions 18 are both horizontal (flow direction and reduced pressure) in the decompression flow path. Flow in a plane substantially parallel to a plane including the width direction of the flow path (see FIG. 7B), that is, in the emitter 10 for comparison, the irrigation liquid flows two-dimensionally in the reduced pressure flow path. I understand.
As described above, in thecomparative emitter 10, the irrigation liquid has only one flow swirling in the space between the adjacent convex portions 18 (spiral stirring flow) for each space, and the pressure is reduced. It can be seen that the stirring effect is not sufficient because the inside of the flow path is only stirred two-dimensionally. As a result, when foreign matter flows between the adjacent convex portions 18, it may not be able to flow out together with the flow near the central axis L of the decompression flow path. Thereby, it is considered that clogging due to foreign matter entering the reduced pressure channel is likely to occur.
また、減圧流路の中心線付近を流れる灌漑用液体の流れ、および隣接する凸部18間の空間を旋回する灌漑用液体の流れは、いずれも減圧流路内において水平方向(流れ方向と減圧流路の幅方向とを含む平面に略平行な面内)を流れること(図7B参照)、すなわち、比較用のエミッタ10では、灌漑用液体は、減圧流路内を2次元的に流れることがわかる。
このように、比較用のエミッタ10では、灌漑用液体は、隣接する凸部18間の空間で旋回する流れ(渦巻状の攪拌流)は、1つの空間ごとに1つだけであり、かつ減圧流路内を2次元的にしか攪拌されないため、攪拌効果が十分ではないことがわかる。その結果、隣接する凸部18同士の間に異物が流れ込んだ際に、減圧流路の中心軸L付近の流れとともに流し出せないことがある。それにより、減圧流路内に入り込んだ異物による目詰まりを生じやすいと考えられる。 As shown in FIGS. 7A and 7B, in the third decompression channel 27 (hereinafter, also simply referred to as “decompression channel”), a part of the irrigation liquid zigzags around the central axis L of the decompression channel. It can be seen that the other part swirls in the space between the
Further, the flow of the irrigation liquid flowing near the center line of the decompression flow path and the flow of the irrigation liquid swirling in the space between the adjacent
As described above, in the
図8は、本実施の形態に係るエミッタの構成を示す斜視図である。図9AおよびBは、本実施の形態に係るエミッタについてのシミュレーション結果から解析した、本実施の形態に係るエミッタにおける灌漑用液体の流れを示す概念図である。図9Aは、図8において矢印9A方向からみたときの、灌漑用液体の流れを示す図であり、図9Bは、図8において9B-9B線の断面図のうち、減圧流路230における灌漑用液体の流れを示す図である。
FIG. 8 is a perspective view showing the configuration of the emitter according to the present embodiment. 9A and 9B are conceptual diagrams showing the flow of the irrigation liquid in the emitter according to the present embodiment, analyzed from the simulation result of the emitter according to the present embodiment. 9A is a diagram showing the flow of the irrigation liquid when viewed from the direction of the arrow 9A in FIG. 8, and FIG. 9B is an irrigation flow in the decompression channel 230 in the cross-sectional view taken along the line 9B-9B in FIG. It is a figure which shows the flow of a liquid.
図9AおよびBに示されるように、本実施の形態に係るエミッタ120では、減圧流路230内に流入した灌漑用液体の一部は、減圧流路の中心軸L付近をジグザグ状に流れるものの(不図示)、灌漑用液体の大部分は、流れ方向において隣接する凸部231間の空間で旋回することがわかる。
また、隣接する凸部231間の空間で旋回する流れ(渦巻状の攪拌流)は、1つの空間ごとに少なくとも2つ発生していることがわかる(図9A参照)。この理由は明らかではないが、以下のように推測される。減圧流路230の中心軸Lに垂直な断面において、灌漑用液体が、円柱状の減圧流路230の壁に沿って減圧流路230の幅方向の両側から減圧流路230の最底部(または最頂部)に向かって流れる。減圧流路230の幅方向の両側から最底部(または最頂部)に向かう灌漑用液体は、円柱状の減圧流路230の壁の最底部(または最頂部)で衝突し、壁から離れて中心軸Lに向かう。中心軸Lを超えた灌漑用液体は、凸部231で跳ね返された後、再び円柱状の減圧流路230の幅方向の両側の壁にそれぞれ向かい、再び減圧流路230の幅方向の両側の壁に沿って流れ、減圧流路230の最底部(または最頂部)に向かう。この繰り返しによって、2つの渦巻状の攪拌流が生じると考えられる。
さらに、隣接する凸部231間の空間を旋回する灌漑用液体の流れ(渦巻状の攪拌流)は、いずれも上下方向(流れ方向と減圧流路230の深さ方向とを含む平面に略平行な面内)だけでなく、水平方向(減圧流路230の幅方向)にも攪拌されていること、すなわち、3次元的に攪拌されていることがわかる(図9A参照)。
このように、本実施の形態に係るエミッタ120では、灌漑用液体は、隣接する凸部231間の空間で旋回する流れ(渦巻状の攪拌流)が1つの空間ごとに2つ以上あり、かつ減圧流路230内を3次元的に攪拌することができるため、攪拌効果が十分高いことがわかる。その結果、隣接する凸部231同士の間に異物が流れ込んでも、減圧流路の中心軸L付近の流れとともに流し出すことができる。それにより、減圧流路230内に入り込んだ異物を流し出しやすくすることができ、目詰まりを生じにくくしうると考えられる。 As shown in FIGS. 9A and B, in theemitter 120 according to the present embodiment, part of the irrigation liquid that has flowed into the decompression channel 230 flows in a zigzag manner near the central axis L of the decompression channel. (Not shown) It can be seen that most of the irrigation liquid swirls in the space between the adjacent convex portions 231 in the flow direction.
Moreover, it turns out that the flow (vortex-shaped stirring flow) swirling in the space between adjacentconvex parts 231 has generate | occur | produced for every space (refer FIG. 9A). The reason for this is not clear, but is presumed as follows. In a cross section perpendicular to the central axis L of the decompression flow path 230, the irrigation liquid flows along the wall of the cylindrical decompression flow path 230 from both sides in the width direction of the decompression flow path 230 (or the bottom of the decompression flow path 230 (or It flows toward the top. The irrigation liquid traveling from both sides in the width direction of the decompression channel 230 to the bottom (or top) collides at the bottom (or top) of the wall of the columnar decompression channel 230 and is separated from the wall and is centered. Go to axis L. The irrigation liquid exceeding the central axis L is bounced back by the convex portion 231, then again faces the walls on both sides in the width direction of the columnar decompression flow path 230, and again on both sides in the width direction of the decompression flow path 230. It flows along the wall and goes to the bottom (or top) of the decompression flow path 230. This repetition is considered to produce two spiral stirring flows.
Furthermore, the flow of the irrigation liquid (swirled stirring flow) swirling in the space between the adjacentconvex portions 231 is substantially parallel to a plane including the vertical direction (the flow direction and the depth direction of the decompression flow path 230). It can be seen that not only in the plane) but also in the horizontal direction (the width direction of the decompression flow path 230), that is, in three-dimensional stirring (see FIG. 9A).
As described above, in theemitter 120 according to the present embodiment, the irrigation liquid has two or more flows swirling in the space between the adjacent convex portions 231 (spiral stirring flow) for each space, and Since the inside of the decompression flow path 230 can be stirred three-dimensionally, it turns out that the stirring effect is high enough. As a result, even if a foreign substance flows between adjacent convex portions 231, it can flow out together with the flow near the central axis L of the decompression flow path. Thereby, it is considered that foreign matter that has entered the decompression flow path 230 can be easily flowed out, and clogging can be made difficult to occur.
また、隣接する凸部231間の空間で旋回する流れ(渦巻状の攪拌流)は、1つの空間ごとに少なくとも2つ発生していることがわかる(図9A参照)。この理由は明らかではないが、以下のように推測される。減圧流路230の中心軸Lに垂直な断面において、灌漑用液体が、円柱状の減圧流路230の壁に沿って減圧流路230の幅方向の両側から減圧流路230の最底部(または最頂部)に向かって流れる。減圧流路230の幅方向の両側から最底部(または最頂部)に向かう灌漑用液体は、円柱状の減圧流路230の壁の最底部(または最頂部)で衝突し、壁から離れて中心軸Lに向かう。中心軸Lを超えた灌漑用液体は、凸部231で跳ね返された後、再び円柱状の減圧流路230の幅方向の両側の壁にそれぞれ向かい、再び減圧流路230の幅方向の両側の壁に沿って流れ、減圧流路230の最底部(または最頂部)に向かう。この繰り返しによって、2つの渦巻状の攪拌流が生じると考えられる。
さらに、隣接する凸部231間の空間を旋回する灌漑用液体の流れ(渦巻状の攪拌流)は、いずれも上下方向(流れ方向と減圧流路230の深さ方向とを含む平面に略平行な面内)だけでなく、水平方向(減圧流路230の幅方向)にも攪拌されていること、すなわち、3次元的に攪拌されていることがわかる(図9A参照)。
このように、本実施の形態に係るエミッタ120では、灌漑用液体は、隣接する凸部231間の空間で旋回する流れ(渦巻状の攪拌流)が1つの空間ごとに2つ以上あり、かつ減圧流路230内を3次元的に攪拌することができるため、攪拌効果が十分高いことがわかる。その結果、隣接する凸部231同士の間に異物が流れ込んでも、減圧流路の中心軸L付近の流れとともに流し出すことができる。それにより、減圧流路230内に入り込んだ異物を流し出しやすくすることができ、目詰まりを生じにくくしうると考えられる。 As shown in FIGS. 9A and B, in the
Moreover, it turns out that the flow (vortex-shaped stirring flow) swirling in the space between adjacent
Furthermore, the flow of the irrigation liquid (swirled stirring flow) swirling in the space between the adjacent
As described above, in the
(効果)
以上のように、本実施の形態に係るエミッタ120では、減圧流路230が、円柱状であり、かつ中心軸Lを挟んで一方の側と他方の側に配置された複数の凸部231を有する。それにより、減圧流路230内を3次元的に攪拌させやすくすることができる。それにより、本実施の形態に係るエミッタ120では、減圧流路230内に異物が流入しても、高い攪拌効果によって減圧流路230外に流し出しやすくすることができ、異物による目詰まりを生じにくくすることができる。 (effect)
As described above, in theemitter 120 according to the present embodiment, the decompression channel 230 has a columnar shape and includes the plurality of convex portions 231 disposed on one side and the other side with the central axis L interposed therebetween. Have. Thereby, the inside of the decompression channel 230 can be easily stirred three-dimensionally. Thereby, in the emitter 120 according to the present embodiment, even if foreign matter flows into the reduced pressure channel 230, it can be easily flowed out of the reduced pressure channel 230 due to a high stirring effect, and clogging due to foreign matter occurs. Can be difficult.
以上のように、本実施の形態に係るエミッタ120では、減圧流路230が、円柱状であり、かつ中心軸Lを挟んで一方の側と他方の側に配置された複数の凸部231を有する。それにより、減圧流路230内を3次元的に攪拌させやすくすることができる。それにより、本実施の形態に係るエミッタ120では、減圧流路230内に異物が流入しても、高い攪拌効果によって減圧流路230外に流し出しやすくすることができ、異物による目詰まりを生じにくくすることができる。 (effect)
As described above, in the
(変形例)
なお、本実施の形態では、複数の凸部231が、上下方向、すなわち、中心軸Lを含み、かつ第1エミッタ本体130の裏面132(または第2エミッタ本体140の表面141)と垂直な断面において、中心軸Lよりも一方の側と他方の側に配置される例を示したが、これに限定されない。例えば、複数の凸部231は、水平方向、すなわち、中心軸Lを含み、かつ第1エミッタ本体130の裏面132(または第2エミッタ本体140の表面141)と平行な断面において、中心軸Lよりも一方の側と他方の側に配置されてもよい。 (Modification)
In the present embodiment, the plurality ofconvex portions 231 has a cross section that includes the vertical direction, that is, the center axis L, and is perpendicular to the back surface 132 of the first emitter body 130 (or the surface 141 of the second emitter body 140). However, the present invention is not limited to this example. For example, the plurality of convex portions 231 are arranged in a horizontal direction, that is, in a cross section including the central axis L and parallel to the back surface 132 of the first emitter body 130 (or the front surface 141 of the second emitter body 140) from the central axis L. May be arranged on one side and the other side.
なお、本実施の形態では、複数の凸部231が、上下方向、すなわち、中心軸Lを含み、かつ第1エミッタ本体130の裏面132(または第2エミッタ本体140の表面141)と垂直な断面において、中心軸Lよりも一方の側と他方の側に配置される例を示したが、これに限定されない。例えば、複数の凸部231は、水平方向、すなわち、中心軸Lを含み、かつ第1エミッタ本体130の裏面132(または第2エミッタ本体140の表面141)と平行な断面において、中心軸Lよりも一方の側と他方の側に配置されてもよい。 (Modification)
In the present embodiment, the plurality of
また、本実施の形態では、凸部231が、減圧流路230の中心軸Lを取り囲むように配置された切り欠き232を有する例を示したが、これに限定されず、切り欠き232を有しなくてもよい。
Further, in the present embodiment, the example in which the convex portion 231 has the notch 232 arranged so as to surround the central axis L of the decompression flow path 230 is shown, but the present invention is not limited thereto, and the notch 232 is provided. You don't have to.
また、本実施の形態では、減圧流路230の中心軸Lに垂直な断面形状が円形である例を示したが、これに限定されず、楕円形であってもよい。
In the present embodiment, an example in which the cross-sectional shape perpendicular to the central axis L of the decompression flow path 230 is circular is shown, but the present invention is not limited to this, and may be elliptical.
また、本実施の形態では、減圧流路230が、灌漑用液体の流れ方向に直線状に延びるように配置された例を示したが、これに限定されず、蛇行状に配置されてもよいし、U字状に配置されてもよい。
Further, in the present embodiment, the example in which the decompression flow path 230 is disposed so as to extend linearly in the flow direction of the irrigation liquid is illustrated, but the present invention is not limited thereto, and may be disposed in a meandering manner. And it may be arranged in a U shape.
本出願は、2018年2月1日出願の特願2018-016333に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
This application claims priority based on Japanese Patent Application No. 2018-016333 filed on Feb. 1, 2018. The contents described in the application specification and the drawings are all incorporated herein.
本発明によれば、流路内に異物が流入しても、異物による目詰まりを生じにくくすることができるエミッタおよび点滴灌漑用チューブを提供することが可能である。したがって、点滴灌漑や耐久試験などの、長期の滴下を要する技術分野への上記エミッタの普及および当該技術分野のさらなる発展が期待される。
According to the present invention, it is possible to provide an emitter and a drip irrigation tube that are less likely to be clogged with foreign matter even if foreign matter flows into the flow path. Therefore, the spread of the emitter to technical fields that require long-term dripping, such as drip irrigation and durability tests, and further development of the technical field are expected.
100 点滴灌漑用チューブ
110 チューブ
112 吐出口
120 エミッタ
131、141 表面
132、142 裏面
150 取水部
151 取水用貫通孔
152 凸条
160 第1接続溝
170 第1減圧溝
180 吐出用凹部
190 第2接続溝
200 第2減圧溝
210 吐出用孔
220 接続流路
230 減圧流路
240 吐出部 DESCRIPTION OFSYMBOLS 100 Drip irrigation tube 110 Tube 112 Discharge port 120 Emitter 131, 141 Front surface 132, 142 Back surface 150 Water intake part 151 Water intake through-hole 152 Projection 160 First connection groove 170 First decompression groove 180 Discharge recess 190 Second connection groove 200 Second decompression groove 210 Discharge hole 220 Connection channel 230 Decompression channel 240 Discharge section
110 チューブ
112 吐出口
120 エミッタ
131、141 表面
132、142 裏面
150 取水部
151 取水用貫通孔
152 凸条
160 第1接続溝
170 第1減圧溝
180 吐出用凹部
190 第2接続溝
200 第2減圧溝
210 吐出用孔
220 接続流路
230 減圧流路
240 吐出部 DESCRIPTION OF
Claims (7)
- 灌漑用液体を流通させるチューブの内壁面において、前記チューブの内外を連通する吐出口に対応する位置に接合されたときに、前記チューブ内の前記灌漑用液体を前記吐出口から定量的に前記チューブ外に吐出するためのエミッタであって、
前記灌漑用液体を取り入れるための取水部と、
前記吐出口に面して配置され、前記灌漑用液体を吐出するための吐出部と、
前記取水部および前記吐出部を繋ぎ、前記灌漑用液体を流通させる流路と、を含み、
前記流路は、円柱状の減圧流路を含み、
前記減圧流路は、その中心軸を挟んで一方の側と他方の側とに配置された複数の凸部を有し、
前記一方の側に配置された凸部と前記他方の側に配置された凸部は、前記灌漑用液体の流れ方向に交互に配置されている、
エミッタ。 When the inner wall surface of the tube through which the irrigation liquid is circulated is joined to a position corresponding to the discharge port communicating between the inside and the outside of the tube, the irrigation liquid in the tube is quantitatively measured from the discharge port. An emitter for discharging outside,
A water intake for taking in the irrigation liquid;
A discharge part arranged to face the discharge port, for discharging the irrigation liquid;
A channel for connecting the water intake unit and the discharge unit and circulating the liquid for irrigation,
The flow path includes a columnar decompression flow path,
The decompression flow path has a plurality of convex portions arranged on one side and the other side across the central axis,
The convex portions arranged on the one side and the convex portions arranged on the other side are alternately arranged in the flow direction of the irrigation liquid.
Emitter. - 前記減圧流路の中心軸に垂直な断面において、
前記凸部の形状は、前記減圧流路の内周面に沿った円弧部と、前記円弧部の2つの端部を繋ぐ弦部とで囲まれた弓形である、
請求項1に記載のエミッタ。 In a cross section perpendicular to the central axis of the decompression flow path,
The shape of the convex portion is an arcuate shape surrounded by an arc portion along the inner peripheral surface of the decompression flow path and a chord portion connecting two end portions of the arc portion.
The emitter according to claim 1. - 前記凸部の厚みは、前記減圧流路の中心軸に向かうにつれて小さくなる、
請求項1または2に記載のエミッタ。 The thickness of the convex portion decreases as it goes toward the central axis of the decompression flow path.
The emitter according to claim 1 or 2. - 前記凸部は、前記減圧流路の中心軸を取り囲むように配置された切り欠きを有する、
請求項1~3のいずれか一項に記載のエミッタ。 The convex portion has a notch arranged so as to surround the central axis of the decompression flow path.
The emitter according to any one of claims 1 to 3. - 前記複数の凸部は、前記減圧流路の中心軸を挟んで、前記チューブの内壁面側と、前記チューブの中心軸側とに配置されている、
請求項1~4のいずれか一項に記載のエミッタ。 The plurality of convex portions are disposed on the inner wall surface side of the tube and the central axis side of the tube across the central axis of the decompression flow path,
The emitter according to any one of claims 1 to 4. - 前記エミッタは、
前記取水部と、底部に複数の凸部を有する第1減圧溝とを有する第1エミッタ本体と、
前記吐出部と、底部に複数の凸部を有する第2減圧溝とを有する第2エミッタ本体と、を有し、
前記減圧流路は、前記第1減圧溝と前記第2減圧溝とにより形成されている、
請求項1~5のいずれか一項に記載のエミッタ。 The emitter is
A first emitter body having the water intake and a first pressure-reducing groove having a plurality of protrusions on the bottom;
A second emitter body having the discharge part and a second decompression groove having a plurality of protrusions on the bottom;
The decompression flow path is formed by the first decompression groove and the second decompression groove.
The emitter according to any one of claims 1 to 5. - 灌漑用液体を吐出するための吐出口を有するチューブと、
前記チューブの内壁面の前記吐出口に対応する位置に接合された、請求項1~6のいずれか一項に記載のエミッタと、
を有する、点滴灌漑用チューブ。 A tube having a discharge port for discharging irrigation liquid;
The emitter according to any one of claims 1 to 6, joined at a position corresponding to the discharge port on the inner wall surface of the tube;
Having a drip irrigation tube.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018016333A JP2019129785A (en) | 2018-02-01 | 2018-02-01 | Emitter and tube for drip irrigation |
JP2018-016333 | 2018-02-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019151367A1 true WO2019151367A1 (en) | 2019-08-08 |
Family
ID=67478398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/003281 WO2019151367A1 (en) | 2018-02-01 | 2019-01-31 | Emitter and drip irrigation tube |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019129785A (en) |
WO (1) | WO2019151367A1 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4735363A (en) * | 1985-05-29 | 1988-04-05 | Plastro Gvat | Method for producing a drip irrigation line and an emitter therefor |
JPH05276841A (en) * | 1991-10-01 | 1993-10-26 | Hydro Plan Eng Ltd | Flow-out device unit, flow-out device unit main body and die for manufacturing the same |
JPH1024203A (en) * | 1996-07-10 | 1998-01-27 | Houriyou Sangyo Kk | Liquid filter |
JPH1113500A (en) * | 1997-06-27 | 1999-01-19 | Nippon Soken Inc | Flow noise control system for throttle valve |
JP2003260344A (en) * | 2002-03-08 | 2003-09-16 | Osaka Gas Co Ltd | Static mixer |
WO2006006625A1 (en) * | 2004-07-13 | 2006-01-19 | Meishin Kogyo Kabushikigaisha | Turbid water purification apparatus and coagulant addition equipment |
US20150014446A1 (en) * | 2013-07-09 | 2015-01-15 | Amirim Products Development & Patents Ltd. | In line button drip emitter |
CN104488665A (en) * | 2014-12-08 | 2015-04-08 | 西安交通大学 | Karman vortex street shaped runner and drip irrigation emitter comprising same |
JP2015200467A (en) * | 2014-04-09 | 2015-11-12 | フロイント産業株式会社 | Processed product dispersion mechanism of air flow type drier |
JP2017063745A (en) * | 2015-10-01 | 2017-04-06 | 株式会社エンプラス | Emitter and tube for drip irrigation |
-
2018
- 2018-02-01 JP JP2018016333A patent/JP2019129785A/en active Pending
-
2019
- 2019-01-31 WO PCT/JP2019/003281 patent/WO2019151367A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4735363A (en) * | 1985-05-29 | 1988-04-05 | Plastro Gvat | Method for producing a drip irrigation line and an emitter therefor |
JPH05276841A (en) * | 1991-10-01 | 1993-10-26 | Hydro Plan Eng Ltd | Flow-out device unit, flow-out device unit main body and die for manufacturing the same |
JPH1024203A (en) * | 1996-07-10 | 1998-01-27 | Houriyou Sangyo Kk | Liquid filter |
JPH1113500A (en) * | 1997-06-27 | 1999-01-19 | Nippon Soken Inc | Flow noise control system for throttle valve |
JP2003260344A (en) * | 2002-03-08 | 2003-09-16 | Osaka Gas Co Ltd | Static mixer |
WO2006006625A1 (en) * | 2004-07-13 | 2006-01-19 | Meishin Kogyo Kabushikigaisha | Turbid water purification apparatus and coagulant addition equipment |
US20150014446A1 (en) * | 2013-07-09 | 2015-01-15 | Amirim Products Development & Patents Ltd. | In line button drip emitter |
JP2015200467A (en) * | 2014-04-09 | 2015-11-12 | フロイント産業株式会社 | Processed product dispersion mechanism of air flow type drier |
CN104488665A (en) * | 2014-12-08 | 2015-04-08 | 西安交通大学 | Karman vortex street shaped runner and drip irrigation emitter comprising same |
JP2017063745A (en) * | 2015-10-01 | 2017-04-06 | 株式会社エンプラス | Emitter and tube for drip irrigation |
Also Published As
Publication number | Publication date |
---|---|
JP2019129785A (en) | 2019-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10834878B2 (en) | Emitter and drip irrigation tube | |
JP6532763B2 (en) | Emitter and drip irrigation tube | |
EP3075237B1 (en) | Emitter and drip irrigation tube | |
WO2016190168A1 (en) | Emitter and drip irrigation tube | |
WO2016190167A1 (en) | Emitter and drip irrigation tube | |
JP2017104045A (en) | Emitter and drip irrigation tube | |
JP6719297B2 (en) | Emitter and drip irrigation tubes | |
JP7101045B2 (en) | Emitter and drip irrigation tube | |
US11116152B2 (en) | Emitter and drip irrigation tube | |
JP2018046770A (en) | Emitter and drip irrigation tube | |
WO2019151367A1 (en) | Emitter and drip irrigation tube | |
JP6689634B2 (en) | Emitter and drip irrigation tubes | |
WO2019151366A1 (en) | Emitter and tube for drip irrigation | |
JP6710602B2 (en) | Emitter and drip irrigation tubes | |
WO2021045032A1 (en) | Emitter and drip irrigation tube | |
JP6429577B2 (en) | Emitter and drip irrigation tubes | |
JP6837377B2 (en) | Emitter and drip irrigation tubes | |
JP6831741B2 (en) | Emitter and drip irrigation tubes | |
WO2019078180A1 (en) | Emitter, and tube for drip irrigation | |
WO2021039624A1 (en) | Emitter and drip irrigation tube | |
WO2016136695A1 (en) | Emitter and drip irrigation tube | |
JP2018161113A (en) | Method of manufacturing emitter | |
JP2019054758A (en) | Emitter and drip irrigation tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19747174 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19747174 Country of ref document: EP Kind code of ref document: A1 |